
Appendix A
Updates for VisualWorks 7.3.1

Overview
VisualWorks 7.3.1 is a “patch” release, consisting mainly of fixes to
problems we found with 7.3. There are also a couple of features being
moved from preview into full supported product.

With only a few exceptions, documentation has not been updated for this
release. These release notes cover the essential changes and additions.

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Trouble+Shooter.

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in:
fixed_ars.txt in the doc/ directory.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.
Release Notes 7.3.1 (P46-0106-10) 1

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter

Updates for VisualWorks 7.3.1
VisualWorks Base

Printing
VisualWorks now by default supports PostScript Level 3 printing. With
Level 3 PostScript printing VisualWorks can finally print paints that
implement a Pattern. Opaque images with high color content are now
rendered orders of magnitude faster.

All PostScript printers sold since 1997 support PostScript Level 3. In the
unlikely event your PostScript printer does not support Level 3 you may
reduce the implementation level VisualWorks writes PostScript in on the
PostScript Options page of the Settings Tool (to open this tool, select
System Settings in the Launcher window).

Exiting VisualWorks on Unix SIGTERM
Unix provides an array of signals. SIGTERM is a signal that by
convention is used to inform a process that it is about to be killed. The
intention is that the process can then do any finalization activities that it
requires (closing sockets, saving data, etc.). However, unlike SIGKILL
(SIGKILL is always signal 9, as in 'kill -9 <pid>'), an application is allowed
to ignore SIGTERM.

For all supported Unix systems, in order to install a SIGTERM handler
you must first ensure that

ObjectMemory objectRegisteredWithEngineFor: 'acceptQuitEvents'
returns false. This is the case in a headless image, so nothing more
needs to be done. Just register your semaphore for SIGTERM and off
you go.

In a headful image, InputState>>run registers acceptQuitEvents as true. This
informs the VM that if a SIGTERM signal is recieved it should be
forwarded to the image so that the image can shut down. If you wish to
handle SIGTERM events in a headful image, you need to set
acceptQuitEvents to false after the initial system startup has completed.

The input state process is started each time the image is started, and it
will always set acceptQuitEvents to true. You need to respond to this
accordingly. This is best done as an action in the UserApplication class, or
your application-specific subclass, which is started after WindowingSystem
starts up, and is where InputState>>run is done. All of this is just to stop the
image from intercepting SIGTERM.

To catch SIGTERM in a headful image, do the following:
2 VisualWorks 7.3.1

VisualWorks Base
1 Start the image with the command line option:

-doit "ObjectMemory registerObject: false
withEngineFor: 'acceptQuitEvents'"

2 Create a subclass of UserApplication that defines a method main as:

main
"Tell VM that we want to receive SIGTERM events."
|sem|
OSHandle currentOS == #unix ifTrue: [

ObjectMemory registerObject: false
withEngineFor: 'acceptQuitEvents'].

3 Register to have a message sent to one of your classes in which the
actions in (2) are performed. To do this, evaluate the following in a
workspace and snapshot your image:

SystemEventInterest
atSystemEvent: #returnFromSnapshot
send: #setupTermHandler
to: MyClass.

4 As a last resort, execute the following code in a workspace and
snapshot your image:

|idx|
idx := InputState.EventDispatchTable identityIndexOf:

#send:eventQuitSystem:.
idx > 0 ifTrue: [InputState.EventDispatchTable at: idx put: nil].

(Keep in mind that if you chose this mechanism you will be disabling
the reception of quit events on ALL platforms that the image runs on.)

SIGTERM is the only signal VisualWorks passes to the image by default.

Tile Phase Corrected
GraphicsContext>>tilePhase: is dependent upon object engine
implementation. 7.3.1 engines correct two problems:

• tilePhase: was not previously implemented on the MacOSX native
engine. It is now implemented in the 7.3.1 engine.

• tilePhase: was implemented incorrectly in all Windows engines. It is
not implemented correctly.

tilePhase was already implemented correctly on all X11 engines.

Because of errors on Windows platforms, users of tilePhase: on Windows
would have had to write code like this to correct for errors:

aPointWhereTheyWantedTilePhaseToBeOffset negated.
Release Notes 3

Updates for VisualWorks 7.3.1
or

(aPointWhereTheyWantedTilePhaseToBeOffset // 2) negated.
(This code, if run on X11, would be offset incorrectly.)

If you implemented such work-arounds, you need to replace this code.
With the 7.3.1 engines you have to specify the actual offset. This now
works on all platforms.

Advanced Tools

Profiling
(Republished from 7.1 Release Notes)

The ATProfiling parcel in advanced/ has been replaced by two new
parcels, ATProfilingCore and ATProfilingUI. These new parcels include
the functionality previously shipped as ATProfilingEnhancements in the
goodies/ directory. They also segregate profiling functionality into
“core” and “user interface” components. This is a prelude to shipping
“attach-and-profile” and “distributed process” profiling in some later
release. Only the “core” components needs to be loaded into a remotely
profiled, and possibly headless, image.

The new parcels support single-process as well as multi-process
profiling. Users are urged to remember that all the profilers rely upon a
statistical sampling heuristic to estimate, rather than on instrumentation
to directly measure, the resources consumed by a process. Multiprocess
profilers distribute the probes used to estimate resource consumption
over several processes, rather than one, and the distribution may be
uneven. Also, running multiprocess profilers does cause garbage
collection and other maintenance processes to run more frequently than
otherwise. These facts should be kept firmly in view when setting up
multiprocess profiling runs and when estimating the reliability of their
results. Within these limitations, multiprocess profilers have proven useful
in tuning web applications involving many hundreds of processes.

In these new parcels, the pre-existing public profiling API has been
preserved. The primitive lists have been revised. The Profile Outline
Browser is no longer limited to a maximum of three reports. The profiling
user interfaces, by default, now open showing new advisory text and
multiple examples. To make these user interfaces show code templates
instead, evaluate

Profiler showTemplates: true
4 VisualWorks 7.3.1

DLLCC
The old profiling parcel, ATProfiling is still shipped in the obsolete/
directory, because other obsolete and preview parcels list it as a
prerequisite. If appropriate, users should explicitly update the
prerequisites of their parcels to list the new profiling parcels rather than
the old one. Note that the old ATProfiling parcel is incompatible with the
new set of parcels, and vice versa. They should not both be loaded into
the same image.

Note also that the Advanced Tools User’s Guide has not been updated for
this change in time for release.

DLLCC

Windows VM requirements
As of VW 7.2, visual.exe does not support the full range of DLLCC
facilities any more.

On Microsoft Windows platforms, a crash may occur when using the
visual.exe VM with DLLCC. This because visual.exe does not use
the vwntoe.dll, but is linked statically.

The reason is, that .exe files don't export their symbols. Thus a DLL, even
if it was launched from the image+VM, cannot access VM functions. But
whether the VM is dynamically linked as a DLL, with its functions
exported, it can be accessed from other DLLs.

The vwnt.exe VM does use the vwntoe.dll, which is a main part of
the VM, and thus provides the required possibility to access VM functions
from a DLL.

Solution: Use the vwnt.exe instead of visual.exe .

GUI Development
Over 50 GUI related bug fixes are incorporated in VW 7.3.1. The
highlights of these fixes are summarized below.

Windows Multi-Monitor Support
The VisualWorks GUI may now operates seemlessly on two or more
monitors on Microsoft Windows installations that support them. There is
no need to use the MultiMonitor goodie of previous releases to open,
drag, or use windows on more than one monitor.
Release Notes 5

Updates for VisualWorks 7.3.1
Optional UI Compatibility Parcels
Two parcels are provided in this release, for optional installation, that
change the traditional VisualWorks menu and text editor copy behavior to
be more platform faithful: MenuUICompatibility and
CopyBufferUICompatibility.

Although a majority of VisualWorks customers have requested these
features, they introduce subtle changes to UI behavior that some users
have become accustomed to in VisualWorks over the years. Therefore,
we have not changed the default UI behavior at this time. If you want the
improved, platform faithful menus and text editor copy function, load
these new parcels into your image.

Available originally as preview in VW7.3, the MenuUICompatibility parcel
addresses incompatibilities of VW menu bar menus with Mac, Windows,
and Motif menu requirements. Issues addressed include:

• On Windows, a mouse drag (i.e., mouse button hold and move) to a
menu item with a submenu should not close the menu or submenu
upon button release.

• On Windows only, menus highlight disabled menu items; other
platforms skip past disabled menu items entirely.

• MacOSX menus do not wrap highlight of menu items for key up/down
navigation.

• Mac OS8/9 closes all menus upon any key press.

• Unix platforms do not highlight menu items while moving the mouse
cursor over an item; the mouse button must be down to do this.

• Except on Unix, submenu item menus open after about a 0.5 second
delay when the mouse cursor is over them.

• For the Motif and Windows look, a menu and submenu should remain
open after a mouse click and release on a menu item with a
submenu.

• On Mac platforms, moving the mouse outside a menu to the right
should not close all submenus open.

• On Mac OSX, <Tab> and <Shift><Tab> navigate and open menus
right and left in the menu bar.

• On Mac OSX, a menu and all its submenus should not close
prematurely if the up or down arrow keys are used to navigate to a
menu item with an unopened submenu.
6 VisualWorks 7.3.1

GUI Development
• For MS Windows and Motif menus, a menu item that opens a
submenu cannot become a selection itself and then close; only a
menu item without submenu may be the menu selection.

The CopyBufferUICompatibility parcel modifies VisualWorks so that the
contents of the copy buffer is not altered when a <Backspace> or
<Delete> key is pressed to remove selected text in a text editor. The
legacy VisualWorks text editor operation for a <Backspace> press cuts
any selection from a text editor and places it in the copy buffer; a
<Delete> key press will empty the copy buffer. CopyBufferUICompatibility
fixes the VisualWorks copy buffer behavior to be equivalent with most text
editors outside of VisualWorks.

Drag and Drop List Cues
In VW7.3.1, List and TreeView widgets may now be customized to show
drop feedback upon insertion between elements, element replacement,
or both. Send the following variations of showDropFeedbackIn:allowScrolling:
for the visual feedback desired:

showReplaceDropFeedbackIn:allowScrolling:
Show a box about the item the object is to be dropped on.

showInsertDropFeedbackIn:allowScrolling:
Show a line between two items where the object is to be inserted.

showInsertReplaceDropFeedbackIn:allowScrolling:
If the cursor is centered over an item show a box about it; otherwise
show a line between the two items nearest the cursor.

When using drop feedback for insertion, the view targetIndex will appear in
increments of ½ indicating that the drop occurred between items.

Two new example parcels, DragDropList and DragDropTree, demonstrate
drop insert and replace to List and TreeView widgets, respectively.

Windows Look Policy and Fonts
The auto-select look on Windows 2003 is now the Windows 2000 look as
it should be. The default system font family requested for the Windows
XP look is now Tahoma. For MS Windows, the number of fonts identified
as serif, sans serif, and fixed by VisualWorks has been increased to
account for the larger set of fonts distributed with the current Windows XP
and 2003 releases. This improves font matching when these attributes
are specified. Finally, the size and family of the default system font used
by VisualWorks should no longer depend highly on the MS Windows user
preference to only use TrueType fonts or on the number of fonts installed.
Release Notes 7

Updates for VisualWorks 7.3.1
Named Font Selection
Filing out or loading Named Font definitions no longer cause exceptions if
the font name includes a blank or if it defines a system font.

Editable ComposedTextView
Since VW 5i.2, windows created by ComposedTextView instance creation
methods have been read-only. In 7.3.1, new methods have been added to
create an editable window on a ComposedTextView instance. They are:

TreeView
If a TreeView appears in a Tab Control, its text emphasis will now appear.
Expanding and then contracting a node in a single-select TreeView will no
longer remove the node as a selection.

UI Painter
When several UIPainter canvases are open, closing one canvas now
raises the next canvas immediately, brings it to focus, and updates GUI
Painter Tool contents accordingly.

Dataset
Tabbing to another cell in a dataset no longer unexpectedly toggles a
cell's check box.

Dialogs
Dialogs on Windows platforms previously reduced their height by 8 pixels
the first time they were moved. In 7.3.1, dialogs on Windows platforms
now maintain a constant size.

Read-only (original) Editable (new)

open edit

open:label: edit:label:

open:label:icon: edit:label:icon:

open:label:icon:extent: edit:label:icon:extent:

createOn:label:icon: editOn:label:icon:
8 VisualWorks 7.3.1

Internationalization
Menus
The menu pragma computedSubmenu:nameKey:menu:position: is now
consistent with other menu pragmas, in that the nameKey: argument
names the submenu added to the menu whose access path is given by
the argument to menu:. The MenuPragma2 parcel contains a revised
example that uses it.

Internationalization
Parcels in the japanese/ directory contain a Japanese locale, plus
additional parcels that add changes to other parts of the system in order
to make them more Japanese-friendly. For example, if you are using the
UIPainter and Japanese parcels, you would probably want to load
JaUIPainter.

Currently, only Solaris, HPUX, Linux, and Windows support this
Japanese locale. Support for Mac Classic and Mac OSX is planned but is
not yet available.

This locale is known not to coexist well with the Unicode parcels. Over
time, the conflicts between the two bodies of code will be resolved, but for
now, you may want to avoid trying to use both in the same image.

Web Services

Refactored Parcels
(AR#48432) The BindingTool parcel was split in two parcels:
XMLSchemaMapping and XMLObjectBindingTool. To avoid conflict with
old classes, be sure to install 7.3.1 WebServices support in an empty
webservices directory.

New XML-Object Binding Wizard
(AR#48506) The XML to Object binding wizard help you create XML to
object binding from specified classes.
Release Notes 9

Updates for VisualWorks 7.3.1
Application Server

Reduced large space multiplier
In recent versions, the size of large space was greatly increased to
improve performance under heavy load. The primary factor in this was
the rapid allocation and release of socket buffers. This improved load
performance, but required setting aside a large chunk of memory which
was otherwise unusable. Version 7.3 introduced a mechanism for re-
using socket buffers that greatly reduces this load, and so the increased
large space is no longer necessary and it has been reduced to the
normal size.

VisualWave labels with images and using https
In VisualWave, if a widget uses an image as its label, and the image was
obtained over https rather than ordinary http, an error would result. Also,
the image was not visible in normal editing. Note that using https, a
variety of additional security-related exceptions may occur, and need to
be dealt with appropriately by user code.

Allow Servers to serve one particular interface
If a server has more than one network address, previous versions
automatically bound to all of them. This release provides a "bind to all
interfaces" setting when creating a server. If this is true, then behaviour is
the same as in previous versions. If not, it will bind only to the named
interface. For example, if the server name is 'localhost', only request from
the same machine will be served.

Remove demos from prebuilt runtime.im
The runtime.im supplied in the $(VISUALWORKS)/web/runtime.im
previously included a number of the examples included under the
$(VISUALWORKS)/web directory. This made it work reasonably well as
a demo image, but was inappropriate for use as a production image with
parcels loaded into it at startup. These examples are no longer included
in the image.
10 VisualWorks 7.3.1

Runtime Packager
Runtime Packager

Error log in UTF-8
The runtime packager error log was previously saved in the default
encoding for the platform. However, if characters outside that encoding
range appeared anywhere in the stack trace, the entire logging operation
would fail. The error log has now been switched to be in UTF-8 encoding,
so that all characters can be represented. Note that in viewing the error
log, you may need to adjust your text editor to ensure it is using the
correct encoding.

Loading old Runtime Packager Parameters
When loading runtime packager parameters from previous versions,
packaging operations could fail. One cause of this was that the Subsystem
hierarchy, introduced in version 7.3, was not included in the previous
specifications. When reading a set of parameters from an older version,
we now make sure that the default kept classes and methods for that
method are included. If you are aggressively trimming an image, this
means that you will want to review the kept and deleted classes to ensure
that it is not keeping more than you intended.

Runtime Packager command-line options
In version 7.3, many of the Runtime Packager command-line options (e.g.
-pcl, -cnf) duplicated operations that are now part of the base image.
If both sets were activated, this could result in the option running twice.
This release removes the Runtime Packager mechanism, and extends
the base image mechanism to cover all of Runtime Packager's options.
Whether or not these options run is now controlled from the base image
settings, not from Runtime Packager's.

Windowless runtime image would fail to exit
In version 7.3, if a runtime image was set to exit on last window closure
but the image did not open a window at startup, the image would fail to
exit. A windowless runtime image set to exit on last window close should
now complete any task assigned at startup and exit.

Fix overwriting of memory sizes
A bug in runtime packager caused the memory sizes at startup to be
reset to the defaults if they had been set in the image before running
Runtime Packager and not explicitly set in the Runtime Packager tool.
Release Notes 11

Updates for VisualWorks 7.3.1
Preview

Standard IO Streams
There is a new package, StandardIOStreams, that defines three shared
variables in the OS namespace: Stdout, Stdin and Stderr. These variables
hold streams on the three standard i/o streams: stdout, stdin and stderr.

This package does not work with any version of VisualWorks before 7.3.

Once you have loaded this package, you need to save and restart the
image. If you are running on Windows, be sure that you are using
vwntconsole.exe; otherwise, the handles cannot be created.

To write to Stdout do something like:

OS.Stdout nextPutAll: Timestamp now printString; cr
or the following:

OS.Stdout lockWhile:
[OS.Stdout

nextPutAll: 'testing';
cr;
nextPutAll: 'testing';
cr;
nextPutAll: '123' ; cr]

Stdin can be read like this (on Windows, press CTRL-Z in the console to
end the stream):

[Stdin atEnd] whileFalse:
[Stdout nextPut: Stdin next asUppercase]

MQ-Interface
A new preview package has been included, which provides an interface
for WebSphere MQ using the shared libraries provided by IBM.
WebSphere MQ is a message base communication system by which two
or more application can exchange messages through a queue. This
package allows you to access this API from a VisualWorks application.

Refer to MQ API.doc for information.

Pollock
The Pollock preview has been updated.

Note that a few simple examples are available in the open and the vw-dev
repositories. Load the Pollock-Examples bundle.
12 VisualWorks 7.3.1

Preview
Also, initial drafts of two chapters, on building a GUI interface
programmatically in Pollock and on interfacing to a domain, are included
with this release, in the preview/Pollock/doc subdirectory.

Also, Sam posts suggestions in his blog:

http://www.cincomsmalltalk.com/userblogs/pollock/blogView

Glorp
Glorp is a third-party, open-source project that is provided under terms
specified by LGPL. Refer to the file COPYING.TXT for the full license.

This release includes an updated version of Glorp, corresponding to
version 0.3.62 in the public Store repository. This has many new features
since version 7.2. This is still a preview and is unsupported and missing
many important features. Among the most significant additions in this
version are:

• optimistic locking

• composite keys

• resolving insert order at the row level, rather than just the table level

• filtered reads (query optimization)

• queries can now return cursors

• additional cache policies, including a timed proxy mechanism that's
quite neat.

• support for Oracle array binding on insert and for grouping multiple
statements together on a line for databases without array binding.

• pre-allocation of sequence numbers. For databases that don't use
identity columns we can get all the sequence values we need in one
go rather than one-by-one.

• renamed "criteria" to "whereClause" in queries and "mappingCriteria"
to "join" in mappings.

• renamed PrimaryKeyExpression to Join

• allowed any kind of mapping to use a link table. This makes the one-
to-many/many-to-many distinction obsolete. Most methods on those
classes have been moved to the superclass.

• added subselects, created using anySatisfy: or noneSatisfy:.

• minimal (absolutely minimal) mutual exclusion on query execution
Release Notes 13

http://www.cincomsmalltalk.com/userblogs/pollock/blogView

Updates for VisualWorks 7.3.1
• database-specific functions

• the ability to use functions in more places

• added unionAll: and minus:/except: on queries

• support for mapping to "imaginary" tables, where an object can be
defined by the existence of one or more joins (e.g.
StoreClassExtension)

• support for mapping to a group of rows (e.g.
StoreVersionlessPundle).

• changes to VW proxies to make them both transparent and
debuggable, a tricky business

• removed some bug fixes to Oracle that should now be fixed in VW
7.2.1.

• added a new layer of meta-description, the ClassDescription. This
gives us a formal way of modelling the classes, rather than having
that information be implied in the mappings. This means that the
code to create most mappings is greatly reduced.

• changed the way mappings are created and initialized to use this
information. Note that the old syntax is still supported.

• direct comparisons to objects now supported. e.g. where:
[:each | each = anObject], or where: [:each | each thing isNIL]. (Note that
isNil may be optimized away).

• basic mapping of one form of dictionary

• changes to the argument block of ad hoc mappings

• allow retrieve: of a to-many relationship

• allow mappings to pseudo-variables. These can be used to simplify
queries, but don't actually read anything.

• added glorp-specific exception classes (a couple)

• changes for compatibility with GNU Smalltalk

• some improvements (though not enough yet) to blob and clob types.

• various bug fixes and performance enhancements

Many thanks to the various contributors. Particular thanks in this release
to David Pennell for optimistic locking, Michael Lucas-Smith and Anthony
Lander for the timed proxies, Andrei Sobchuck, Boris Popov, Radoslav
Hodnicak and Andre Tibben for bug finding, fixing, and feature
14 VisualWorks 7.3.1

Preview
suggestions. Victor Metelista and Anthony Boris for work on DB2 and
VisualAge that isn't integrated here yet. Paolo Bonzini for porting to GNU
Smalltalk, and many others for their contributions.

Faster Store Replication
The StoreForGlorpVWUI parcel provides a user interface for replicating
packages and bundles between Store repositories. This is based on a
Glorp schema for mapping a Store repository. It provides some
advantages over the existing StoreReplication goodie, the primary one
being that it is much faster in most circumstances, particularly against a
remote repository. In addition, it provides some fairly sophisticated
filtering of the things to be replicated and runs in the background rather
than tying up the primary Store connection.

Caution: This is unsupported, prerelease software. It has so
far been tested only against Oracle and Postgres repositories
and is known not to work on SQL Server due to case
sensitivity issues. An error in this code could seriously
damage a Store repository. Be extremely careful, and make
sure that your repositories are well backed-up.

XML Schema Support
The release note (7.0) that XSchema was promoted to product at that
time was premature, and it remains in preview. To use XML schema
support, load the XSchema parcel, preview/parcels/XSchema.pcl.

OpentalkCORBA
The main improvement in 7.3.1 is added support for character code set
negotiation. This finally allows communication of characters outside of the
western ISO8859-1 encoding range. It also enables true interoperable
support for the wstring and wchar IDL types. The marshaling
machinery preserves the efficiency of ISO8859-1 string marshaling,
bypassing the encoding overhead.

IIOP brokers now advertise supported code sets in the IORs they
produce. Corresponding IOR components can be configured via new
CDRMarshalerConfiguration parameters (#codeSets and #orbType). There is
now also a "null" IOPCodeSets to allow configuring broker code sets as
unspecified rather than whatever is the current global default. The default
code sets advertised by IIOP brokers is now full set of supported
encodings, see IOPCodeSets class>>default. It might be desirable to restrict
that to smaller set in some cases. The code set negotiation algorithm is
Release Notes 15

Updates for VisualWorks 7.3.1
fully implemented with the exception of the code set compatibility test.
Consequently, if there is no match between client and server code sets,
the algorithm could possibly pick an incompatible code set for
transmission. If that happens you'll need to reconfigure the broker code
sets to avoid this situation for now.

There have been a number of smaller changes and fixes. Here are the
most interesting ones:

• added narrowing and widenning API to IORs and RemoteObjects

• added RemoteObject>>_release to allow for explict and immediate
release of the proxy from the broker cache, rather than waiting for the
GC to kick in.

• added #nameService convenience API to Broker

• IIOPObjRef>>oid is now enforced to be always a positive integer (to
support OID autogeneration and to save some space); consequently
there are new API variants (#oidBytes) for IIOPObjRef creation, to
support IIOP object keys and to continue supporting specification of
oids as byte objects (string, symbol, byte array)

• fixed a bug in marshaling of GIOPCloseConnection, which caused the
connection closure handshake to fail and yielded a read error in the
server process upon connection closure

• fixed a problem causing the broker create a new connection for every
request, instead of reusing previously established connection

Known Limitations

Unicode preview
Unicode support for Windows remains in preview. Note that this support
requires Windows 2000 or later, and works best on Windows XP. This
limitation was not noted previously.
16 VisualWorks 7.3.1

	Updates for VisualWorks 7.3.1
	Overview
	ARs Resolved in this Release
	VisualWorks Base
	Printing
	Exiting VisualWorks on Unix SIGTERM
	Tile Phase Corrected

	Advanced Tools
	Profiling

	DLLCC
	Windows VM requirements

	GUI Development
	Windows Multi-Monitor Support
	Optional UI Compatibility Parcels
	Drag and Drop List Cues
	Windows Look Policy and Fonts
	Named Font Selection
	Editable ComposedTextView
	TreeView
	UI Painter
	Dataset
	Dialogs
	Menus

	Internationalization
	Web Services
	Refactored Parcels
	New XML-Object Binding Wizard

	Application Server
	Reduced large space multiplier
	VisualWave labels with images and using https
	Allow Servers to serve one particular interface
	Remove demos from prebuilt runtime.im

	Runtime Packager
	Error log in UTF-8
	Loading old Runtime Packager Parameters
	Runtime Packager command-line options
	Windowless runtime image would fail to exit
	Fix overwriting of memory sizes

	Preview
	Standard IO Streams
	MQ-Interface
	Pollock
	Glorp
	Faster Store Replication
	XML Schema Support
	OpentalkCORBA

	Known Limitations
	Unicode preview

