
Cincom Smalltalk™

VisualWorks™ 7.6
Release Notes
P46-0106-14

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1999 – 2008 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0106-14

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999 – 2008 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

Chapter 1 Introduction to VisualWorks 7.6 9

Product Support ..9
Support Status ...9
Product Patches ...10

ARs Resolved in this Release ... 10
Items Of Special Note ... 10

Installing VisualWorks on Vista ..10
visual.im is ReadOnly ... 11
Widgetry Discontinued ...11

Known Limitations ...12
Delay and Time Change Interaction ... 12
Issue loading Packages ...12
HPUX11 User Primitive Engine ..12
Warning Message Installing MacOS X ... 13
Limitations listed in other sections ... 13

Chapter 2 VW 7.6 New and Enhanced Features 14

Virtual Machine ...14
Multi-core/CPU Issues ...14
Digital Signing of Executables .. 15
Microsoft Vista Support ..15
New MacOS X VM ... 15

Host Printing .. 15
Headless Support .. 15

VM Compilation Environments ... 16
IEEE floating point .. 16

Base system ..16
Process Termination ...16
Command Line Option Comparisons ... 17
New Hash Algorithms ... 18
Default Random Class ...20
Collection sort methods ... 21
Release Notes 3

Contents
aDictionary collect: .. 21
Float timesTwoPower: .. 21
RTP ErrorNotifier ... 22
Point Positions ... 22
ColorPreferenceCollection ... 22
Package Scope for Extension Methods ... 23
InteractiveCompilerErrorHandler now declares imports as private 24
New BlockClosure cull methods .. 24
Moved Timed Block from Trippy to Base .. 25
BufferedExternalStream contentsLineEndConvention removed 26
UTF-8 File and Directory name encoding .. 26
Snapshot and leave running .. 26
Partial URL Support ... 27
Invoking External Process ... 28
Parcel/Package Loading Discrepancies .. 29
HandleRegistry Change .. 29

GUI ... 29
Hover Help ... 29
Tree View ... 30
PragmaticMenuItems Package .. 30
VisualRow and VisualStack ... 31
Expose VisualPart Properties API ... 31
Add VisualPart>>superpartsDo: and derived APIs 31
FrameExited/Entered announcements .. 32
Graphics Clipping Outside OS Coordinate Bounds 32
Reduction of UI Flicker .. 32

Tools ... 33
Refactoring Browser .. 33
Assets .. 34
Inspector Enhancements ... 35
Improve automatic method categorization ... 35
Improvements to the Debugger’s "browse" feature 36

Database .. 36
MySQL EXDI ... 36

Client Setup Notes .. 38
Scrollable Cursors ... 39

Store ... 39
Applying Bundle Blessing Comments .. 39
New Blessing Levels .. 40
User Server Timestamp for versions ... 40
Retain History on Rename .. 40

WebServices .. 41
4 VisualWorks 7.6

Contents
Internationalization ..42
Per-process Locale and Message Catalogs ... 42

Net Clients ... 43
MIME Support ..43
Attachments ...44
Changes in handling of non-ascii characters in header fields 46
Mail Archive Support .. 49
Miscellaneous Cleanup .. 51
Suppressing chunking for Http messages ..51
WebSupport ...52
Changed default cookie processing setting .. 55

GLORP ..55
WebSphere MQ Interface ..55

Package MQ-XIF ..55
Fix namespace of various MQ XIF classes 55
Fix invalid THAPI procedure definitions .. 56

Package MQ-Domain ... 56
Fixes .. 56
Review use of literal constants defined by external MQ interfaces .58
Extensions ...58
Removals .. 59

Seaside Support ... 59
What is Seaside? ... 59
Seaside in VisualWorks ... 60
Running Seaside with Object Studio 8 ... 61
Add-On Components ...61

Seaside-Resources ... 61
Seaside-I18N ..62

Preview Components ...63
Seaside-SUnitToo ...63
Seaside-Glorp ...65

Opentalk ..68
Opentalk-Component-Base removed ... 68

WebToolkit ...68
Extend support for subclassing HttpApplication, HttpSession, PageModel .70
Implement reset for buffered responses ...71

DLLCC ..71
External-Interface-Pragmas Package ..71

Compression ...71
Documentation ..72

Basic Libraries Guide ... 72
Tool Guide ..72
Application Developer’s Guide ... 72
Release Notes 5

Contents
COM Connect Guide ... 73
Database Application Developer’s Guide ... 73
DLL and C Connect Guide ... 73
DotNETConnect User’s Guide ... 73
DST Application Developer’s Guide ... 73
GUI Developer’s Guide .. 73
Internationalization Guide .. 73
Internet Client Developer’s Guide .. 73
Opentalk Communication Layer Developer's Guide 73
Plugin Developer’s Guide .. 73
Security Guide ... 73
Source Code Management Guide ... 73
Walk Through .. 74
Web Application Developer’s Guide ... 74
Web GUI Developer’s Guide .. 74
Web Server Configuration Guide ... 74
Web Service Developer’s Guide .. 74

Chapter 3 Deprecated Features 75

Virtual Machine ... 75
Thunking DLLs .. 75
MacOS 9 .. 75

User Interface ... 75
InputSensor ... 75
Notebook Widget ... 75

Chapter 4 Preview Components 76

Universal Start Up Script (for Unix based platforms) .. 76
Base Image for Packaging .. 77
64-bit Image Conversion ... 77
Tools ... 77
Smalltalk Archives .. 78
WriteBarriers ... 78
Sparing Scrollbars .. 80
Multithreaded COM .. 81
COM User Defined Type (UDT) Support .. 81
Unicode Support for Windows .. 81
Scripting and Command Line Support .. 82
Grid ... 83
Store Previews .. 84

Store for Access .. 84
6 VisualWorks 7.6

Contents
Store for Supra ...84
StoreForSupra installation instructions .. 85

Security ...86
OpenSSL cryptographic function wrapper ... 86

Opentalk ..88
Opentalk HTTPS .. 88
Distributed Profiler .. 91

Installing the Opentalk Profiler in a Target Image91
Installing the Opentalk Profiler in a Client Image 91

Opentalk Remote Debugger .. 91
Testing and Remote Testing ...92

Opentalk SNMP ..95
Usage ...95

Initial Configuration ... 95
Broker or Engine Creation and Configuration 95
Engine Use .. 96

Entity Configuration .. 98
MIBs ...98
Limitations ..98

Port 161 and the AGENTX MIB ... 98
OpentalkCORBA ... 99

Examples ...101
Remote Stream Access ..101
“Locate” API ..101
Transparent Request Forwarding ..102
Listing contents of a Java Naming Service103
List Initial DST Services ..104

Seaside Support ...104
Internet Browser Plugin ...105
International Domain Names in Applications (IDNA) ..105

Limitations ..105
USAGE ...105

Chapter 5 Microsoft Windows CE 107

Supported Devices ..107
Distribution contents ..108
Prerequisites ...108
Developing an Application for CE ..109

Filenames ...109
DLL names ...109
Window sizes and options ..109
Release Notes 7

Contents
Input devices .. 110
.NET access .. 110

Deploying on a CE Device .. 110
Starting VisualWorks on CE ... 110
Known limitations .. 111

Sockets .. 111
File I/O ... 111
Windows and Graphics .. 112
User primitive ... 112

Chapter 6 Installer Framework 113

Customizing the install.map File ... 113
Dynamic Attributes ... 113
Components .. 114
License .. 115

Customizing the Code .. 115
Creating Component Archives ... 116

Local Installations ... 116
Remote installations ... 116
8 VisualWorks 7.6

1
Introduction to VisualWorks 7.6

These release notes outline the changes made in the version 7.6 release
of VisualWorks. Both Commercial and Non-Commercial releases are
covered. These notes are not intended to be a comprehensive
explanation of new features and functionality nor are they intended to be
used in lieu of the product documentation. Refer to the VisualWorks
documentation set for more information.

Release notes for 7.0 and later releases are included in the doc/
directory (7.2.1 release notes cover 7.2 as well).

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Trouble+Shooter.

Product Support

Support Status
Basic support policies for the current release are described in the
licensing agreement. As a product ages, its support status changes. To
find the support status for any version of VisualWorks and Object Studio,
refer to this web page:

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Cincom+Smalltalk+Platform+Support+Guide
Release Notes 9

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide

Introduction to VisualWorks 7.6
Product Patches
Fixes to known problems may become available for this release, and will
be posted at this web site:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in
doc/fixed_ars.txt.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.

Items Of Special Note

Installing VisualWorks on Vista
Microsoft Vista operating system imposes restrictions on file permissions
that are not accommodated by the installer in this release. Accordingly,
there are a few special considerations when installing VisualWorks on
Vista. We recommend the following practices.

• We recommend that you turn UAC (User Account Control) off (in
Settings User Accounts), if you can, for the installation procedure.
Note that switching UAC on / off requires a reboot. This will give you
the equivalent of admin rights, allowing you to do the install directly.

a Run the installation program.

b When installation is complete, create a file association for
Smalltalk image files to visual.exe

c Start VisualWorks and set the VisualWorks home directory (File
Set VisualWorks Home...).

d Re-enabling UAC. With UAC in place, VisualWorks Home cannot
be changed.

• If UAC cannot be switched off by policy, you need to install as a user
with admin rights. To run applications as administrator, right-click on
the program and select Run as administrator.” Unfortunatly this does not
work for the installWin.bat-Script on the distribution CD because it
10 VisualWorks 7.6

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

Items Of Special Note
uses relative paths, and running it as administrator changes these
paths. So you need to edit the script before running installation.

a Copy installWin.bat to the desktop or other location.

b Edit the path in this script to

@Start X:\vw7.6\bin\win\visual.exe
X:\vw7.6\image\install.im -installMap X:\install.map

where the three occurrences of X are is the drive letter of the
installation CD.

c Run the edited script by as administrator by right-clicking and
selecting Run as administrator.

d Select options and install as usual.

e When installation is complete, create a file association for
Smalltalk image files to visual.exe.

f Because all files are write-protected, reset the permissions as
appropriate to allow saving the image file, etc. Also create
program menu items and shortcuts as desired.

visual.im is ReadOnly
Over the years we have implemented various mechanisms to help users
restore a clean image. These involved restoring a “clean” visual.im, either
from install media or an installed backup. We have also recommended
never saving work to visual.im, but also to a newly named image file.

While these facilities remain available and the recommendation holds,
with this release we are making visual.im read-only, making the
recommendation more forceful. The save dialog will be more helpful in
encouraging you to create a new image file.

Widgetry Discontinued
Development of the Widgetry GUI framework has been discontinued, and
it has been removed from preview/beta. It is, however, available under
Contributed, and is available on an unsupported basis for user use and
development. Widgetry is available on the CD and from the Cincom public
repository.

Note that the Announcement event management system, though
introduced in connection with Widgetry, remains supported and used in
the system. It is documented in the Application Developer’s Guide.
Release Notes 11

Introduction to VisualWorks 7.6
Known Limitations
While a large number of ARs (Action Requests) have been addressed in
this release, a number remain outstanding.

Known Limitations sections are provided throughout this document,
pertaining to specific product areas.

Delay and Time Change Interaction
It has been noted, particularly on Windows systems, that changing the
time clock adversely affects applications that are in a Delay. The results
vary, but can be as severe as an image hang or crash.

The problem occurs if the system gets out of synchronization with
network time, so that a large correction is necessary. The problem can be
minimized by configuring windows to run a full NTP server, which
changes time gradually, rather than the default SNTP server that corrects
the time all at once.

Arbitrary changes to the clock will continue to cause problems with
running applications in a Delay.

Issue loading Packages
Loading a package with an error in an “initialize” method pops up the
debugger. After repairing the method, accepting in the debugger and
proceeding, everything seems to be fine. But the package is not marked
dirty and “published items/examine/Compare with parent” on the image
package does not show the changed method.

The problem arises from the situation of the package load process when
opening the debugger: the new package is not hooked up in the system
yet and the change doesn't apply to the new loaded package.

This problem is noted and is slated to be addressed in the next release
cycle.

HPUX11 User Primitive Engine
The HPUX11 User Primitive engine does not run for as yet not
understood reasons. This is covered by AR 49661. The engine appears
to compile and link correctly but then exits prematurely after executing a
few Smalltalk expressions, apparently without error.
12 VisualWorks 7.6

Known Limitations
Warning Message Installing MacOS X
MacOS X seems to be over-sensitive to ISO formats, and so warns that
the ISO downloads may be corrupt. We are aware of this issue and will
resolve it once we identify a good solution. In the mean time, in general,
the ISO is not corrupt and installation can safely proceed.

Limitations listed in other sections
• SNMP preview Limitations

• IDNA preview Limitations

• WinCE Known limitations
Release Notes 13

2
VW 7.6 New and Enhanced Features

This section describes the major changes in this release.

Virtual Machine

Multi-core/CPU Issues
We have found that when Windows runs single threaded programs in
multicore/multi-cpu computers, the performance of such programs can be
severely degraded. At times, the impact is so high that programs run at
less than half their potential speed.

The VisualWorks VM, like any other single threaded program, is also
affected by this problem. Note this issue is caused by the Windows
process scheduler, which frequently swaps the core/cpu in which the
single threaded program is running. This leads to CPU cache thrashing,
and thus the slowdown.

Something that can be done to avoid this performance loss under
Windows is to use the tool imagecfg.exe to add information to the
virtual machine executable so that Windows allocates only one core or
CPU to it at the time the program is loaded. Once the .exe file has this
additional information, Windows will cycle through the available
cores/CPUs automatically each time the VM is loaded, so you only need
to do this once. This behavior has been preliminary confirmed under
Windows XP.

To do so for the VisualWorks VM, simply execute:

imagecfg.exe -u vwnt.exe
Make sure the VM executable file is not read only, because otherwise the
operation will fail.
14 VisualWorks 7.6

Virtual Machine
The imagecfg.exe tool comes with various Windows resources such
as the Resource Kit, and is also referenced to be in the folder
i386/support/debug. The following page has a link for imagecfg.exe:

http://www.robpol86.com/pages/imagecfg.php
We are investigating the issue under Linux and other Unix operating
systems as well.

Digital Signing of Executables
The VMs for Windows platforms now include a manifest, and the VMs
plus vwntoe.dll are digitally signed, as required for Vista deployment.

Note that if you use a a tool like ResHacker to add resources to one of
these executables, the digital signature for the VM will no longer apply,
and must be re-signed. See Microsoft resources for information on
Authenticode signing, such as

http://msdn2.microsoft.com/en-us/library/ms537359%28VS.85%29.aspx

Microsoft Vista Support
With this release we add Microsoft Vista to our list of supported platforms.

At this time, our experience with Vista is limited. You should be aware,
however, that user privileges have changed significantly from earlier
versions of Windows, and could cause issues. Many resources cannot be
updated without administrator privileges, so your application may need to
be changed to avoid violating Vista’s restrictions.

Refer to Microsoft documentation, such as this security note, for more
information. Also refer to “Installing VisualWorks on Vista” on page 10 for
installation recommendations.

New MacOS X VM

Host Printing
The default printing API uses the Postscript printer. A preview parcel,
when loaded, provides an API to use the native host printing primitives in
the VM instead. This code only works in VisualWorks 7.6, where printing
API changes have been made to accomodate the new printing primitives
for MacOSX.

Headless Support
There is no headless VM for MacOS X. To run headless on MacOS X,
use the MacOS X X11 headless VM, vwmacxx11. X11 need not be
installed.
Release Notes 15

http://www.robpol86.com/pages/imagecfg.php
http://msdn2.microsoft.com/en-us/library/ms537359%28VS.85%29.aspx
http://www.microsoft.com/technet/technetmag/issues/2007/06/ACL/?related=/technet/technetmag/issues/2007/06/ACL

VW 7.6 New and Enhanced Features
VM Compilation Environments
The following table lists the compilers and versions used to build the
VisualWorks 7.6 object engines.

Product Build Compilers (as of the 7.6 release)

Platform / OS Version Compiler

HP-UX 11.11 HP92453-01 B.11.11.10 HP C Compiler

IBM AIX 5..2 C for AIX version 6

Intel Linux 32-bit RedHat 7.2 with local gcc 3.2.3

Intel Linux 64-bit RedHat Enterprise Linux ES 3 with stock gcc
3.2.3

MacOS 9 MPW Toolset, version 3.5x

MacOS X GCC 4.0.1 build 5250

Windows Server 2003 SP2 MS Visual C/C++ 6.0 (MS C/C++ Optimizing
Compiler Version 13)

SGI IRIX 6.5 MIPSpro Compiler version 7.41

Solaris 8 Sun WorkShop 6 update 2 C 5.3 2001/05/15

IEEE floating point
As of release 7.5, the engine supports IEEE floating-point primitives. The
old system used IEEE floats, but would fail primitives that would have
answered an IEEE Inf or NaN value. The new engine does likewise but
can run in a mode where the primitives return Infs and NaNs rather than
fail.

Image-level support for printing and creating NaNs and Infs has been
contributed by Mark Ballard and is loadable from
parcels/IEEEMath.pcl. To use this facility load the IEEE Math parcel
and start the engine with the -ieeefp command-line option.

Base system

Process Termination
Formerly, the Process >> terminate method could interrupt or prevent an
unwind block from being run. In general, this is undesirable behavior. In
7.6, this behavior has been changed to ensure that unwind blocks are
executed to completion by terminate.
16 VisualWorks 7.6

Base system
In addition, two new methods have been introduced, terminateUnsafely and
terminateUnsafelyNow, that are more forceful in their termination behavior,
interrupting the unwind blocks. These are rarely needed, except by the
Debugger.

Typically, applications that sent terminate assumed the better behavior
now provided. If your application depended on the unsafe behavior, use
one of the new methods.

The method comments are repeated here for reference.

terminate
Terminate the receiver process, by sending the Process
terminateSignal. Allow all unwind blocks to run, even if they are
currently in progress.

terminateUnsafely
Terminate the receiver process, by sending the Process
terminateSignal. Unwind blocks will usually be run, but if the process
is in the middle of an unwind block when the terminate signal is
received, then that unwind block will not be completed, but
subsequent unwind blocks will be run. This is the semantics used
when you close the debugger while debugging a process. In this
circumstance it is often appropriate, because the unwind block may
not be able to complete, either because of an error, or because it is
hung, and this is the reason you are in the debugger. In most other
circumstances, you would want to use #terminate, which allows
unwind blocks in progress to complete. In very rare circumstances
you might want #terminateUnsafelyNow, which terminates the
process without attempting to run any of its unwind blocks.

terminateUnsafelyNow
This is an even more unsafe variation of terminateUnsafely. It will
immediately stop the process, making no attempt to run any unwind
blocks. This should be used with great caution.

Command Line Option Comparisons
In previous versions, the command line interests defined by
CommandLineInterest classes were matched in a case-insensitive way. This
primarily affects options defined by e.g., the -option or -option:sequence:
pragmas in Subsystem classes. This did not match the normal
expectations of users, who often expect to be able to use e.g. -d and -D
to indicate separate command line options.
Release Notes 17

VW 7.6 New and Enhanced Features
The behaviour was changed to use case-sensitive matching on all
platforms. Note that a few options, where the case might not be
completely obvious, have been provided with two option pragmas, one for
each of the common cases, e.g., -fileIn and -filein.

New Hash Algorithms
For 7.6, the implementation of several hash methods has been improved.

The most important change made to hashing is that the hash values of
strings, symbols, large integers and byte arrays are now calculated using
all available bytes and/or character values. Furthermore, since doing this
in Smalltalk would be onerous without adaptive optimization, the hash
values are calculated by new primitives. Using primitives allows speedups
such as cutting the time needed to hash all symbols by a factor of 7, while
at the same time producing much higher quality hash values which
further increases hashed collection efficiency.

Primitive 1700 calculates hash values for objects that look like byte arrays
(byte strings, byte symbols, byte arrays, large integers).

Primitive 1701 calculates hash values for byte like strings for which the
characters are mapped. It takes the decoding table for the string in
question as an argument.

Primitive 1702 calculates hash values for two byte strings and two byte
symbols.

The hash function used is basically as follows (e.g., for LargeInteger):

hash

| answer |
 <primitive: 1700>
 answer := self basicSize.
 1 to: self basicSize do:

[:eachIndex |
 answer := (answer + (self basicAt: eachIndex)) hashMultiply

].
 ^answer

The operation hashMultiply, implemented in SmallInteger via primitive 1747,
is a multiplication by 1664525 modulo 2^28. The constant is taken from a
table of good quality factors for linear congruency random number
generators in The Art of Computer Programming, volume 2, by Donald E.
Knuth. This hash function has been measured to have good hash value
distribution properties when hashing the objects referenced above.
18 VisualWorks 7.6

Base system
Since the hash of symbols is now calculated via a primitive (by means of
the message stringhash), the symbol table is now more efficient than
before. In addition, the symbol table itself has been moved from class
Symbol, and it is now an instance of SymbolTable or one of its subclasses.
The system is shipped with a symbol table implemented by
FastSymbolTable. Other symbol tables are available, and switching
between different storage vs. speed strategies can be done by simply
evaluating expressions such as:

SymbolTable new rehashIntoFastTable
This has allowed refactoring to occur, the result of which is an even more
efficient symbol table. For instance, the previous symbol table could send
the message stringhash to a string or symbol up to 3 times while servicing
a single request. This issue has been rectified. To illustrate the
performance gains, before the new hash values were calculated with
primitives, the new symbol table was faster than the old one even though
the Smalltalk implementation of hashMultiply is quite expensive.

Note that SymbolTable new will answer the symbol table singleton. The
presence of the new symbol table also means that Symbol class>>table will
no longer answer the array of hash buckets with which the old symbol
table was implemented. To enumerate all symbols in the system, simply
use Symbol class>>allSymbolsDo:. Direct access to the internal storage of
the symbol table is not recommended.

Finally, symbol tables understand the message
normalizedHashBucketSizeChiSquared. This message will answer a number
representing the effectiveness of the hash buckets in terms of deviation
from the expected average hash bucket size. The ideal value is zero. The
greater the value, the higher the benefit to be obtained from rehashing
the symbol table. Note that, for this to be meaningful, the hash of strings
and symbols should be of high quality. If rehashing the symbol table does
not reduce this value to almost zero, then it could be an indication of low
quality character array hashing. It is suggested that symbol tables be
rehashed if the answer to this message becomes larger than about 1.

Note that SequenceableCollection>>hash has also been changed to use a
hash function dependent on hashMultiply, and that the whole contents of
the collection will be considered to calculate the hash value. While this
may be seen as a potential performance problem, the issue is that having
a default hash function which ignores data runs the unavoidable risk of
being completely inadequate for easily described data sets. This is
acknowledged to be a flaw of hash functions because it causes the
performance of hashed collections to become that of linear search.
Therefore, if an application typically hashes large sequenceable
Release Notes 19

VW 7.6 New and Enhanced Features
collections, it is suggested that what should be hashed is the meta data
describing what the large sequenceable collection is. This will most likely
be much smaller and also more appropriate to hash, because the meta
data will include some form of tag which uniquely identifies what the
objects contained in the large collection represent.

A number of other implementors of hash have been improved as well,
particularly in terms of hash value distribution. Some example classes
which now have updated instance side hash methods are: Point,
AnnotatedMethod, GeneralBindingReference, Time, and Timestamp. Also, note
that the hash functions for Float and Double have been enhanced, and that
they are now platform independent.

Finally, note that Set class>>largePrimes has been updated so that better
prime numbers are used as sizes of hashed collections. The method
comments include the means to generate the list of prime numbers
chosen.

For interest sake, a tool, called Hash Analysis Tool, is available from the
public Store repository. To use it, load the bundle called Hash Analysis
Tool and then evaluate:

HashAnalysisToolUI open

Default Random Class
The default random number generator has changed. It is now a new
generator implemented by the class LaggedFibonacciRandom.

The previous MinimumStandardRandom generator, now renamed to
ParkMillerRandom, is not recommended when a quality random is required.
Applications should use the LaggedFibonacciRandom instead. This is
because the random values provided by the Park-Miller generator are
double precision floating point numbers which have up to 53 significant
bits. Since only the first 31 bits of their mantissa are known to have good
random properties, the behavior of the remaining 22 bits is undefined. In
particular, bit aliasing occurs during the calculation of the next random
value, and bit 22 of the mantissa is always 1.

The LaggedFibonacciRandom generator is superior to the Park-Miller
generator because, as configured by default, it has a period of the order
of about 2^258, it produces good quality values across all of the first 53
significant bits starting at the binary point, and it is also about 35% faster.
20 VisualWorks 7.6

Base system
Collection sort methods
In former versions of VisualWorks, some methods which made use of
SequenceableCollectionSorter (methods sort, sort:, sorted, sorted: and
sortWith:), would return the sorter, rather than the collection. These have
been changed to return the collection instead.

aDictionary collect:
Dictionary protocols such as reject:, select:, etc, usually return another
Dictionary of the same sort and, according to the ANSI spec, collect:
should too. But for a long time it has returned an arbitrarily ordered
OrderedCollection of the values with the transform applied. The correct
behavior has been available in the ANSICompatibility parcel as an
optional load.

In this release, the default behavior is the ANSI specified behavior:
collect: when sent to a Dictionary returns the same kind of Dictionary. The
old method can be loaded from the ANSIUnCompatibility parcel, if you
need the old behavior to be restored.

Float timesTwoPower:
(AR 53035) The implementation of Float>>timesTwoPower: as a primitive
was capable of answering wrong results if the receiver of the message
was denormalized. For example, evaluating the expression

(2.0 timesTwoPower: -150) timesTwoPower: 150
would result in 2^23 expressed as a float, 8.38861e6, instead of
answering the correct result, 2.0. As it turned out, implementing the
correct functionality in the image via a lookup table of factors was just as
fast as the existing primitive, and so this operation has been moved into
the image.

While the implementation of the primitive for Double>>timesTwoPower: was
correct, it was quite inefficient. The image based implementation is just
as correct, and in addition it is significantly faster.

The new class instance variable powersOfTwo, defined in
LimitedPrecisionReal, holds on to the lookup table.
Release Notes 21

VW 7.6 New and Enhanced Features
RTP ErrorNotifier
The Runtime Packager previously installed its own Error notifier and had
a hierarchy of RuntimeImageDumper classes for dumping image state in
packaged/stripped images. This has now been refactored to move the
Runtime Packager's error notifier and system dumper into a package
called ErrorNotifier, included in the base system.

Previously, the base runtime image (base.im) included the original
debugger in order to be able to respond to errors. This debugger has
been superseded by the PDP debugger in development images for some
time, but needed to remain in the system in order to have some response
to error conditions when the PDP debugger was not present. This change
allows us to remove all debuggers from base.im and have it use the
ErrorNotifier to generate stack dumps on exceptions.

Point Positions
The methods center, topCenter, rightCenter, bottomCenter, leftCenter are no
longer guaranteed to return integer values. They now return the true
midpoint between the appropriate points, whether it be in integers,
fractions, floats, or any other element of the Smalltalk transcendental
number types.

Two APIs of interest have been added to the ArithmeticValue. One is the
unary method half, which returns the equivalent of

(self / (self unity + self unity)).
Various subclasses have optimal implementations.

The other is midpoint: which returns the a value that is midway between
the receiver and the argument.

ColorPreferenceCollection
It has been observed that if ColorPreferenceDictionaries are created that
reference a SymbolicPaint rather than a concrete color (i.e. ColorValue,
Pattern, or DevicePaint), there is a likelihood that a color look-up recursion
fault will occur.

To assist in avoiding this situation, a new protocol named "testing" has
been added to ColorPreferenceCollection class that includes isCyclic and
helper method cyclicEntry:. Sending isCyclic to a ColorPreferencesCollection
sub-instance answers true if the receiver has a cyclic entry that would
lead to a runaway cyclic lookup.

To test the isCyclic method try the following in a workspace, which
introduces two cyclic entries:
22 VisualWorks 7.6

Base system
preferences := Window currentWindow paintPreferences copy.
preferences matchAt: SymbolicPaint shadow put: SymbolicPaint background.
preferences matchAt: SymbolicPaint background put: SymbolicPaint border.
preferences matchAt: SymbolicPaint border put: SymbolicPaint shadow.
preferences matchAt: SymbolicPaint foreground put:

SymbolicPaint foreground.
preferences isCyclic. "true"

Window currentWindow paintPreferences isCyclic. "should be false"

Package Scope for Extension Methods
A common problem with writing packages that extend the behavior of
objects found in other packages is that the extension methods should be
scoped to the code the package represents rather than that of the class.

Consider the following scenario. You want to add your own inspector to
the system. You create a package. You place a namespace called
MyOwnInspector in your package, and place the classes for your code in
that namespace; doing so keeps them from conflicting with other
inspector classes in the system. Then to make your inspectors easier to
get at, you extend some of the base classes of the system with messages
like:

Object>>inspectMyWay
MyOwnInspector.StandardInspector openOn: self

Number>>inspectMyWay
MyOwnInspector.NumericInspector openOn: self

Nominally, every extending method has to specify the complete path to
your objects. New in 7.6, is the ability to specify a “default name space”
for a package. Set the default name space using the Default Namespace
menu item in the packages lilst. This is stored as a String in the
namespace property, in the Inspect All properties item. When you set the
default name space, extension methods in your package use this name
space of the extending package, rather than the classes name spaces.
The above methods can now read:

Object>>inspectMyWay
StandardInspector openOn: self

Number>>inspectMyWay
NumericInspector openOn: self

This affects the search order as follows. For a non-extension method, or if
the package does not define a default namespace, the search order is:
Release Notes 23

VW 7.6 New and Enhanced Features
1. Temporary variables in the method

2. Instance variables

3. Shared variables defined by the class, and variables imported by the
class

4. Shared variables defined in superclasses, and variables imported by
superclasses

5. The namespace that contains the class

If a default namespace is defined, the default name space changes the
last item in the search order. The order changes to:

1. Temporary variables in the method

2. Instance variables

3. Shared variables defined by the class, and variables imported by the
class

4. Shared variables defined in superclasses, and variables imported by
superclasses

5. The package’s default namespace

Note also that this feature applies only to packages, and not to bundles.

InteractiveCompilerErrorHandler now declares imports as private
In former versions of VisualWorks, when one used the interactive
compiler warning handler, if one chose to import a variable name (or it's
containing namespace) into a class, the import was public. These imports
are now marked as private by default.

New BlockClosure cull methods
Three new interesting methods have been added to BlockClosure:

• cull:

• cull:cull:

• cull:cull:cull:

These methods are similar to value: counterparts. The difference is that
when a BlockClosure receives the value: message, it will raise an error if the
receiving blocks argument count does not match the argument count of
the value: message. The cull: methods are tolerant of receivers that may
have fewer arguments than the calling method. For example:
24 VisualWorks 7.6

Base system
[:a :b | a + b] value: 3 value: 4 --> 7
[:a :b | a + b] value: 3 value: 4 value: 5 --> error

whereas

[:a :b | a + b] cull: 3 cull: 4 --> 7
[:a :b | a + b] cull: 3 cull: 4 cull: 5 --> 7

This allows methods which take blocks as arguments to support optional
arguments. An example of this in pre 7.6 releases is the ifNotNil: method,
which when sent to an object, may take a block with 0 or 1 arguments. It
now uses cull:. Additionally, the BlockClosure on:do: message now uses
cull: to allow the argument to the handler to be additional. For example:

Pre 7.6

[3 / 0] on: ZeroDivide do: [:ex | 17] --> 17
[3 / 0] on: ZeroDivide do: [17] --> error

7.6

[3 / 0] on: ZeroDivide do: [:ex | 17] --> 17
[3 / 0] on: ZeroDivide do: [17] --> 17

Moved Timed Block from Trippy to Base
A facility originally put in place to protect against infinite print strings has
been refactored and made generally available. Blocks of code can now
be given a timeout (in seconds) and an alternative action to take if they
do not finish in time. A simple example:

[10000 factorial] valueWithinSeconds: 2 orDo: [-1]
Care should be taken when using this facility. Consider the following
example:

| set random |
set := Set new.
random := Random new.
[1000000 timesRepeat: [set add: (random next roundedTo: 0.001)]

valueWithinSecond: 0.5 orDo: [].
set do: [...]

This would be a bad idea. We can't determine exactly where the code
was at when it timed out and interrupted. So the set object may be in an
invariant state that makes the object undesirable for further use. Care
should be taken using a timeout facility to verify the integrity of any data
that may be under alteration in the block, if the same data is to be used in
later computations.
Release Notes 25

VW 7.6 New and Enhanced Features
BufferedExternalStream contentsLineEndConvention removed
In an effort to improve support for automatic line end convention detection
for wider range of stream types we decided that following the
contentsLineEndConvention pattern would be a poor choice. This method
leaves the receiver in transparent line-end mode which is usually neither
what the mode was before the method was called nor is it what it should
be.

Instead, the way to inquire about the line end convention of the contents
of an external or an encoded stream is to set its line end convetion to
LineEndAuto and then inquire about the detected mode using the
lineEndConvention accessor.

UTF-8 File and Directory name encoding
It is increasingly common that operating systems use UTF-8 for the
encoding of file and directory names in the file system. Previous releases
would not handle this correctly. In the case of Unix and Linux systems,
this had to do with the presence of Locales. The current Locale class
combines a country/language and an encoding. e.g., en_US.iso-8859-1.
There were no encodings using UTF-8, and if no matching encoding was
found, it would fall back to the default "C" encoding, which used ISO-
8859-1. If this didn't match the filesystem, then using characters outside
the basic ASCII range could fail.

This issue has been resolved by adding .UTF-8 locales for all existing
locales in the system. For operating systems where we haven't defined a
locale, adding an appropriate one will make it use the filesystem correctly.
A longer-term solution is to separate the encoding from the
country/language.

For MacOSX, the file system is always in a particular form of UTF-8, in
which accented characters are decomposed. In this case we simply need
to hard-code the MacOSXFilename to use this encoding consistently.

In both of these cases, the fix can be made entirely at the image level.
For MS-Windows, the fix to support "unicode" characters in file and
directory names will require VM changes, and is not yet available.

Snapshot and leave running
It can be useful to make a snapshot of the current image, but leave the
image running, and not change the image file name it thinks it has, the
change file name, and so forth. Saving an image as headless did this
previously. This capability is now generalized so that you can call
Snapshot>>saveDetachedTo:thenQuit:.
26 VisualWorks 7.6

Base system
Partial URL Support
The Seaside efforts in this release cycle required some improvements in
handling of partial URLs. Previously there was some basic functionality
available in the form of the resolvePath: message, but it was rather limited
because the argument was only a String, which made handling of more
complex cases difficult. In this release we have introduced a new
PartialURL class, modelling a URL that is just a path, query and fragment
(any of these elements can be omitted).

For example, the following expression is now valid

'/images/test.png' asURI
Partial URLs are primarily used to augment other URLs, i.e., to modify
the other URL using elements of the partial one. For example, often when
dealing with XML resources of one form or another, you'll be handed a
relative URL that is meant to be relative to the xml:base URL.

As part of the PartialURL changes, the capability of the resolvePath: API
was greately enhanced. It can now resolve any combination of full and
partial URLs. We've also made few changes for convenience. First, the
argument can be provided either as a string or as a URL object. Second,
we've aliased the resolvePath: message with #, (comma, as a message
name). With these changes we can present few example resolutions:

'http://localhost:7777/' asURI, '/images/test.png'
returns

<URL:http://localhost:7777/images/test.png>

'http://localhost:7777/' asURI, 'https://secret:1234/files/things.zip'
returns

<URL:https://secret:1234/files/things.zip>
The established combination rules are somewhat complicated, however
one thing to keep in mind when using partial URLs is that they can be
absolute or relative. Path of an absolute URL entirely replaces the path of
the receiver whereas path of a relative URL replaces only the last
component of the receiver's path. For example:

'http://localhost:5432/path/file.txt?query#fragment' asURI, 'absolute.jpg'
returns

<URL:http://localhost:5432/path/absolute.jpg>
Release Notes 27

VW 7.6 New and Enhanced Features
'http://localhost:5432/path/file.txt?query#fragment' asURI, '/absolute.jpg'
returns

<URL:http://localhost:5432/absolute.jpg>
Note that resolveRelativePath: is now deprecated. Use resolvePath: instead,
the right thing happens depending on what type of URL the argument is.

Invoking External Process
There has long been a mechanism for invoking external processes from
Smalltalk, but it has lacked some important features and has not been
compatible between different operating systems. This release contains a
significant overhaul of the functionality. This is based on work that was in
the package ExternalProcessStreams in the public repository, but is
significantly changed from that.

Most of the protocol is now instance-based rather than class-based, so
you work by creating an instance of ExternalProcess or one of its
subclasses. Sending new to ExternalProcess will automatically create an
instance of the appropriate subclass.

The underlying method which all of these facilities call is now
execute:arguments:do:errorStreamDo:. This allows you to pass a command,
arguments, and blocks which are given the standard in, out, and error
streams from the resulting process. This gives the ability to stream in and
out to the process, and because separate processes are spawned for the
two blocks, to respond to error and input information separately. Where
this generality is not required, convenience methods like fork:arguments:
can be used. The existing protocol like shOne: will also work, and will also
work on Windows systems, where it will invoke the Windows command
interpreter. However, the actual command string sent will usually need to
be different between Windows and Unix systems.

Because most of the work is now done by instances of ExternalProcess, it
is possible to configure those instances before the process is invoked,
and it is also possible to hold onto the instance and get access to its
various attributes. Two common areas for configuration are the expected
line end convention and the encoding for the input/output streams. These
are set with the messages lineEndConvention: and encoding:. e.g.

anExternalProcess lineEndConvention: IOConstants.LineEndTransparent.
anExternalProcess encoding: #'utf-8'.

Note that the underlying implementation of WinProcess has changed
significantly. The older version always forked off a Windows shell as a
long-running process and issued commands to it with a special delimiter
to try and detect the end of a command output, and then explicitly exited
28 VisualWorks 7.6

GUI
the shell when finished. The newer version is much more compatible with
the UnixProcess implementation, and, for example, the shOne: command
will fork a Windows shell which executes the command and then exits. If
you need the functionality of a long-running Windows shell, this can be
built using the execute:arguments:do:errorStreamDo: functionality. Note that it
is also possible to invoke Windows programs directly, with no shell, and
this is what fork: and fork:arguments: do.

For examples of how to use these facilities, see the package comment in
OS-ExternalProcess, or the class and method comments on
ExternalProcess and its subclasses.

Parcel/Package Loading Discrepancies
(AR 53000) Discrepancies were discovered in the state of the system at
postLoadBlock-time, depending on whether the code was being loaded
from a parcel or a package. In the case of a parcel, the parcel would not
yet be registered with the system. This has been changed to occur later,
so that there is consistency between parcels and packages.

HandleRegistry Change
Prior to this release, HandleRegistry was not only a WeakDictionary, but one
whose keys were accessed via identity (e.g. IdentityDictionary). This was
found to be problematic in light of platforms that key things by integer
handles when those handles become large integers and later access is
no longer identical, but still equal.

HandleRegistry now uses equality as its API for storing and indexing. This
was the behavior of a subclass of HandleRegistry called ExternalRegistry.
ExternalRegistry remains in the image for backwards compatibility and will
be be removed in the next release.

GUI

Hover Help
The old FlyByHelp has been replaced by Tools-HoverHelp which uses
independent state machine implementations based on Announcements.

The programming interface is exactly the same, so no application code
should require changing.
Release Notes 29

VW 7.6 New and Enhanced Features
The old FlyByHelp is available in the /obsolete directory. To revert to
the old help system first remove the Tools-HoverHelp package and then
load the obsolete Tools-FlyByHelp package. The two should not be used
together as they will produce double help windows.

While the new version is backwards compatible, it does so through a
more powerful API than provided before. In addition to the original
helpText: API, one may also set the tooltip: of a widget. This maybe any
object which responds to asTooltipGraphicFor:. In this way, any
VisualComponent can be used for a tooltip. Furthermore, it may be a block,
allowing the tooltip to be dynamic and computed at open time.

Tree View
Release 7.5 included a change to TreeModel that prevented nil being the
value of a node. While this generally makes sense, there may be
circumstances in which nil may be a legitimate value. In 7.6, an instance
variable has been added, and behavior slightly changed, to
accommodate this possibility.

The new instance variable is mayHaveNilValue, with the usual setter and
getter methods. By default the value is false, supporting the 7.5 behavior.
If set to true, a node may have a nil value, and the behavior is more like
the pre-7.5 behavior. The method childrenFor: is changed so the behavior
depends on the value of the variable.

Similarly, release 7.3.1 changed the behavior of expandFound: in
TreeModel. Currently, the method looks for object as its argument in the
tree and if found, expands the tree to the object and answers true. Prior
release 7.3.1 the method would also expand the node found to display its
children, if any. In 7.6 the old functionality of expanding a node and its
children when the argument is found in the tree is offered by a new
method, named findAndExpandChildren:.

PragmaticMenuItems Package
One more (and hopefully the last) menu pragma (or method tag) has
been added.

<itemInMenu: anArrayOfMenuIDs position: aNumber>
It takes only two arguments in the tag body which have the common
interpretation. It differs from the other menu tag types in that rather than
having the code of the method represent action to preform the indicated
item, the method actually returns a menu item. So besides which menu
and position, the rest of the behavior is configured by sending messages
to the MenuItem object to be returned. For example:
30 VisualWorks 7.6

GUI
<itemInMenu: #(#selectorMenu) position: 300.1>

^(MenuItem labeled: #SyncAssets >> 'Sync Assets' << #assets)
hidden: [self isAnyAssetClassSelected not];
enablement: #areAssetMethodsSelected;
value: #syncSelectedAssets

and

<itemInMenu: #(#selectorMenu) position: 300.2>

^(MenuItem labeled: #AddAssetsC >> 'Add Assets:' << #assets)
hidden: [self isSingleAssetClassSelected not];
submenu: [self computeAssetImportMenu]

This new tag type allows more of the menu code to be expressed as
Smalltalk code and exposes the full APIs (including those one may add)
of the MenuItem object.

VisualRow and VisualStack
VisualWorks 7.6 introduces VisualStack, a handy VisualComponent for
stacking arbitrary VisualComponents on atop the other, and VisualRow
which is a handy way to create a nice horizontal row of VisualComponents.
The system itself uses these two "layer" icons as well as show multiple
arbitrary icons side by side.

Expose VisualPart Properties API
In order to support the desire to begin evolving the VisualPart framework,
we have added a properties dictionary to VisualPart. This allows us to
begin experimenting with adding state to VisualPart which at some point
may become a real instance variable. It also allows VisualParts to have
"optional" instance variables. For example, the new tooltips code registers
a widget's TooltipAssistant in it's properties.

Add VisualPart>>superpartsDo: and derived APIs
The terminology of a "superpart" has been introduced. It is synonymous
with the "container" term, but is symmetric with the term subpart which
will probably be added in a future release. Three methods of interest that
have been added:

superpart
Return the VisualPart that contains the receiver

superpartsDo: aBlock
Starting with the receiver, enumerate it and all containing super parts
up to, but not including the Window
Release Notes 31

VW 7.6 New and Enhanced Features
findSuperpart: aBlock
Search the superparts tree (not including the receiver) for which
aBlock answers true when evaluated with each superpart. Return nil if
none.

FrameExited/Entered announcements
Views now use the Announcements framework to announce FrameEnter
and FrameExited events. This facility is used by the new tooltips code. In
a future release, the intent is to make the implementation not rely on a
Controller, and thus be able to be issued from any VisualPart.

Graphics Clipping Outside OS Coordinate Bounds
Prior to this release an object engine primitive failure would occur if a
GraphicsContext coordinate was outside a 16bit integer range (-32768 to
32767) on X11 platforms. In VW 7.6, graphics is now always clipped for
coordinates outside this range instead of raising an exception.

Reduction of UI Flicker
A large portion of annoying UI "flickering" has occurred because
invalidateNow or invalidateRectangle:repairNow:, when the argument to
repairNow is true, would not use the DamageRepairPolicy. Instead of
queuing a damage event it would unnecessariliy create a new
GraphicsContext, draw to it, then display it. As of 7.6, all damage is queued
with the DamageRepairPolicy and, if repairNow is true, pending damage
events are handled immediately.

Note that as of this release the argument to repairNow: in
invalidateRectangle:repairNow: or invalidateRectangle:repairNow:forComponent:
may only be a Boolean. In recent VisualWorks releases this argument
could also be the Symbol #repairNowNoFill, primarily to optimize tree view
updates. It is no longer necessary to justify this inconsistency for the tree
view.
32 VisualWorks 7.6

Tools
Tools

Refactoring Browser
A number of changes have been made to the browser and the underlying
engine. A few will be obvious, such as that the browser now opens with
an Overview pane rather than a class definition template.

Less obvious are that there is no class definition template. You now
define classes either using the class definition dialog, or by editing and
saving an existing class definition. A partial list of the more notable
changes is:

• Able to parse every method in the system.

• Able to properly model <tags> in methods. This means they are now
included in rewrite rules. They are also formatted by the structured
formatter.

• Able to properly model <C: > methods (since they appear like <tags>,
but don't actually follow the same syntax).

• Better management of code model tabs, including a desire to make
the comment tab more prevalent (but smart about it). The underlying
engine below this has been rewritten and is hopefully much easier to
maintain and add new code tools for.

• Richer tabGraphic management for the code tools.

• Add an "Overview" tab.

• StatusBar has been completely rewritten to be a pluggable entity.

• Default browser sizes have been increased.

• Move is a proper refactoring now. This is a substantial piece of work,
and might not be entirely finished. When you move objects from
namespace to namespace, the references are now rewritten.

• Just one formatter is used now, the RBConfigurableFormatter.

• Ability to "format on view" so that you can look at all of your code the
way you like to format it.

• Ability to "format on save" so you don't have to format then save.

• Work was done on the formatter to better handle multikeyword
messages, with simple (literal) arguments.
Release Notes 33

VW 7.6 New and Enhanced Features
• Work was done to better format literal arrays that appear to be
"structured", for example, literalArraySpecs. So you don't have to
worry about formatting them when you change them.

• Use of the ExternalWebBrowser-Text APIs to make http links
clickable in various views.

• Removal of categories code

• Removal of Parcel Status widget

Assets
Assets are libraries of resources for an application, things such as
Images, Masked Image, (OpaqueImages), Strings, Bytes, etc. The
libraries support a framework for deriving these objects from external files
found in a directory associated with the object and keeping them up to
date. They also provide caching of computed assets so that access is fast
as possible.

The intent is that an application creates a subclass of Assets and then
adds class side methods to retrieve different “assets.” Usually, these
methods are annotated with method tags which indicate resource files
which may be imported and integrated as Smalltalk code.

A separate loadable package is provided for developers to maintain these
(Assets-IDE). The package extends the IDE to show one additional menu
items:

Sync Assets
This menu item is in the Class Menu. It will show up (i.e. it is
completely hidden, not just disabled) only when Assets classes are
selected.

To begin importing your assets, create a subclass of Assets, select it and
invoke Sync Assets from the Class menu. If this is the first time you've
synced it, it will prompt you for a directory to import from. After the first
time, it will remember the directory for future syncing. Sync'ing involves
checking the file's md5sum against what is stored in the method. If it does
not match, the method is regenerated so that the once block again
produces an object consistent with that of the file. In the event that a
directory is synced against, there are asset methods for which no file was
found, the user will be given the chance to remove these or let them stay.

Default import implementations are provided in the Assets class for files
that have extension types of .bmp, .gif, .jpg, .jpeg, and .gif. You may add
more of these to the Assets class or to your own specific subclasses. And
if you don't like the default import type of one of the 5 predefined ones,
34 VisualWorks 7.6

Tools
you can of course override the method in your subclass to do something
different. See the import-types and private-import-helpers method
categories for examples.

Inspector Enhancements
The Inspector now shows icons next to each field. The icons are the
toolListIcon of the class of the object. Icons which show the immutability
(lock icon) as well as protected fields (shield icon) are added next to the
receiver type icon where appropriate. Dynamic computed fields have a
gear icon next to them.

The inspector also now presents the variables alphabetically by default.
The list menu has an option to toggle to the defined order (for that
inspector window).

The inspector had some work done so that it is safer in how it deals with
proxy objects. It will correctly show proxies as a proxy object, rather than
the proxied object. And takes care to not send methods that help it do its
work unless it determines it can safely do so.

The inspector’s ability to “undo” changes you make from it is generally a
good idea. One problem it can create though is when you remove
something via the inspector, and then can't figure out why it's not being
garbage collected. The “undo” history holds on to the old value. So an
option was added to “forget” undos.

Improve automatic method categorization
The browser integrates functionality similar to the goodie
ConsistentProtocols. It is generally a good practice to have the method
interface of an object appear in the same method categories as defined in
super classes so that API information is preserved. The browser will
attempt to keep subclass method implementations in the same as the
super class. There is a setting in the Settings Tool to control how
aggressive this behavior is. The default is to do so only for new methods.
If a method has been re-categorized and then changed, it will remain in
the newer category. The other setting will always move the method (old or
new) to match that of a parent implementation.

Also, the browser now always provides a method category to add
methods in, even if there isn't one. It shows up as an empty protocol and
may be added to immediately. It will only show up when there is no
method categories yet. The default for instance side programming is
'accessing' and for the class side is 'instance creation'. However, a given
class heirarchy may choose to adjust this by implementing the
initialMethodCategory message to return a default category. For example,
Release Notes 35

VW 7.6 New and Enhanced Features
the TestCase implementation in the SUnitToo package implements this to
return 'tests'. In this way as soon as the class is created, one can simply
start writing tests. The change is intended to reduce the initial experience
where one creates a class and then wonders “how do I add methods
now?”

Improvements to the Debugger’s "browse" feature
The browse option found in the Debugger's stack list menu now usually
browses the method shown. If the receiver class and method
implementing class do not match, the browser is opened with the
hierarchy expanded to the receiver class, but the implementing
class/method. This is true for most messsages in the system. There is a
small set of methods which are commonly encountered in the debugger
for which this would not make sense to do. An example is the
doesNotUnderstand: selector. For methods found in Object and implemented
in the Kernel-Objects package, the debugger will open the browser on the
receiver's class, with no method selected.

Database

MySQL EXDI
The MySQLEXDI package works directly with the MySQL api library (a
DLL) to perform MySQL database queries. It works just like our other
database packages, with a few quirks based on the MySQL system. The
most pronounced difference is that with MySQL, prepared statements
(e.g., queries with bound values that can be prepared once and sent
many times) are only allowed with limited SQL commands, like: CREATE
TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET, UPDATE, and
most SHOW statements. Notably absent are queries like: CREATE
DATABASE, CREATE PROCEDURE, CREATE FUNCTION, CALL, USE.
These latter are still available, but using an entirely different api.

This division of capabilities challenges the VisualWorks convention which
assumes that a single “session” type can do it all. The solution adopted
with MySQLEXDI is to use two distinct session types, MySQLSession and
MySQLAdminSession. The former works just like the usual EXDI session,
with prepared statements and bound values. But only the subset of
queries mentioned above will work. The other, administrative, queries can
be executed using MySQLAdminSession, which disallows bound values,
and returns only string-like objects.
36 VisualWorks 7.6

Database
Since most EXDI-using applications, including Ad Hoc SQL and Store,
expect to perform both kinds of queries using a single session object, a
third session type is available, called MySQLHybridSession. This session is
little more than a container of one each of the other specialized sessions.
It knows which child session to invoke based on a quick parse of the
query at hand. We haven't done extensive research into the limits of this
hybrid scheme, but it appears to work reasonably well. One might
imagine a complex query that involves both types (prepared and
administartive), but such a query probably wouldn't work with a MySQL
database anyway.

So, for generic database apps, it is recommended to use the hybrid
session, unless the query command set is covered entirely by one or the
other session types. Check the comments for these session classes for a
complete list of their allowed commands, as dictated by the MySQL
vendor.

Here's a simple example, borrowed from the class side examples protocol
of MySQLConnection.

| conn sess ans data |
conn := MySQLConnection new.
conn

username: 'root';
password: 'user';
environment: 'localhost'.

[conn connect.
sess := conn getSession.
sess prepare: 'SELECT description, example FROM help_topic WHERE

name=?'.
sess bindInput: (Array with: 'SELECT').
sess execute.
ans := sess answer.
[ans = #noMoreAnswers] whileFalse:

[ans = #noAnswerStream ifFalse: [data := ans upToEnd].
ans := sess answer]]
ensure: [conn disconnect].

data inspect
One final note about calling stored procedures. These are not offered as
prepared statements (as of MySQL version 5), and that means the no
bound parameter passing or retrieving is possible. However, MySQL does
offer 'server side variables'. Here's an example borrowed from the
MySQL documentation, using server sice variables as parameters to a
Release Notes 37

VW 7.6 New and Enhanced Features
stored procedure call. Note that the answer stream should ideally be fully
flushed after every query. This example uses the hybrid connection to
accomodate CREATE and SELECT queries.

| conn sess ans data|
conn := MySQLHybridConnection new.
conn

username: 'root';
password: 'user';
environment: 'localhost'.

[conn connect.
sess := conn getSession.
sess prepare:

'CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT
incr_param INT)

BEGIN
SELECT VERSION() INTO ver_param;
SET incr_param = incr_param + 1;

END;'.
sess execute.
sess answer.
sess prepare: 'SET @version = 0'.
sess execute.
sess answer.
sess prepare: 'SET @x = 10'.
sess execute.
sess answer.
sess prepare: 'CALL p(@version, @x)'.
sess execute.
sess answer.
ans := sess answer.
sess prepare: 'SELECT @version, @x'.
sess execute.
ans := sess answer.
[ans = #noMoreAnswers] whileFalse:

[ans = #noAnswerStream ifFalse: [data := ans upToEnd].
ans := sess answer]]
ensure: [conn disconnect].

(Array with: (data first first) with: ((data first at: 2) asString)) inspect.

Client Setup Notes
To obtain the MySQL client software for your platform, see
http://www.mysql.com.
38 VisualWorks 7.6

http://www.mysql.com

Store
Many Linux distributions have the MySQL library already installed.
However, you need to ensure that your MySQL version is at least 5.0,
which is the version we have tested against. An easy way to check the
version is to run the following at the command prompt:

% mysqladmin version
When you have the correct version installed, there is a chance that the
client shared library is not named libmysqlclient.so, in which case
there is typically a symbolic link file with this name. If not, you may want
to edit the libraryFiles: and libraryDirectories: attributes of
MySQLLinuxInterface to reflect your installation. For example, you may
need to change 'libmysqlclient.so' to 'libmysqlclient.so.0.0.15'. More
information about changing these parameters can be found in the DLL
and C Connect User's Guide (p.51).

Scrollable Cursors
The VisualWorks EXDIs for Oracle, Sybase, and DB2 provide support for
cursors and scrollable cursors. A cursor represents a movable position in
the result set. When using a cursor, the results of a query are held in a
set of rows which may be fetched either in sequence or via random
access.

A cursor is used for sequential access, while a scrollable cursor is used
for random access. The scrollable cursor can fetch results moving either
forward or backward from a given position, and the specified result may
be indicated either via an absolute or relative row offset.

When using cursors, the rows in the result set are numbered starting with
one. With a scrollable cursor, you can fetch the same rows several times,
you can fetch a specific row, or a specific row relative to the current
position.

For descriptions of the API and examples of its use, refer to the Database
Application Developer’s Guide, chapter 2, pp. 2-15 to 2-17.

Store

Applying Bundle Blessing Comments
When publishing a bundle, there was an option to apply the bundle's
version/blessing comment to all of the sub-components that were being
published at that time. This is now the normal behaviour. The Apply to All
button has been removed, and unless the sub-component is explicitly
given a separate comment, then the parent bundle’s comment is applied.
Release Notes 39

VW 7.6 New and Enhanced Features
New Blessing Levels
Two new blessing levels have been added to Store.

Replication Notice - The StoreForGlorp replicator adds this to versions
that were replicated, noting when each was replicated, by whom, and the
name of the source and target databases.

Obsolete - This is intended for components that are no longer in use or
have been renamed.

User Server Timestamp for versions
Store now uses a UTC timestamp obtained from the database server (if
available) as the timestamp for publishing. If it cannot get a timestamp
from the server due to lack of capability (e.g., MS Access) or to an error,
then it will use the local image’s idea of what the current UTC time is.
Lists of versions will now sort according to timestamp rather than
according to sequence in the database.

Retain History on Rename
One of the difficulties with renaming a package or bundle is that the old
version history is unavailable. Store now detects renames of these
components and will automatically display both the newer and the older
component. For this purpose, a rename means that the component was
loaded under the old name, renamed in the image, and then published
under the new name. Because the parent (trace) points to the
commponent under its old name, we can detect the rename and display
both lists of versions.

Note that if you have development proceeding under both names, this
can be confusing. It can also be confusing if someone looks under the old
name. We recommend publishing a version under the old name with a
blessing level of, e.g., Obsolete, and a comment that points them to the
new name.
40 VisualWorks 7.6

WebServices
WebServices
This release includes some changes in simple types mapping.
XMLTypesParser no longer creates the global simple types for user-defined
local types.

The XML:

<xs:complexType name="readingsType">
<xs:attribute name="parameterType" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Raw"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>
is now mapped by the XMLTypesParser as:

<xs:complexType name="readingsType">
<xs:attribute name="parameterType" use="optional">

<xs:simple name="string" baseType="xs:string">
<xs:enumeration value="Raw"/>

</xs:simple>
</xs:attribute>

</xs:complexType>
We used to create the below mapping for simple types:

<xs:attribute name="parameterType" use="optional" baseType="xs:string">
<xs:enumeration value="Raw"/>

</xs:attribute>
The XMLTypesParser has not used this type of mapping for about 4 years.
These changes no longer allow loading an XML to Object binding with
this old mapping. The binding builder will raise an error and the error
parameter suggests the supported mapping.
Release Notes 41

VW 7.6 New and Enhanced Features
Internationalization

Per-process Locale and Message Catalogs
This new capability is useful primarily for applications executing on the
server and serving a number of clients requiring potentially different
Locales (e.g., WebToolkit or Seaside applications). With these changes it
is now possible to associate a different Locales with each Smalltalk
process. Use messages locale and locale: to get/set the locale of a
process.

The expression Locale current returns the locale of the process executing
the expression. If the process does not specify its own locale, the global
Locale.CurrentLocale will be returned instead. There's now also a
complementary Locale class>>current: message that can be used to set the
locale of the currently active process.

With per-process locale it makes sense to have UserMessages translate in
the context of the process locale as well. This behavior required further
changes to the way MessageCatalogs are managed. Previously only single
locale catalogs would be accessible at any given time. To make other
catalogs available to processes with different locales there is a new
MessageCatalogManager class. A single catalog manager instance
maintains catalogs for a single language. A class side registry,
MessageCatalogManager.Managers, maintains managers for all the currently
available locales. The registry is keyed by language ID, e.g. “en” for
English. See the MessageCatalogsManager class for details on how to
create or find catalog managers and how to add new catalogs.

With catalog managers in place UserMessage>>asString can now translate
in the language identified by the locale of the current process. As in
previous releases, the search for translation uses similar set of fallback
resolutions in case the corresponding manager, catalog or translation
isn't found, ultimately returning the default string if none of those are
found.
42 VisualWorks 7.6

Net Clients
Net Clients

MIME Support
In last release we made significant changes in the HTTP framework to
support more memory efficient approch of streaming message contents
between the source and target streams. The HTTP framework is derived
from a generic MIME framework, so in this release we promoted the
streaming changes up into MIME level. This provides the same new
features to MIME/Mail and brings the two layers back together using the
same "stream stacking" approach throughout. Both MIME and HTTP
frameworks can now stream large attachments directly to/from external
files.

We also renamed some classes in MIME for better naming consistency.
The MessageBuildHandler was renamed to MimeBuildHandler, and
MessageBuildHandler is now deprecated. The new build-handler class
hierarchy now looks as follows:

MimeParserHandler
HttpBuildHandler
MimeBuildHandler

MailBuildHandler
MailFileReader

The hierarchy of print-handlers has also changed. There are two
fundamental output functions, which we call “printing” and “writing.”
Printing displays MIME entities in inspectors or writes to log entries. In
order to accomodate any kind of character stream to print on, printing
avoids to switching modes and such. Consequently it requires a stream
that accepts characters, i.e., a pure character stream or a stream in text
mode. Writing is the fully spec-compliant output of messages as they are
sent out into the network or stored into external files. Previously, both
functions were handled by the same classes, causing a lot of conditional
branching and resulting in two largely independent execution paths. We
decided to separate them in this release and created two separate
hierarchies for message printers and writers with the following structure:

MimeOutputHandler
MimePrintHandler

HttpPrintHandler
MimeWriteHandler

HttpWriteHandler
SMTPWriteHandler

Note again that MessagePrintHandler is now deprecated in favor of
MimeWriteHandler for writing and MimePrintHandler for printing.
Release Notes 43

VW 7.6 New and Enhanced Features
Attachments
Similarly to the previously released HTTP attachment functionality, all
mail attachments can now be automatically saved to an external file. This
feature is configurable via the MimeParserHandler saveAttachmentsAsFiles:
flag. (Note that the selector was corrected from the previous release, so
use HttpBuildHandler saveAttachmentsAsFiles: for HTTP). However the
default setting for mail attachments is to not save attachments (false),
which is different from the HTTP default (true).

Mail attachment files are saved in a directory, which is by default named
"mail-temp-files" and located in the image directory. Use the following
expression to change the default directory:

MailBuildHandler defaultAttachmentDirectory: aString
Note that this is another change compared to the 7.5 release, where we
used the defaultUploadDirectory selector; therefore, to set the directory for
Http attachements (default is "http-temp-files") use:

HttpBuildHandler defaultAttachmentDirectory: 'myDirectory'.
The file names for attachments are based on the filename parameter in
the Content-Disposition header fields. If a file with that name
already exists a new name will be generated. Once the file name is
determined the framework raises a notification, AttachmentFilename,
allowing the application code to override the file name on the fly. If the
notification is not handled the originally suggested file name will be used.
Here is an example:
44 VisualWorks 7.6

Net Clients
input :=
'From: zz@holcim.com
Content-Type: multipart/related;

boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' readStream.
[message := MailBuildHandler new

removeContentTransferEncoding: true;
saveAttachmentsAsFiles: true;
readFrom: input.

] on: AttachmentFilename
do: [:ex | "The suggested a FATFilename('mail-temp-files\budd.txt') is

replaced by image\my-budd.txt "
ex resume: 'my-', ex filename tail].

message parts first contents
If the file name provided by the AttachmentFilename notification already
exists, the framework raises an error, AttachmentFileExists. This error is
resumable allowing to specify a new file name as a resumption
parameter. If it is resumed without a parameter or the new filename from
the parameter also exists the corresponding file will then be deleted and
reused for the attachment. Obviously, if this exception is not resumed, the
attachment will not be saved and parsing of the enclosing message
containing this attachment will end here, unfinished. An example:
Release Notes 45

VW 7.6 New and Enhanced Features
input :=
'From: zz@holcim.com
Content-Type: multipart/related;

boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' .
[[message := MailBuildHandler new

saveAttachmentsAsFiles: true;
readFrom: input readStream.

] on: AttachmentFilename
do: [:ex | ex resume: 'temp-', ex filename tail].

] on: AttachmentFileExists do: [:ex | ex resume: 'anotherTemp.txt']

Changes in handling of non-ascii characters in header fields
AR 52145: "I: [MIME] improve handling of invalid header contents"

NonASCIICharException has been renamed to NonASCIICharacter.

NonASCIIFieldParamException has been removed. This error was raised
while parsing a message with non-ASCII characters in header field
parameters. This case is now covered by NonASCIICharacter as well. Error
handling for non-ASCII characters was also extended to provide an
option to accept the characters without raising an exception
(acceptNonAsciiCharacters:). By default NonASCIICharacter will be raised.

Here is an example message containing the copyright character, which is
not a valid in ASCII character. By default the NonASCIICharacter will be
raised:
46 VisualWorks 7.6

Net Clients
bytes :=
'Subject: Cincom©
Content-Type: text/plain

1234
' asByteArrayEncoding: 'ISO-8859-1'.

stream := EncodedStream on: bytes readStream encodedBy:
(StreamEncoder new: #'ISO-8859-1').

[MailBuildHandler readFrom: stream
] on: NonASCIICharacter

do: [:ex | ex parameter].
To make the parsing process proceed accepting the character as is, set
the acceptNonAsciiCharacters option to true:

stream := EncodedStream on: bytes readStream
encodedBy: (StreamEncoder new: #'ISO-8859-1').

mess := MailBuildHandler new
acceptNonAsciiCharacters: true;
readFrom: stream.

To parse individual header fields with non-ASCII characters, a new,
extended read method can be used:

string := 'Received: (from Cincom©) Tue, 18 Apr 89 23:29:47 +0900'.
HeaderField readFrom: string

readStream acceptNonAsciiCharacters: true.
The same default behavior, raising the NonASCIICharacter exception,
applies to parsing individual fields as well:

[HeaderField readFrom: string readStream
] on: NonASCIICharacter do: [:ex | ex parameter].

When constructing a new mail message, header field values with non-
ASCII characters are accepted. They will be properly encoded using the
specified encoding (ISO-8859-1 by default) and processed as per the
MIME standard when the message is written out. Note that if the default
encoding cannot handle provided characters a different encoding should
be explicitly specified using the headerCharset: method. In the following
example the ISO-8859-2 encoding is used to encode the accented Czech
characters.
Release Notes 47

VW 7.6 New and Enhanced Features
message := Net.MailMessage new
from: '"Žlůva Tůma Řízek"<xx@mail.com>';
to: '"Božidar Šlapetko"<yy@mail.com>';
subject: 'hello';
text: 'text';
headerCharset: 'iso-8859-2';
yourself.

stream := String new writeStream.
message writeOn: stream.
stream contents

In general you can parse MIME messages from any kind of stream
(internal or external), however, to facilitate parsing MIME messages
straight from external streams the parsing machinery is set up to work
from bytes (not characters) at the lowest level. This assumption causes
certain complications when working with internal streams on strings
because the underlying collections (internal streams on top of ByteArrays
don’t have any issues and behave exactly the same as external streams).
These “character streams” are automatically wrapped in a DecodedStream
which converts characters to bytes using ISO-8859-1 (that’s the character
set prescribed by the MIME standard). Because of this it is possible for
the DecodedStream to encounter a character that it cannot encode.
Although such a message is technically invalid (such characters should
be encoded differently using valid characters), it is still possible to finish
parsing the message. The stream is set up with a special stream error
policy, the ReplaceUnsupportedCharacters policy. This policy signals an
UnsupportedCharacterReplacement notification for these characters and by
default replaces them with ASCII character NUL (code 0). This allows the
MIME parsers to recover and continue. This notification can also be
trapped by an application level handler and resumed with a different
replacement character if so desired. The example below replaces the
(invalid) trademark character with an underscore:

string :=
'Content-Disposition: attachment; filename="Cincom™.txt"
Content-Type: text/plain; name="Cincom™.txt"

some bytes
'.
[MimeBuildHandler readFrom: string readStream.

] on: UnsupportedCharacterReplacement
do: [:ex | ex resume: $_].
48 VisualWorks 7.6

Net Clients
Mail Archive Support
AR52115: "I: Implement parsing mail archives"

The mail archive/file support also had to be adjusted due to the new
streaming changes in the core MIME framework. However it also created
an opportunity for some cleanup and improvements.

Fundamental difference between reading messages from a file/archive
and reading them from a socket stream is the expected lifetime of the
source stream. In case of sockets and other transient sources you need
to make a complete copy of the contents to be able to work with it at a
later time. In case of persistent source like an external mail file, the
assumption is that it will be there throughout the lifetime of the messages
that were read from it. So copying would be unnecessary waste.
Therefore, the mail archive support uses StreamSegments pointing back to
the original source stream. Consequently, the source stream has to be a
fully positionable stream, e.g., a file stream.

Previously the two strategies were controlled by a boolean option,
useSourceStream, on the MailBuildHandler. However, because they are so
radically different, it makes more sense to split them into separate
handlers. The option was removed and instead there is now
MailBuildHandler for the transient sources, and MailFileReader for the
persistent ones (mail archives).

In this release, all the classes related specifically to processing of mail
messages (MailFileReader, MailFileParser, MailMessage, etc) were moved to
the Mail package. The MIME package now contains only the generic
MIME aspects shared by both Mail and HTTP support.

The most significant change coming with the "streaming" approach is the
way the message body source is constructed. It is now a stack of streams
on top of the original body byte source. Each layer in the stack is
responsible for some aspect of the decoding process (base-64, quoted-
printable, character encoding etc). Body source contents will now always
return fully decoded contents. There is no need to send
removeTransferEncoding to the message anymore. For example:
Release Notes 49

VW 7.6 New and Enhanced Features
input :=
'From: zz@holcim.com
Content-Type: multipart/related;

boundary="--11"

----11
Content-Type: text/plain; name="budd.txt"
Content-Disposition: attachment; filename="budd.txt"
Content-Transfer-Encoding: base64

QWxhZGRpbjpvcGVuIHNlc2FtZQ==

----11--
' readStream.
message := MailFileReader readFrom: input.
message parts last contents.

We also added UnknownEncoding exception which is raised when
message content-type specifies an unknown encoding (either because
such encoding does not exist, or because corresponding encoder is not
available in the image at that time). This exception can be resumed. It can
be resumed with explicitly specified encoding, (e.g., resumeWith: #'US-
ASCII') or resumed without parameter (resume) in which case the default
encoding will be applied (ISO-8859-1). Here is an example (note the
charset value in the Content-Type header field):

input :=
'From: Fred Foobar <foobar@Blurdybloop.COM>
Subject: afternoon meeting
To: mooch@owatagu.siam.edu
Content-Type: text/plain; charset=klingon

 Hello Joe, do you think we can meet at 3:30 tomorrow?
'.

"Default handling: if the exception is simply resumed, the message body
source will use ISO8859-1"

[message := MailFileReader readFrom: input readStream.
] on: UnknownEncoding

do: [:ex | ex resume].
message contents

"Overriding the default encoding: to force the message body source to use US-
ASCII encoding"

[message := MailFileReader readFrom: input readStream
] on: UnknownEncoding

do: [:ex | ex resume: #'US-ASCII'].
50 VisualWorks 7.6

Net Clients
Miscellaneous Cleanup
All the header field value setters will now consistently return the header
field instances instead of the message entity. The methods that needed
to change belonged mostly to MimeEntity:

• contentDisposition:

• contentDispositionSize:

• contentId:

• contentLength:

• contentTransferEncoding:

• contentType:

• mimeVersion:

For example:

part := MimeEntity newTextPlain.
(part contentDisposition: 'form-data')

parameterAt: 'name' put: '23';
fileName: 'mySystem.txt'.

Message parsing errors (invalid header fields) used to be reported in the
Transcript. Now we raise an InvalidHeaderField notification instead.

Package comments and many class comments were revised and
updated as well. The comments also contain a number of readily
executable code samples that should help understand some of the
aspects being discussed (see for example MailBuildHandler and
MailFileReader).

Suppressing chunking for Http messages
52358: "[HTTP] add simpler way to suppress chunking"

In last release we made changes in the HTTP framework to support
automatic chunking while writing Http messages. The only way for
suppressing chunking was to make the chunk size big enough. In this
release we have added shouldChunk option in HttpWriteHandler to simplify
suppressing chunking. Messages are chunked by default, but this
behavior can be controlled using the shouldChunk option in the following
way:
Release Notes 51

VW 7.6 New and Enhanced Features
• If shouldChunk is true (default)

• if the message body size exceeds the size specified by the
chunkSize option (defaultChunkSize is set to 4K), the message will
be chunked;

• if the message body size has fewer bytes than the specified
chunkSize, the messages will not be chunked and will use the
content-length header instead.

• If shouldChunk is false, the message will not be chunked regardless of
body size and will use the content-length header instead.

Note that, when shouldChunk is false, the writer needs to be able to
determine the exact, final byte size of the message body (i.e., if the body
is to be compressed it has to be the compressed size). The size has to be
known before it starts writing the body, so that it can inject the correct
content-length field into the header. In general in this mode the body is
first written into an internal stream to determine the correct byte count,
then the header is finished with the right content-length and finally the
body bytes are copied from the internal stream. As an optimization, if the
body is simple (i.e. not multi-part) and the size of the body is known
upfront, the writer will use that body size for the content-length field and
then write the body bytes to the outging stream directly. This doesn't
change the behavior in any way, it just may be useful to know that this
particular case is handled in more efficient manner than the other non-
chunked cases.

For how to control chunking, examine the examples in HttpWriteHandler
class comments.

WebSupport
The Seaside project yielded some useful by-products, including
improvements to the, so far rather Spartan, WebSupport package. The
capabilities for submitting HTML form data were extended significantly,
now supporting both simple “url encoded” format in a single-part HTTP
request (content-type: application/x-www-form-urlencoded), or
alternatively submitting each data entry as an individual part in a
multipart HTTP request (content-type: multipart/form-data). These are
now also available as extensions on bare HttpClient (and HttpRequest).

Multipart messages are used when form data contains entries with
relatively large values, for example when a form has external files
attached to it for upload to the server. More information about HTML
forms can be found at
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.
52 VisualWorks 7.6

http://www.w3.org/TR/html401/interact/forms.html#h-17.13

Net Clients
The default behavior is to submit forms as simple requests. Form entries
can be added individually using addFormKey:value: message, or set at
once using formData: message which takes a collection of Associations.
Note that formData: replaces any previous form content.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
addFormKey: 'file' value: 'myFile';
writeOn: stream.

stream contents
An alternative way to post a form is through HttpClient. In this case the
request is automatically executed and the result is the response from the
server.

HttpClient new
post: 'http://localhost/xx/ValueOfFoo'
formData: (

Array
with: 'foo' -> 'bar';
with:'file' -> 'myFile').

To force the form to submit as a multipart message, send beMultipart to
the request at any point. Any previously added entries will be
automatically converted to message parts. Note however that conversion
of multipart messages back to simple messages is not supported, as it is
not always possible without potentially losing information.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
beMultipart;
addFormKey: 'file' value: 'myFile';
writeOn: stream.

stream contents
File entries can be added using message addFormKey:filename:source:.
Adding a file entry automatically forces the message to become multipart
to be able to capture both the entry key and the filename.

stream := String new writeStream.
(HttpRequest post: 'http://localhost/xx/ValueOfFoo')

addFormKey: 'foo' value: 'bar';
addFormKey: 'text' filename: 'text.txt' source: 'some text' readStream;
writeOn: stream.

stream contents
Release Notes 53

VW 7.6 New and Enhanced Features
Adding a file entry attempts to guess the appropriate Content-Type for
that part from the filename extension. If it doesn't succeed the content
type is set to default, i.e application/octet-stream. File names with non-
ASCII characters will be automatically encoded using UTF8 encoding.
UTF8 will also be used for the file contents if the source is a character
stream (as opposed to byte stream).

Adding an entry to a multipart message returns the newly created part.
That allows to modify any of the default settings or to add new ones.
Here's an example changing the filename and file contents encoding to
ISO8859-2:

stream := String new writeStream.
request := HttpRequest post:
'http://localhost/xx/ValueOfFoo'.

part := request addFormKey: 'czech'
filename: 'kůň.txt.txt'
source: 'Příliš žluťoučký kůň úpěl ďábelské

ódy.' withCRs readStream.
part headerCharset: #'iso-8859-2';

charset: #'iso-8859-2'.
request writeOn: stream.
stream contents

There's also an API to parse messages containing forms in any of the
supported forms. Just send #formData to the HTTP message. The result
is a collection of associations, the same form as the input to the formData:
message.

(HttpRequest post: 'http://localhost/xx/ValueOfFoo')
addFormKey: 'foo' value: 'bar';
addFormKey: 'file' value: 'myFile';
formData

File entry values will be entire message parts so that all the associated
information can be accessed.

request := (HttpRequest post: 'http://localhost/xx/ValueOfFoo')
addFormKey: 'foo' value: 'bar';
addFormKey: 'text' filename: 'text.txt' source: 'some text' readStream;
yourself.

part := request formData last value.
part contents
54 VisualWorks 7.6

GLORP
Changed default cookie processing setting
AR 52053 changed the HttpProtocolInterpreter class method
defaultEnableCookieProcessing from false to true. There are servers that
send cookies in authentication or redirection responses. If the client
request does not include these cookies, the server can stop
communication. By setting this value to true, the default now allows the
server to finish the client request.

GLORP
GLORP (Generic Lightweight Object-Relational Persistence) is an open-
source project for mapping Smalltalk objects to and from relational
databases. GLORP is now supported code.

GLORP is licensed under the LGPL(S), which is the Lesser GNU Public
License with some additional explanation of how the authors consider
those conditions to apply to Smalltalk. See the licensing information
accompanying the software for more information.

Cincom currently plans to do a significant overhaul of the current
database mapping facilities in Lens, using GLORP as one component of
that overhaul.

Included on the CD is the GLORP library, its test suite, some rudimentary
user-provided documentation, and some supplementary parcels. For
more information, see the glorp/ directory. Additional documentation is
available at glorp.org.

WebSphere MQ Interface

Package MQ-XIF

Fix namespace of various MQ XIF classes
The MQ code as delivered with VisualWorks 7.5 had some defects. The
following definitions should have been in namespace MQ, and now are:

• MQ.AbstractMQInterface

• MQ.MQTHAPIInterface

• MQ.MQTHAPIClientInterface

• MQ.MQInterface

• MQ.MQClientInterface
Release Notes 55

http://www.glorp.org/

VW 7.6 New and Enhanced Features
• MQ.AbstractMQInterface.DefaultStructs

• MQ.AbstractMQInterface.DefaultSizes

After moving the definitions to namespace MQ, all external interface
dictionaries defined as #private import in VW75 are no longer private.

Fix invalid THAPI procedure definitions
THAPI interfaces were not properly defined. Decisive external procedures
were omitting the "_threaded" keyword in the C pragma, so that external
calls could not benefit from the threaded property. The procedures
corrected are all from MQ.MQTHAPIInterface:

• MQCLOSE:with:with:with:with:

• MQDISC:with:with:

• MQOPEN:with:with:with:with:with:

• MQCONNX:with:with:with:with:

• MQCONN:with:with:with:

Now, all external procedures of THAPI MQ interfaces are marked as
threaded.

Package MQ-Domain

Fixes
1. Fix prerequisite parcels: Should contain AT Profiling UI

2. Fix UHE #memberAt: when accessing a fresh
AsynchronousMessage

MQMessage>>messageType should take class based type if handle
is not yet set

3. Fix MNU #contents sent to nil in attempt to access contents of a C
pointer handle of an already closed queue manager

• MessageQueue>>open:destinationQueueManager:

• MessageQueue>>close

• SenderQueue>>put:

• ReceiverQueue>>getAnyMessageLike:

These methods must access the queue manager handle carefully. If
the queue or the queue manager has been closed by a concurrent
process while another one is trying to open a queue, we should raise
a MQNotConnectedError
56 VisualWorks 7.6

WebSphere MQ Interface
4. Fix invalid handling of MQRC_HOBJ_ERROR during attempt to close
a queue

MessageQueue>>close must ignore this MQ exception. It originates
from an obviously stale queue handle, and we cannot do anything
about this.

5. Fix insufficient initialization in MQResult>>initialize

If external interface is not set (which may happen during testing) it is
ok to inline the known constant = 0 instead of leaving compCode nil.

6. Fix MQRC_CALL_IN_PROGRESS

QueueManager>>disconnectExternal must be serialized to prevent
concurrent processes from attempting to disconnect while another is
still running an external call.

7. Fix QueueManager>>closeQueues (closing browse queues had
been forgotten)

8. Fix ReceiverQueue>>getIncommingMessageWait: (use #ensure: to
restore wait interval)

9. Fix invalid or inconsistent use of channel table mode

RemoteQueueManager>>prepareConnectOptions must raise an
exception if channel table should be used but prerequisites for
channel table mode are not met. We use SystemNotification
(Object>>notify:). Otherwise setup procedures can happily proceed
without the chance of ever getting connected to MQ.

10. Fix invalid and incomplete implementation of message matching
schemes

Default matching scheme MQRO_COPY_MSG_ID_TO_CORREL_ID
was effectively not supported.
ReceiverQueue>>copyMatchFieldsFrom:to: had to be extended with
code that puts an expected message id into the correl id of a query
template.

11. Fix loss of known queues in queue manager

QueueManager>>dismissInternal must not reset the queue
dictionaries on disconnect. Queues must be kept for reopening after
next connect.

12. Fix invalid length constant in access to #putDate

Constant 20 was invalid, date field size is MQ_PUT_DATE_LENGTH
(=8) only
Release Notes 57

VW 7.6 New and Enhanced Features
13. Fix invalid length constant in access to #replyQueueManagerName

Constant 60 was invalid, field size is MQ_Q_MGR_NAME_LENGTH
(=48) only

14. Fix MQ.QueueManager>>connect

Compare result of #acquireExternal with true, not nil; normally an
exception prevents further processing after unsuccessful
#acquireExternal, but when debugging it is possible to keep on going.
The consequence is that the queue manager would be registered as
successfully connected although it is not.

Review use of literal constants defined by external MQ interfaces
Clean up the code from use of constants defined by MQ XIF. Although
Websphere MQ is a very mature product which is not very likely to be
changed in constant definitions we prefer the use of “verbose” and self-
explanatory expressions instead of literal constants, e.g. 48. A nice by-
product of this step is the extinction of some flaws in improper use of
constants (see “Fixes” section above).

• MQMessage initializeMessageDescriptor (48 =>
MQ_Q_NAME_LENGTH)

• MQMessage messageID (24 => MQ_MSG_ID_LENGTH)

• MQMessage messageGroupID (24 => MQ_GROUP_ID_LENGTH)

• MQMessage putDate (20 => MQ_PUT_DATE_LENGTH (=8))

• MQMessage setReplyQueueManagerName: (48 =>
MQ_Q_MGR_NAME_LENGTH)

• MQMessage setReplyQueueName: (48 => MQ_Q_NAME_LENGTH)

• MQMessage correlationID (24 => MQ_CORREL_ID_LENGTH)

• MQMessage userIdentifier (12 => MQ_USER_ID_LENGTH)

• QueueManager name: (48 => MQ_Q_NAME_LENGTH)

• ActionMessage replyQueueName (48 => MQ_Q_NAME_LENGTH)

Extensions
This section lists methods that have been added.

MQMessage putTime
Answer the contents of MQ message field #PutTime

MQMessage reportOptionBits
Answer the report options mask from the MQ structure
58 VisualWorks 7.6

Seaside Support
MQResult isConnectionFailure
true if result is one of the major MQ connection errors

MQResult isCallInProgress
true on reason code MQRC_CALL_IN_PROGRESS

MQResult beFailed
initialize with completion code MQCC_FAILED

ActionMessage requiresPassCorrelId
true if message configured for copying its Correl ID to the Correl ID
field of a reply

ActionMessage requiresMsgIdToCorrelId
true if message configured for copying its MsgID to Correl ID field of
a reply

Removals
This section lists methods that have been removed.

• MQResult queueManager {accessing}

• MQResult isAtEnd {testing}

• MQResult isInError {testing}

• QueueManager releaseQueues {initialize-release}

Seaside Support
The Seaside web application framework is supported in 7.6.

What is Seaside?
Seaside is a framework for developing sophisticated web applications in
Smalltalk. It is an open source, cross dialect project hosted at
http://www.seaside.st.

Seaside provides a layered set of abstractions over HTTP and HTML that
let you build highly interactive web applications quickly, reusably and
maintainably. It is based on Smalltalk, a proven and robust language that
is implemented by different vendors.

Seaside includes:

• Programmatic HTML generation. A lot of markup is boilerplate: the
same patterns of lists, links, forms and tables show up on page after
page. Seaside has a rich API for generating HTML that lets you
abstract these patterns into convenient methods rather than pasting
the same sequence of tags into templates every time.
Release Notes 59

http://www.seaside.st

VW 7.6 New and Enhanced Features
• Callback-based request handling. Why should you have to come up
with a unique name for every link and form input on your page, only to
extract them from the URL and request fields later? Seaside
automates this process by letting you associate blocks, not names,
with inputs and links, so you can think about objects and methods
instead of ids and strings.

• Embedded components. Stop thinking a whole page at a time;
Seaside lets you build your UI as a tree of individual, stateful
component objects, each encapsulating a small part of a page. Often,
these can be used over and over again, within and between
applications - nearly every application, for example, needs a way to
present a batched list of search results, or a table with sortable
columns, and Seaside includes components for these out of the box.

• Modal session management. What if you could express a complex,
multi-page workflow in a single method? Unlike servlet models which
require a separate handler for each page or request, Seaside models
an entire user session as a continuous piece of code, with natural,
linear control flow. In Seaside, components can call and return to
each other like subroutines; string a few of those calls together in a
method, just as if you were using console I/O or opening modal
dialog boxes, and you have a workflow. And yes, the back button will
still work.

Seaside also has good support for CSS and Javascript, excellent web-
based development tools and debugging support, a rich configuration
and preferences framework, and more.

Seaside in VisualWorks
With this release Seaside becomes a fully supported component of
Cincom Smalltalk, including any of the additional components provided in
the seaside/ directory of the installation. There are also additional,
contributed components, ones that were developed by the Seaside
community and are provided for convenience. Those can be found in the
contributed/Seaside_Components directory. However, the
contributed components are not supported by Cincom.

The Seaside package includes an almost unmodified version of the latest
Seaside release (2.8), an integration layer setting Seaside up on top of
the Opentalk based HTTP server and some development enhancements
aimed to help new users get up and running quickly. For example, a
Seaside server is started automatically as soon as the Seaside package
is loaded and a web browser opens on the front page served by the
server. There is also a Seaside menu added to the VisualLauncher
60 VisualWorks 7.6

Seaside Support
providing easy access to Seaside related functions and also a new
settings domain for easy management of most important parameters of a
Seaside server. The Opentalk integration also provides few
enhancements, e.g. WAExternalFileLibrary which provides efficient serving
of external files directly by the Opentalk HTTP server.

Running Seaside with Object Studio 8
Seaside is also supported with Object Studio 8. However, there are few
issues that users need to be aware of.

In order to avoid modifying Seaside as much as possible, it is running on
top of a Squeak compatibility layer, which is loaded as a prerequisite.
There are some some semantic conflicts between some of the methods
overriden by the Squeak compatibility layer and their behavior in plain
Object Studio 8. We will try to reduce the number of these differences in
subsequent releases, but for now be aware that you might run into this
kind of issue with Seaside loaded. Here are a few behavioral changes
that we are currently aware of, that users are likely to run into with
Seaside loaded:

• Character>>to: in Squeak returns a ByteString instead of an Interval.

• With Seaside loaded, date parsing (methods String>>asDate or Date
class>>fromString:) reverts to the VisualWorks mechanism, which
expects different input formatting than the Object Studio parsing
does. Notably, a string like '2012-4-10' will not parse for OS8 when
Seaside is loaded. Format rules are specified in the class Locale.

• Time parsing (methods String>>asTime and Time class>>fromString:)
uses VisualWorks mechanisms as well. The comments from the
previous point apply to Time parsing as well.

Add-On Components

Seaside-Resources
Provides a way to attach related information to a Seaside session (a
locale, a database session, etc). Moreover a session will notify all its
associated resources about important events through a set of callbacks
that the resources may choose to act on. WASessionResource can be
subclassed or serve as a template for all available callbacks.

A root component can choose to use a session with resources by
configuring their session preference accordingly, customarily in a class
side initialize method of the component class:
Release Notes 61

VW 7.6 New and Enhanced Features
(self registerAsApplication: 'ApplicationName')
preferenceAt: #sessionClass put: Seaside.WAResourcefulSession

Seaside-I18N
Provides a session resource capturing session's locale, named WALocale.
A session locale information can be accessed using locale and locale:
accessors. When a locale is set on a session, the session will also invoke
SeasidePlatformSupport class>>setLocale: for every incoming request
allowing to perform any platform specific locale setup before executing
the request. For example in VisualWorks this updates the locale of the
process executing the request.

Note however that session locale does not get set automatically. There
are different strategies that an application may choose to employ to set
the locale. Here is a sketch of a component that lets the user choose a
locale for their session:

renderContentOn: html

html form: [| session |
session := self session.
html heading

level: 1;
with: #HelloWorld << #L10NTest >> 'Hello World!'.

html div: [html text: 'Current Locale: ', Locale current languageID, ' ',
session resources printString].

html select
id: 'locales';
list: (Locale availableLocales collect: [:id | id copyUpTo: $.]) asSet;
selected: (session locale ifNotNil: [:locale | locale id asString]);
callback: [:value | session locale: value].

html submitButton text: 'Set Locale']
The component displays a UserMessage that will get translated based on
current session locale when it is converted to a string. It also shows a
drop down list of available locales that the user can choose from. When
the choice is submitted the callback simply sets the chosen locale on the
session.
62 VisualWorks 7.6

Seaside Support
Preview Components
A few additional components are included as previews.

Seaside-SUnitToo
A framework on top of SUnitToo for unit testing of Seaside
components/tasks in the same manner as they run on the web. TestCase
is automatically configured with a preinitialized component and a
UserAgent representing a browser accessing the component. During test
setUp the component gets registered with the Seaside server, and the
agent hits the first page of the component. Therefore by the time the test
method starts the first page is already available for inspection. A Page
captures not just the response, but also its URL, the parsed DOM tree of
the contents and a copy of the component (from the corresponding
continuation) in the state that produced the page. XPath can be used to
analyze and validate the parsed response contents (see Page>>find:).

Let's build a simple test case for the WACounter demo. We need to create
a subclass of SeasideSUnitToo.TestCase, e.g. WACounterTest and specify the
class of the component to test.

WACounterTest>>componentClass
^WACounter

And here's an example test checking the function of the ++ link:

testIncrease
"check current state of the component"
self assert: self component count isZero.

"find a link with text '++' on current page and simulate a click, i.e.,
do a GET of the associated href"
self clickLinkWithText: '++'.

"check current value of the counter"
self assert: self component count = 1.

"find the heading element on current page and make sure the text
corresponds to current counter value"
self assert: (self find: '//h1/text()') first text = '1'

The agent caches the returned pages the same way a web browser
would. It allows to look back and forward in the page history. It works the
same way as web browser back/forward buttons, so currentPage does not
have to be the last one in the history. Here's another sample test
exercising the continuation mechanism in the face of the back button.
Release Notes 63

VW 7.6 New and Enhanced Features
testClickBackClick
"initial state"
self assert: self component count = 0.

"hit the increment link"
self clickLinkWithText: '++'.

"check new state"
self assert: self component count = 1.

"click the back button"
self back.

"current page should display 0"
self assert: (self find: '//h1/text()') first text = '0'.

"the snapshot of the component when it generated current page should
have count 0"
self assert: self pageComponent count = 0.

"click incremement"
self clickLinkWithText: '++'.

"check new state of the component"
self assert: self component count = 1.

Since both the client and the server live in the same image the agent also
provides access to all interesting participants of the test: the instantiated
component, associated application and session and also the HttpClient
instance used to hit the server. The server used for testing is the shared
variable SeasideServer class>>current. Tested components get automatically
registered with the server during test setUp (under the
componentTestingPath) and unregistered in test tearDown.

Finally, since most non-trivial web applications will likely use form posts,
there's also the HtmlForm. It provides a number of helper methods
emulating various types of form input.

testFormPost

self newForm
select: #('Dakar' 'Sydney') in: 'multi';"select in a multi-selection list"
fill: 'Hello' in: 'input';"fill in an input field"
click: 'Submit'"click the submit button"
64 VisualWorks 7.6

Seaside Support
The click: also performs the form post, so it needs to be last in the
sequence. If a form doesn't have a submit button, HtmlForm>>post can be
called directly as well. It is also possible to emulate file upload. Upload
posts automatically as well.

testFileUpload

self newForm upload: 'test.txt' in: 'upload'
source: 'Hello World!' readStream.

Seaside-Glorp
This package is the connecting code for Seaside and Glorp. The key
piece is GlorpResource which automatically associates a database session
(Glorp) with a Seaside session, for the duration of the Seaside session.
This, combined with the GlorpActiveRecord and WriteBarriers (which are
automatically loaded as prerequisites), adds persistency for Seaside
applications that is very simple to use.

Let's build a simple blog server as an example. The class Post will have a
title, content and the time created attributes. To inherit the ActiveRecord
functionality it will subclass from ActiveRecord. There are no special
methods needed on the class beyond simple instance variable accessors
for the attributes mentioned above.

Another required piece is an ActiveRecordDescriptorSystem subclass, let's
call it BlogSystem. The only method that we will need is the following:

BlogSystem>>tableForPOSTS: aTable
(aTable createFieldNamed: 'id' type: platform serial) bePrimaryKey.
aTable createFieldNamed: 'title' type: (platform varchar: 200).
aTable createFieldNamed: 'content' type: platform text.
aTable createFieldNamed: 'created' type: platform timestamp

This method describes the structure of the database table that will be
used to store the Post objects. The mapping between the objects and the
table rows is derived automatically based on naming convention that are
very much like the ones used by Ruby on Rails. With this code in place
we can already persist some Post objects in the database. However we
need to first provide the database login information before we can do that.
Login can be specified via Settings (look for the Database node there), or
through code like this:
Release Notes 65

VW 7.6 New and Enhanced Features
ActiveRecord defaultLogin: (
Glorp.Login new

database: PostgreSQLPlatform new;
connectString: 'localhost_demo';
username: 'user';
password: '***';
yourself)

With that and the database in place, we can create the database tables
with a simple expression.

BlogSystem recreateTables
And we can start storing objects

1 to: 5 do: [:i |
Post new

title: 'Factorial ', i printString;
content: i factorial printString;
created: Timestamp now;
save]

We can read the objects back in very easily as well.

Post findAll
Now let's try to display the main blog page. We will need a WAComponent,
let's call it Blog, configured with the GlorpResource.

Blog class>>initialize
| application |
application := self registerAsApplication: 'Blog'.
application preferenceAt: #sessionClass put:

Seaside.WAResourcefulSession.
application configuration addAncestor:

SeasideGlorp.GlorpConfiguration new.
For the main page let's simply render all the posts.

Blog>>renderContentOn: html

html heading: 'Blog'.
Post findAll

do: [:post |
html heading level: 2; with: post title.
html paragraph: post content.

separatedBy: [html break]
To demonstrate how to update objects, let's add an 'Edit' link to each post
that will open an EditPost component.
66 VisualWorks 7.6

Seaside Support
Blog>>renderContentOn: html

html heading: 'Blog'.
Post findAll

do: [:post |
html heading level: 2; with: post title.
html paragraph: post content.
html anchor callback: [self call: (EditPost new post: post)];

with: 'Edit']
separatedBy: [html break]

EditPost will use a form with simple input fields for title and content and
Save/Cancel buttons.

EditPost>>renderContentOn: html

html form: [
html textInput text: post title; callback: [:title | post title: title].
html textInput text: post content; callback: [:text | post content: text].
html button callback: [post save. self answer]; with: 'Save'.
html button callback: [post session rollbackUnitOfWork. self answer];

with: 'Cancel']
Note that the Cancel action invokes a rollback, which will undo any other
changes made in the form. We can use the same EditPost component to
submit new posts as well.

Blog>>renderContentOn: html

html heading: 'Blog'.
html anchor callback: [self call: (EditPost new post: (Post new created:

Timestamp now; yourself))]; with: 'New Post'.
Post findAll

do: [:post |
html heading level: 2; with: post title.
html paragraph: post content.
html anchor callback: [self call: (EditPost new post: post)];

with: 'Edit']
separatedBy: [html break]

And finally, we can add a Delete link next to each Edit link to allow
removing Posts as well.
Release Notes 67

VW 7.6 New and Enhanced Features
Blog>>renderContentOn: html

html heading: 'Blog'.
html anchor callback: [self call: (EditPost new post: (Post new

created: Timestamp now; yourself))]; with: 'New Post'.
(Post findAll sorted: [:a :b | a id > b id])

do: [:post |
html heading level: 2; with: post title.
html paragraph: post content.
html anchor callback: [self call: (EditPost new post: post)];

with: 'Edit'.
html anchor callback: [post delete]; with: 'Delete']

separatedBy: [html break]
To better manage database resources, this package also provides
transparent support for database connection pooling. This functionality is
based on work by Ramon Leon.

Opentalk

Opentalk-Component-Base removed
We've had OpentalkSystem for a few releases now, along with its global
registry of brokers. The only reason why Opentalk-Component-Base
stuck around was because the two Opentalk tools (Console and Monitor)
were still relying on the manually managed ComponentHolder from that
package. In this release we retargeted the tools onto the automatically
managed registry in the OpentalkSystem and were therefore able to
remove the ComponentHolder package altogether. This also makes the
tools a bit easier to use since you don't need to add/remove brokers
manually anymore.

WebToolkit
The WebSiteConfiguration object model within the WebToolkit parcel has
been significantly refactored to make configuring a headless development
image and/or production runtime image easier and more robust. A
development image no longer automatically configures itself as an
application server. You can manually configure the Application Server
from the Web menu in a development image, or it will lazy initialize (as
the runtime image always did) when the first request is received at the
server. You can also use the Web menu to clear the configuration from
your development image.
68 VisualWorks 7.6

WebToolkit
This change eliminates the soft hooks back to the development
environment that often annoyingly remained in a runtime image. It also
means that you can create a headless development image, or for that
matter a headful development image, which will start and configure itself
exactly as a production runtime image does. This makes it much easier to
test your server application.

As always, you must save your image containing your desired
IPWebListener or Smalltalk HTTP Server instances, or construct your
application to create these servers before the first request arrives to be
served if you are relying on the Application Server's lazy initialization.

The biggest behavioral impact of this change is due to the fact that
Application Server configuration relies on the parent/child relationship
between the global configuration and the web sites in the configuration's
sites collection. You can no longer configure a WebSite before it is added
to the configuration's sites collection. The basic WebToolkit behavior
accounts for this change, but if you have built applications that rely on
WebToolkit internals, in particular the class side API of WebSite or
WebConfigurationManager, you will need to update your application to work
with this new version of the WebToolkit parcel.

The class side behavior of WebSite to manage the global configuration
has been moved to WebSiteConfiguration, which now caches its singleton
instance as the global configuration.

The WebConfigurationManager class has been removed. The behavior
relating to configuration and event interception has been moved to
WebSiteConfiguration. A few things that were possible under the old
configuration scheme are no longer available globally on the class side
and must be performed on the global configuration instance instead. The
behavior relating to logging has been moved to a new class,
WebSiteLoggingManager, without changing any of the functionality.

The WebSiteConfigurator class has been renamed
WebSiteConfigurationPages which is more representative of the fact that this
class is essentially a servlet that provides the content for the Application
Server administrator's Configuration Pages.

There is also a new WebToolkit subsystem, VWAppServerSystem, which
handles all the system start, snapshot and quit events. In addition it
exposes properties for a new settings page in the Web Settings section
where you can install the name of the primary global configuration file
(where Application Server configuration starts), and where you can
allow/disallow the use of a new parameter, -wtkcnf, to set the
configuration file name from the command line.
Release Notes 69

VW 7.6 New and Enhanced Features
In a development image, the Web menu now has a new option (Clear
Configuration) to explicitly clear the cached Application Server
configuration. This is especially useful when using a headful development
image to test your server. Clear the configuration in order to simulate the
startup sequence of a headless runtime server image.

Due to the large scale of the changes in this release, we have provided a
compatibility parcel, WebToolkit-Compatibility-API which can be loaded
into your image along with the new WebToolkit parcel. This compatibility
parcel implements placeholders for most of the obsolete class side API of
WebSite and WebConfigurationManager, and should assist you in upgrading
your current applications.

Extend support for subclassing HttpApplication, HttpSession, PageModel
There is now support for subclassing HttpApplication to provide your own
desired Web Application behavior, or to facilitate hosting multiple Web
Applications within a single VisualWorks Application Server. In addition,
you can subclass HttpSession and/or PageModel to provide additional
session management or page compilation support, as required, for your
application classes.

The behavior and global data stored in the contents dictionary of your
HttpApplication subclass is available application-wide, as are the session
behavior and session variables along with your extensions to page
compilation behavior.

Each of these subclasses can be specified in the Application Server's
configuration files. When specified in the global configuration file, they
apply to all sites on the Server. If you wish to enable site-specific
application, session or page compilation behavior, specify your subclass
in the relevant site configuration file. An applicationClass, sessionClass or
PageModelClass defined in a site-specific configuration file takes
precedence over a class defined in the global configuration file. Place
these definitions in the [configuration] section of the INI file, using
the following syntax :

applicationClass = VisualWave.MyApplication
sessionClass = VisualWave.MySession
pageModelClass = VisualWave.MyPageModel

Note that because of the way asQualifiedReference works, a dotted name
must be used to specify your subclass.
70 VisualWorks 7.6

DLLCC
Implement reset for buffered responses
Following the introduction of response buffering in the previous release,
you can now clear the response buffer after starting to write to it. This can
be particularly useful when it becomes necessary to forward a request
after some page content has already been written to the buffer.

DLLCC

External-Interface-Pragmas Package
This package seeks to solve the long standing problem of having to use a
class definition override to add libraries for an ExternalInterface subclass to
use. It also seeks to provide a simpler way of specifying different libraries
for different platforms.

Consider the following method added to an ExternalInterface:

unixLibrary
<library: #linux>
<library: #solaris>

^'libcairo.so'
The method returns a string specifying the library name. The <library:>
tags indicate for which platforms this method should be executed. The
arguments that show up in the <library:> tag are simplified forms of the
platformMoniker. See ExternalInterface class>>knownPlatformIDs for a list.

The method name itself is arbitrary. Using this facility an extension
package can add libraries to search to an external interface. Or add
support for more libraries on other platforms.

There may be some refinement of this feature in the next release.

Compression
The Compression-Zip parcel provides facilities for reading file archives in
zip format that have been compressed using the deflate method (the
default). An archive is represented by an instance of Archive containing a
collection of ArchiveEntries describing the compressed files. In general the
contents of a file can be accessed through a decompression stream. The
right kind of stream can be obtained from an ArchiveEntry using the
readStream message. Archives, entries and decompression streams also
have potentially interesting attributes associated with them, for example
Release Notes 71

VW 7.6 New and Enhanced Features
compressedSize, uncompressedSize, fileName, lastModificationDate, etc. See
the accessing protocol on corresponding classes for a full list of available
attributes.

Here is an example of how to get contents of all files in an archive:

archive := OS.Zip.Archive filename: 'archive.zip'.
[archive entries collect: [:each | each contents]] ensure:

[archive close]
Here is how to access contents of the last file in an archive as a stream:

archive := OS.Zip.Archive filename: 'archive.zip'.
[archive entries last readStream upToEnd] ensure: [archive close]

Both archives and entries understand message extractTo: which takes a
directory (String or Filename) as an argument, and extract the entire
contents of the receiver into that directory.

(OS.Zip.Archive filename: 'archive.zip') extractTo:
'.' "The archive is closed automatically."

archive := OS.Zip.Archive filename: 'archive.zip'.
[archive entries last extractTo: '.'] ensure: [archive close]

The directory structures embedded in the archive will be respected and
reconstructed as needed.

Note that only the basic (commonly used) archiving capabilities are
supported, none of the extended features like 64-bit extensions,
encryption, multiple volumes, etc are available.

For details about the zip format, see

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Documentation
This section provides a summary of the main documentation changes.

Basic Libraries Guide
General updates and corrections.

Tool Guide
No changes

Application Developer’s Guide
General updates and corrections.
72 VisualWorks 7.6

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Documentation
COM Connect Guide
No changes

Database Application Developer’s Guide
Major update, edit, and reoranization, including new examples

DLL and C Connect Guide
Several updates, particularly in chapter 8, “Platform Specific Information.”
This document needs a comprehensive update and edit, so some
information may still be out of date.

DotNETConnect User’s Guide
No changes

DST Application Developer’s Guide
No changes

GUI Developer’s Guide
Minor updates

Internationalization Guide
No changes

Internet Client Developer’s Guide
Significant updates and corrections, particularly relating to refactorings
and improvments to MIME and mail support.

Opentalk Communication Layer Developer's Guide
No changes

Plugin Developer’s Guide
No changes

Security Guide
Minor updates and corrections, particularly in sections on ASN.1.

Source Code Management Guide
No changes
Release Notes 73

VW 7.6 New and Enhanced Features
Walk Through
No changes

Web Application Developer’s Guide
Minor updates

Web GUI Developer’s Guide
No changes

Web Server Configuration Guide
Minor updates

Web Service Developer’s Guide
No changse
74 VisualWorks 7.6

Release Notes 75

3
Deprecated Features

By deprecating certain features, we remove them from the system. These
are made available for a limited time as parcels in the obsolete/
directory, to provide you the opportunity to port applications away from
using the features before they are removed altogether. This directory is
on the default parcel path.

Virtual Machine

Thunking DLLs
Because the relevant Windows platforms are no longer supported
(95/98/ME), the vwft32.dll and vwft16.dll files are deprecated. They are
included with this release, but will be removed from the next release.

MacOS 9
7.6 is the last release to support MacOS 9.

User Interface

InputSensor
mousePointFor: and mousePointForEvent: are obsolete and will be removed
from a future release. Use cursorPointFor: instead, for both of these.

Notebook Widget
The Notebook widget is being deprecated, and will be removed in the
next major release. We suggest using the Tab Control widget in its place.

4
Preview Components

Several features are included in a preview/ and available on a “beta
test,” or even pre-beta test, basis, allowing us to provide early access to
forthcoming features. Several are described in the following sections.
Browse the directory contents for last minute inclusions.

Universal Start Up Script (for Unix based platforms)
This release includes a preview of new VW loader that runs on all Unix
and Linux platforms. This loader selects the correct object engine for an
image, based on the image version stamp. Formerly, the only loader of
this sort was for Windows.

The loader consists of two files and a readme in preview/bin.
Installation and configuration information is provided in the readme.

This loader is written as a standard shell script which allows it to be used
to launch VW on virtually any Unix based platform. This opens up the
possibility of having a centrally managed site-wide installation of an
arbitrary set of VW versions allowing users to simply run their images as
executables without any user specific setup required. The loader figures
out which version of VW and which specific VM is needed to run the
image being launched, using information provided in the INI file).

For installations using only final releases (not development build
releases), a single entry line in the INI file for each VW version will suffice
to serve any Unix based platform for which a VM is available at the
specified location.
76 VisualWorks 7.6

Base Image for Packaging
Base Image for Packaging
preview/packaging/base.im is a new image file to be used for
deployment. This image does not include any of the standard
VisualWorks programming tools loaded. The image is intended for use as
a starting point into which you load deployment parcels. Then strip the
image with the runtime packager, as usual.

64-bit Image Conversion
The ImageWriter parcel is still capable of converting arbitrary 32- bit
images to 64-bit images. However, due to an unresolved race condition,
occasionally it may create an image that brings up one or more error
windows. These windows can safely be closed, and if the 64- bit image is
saved again, they will not return.

However, they may be problematic in a headless image or an image that
has been produced by the Runtime Packager. For such cases, re-saving
or recreating the original 32-bit image, and then converting it again may
avoid the race condition. Alternatively, converting the image to 64 bits
before applying the Runtime Packager or making the image headless
may also be helpful.

ImageWriter empties all instances of HandleRegistry or its subclasses.
Since these classes have traditionally been used to register objects which
must be discarded on startup, emptying them during the image write is
safe. But if your code is using HandleRegistry or a subclass to hold objects
which are intended to survive across snapshots, ImageWriter may disrupt
your code. Running ImageWriter before initializing your registries may
solve this problem. We would also like to know more about how you use
HandleRegistry, in order to improve ImageWriter's ability to transform
images without breaking them.

Tools
With the Trippy basic inspector now being much more robust, work was
done on integrating this with the debugger. It has not been finished yet,
but may be loaded. At this writing, this causes the inspectors located in
the bottom of the debugger (the receiver and context fields inspectors) to
be basic trippy inspectors (not the entire diving/previewing inspector, just
the basic tab). This makes operations between the two the same, and
provides the icon feedback in the debugger. The stack list of the
debugger also shows the receiver type icons.
Release Notes 77

Preview Components
Smalltalk Archives
Even though Smalltalk Archives are a supported feature of ObjectStudio
8, they are supported only in preview for VisualWorks at this time.

A Smalltalk Archive is a file containing a collection of parcels,
compressed (using tar). The archive specifies a load order for the
parcels, and supports override behavior.

Unlike publishing a bundle as a parcel, a Smalltalk Archive preserves
package (and parcel) override behavior and package load order.
Accordingly, Smalltalk Archives are a good alternative to publishing a
bundle, in some circumstances.

Smalltalk archive files have a .store filename extension.

To load an archive, use the File Browser to locate the file, then right-click
on it and select Load.

The archive loads with the parcel and bundle structure it had when it was
saved. Database links might or might not be preserved, depending on the
settings at the time it was saved.

To publish a Smalltalk Archive, select the bundle (or package) in the
System Brower, the select Package Publish as Parcel… The options in the
publish dialog are the standard publish options, except for the Store
options section. Because you want to save as a Smalltalk Archive, leave
that checkbox selected. If you are using the Smalltalk Archive for
deployment, and so do not need the database links, uncheck the With
database links checkbox; otherwise, leave it checked.

The archive is published, by default, in the current directory, typically the
image directory. The file name is the bundle name with a .store filename
extension.

WriteBarriers
The immutability mechanism in VW can be used to detect any attempts to
modify an object. All it takes is marking the object as immutable and
hooking into the code raising the NoModificationError. The ability to track
changes to objects can be useful for number of different purposes, e.g.,
transparent database updates for persistent objects, change logging,
78 VisualWorks 7.6

WriteBarriers
debugging, etc. While the mechanism itself is relatively simple, it is
difficult to share it as is between multiple independently developed
frameworks.

WriteBarriers (loadable from preview/parcels/WriteBarriers.pcl)
allow multiple frameworks to monitor immutability exceptions at the same
time. This framework makes object change tracking pluggable through
subclasses of Tracker. A Tracker must implement a couple of methods:

isTracking: anObject
Answer true if the tracker is tracking anObject

privateTrack: anObject
Register and remember anObject `

privateUntrack: anObject
Forget about the object you were tracking

applyModificationTo: anObject selector: selector index: index value: value
We've accepted that we are tracking the object and a change has
been made to it, what do we want to do? The default behavior is to
apply the change to the object.

Note that the framework does not provide a mechanism for keeping track
of which objects each tracker is managing. Instead, it leaves the options
open. Frameworks may already have a registry of objects that they want
to track (e.g., a persistency framework will likely cache all persitent
objects to maintain their identity) in which case a separate registry for the
corresponding tracker would waste memory unnecessarily.

A deliberate limitation of WriteBarriers is that they will refuse to track any
previously immutable objects. Trackers can decide to not apply the
modification and emulate the original immutability that way, and refusing
to track immutable objects reduces complexity of the solution.

Here's a sketch of a tracker that will announce a Modified announcement
for any modification that occurs. Let's assume that this AnnouncingTracker
will have its own registry for tracked objects in the form of an IdentitySet
(inst var. objects). The first three required methods are fairly obvious:

privateTrack: anObject
objects add: anObject

privateUntrack: anObject
objects remove: anObject ifAbsent: []

isTracking: anObject
^objects includes: anObject
Release Notes 79

Preview Components
The modification callback needs to call super so that the modification is
actually applied, but in addition makes the announcement as well. Note
that Tracker subclasses Announcer to make Announcement use easy.

applyModificationTo: anObject selector: selector index: index value: value

super applyModificationTo: anObject selector: selector
index: index value: value.

self announce: (Modified subject: anObject)
To make use of the tracker, it has to be instantiated, which automatically
registers it in the global registry, Tracker.Trackers. Any objects to be
tracked by it have to be explicitly registered with it using the #track:
message.

tracker := AnnouncingTracker new.
tracker when: Modified do: [:ann | Transcript space; print: ann subject]
string := 'Hello' copy.
tracker track: string.
string at: 1 put: $Y.

The last statement will trigger the Transcript logging block. To stop
tracking an object use the #untrack: message.

tracker untrack: string
And to deactivate the tracker altogether use the #release message.

tracker release

Sparing Scrollbars
Sparing Scrollbars extends VisualWorks widgets to optionally set
scrollbars to be dynamic and only appear when necessary. When loaded
on top of the UIPainter, the dataset, list, table, tree, text editor,
hierarchical view, or view holder widgets, or the window itself may be
specified to use this feature in the Details page of the UIPainter tool.
Sparing Scrollbars includes some test and sample classes which
demonstrate the usage of this new behavior.

The Sparing Scrollbars component can be loaded from the parcel
preview/SparingScrollbars.pcl.
80 VisualWorks 7.6

Multithreaded COM
Multithreaded COM
Composed of a DLL and three parcels, the multithreaded COM option for
COM Connect introduces the ability to perform non-blocking COM calls in
VisualWorks. This improves responsiveness of COM servers
implemented in VisualWorks using COM Connect. It currently operates
for VisualWorks versions 7.3 to 7.6 on Window XP platforms with 32Bit
Intel Architecture.

This option changes the threading model of an existing VisualWorks to
free-threaded, but synchronization is still performed via VisualWorks
DLLCC mechanisms. Threaded COM call-outs and all in-bound calls will
be routed through the multithreaded COM interface. Non-threaded
callouts will still go through the original COM primitives provided by the
VisualWorks virtual machine.

Additional notes and usage instructions appear in
/preview/multithreaded com/DLLCOM.pdf.

COM User Defined Type (UDT) Support
Prior to this release, COM Connect was unable to call COM functions that
use user-defined parameter types (structures). The COM UDT Support
preview component adds support for such data types for 7.6.

The COM UDT support component consists the parcel files and a PDF
file in preview/com udt support/.

Unicode Support for Windows
Extended support for Unicode character sets is provided as a preview, on
Windows 2000 and later platforms. Support is restricted to the character
sets that Windows supports.

The parcels provide support for copying via clipboard (the whole
character set), and for displaying more than 33,000 different characters,
without any special locales.

The workspace included in preview/unicode/unicode.ws is
provided for testing character display, and displays the entire character
set found in Arial Unicode MS.
Release Notes 81

Preview Components
First, open the workspace; you'll see a lot of black rectangles. Then load
preview/unicode/AllEncodings.pcl and instantly the workspace
will update to display all the unicode characters that you have loaded. You
can copy and paste text, for example from MS Word to VW, without
problems.

If there are still black rectangles, you need to load Windows support for
the character sets. In the Windows control panel, open Regional and
Language Options. (Instructions are for Windows XP; other versions may
differ slightly.) Check the Supplemental language support options you want to
install, and click OK. The additional characters will then be installed.

To write these characters using a Input Method Editor (IME) pad, load the
UnicodeCharacterInput.pcl.

Scripting and Command Line Support
This release includes a preview support for improved scripting and
command-line driven operation. It has been possible to run VisualWorks
from the command line using options like -doit for some time, but these
were not always as convenient for script type of operations as they might
be.

The parcel ScriptingSupport adds a number of enhancements to support
this type of operation. If this parcel is loaded, then basic usage would be
something like

visual scripting.im scriptfile.st
where scriptfile.st contains a sequence of Smalltalk code. It does
not need to be file-out format. On Windows, it is desirable to use the
console VM, so that standard in/out/error are available.

You can also load the ScriptingSupport parcel as part of the command
line. If you do this, you probably want to specify -nogui so that the
image runs headless.

vwntconsole.exe visual.im -nogui -pcl ScriptingSupport scriptFile.st
When running from a script file, anything on the command line following
the name of the script file are treated as arguments, and are bound into
the arguments variable visible to the script.

You can also run commands directly from the console, using command-
line options more similar to those found in traditional scripting languages,
e.g.

visual scripting.im -e "MyServer startUp"]
82 VisualWorks 7.6

Grid
Using the -i option will give an interactive command shell for evaluating
Smalltalk expressions.

All of these commands will run in a slightly different environment than
normal Smalltalk execution. The environment behaves more like a
Workspace, where, by default, all of the name spaces in the image are
visible. Ambiguous expressions will be resolved to choose the first name
that matches. There is also an experimental extension operator, &, which
makes it easier to assemble collections when writing short scripts.

All of the script code is run as a doit in an object called a ScriptRunner.
This supports some additional methods for working with scripts. The
include: method reads in another file as a script. The use: method loads a
parcel with a given name. The print: method prints an object to standard
out. Note that output is to the stdout stream. The Transcript is
suppressed, because many of the things that appear on the Transcript
are unsuitable for printing in a command-line script.

For a full list of the command line options available, run the image with
the -h parameter. For more information on the capabilities that this adds,
see the ScriptingSupport package.

Grid
A Grid widget combines elements of the Table and Dataset widgets for a
simpler and more flexible interface of viewing and editing tabulated forms.
This release includes a preview of a new Grid, based on the Grid from the
Widgetry project. It currently supports the following features:

• Multiple row sort by column with or without a UI

• Multiple and single selection options by row or individual cell

• Interactive row or column resize

• Scroll and align column, row, or cell to a particular pane position
(e.g., center, left, right top, bottom)

• UIBuilder canvas support

Planned features include:

• A SelectionInGrid model. Currently one may directly access, add,
remove, and change elements of the Grid. Direct access will always
be available.

• Drag-and-drop rows or columns to add, remove, or sort elements

• A tree column
Release Notes 83

Preview Components
• Completion of announcements, trigger events, or callbacks

• Specific OS look support for column headers. Currently only a default
look is supported.

• The column and row headers may be set to not scroll with the Grid.

Further information on usage and supporting classes with examples
appears in preview/Grid/grid.htm.

Store Previews

Store for Access
The StoreForAccess parcel, formerly in “goodies,” has been enhanced by
Cincom and moved into preview. It is now called StoreForMSAccess, to
distinguish it from the former parcel.

The enhancements include:

• A schema identical that for the supported Store databases.

• Ability to upgrade the schema with new Cincom releases (e.g.,
running DbRegistry update74).

• Ability to create the database and install the tables all from within
Smalltalk, as described in the documentation.

• No need to use the Windows Control Panel to create the Data Source
Name.

The original parcel is no longer compatible with VW 7.4, because it does
not have the same schema and ignores the newer Store features.

While MS Access is very useful for personal repositories, for multi-user
environments we recommend using a more powerful database.

Store for Supra
In order to allow Store to use Supra SQL as the repository, the
StoreForSupra package provides a slightly modified version of the Supra
EXDI, and implements circumventions for the limitations and restrictions
of Supra SQL which are exposed by Store. The Store version of Supra
EXDI does not modify/override anything in the base SupraEXDI package.
Instead, modifications to the Supra EXDI are achieved by subclassify the
Supra EXDI classes.
84 VisualWorks 7.6

Store Previews
Circumventions are implemented by catching error codes produced when
attempting SQL constructs that are unsupported by Supra SQL and
inserting one or more specifically modified SQL requests. The Supra SQL
limitations that are circumvented are:

• Blob data (i.e. LONGVARCHAR column) is returned as null when
accessed through a view.

• INSERT statement may not be combined with a SELECT on the
same table (CSWK7025)

• UPDATE statement may not update any portion of the primary KEY
(CSWK7042)

• DELETE statement may not have a WHERE... IN (...) clause with lots
of values (CSWK1101, CSWK1103)

• When blob data (i.e. LONGVARCHAR column) is retrieved from the
data base, the maximum length is returned rather than the actual
length

• Supra SQL does not have SEQUENCE

StoreForSupra requires Supra SQL 2.9 or newer, with the following tuning
parameters:

SQLLONGVARCHAR = Y
SQLMAXRESULTSETS = 256

StoreForSupra installation instructions
1 Install Supra SQL

2 Create a Supra database

3 Use XPARAM under Windows to set the following

• set Password Case Conversion = Mixed

• set Supra tuning variable SQLLONGVARCHAR = Y

• set Supra tuning variable SQLMAXRESULTSETS = 256

4 Start the Supra database

5 From the SUPERDBA user, create the Store administration user with
DBA privileges.

• User ID BERN is recommended, password is your own choice.

• Sample SQL for creating the Store administration use:

create user BERN password BERN DBA not exclusive
Release Notes 85

Preview Components
6 Load the StoreForSupra parcel.

7 To create the Store tables in the Supra database, run the following
Smalltalk code from a workspace (You will be prompted for the Supra
database name, the Supra administration user id and password.)

Store.DbRegistry goOffLine installDatabaseTables.
8 To remove the Store tables from the Supra database, run the

following Smalltalk code from a workspace

Store.DbRegistry goOffLine deinstallDatabaseTables.

Security

OpenSSL cryptographic function wrapper
The OpenSSL-EVP package provides access to most of the
cryptographic functions of the popular OpenSSL library
(http://www.openssl.org). The functions currently available include

• symmetric ciphers: ARC4, AES, DES and Blowfish

• hash functions: MD5, SHA, SHA256, SHA512

• public ciphers: RSA, DSA

The API of this wrapper is modelled after the native Smalltalk
cryptography classes so that they can be polymorphically substituted
where necessary. Since these classes use the same name they have to
live in their own namespace, Security.OpenSSL. The intent is that each
set of classes can be used interchangably with minimal modification of
existing user code.

Along these lines, you can instantiate an instance of an OpenSSL
algorithm same way as the native ones. For example:

| des ciphertext plaintext |
des := Security.OpenSSL.DES newBP_CBC

setKey: '12345678' asByteArray;
setIV: '87654321' asByteArray;
yourself.

ciphertext := des encrypt: ('Hello World!' asByteArrayEncoding: #utf_8).
plaintext := (des decrypt: ciphertext) asStringEncoding: #utf_8

An alternative way to configure an algorithm instance is using cipher
wrappers. The equivalent of the #newBP_CBC method shown above would
be the following.
86 VisualWorks 7.6

Security
des := Security.OpenSSL.BlockPadding on: (
Security.OpenSSL.CipherBlockChaining on:

Security.OpenSSL.DES new).
Note that while the APIs look the same the two implementations have
different underlying architectures, so generally their components should
not be mixed. That is, OpenSSL wrappers merely call the OpenSSL
library with some additional "flags", whereas the Smalltalk versions
augment the calculations. In general, it won't work properly to use a
Smalltalk cipher mode wrapper class around an OpenSSL algorithm and
vice versa.

The only thing that is different with hash functions is that the OpenSSL
version does not support cloning, so #copy will raise an error.
Consequently, it is currently hard to use them with HMAC, which uses
cloning internally. We have yet to modify the HMAC implementation to
avoid that. However the wrapper already provides SHA512 which is not
yet available with the Smalltalk library.

The wrapper also supports 2 public key algorithms, RSA and DSA. The
keys for these algorithms are more complex than the simple byte
sequences used with symmetric ciphers. However, the wrapper is written
so that the API uses the exact same kind of objects for both the Smalltalk
version and the OpenSSL version. Similarly for DSA signatures, both
versions use DSASignature instances. Here's an example.

| message keys dsa signature |
message := 'This is the end of the world as we know it ...' asByteArray.
keys := Security.DSAKeyGenerator keySize: 512.
dsa := Security.OpenSSL.DSA new.
dsa privateKey: keys privateKey.
signature := dsa sign: message.
dsa publicKey: keys publicKey.
dsa verify: signature of: message

The current version of the wrapper should support usual OpenSSL
installations on Windows and Linux and various Unixes out of the box.
There is only one interface class, with platform specific library file and
directory specifications in it. If you get a LibraryNotFoundError when
trying to use this package, you may need to change or add these entries
for your specific platform. You need to find out what is the correct name of
the OpenSSL cryptographic library on your platform and where is it
located, and update the #libraryFiles: and #libraryDirectories: attributes of
the OpenSSLInterface class accordingly. More information can be found
in the DLL and C Connect User's Guide (p.51). To obtain the shared
Release Notes 87

Preview Components
library for your platform, see http://www.openssl.org/source. Note that the
library is usually included with many of the popular Linux distributions, in
many cases this package should just work.

A note about HP platforms. If your version of the openssl library doesn't
contain (export) the requested function, the image can hang. On
Windows, an exception is thrown instead (object not found). The
workaround is to verify that your version of the library has the functions
you need. For example, the "CFB" encryption facility wasn't available until
version 0.9.7.e. And the sha256 and sha512 are only available after 0.9.8
and higher.

Also, on all platforms, remember that the openssl library uses pointers to
memory areas which are valid only while the image is still running. After
an image shutdown, all pointers are invalid. Your code should therefore
discard OpenSSL objects, and generate new ones with each image
restart. Even though your old objects will be alive at startup, (a return
from snapshot), the pointers are invalid, and the openssl library no longer
remembers any of its own state information from the previous session.

Opentalk
The Opentalk preview provides extensions to 7.2 and the Opentalk
Communication Layer. It includes a preview implementation of SNMP, a
remote debugger and a distributed profiler. The load balancing
components formerly shipped as preview components in 7.0 is now part
of the Opentalk release.

For installation and usage information, see the readme.txt files and the
parcel comments.

Opentalk HTTPS
This release includes a preview of HTTPS support for Opentalk. HTTPS
is normal HTTP protocol tunneled through an SSL protected socket
connection. Similarly to Opentalk-HTTP, the package Opentalk-HTTPS
only provides the transport level infrastructure and needs to be combined
with application level protocol like Opentalk-XML or Opentalk-SOAP.

An HTTPS broker must be configured with a SSLContext for the role that
it will be playing in the SSL connections, i.e., #serverContext: for server
roles and #clientContext: for client roles. Also, the authenticating side
(which is almost always the client) needs to have a corresponding
validator block set as well. The client broker will usually need to have the
#serverValidator: block set to validate server certificates. The server
88 VisualWorks 7.6

Opentalk
broker will only have its #clientValidator: block set if it wishes to
authenticate the clients. Note that the presence or absence of the
#clientValidator: block is interpreted as a trigger for client authentication.

Here's the full list of all HTTPSTransportConfiguration parameters:

clientContext
The context used for connections where we act as a client.

serverContext
The context used for connections where we act as a server.

clientValidator
The subject validation block used by the server to validate client
certificates.

serverValidator
The subject validation block used by the client to validate server
certificates.

Note that the same broker instance can be set up to play both client and
server roles, so all 4 parameters can be present in a broker configuration.
For more information on setting up SSLContext for clients or servers
please refer to the relevant chapters of the Security Guide.

This example shows how to set up a secure Web Services broker as a
client:

context := Security.SSLContext newWithSecureCipherSuites.
broker :=

(BasicBrokerConfiguration new
adaptor: (

ConnectionAdaptorConfiguration new
isBiDirectional: false;
transport: (

HTTPSTransportConfiguration new
clientContext: context;
serverValidator:

[:name | name commonName = 'Test Server'];
marshaler: (

SOAPMarshalerConfiguration new
binding: aWsdlBinding)))

) newAtPort: 4242.

This example shows how to set up a secure Web Services broker as a
server:
Release Notes 89

Preview Components
context := Security.SSLContext newWithSecureCipherSuites.
"Servers almost always need a certificate and private key, clients only when
client authetication is required."
"Assume the server certificate is stored in a binary (DER) format."
file := 'certificate.cer' asFilename readStream binary.
[certificate := Security.X509.Certificate readFrom: file] ensure: [file close].
"Assume the private key is stored in a standard, password encrypted PKCS8
format"
file := 'key.pk8' asFilename readStream binary.
[key := Security.PKCS8 readKeyFrom: file password: 'password'] ensure:

[file close].
context certificate: certificate key: key.
broker :=

(BasicBrokerConfiguration new
adaptor: (

ConnectionAdaptorConfiguration new
isBiDirectional: false;
transport: (

HTTPSTransportConfiguration new
serverContext: server;
marshaler: (

SOAPMarshalerConfiguration new
binding: aWsdlBinding)))

) newAtPort: 4242.

This release also includes a toy web server built on top of Opentalk as
contributed code, and is not supported by Cincom. It is, however, quite
handy for testing the HTTP/HTTPS transports without having other
complex infrastructure involved. So here is another example how to set
up a simple secure web server as well:
90 VisualWorks 7.6

Opentalk
| resource ctx |
resource := Security.X509.RegistryTestResource new setUp.
ctx := Security.SSLContext

suites: (Array with: Security.SSLCipherSuite
SSL_RSA_WITH_RC4_128_MD5)

registry: resource asRegistry.
ctx rsaCertificatePair: resource fullChainKeyPair.
(Opentalk.AdaptorConfiguration webServer

addExecutor: (Opentalk.WebFileServer prefix: #('picture')
directory: '$(HOME)\photo\web' asFilename);

addExecutor: (Opentalk.WebFileServer prefix: #('ws')
directory: '..\ws' asFilename);

addExecutor: Opentalk.WebHello new;
addExecutor: Opentalk.WebEcho new;
transport: (Opentalk.TransportConfiguration https

serverContext: ctx;
marshaler: Opentalk.MarshalerConfiguration web)

) newAtPort: 4433
Once the server is started, it should be accessible using a web browser,
for example https://localhost:4433/hello.

Distributed Profiler
The profiler has not changed since the last release and works only with
the old AT Profiler, shipped in the obsolete/ directory.

Installing the Opentalk Profiler in a Target Image
If you want to install only the code needed for images, potentially
headless, that are targets of remote profiling, install the following parcel:

• Opentalk-Profiler-Core

Installing the Opentalk Profiler in a Client Image
To create an image that contains the entire Opentalk profiler install the
following parcels in the order shown:

• Opentalk-Profiler-Core

• Opentalk-Profiler-Tool

Opentalk Remote Debugger
This release includes an early preview of the Remote Debugger. Its
functionality is seriously limited when compared to the Base debugger,
however its basic capabilities are good enough to be useful in many
cases. The limitations are mostly related to actions that open other tools.
For those to work, we have yet to make the other tools remotable as well.
Release Notes 91

Preview Components
The remote debugger is contained in two parcels.

The Opentalk-Debugger-Remote-Monitor parcel loads support for the
image that will run the remote debugger interface. The monitor is started
by sending:

RemoteDebuggerClient startMonitor
Once the monitor is started, other images can “attach” to it. The monitor
will host the debuggers for any unhandled exceptions in the attached
images.

To shutdown a monitor image, all the attached images should be
detached first and then the monitor should be stopped, by sending:

RemoteDebuggerClient stopMonitor
The Opentalk-Debugger-Remote-Target parcel loads support for the
image that is expected to be debugged remotely. To enable remote
debugging this image has to be “attached” to a monitor, i.e., to the image
that runs the remote debugger UI. Attaching is performed with one of the
“attach*' messages defined on the class side of RemoteDebuggerService.
Use detachMonitor to stop forwarding of unhandled exceptions to the
remote monitor image.

A packaged (possibly headless) image can be converted into a “target”
during startup by loading the Opentalk-Debugger-Remote-Target parcel
using the -pcl command line option. Additionally it can be immediately
attached to a monitor image using an -attach [host][:port] option
on the same command line. It is assumed that the Base debugger is in
the image (hasn't been stripped out) and that the prerequisite Opentalk
parcels are also available on the parcel path of the image.

Testing and Remote Testing
The preview/opentalk subdirectory contains two new parcels,
included for those users who expressed an interest in the multi-image
extension to the SUnit framework used to demonstrate the Opentalk Load
Balancing Facility:

• Opentalk-Tests-Core contains basic extensions to the SUnit
framework used to test Opentalk. Version number 73 6 is shipped
with this release.

• Opentalk-Remote-Tests-Core contains the central classes of the
remote testing framework and some simple examples. Version
number 73 9 is shipped with this release.
92 VisualWorks 7.6

Opentalk
The framework these packages implement is known to have defects and
is evolving. Future versions will differ, substantially.

The central idea behind the framework is that since SUnit resources are
classes, there is no reason why references to remote classes cannot be
substituted for them in a test case.

The are two central classes in the framework.

OpentalkTestCaseWithRemoteResources
This is the superclass of all concrete, multi-image test cases. It
contains an instance variable named 'resources' that is populated
with references to remote resource classes. The references are
constructed from the data returned by the method resourceObjRefs,
which any concrete test case must implement. The class has a
shared variable named CaseBroker that contains the broker in which
the resource references are registered. This request broker is the one
used by all multi-image test cases to communicate with remote
resources.

OpentalkTestRemoteResource
This is the superclass of all concrete remote resources. It has a
shared variable named ResourceBroker that holds the broker through
which test resources communicate with test cases. Concrete
resources register themselves with this broker, using their class
name as an OID, so that test cases may programmatically generate
references to them.

Since multi-image tests usually involve resources that start up brokers
and exchange messages of their own, care must be taken in any test to
determine that the communication exchange under test has completed
before any asserts are evaluated. Also, since the exchange between
resources may be complex, the assert: messages are usually phrased in
terms of the contents of event logs. Much use is made of the Opentalk
event and event logging facilities. Test may create event logs of their own,
or analyze the remote event logs created by a remote resource.

The current scheme assumes that there will be only one resource per
image, but you may construct a resources with arbitrary complexity.

The drill for configuring a multi-image test is now overly complex,
because port numbers are derived from the suffix of the image name,
expected to consist of two decimal digits. Port numbers are also hard-
coded in the method resourceObjRefs. This is the wrong way to do things
that we intend to move to a scheme where the test case image starts its
broker on a well known port, and resource images register with the test
case image on startup.
Release Notes 93

Preview Components
That said, the current drill goes as follows. The essentials are also
discussed in the class comment of CaseRemoteClientServer.

1 Make sure that the machines you intend to use are not already
listening on the default ports used by the multi-image testing
framework. The CaseBroker, if you follow our recommendations, will
come up on port 1800, and resource brokers will come up in the
range 1900-1999. If your machines are already using these ports,
alter the class-side method basePortNumber in
OpentalkTestCaseWithRemoteResources or
OpentalkTestCaseRemoteResource, as appropriate. The following
directions will assume that you did not need to change an
implementation of basePortNumber.

2 Write your resource class or classes. You may use any of the
concrete classes under ResourceWithConfiguration as models.

3 Write your test case class. You may use any of the concrete classes
under CaseRemoteClientServer as models.

4 Save your image.

5 Remind yourself of how many resources your test case employs. For
example, class CaseRemoteClients1Servers1 requires three images. You
can check this by examining its implementation of resourceObjRefs.
Two references are set up, one for a client and one for a server. The
third image will be the one that runs the test case. So, if your image is
named otwrk.im, clone copies of it now, named otwrk00.im,
otwrk01.im and otwrk02.im. All the image names must end in
two digits. The name ending in “00” is conveniently reserved for the
test running image, making its broker come up on port 1800. All the
images derive the port of their broker from their image name. In this
case, the resource images will start their brokers on ports 1901 and
1902.

6 After saving the images, reopen them, and start the relevant brokers.
Remember that in the test case image you only want to start the
CaseBroker. In the resource images, you start their ResourceBroker. The
class-side protocol of OpentalkTestCaseWithRemoteResources and
OpentalkTestCaseRemoteResource both contain start up methods with
useful executable comments, if you like doing things that way. (You
will use only one image, and start both kinds of brokers in it, only
when you intend that everything run in the same image. And that
setup is very useful in debugging.)

7 Run your tests, from the test case image, and run them one at a time.
The framework has known difficulties running a test suite.
94 VisualWorks 7.6

Opentalk SNMP
If you ever find that your event logs show record of, say, 50 messages,
when your test only sends 30, then the preceding test run—which you
probably thought you had successfully terminated by, say, closing your
debugger—was still going strong. Clean up as necessary and start again.

Opentalk SNMP
SNMP is a widely deployed protocol that is commonly used to monitor,
configure, and manage network devices such as routers and hosts.
SNMP uses ASN.1 BER as its wire encoding and it is specified in several
IETF RFCs.

The Opentalk SNMP preview partially implements two of the three
versions of the SNMP protocol: SNMPv1 and SNMPv2. It does so in the
context of a framework that both derives from the Opentalk
Communication Layer and maintains large-scale fidelity to the
recommended SNMPv3 implementation architecture specified in IETF
RFC 2571.

Usage

Initial Configuration
Opentalk SNMP cares about the location of one DTD file and several MIB
XML files. So, before you start to experiment, be sure to modify
'SNMPContext>>mibDirectories' if you have relocated the Opentalk
SNMP directories.

Broker or Engine Creation and Configuration
In SNMPv3 parlance a broker is called an “engine”. An engine has more
components that a typical Opentalk broker. In addition to a single
transport mapping, a single marshaler, and so on, it must have or be able
to have

• several transport mappings,

• a PDU dispatcher,

• several possible security systems,

• several possible access control subsystems,

• a logically distinct marshaler for each SNMP dialect, plus

• an attached MIB module for recording data about its own
performance.
Release Notes 95

Preview Components
So, under the hood, SNMP engine configuration is more complex than
the usual Opentalk broker configuration. You can create a simple SNMP
engine with

SNMPEngine newUDPAtPort: 161.
But, this is implemented in terms of the more complex method below.
Note that, for the moment, within the code SNMP protocol versions are
distinguished by the integer used to identify them on the wire.

newUdpAtPorts: aSet
| oacs |

oacs := aSet collect: [:pn |
AdaptorConfiguration snmpUDP

accessPointPort: pn;
transport: (TransportConfiguration snmpUDP

 marshaler: (SNMPMarshalerConfiguration snmp))].

^((SNMPEngineConfiguration snmp)
accessControl: (SNMPAccessControlSystemConfiguration snmp

accessControlModels: (Set
with: SNMPAccessControlModelConfiguration snmpv0
with: SNMPAccessControlModelConfiguration snmpv1));

instrumentation: (SNMPInstrumentationConfiguration snmp
contexts: (Set with: (

SNMPContextConfiguration snmp
name: SNMP.DefaultContextName;
values: (Set with: 'SNMPv2-MIB'))));

securitySystem: (SNMPSecuritySystemConfiguration snmp
securityModels: (Set

with: SNMPSecurityModelConfiguration snmpv0
with: SNMPSecurityModelConfiguration snmpv1));

adaptors: oacs;
yourself

) new
As you can see, it is a bit more complex, and the creation method makes
several assumptions about just how you want your engine configured,
which, of course, you may change.

Engine Use
Engines are useful in themselves only as lightweight SNMP clients. You
can use an engine to send a message and get a response in two ways.
The Opentalk SNMP Preview now supports an object-reference based
usage style, as well as a lower-level API.
96 VisualWorks 7.6

Opentalk SNMP
OR-Style Usage

If you play the object reference game, you get back an Association or a
Dictionary of ASN.1 OIDs and the objects associated with them. For
example, the port 3161 broker sets up its request using an object
reference:

| broker3161 broker3162 oid ref return |

broker3161 := SNMPEngine newUdpAtPort: 3161.
broker3162 := self snmpv0CommandResponderAt: 3162.
broker3161 start.
broker3162 start.
oid := CanonicalAsn1OID symbol: #'sysDescr.0'.
ref := RemoteObject

newOnOID: oid
hostName: <aHostname>
port: 3162
requestBroker: broker3161.

^return := ref get.
This expression returns:

Asn1OBJECTIDENTIFIER(CanonicalAsn1OID(#'1.3.6.1.2.1.1.1.0'))->
Asn1OCTETSTRING('VisualWorks®, Pre-Release 7 godot
mar02.3 of March 20, 2002')

Object references with ASN.1 OIDs respond to get, set:, and so forth.
These are translated into the corresponding SNMP PDU type, for
example, a GetRequest and a SetRequest PDU in the two cases
mentioned.

Explicit Style Usage

You can do the same thing more explicitly the following way, in which case
you will get back a whole message:

| oid broker1 entity2 msg returnMsg |

oid := CanonicalAsn1OID symbol: #'1.3.6.1.2.1.1.1.0'.
broker1 := SNMPEngine newUdpAtPort: 161.
entity2 := self snmpv1CommandResponderAt: 162.
broker1 start.
entity2 start.
msg := SNMPAbstractMessage getRequest.
msg version: 1.
msg destTransportAddress: (IPSocketAddress hostName: self

localHostName port: 162).
msg pdu addPduBindingKey: (Asn1OBJECTIDENTIFIER value: oid).
returnMsg := broker1 send: msg.
Release Notes 97

Preview Components
which returns:

SNMPAbstractMessage:GetResponse[1]
Note that in this example, you must explicitly create a request with the
appropriate PDU and explicitly add bindings to the message's binding list.

Entity Configuration
In the SNMPv3 architecture, an engine does not amount to much. It must
be connected to several SNMP 'applications' in order to do useful work.
And 'entity' is an engine conjoined with a set of applications. Applications
are things like command generators, command responders, notification
originators, and so on. There are several methods that create the usually
useful kinds of SNMP entities, like

SNMP snmpv0CommandResponderAt: anInteger
Again, this invokes a method of greater complexity, but with a standard
and easily modifiable pattern. There as several examples in the code.

MIBs
Opentalk SNMP comes with a small selection MIBS that define a subtree
for Cincom-specific managed objects. So far, we only provide MIBs for
reading or writing a few ObjectMemory and MemoryPolicy parameters. A
set of standard MIBS is also provided. Note that MIBs are provided in
both text and XML format. The Opentalk SNMP MIB parser required
MIBS in XML format.

If you need to create an XML version of a MIB that is not provided, use
the 'snmpdump' utility. It is a part of the 'libsmi' package produced by the
Institute of Operating Systems and Computer Networks, TU
Braunschweig. The package is available for download through
http://www.ibr.cs.tu-bs.de/projects/libsmi/index.html, and at
http://rpmfind.net.

Limitations
The Opentalk SNMP Preview is raw and has several limitations. Despite
them, the current code allows a user, using the SNMPv2 protocol, to
modify and examine a running VW image with a standard SNMP tool like
ucd-snmp. However, one constraint should be especially noted.

Port 161 and the AGENTX MIB
SNMP is a protocol used for talking to devices, not applications, and by
default SNMP uses a UDP socket at port 161. This means that in the
absence of coordination between co-located SNMP agents, they will
98 VisualWorks 7.6

OpentalkCORBA
conflict over ownership of port 161. This problem is partially addressed by
the AGENTX MIB, which specifies an SNMP inter-agent protocol.
Opentalk SNMP does not yet support the AGENTX MIB. This means that
an Opentalk SNMP agent for a VisualWorks application (only a virtual
device) must either displace the host level SNMP agent on port 161, or
run on some other port. Opentalk SNMP can run on any port, however
many commercial SNMP management applications are hard-wired to
communicate only on port 161. This places limitations on the extent to
which existing SNMP management applications can now be used to
manage VisualWorks images.

OpentalkCORBA
This release includes an early preview of our OpentalkCORBA initiative.
Though our ultimate goal is to replace DST, DST will remain a supported
product until OpentalkCORBA matches all its relevant capabilities and we
provide a reasonable migration path for current DST users. So, we would
very much like to hear from our DST users, about the features and tools
they would like us to carry over into OpentalkCORBA.

For example, we do not intend to port any of the presentation-semantic
split framework, or any of the UIs that essentially depend upon it, unless
there is strong user demand. Please contact Support, and ask them to
forward your concerns and needs to the VW Protocol and Distribution
Team.

This version of OpentalkCORBA combines the standard Opentalk broker
architecture with DST's IDL marshaling infrastructure to provide IIOP
support for Opentalk. OpentalkCORBA has its own clone of the IDL
infrastructure residing in the Opentalk namespace so that changes made
for Opentalk do not destabilize DST. The two frameworks are almost
capable of running side by side in the same image. The standard base
class extensions, however, like 'CORBAName' can only work for one
framework, usually the one that was loaded last. Therefore, if you want to
load both and be sure that DST is unaffected, make sure it is loaded after
OpentalkCORBA, not before.

This version of OpentalkCORBA already offers a few improvements over
DST. In particular, it supports the newer versions of IIOP, though there is
no support for value types yet. A short list of interesting features and
limitations follows:

• supports IIOP 1.0, 1.1, 1.2

• defaults to IIOP 1.2
Release Notes 99

Preview Components
• does not support value types

• does not support Bi-Directional IIOP

• doesn't support the NEEDS_ADDRESSING_MODE reply status

• system exceptions are currently raised as Opentalk.SystemExceptions

• user exceptions are currently raised as Error on the client side

• supports LocateRequest/LocateReply

• does not support CancelRequest

• does not support message fragmenting

• the general IOR infrastructure is fleshed out (IOPTaggedProfiles,
IOPTaggedComponents, IOPServiceContexts) and adding new kinds of
these components amounts to adding new subclasses and writing
corresponding read/write/print methods

• the supported profiles are IIOPProfile and IOPMultipleComponentProfile,
and anything else is treated as an IOPUnknownProfile

• the only supported service context is CodeSet, and anything else is
treated as an IOPUnknownContext

• however it does not support the codeset negotiation algorithm yet;
correct character encoders for both char and wchar types can be set
manually on the CDRStream class

• the supported tagged components are CodeSets, ORBType and
AlternateAddress, and anything else is treated as an
IOPUnknownComponent

IIOP has the following impact on the standard Opentalk architecture and
APIs:

• there is a new IIOPTransport and CDRMarshaler with corresponding
configuration classes

• these transport and marshaler configurations must be included in the
configuration of an IIOP broker in the usual way

• the new broker creation API consists of the following methods

• #newCdrIIOPAt:

• #newCdrIIOPAt:minorVersion:

• #newCdrIIOPAtPort:

• #newCdrIIOPAtPort:minorVersion:
100 VisualWorks 7.6

OpentalkCORBA
• IIOP proxies are created using Broker>>remoteObjectAt:oid:interfaceId:

• there is an extended object reference class named IIOPObjRef

• the LocateRequest capabilities are accessible via

• Broker>>locate: anIIOPObjRef

• RemoteObject>>_locate

• LocateRequests are handled transparently on the server side.

• A location forward is achieved by exporting a remote object on the
server side (see the example below)

Examples

Remote Stream Access
The following example illustrates basic messaging capability by
accessing a stream remotely. The example takes advantage of the IDL
definitions in the SmalltakTypes IDL module:

| broker stream proxy oid |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[oid := 'stream' asByteArray.

stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
 interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

proxy next: 5.
] ensure: [broker stop]

“Locate” API
This example demonstrates the behavior of the “locate” API:
Release Notes 101

Preview Components
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream oid proxy found |

found := OrderedCollection new.

"Try to locate a non-existent remote object"
oid := 'stream' asByteArray.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

result := proxy _locate.
found add: result.

"Now try to locate an existing remote object"
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
result := proxy _locate.
found add: result.
found

] ensure: [broker stop]

Transparent Request Forwarding
This example shows how to set up location forward on the server side
and demonstrates that it is handled transparently by the client.
102 VisualWorks 7.6

OpentalkCORBA
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream proxy oid fproxy foid|

oid := 'stream' asByteArray.
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

foid := 'forwarder' asByteArray.
broker objectAdaptor export: proxy oid: foid.
fproxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: foid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

fproxy next: 5.
] ensure: [broker stop]

Listing contents of a Java Naming Service
This example provides the code for listing the contents of a running Java
JDK 1.4 naming service. It presumes that you have Opentalk-COS-
Naming loaded. To run the Java naming service, just invoke 'orbd -
ORBInitialPort 1050' on a machine with JDK 1.4 installed.

Note that this example also exercises the LOCATION_FORWARD reply
status, the broker transparently forwards the request to the true address
of the Java naming service received in response to the pseudo reference
'NameService'.
Release Notes 103

Preview Components
| broker context list iterator |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker passErrors; start.
[context := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 1050)

oid: 'NameService' asByteArray
interfaceId: 'IDL:CosNaming/NamingContextExt:1.0'.

list := nil asCORBAParameter.
iterator := nil asCORBAParameter.
context

listContext: 10
bindingList: list
bindingIterator: iterator.

list value
] ensure: [broker stop]

List Initial DST Services
This is how you can list initial services of a running DST ORB. Note that
we're explicitly setting IIOP version to 1.0.

| broker dst |
broker := Opentalk.BasicRequestBroker

newCdrIiopAtPort: 4242
minorVersion: 0.

broker start.
[dst := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 3460)

oid: #[0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0]
interfaceId: 'IDL:CORBA/ORB:1.0'.

dst listInitialServices
] ensure: [broker stop]

Seaside Support
Several additional components in support of Seaside are included as
preview code. These are described with the “Seaside Support” notes in
chapter 2.
104 VisualWorks 7.6

Internet Browser Plugin
Internet Browser Plugin
The new VisualWorks Plugin is available as a preview for VW 7.5 remains
in preview for 7.6 without further change.

Beginning with the VisualWorks Plugin for VW 7.5, we provide both an
ActiveX Control for Internet Explorer and a Gecko Plugin for use in Gecko
2.0 enabled browsers such as Netscape 8, Mozilla 1.7.5+ and Firefox 1.0,
1.5 and 2.0. For the time being, the Plugin is still only available on
Windows platforms.

The Plugin parcel for VW 7.5 is not backward compatible with any of the
old Plugin parcels. Please see preview/plugin/readme.txt for more
information.

International Domain Names in Applications (IDNA)
RFC 3490 “defines internationalized domain names (IDNs) and a
mechanism called Internationalizing Domain Names in Applications
(IDNA) which provide a standard method for domain names to use
characters outside the ASCII repertoire. IDNs use characters drawn from
a large repertoire (Unicode), but IDNA allows the non-ASCII characters to
be represented using only the ASCII characters already allowed in so-
called host names today. This backward-compatible representation is
required in existing protocols like DNS, so that IDNs can be introduced
with no changes to the existing infrastructure. IDNA is only meant for
processing domain names, not free text” (from the RFC 3490 Abstract).

Limitations
The current implementation in VisualWorks

• doesn't do NAMEPREP preprocessing of strings (currently we just
convert all labels to lowercase)

• doesn't properly implement all punycode failure modes

• needs exceptions instead of Errors

• needs I18N of messages

USAGE
You can convert an IDN using the IDNAEncoder as follows:

IDNAEncoder new encode: 'www.cincom.com'
 "result: www.cincom.com"
Release Notes 105

Preview Components
or

IDNAEncoder new encode: 'www.cìncòm.com'
"result: www.xn--cncm-qpa2b.com"

and decode with

IDNAEncoder new decode: 'www.xn--cncm-qpa2b.com'
"result: www.cìncòm.com"

This package also overrides the low level DNS access facilities to
encode/decode the hostnames when necessary. Here's an example
invocation including a Japanese web site.

host := (String with: 16r6c5f asCharacter with: 16r6238 asCharacter), '.jp'.
address := IPSocketAddress hostAddressByName: host.

"result: [65 99 223 191]"
The host name that is actually sent out to the DNS call is:

IDNAEncoder new encode: host
"result: xn--0ouw9t.jp"

A reverse lookup should also work, however I wasn't able to find an IP
address that would successfully resolve to an IDN, so I wasn't able to test
it. Even our example gives me only the numeric result:

IPSocketAddress hostNameByAddress: address
"result: 65.99.223.191"
106 VisualWorks 7.6

5
Microsoft Windows CE

WinCE devices have been supported since 7.3. Because separate
documentation has not been developed or provided elsewhere, this
section repeats the information provided in the releases here from the
previous release.

Supported Devices
Virutal machines for Microsoft Windows CE are intended for use on CE
devices as an application deployment environment. Typically, an
application is developed in a standard development environment, and
prepared for deployment on a CE device. The image, VM, and any
supporting files, are then copied to the CE device and executed.

VisualWorks has been successfully tested on the following hardware:

• Simpad SLC with StrongARM-SA-1110, Windows CE .NET Version
4.0

• skeye.pad with StrongARM-SA-1110, Windows CE .NET Version 4.1

• HP iPAQ H2210 with Intel PXA255 XScale, Windows Pocket PC 2003
(Windows Mobile 2003)

• Tatung WebPAD with Geode GXm, Windows CE .NET Version 4.10

There are, however, limitations. Refer to “Known limitations” below for
details.
Release Notes 107

Microsoft Windows CE
Distribution contents
There are two directories with virtual machines for the different
processors:

• bin\cearm – for StrongARM and XScale processors,

• bin\cex86 – for Pentium-compatible processors like the Geode.

Each directory contains three executables and a DLL:

• vwntoe.dll – the DLL containing the virtual machine.

• vwnt.exe – the GUI stub exe which is normally used to run GUI
applications. It uses vwntoe.dll.

• vwntconsole.exe – the console stub executable which is normally
used to run console applications. It uses vwntoe.dll.

• visual.exe – the single virtual machine, which is used for single-
file executable packaged applications.

The assert and debug subdirectories contain versions of these
executables with asserts turned on for debugging. The debug engines are
not optimized and so can be used with the Microsoft eMbedded Visual
C++ debugger. Refer to the engine type descriptions in the Application
Developer’s Guide, Appendix C, for further information.

Prerequisites
Windows CE VMs require a few additions to the standard image. These
are provided in the parcel ce.pcl. On the PC, prior to the deployment to
your CE machine, load this parcel into your image.

This parcel contains two major changes:

• A new SystemSupport subclass for CE – This is necessary because
the name of the DLLs differs from other Windows versions and they
contain different versions of the called functions. For example, only
Unicode versions of most functions are provided and some
convenience functions are missing.

• A new filename subclass, CEFilename – CE does not have a "current
working directory" concept, so only absolute paths are supported.
Therefore CEFilename stores the current directory and expands
relative paths into absolute paths.
108 VisualWorks 7.6

Developing an Application for CE
Developing an Application for CE
In general, developing an application for deployment on a CE device is
the same as for any other application. The notable differences have to do
with screen size, especially on small PDA-type devices, and filename
handling, because CE does not use file volumes or disk drive letters.

Before beginning development, load the CE parcel (ce.pcl) into the
development image. The changes it makes only take effect when the
image is installed on the CE device, so you can develop as usual on your
standard development system.

Filenames
WinCE does not use relative file paths or volume (disk) letters. This is
transparent during development, because the CEFilename class handles
converting all paths to absolute paths when the application is deployed
on a CE device. No special development restrictions need to be
observed.

DLL names
Similar, DLL names are modified appropriately when installed on a CE
device.

Window sizes and options
CE devices come in a variety of screen sizes. For the larger devices, with
a screen size of 640x400, the limitations are not extreme. However, on
the smaller devices, such as a Pocket PC with a screen size or 240x320,
the size greatly affects your GUI and application design.

As a deployment environment, you generally should have all development
tools, such as browsers closed, and possibly removed from the system,
though this is not required.

However, when testing and debugging it is convenient to have all of these
development resources available, and this can present serious difficulties.

Also, especially for smaller devices, select an appropriate opening
position for the GUI, in the canvas settings. Opening screen center is
generally a safe choice.
Release Notes 109

Microsoft Windows CE
Input devices
The input side limitations are also worth mentioning. Typically you only
have a touch sensitive screen and a pen for it. There is no keyboard,
hence no modifier keys. You have no mouse buttons where VisualWorks
prefers to have three. So moving the pen somewhere always implies a
pressed button. You can open the 'soft input panel', i.e. a small window
with a keyboard in it. But it is not really comfortable to enter longer texts
this way and this window needs some of your valuable screen space. So
whenever you expect textual input, you should leave some free room for
the keyboard. (At 240x320, a full screen work space contains 10 lines of
text plus title bar, menu bar, tool bar buttons and the status bar at the
bottom. The Keyboard window covers the lines 8 to 10 and the status
bar.)

The CE parcel adds code which interprets holding the pen for approx 1.3
seconds as a right button press to open the operate context menu. This
behavior can be turned on and off in the look and feel section of the
settings window. On pocket PC, but not on the CE web pads, users are
trained to expect this behavior.

.NET access
While WinCE .NET uses the features of the Microsoft .NET platform, the
DotNETConnect preview does not support their use.

Deploying on a CE Device
Load the CE parcel ($(VISUALWORKS)\bin\winCE\CE.pcl) into your
development image. This provides the features described above (see
“Prerequisites”).

Deployment preparation is, otherwise, the same as usual, though there
may be practical considerations. On many devices

Starting VisualWorks on CE
There are several ways to start VisualWorks on Windows CE:

• In the command shell, execute:

visual [options] visual.im

(Not all CE environments have a command shell interface.)
110 VisualWorks 7.6

Known limitations
• Double-click on visual.exe. This starts VisualWorks with the
default image, visual.im..

By default, the vm attempts to open an image with the same name as
the vm and in the same directory. So, you can rename the vm to
match your image name and execute it in this way.

• Double-click on an image file. This works only if the .im extension is
associated with VisualWorks in the registry of the CE device.

If you are developing on the CE device, you can evaluate this
expression in a workspace:

WinCESystemSupport registerVisualworksExtension
• If you have packaged the vm and image as a single executable file

(e.g. using ResHacker provided in the packaging/win directory),
you can simply run the executable.

• Create a short-cut to read e.g.

"\My Documents\vwnt" "\My Documents\visual.im"
The default CE Windows explorer can be used to create associations
by copying an existng short-cut (e.g., Control panel), renaming it, and
editing its properties. On CE machines that lack the standard
explorer, you can find free tools to edit associations.

Known limitations

Sockets
• Non-blocking calls are not yet supported.

• Conversion of hostnames to IP addresses, service names to ports,
etc., is not implemented. Use addresses instead, e.g., 192.109.54.11
instead of www.cincom.com.

File I/O
• File locking does not exist on CE (prim 667)

• Delete, rename, etc., do not work on open files (prim 1601,1602,..)

• “ '\' asFilename fileSize “ fails with FILE_NOT_FOUND_ERROR.
Release Notes 111

Microsoft Windows CE
Windows and Graphics
• Animation primitives not working properly (prims 935-937)

• Only full circles are supported by the OS; arcs and wedges are
converted to polylines

• No pixmap <-> clipboard primitives

User primitive
• As yet there is no support for user primitives or primitive plugins.
112 VisualWorks 7.6

6
Installer Framework

The Installer Framework is a supported component, installable from the
packaging/installer directory. Until full documentation can be provided,
the following notes are provided.

The VWInstallerFramework parcel provides the basic functionality for the
installer, while the VWInstaller parcel serves as an example of
customizing this framework for an individual company and product. The
installer application is a wizard with a set of pages that are displayed in
sequence. Creating a custom installer is largely a matter of changing the
install.map file for that installation. See the install.map files on
either the Commercial or Non-commercial CDs for examples. These can
be hand-edited to suit your particular installation needs.

Customizing the install.map File

Dynamic Attributes
The first item in this file is a dictionary containing version information
about the particular distribution to be installed. Edit this section as
appropriate for your needs. Many attriburtes are self explanatory, but
others may require some explanation.

#defaultTargetTail
The default name of the installation subdirectory, which the user can
change at install time.

#imageSignature
Used for updating VisualWorks.ini file at install time (auto update of
this file is currently a no-op).
Release Notes 113

Installer Framework
#installDirectoryVariableName
The name of the system variable (or registry key) representing the
installed location of the product. For VisualWorks, this is
$VISUALWORKS. This can be changed as necessary.

#mapVersion
This can be used by the installer to identify older or newer install.map
formats.

#requiresKey
Setting this value to true will display the KeyVerifierPage, and will only
proceed with the installation once a proper product key has been
supplied by the user. VisualWorks installations no longer require this,
but the feature remains for those who want it.

#sourcePathVariableName
The name of the system variable (or registry key) representing the
location from which the product was installed. For VisualWorks, this
is $SOURCE_PATH. This can be changed as necessary.

#variablePath
The path in the Windows registry to use for setting variables on that
platform (see Win95SystemSupport.CurrentVersion).

There is also a section of dictionary entries with integer keys and string
values of the form “VM *”. The integers represent bytes from the engine
thumbprint of the running installer, and are used to identify to the installer
the name of the default VM component for the platform on which the
installer is run.

Components
Each component is listed in install.map with various attributes. Many
of these are self explanatory, but others require some explanation.

#target: #tgtDir
Although the VisualWorks components are all installed to the main
installation directory, the framework anticipates that a need might
arise for some components to be installed to a different location. The
symbol #tgtDir resolves to the installation directory chosen by the
user. However, one could add other symbols, along with supporting
code, to allow multiple target directories. For example, if the same
installer were to install ObjectStudio and VisualWorks, the symbols
#osTgtDir and #vwTgtDir could be used if methods by these names
were implemented to answer the appropriate directories.
114 VisualWorks 7.6

Customizing the Code
#environmentItems:
These represent system variables (or Windows registry entries) to be
set when the containing component is installed. In the VisualWorks
installation, only the Base VisualWorks component contains these.

#startItems:
These describe the attributes necessary to create a Windows
shortcut, such as in the start menu or on the desktop. On Unix these
attributes are used to create a small script to launch the newly
installed image and VM.

#sizes:
A collection of the uncompressed sizes of all the files in the archive,
for determining disk space requirements at install time.

License
The presence of the optional license string in install.map determines
whether the LicenseVerifierPage will be displayed. This string is present in
the Non-Commercial installer application, and so the page is displayed,
but not in the Commercial installer.

Customizing the Code
The wizard application is called InstallerMainApplication, and the wizard
pages are subclasses of AbstractWizardPage. These pages are only
displayed when listed in InstallerMainApplication>>subapplicationsForInstall.

Some pages are conditionally displayed, as determined by implementors
of #okToBuild. For example, CheckServerPage is only displayed if the server
has not yet been checked, or if available updates have not yet been
applied. Also, as mentioned earlier LicenseVerifierPage is only displayed if
the install.map to be installed contains a license string.

To change the GUI of either the wizard or its pages, simply subclass and
tailor the window or subcanvas spec to suit your needs. Then reference
your subclass in #subapplicationsForInstall and it will become part of your
installer.

The graphic at the top of the wizard window can be changed by
implementing #defaultBanner in a class method of your subclass of
InstallerMainApplication.

Once your customizations are done, you can strip your install image from
the launcher by selecting Tools Strip Install Image.
Release Notes 115

Installer Framework
Creating Component Archives
The packaging tool (goodies/parc/PackingList.pcl) that
automatically packages our product. However, it is very tailored to our
particular build processes, and is not recommended for general use. It
runs on a linux box, and creates component archives by first staging all
the files in a directory structure and then invoking the following code:

UnixProcess
cshOne: ('tar --create --directory="<1s>" --file="<2s>" --owner=0 --totals

--verify --same-order <3s>'
expandMacrosWith: directoryString
with: fileString
with: contentString)

Note that any Mac files with resource forks must be added to the archive
in MacBinaryIII format (*.bin) to be installed properly later.

Local Installations
The scripts and structure of our CDs serve as examples of a working
packaged CD. Any archive could be installed from another part of the CD
if its #path: attribute is adjusted in the install.map file.

Cincom uses and recommends CDEveryWhere
(www.cdeverywhere.com) to create hybrid CDs for distribution that run on
Win, Mac, and Unix/linux.

Remote installations
Your wizard subclass should implement #configFileLocation, which answers
anFtpURL. This XML file should reside on your server and list the current
installer image version, available patches, and available products to
install. An example from our NC download site follows:
116 VisualWorks 7.6

http://www.cdeverywhere.com

Remote installations
<?xml version="1.0"?>

<configuration>
<installerImageVersion>'1.1'</installerImageVersion>
<installerParcelVersions>

'#()'
</installerParcelVersions>
<applicationsToInstall>

'#(#(''VisualWorks 7.1 Non-Commercial'' ''vwnc7.1'')
#(''VisualWorks 7.2 Non-Commercial'' ''vwnc7.2'')
#(''VisualWorks 7.2.1 Non-Commercial'' ''vwnc7.2.1''))'

</applicationsToInstall>
</configuration>

In the above example, the last application listed is 'VisualWorks 7.2.1 Non-
Commercial', which is the string that will appear in the drop down list of
available versions. The string following that, 'vwnc7.2.1', is the
subdirectory on the ftp server which contains the application. This
subdirectory is flat, unlike the CST CD directory structure, and contains
the install.map and archive files. The same install.map file can
work unchanged for CD and remote installations. For remote installations,
only the tail of the component archive file is used, since it is assumed that
the FTP server does not need the deeper directory structure of the CST
CDs.

In addition to the default configuration file location hard coded into your
wizard class, users can also keep a local config file, named
installerConfiguration.xml, which can list alternate local install
sources or remote servers. For example, the following local config file lists
two additional servers from which one could install any products available
there:

<?xml version="1.0"?>

<configuration>
<additionalConfigFiles>

'#(''ftp://anonymous:foo@myServer//remoteInstall/
installerConfiguration.xml''

''ftp://anonymous:foo@theirServer//remoteInstall/
installerConfiguration.xml'')'

</additionalConfigFiles>
</configuration>

This may be useful anywhere frequent installations might be performed,
such as a QA or Tech Support computer lab.
Release Notes 117

	Introduction to VisualWorks 7.6
	Product Support
	Support Status
	Product Patches

	ARs Resolved in this Release
	Items Of Special Note
	Installing VisualWorks on Vista
	visual.im is ReadOnly
	Widgetry Discontinued

	Known Limitations
	Delay and Time Change Interaction
	Issue loading Packages
	HPUX11 User Primitive Engine
	Warning Message Installing MacOS X
	Limitations listed in other sections

	VW 7.6 New and Enhanced Features
	Virtual Machine
	Multi-core/CPU Issues
	Digital Signing of Executables
	Microsoft Vista Support
	New MacOS X VM
	Host Printing
	Headless Support

	VM Compilation Environments
	IEEE floating point

	Base system
	Process Termination
	Command Line Option Comparisons
	New Hash Algorithms
	Default Random Class
	Collection sort methods
	aDictionary collect:
	Float timesTwoPower:
	RTP ErrorNotifier
	Point Positions
	ColorPreferenceCollection
	Package Scope for Extension Methods
	InteractiveCompilerErrorHandler now declares imports as private
	New BlockClosure cull methods
	Moved Timed Block from Trippy to Base
	BufferedExternalStream contentsLineEndConvention removed
	UTF-8 File and Directory name encoding
	Snapshot and leave running
	Partial URL Support
	Invoking External Process
	Parcel/Package Loading Discrepancies
	HandleRegistry Change

	GUI
	Hover Help
	Tree View
	PragmaticMenuItems Package
	VisualRow and VisualStack
	Expose VisualPart Properties API
	Add VisualPart>>superpartsDo: and derived APIs
	FrameExited/Entered announcements
	Graphics Clipping Outside OS Coordinate Bounds
	Reduction of UI Flicker

	Tools
	Refactoring Browser
	Assets
	Inspector Enhancements
	Improve automatic method categorization
	Improvements to the Debugger’s "browse" feature

	Database
	MySQL EXDI
	Client Setup Notes

	Scrollable Cursors

	Store
	Applying Bundle Blessing Comments
	New Blessing Levels
	User Server Timestamp for versions
	Retain History on Rename

	WebServices
	Internationalization
	Per-process Locale and Message Catalogs

	Net Clients
	MIME Support
	Attachments
	Changes in handling of non-ascii characters in header fields
	Mail Archive Support
	Miscellaneous Cleanup
	Suppressing chunking for Http messages
	WebSupport
	Changed default cookie processing setting

	GLORP
	WebSphere MQ Interface
	Package MQ-XIF
	Fix namespace of various MQ XIF classes
	Fix invalid THAPI procedure definitions

	Package MQ-Domain
	Fixes
	Review use of literal constants defined by external MQ interfaces
	Extensions
	Removals

	Seaside Support
	What is Seaside?
	Seaside in VisualWorks
	Running Seaside with Object Studio 8
	Add-On Components
	Seaside-Resources
	Seaside-I18N

	Preview Components
	Seaside-SUnitToo
	Seaside-Glorp

	Opentalk
	Opentalk-Component-Base removed

	WebToolkit
	Extend support for subclassing HttpApplication, HttpSession, PageModel
	Implement reset for buffered responses

	DLLCC
	External-Interface-Pragmas Package

	Compression
	Documentation
	Basic Libraries Guide
	Tool Guide
	Application Developer’s Guide
	COM Connect Guide
	Database Application Developer’s Guide
	DLL and C Connect Guide
	DotNETConnect User’s Guide
	DST Application Developer’s Guide
	GUI Developer’s Guide
	Internationalization Guide
	Internet Client Developer’s Guide
	Opentalk Communication Layer Developer's Guide
	Plugin Developer’s Guide
	Security Guide
	Source Code Management Guide
	Walk Through
	Web Application Developer’s Guide
	Web GUI Developer’s Guide
	Web Server Configuration Guide
	Web Service Developer’s Guide

	Deprecated Features
	Virtual Machine
	Thunking DLLs
	MacOS 9

	User Interface
	InputSensor
	Notebook Widget

	Preview Components
	Universal Start Up Script (for Unix based platforms)
	Base Image for Packaging
	64-bit Image Conversion
	Tools
	Smalltalk Archives
	WriteBarriers
	Sparing Scrollbars
	Multithreaded COM
	COM User Defined Type (UDT) Support
	Unicode Support for Windows
	Scripting and Command Line Support
	Grid
	Store Previews
	Store for Access
	Store for Supra
	StoreForSupra installation instructions

	Security
	OpenSSL cryptographic function wrapper

	Opentalk
	Opentalk HTTPS
	Distributed Profiler
	Installing the Opentalk Profiler in a Target Image
	Installing the Opentalk Profiler in a Client Image

	Opentalk Remote Debugger
	Testing and Remote Testing

	Opentalk SNMP
	Usage
	Initial Configuration
	Broker or Engine Creation and Configuration
	Engine Use

	Entity Configuration
	MIBs
	Limitations
	Port 161 and the AGENTX MIB

	OpentalkCORBA
	Examples
	Remote Stream Access
	“Locate” API
	Transparent Request Forwarding
	Listing contents of a Java Naming Service
	List Initial DST Services

	Seaside Support
	Internet Browser Plugin
	International Domain Names in Applications (IDNA)
	Limitations
	USAGE

	Microsoft Windows CE
	Supported Devices
	Distribution contents
	Prerequisites
	Developing an Application for CE
	Filenames
	DLL names
	Window sizes and options
	Input devices
	.NET access

	Deploying on a CE Device
	Starting VisualWorks on CE
	Known limitations
	Sockets
	File I/O
	Windows and Graphics
	User primitive

	Installer Framework
	Customizing the install.map File
	Dynamic Attributes
	Components
	License

	Customizing the Code
	Creating Component Archives

	Local Installations
	Remote installations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

