

VisualWorks®

Internationalization Guide

P46-0104-03

Copyright © 1995–2003 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0104-03

Software Release 7.2

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of ObjectShare, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1995–2003 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book 7

Audience ... 7
Conventions .. 8

Typographic Conventions ... 8
Special Symbols ... 8
Mouse Buttons and Menus .. 9

Getting Help .. 9
Commercial Licensees ... 10

Before Contacting Technical Support .. 10
Contacting Technical Support ... 10

Non-Commercial Licensees ...11
Additional Sources of Information ... 11

Chapter 1 Adapting to Multiple Locales 13

Working with Locales .. 13
The Default Locale ... 14
Listing the Available Locales .. 15
Changing the Current Locale ...15
Setting the Locale under UNIX ... 15
Detecting a Change in Locale .. 16

Using Local Fonts ... 17
Working with Character Encodings ... 18

Setting the Encoding for a File Browser ... 18
Working with Source Code .. 18

Working with Encoded Streams .. 19
Properties of Encoded Streams ... 19
Caveats for Encoded Streams .. 19
Fetching Available Encodings .. 20
Creating an External Encoded Stream ... 20
Creating an Internal Encoded Stream .. 21

Formatting Times, Dates and Currency .. 21
Interaction with Input Fields ...21
Formatting Times and Dates .. 21
International User’s Guide 3

Contents
Formatting Currency .. 22
Reading Formatted Values .. 22
Customizing Formats for Timestamps, Dates, and Times 23

Adjusting the Collation Policy for String Collections ... 23
Using the Default Collation Policy .. 24
Assigning an Explicit Collation Policy .. 24
Converting an Existing Collection .. 24

Printing in Multiple Locales ... 25

Chapter 2 Adapting User Messages to Multiple Locales 27

Overview of Message Catalogs .. 27
Why Message Catalogs? ... 27
How Message Catalogs Work ... 28

UserMessage as a Lookup Object .. 28
Message Catalog as a Dictionary of Messages 29
Using Multiple Catalogs per Locale .. 29
Optimizing Lookups With Multiple Catalogs 29
What Happens When a Lookup Fails? ... 30

Summary ... 30
Guidelines for Building Message Catalogs ... 31

Catalog Directories .. 31
Subdividing Catalog Directories .. 32
Subdividing Catalog Files .. 33
Cache Size .. 33

Creating a Message Catalog .. 34
Indexing a Catalog ... 35
Indexing All Catalogs in a Directory ... 35
Indexing All Loaded Catalogs .. 35

Loading Message Catalogs .. 36
Defining a User Message for a Widget or Menu ... 37

Using the Properties Tool .. 37
Restricting the Search ... 38
Getting a String at Runtime ... 38

Defining a User Message in a Method .. 39
Guidelines for Creating User Messages .. 40

Avoid Literal Catalog Names .. 40
Avoid using withCRs ... 40

Creating a User Message .. 40
Creating a User Message with a Keyword Selector 40
Creating a User Message for a Specific Catalog ... 41

Inserting Runtime Values in a User Message ... 41
4 VisualWorks

Contents
Chapter 3 Adding a New Locale 43

Creating a New Locale .. 43
Defining a Locale ... 45

Creating a New Character Encoder .. 46
Creating a CharacterEncoder .. 46

Creating a New Stream Encoder ... 47
Defining a StreamEncoder ... 48

Creating an Input Manager ... 50
Creating a String-Collating Policy ..51

Defining a StringCollationPolicy ... 51
Creating Currency, Time and Date Formatters ... 52

Defining a Policy for Currency .. 52
Defining a Policy for Times and Dates ... 54
Defining Readers ... 56

Adding Support for a New Operating Environment ... 56

Index 57
International User’s Guide 5

Contents
6 VisualWorks

About This Book

VisualWorks contains facilities that support the creation of culture-
sensitive and cross-cultural applications. This guide explains how to take
advantage of those facilities.

Chapter 1, “Adapting to Multiple Locales” shows how to detect a change
in locale at startup time and reset application characteristics
appropriately.

Chapter 2, “Adapting User Messages to Multiple Locales” shows how to
arrange for textual widget labels, dialog prompts, error messages and
other user-visible strings to be displayed in the appropriate language
depending on the current locale.

Chapter 3, “Adding a New Locale” shows how to extend the set of
supported locales by defining and installing new instances of Locale.

Note: Certain VisualWorks tools such as the File Browser offer
optional enhancements for international users. By default, these
enhancements are not shown. To turn them on, open the Settings
Tool by selecting System � Settings in the VisualWorks Launcher
window. In the Settings Tool, examine the options for Tools. There,
enable the check box marked Show UI for Internationalization.

Audience
This guide addresses two primary audiences:

• Developers of culture-sensitive and cross-cultural applications

• Distributors and others who wish to create a custom Locale and
supporting facilities

This guide presupposes that both kinds of developers are familiar with the
VisualWorks development environment, as described in the VisualWorks
documentation set.
International User’s Guide 7

About This Book
Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File � New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.
8 VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
International User’s Guide 9

About This Book
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help � About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help � About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com

Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
10 VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
International User’s Guide 11

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

About This Book
12 VisualWorks

1
Adapting to Multiple Locales

Working with Locales
A Locale object provides information that an application needs when
adapting to geographic and cultural norms for a specific country or
region, including:

• An appropriate character encoding, such as ISO 8859-1

• An appropriate font size and family

• A policy for sorting strings

• A policy for formatting date, time and currency objects during reading
and printing

VisualWorks uses instances of class Locale to represent each distinct
locale. Example code on the following pages shows how to find out which
locale is currently set, and how to install a different locale. Note that
setting a new locale may take many seconds to complete.

Within VisualWorks, a locale name is composed of three parts: language,
territory, and encoding. The territory identifier is capitalized. An
underscore follows the language identifier, and a period follows the
territory identifier. For example, the name for a U.S. English encoding on
an HP machine is as follows:

#'en_US.roman8'
The language identifier is defined by the ISO 639 standard. The territory
name is defined by the ISO 3166 alpha-2 (two alphabetic-character)
standard. The encoding identifier does not follow any standard, because
there is no standard for encoding names.
International User’s Guide 13

Chapter 1 - Adapting to Multiple Locales
Each locale name is a Symbol, so it must be preceded by a pound sign. In
addition, when the name contains a period, the name must be enclosed
in single quotes.

Common language identifiers include:

de (German)
en (English)
es (Spanish)
fr (French)
ja (Japanese)

Common territory identifiers include:

CA (Canada)
DE (Germany)
ES (Spain)
FR (France)
GB (Great Britain)
JP (Japan)
US (United States)

The Default Locale
Each time VisualWorks is started, it queries the host operating system to
find out which locale is appropriate. Based on this platform information,
VisualWorks chooses a matching Locale instance from among those that
have been defined in the image. If no matching locale is available, it
defaults to the C locale, which is a culture-neutral English locale named
after the C programming language.

Each operating system has its own way of storing the platform locale
name, as follows:

MS-Windows
The WIN.INI file or the NT registry stores an abbreviation identifying
the current language, such as ‘enu’ for U.S. English. The setting is
typically created when Windows is installed.

UNIX
VisualWorks reads the LC_CTYPE category of the default locale. It is
typically set using either the LC_ALL, LC_CTYPE, or LANG
environment variable. If LC_ALL is set, it takes precedence;
LC_CTYPE takes precedence over LANG. See the MAN page for
setlocale() for details. (LC_ALL and LANG are more generic
settings, and therefore safer choices than LC_CTYPE from the point
of view of a possible category change in future releases of
VisualWorks.)
14 VisualWorks

Working with Locales
Mac OS
VisualWorks infers a locale identifier from the language of the system
script in combination with the region code for the localization of the
system software.

Listing the Available Locales
In a Workspace, send an availableLocales message to the Locale class. An
IdentitySet of VisualWorks locale names is returned.

"Inspect"
Locale availableLocales

Changing the Current Locale
1 To get the currently set locale, use a Workspace to send the

message current to class Locale.

2 To get the name of the locale, send a name message to it.

3 To set a new locale, send a set: message to the Locale class, with the
name of the desired locale as the argument. For example:

| currentLocale localeName |

"Display the current locale’s name in the Transcript."
currentLocale := Locale current.
localeName := currentLocale name.
Transcript show: localeName; cr.

"Set the culture-neutral English locale."
Locale set: #C.

Setting the Locale under UNIX
Under UNIX, you can also use an environment variable to set the current
locale. This is the preferred approach under UNIX.

Before starting VisualWorks, set the LANG environment variable to the
name of the desired locale. Use the platform’s name for the locale (which
is not necessarily the same as the name used within VisualWorks).

For example, to set a U.S. English locale in a csh shell :

"UNIX command"
setenv LANG en_US.roman8

Other types of UNIX shell use a different command for setting an
environment variable, and possibly a different locale name.
International User’s Guide 15

Chapter 1 - Adapting to Multiple Locales
Detecting a Change in Locale
By making your application a dependent of the Locale class, you can
arrange for your application to receive two update:with:from: messages
each time the current locale is changed.

In the first update message, the aspect symbol that is used as the update
argument is #locale, indicating that the locale has changed. The second
update message is sent after the fonts have been updated, and has an
aspect symbol of #localeFonts.

For example, to create the dependency:

1 Send an addDependent: message to the Locale class. The argument is
your running application. This message is typically sent during the
application’s startup, in its initialize method. For example:

initialize

super initialize.

"Add this application as a dependent of Locale."
Locale addDependent: self.

2 In your application’s update:with:from: method, test for the #locale
aspect and take the appropriate actions. (In the example, the
application sends an updateLocale message to itself—the application
would also have to implement an updateLocale method). If the
application’s response relies on the new fonts having been loaded,
which is often the case, test for the #localeFonts aspect as well.

update: aspect with: parameter from: sender

super update: aspect with: parameter from: sender.

aspect == #locale
ifTrue: [self updateLocale].

3 In your application’s release method, send a removeDependent:
message to the Locale class, with the application as the argument.
This removes the dependency that was created in Step 1, when the
application is closed. (Be sure release is invoked no matter how the
user exits from your application.)

release

super release.
Locale removeDependent: self.
16 VisualWorks

Using Local Fonts
Using Local Fonts
To display international characters, you must first have the appropriate
fonts installed.

Implications of a Font Change
When you are developing an application for a single locale, you can
safely rely on the fonts used by that locale. When you are developing a
multi-locale application, you must be aware that any character not
supported by a locally available font will be displayed as a black
rectangle. In practice, this means that your application must replace any
strings used in its interface with locally appropriate substitutes whenever
the locale is changed. VisualWorks provides a message-catalog facility
for this purpose, as described in Chapter 2, “Adapting User Messages to
Multiple Locales”.

Using Non-ASCII Characters in Source Code
In VisualWorks, you can use international characters in class names,
method names, variable names, symbols, strings and other components
of your Smalltalk code. However, doing so can make your application
incompatible with locales whose fonts do not support those characters.
For example, using an international character in a window’s title bar
would cause a black rectangle to appear in place of the character in a
locale in which the local fonts do not support the character.

Using Local Filenames
You can also use international characters in a file name. If the file name is
displayed in another locale, black rectangles will appear in the place of
any characters not supported by the operating system.

Designing Character-Mapping Applications
If your application requires the creation of a parsing mechanism or similar
device for mapping characters to other values, be aware that the
character look-up mechanism must allow for character values greater
than 256.
International User’s Guide 17

Chapter 1 - Adapting to Multiple Locales
Working with Character Encodings
All computer software uses numeric codes to represent alphabetic
characters. A set of codes is called a character encoding. In English
software, for example, the most familiar character encoding is called
ASCII, an acronym for American Standard Code for Information
Interchange. Other encodings are tailored to other alphabets, such as the
Japanese alphabet or the Russian alphabet, or to groups of alphabets.

Unicode is an example of a multi-alphabet encoding. It was established to
serve the needs of software that is used in a variety of language settings.

Various techniques have been devised for storing Unicode as a stream of
characters. Each such scheme is known as a stream encoding. Thus, a
single character encoding (Unicode) can be stored using any of several
stream encodings.

VisualWorks uses Unicode internally to represent characters in any
locale, and translates as needed between Unicode and the local
encoding. Several encodings are supplied with VisualWorks, supporting
various operating environments. Others may have been defined by your
VisualWorks distributor.

Setting the Encoding for a File Browser
The VisualWorks File Browser supports the multiple stream encodings,
including UCS-2 (canonical) and the UTF-8 (8-bit transformation).

To select a different encoding, pick Encoding from the File menu.

Several choices are offered in the File Browser’s menu of encodings:

• Default, which is the default encoding for your operating environment.

• Source, which is the system default for files containing source code
(the same as UTF_8 in most operating environments).

For additional options, select Encoding � Other... from the File menu.

The UTF_8 encoding, which is a space-efficient encoding for Unicode, is
used for all VisualWorks sources file, and typically for file-outs of
Smalltalk code.

Working with Source Code
The VisualWorks File Browser considers any filename ending in an
extension of ‘.st’, ‘.pst’, ‘.cha’ or ‘.ws’ as a Smalltalk code file, and reads it
using the Source (or UTF_8) encoding. Otherwise, the file will be read with
Default encoding, or whatever is chosen in the encoding menu.
18 VisualWorks

Working with Encoded Streams
Working with Encoded Streams
A stream that reads and/or writes characters to a string or other collection
object is called an internal stream. An external stream reads and writes to
a disk file. Both external and internal streams can be encoded using any
of the stream encodings available in your VisualWorks image.

A multi-locale application must apply the correct encoding for the current
locale to any stream that it opens. The following pages illustrate how to
obtain the names of available encodings, how to create both internal and
external encoded streams.

Properties of Encoded Streams
Streams can be tailored for read-only, append-only, write-only, read-
append and read-write. Creating a stream on an encoded file is
accomplished by sending one of the following messages to the Filename
object: appendStream, newReadAppendStream, newReadWriteStream,
readAppendStream, readStream, readWriteStream, writeStream. A stream on
an internal collection can be created similarly, though none of the
appending streams are available.

Three special encodings are available in addition to the specific
encodings:

• #default, which is the default encoding for your operating environment.

• #Source, which is the system default for files containing source code.

• #binary, which is used for a binary stream as opposed to a character
stream. (Specifying a #binary encoding is more efficient than
converting a stream to binary mode via the usual binary message.)

Caveats for Encoded Streams
The following points should be kept in mind when using encoded
streams:

Size
The size of an encoded stream does not necessarily indicate the
number of characters in that stream because encoded streams can
use more than one byte to represent a character.

End Testing
The atEnd message is not reliable when used with an encoded stream
involving multi-byte characters.
International User’s Guide 19

Chapter 1 - Adapting to Multiple Locales
Errors
Encoded streams can generate errors that non-encoded streams do
not generate. For instance, an encoded stream reading from a file
might encounter a sequence of bytes that is not recognized in the
specified encoding.

Fetching Available Encodings
To get an array of names of available encodings, send an
availableEncodings message to the StreamEncoder class.

Creating an External Encoded Stream
To create an external encoded stream:

Create a Filename object and send a withEncoding: message to it, and then
create the desired type of stream on the file in the usual way. The
argument to withEncoding: is the name of the desired encoding. (This is
not necessary when the default encoding, as defined in the current Locale,
is acceptable.)

For example:

| encodingList preferredEncoding extStream |

"Get a reasonable encoding."
encodingList := StreamEncoder availableEncodings.

preferredEncoding := (encodingList includes: #ISO8859_1)
ifTrue: [#ISO8859_1]
ifFalse: [#default].

"Create an encoded Filename, then open a stream on it."
extStream := ('encoding.tmp' asFilename

withEncoding: preferredEncoding) writeStream.

extStream print: encodingList; cr.
extStream close.
20 VisualWorks

Formatting Times, Dates and Currency
Creating an Internal Encoded Stream
Send a withEncoding: message to a ByteArray, with an encoding as the
argument, then create the desired type of stream in the usual way.

| encoding byteArray intStream |

"Get the default encoding."
encoding := #default.

"Create an encoded array, then open a stream on it."
byteArray := ByteArray new: 100.
intStream := (byteArray withEncoding: encoding) writeStream.

"Print sample chars, then show result in Transcript two ways."
intStream print: 'Hello, world'; cr.
Transcript show: intStream encodedContents printString; cr.
Transcript show: intStream encodedContents asByteString; cr.
intStream close.

Formatting Times, Dates and Currency
Times, dates and monetary amounts often need to be displayed
differently in different locales.

The formatting policies used for these amounts are held by the current
locale object. Thus, an application that uses these formatting messages
rigorously will adapt automatically to a change in locale.

Interaction with Input Fields
The input field widget consults the current locale for formatting
information when the Format property of the input field has been left blank.
For example, an input field that is configured to display a Date will display
the date in the format specified by the current locale’s
TimestampPrintPolicy, but only if the field’s Format property is left blank.
Locale-adjusted currency formatting in an input field is not directly
supported.

Formatting Times and Dates
Time or Date objects may be printed either in short form (using
shortPrintString) or in long form (using longPrintString), e.g.:
International User’s Guide 21

Chapter 1 - Adapting to Multiple Locales
Transcript
show: Date today shortPrintString;
tab; tab;
show: Time now shortPrintString;
cr; cr;
show: Date today longPrintString;
tab; tab;
show: Time now longPrintString;
cr.

Formatting Currency
To print a number as a monetary amount, get the currencyPolicy from the
current locale and send a print:on: message to it. The first argument is the
number to be formatted. The second argument is the stream on which the
string is to be printed. For example:

| stream |
stream := String new writeStream.
Locale current currencyPolicy print: 99.95 on: stream.
Transcript show: stream contents; cr.

Reading Formatted Values
To read a date from a stream using the current locale’s date format, send
a readDateFrom: message to the current locale. The argument is a stream
that is positioned at the beginning of the formatted date.

To read a time similarly, use readTimeFrom:.

To read a number similarly, use readNumberFrom:type:. The first argument
is the stream containing the formatted number, and the second argument
is the class of number to be read, such as FixedPoint.

For example:

| locale dateStr timeStr numberStr |
locale := Locale current.

"First write values onto streams."
dateStr := Date today shortPrintString readStream.
timeStr := Time now printString readStream.
numberStr := 49.95s printString readStream.

"Read the values from the streams and store them in an array."
^Array

with: (locale readDateFrom: dateStr)
with: (locale readTimeFrom: timeStr)
with: (locale readNumberFrom: numberStr type:FixedPoint).
22 VisualWorks

Adjusting the Collation Policy for String Collections
Customizing Formats for Timestamps, Dates, and Times
You may customize the formatting policies for the current locale. The
class comments for the TimestampPrintPolicy and NumberPrintPolicy classes
describe the complete syntax of the formatting strings.

To customize the short format for timestamps, dates and times, send a
shortPolicyString: message to the current locale’s timePolicy. The argument
is a string containing symbolic formats for a timestamp, a date and a time,
separated by semicolons.

To customize the long format for timestamps, dates and times, use the
longPolicyString: message instead. For example:

Locale current timePolicy
shortPolicyString: 'm-d-yy h:m am/pm;m-d-yy;hh:mm a/p';
longPolicyString: 'mmmm-dd-yyyy hh:mm:ss A/P;mmmm-
dd-yyyy;hh:mm:ss am/pm'.

Transcript
show: Time now shortPrintString; cr;
show: Date today longPrintString; cr;
show: Timestamp now printString; cr.

To customize the currency format, send a policyString: message to the
current locale’s currencyPolicy. The argument is a string containing
optional symbolic formats for a positive number, a negative number, a
zero and a null (nil) number, separated by semicolons.

Locale current currencyPolicy
policyString: '$#,##0.00;($#,##0.00)'.

Locale current currencyPolicy print: -499.95 on: Transcript.
Transcript cr; flush.

Adjusting the Collation Policy for String Collections
Consider a typical application that manipulates customer names, product
names, and so on. The application may use sorted collections of strings
to hold these objects. What happens when we want to use this
application with different locales?

To internationalize such an application, it may be necessary to replace
the contents of these sorted collections with locally appropriate strings.
Additionally, a multi-locale application may need to adjust the algorithm
for determining when one string is to precede another. This algorithm is
called a collation policy.
International User’s Guide 23

Chapter 1 - Adapting to Multiple Locales
Using the Default Collation Policy
To create a sorted collection of strings using the current locale’s default
collation policy, send a forStrings: message to class SortedCollection.

^SortedCollection forStrings: 100
The argument is the number of slots to be allocated initially. The default
collation policy for the current locale is used.

Assigning an Explicit Collation Policy
You may specify a policy explicitly when creating a new sorted collection
of strings. Note that this policy cannot be changed after the collection has
been created. A multi-locale application that is running when the locale is
changed must recreate the string collections.

To specify the collation policy:

1 Get the desired collation policy by sending a collationPolicy message
to the appropriate locale.

2 Send a forStrings:collatedBy: message to the SortedCollection class. The
forStrings argument is the number of slots to be allocated initially. The
collatedBy argument is the policy object that you accessed in Step 1.

| policy |
policy := (Locale named: #'en_US.ISO8859-1') collationPolicy.
^SortedCollection

forStrings: 100
collatedBy: policy

Converting an Existing Collection
You may convert an existing collection of strings into a sorted collection
using either the default collation policy or an explicit policy. The original
collection can be either nonsorted (such as an Array) or sorted (e.g.,
when the locale has changed and a sorted collection must be recreated
with a new collation policy).

To convert a collection to a sorted collection that uses the default collation
policy, send an asSortedStrings message to the original collection.
24 VisualWorks

Printing in Multiple Locales
To do the same thing but with an explicit collation policy, send an
asSortedStringsWith: message to the original collection. The argument is a
collation policy. For example:

"Inspect"
| stringArray defaultPolicyCollection neutralPolicy neutralPolicyCollection |
stringArray := #('Hello' 'Konnichiwa' 'Bonjour').

defaultPolicyCollection := stringArray asSortedStrings.

neutralPolicy := (Locale named: #C) collationPolicy.
neutralPolicyCollection := stringArray

asSortedStringsWith: neutralPolicy.

^Array with: defaultPolicyCollection with: neutralPolicyCollection.

Printing in Multiple Locales
When you send output to a printing device, both the printer and the locale
must support the character set that you choose. For example, printing in
Japanese is only supported in the Japanese locale.
International User’s Guide 25

Chapter 1 - Adapting to Multiple Locales
26 VisualWorks

2
Adapting User Messages to Multiple
Locales

Overview of Message Catalogs

Why Message Catalogs?
A typical application has many textual items in its user interface, such as
labels for input fields, button labels, menu items and dialog prompts. In
the jargon of localized software, a piece of text that is seen by the
application user is called a user message. A multi-locale application
needs to arrange for each such user message to employ an appropriate
translation whenever the locale is changed. VisualWorks provides
support for message catalogs to serve this requirement.

To adapt user messages for the current locale, VisualWorks provides:

• External message catalogs, which enable you to organize language-
specific sets of user messages in plain text files for convenient
translation and deployment

• A Message Catalogs page in the Settings Tool, which enables you to
conveniently load the appropriate message catalogs

• User-message objects, which are used in place of literal strings and
look up the appropriate version of a text in the message catalogs

• Convenient creation of user messages for textual widgets and menus
via the GUI Properties Tool and Menu Editor

• Parameterized strings for convenient insertion of runtime values
International User’s Guide 27

Chapter 2 - Adapting User Messages to Multiple Locales
How Message Catalogs Work
As an example, let’s consider a label widget that is to display the word
“Name” in an English-speaking locale, “Nom” in a French locale and
“Nombre” in a Spanish locale. VisualWorks enables you to assign a
lookup key to the widget so it will look up the appropriate label depending
on the current locale.

At runtime, the label widget looks up its label string. If the application is
being run in an English locale, the widget looks in an English catalog. If
the locale is French, the widget looks in a French catalog. And so on.

A label widget holds a UserMessage, which retrieves the appropriate
label string at runtime. Here, the current locale’s languageID is #fr (short
for “français”), so the French catalog has been loaded.

For the developer, the process of adapting user messages to multiple
locales consists of two steps:

• Replacing every literal string that is visible to the application user with
an object that looks up a locale-specific version of the string

• Creating the message catalogs

You can perform these steps in either order, and you can build the
catalogs incrementally as you add modules to your application.

UserMessage as a Lookup Object
In our example, the label widget actually relies on an instance of
UserMessage to hold the lookup key and perform the lookup. This object is
created behind the scenes when you use the extended version of the
Properties Tool or Menu Editor to assign a lookup key to a widget or a

Label widget

UserMessage

lookup key = #name

French catalog

name='Nom'

English catalog

name='Name'

Spanish catalog

name= 'Nombre '
28 VisualWorks

Overview of Message Catalogs
menu item. A UserMessage can also be created programmatically, for
dialog prompts and other strings that must be embedded in code that you
write manually.

Message Catalog as a Dictionary of Messages
A message catalog is simply a list of lookup keys and, for each key, a
literal string. The first step in creating a message catalog is to use a File
Browser or other word processor to list the keys and strings in a plain text
file, whose name must have a ‘.lbl’ extension. In our example, the
English-locale file would contain the following as one of its entries:

name='Name'

The French-locale file would have a similar entry:

name='Nom'

And the Spanish-locale file would include:

name='Nombre'

The advantage in using plain text files for organizing user messages is
that translators can easily work with text files, and need not run
VisualWorks to accomplish their mission.

After you have created or modified the catalog files, you must perform two
simple steps (which are described later in this chapter):

• Create an index for each catalog file

• Use the Settings Tool to load the indexes

Using Multiple Catalogs per Locale
So far we have talked about message catalogs as if there were always
just one catalog file per locale. While you are free to define all of the
lookup keys and values in a single file, you can also use multiple files for
a more modular approach. Smaller files may be easier to maintain, and
can speed up lookups (as we will show in a moment).

For example, suppose you are developing a core application and several
optional modules. By creating a separate catalog for each module and
each locale, you can deliver to each application user just those catalogs
that are necessary for that configuration of application modules.

Optimizing Lookups With Multiple Catalogs
Conceivably, for a large application suite, you could have dozens of
message catalogs for each locale. By default, each UserMessage searches
all of the catalogs, if necessary, to find its string.
International User’s Guide 29

Chapter 2 - Adapting User Messages to Multiple Locales
To narrow the search, each UserMessage can be told to search a specific
catalog. To do so, you tell the UserMessage the name of its assigned
catalog, known as the catalogID. The extended Properties Tool and Menu
Editor both provide a convenient means of identifying the catalog. Each
catalog file identifies its catalogID with an entry such as:

catalog: coreApplication

You can organize message catalog files any way that makes sense for
your application. One scheme is to subdivide the messages by type,
putting dialog prompts in one file, widget labels in a second file, menu
labels in a third file, and so on. Another possible approach is to segment
the messages by canvas, putting all widget labels, menu labels, dialog
prompts, error messages and other messages for a given application
canvas in a single file.

In any such segmentation scheme, you are liable to incur more
duplication the more you subdivide. The benefits of smaller files must be
weighed against the cost of duplication in arriving at a balanced scheme.

What Happens When a Lookup Fails?
By default, when a UserMessage cannot find its lookup key in any catalog’s
index, it converts the lookup key to a string and returns that string
instead. You can also supply an optional default string for each
UserMessage, to be returned when the lookup fails.

Summary
VisualWorks provides a flexible mechanism for adapting user-visible text
to the current locale, in the form of user-message objects and message
catalogs.

User-message objects can be generated by VisualWorks tools such as
the Properties Tool and Menu Editor, and they can be created
programmatically. Each such object has a lookup key and an optional
catalog ID.

Message catalogs consist of plain text listings of lookup keys and their
associated strings. At a minimum, you will need one catalog per locale.
You can subdivide a catalog to improve lookup performance and to
facilitate flexible configuration management.

The remaining sections in this chapter provide detailed instructions for
generating and programming user messages, creating and loading
message catalogs, and inserting runtime parameters in messages.
30 VisualWorks

Guidelines for Building Message Catalogs
Guidelines for Building Message Catalogs
A message catalog is a list of user messages along with their lookup
keys. Each message catalog is stored in a separate text file. The use of
text files makes it convenient for translators to work with the text, and also
makes it easy to bundle the appropriate sets of user messages with a
particular configuration of your application modules.

Each lookup key can occupy up to 53 bytes. Each catalog ID and
encoding name can occupy up to 127 bytes. These limits apply after the
lookup key, catalog ID or encoding name has been converted to UTF_8
encoding.

An index must be created for each catalog (internally, B-Trees are used
for fast lookups). After generating or regenerating the index, you must
load the catalog via the Settings Tool. For details, see “Indexing a
Catalog” on page 35.

Catalog Directories
In the simplest case, you would create a single catalog file for each
locale-specific set of user messages — one for English messages, one
for Japanese messages, and so on. To enable VisualWorks to load the
appropriate catalogs whenever the locale changes, each catalog file must
be located in a directory whose name matches either the languageID or
the languageAndTerritory of its locale.

The languageID is an abbreviation for the locale name, such as ‘en’
(English) or ‘es’ (Espanol), and can be obtained by using a Workspace to
send a languageID message to the locale. The languageAndTerritory
specifies a specific dialect of the language, such as ‘en_US’ (United
States English) or ‘en_GB’ (Great Britain English).

The languageID for the default locale is either ‘en_US’ (for nonUNIX
platforms) or ‘C’ (a culture-neutral English locale named after the C
programming language).

When the locale is changed, VisualWorks first asks the locale for its
languageAndTerritory. If no catalog directory with that name can be found,
VisualWorks asks the locale for its languageID. If no catalog directory with
that name can be found, VisualWorks searches for the default locale’s
catalog directory (‘en_US’ or ‘C’).

In an operating system that supports case-sensitive directory names,
such as UNIX, the territory name must be capitalized, as it is in the locale
name.
International User’s Guide 31

Chapter 2 - Adapting User Messages to Multiple Locales
The following directory structure might be used for a situation involving
two locales, named ‘en’ (English) and ‘de’ (Deutsch, or German).

messages
en

all.lbl
de

all.lbl

Subdividing Catalog Directories
VisualWorks can search multiple top-level directories for locale-specific
subdirectories, enabling you to segregate user messages by application
or application module. For example, a core application (visual) and an
add-on module (charts) would keep their user messages separate by
using a directory structure such as:

messages
visual

en
all.lbl

de
all.lbl

charts
en

all.lbl
de

all.lbl
32 VisualWorks

Guidelines for Building Message Catalogs
Subdividing Catalog Files
You can subdivide a large catalog into separate files, instead of using a
single catalog file to contain all user messages for an application. For
example, you could place widget labels in one file, menu labels in a
second file and dialog prompts in a third file, as follows:

messages
visual

en
widget.lbl
menu.lbl
dialog.lbl

de
widget.lbl
menu.lbl
dialog.lbl

charts
en

widget.lbl
menu.lbl
dialog.lbl

de
widget.lbl
menu.lbl
dialog.lbl

Cache Size
The typical application has user messages that it needs to look up
frequently. To avoid repetitive file accesses, a message catalog holds a
cache of recently accessed messages. By default, the cache holds up to
100 messages before it is emptied. You can specify the cache size within
the catalog file, as shown below.
International User’s Guide 33

Chapter 2 - Adapting User Messages to Multiple Locales
Creating a Message Catalog
The message catalog file may be created using the File Browser or any
other raw-text word processor. The file name is not significant
operationally, except that it must end in .lbl indicating that it contains
textual labels.

The contents of the file should be composed as follows:

1 On the first line of the file, identify the stream encoding that is being
used in the file, prefaced by encoding: , as in encoding: ASCII.
If the encoding name contains any character other than a letter, a
digit or an underscore, or if it begins with a digit, it must be enclosed
in single quotes.

2 On the next line of the file, optionally, identify the catalog ID, prefaced
by catalog: , as in catalog: allLabels. This ID is used when
an application wishes to optimize lookups by specifying a particular
catalog to search for user messages. If the catalog ID contains any
character other than a letter, a digit or an underscore, or if it begins
with a digit, it must be enclosed in single quotes.

3 On the next line of the file, optionally, identify the catalog’s cache
size, prefaced by cacheSize: , as in cacheSize: 500.

4 Place each user message on a line by itself, inside single quotes,
prefaced by the lookup key and an equal sign. You can use carriage
returns inside the quotes for multiple-line messages. Do not place a
period at the end of each entry.

Enclose comments inside double quotes. Liberal commenting is
encouraged to help those who maintain or translate the catalog.

A typical catalog file might look as follows:

"Sample catalog file"
encoding: #ASCII
catalog: #allLabels
cacheSize: 500

"Warning dialogs"
noSuchCustomer='No such customer exists'
unreliableCustomer='This customer pays with bad checks'

"Widget labels"
name='Customer name'
address='Address'
phone='Phone'
34 VisualWorks

Creating a Message Catalog
Indexing a Catalog
To create an index for a specific catalog:

1 Open a Workspace by selecting Tools � Workspace in the VisualWorks
Launcher window.

2 In the Workspace, send the compileCatalogIndexFor: message to the
IndexedFileMessageCatalog class. The argument is the pathname of the
catalog file (do not include the file extension):

IndexedFileMessageCatalog
compileCatalogIndexFor: 'messages\visual\en\dialogs'

Indexing All Catalogs in a Directory
To create an index for all catalogs in a specific directory:

1 Open a Workspace by selecting Tools � Workspace in the VisualWorks
Launcher window.

2 In the Workspace, send the compileAllCatalogsFor: message to the
IndexedFileMessageCatalog class. The argument is the pathname of a
directory in which the desired catalogs are located — all
subdirectories will be searched for catalog files, too.

IndexedFileMessageCatalog
compileAllCatalogsFor: 'messages\visual\en'

Indexing All Loaded Catalogs
To create an index for all catalogs loaded using the Settings Tool:

1 Open a Workspace by selecting Tools � Workspace in the VisualWorks
Launcher window.

2 In the Workspace, send the compileAllCatalogsInSearchDirectories
message to the IndexedFileMessageCatalog class. All directories that
have been defined in the Message Catalogs page of the Settings Tool
will be searched recursively for catalog files, and those files will be
indexed.

IndexedFileMessageCatalog
compileAllCatalogsInSearchDirectories
International User’s Guide 35

Chapter 2 - Adapting User Messages to Multiple Locales
Loading Message Catalogs
After you have created or changed message catalogs, and (re)generated
their indexes, you must load them into VisualWorks. This operation
consists of supplying the path of each top-level directory that contains
one or more locale-specific subdirectories. VisualWorks will scan each
index file and assemble a lookup table in the image so user messages
can be retrieved quickly.

By identifying the top-level catalog directories in this way, you are also
equipping VisualWorks with the information it needs to automatically load
a different set of message catalogs whenever the locale is changed.

To load a message catalog:

1 Open the Settings Tool by selecting Settings in the System menu of the
main VisualWorks window.

2 Switch to the Message Catalogs page of the Settings Tool.

3 In the input field below the list, enter the path of a catalog directory.

4 Add the directory to the list by clicking on the Add button.

5 After you have entered all of the directories in this way, load the
catalogs by clicking on the OK button.
36 VisualWorks

Defining a User Message for a Widget or Menu
Defining a User Message for a Widget or Menu
In VisualWorks, a UserMessage is an object that looks up an appropriate
message string in a catalog, using a lookup key. For labels and other
textual widgets in the GUI of your application, the Properties Tool enables
you to specify a UserMessage rather than a literal string, as shown below.
(This assumes that you have turned on the Show UI for internationalization
setting on the Tools page of the Settings Tool. Otherwise the Properties
Tool provides a simpler interface that does not support user messages.)

The Menu Editor enables you to define a UserMessage for each menu
item’s label, in the same way as the Properties Tool does.

Note: Each locale’s version of a particular label text is likely to have
a different text width. For that reason, a multi-locale application is well
advised to use unbounded label and button widgets, which expand
and contract automatically to accommodate the text. If bounded
widgets are necessary to avoid overlapping neighboring widgets, be
sure to allow enough room in each widget for the longest text that it
will display.

Using the Properties Tool
1 To add a UserMessage in the GUI painter, select the desired widget

and then examine its properties.
International User’s Guide 37

Chapter 2 - Adapting User Messages to Multiple Locales
2 In the Properties Tool, make sure the Supplied by Application checkbox is
turned off.

3 In the String field, enter the string that is to be displayed if the user
message cannot be found. (If this field is left blank, the Lookup key will
be used as a default string.)

4 In the Lookup key field, enter the lookup key for the user message.

Restricting the Search
By default, all message catalogs for the current locale are searched when
a user message looks up its runtime value. You can optimize the search
by arranging for your application to supply a specific catalog ID.

For example, if you have loaded a catalog for your core application and
several other catalogs for auxiliary applications, each module can identify
its own catalog to avoid time-consuming global searches. This assumes
that each catalog file contains a catalogID line when loaded.

To restrict the search:

In the application model, add either a class or instance method named
messageCatalogID, which returns a symbol naming the application’s
message catalog. (An instance method takes precedence over the
inherited class method, which returns nil.)

messageCatalogID
^#coreApplication

Getting a String at Runtime
When the string must be supplied by the application at runtime, you can
arrange for an application method to supply the string. This is especially
useful when the string is parameterized, as described later in this
chapter.

1 In the Properties Tool, turn on the Supplied by Application checkbox.

2 In the Message field, enter the name of the method in the application
model that is to be invoked at runtime to get the desired string.

3 In the application model, add a method with that name. The method
is responsible for returning a literal string.
38 VisualWorks

Defining a User Message in a Method
Defining a User Message in a Method
Frequently, user messages must be embedded in methods that you
create manually — for example, a message displayed by a warning
dialog. In this situtaion, you must substitute a UserMessage where you
would normally place a literal string in your code.

A UserMessage has a lookup key, an optional catalog ID, and an optional
default string. When the catalog ID is nil, all message catalogs for the
current locale are searched. When the key is not found, the default string
is returned instead. If the default string is nil, the lookup key is returned as
a string.

For example, suppose a dialog is intended to warn the user that ‘No such
customer exists.’ The lookup key might be #noSuchCustomer, the catalog
ID might be #dialogs and the default string might be 'No such customer
exists.'

A UserMessage may be created either using binary or a keyword creation
message. The binary selectors may look a bit odd at first, but they are
more compact and therefore generally preferable. This short-hand is
provided because user messages are likely to be needed often where
they are needed at all.

A UserMessage may be created using one or two binary method selectors,
as in the following examples:

#noSuchCustomer << #dialogs
#noSuchCustomer >> 'No such customer exists'
#noSuchCustomer << #dialogs >> 'No such customer exists'
#noSuchCustomer >> 'No such customer exists' << #dialogs

Notice that the << selector (which can be read as ‘fromCatalogID’) can be
sent to either a Symbol representing the lookup key or to a UserMessage.
Similarly, the >> selector (which can be read as ‘defaultTo:’) can be sent to
either a Symbol or a UserMessage. This flexibility enables you to specify the
catalog name or the default string or both, in any order.
International User’s Guide 39

Chapter 2 - Adapting User Messages to Multiple Locales
Guidelines for Creating User Messages
As a general rule, the following two guidelines are recommended:

Avoid Literal Catalog Names
To improve the maintainability of your application with respect to catalog
name changes, you should avoid using literal catalog names in user-
message definitions. Instead, define a messageCatalogID method that
returns the catalog name, then use the expression self messageCatalogID in
place of literal references to the catalog ID. For example:

#noSuchCustomer << self messageCatalogID
#noSuchCustomer << self messageCatalogID >> 'No such

customer exists'
#noSuchCustomer >> 'No such customer exists' << self

messageCatalogID

Avoid using withCRs
You can insert carriage returns in a string at runtime by indicating the
position of each return with a backslash in the string, and sending a
withCRs message to the string. However, this technique is not
recommended for localized applications because the person who is
translating the messages is not likely to understand the special
implications of the embedded backslashes. Instead, use the technique
described in “Inserting Runtime Values in a User Message” on page 41.

Creating a User Message
1 In place of each literal string that is visible to the application user,

create an instance of UserMessage.

2 To perform the lookup (after creating and loading the pertinent
message catalog), send asString to the UserMessage. (This step is
optional in some situations — for example, a dialog is capable of
converting a UserMessage to a string.)

Dialog
warn: (#noSuchCustomer << #dialogs >> 'No such customer exists').

Creating a User Message with a Keyword Selector
A UserMessage may also be created via a keyword selector by sending
defaultString:key: to class UserMessage. The first argument is the string to
be used if the lookup fails. The second argument is the lookup key, e.g.:

UserMessage
defaultString: 'No such customer exists'
key: #noSuchCustomer
40 VisualWorks

Inserting Runtime Values in a User Message
Creating a User Message for a Specific Catalog
To use a specific catalog, send defaultString:key:catalogID: to class
UserMessage. The first argument is the string to be used if the lookup fails.
The second argument is the lookup key. The third argument is the name
of the catalog in which the message is to be found.

UserMessage
defaultString: 'No such customer exists'
key: #noSuchCustomer
catalogID: #dialogs

Inserting Runtime Values in a User Message
Frequently, a user message needs to incorporate one or more
parameters at runtime. For example, the message “Loading data file:
customer.dat” has a generic component (“Loading data file:”) and a
runtime parameter (“customer.dat”).

To substitute runtime values in a parameterized string:

1 In the string, include a placeholder for each parameter, in angle
brackets. (The StringParameterSubstitution class comment describes
the placeholder syntax. In the example below, the first parameter is to
be substituted for the placeholder.)

2 At runtime, install the parameter values in the string by sending a
variant of expandMacrosWith: to it. The argument is the parameter (or
parameters, for some variants).

For example:

| paramString msg |
paramString := 'Loading data file: <1s>'.
msg := paramString expandMacrosWith: 'customer.dat'.
Transcript show: msg; cr.

In this example, a literal string is hold the parameters, but the string could
as easily be obtained from a message catalog. In addition, a UserMessage
also responds to variants of expandMacrosWith:. (The converting protocol
in class CharacterArray contains the variants of expandMacrosWith:.).
International User’s Guide 41

Chapter 2 - Adapting User Messages to Multiple Locales
42 VisualWorks

3
Adding a New Locale

This chapter shows how to define new Locale objects and their supporting
protocol, such as stream and character encoders, and policies for
displaying currency, numbers, dates, and string-collation.

Creating a New Locale
An instance of Locale holds information that applications can use to adapt
to a specific language and cultural conventions. VisualWorks includes a
number of standard locales which you may use (see “Changing the
Current Locale” on page 15).

When none of the existing locales is suitable, you can create and install a
new Locale, as shown in this chapter. For step-by-step instructions, see
“Defining a Locale” on page 45.

Most locales need supporting classes and methods, such as a character
encoder and a string-collation policy. Later sections of this chapter show
how to create such objects.

When selecting a font for a new locale, consider that the font family, font
size (measured in pixels), and encodings are all locale-dependent. For
example, under X11R5, the Japanese Kanji font is not very legible at
sizes less than 14 pixels.

A custom Locale is created using a method in class Locale that initializes
an instance using private protocol. You add this initialization method as
part of your code to create a custom locale.
International User’s Guide 43

Chapter 3 - Adding a New Locale
To initalize a locale object, class Locale provides the following interface:

collationPolicy:

The argument is an instance of StringCollationPolicy, used to sort
collections of strings. Custom locales may require a new policy (for
details, see “Creating a String-Collating Policy” on page 51).

currencyPolicy:

An instance of NumberPrintPolicy. Custom locales may require a new
policy (for details, see “Creating Currency, Time and Date
Formatters” on page 52).

defaultPaperSize:

The standard paper size for printing, in the form of a Point whose x
coordinate represents the width in inches and whose y coordinate
represents the height.

defaultStreamEncoder:

The default encoder to use for encoded streams. You may need to
define a new stream encoder class for this locale, as described later
in this chapter. Custom locales may require a new stream encoder
class (for details, see “Defining a StreamEncoder” on page 48).

ignoreSerifEncodings:

An Array of names of stream encodings to which the serif property
does not apply.

needsInputMethod:

A boolean indicating whether special input support is needed.

preferredEncodings:

An Array of names of stream encodings to use when trying to display
a Unicode string, in priority order from highest to lowest.

preferredFontFamily:

An Array containing the name of the preferred font family for this
locale, or an empty array if no preference exists.

preferredPixelSize:

The preferred font size for this locale, in pixels.

timePolicy:

An instance of TimestampPrintPolicy, for formatting times and dates.
Custom locales may require a new policy (for details, see “Creating
Currency, Time and Date Formatters” on page 52).
44 VisualWorks

Creating a New Locale
Defining a Locale
1 Add a new method to the installation class protocol of the Locale

class. The method is responsible for defining a new locale and adding
it to the registry of available locales, for the platforms on which it
should be made available. For example:

installJapaneseEUCLocaleX11

| locale encodings |

locale := self new.
encodings := #('jisx0208.1983-0' 'iso8859-1' 'jisx0201.1976-0').
locale

name: #ja_JP.EUC;
collationPolicy:

(StringCollationPolicy newFor: #japaneseCollate:to:);
currencyPolicy: (NumberPrintPolicy newFor: #japan);
defaultPaperSize: 8.2677 @ 11.6929;"A4paper in inches"
defaultStreamEncoder: JapaneseEUCStreamEncoder;
ignoreSerifEncodings: #('jisx0208.1983-0' 'jisx0201.

1976-0');
needsInputMethod: true;
preferredEncodings: encodings;
preferredFontFamily: #();
preferredPixelSize: 14;
timePolicy: (TimestampPrintPolicy newFor: #japan).

self addLocale: locale platform: #unix
This example method creates a new Locale named ja_JP.EUC for
EUC-encoded Japanese on X11R5 systems, and then configures it
using the private initialization methods.

2 Create any supporting policies and classes used in Step 1, such as a
character encoder or currency formatter. Later sections of this
chapter show how to create such objects.

3 In a Workspace or installation script, install the new Locale by sending
the newly created message (from Step 1) to the Locale class. E.g.:

Locale installJapaneseEUCLocaleX11
International User’s Guide 45

Chapter 3 - Adding a New Locale
Creating a New Character Encoder
VisualWorks uses one encoding internally (Unicode, specifically UCS_2)
to represent characters in any locale, and translates as needed between
Unicode and the local stream encoding. A CharacterEncoder is used to
perform this translation, supporting stream encoders and fonts.

When defining a new stream encoder, you may need a new character
encoder as well. VisualWorks provides predefined encoders for English
and Japanese locales. This section shows how to create a new encoder.

A ByteCharacterEncoder is typically used when you need to create a new
encoder for a small (256 or less) set of mappings, as shown in the
example below. For a larger set of character-to-integer mappings, use a
LargeCharacterEncoder.

CharacterEncoders are installed in the initialize method on the class side
of the CharacterEncoder class. Examine this method to see how currently
available encoders are installed. You can modify, compile and then
execute the initialize method to install your custom encoding.

Note: Because a CharacterEncoder handles a high volume of
translation requests, it must be fast. It is worthwhile to invest time
profiling a new CharacterEncoder to improve performance. One
important way of improving performance is to keep your encoder free
of state transitions.

Creating a CharacterEncoder
1 Create a ByteCharacterEncoder by sending a new message to that

class.

2 Name the encoder by sending a name: message to it, with a symbol
as the argument.

3 For each mapping in the encoder, send an encode:as: message to it.
The first argument is the character and the second argument is the
integer that is used to represent that character in the new encoding.

| ascii |
ascii := ByteCharacterEncoder new.
ascii name: #asciiEncoder.
0 to: 127 do: [:i | ascii encode: i asCharacter as: i].
46 VisualWorks

Creating a New Stream Encoder
Creating a New Stream Encoder
After you add a new character encoder, you must create and install a new
stream encoder to equip streams with the new encoder (assuming you
intend to store text that uses the new encoding in a file). VisualWorks
provides predefined encoders for English locales. This sction shows how
to create a new stream encoder. For step-by-step instructions, see
“Defining a StreamEncoder” on page 48.

StreamEncoder is an abstract superclass that defines the following
interface:

encoder
Answer an instance of CharacterEncoder or nil. Not all stream encoder
need a CharacterEncoder.

encoding
Answer the encoding symbol. E.g.: #'Windows-1252'

nextFrom: aStream
Decode the next byte(s) in the specified stream and answer the
character. Subclasses might override this method.

nextPut: aCharacter on: aStream
Encode aCharacter and write it to the specified stream. Subclasses
might override this method.

prepareToClose: aStream
Prepare to close a stream on a file, respecting any special
conventions for the format of the file.

reset
Reset the Encoder. Subclasses might override this method.
International User’s Guide 47

Chapter 3 - Adding a New Locale
Defining a StreamEncoder
1 Create a subclass of StreamEncoder. By convention, the class name

identifies the encoding and ends with ‘StreamEncoder,’ as in
JapaneseEUCStreamEncoder.

2 In the subclass, create an instance method named nextFrom:, which
takes an encoded stream as its argument. This method is equivalent
to the next method of a nonencoded stream, in that it returns the next
character from the stream. Here, more than a single byte may be
needed to compose a single Unicode character. For example:

nextFrom: aStream
"Decode the next byte(s) in the Japanese EUC encoded
 stream, and answer the character."

| c1 c2 |
c1 := aStream next.
c1 == nil

ifTrue: [^nil].
c1 <= 16r7F

ifTrue: [^EncodeJIS201 decode: c1].

c2 := aStream next.
c2 == nil

ifTrue: [^nil].

"JIS X 0208 Kanji "
(16rA1 <= c1 and: [c1 <= 16rFE and: [16rA1 <= c2 and:
 [c2 <= 16rFE]]])

ifTrue: [^EncodeJIS208 decode: (c1 bitShift: 8) + c2 -
 16r8080].

"JIS X 0201 Katakana"
(c1 == 16r8E and: [16rA1 <= c2 and: [c2 <= 16rDF]])

ifTrue: [^EncodeJIS201 decode: c2].

^Character illegalCode asCharacter
3 In the subclass, create an instance method named nextPut:on:. The

first argument is a Unicode character and the second argument is an
encoded stream. This method is equivalent to the nextPut: method of
a nonencoded stream, in that it appends the given character to the
stream. Here, more than a single byte may be needed to represent
the Unicode character.
48 VisualWorks

Creating a New Stream Encoder
For example:

nextPut: aCharacter on: aStream
"Encode aCharacter and write it to Japanese EUC stream."

| euc |
euc := encoder encode: aCharacter.
euc <= 16r7F

ifTrue: [aStream nextPut: euc.
 ^aCharacter].

euc < 65535
ifTrue: [aStream nextPut: (euc bitShift: -8);

 nextPut: (euc bitAnd: 16rFF).
 ^aCharacter].

^self noEncodingFor: aCharacter
4 In the subclass, create a class method named streamEncodingType,

which returns the name of the encoder as a symbol. (This name is
used as an argument to a withEncoding: message that is sent to a
collection or Filename before attaching a stream.) For example:

streamEncodingType

^#JapaneseEUC
5 In the subclass, create a class method named defaultCharacterEncoder.

This method is responsible for getting the default character encoder
from the registry of encoders, by sending an encoderNamed: message
to the CharacterEncoder class. The argument is the name of the
character encoder.

defaultCharacterEncoder

^CharacterEncoder encoderNamed: 'JapaneseEUC'
6 Install the new stream encoder in the registry of stream encoders, by

sending an updateEncoderDirectory message to the StreamEncoder
class. (The new subclass will be detected along with other
subclasses of StreamEncoder, and will be registered with its encoding
name as the lookup key.)

StreamEncoder updateEncoderDirectory
International User’s Guide 49

Chapter 3 - Adding a New Locale
Creating an Input Manager
For non-Roman character sets such as Japanese Kanji, text cannot be
entered directly into a text widget. Instead, a small window is used to get
each keyboard character and convert it to the displayable character. This
input-conversion window is managed by a subclass of InputManager.

VisualWorks provides a predefined input manager for the X11R5 XIM
protocol, and possibly others, depending on your distributor’s localization
additions. If you need to create a new input manager for your locale, you
should use the existing subclasses of InputManager as examples. The
notification protocol in InputManager contains placeholder methods for the
instance methods that all subclasses are expected to implement. See the
comments in those methods for more details.

If your environment uses X11R5 XIM and you have a front-end processor
for your locale, you need only set needsInputManager to true when defining
your locale.
50 VisualWorks

Creating a String-Collating Policy
Creating a String-Collating Policy
The typical application uses sorted collections of strings in a variety of
situations. The algorithm for determining when one string is to precede
another is called a collation policy. VisualWorks has a predefined
collation policy for English strings.

Defining a StringCollationPolicy
1 Add an instance method to StringCollationPolicy. By convention, the

method name is in the format <language>Collate:to:, as in
japaneseCollate:to: or the culture-neutral cCollate:to:.

This method takes two strings as its arguments, and determines
which of the two strings should precede the other in a sorted
collection. The method returns -1 when the first string comes first, +1
when the second string comes first, and 0 when the two strings are
equivalent for sorting purposes.

For example:

cCollate: s1 to: s2
"Collation for C locale."
| len endResult mylen firstNonMatch |
mylen := s1 size.
len := s2 size.
mylen < len

ifTrue:
[len := mylen.
endResult := -1]

ifFalse: [endResult := mylen = len
ifTrue: [0]
ifFalse: [1]].

firstNonMatch := 0.
1 to: len do:

[:i | | c1 c2 u1 u2 |
c1 := s1 at: i.
c2 := s2 at: i.
c1 = c2

ifFalse:
[u1 := c1 asUppercase.
u2 := c2 asUppercase.
u1 = u2

ifFalse: [^u1 < u2 ifTrue: [-1] ifFalse: [1]].
firstNonMatch == 0

ifTrue: [firstNonMatch := c1 < c2 ifTrue: [-1] ifFalse:
International User’s Guide 51

Chapter 3 - Adding a New Locale
 [1]]]].
^endResult = 0

ifTrue: [firstNonMatch]
ifFalse: [endResult]

2 To create a collation policy configured to use your new method, send
a newFor: message to the StringCollationPolicy class. The argument is
the name of your method, as a symbol (such as #japaneseCollate:to:).
The resulting policy is installed in a Locale by sending a collationPolicy:
message to that class, with the policy as the argument.

Creating Currency, Time and Date Formatters
Currency amounts, times and dates are often formatted differently in
each locale. A Locale holds a NumberPrintPolicy for formatting currency
amounts, and a TimestampPrintPolicy for formatting times and dates.

To create and install a new policy for formatting currency amounts, see
“Defining a Policy for Currency” (below). To create a policy for formatting
times and dates, see “Defining a Policy for Times and Dates” on page 54.

Each of the formatting policies creates a separate object, called a reader,
to which it delegates the task of reading a formatted value from a stream.
The NumberReader and TimestampReader classes are used to create these
readers. By adding locale-specific methods to these classes, you can
arrange for custom reader instances (for details, see “Defining Readers”
on page 56).

Defining a Policy for Currency
1 Create an instance method in class NumberPrintPolicy for formatting

noncurrency numbers. By convention, the method is named for the
country, such as us or japan. This method is responsible for setting the
character to be used as a decimal point, the character to be used as
a separator between each group of digits to the left of the decimal
point (thousands) and the number of digits in a thousands group.

us
"Initialize for the United States."

thousandsSeparator := $,.
decimalPoint := $..
groupingSize := 3.

2 Create a second instance method in NumberPrintPolicy, this time for
currency amounts. The method name must be the same as in Step 1,
except here the word “Currency” is appended, as in usCurrency. This
52 VisualWorks

Creating Currency, Time and Date Formatters
method is responsible for invoking the method in Step 1 and then
setting a formatting policy by sending a formatTokensFor: message to
the class, with a formatting string as the argument. The class
comment for NumberPrintPolicy defines the elements of a formatting
string.

usCurrency
"Initialize for the United States."

self us.
policy := self class formatTokensFor: '$#,##0.00;($#,##0.00)'

3 Create a private instance method in class NumberReader. The method
takes two arguments, a stream and number class such as FixedPoint.
This method is responsible for reading a number from the given
stream and then coercing the number to an instance of the given
class. By convention, the method is named
read<numericSystem>NumberFrom:type:, as in readLatinNumberFrom:type:.

readLatinNumberFrom: aStream type: typeClass

| negative whole precision fractional eChar possibleCoercionClass
exp coercionClass |
negative := (aStream peekFor: $-)

ifTrue: [-1]
ifFalse: [1].

precision := nil asValue.
coercionClass := Integer.
whole := self getIntegerPartFrom: aStream digits: precision.
precision value = 0

ifTrue: [self error: 'No number found.'].
(aStream peekFor: printPolicy decimalPoint)

ifTrue:
[coercionClass := Float.
fractional := self getIntegerPartFrom: aStream digits:
precision]

ifFalse:
[fractional := 0.
precision value: 0].

eChar := aStream peek.
eChar == nil

ifTrue: [possibleCoercionClass := nil]
ifFalse:

[possibleCoercionClass := self
International User’s Guide 53

Chapter 3 - Adding a New Locale
chooseFloatRepresentationFor: eChar.
possibleCoercionClass == nil ifFalse: [aStream next]].

exp := nil.
possibleCoercionClass == nil

ifFalse:
[| endOfNumber neg |
coercionClass := possibleCoercionClass.
endOfNumber := aStream position.
neg := aStream peekFor: $-.
(printPolicy isDigit: aStream peek)

ifTrue:
[exp := self getIntegerPartFrom: aStream digits:
nil asValue.
neg ifTrue: [exp := exp negated]]

ifFalse: [aStream position: endOfNumber]].
^typeClass

coerce: fractional / (10 ** precision value) + whole * negative
to: coercionClass
precision: precision value
exponent: exp
exponentChar: eChar

4 Create an initialize instance method in NumberReader, using the same
method name as in Step 1. This method is responsible for assigning
the selector for the method from Step 3 to the readSelector variable.

us

readSelector := #readLatinNumberFrom:type:.
5 To create an instance of the new policy, send a newFor: message to

the NumberPrintPolicy class. The argument is the name of the method
that you created in Step 1, as a symbol. This policy can then be
installed in a Locale (via currencyPolicy:).

Defining a Policy for Times and Dates
1 Create an instance method in TimestampPrintPolicy for formatting

times and dates. By convention, the method is named for the country,
such as us or japan. This method is responsible for setting the short
and long formatting strings, weekday names, month names, AM/PM
abbreviations and editing format. The editing format is used to display
a date in an input field during editing. The class comment for
TimestampPrintPolicy defines the elements of a formatting string.
54 VisualWorks

Creating Currency, Time and Date Formatters
us
"Initialize for the United States."

self shortPolicyString: 'mm/dd/yyyy h:mm:ss.fff;m/d/yy;h:mm:ss
am/pm;'.
self longPolicyString: 'mmmm d, yyyy h:mm:ss.fff;mmmm d,
yyyy;h:mm:ss am/pm;'.
self policyNamed: #editing putString: 'mm/dd/yyyy h:
mm:ss.fff;m/d/yyyy;h:mm:ss am/pm;'.
dateMiniFormat := #mdy.
timeSeparator := $:.
shortWeekdays := #('Mon' 'Tue' 'Wed''Thu' 'Fri' 'Sat' 'Sun').
longWeekdays := #('Monday' 'Tuesday' 'Wednesday'
'Thursday' 'Friday' 'Saturday' 'Sunday').
shortMonths := #('Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul'
'Aug' 'Sep' 'Oct' 'Nov' 'Dec').
longMonths := #('January' 'February' 'March' 'April' 'May'
'June' 'July' 'August' 'September' 'October' 'November'
'December').
shortAmPm := #('a' 'p').
longAmPm := #('am' 'pm')

2 Create a private instance method in TimestampReader. The method
takes one argument, a stream. This method is responsible for reading
a date from the given stream. By convention, the method is named
read<numericSystem>DateFrom:, as in readLatinDateFrom:. Create similar
methods for reading a Time and for reading a Timestamp.

3 Create an initialize instance method in TimestampReader, using the
same method name as in Step 1. This method is responsible for
assigning the selectors for the methods from Step 2 to the
timeSelector, dateSelector and timestampSelector variables.

us

timeSelector := #readLatinTimeFrom:.
dateSelector := #readLatinDateFrom:.
timestampSelector := #readLatinTimestampFrom:.

4 To create an instance of the new policy, send a newFor: message to
the TimestampPrintPolicy class. The argument is the name of the
method that you created in Step 1, as a symbol. This policy can then
be installed in a Locale (via timePolicy:)
International User’s Guide 55

Chapter 3 - Adding a New Locale
Defining Readers
1 Create a private method in NumberReader that takes two arguments: a

stream containing the formatted number and the class of the number,
such as FixedPoint. The method is responsible for reading the number
from the stream and coercing it to the given number class, then
returning the number. By convention, the method is named
read<numericSystem>NumberFrom:type:, as in readLatinNumberFrom:type:.

2 Create an initialize method in NumberReader. The method must be
named the same as the parent number policy’s localeID. The method
is responsible for assigning the name of the private method that you
created in Step 1 to a variable named readSelector. (No explicit
installation step is necessary; the parent policy will create a reader as
needed.)

3 Prepare a locale-specific TimestampReader in a similar way. The only
difference is that three private methods are needed: one for reading a
time, one for a date and one for a timestamp. The initializing method
must assign the three method selectors to variables named
timeSelector, dateSelector and timestampSelector.

Adding Support for a New Operating Environment
VisualWorks supports European input in the X11R5 environment, and
possibly others, depending on your localization additions. When you need
to use a different operating environment, you will need to provide support
for the host system’s input management regime. This requires a detailed
understanding of the host regime and of the InputManager class and its
subclasses.

In addition, the host system’s file names may be limited to a single byte,
requiring extra mechanism within VisualWorks to support multibyte
international characters in file names.

Both of these issues apply mainly to non-Roman operating environments,
such as Japanese Kanji.
56 VisualWorks

Index
Symbols
<< 39
<Operate> button 9
<Select> button 9
<Window> button 9
>> 39

A
atEnd message 19

B
binary encoding 19
black rectangle character 17
bounded vs. unbounded widgets 37
buttons

mouse 9
ByteCharacterEncoder class 46

C
cache, in message catalog 33
catalog ID

length limit 31
catalog. See message catalog
character encoder

creating 46
Character encoding 18
CharacterArray class 41
collation policy

creating 51
installing 23

collation policy, defined 23
conventions

typographic 8
currency

formatting 21
currency Policy 22

D
date

formatting 21
date policy 23
default encoding 18, 19
default Locale 14
dependence on Locale 16

E
editing format 54
electronic mail 10
encoder

for a stream 47
for characters 46

Encoding
characters 18

encoding
binary 19

default 18, 19
for a stream 19
for source-code files 18, 19
identifier in Locale name 13
length limit 31

end of encoded stream 19
environment variable 15
errors

in encoded streams 20
expandable widgets 37
expandMacrosWith: message 41

F
file name

international characters in 17
supporting mult-byte names 56

font
choosing a default 43

font encoding
for a stream 19

fonts 8
local 17

format
currency 21
time 21

Format property of input field 21
forStrings: message 24

I
input field

adapting format 21
input manager

creating 50
creating a subclass 56

installing
a Locale 45

L
label

updating for locale change 23
LANG environment variable 15
language identifier 13
LargeCharacterEncoder class 46
limits, for catalog file 31
local fonts 17
Locale

changing 15
creating 43
current 13
default 14
dependency on 16
installing 45
listing available locales 15
parts of a name 13
setting 13

locale
International User’s Guide 57

Index
and message catalogs 28
longPolicyString: message 23
longPrintString message 21

M
mail

electronic 10
message catalog

cache size 33
catalog ID 30, 38
creating 31
directory structure 31
indexing 31
overview 27

message. See also user message
mouse buttons 9

<Operate> button 9
<Select> button 9
<Window> button 9

N
notational conventions 8
number

formatting 21
NumberReader 52
NumberReader class 53

O
operating environment

adding support for 56

P
policy

for collating strings 23, 51
for formatting currency 23
for formatting dates 23
for formatting time 23

policyString: message 23
print:on: message 22
printing

in multiple locales 25

R
readDateFrom: message 22
readNumberFrom:type: message 22
readTimeFrom: message 22

S
shortPolicyString: message 23
shortPrintString message 21
size of encoded stream 19
SortedCollection 24
sorting strings 23
source code, nonASCII 17
Source encoding 18, 19
special symbols 8
stream

detecting the end 19
errors 20
setting encoding 19
size 19

stream encoder
creating 47

streams

external 19
internal 19

string
collation policy, creating 51
setting collation policy 23

string expansion 41
StringParameterSubstitution class 41
support, technical

electronic mail 10
World Wide Web 10

symbols used in documentation 8
T
technical support

electonic mail 10
World Wide Web 10

territory identifier 13
time

formatting 21
time policy 23
TimestampReader 52
TimestampReader class 55
typographic conventions 8
U
Unicode 18, 46
UNIX

LANG environment variable 15
update

based on Locale 16
user message

catalogID 38
creating programmatically 39
default string 30
length of key 31
overview 27
runtime parameters 41

UTF encoding 18

W
World Wide Web 10

X
X11R5 50, 56
XIM protocol 50
58 VisualWorks

P46-0104-03

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Contents
	About This Book
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information

	Adapting to Multiple Locales
	Working with Locales
	The Default Locale
	Listing the Available Locales
	Changing the Current Locale
	Setting the Locale under UNIX
	Detecting a Change in Locale

	Using Local Fonts
	Working with Character Encodings
	Setting the Encoding for a File Browser
	Working with Source Code

	Working with Encoded Streams
	Properties of Encoded Streams
	Caveats for Encoded Streams
	Fetching Available Encodings
	Creating an External Encoded Stream
	Creating an Internal Encoded Stream

	Formatting Times, Dates and Currency
	Interaction with Input Fields
	Formatting Times and Dates
	Formatting Currency
	Reading Formatted Values
	Customizing Formats for Timestamps, Dates, and Times

	Adjusting the Collation Policy for String Collections
	Using the Default Collation Policy
	Assigning an Explicit Collation Policy
	Converting an Existing Collection

	Printing in Multiple Locales

	Adapting User Messages to Multiple Locales
	Overview of Message Catalogs
	Why Message Catalogs?
	How Message Catalogs Work
	UserMessage as a Lookup Object
	Message Catalog as a Dictionary of Messages
	Using Multiple Catalogs per Locale
	Optimizing Lookups With Multiple Catalogs
	What Happens When a Lookup Fails?

	Summary

	Guidelines for Building Message Catalogs
	Catalog Directories
	Subdividing Catalog Directories
	Subdividing Catalog Files
	Cache Size

	Creating a Message Catalog
	Indexing a Catalog
	Indexing All Catalogs in a Directory
	Indexing All Loaded Catalogs

	Loading Message Catalogs
	Defining a User Message for a Widget or Menu
	Using the Properties Tool
	Restricting the Search
	Getting a String at Runtime

	Defining a User Message in a Method
	Guidelines for Creating User Messages
	Avoid Literal Catalog Names
	Avoid using withCRs

	Creating a User Message
	Creating a User Message with a Keyword Selector
	Creating a User Message for a Specific Catalog

	Inserting Runtime Values in a User Message

	Adding a New Locale
	Creating a New Locale
	Defining a Locale

	Creating a New Character Encoder
	Creating a CharacterEncoder

	Creating a New Stream Encoder
	Defining a StreamEncoder

	Creating an Input Manager
	Creating a String-Collating Policy
	Defining a StringCollationPolicy

	Creating Currency, Time and Date Formatters
	Defining a Policy for Currency
	Defining a Policy for Times and Dates
	Defining Readers

	Adding Support for a New Operating Environment

	Index

