
Cincom Smalltalk™

Basic Libraries Guide
P46-0146-02

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

© 1995–2008 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0146-02

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of
Object Technology International, Inc. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995–2008 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book xiii

Overview ... xiii
Audience ... xiv
Conventions .. xiv
Getting Help .. xv
Additional Sources of Information .. xvii

Chapter 1 Collections

Overview ..1-1
Choosing the Appropriate Class ..1-1

Set ...1-2
Bag ..1-3
Array ..1-3
Interval ..1-3
OrderedCollection ...1-3
SortedCollection ..1-4
List ...1-4
LinkedList ..1-4
Dictionary ..1-4

Creating a Collection ..1-5
Adding Elements ..1-6

Adding an Element to a Collection ..1-7
Inserting an Element at a Specific Location ..1-7
Adding a Collection of Elements ...1-8
Expanding an Array ...1-9

Removing Elements ...1-9
Removing a Subcollection ...1-10
Removing an Element or Range of Elements by Index1-10
Removing All Elements That Pass a Test ..1-11
Removing an Association from a Dictionary ...1-11
Removing an Element from an Array ..1-11

Replacing Elements ...1-12
Replacing Individual Elements ..1-12
Basic Libraries Guide iii

Contents
Replacing All Elements ... 1-12
Replacing Specified Elements .. 1-13
Replacing All Occurrences of an Object ... 1-13
Replacing a Subcollection .. 1-14

Copying Elements .. 1-14
Copying a Subcollection ... 1-15
Concatenating Two Collections ... 1-15
Subtracting One Set from Another .. 1-15

Testing Collections ... 1-16
Equality and Identity ... 1-16
Getting the Number of Elements .. 1-16
Getting the Capacity ... 1-17
Testing for Emptiness ... 1-17
Testing for the Presence of an Object ... 1-17

Retrieving Elements .. 1-18
Getting the Element at an Index ... 1-18
Finding the Index of an Object .. 1-18
Finding a Subcollection by Index .. 1-18
Getting the Value at a Key .. 1-19
Retrieving an Object by Relative Position ... 1-19
Finding Elements That Pass or Fail a Test .. 1-20

Sorting a Collection ... 1-21
Converting Collection Types .. 1-22
Looping through the Elements (Iterating) .. 1-22

Looping by Index or Key ... 1-23
Collecting the Results of the Processing .. 1-24
Looping through Two Parallel Collections ... 1-24

Chapter 2 Streams

Overview .. 2-1
Stream Class Hierarchy .. 2-1
Basic Protocol ... 2-2

Instance Creation ... 2-2
Positioning ... 2-3
Reading ... 2-4
Writing ... 2-5
Closing a Stream ... 2-6

Internal Streams .. 2-7
Creating an Internal Stream ... 2-7
Reading and Writing Internal Data ... 2-8

Reading and Writing Past the End of Data 2-9
Writing and Immutable Objects .. 2-9
iv VisualWorks

Contents
External Streams ...2-10
Creating an External Stream ...2-10
Reading and Writing External Data ...2-11

Buffered Reading and Writing ..2-12
Reading and Writing Past the End of Data2-12
Positioning ..2-13

Encoded Streams ...2-13
Line-end Conventions ...2-14
Encodings ...2-15

Encoding a Stream ...2-16
Reading and Writing ...2-16
Positioning on an Encoded Stream ..2-17

Stream Compression ...2-17
Stream Exceptions ...2-18
Random Numbers ..2-19

Chapter 3 Numbers

Overview ..3-1
Numbers ...3-1

Creating a Number ..3-2
Arithmetic Operations ..3-3
Rounding and Truncating ..3-4
Comparing Numbers ...3-4
Testing Numbers for Properties ...3-5
Converting Object Type ...3-5
Mathematical Functions ..3-6

Factoring ..3-6
Trigonometric Functions ...3-6
Logarithmic Functions ..3-7

Numeric Constants ..3-7
Zero ..3-7
Unity ...3-7
Pi ..3-8

Complex Numbers ...3-8
Creating an Instance ...3-8
Protocol Summary ...3-9

Metanumbers ...3-9
Infinity Class ..3-10

Creating an Instance of Infinity ...3-10
Protocol Summary ..3-10
Basic Libraries Guide v

Contents
Infinitesimal Class ... 3-11
Creating an Instance of Infinitesimal .. 3-11
Protocol Summary ... 3-11

NotANumber Class ... 3-11
Creating an Instance of NotANumber .. 3-12
Protocol Summary ... 3-12

SomeNumber Class ... 3-12

Chapter 4 Dates and Times

Dates ... 4-1
Creating a Date .. 4-1
Getting Information about a Day ... 4-3
Adding and Subtracting with Dates ... 4-3
Comparing Dates .. 4-3
Formatting a Date ... 4-4

Times ... 4-5
Creating a Time .. 4-5
Getting the Seconds, Minutes, and Hours .. 4-6
Adding and Subtracting Times .. 4-6
Creating a Time Stamp ... 4-6

TimeZone .. 4-7

Chapter 5 Graphical Images

Color Depth and Images ... 5-1
Creating a Graphic Image ... 5-2

Using the Image Editor .. 5-2
Reading an Image from a File ... 5-3
Capturing an Image from the Screen ... 5-3
Creating a Bitmap Manually ... 5-4

Displaying an Image ... 5-4
Creating a Display Surface Bearing an Image 5-5

Caching an Image .. 5-5
Coloring Pixels in an Image .. 5-5

Changing Color by Color Value .. 5-6
Changing Color by Numeric Value ... 5-6

Masking an Image .. 5-7
Creating a Mask ... 5-7
Masking a Rectangular Area ... 5-8
Masking a Nonrectangular Area .. 5-9

Modifying an Image .. 5-9
Expanding or Shrinking an Image .. 5-10
Flopping an Image ... 5-10
vi VisualWorks

Contents
Rotating an Image ..5-11
Overlaying Images ...5-12

Chapter 6 Working with Geometric Objects

Introduction ..6-1
Geometric Objects ...6-2

Rectangles ..6-2
Creating a Rectangle ...6-2
Getting and Setting a Rectangle’s Dimensions6-3
Moving a Rectangle ..6-5
Testing Rectangle Relations ...6-5

Lines ..6-6
Polylines and Polygons ...6-7
Arcs and Ellipses ...6-8
Circles and Dots ..6-10
Curved Lines ...6-12

Drawing a Geometric Object ..6-13
Drawing Style Display Messages ..6-14
Using a Drawing Style Wrapper ..6-14
Drawing Transient Shapes ..6-15

Transformations on Geometrics ...6-16
Storing Graphic Attributes ..6-16

Chapter 7 Working with Text

Characters ..7-1
Creating Characters ..7-1
Testing Character Types ..7-2
Comparing Characters ..7-3

Strings ..7-3
Creating a String ...7-3
Changing Characters in Place ..7-4
Changing the Case in a String ..7-5
Getting a String’s Length and Width ..7-6
Combining Strings ...7-6
Comparing Strings ..7-7

Testing for Equality and Identity ...7-7
Comparing by Sorting Order ..7-8
Rating the Similarity of Two Strings ..7-8

Searching ..7-9
Get the Index of a Character in a String ...7-9
Ignoring Case in a Search ..7-10

Substring Operations ..7-10
Basic Libraries Guide vii

Contents
Copying a Substring .. 7-11
Copying a Prefix .. 7-11
Removing or Replacing a Substring .. 7-11
Replacing a Substring ... 7-11
Replacing All Occurrences of a Substring 7-12
Tokenizing Substrings .. 7-13

String Substitution Parameters ... 7-13
Abbreviating a String .. 7-15

Contracting a String ... 7-15
Removing Vowels .. 7-15

Inserting Line-End Characters .. 7-15
Formatted Text and Fonts .. 7-16

Creating a Formatable Text Object ... 7-16
Displaying a Text Object ... 7-17
Controlling Line Length ... 7-17

Setting Line Length .. 7-17
Controlling Word Wrap .. 7-18

Controlling Line Format .. 7-19
Setting Alignment ... 7-19
Setting Indents ... 7-19
Setting Tab Stops ... 7-19

Printing a Text Object .. 7-20
Text String Operations .. 7-21

Counting Characters .. 7-21
Search for Text ... 7-21
Replacing Text ... 7-21
Comparing Text Objects .. 7-22
Copying a Range of Text .. 7-22

Character Formatting ... 7-23
Applying Character Variations .. 7-24

Applying Boldfacing and Other Emphases 7-24
Applying Color to Text .. 7-24
Changing Font Size ... 7-25
Applying Formats on a Text Stream ... 7-25

Defining Text and Character Styles ... 7-27
Using the Platform Default Font ... 7-27
Defining a Custom Text Style ... 7-28
Set text typeface family .. 7-29
Setting Font Family or Name ... 7-30

Setting the Font by Family .. 7-30
Setting the Font by Name ... 7-31

Defining Custom Sizes .. 7-32
Setting Font Pixel Size ... 7-32
viii VisualWorks

Contents
Creating a Scaled Text Style ..7-33
Defining an Emphasis for a Custom Size7-34
Adjusting the Line Spacing and Baseline7-35

Adding a Custom Font to the Fonts Menu ...7-36
Changing the Default Font ..7-36
Setting the Preferred Font Family ..7-37
Setting the Preferred Font Pixel Size ..7-37

Chapter 8 Colors and Patterns

Colors and Patterns ...8-1
Pixel Coverage ..8-1
Creating a Color ..8-2

Create by Color Name ..8-2
Create by Red, Green, and Blue Values ..8-3
Coloring a Graphical Object ...8-5

Creating a Pattern ...8-5
Applying a Pattern ..8-6
Adjusting a Pattern’s Tile Phase ...8-6

Image Color Palettes ..8-7
Coverage Palettes ...8-7
Color Palettes ..8-7

Creating a Color Palette ...8-8
Eight-bit Color Palettes ...8-8
Image Display Performance ...8-8

Device Color Map ..8-9
Applying a Palette to an Image ...8-9
Converting an Image to Use the Default Palette8-10

Color Rendering Policies ..8-11
NearestPaint ..8-11
OrderedDither ...8-11
ErrorDiffusion ..8-12
Applying a Renderer to an Image ...8-12

Converting an Image to a Specific Palette8-13
Setting the Rendering Policy for Nonimage Graphics8-14

Chapter 9 Socket Programming

Introduction ..9-1
Socket Basics ...9-2

VisualWorks Implementation Classes ...9-2
Creating a socket ..9-2
Making a client or server socket ..9-3
Closing a socket ..9-5
Basic Libraries Guide ix

Contents
Port numbers .. 9-5
Building a TCP socket client ... 9-6
Building a TCP socket server ... 9-7
Building UDP socket clients and servers .. 9-9

Connected UDP ... 9-10
Reading from and Writing to a Socket ... 9-11

Stream Style Communication ... 9-11
Positioning on a Stream .. 9-12
Line-end conversion ... 9-13
Waiting for data ... 9-14
Read/Write Style Communication ... 9-15
SendTo:/ReceiveFrom: style communication .. 9-18

Send/Receive Flags ... 9-19
Socket Error Handling .. 9-20

Trapping socket and protocol errors .. 9-23
Option level control .. 9-24
Solving Common Socket Problems ... 9-25

How do I avoid the ‘Address in use’ error? ... 9-25

Chapter 10 XML Framework

Overview .. 10-1
Working with XML Documents ... 10-1

Parsing an XML Document ... 10-2
Validating Against a Schema .. 10-3
Selecting a XMLParser Driver ... 10-3

Accessing XML Document Elements .. 10-4
Get Document Root Element .. 10-5
Selecting Elements ... 10-6
Selecting Attributes ... 10-7

Building a Document ... 10-8
Create a Basic Document ... 10-8
Node Ordering .. 10-8
Add Element Nodes .. 10-9

Add a Root Element ... 10-9
Add Nested Elements .. 10-9
Adding Element Attributes ... 10-10
Adding Text .. 10-11

Add Processing Instructions ... 10-11
Writing the XML Document ... 10-12

Using XML Namespaces ... 10-13
Declare Namespaces ... 10-13
x VisualWorks

Contents
Applying a Namespace to an Element ..10-14
Assigning a Namespace to an Attribute ..10-16

Building a SAX Driver ...10-17
Handling SAX Events ..10-17
Configuring SAX Features and Properties ..10-19
Document Fragments ..10-21
Building a Fragment ..10-22
Parsing a Fragment ...10-22

XSL Stylesheet Processing ..10-23
Loading XSL Support ..10-23
Applying a Stylesheet to a Document ...10-23

Using XPath ...10-25
Creating a Path Expression ...10-25
Applying an XPath Expression ..10-27
Selecting Nodes with an XPath ...10-27

XML Error Handling ..10-28

Chapter 11 Parser Compiler

Overview ..11-1
Standard Parser-Compiler ..11-1

Scanner ...11-1
Parser ..11-2
Compiler ..11-2

Advanced Parser-Compiler ..11-3
Scanning Source Code ...11-4
Parsing ..11-4

A Rule has a Name and a Definition ..11-5
Rules are Similar to Methods ...11-6
Temporary Variables Can be Used ...11-6
A Rule Definition is a Series of Alternatives11-6
An Alternative is a Series of Terms ..11-7
A Term is an Action or a Unit-Plus-Qualifier11-9
A Unit is a Word, Terminal, or Parenthesized Definition11-9
A Terminal is a Single Token ..11-10
An Action is a Block or a Special Symbol11-11
Two Types of Block Syntax are Allowed11-12
Summary of Grammar for Parsing Methods11-13

Creating your Own Compiler ...11-13

Index Index-1
Basic Libraries Guide xi

Contents
xii VisualWorks

About This Book

Overview
This document, the VisualWorks Basic Libraries Guide, provides an
introduction to the content and use of several of the core class
hierarchies provided standard with VisualWorks. The descriptions provide
more than reference documentation, and are actually incomplete in that
regard. Instead, they introduce the main features supported by the
libraries and their use, providing a foundation for further explorations.

For complete reference style documentation, use SmalltalkDoc and
browse the hierarchies.

The libraries currently covered in this document are:

• Collections

• Streams

• Numbers

• Graphics

• Geometrics

• Colors

• Text and Fonts

• Sockets

• XML Framework

• The Parcer and Compiler

Additional libraries are covered in other documents.
Basic Libraries Guide xiii

About This Book
Audience

This guide assumes that you have at least a beginning familiarity with
object-oriented programming, Smalltalk, and the VisualWorks
environment. For most purposes, this background information is provided
by the Application Developer’s Guide.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Special Symbols
This book uses the following symbols to designate certain items or
relationships:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button
<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.
xiv VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Examples Description
Basic Libraries Guide xv

About This Book
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.
Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
xvi VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks

at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
Basic Libraries Guide xvii

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

About This Book
Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
xviii VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1

1
Collections

Overview
VisualWorks provides a wide variety of classes for operations involving
collections of objects. In addition to the conventional arrays, there are
bags, dictionaries, sets, linked lists, and more. These classes and
operations involving them classes are discussed in this chapter.

The first section describes several main collection classes. The variety of
collections is far richer than is covered here, however. Use a System
Browser to explore the collection classes when you need a special kind of
collection.

Iterative operations involving collections are discussed in detail in the
Application Developer’s Guide. A string of characters is also a collection
and shares much of the behavior of other collections. It is discussed as a
special case in Chapter 7, “Working with Text.”

Choosing the Appropriate Class
There are nine main kinds of collections. Three of them have specialized
variations. A brief description of each collection class follows, proceeding
from the simplest to the more complex. As a rule of thumb, choose the
simplest class that suits your purpose.

Collection class Distinguishing features

Set Discards duplicate elements

Bag Tallies duplicates

Array Integer index (and fastest access)

Interval Integer elements in progression
Basic Libraries Guide 1-1

Collections
The following decision tree provides a quick reference when making such
a choice..

Collection Class Decision Tree

Set
A Set is about as close to a generic collection as you can get. No index.
No sorting. It does discard duplicates, which is often useful. The fact that
an instance of Set has only one special capability should not distract you
from the fact that the generic behavior it inherits, as described in later
sections of this chapter, includes powerful mechanisms for manipulating
elements of a data set.

OrderedCollection Integer index; preserves the order in which
elements are added

SortedCollection Integer index; elements are sorted by user-
defined algorithm (ascending order is
default)

LinkedList Each element points to the next element,
for maximum efficiency of dynamic lists

Dictionary Noninteger index; each element consists of
a key-value pair for dictionary-like lookups

Collection class Distinguishing features

Keyed

Integer key

Adds allowed

Sorted

Duplicates

SortedCollection

Array

OrderedCollection
LinkedList

Dictionary Bag Set

allowed

Y

NY

Y

Y

Y

N

N

N

N

1-2 VisualWorks

Choosing the Appropriate Class
An IdentitySet is identical in all respects, except that it uses == for
comparisons instead of =.

Bag
An instance of Bag is like a Set, except that it counts the duplicate. For
each element in a Bag there is also a tally of the occurrences of that
object. If each character in the word collection were an element in a Bag,
for example, the tally for the element $c would be 2. Bag does not create a
new element for a duplicate, but increments the counter the item.

Array
Array allows you to maintain relative positions of elements, via an integer
index. In our collection example, $e can be identified by its external key,
the integer 5. (In a Set or a Bag, by contrast, the position of $e is
unpredictable.) As another example, if a customer name were to be
stored as a collection of three elements—first, middle, and last names—
it would make sense to use an Array rather than a Set because the
relative positions of the elements must be preserved.

A RunArray provides efficient storage for situations in which a value is
repeated consecutively over long stretches of an array. For example, the
font information for a block of text is a likely candidate—a roman font
would be used for many sequences of elements in the array (letters in the
text), with occasional bursts of italic, bold, etc. Although RunArray
responds to the same messages as Array, its internal representation
avoids waste by storing an element only if it differs from the preceding
element, along with a tally of that element’s repetitions.

A ByteArray provides space-efficient storage for bytes. Its elements are
restricted to the set of SmallIntegers from 0 to 255. WordArray is for
manipulating 16-bit words; its elements can be integers from 0 to 65535.

Interval
An Interval is a finite arithmetic progression, such as the series 2 4 6 8. It is
typically used to control an iterative loop, as described in the Application
Developer’s Guide.

OrderedCollection
An OrderedCollection, like an Array, has an integer index and accepts any
object as an element. Unlike Array, however, an OrderedCollection permits
elements to be added and removed freely. It is frequently used as a stack
(the last element in is the first one removed) or a queue (first in, first out).
Basic Libraries Guide 1-3

Collections
However, its uses extend farther because there are so many situations in
which ordering must be preserved as an arbitrary number of elements are
added.

SortedCollection
When elements are not added in the desired order, sorting is required.
SortedCollection provides that extra capability. By default, elements are
sorted in ascending order. You can override this default by specifying an
alternative sort algorithm enclosed in a block. For example, the
expression:

 SortedCollection sortBlock: [:x :y | x >= y]
creates a new collection whose elements will be sorted in descending
order.

List
A List represents a collection of elements explicitly ordered by the
sequence in which objects are added and removed. Elements are
accessible by their indices. Instances of List continue to extend the valid
range that can be indexed as elements are added. Lists propagate
change notices to their dependents. A List is generally used with GUI
widgets.

LinkedList
As its name suggests, a LinkedList is a collection in which each element
points to the next element. An OrderedCollection can accomplish the same
thing, but is less efficient in circumstances involving large numbers of
additions and deletions. For example, the ProcessorScheduler class makes
use of LinkedList to track the highly dynamic list of processes. LinkedList
achieves its efficiency in a way that prohibits its elements from belonging
to other collections at the same time.

Dictionary
The Dictionary class, instead of imposing an integer index on each
element, permits any object to be the external key. The result, as in the
familiar Webster’s dictionary, is a collection of key-value pairs. For
example, an element might consist of the word ‘object’ with the associated
definition ‘something solid that can be seen or touched’. Thus, each
element in a Dictionary is typically an instance of Association, which is a
key-value pair. The nil object is specifically excluded as a valid element.
1-4 VisualWorks

Creating a Collection
An IdentityDictionary is similar, except that it uses == for comparisons
instead of =. That is, the values in an IdentityDictionary are expected to be
literals or other unique objects that can be compared with the more
efficient identity operator (==)

Creating a Collection
Typically, you create an empty collection, and then add elements to it. All
collections respond to the new message, as shown here for
OrderedCollection.

| list |
list := OrderedCollection new.

list add: 'Leonardo';
add: 'Michelangelo';
add: 'Donatello';
add: 'Raphael'.

^list.
Note that add: returns the new element. Consequently, you do not want to
cascade the add: messages directly from the new message, as you might
be inclined to do. Or, if you do, conclude the cascade with yourself.

For an Array, which cannot add elements, it is necessary to specify the
size of the array. Each element is nil until replaced with another object.

| array |
array := Array new: 4.

array at: 1 put: 'Leonardo';
at: 2 put: 'Michelangelo';
at: 3 put: 'Donatello';
at: 4 put: 'Raphael'.

^array.
Other collections can be created with an initial size as well.

To create a collection filled with a filler object, send a new:withAll:
message to the desired collection class:

^Array new: 16 withAll: 0.
You can also create a collection by specifying up to four elements. This
approach is typically used to create a small array. Variations of the with:
message, for up to four elements, are provided in VisualWorks:
Basic Libraries Guide 1-5

Collections
| array |
array := Array

with: 'Leonardo'
with: 'Michelangelo'
with: 'Donatello'
with: 'Raphael'.

When an array contains only literal elements, such as numbers and
strings, you can also create the array using its literal form:

| array1 array2 |
array1 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
array2 := #(1 2 3 4)

Notice the use of # to indicate that a literal is being created.

Sometimes a new collection needs to be created from an existing
collection. For example, a non-growing array might need to be expanded
to accommodate more elements. Or a dictionary’s keys might be placed
in a list for sorting.

Send a withAll: message to the desired collection class, with an
expression yielding the elements of the old collection, for example:

OrderedCollection withAll: Smalltalk keys

Adding Elements
Different kinds of collections add elements in different ways. Most
collections will add an element when sent an add: message with an
element to add. Arrays are the exception, since they are restricted to the
number of elements with which they are created. A Dictionary always
adds a key-value pair.

Because the elements of a Set are each unique, adding an element that
already exists in the set results in no change; duplicates are omitted. A
Bag, on the other hand, adds duplicates without limit.

By default, an OrderedCollection adds new elements to the end of the
collection. You can also position the additional element at the beginning
of the collection, before a particular element, or before a particular index.
(A Set and a Dictionary do not keep their elements in an externally visible
order, so the notion of inserting a new element does not apply.)
1-6 VisualWorks

Adding Elements
Adding an Element to a Collection
You can add an element to most collections by sending an add: message
to the collection with an object as the argument. For ordered collections,
the default is to add the object at the end of the ordering. For classes
such as Set, there is no meaningful position.

| list |
list := OrderedCollection new.

list add: 'Leonardo';
add: 'Michelangelo';
add: 'Donatello';
add: 'Raphael'.

^list
To add an element to a Dictionary, send an at:put: message to the
dictionary. The first argument is the lookup key (typically but not
necessarily a Symbol). The second argument is the object to be
associated with the key.

| dict |
dict := Dictionary new.

dict at: #Leader put: 'Leonardo';
at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

^dict

Inserting an Element at a Specific Location
Collection classes which preserve order, such as OrderedCollection,
support protocol for inserting elements at specific positions.

The default position, where an object is added using the add: message, is
the end of the collection. It is sometimes helpful to make this position
explicit, in which case you can use the addLast: message.

To insert an element at the beginning of an ordered collection, send an
addFirst: message, which the new element as the argument.

To insert an element before or after a specific element already in the
collection, send an add:before: message or add:after: message to the
collection. The first argument is the element to be inserted. The second
argument is the element relative to which the insertion is to take place.
Basic Libraries Guide 1-7

Collections
To insert an element at a numbered position, send an add:beforeIndex:
message to the collection. The first argument is the element to be
inserted. The second argument is the index of the element before which
the insertion is to take place.

| list |
list := OrderedCollection new.

list add: 'Raphael';
addFirst: 'Leonardo';
add: 'Michelangelo' before: 'Raphael';
add: 'Donatello' beforeIndex: 3.

^list

Adding a Collection of Elements
When a collection is used to accumulate the contents of other collections,
additions can be made in batches by adding an entire collection. For
ordered collections, each batch can be inserted at a specific location.

To add all members of a collection to a collection, send an addAll:
message to the collection, with the collection of elements to be added as
argument. The receiving collection will determine any specific behavior.
For example, a Set will discard duplicate elements, and an
OrderedCollection will add all elements to the end of the collection.

For an ordered collection, the addAllFirst: message inserts all members of
the argument collection at the start of the collection. Similarly, List, which
is a subclass of OrderedCollection used primarily with widgets, defines the
addAll:beforeIndex: message inserts the collection before the position
specified by the second argument.

| sizes totalElements |
sizes := List new: 10000.

sizes addAll: (List allInstances collect: [:list | list size]).
sizes addAllFirst: (Dictionary allInstances collect: [:dict | dict size]).
sizes

addAll: (Array allInstances collect: [:array | array size])
beforeIndex: 2.

totalElements := 0.
sizes do: [:sz | totalElements := totalElements + sz].
^totalElements
1-8 VisualWorks

Removing Elements
Expanding an Array
Although an Array can contain only the number of elements with which it
was created, you can expand an array by creating a copy that has a new
element appended to it. The copy can then be substituted for the original.

To create the copy, send a copyWith: message to the Array. The argument
is the object that is to be appended to the end of the new array.

| array copy |
array := #(1 2 3 4 5 6 7 8 9).

copy := array copyWith: 10.
array := copy.
^array

Removing Elements
The basic method for removing an object from a collection is to send a
remove: message to the collection, with the object to be removed as
argument:

| list |
list := OrderedCollection withAll: ColorValue constantNames.

list remove: #red.
^list

If the specified object is not an element in the collection, an error results.
To supply an alternative action (including doing nothing) when the object
is not found, send a remove:ifAbsent: message to the collection. The first
argument is the object to be removed. The second argument is a block
containing the action or actions. An empty block is an effective means of
taking no action, so the process can continue without an error message
or other action.

| list |
list := OrderedCollection withAll: ColorValue constantNames.

list remove: #brickRed
ifAbsent: [Dialog warn: 'You must be kidding -- brickRed?'].

list remove: #moonbeam
ifAbsent: [].

^list
Basic Libraries Guide 1-9

Collections
Removing a Subcollection
The removeAll: message allows you to remove all members of one
collection from a target collection. Send removeAll: to the collection from
which you want elements removed. The argument is a collection
containing the elements to be removed.

| list |
list := OrderedCollection withAll: ColorValue constantNames.

list removeAll: #(#red #green #blue).
^list

If an element is not found, an error is reported.

Because removeAll: is defined in Collection, it can be used with any
collections as receiver and argument.

Removing an Element or Range of Elements by Index
Ordered collections provide several messages for removing a single
element at a specified position or a range of elements:

| list |
list := List new: 25.
1 to: 25 do: [:i | list add: i].

list removeFirst. "Removes 1"
list removeFirst: 5. "Removes 2 3 4 5 6"
list removeLast. "Removes 25"
list removeLast: 5. "Removes 20 21 22 23 24"
list removeFrom: 8 to: 12. "Removes 14 15 16 17 18"
^list

removeFirst Removes the first element in the collection.

removeFirst: Removes the number of elements specified by the
argument from the beginning of the list.

removeLast Removes the last element.

removeLast: Removes the number of elements specified by the
argument from the end of the list.

removeFrom:to: Returns an Array containing only elements
removed from the collection, from the starting index
(first argument) to the ending index (second
argument). Defined only for List.

removeFrom:to:
returnElements:

Same as removeFrom:to:, except that if the third
argument is false, nil is returned. This is used for
efficiency if the array is not needed.
1-10 VisualWorks

Removing Elements
Removing All Elements That Pass a Test
You can remove elements from any ordered collection based on a test,
by sending a removeAllSuchThat: message to the collection. The argument
is a block containing the test. The block must declare one argument
variable for the element to be tested.

| list |
list := OrderedCollection withAll: ColorValue constantNames.

list removeAllSuchThat: [:name | name first == $r].
^list

Removing an Association from a Dictionary
To remove elements from a Dictionary, you remove the entire association
by sending a removeKey: message to the dictionary. The argument is the
key of the association that you want to remove. The removed value is
returned.

| dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

dict removeKey: #Member2.

dict removeKey: #Villain ifAbsent: [].
^dict

If the key is not found, an error results. To provide an alternative
response to the key-not-found condition, send a removeKey:ifAbsent:
message to the dictionary, with a block that specifies the action to take if
the key is not found. An empty block causes no action, which is the same
as silently ignoring the condition.

Removing an Element from an Array
To remove occurrences of an object from an array, you create a copy of
the array, omitting each occurrence of a specified object. Send a
copyWithout: message to the Array. The argument is the object to be
removed. The copy can then be substituted for the original array.

The copyWithout: message works for all ordered collections as well as
arrays.
Basic Libraries Guide 1-11

Collections
| array copy |
array := #(1 8 3 4 5 6 7 8 9).

copy := array copyWithout: 8.
array := copy.
^array

Replacing Elements
Replacing elements in a collection is useful when the collection has
sufficient structure so that its elements have a position. Indexed
collections, such as List and Array, have the right structure, as do keyed
collections, such as Dictionary. Unordered collections, such as a Set, do
not support replacing of elements, because there is no corresponding
notion of a location at which to make the replacement.

Replacing Individual Elements
Both keyed and indexed collections support an at:put: message for
replacing elements. For keyed collections, such as Dictionary, the first
argument is the lookup key. For indexed collections, such as List and
Array, the first argument is the index of the element to be replaced. For
both kinds of collection, the second argument is the object that is to
replace the old element.

| list dict |
dict := Dictionary new.
dict at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

list := List withAll: dict values.
list sort.

dict at: #Leader put: 'Rembrandt'.
list at: 1 put: 'Rembrandt'.

Replacing All Elements
Sequenced collections, such as List, Array, and OrderedCollection, allow
you to replace all elements with a single object by sending an atAllPut:
message to the collection. The argument is the object that is to replace all
existing elements. This is useful, for example, in reinitializing the
collection.
1-12 VisualWorks

Replacing Elements
| list |
list := List new.
1 to: 10 do: [:number | list add: number].

list atAllPut: 0.
^list

Replacing Specified Elements
Sequenced collections, such as List, Array, and OrderedCollection, allow
replacing several specified elements with a single object by sending an
atAll:put: message to the collection. The first argument is a collection
containing the index numbers of the elements to be replaced. The
second argument is the object to be placed in those slots.

| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list atAll: #(1 3) put: 'bloodRed'.
^list

Replacing All Occurrences of an Object
Sequenced collections, such as List, Array, and OrderedCollection, allow
replacing of all occurrences of a specified object with another object by
sending a replaceAll:with: message to the collection. The first argument is
the object whose occurrences you want to replace. The second argument
is the replacement object.

| list |
list := List new.
list

add: 'red';
add: 'ghoulishGreen';
add: 'red';
add: 'blackAndBlue'.

list replaceAll: 'red' with: 'bloodRed'.
^list
Basic Libraries Guide 1-13

Collections
Replacing a Subcollection
Sequenced collections, such as List, Array, and OrderedCollection, allow
replacing an interval of objects with objects from another sequenced
collection by sending a replaceFrom:to:with:startingAt: message to the
collection. The first and second arguments are index numbers identifying
the replacement range. The with: argument is a collection containing the
new elements. The startingAt: argument is the index number in the new
collection at which to begin copying the replacement elements.

| mainList replacements |
mainList := #(1 2 3 4 5 6 7 8 9).
replacements := #(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1).

mainList
replaceFrom: 1
to: mainList size
with: replacements
startingAt: 7.

^mainList

Copying Elements
A collection, like any other object, can provide a copy of itself in response
to being sent a copy message. The result is a new object which is a
complete copy of the original.

| dict1 dict2 |
dict1 := Dictionary new.
dict1 at: #Leader put: 'Leonardo';

at: #Member1 put: 'Michelangelo';
at: #Member2 put: 'Donatello';
at: #Member3 put: 'Raphael'.

dict2 := dict1 copy.
You can then modify the copy without affecting the original.

Note, however, that the effect of making changes to the elements of the
collections, rather than to the collections themselves, is different for literal
and non-literal elements. Literal elements, such as numbers and strings,
can be modified in one collection without affecting the other.
1-14 VisualWorks

Copying Elements
For a non-literal element, however, the collections hold the same object,
not copies. Any changes to the object in one collection are reflected in
the other as well. If you do not want this effect of the copy, you can
replace each element with a copy of itself. Since this is a change to the
collection itself, the change will not affect the copy.

Copying a Subcollection
For sequenced collections, such as List, Array, and OrderedCollection, send
a copyFrom:to: message to copy a segment of the collection. The first
argument is the starting index of the range you want to copy, and the
second argument is the ending index.

| list copy |
list := List new.
1 to: 10 do: [:number | list add: number].

copy := list copyFrom: 1 to: 3.
^copy

Concatenating Two Collections
Like strings, sequenced collections, such as List, Array, and
OrderedCollection, can be concatenated using the , (comma) message.
The argument is another sequenced collection. A new collection is
returned, of the same type as the first collection, containing the elements
of both collections.

| list array combinedList |
list := List withAll: ColorValue constantNames.
array := #(#bloodRed #ghoulishGreen #blackAndBlue).

combinedList := list, array.
^combinedList

Subtracting One Set from Another
Instances of Set (and its subclasses) understand subtraction. Send a –
(minus) message to the set with another set as the argument. A similar
type of collection is returned, containing the elements that occur in the
first set but not the second.

| set1 set2 |
set1 := Set withAll: ColorValue constantNames.
set2 := set1 select: [:name |

(name indexOfSubCollection: 'light' startingAt: 1) > 0].

^set1 - set2
Basic Libraries Guide 1-15

Collections
Testing Collections
It is useful to be able to test collections for a variety of properties. The
following sections describe a number of useful tests. For others, browse
the collection classes.

Equality and Identity
One collection is equal (=) to another collection if it is the same type of
collection, has the same number of elements, and all of the elements are
equal.

This example shows that a copy is equal, but a copy with one changed
element is not equal.

| list1 list2 test1 test2 |
list1 := List withAll: ColorValue constantNames.
list2 := list1 copy.

test1 := list1 = list2. "true"

list2 at: 1 put: #burntOrange.
test2 := list1 = list2. "false"

Testing for identity (==) determines whether two collections are the same
object. While this is a very fast test, it is seldom used since two distinct
collections will fail the test even if they are of the same type, have the
same number of elements, and all of their elements are the same.

Getting the Number of Elements
To get the number of elements in an collection, send a size message to
the collection. The return value is an integer.

| array |
array := ColorValue constantNames.
^array size

To get the number of occurences of a specific object, send an
occurencesOf: message:

'This is a test' occurrencesOf: $e
1-16 VisualWorks

Testing Collections
Getting the Capacity
Each position in which an element can be stored is known as a slot. A
collection often has more slots than elements to avoid having to expand
the collection each time a new element is added. To get the number of
slots in a collection, send a capacity message to the collection. The return
value is an integer.

| set |
set := Set withAll: ColorValue constantNames.
^set capacity

Testing for Emptiness
Frequently, it is useful to know whether a collection is empty of elements.
To test for emptiness, send an isEmpty message to the collection. The
response is true when the collection has no elements and false otherwise.

| list |
list := List allInstances.

list isEmpty
ifFalse: [^list first]

Similarly, you can test whether the collection is not empty by sending a
notEmpty message.

Testing for the Presence of an Object
Any collection will answer whether it includes a specific object in
response to the includes: message. It will answer true if it includes the
object, and false otherwise. A Dictionary will respond to the more specific
includesKey: and includesAssociation: messages.

A collection will also answer the number of instances of an object in
response to an occurrencesOf: message. The returned value is an integer,
zero if the object is not found.

| list found1 found2 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

found1 := list includes: #red.
found2 := list occurrencesOf: #red.

^Array with: found1 with: found2
Additional messages for testing the presence of an object are contains:,
allSatisfy:, and anySatisfy:.
Basic Libraries Guide 1-17

Collections
Retrieving Elements
Indexed and keyed collections are useful for storing objects that can then
be retrieved by index or key. The following sections describe methods for
retrieving objects from a collection.

Getting the Element at an Index
Indexed collections, such as List or Array, return the object stored at an
indexed position in response to the at: message. The argument is an
index number. If the object is not found, zero is returned.

| list |
list := List withAll: Smalltalk classNames.

^list at: 1

Finding the Index of an Object
The reverse operation, finding an index at which a known value is stored,
is sometimes useful. To find the index of an object, send a indexOf:
message to the collection. The first argument is the object whose index is
to be found.

To search a subset of a List or Array, send a nextIndexOf:from:to: message.
The second and third arguments are indexes that define the search
range. The returned index is relative to the beginning of the collection.

To search backward from the end, send a lastIndexOf: message. The
index of the last occurrence is returned, or zero if none exists. The
returned index is relative to the beginning of the collection.

| list found1 found2 found3 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

found1 := list indexOf: #red.
found2 := list nextIndexOf: #red from: 2 to: 6.
found3 := list lastIndexOf: #red.

Finding a Subcollection by Index
To find the starting index of a collection within a sequenced collection,
send an indexOfSubCollection:startingAt: message to the collection. The first
argument is the subcollection to be found, which need not be the same
type of collection. The second argument is the index number at which the
search is to begin. The returned index number is relative to the beginning
of the collection. If the subset is not found, zero is returned.
1-18 VisualWorks

Retrieving Elements
| list subset found |
list := List withAll: #(#red #green #blue #red #yellow #blue).
subset := #(#red #yellow #blue).

found := list indexOfSubCollection: subset startingAt: 1.
^found

Getting the Value at a Key
A Dictionary returns the value for a specified lookup key in response to the
at: message. The argument is the key.

By default, an error results if the key does not exist. To specify an
alternative action, send the send an at:ifAbsent: message. The second
argument is a block containing actions to be taken if the key does not
exist.

| dict found1 found2 |
dict := Smalltalk.

found1 := dict at: #List.
found2 := dict at: #UnlikelyClassName ifAbsent: [nil].

^Array with: found1 with: found2
The reverse operation, finding a key at which a known value is stored, is
sometimes useful. To find the index of an object, send a keyAtValue:
message to the collection. The first argument is the object whose index is
to be found.

Retrieving an Object by Relative Position
A sequenced collection can find the element that is either before or after
a specified object, as well as the first and last objects in a collection,
using these methods.

before: Returns the object before the specified object. An
error occurs if the reference element is the first
element.

after: Returns the object after the specified object. An
error occurs if the only occurrence of the reference
element is the last element.

first Returns the first object in the collection.

last Returns the last object in the collection.
Basic Libraries Guide 1-19

Collections
| list first last found1 found2 |
list := List withAll: #(#red #green #blue #red #yellow #blue).

first := list first.
last := list last.
found1 := list before: #blue.
found2 := list after: #yellow.

Finding Elements That Pass or Fail a Test
Three methods are available for generating a collection based on
success or failure of a test condition. The result is a collection containing
just those elements that satisfy the test. The test is a block declaring one
argument which takes elements from the source collection for testing.

| list found1 found2 found3 |
list := List withAll: Smalltalk classNames.

"Select classes with 'Example' in their names."
found1 := list

select: [:nextElement |
(nextElement indexOfSubCollection: 'Example'

startingAt: 1) > 0].

"Reject classes with 'Example' in their names."
found2 := list

reject: [:nextElement |
(nextElement indexOfSubCollection: 'Example'

startingAt: 1) > 0].

"Detect the first class beginning with 'R'."
found3 := list

detect: [:nextElement | nextElement first == $R]
ifNone: [0].

^Array with: found1 with: found2 with: found3

select: Returns a collection of elements that pass the test.

reject: Returns a collection of elements that fail the test.

detect:ifNone: Returns the first element that passes the test. The
second argument is a no-argument block
containing the action to perform if no element
passes the test.
1-20 VisualWorks

Sorting a Collection
Sorting a Collection
Sorted collections can rearrange themselves either in ascending order or
according to a specified sort criterion. A List has a simplified form of the
sorting messages.

The sort messages assume that the elements respond to < and =
messages, which are used to compare elements during the sorting.

Sort criteria are specified in a block containing the test for determining
whether one element comes before another. The block is given two
elements to compare, and is expected to answer true when the first
element should precede the second element.

Arbitrary collections are sorted by first being converted to an instance of
SortedCollection.

| array1 sort1 array2 sort2 |

array1 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort1 := array1 asSortedCollection.

array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
sort2 := array2 asSortedCollection: [:name1 :name2 | name1 > name2].

^Array with: sort1 with: sort2.

asSortedCollection Returns a new collection as an instance of
SortedCollection, with the collection’s elements in
ascending order.

asSortedCollection: Returns a new collection as an instance of
SortedCollection, with the collection’s elements
sorted according to the specified sort criteria.

sort Defined for List, and returns a list with the
elements sorted into ascending order.

sortWith: Defined for List, and returns a new list with the
elements sorted according to the specified sort
criteria.

reverse Returns a new collection of the same kind, but
with the elements in reversed order.
Basic Libraries Guide 1-21

Collections
Converting Collection Types
The Collection class defines several methods for creating a specific kind of
collection from any other kind of collection. The result is a new collection
of the specified kind. The original collection remains unchanged. Since
these conversion methods are defined in Collection, they work for all
collection types.

| array list |
array := ColorValue constantNames.

list := array asList.
^list.

When converting an unordered collection, such as a Set or Dictionary, to
an ordered collection, an order is imposed. One practical implication of
this is that a later conversion of the same collection may return a
collection with the elements in a different order, making it unequal to the
first conversion.

When a Dictionary is converted, its keys are ignored and the new
collection contains only its values.

The following are a few of the conversion methods. Browse the Collection
class converting protocol for additional methods.

Looping through the Elements (Iterating)
It is common for an application to perform a set of actions for each
element in a collection. For example, a sales processing application
might want to generate a packing slip for each element in a list of sales
orders. To create a loop that repeats a series of steps for each element in
a collection, send a do: message to a collection. The argument is a block
that performs a series of operations on an element. The block declares
one argument variable to hold the element being processed.

asArray returns an Array

asBag returns a Bag

asList returns a List

asOrderedCollection returns an OrderedCollection

asSet returns a Set
1-22 VisualWorks

Looping through the Elements (Iterating)
| list color |
list := List withAll: ColorValue constantNames.
list sort.

list do: [:colorName |
Transcript show: colorName asString; cr.
color := ColorValue perform: colorName.
Transcript

show: color red printString;
tab;
show: color green printString;
tab;
show: color blue printString;
cr; cr].

Occasionally the elements in a collection need to be processed in reverse
order, starting with the final element and proceeding toward the first
element. To do this, use the reverseDo: message instead of do:.

Additional variations of do: are available, as are other special-purpose
enumerator methods.

Looping by Index or Key
For indexed collections (such as List and Array) and keyed collections
(Dictionary), it is common to loop on the index or key instead of the values.
This is especially useful with dictionaries, whose values are sometimes
meaningless without the associated keys.

To loop on the index or key, send a keysDo: message to the collection.
The argument is a block that performs a series of operations on each
element. The block is expected to declare one argument variable to hold
the element to be processed.

To loop on the collection and process using both the key or index and the
value, send a keysAndValuesDo: message to the collection. The argument
is a two-argument block that performs a series of operations on the key
and associated value for each element.
Basic Libraries Guide 1-23

Collections
| dict randomGenerator gc randomX randomY colorValue |
randomGenerator := Random new.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 300@400)

graphicsContext.

dict := Dictionary new.
ColorValue constantNames do: [:colorName |

colorValue := ColorValue perform: colorName.
dict at: colorName put: colorValue].

dict keysDo: [:colorName |
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
colorName displayOn: gc at: (randomX @ randomY)].

dict keysAndValuesDo: [:colorName :color |
randomX := randomGenerator next * 300.
randomY := randomGenerator next * 300.
gc paint: color.
colorName displayOn: gc at: (randomX @ randomY)].

Collecting the Results of the Processing
Frequently the results of iterating on a collection create related objects
that need to be collected in a new collection. The collect: message is a
shorthand way of doing this. The effect is the same as iterating with do:
and explicitly creating the new collection.

| list capitalizedName initial |
list := List withAll: ColorValue constantNames.
list sort.

list collect: [:colorName |
capitalizedName := colorName asString.
initial := (capitalizedName at: 1) asUppercase.
capitalizedName at: 1 put: initial.
capitalizedName].

Looping through Two Parallel Collections
Often two collections need to be processed in tandem. The with:do
message passes corresponding elements from two ordered collections
into a two-argument block. The first argument is a second ordered
collection. The second argument is a two-argument block that performs a
series of operations on a pair of elements, one from each of the two
collections. (The example creates key-value pairs for a dictionary, taking
the keys from one array and the associated values from a second array.)
1-24 VisualWorks

Looping through the Elements (Iterating)
| array1 array2 dict |
array1 := #(#Leader #Member1 #Member2 #Member3).
array2 := #('Leonardo' 'Michelangelo' 'Donatello' 'Raphael').
dict := Dictionary new.

array1 with: array2 do: [:array1Element :array2Element |
dict at: array1Element put: array2Element].

^dict
Basic Libraries Guide 1-25

Collections
1-26 VisualWorks

2
Streams

Overview

Streams provide a general access mechanism for any sequencable data,
regardless of the source of that data. Streams are used to read from and
write to both internal and external data structures.

Stream Class Hierarchy
Object

Stream
PeekableStream

EncodedStream
PositionableStream

ExternalStream
BufferedExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream
InternalStream

ReadStream
WriteStream

ReadWriteStream
TextStream

Random
FastRandom
MinumumStandardRandom

The Stream hierarchy contains several abstract classes. In the above lists,
only classes shown in bold are actually instantiated.
Basic Libraries Guide 2-1

Streams
The major division of functionality is between internal and external
streams. Internal streams operate on collections that are purely internal
to VisualWorks. External streams operate on collections from an external
data sources, such as files and network connections. ExternalStream and
InternalStream are implemented as subclasses of PositionableStream, which
provides the ability to maintain a position within the stream.

Within those major divisions are classes providing read and write access
to the data source. Write access is not permitted to all data sources, or is
limited to appending data.

EncodedStream is a wrapper class for streams on which an “encoding” has
been specified. Encodings specify how characters are represented as
byte values. Because of the wide variety of sources for external data,
external streams are almost always wrapped in EncodedStream by the
system upon creation. Internal streams, on the other hand, hardly ever
need to deal with encodings. See “Encoded Streams” on page 2-13 for
more information.

TextStream is useful for writing text with emphases on a stream.

Random and its subclasses provide pseudo-random numeric values on a
stream.

Basic Protocol
Specific behavior of streams depends on the data. However, the Stream
hierarchy polymorphically defines a consistent protocol for basic stream
operations.

Instance Creation
Streams are not created with the usual new message, but instead using
on: and similar messages that identify the collection over which they
stream. The basic messages are:

on: aCollection
Returns a new stream of the receiver class type on aCollection as the
data source.

on: aCollection from: firstIndex to: lastIndex
Returns a new stream of the receiver class type on a copy of
aCollection from firstIndex to lastIndex.

The pointer is positioned at the beginning of the stream (position 0), so a
write operation will overwrite data starting at that point. In general, the
collection is not initialized, and no assumptions are made about the
availability of data, so the content of the collection is not reliable until the
first read operation.
2-2 VisualWorks

Overview
For internal streams for which it can be assumed that the collection is
already full, there are these additional creation messages:

with: aCollection
Returns a new stream of the receiver class type on aCollection as the
data source.

with: aCollection from: firstIndex to: lastIndex
Returns a new stream of the receiver class type on a copy of
aCollection from firstIndex to lastIndex.

The pointer is positioned at the end of the stream, past the last byte of
data.

Most often, however, you create the appropriate stream type by sending
one of the following messages to the collection or data source:

readStream
Returns an appropriate read-only stream type on the receiver.

writeStream
Returns an appropriate write-only stream type on the receiver.

readWriteStream
Returns an appropriate read-write stream type on the receiver.

readAppendStream
Returns an appropriate read-append stream type on the receiver.

For example, to open a read stream on a file, you would send a
readStream message to a Filename:

('../fileList.txt' asFilename) readStream
which creates an ExternalReadStream on the file.

Positioning
When first created, the stream position pointer is at the beginning of the
stream collection, which is position 0. Read and write operations advance
the pointer as described in those sections.

Any PositionalStream, of which the read and write streams are all
subclasses, reports its current position in response to this message:

position
Returns the current pointer position.

In a read or read-write stream, the pointer’s position in the stream can
also be set by sending this message. The position specified must be
within the stream’s current collection, or an error notification is invoked.
Basic Libraries Guide 2-3

Streams
position: anInteger
Set the position pointer to anInteger as long as anInteger is within the
bounds of the receiver's contents. If it is not, issue an error
notification.

For a read or read-write stream, you can position by reading through an
object, but without returning the contents.

reset
Set the position of the receiver to the beginning of its stream of
elements.

setToEnd
Set the position of the receiver to the end of its stream of elements.

skip: anInteger
Move the pointer anInteger positions from the current position.
anInteger may be positive or negative (but not less than -1 for
encoded streams).

skipThrough: anObject
Skips forward through the occurrence of anObject, leaving the
position following anObject. If successful, the stream itself is
returned. If the object is not found the stream is positioned at the end
and nil is returned.

skipThroughAll: aCollection
Skip forward to the next occurrence of aCollection, leaving the stream
positioned following aCollection, and answers the receiver. If
aCollection is not found the stream is positioned at the end and nil is
returned.

skipUpTo: anObject
Skip forward to the next occurrence, if any, of anObject. If not found,
answer nil. Leaves the stream positioned before anObject.

For non-read streams, these messages do not invoke an error, but neither
do they advance the pointer, because they do not have read access to
the stream.

Reading
The basic “read” message for streams is next, which returns the next
available object on the stream. Additional messages provide read
options.

When reading from a stream, the object at the current position is
returned, then the position pointer advances to the next object.

contents
Returns a copy of the receiver's collection from 1 to readLimit.
2-4 VisualWorks

Overview
next
Returns the object at the current position, then advances the pointer.

next: anInteger
Returns the next anInteger objects from the stream.

nextAvailable: anInteger
Returns the next anInteger elements of the receiver. If there are not
enough elements available, returns as many as are available.

through: anObject
Returns a subcollection of the receiver from the current position to
and including the first occurrence of anObject. If there are no
occurrences, then returns through the end of the receiver.

peekFor: anObject
Returns a Boolean indicating whether the next object on the stream is
the same as (=) anObject. If false, does not advance the pointer; if
true, advances the pointer.

throughAll: aCollection
Returns a subcollection of the receiver from the current position to
and including the first occurrence of aCollection in the receiver. If
there are no occurrences, then returns through the end of the
receiver.

upTo: anObject
Returns a subcollection of the receiver from the current position to
the occurrence, if any, of anObject. The stream is left positioned after
anObject. If anObject is not found, returns the entire remaining
stream contents, and leave the stream positioned at the end.

upToAndSkipThroughAll: aCollection
Returns a subcollection of the receiver from the current position up to
the occurrence, if any, of aCollection. The stream is left positioned
after the occurrence. If no occurrence is found, returns the entire
remaining stream contents, and leave the stream positioned at the
end.

upToEnd
Returns the entire remaining stream contents from the current
position up to the end of the stream.

Writing
The basic “write” message for streams is nextPut:, which writes its
argument value onto the stream at the current position.

nextPut: anObject
Put anObject at the next position in the receiver, and return anObject.
Basic Libraries Guide 2-5

Streams
nextPutAll: aCollection
Put each of the elements of aCollection starting at the current
position of the receiver and return aCollection.

next: anInteger put: anObject
Put anObject into the next anInteger elements of the receiver, and
return anObject.

When writing to a buffered external stream, such as a file stream, you
should send a commit message to make sure the buffer is flushed before
closing the stream, or any time you rely on written data to be available on
the stream.

The following messages insert text and control characters into a stream:

cr
Insert a carriage return.

crtab
Insert a carriage return and a single tab.

crtab: anInteger
Insert a carriage return followed by anInterger number of tabs.

space
Insert a space character.

tab
Insert a tab character.

lf
Insert a linefeed character.

print: anObject
Writes the printString representation of anObject on the stream.

Closing a Stream
For internal streams, there is no need to close the stream when you are
done with it. You can send a close message, but it does nothing.

For external streams, however, you should close the stream. This also
releases any external resource. Then, once the references to the stream
have all died, the resources can be reclaimed.
2-6 VisualWorks

Internal Streams
Internal Streams
Internal streams provide read/write access to collections within
VisualWorks, without any dependency on an external connection. For
example, Arrays or Strings whose elements you need to access
sequentially or randomly by position, can be read and written using an
internal stream.

Because the collection is internal, it can be assumed that the entire
collection is available upon creation of the stream. Access is not buffered,
so writes are immediate and flushing is not necessary. Also, internal
streams do not include encoding information. These conditions make
internal streams very simple to use.

Creating an Internal Stream
You can create a read, write, or read-write stream on any
SequenceableCollection by sending a readStream, writeStream, or
readWriteStream message to the collection. For example, assuming you
both want to be able to position in a stream, which requires reading, and
write to the stream, create a read-write stream on the collection:

array := Array with: $a with: $b with: $d with: $d.
readStrm := array readWriteStream.
readStrm position: 2.
readStrm nextPut: $c

You can have multiple read and/or write streams on a collection. This is
useful if you are reading and writing at different positions.

coll := 'This is a test' copy.
readStrm := coll readStream.
writeStrm := coll writeStream.

[readStrm atEnd] whileFalse: [
| char |
char := readStrm next.
writeStrm nextPut: char asUppercase].

^coll
In this example, using two streams avoids the need to reposition before
each write.

The above creation messages leave it to the collection to determine what
type of stream is appropriate for the object, which is generally the
preferred approach. However, two other instance creation methods, on:
and with:, are also useful.
Basic Libraries Guide 2-7

Streams
Using on: produces the same effect as readStream, writeStream, and
readWriteStream. For example, repeating the above:

coll := 'This is a test' copy.
readStrm := ReadStream on: coll.
writeStrm := WriteStream on: coll.

The pointer is set to the beginning of the collection.

Using with: differs by positioning the pointer at the end of the stream,
which is useful for appending data on a write stream.

coll := 'This is a test' copy.
writeStrm := WriteStream with: coll.
writeStrm nextPutAll: ' of the emergency broadcast system.'.
^writeStrm contents.

Reading and Writing Internal Data
The ability to read from or write to a stream depends on the kind of
stream. Read streams only allow reading, write streams only allow
writing, and read-write streams allow both.

Since positioning in a stream requires the ability to read from the stream,
the positioning messages are only supported by read and read-write
streams. So, if you need to position for write operations, use a read-write
stream.

The messages for reading and writing are described under “Basic
Protocol” on page 2-2. For internal streams, the use of these messages is
very straight-forward. A few further illustrations will suffice.

To read the next object on a read or read-write stream, send a next
message, which returns the object, if any, and moves the pointer ahead.
To read a number of successive objects, send a next: message with the
number of objects to return. The objects are returned in a Collection, and
the pointer is advanced past the last object.

| strm |
strm := ReadStream on: #(eliot dave sam bruce vassili tamara bob).
Transcript cr;

show: strm next printString; cr;
show: (strm next: 3) printString

Similarly, to write an object to the next position, overwriting any object
currently in that place, send a nextPut: message to the write or read-write
stream. To write a number of successive objects, send a nextPutAll:
message with the object to write as a collection.
2-8 VisualWorks

Internal Streams
| strm |
strm := WriteStream with: #(eliot dave sam bruce vassili tamara bob) copy.
strm nextPut: #kevin.
strm nextPutAll: #(alan sherry sean martin).
Transcript cr; show: strm contents printString; flush.

To ensure that your data is written, send a flush message to the internal
stream, as illustrated above.

Reading and Writing Past the End of Data
When reading through a collection with next, you eventually reach the
end. As illustrated above, you can test whether the position is at the end
by sending an atEnd message to the stream. The message returns true if
the position is at the end of the collection, and false otherwise.

Note that if you read past the end of the collection, the returned value is
nil. Because nil can be a legitimate member of a collection, testing for nil
is not suitable for testing the end of the stream.

When writing past the current end of a collection, the collection grows to
accommodate additional values. Note that, due to the growth algorithm,
the collection returned by sending collection to the stream might be
padded with nil, and so not be the collection you want. For example:

str := 'This is a test' copy.
rwstrm := str readWriteStream.
rwstrm setToEnd.
rwstrm nextPutAll: ' of the emergency broadcast system.'.

results in a string of 78 characters in length, rather than the 49 actually
required by the string. To get the correct result, you want the contents of
the stream, not the string.

str := 'This is a test' copy.
rwstrm := str readWriteStream.
rwstrm setToEnd.
rwstrm nextPutAll: ' of the emergency broadcast system.'.
rwstrm flush.
^rwstrm contents

Writing and Immutable Objects
Some collections are declared by VisualWorks to be “immutable,” as
described in the Application Developer’s Guide. When this is the case,
attempting to write to the collection will trigger a NoModificationError.

For example, a literal String is an immutable object, so attempting to write
a character to it will evoke the exception:
Basic Libraries Guide 2-9

Streams
str := 'This is a test'.
str writeStream nextPut: $D.

If you need to write to the object, create a copy of the original object.
Copies are always mutable:

str := 'This is a test' copy.
str writeStream nextPut: $D.

External Streams
External streams provide read/write access to data external to
VisualWorks, such as data from a file or a socket connection. While the
basic read/write operations are the same as for internal streams, in some
cases the behavior differs in important ways. Because you are reading
and writing an external resource, a variety of considerations need to be
taken into account.

For accessing specific connections, such as for databases, sockets, or
internet connections, refer to the specific documentation. In this section
we will use files for examples.

Note that additional protocol is added by special purpose components,
such as Net Clients. Refer to the specific documentation for functionality
added by these components.

Creating an External Stream
Read, write, or read-write stream creation messages are available for all
I/O sources supported by VisualWorks. In addition to the usual
readStream, writeStream, and readWriteStream messages, some data
sources also accept appendStream and readAppendStream messages,
indicating that writes go only to the end of the stream. For example, it
only makes sense to write to the end of a stream on an socket connection
(such as HTTP), and so you would use one of these messages to create
the stream.

For example, to append text to a file, create the stream by sending
appendStream to a Filename:

file := '..\fileList.txt' asFilename.
fileStrm := file appendStream.
fileStrm nextPut: Character cr; nextPutAll: 'Some additional text'.
fileStrm commit.

Note that to ensure writing the buffered content out to the OS, a commit
message is sent to the stream. When closing the stream with a close
message, the commit is performed before closing the stream.
2-10 VisualWorks

External Streams
Also note that, when opening a write stream on a file, if the file already
exists, its contents is overwritten. So, for example:

file := '..\fileList.txt' asFilename.
fileStrm := file writeStream.

immediately overwrites the file, rendering it zero length. If this is not your
intention, then use either a more appropriate stream creation message,
or create the stream on a new file.

To ensure that a new stream is created, you can send a
newReadWriteStream or newReadAppendStream message to the filename.

By default, external streams are created in text mode. To set to binary
mode for working with binary files, send a binary message to the stream:

file := '..\bin\win\visual.exe' asFilename.
fileStrm := file readStream binary.

Reading and Writing External Data
The ability to read from or write to a stream depends on the kind of
stream. Read streams only allow reading, write streams only allow
writing, and read-write streams allow both. For external streams, there
are also append and read-append streams, which write only to the end of
the stream data.

To read the next object on a read or read-write stream, send a next
message, which returns the object, if any, and moves the pointer ahead.
To read a number of successive objects, send a next: message with the
number of objects to return. The objects are returned in a Collection, and
the pointer is advanced to the first position past the last object.

| rStrm |
rStrm := '..\fileList.txt' asFilename readStream.
Transcript cr;

show: rStrm next printString; cr;
show: (rStrm next: 3) printString

Similarly, to write an object to the next position, overwriting any object
currently in that place, send a nextPut: message to the write or read-write
stream. To write a number of successive objects, send a nextPutAll:
message with the object to write as a collection.
Basic Libraries Guide 2-11

Streams
| wStrm |
wStrm := '..\newFile.tmp' asFilename writeStream.
#(eliot dave sam bruce vassili tamara bob) do:

[:name |
wStrm nextPutAll: name printString;

nextPut: Character cr].
wStrm close

Buffered Reading and Writing
External I/O is mediated by buffers within Smalltalk, which allow reading
and writing larger blocks (by default, 4K bytes) of data rather than, for
instance, individual bytes. This adds efficiency to the operations, involving
fewer accesses to the external resource.

BufferedExternalStream is an intermediate abstract class, between
ExternalStream and the concrete external stream classes, that provides the
buffering behavior.

You can have multiple read and/or write streams on a resource. This can
be useful, but can also cause problems because of the buffering and
interaction with the OS. For example, the following looks like it just
replaces characters in a file with the uppercase versions.

file := '..\fileList.txt' asFilename.
readStrm := file readStream.
writeStrm := file writeStream.

[readStrm atEnd] whileFalse: [
| char |
char := readStrm next.
writeStrm nextPut: char asUppercase].

^file
In fact, however, because the write buffer flushes when full (at 4K
characters), the read stream suddenly finds itself at the end, and quits,
leaving a much smaller file than expected. In a case like this, a better
solution would be to write to a new file, then delete the old file and
rename the new file to the original file’s name.

Reading and Writing Past the End of Data
When reading through an external data source with next, you eventually
reach the end. As illustrated above, you can test whether the position is
at the end by sending an atEnd message to the stream. The message
returns true if the position is at the end of data, and false otherwise.
2-12 VisualWorks

Encoded Streams
Note that if you read past the end of the data, the returned value is nil.
Because nil might be an legitimate data value, testing for nil is not a
reliable way to detect the end of data, though it may be a positive
indicator.

When writing past the current end of a data source, the additional data is
simply appended.

Positioning
Since positioning in a stream requires the ability to read from the stream,
the positioning messages are only supported by read and read-write
streams. So, if you need to position for write operations, use a read-write
stream.

The messages for reading and writing are described under “Basic
Protocol” on page 2-2.

Positioning is maintained for the external resource, and buffers are
updated as necessary. For example,

rStrm := '..\fileList.txt' asFilename readStream.
rStrm position: 5000.

reads the second 4KB worth of data into the buffer. Repositioning to a
location in the earlier part of the file, reloads that earlier 4KB into the
buffer:

rStrm position: 9.

Encoded Streams
Data is communicated between computers in digital form, as a stream of
bits, and is represented internally in octets. An octet, which consists of 8
bits, represents a value between 0 and 255, inclusive. Different
conventions can be established for how these values represent data. In
this section we are specifically concerned with character data.

In the simplest case, one octet is used to represent a single character,
allowing for the representation of up to 256 different characters. This is
the case with the ASCII representation, which for many years was the
standard character encoding for English characters. At that time, the only
real encoding issues had to do with converting between the line-end
conventions used by the various operating systems and Smalltalk.

In recent years a large number of encodings have come into use,
especially to identify non-English character sets. Many sets use more
than one octet to represent a character. Currently, ISO Latin 1
Basic Libraries Guide 2-13

Streams
(ISO 8859-1), which can be considered an extension of ASCII, is often
the default. Unicode, which uses 16-bit mappings, is increasingly
becoming standard in many contexts. For additional discussion of
encoding, refer to the Internationalization Guide.

To properly interpret the data, the encoding must be identified and
properly handled. VisualWorks does this by wrapping the data stream in
an EncodedStream instance.

This section discusses working with both line-end and character
encoding issues.

Line-end Conventions
Text streams mark the end of a line in some conventional way, noting the
end of a record, or line of text.

Within Smalltalk there is only one line-end character, CR. Data coming
from or going to external data sources, however, may need to conform to
any number of conventions. For example, on Windows platforms the
standard line-end is a CR-LF combination, on MacOS 9 it is CR, and on
UNIX, Linux, and MacOS 10 it is LF. Line-end conversion replaces the
platform line-end with the internal Smalltalk representation for the data as
it is represented within Smalltalk.

When working in a homogeneous environment, such as a network of only
MS Windows systems, the default line-end convention is adequate;
VisualWorks assigns a line-end convention based on the platform on
which it is running. So, if accessing a local file, no line-end convention
needs to be specified:

'..\fileList.txt' asFilename readStream.
Because this is a Windows example, the platform default is used to
replace the Windows CRLF with the Smalltalk CR line-end for the internal
representation of the file data.

In a heterogeneous environment, however, it is best to specify a line-end
handling strategy. In general it is best to let VisualWorks handle the line-
end conversions itself, which is set by sending a lineEndAuto message to
the stream:

'\\LinuxBox\bboyer\vw7.4\fileList.txt' asFilename readStream lineEndAuto
In a cross-platform environment such as this, accessing a file in a Linux
filesystem from an MS Windows system, VisualWorks correctly identifies
the line end convention of the source, LF, and replaces that with the
internal CR.
2-14 VisualWorks

Encoded Streams
Conversion is performed both on reads and writes. So, when writing out
data that has been accumulated in VisualWorks using the CR
representation, VisualWorks converts that to the appropriate platform
representation. Note, however, that on a new file lineEndAuto cannot be
used because it takes its convention from existing data. In this case, you
need to know the target.

If you do not want VisualWorks to convert the line-end representation, but
retain the platform representation, send lineEndTransparent to the stream
instead:

'\\LinuxBox\bboyer\vw7.4\fileList.txt' asFilename readStream
lineEndTransparent

In this case, the source line-end representation, LF, is retained in the
internal representation, and is not changed upon writing.

In circumstances where the line-end convention must be set explicitly,
such as creating a new file in a cross-platform environment, the following
messages are available:

lineEndCR
lineEndCRLF
lineEndLF

Sets the line-end conversion to the indicated convention.

For example,

| wStrm |
wStrm := '\\LinuxBox\bboyer\vw7.4\testFile.tmp' asFilename

writeStream lineEndLF.
wStrm nextPutAll: 'This is a test';

nextPut: Character cr;
nextPutAll: 'with a linefeed.'.

wStrm close.
creates a new file on the Linux system from a Windows system, with the
correct platform line-end representation.

Encodings
Encodings provide a mapping between byte data and representations
that are useful to the application. Encodings are used for many purposes.
In VisualWorks they are used primarily for text data, to identify character
set representations for data.

EncodedStream is a wrapper class for streams, and provides this
functionality. You create an instance of EncodedStream on a stream and
specify the encoding.
Basic Libraries Guide 2-15

Streams
StreamEncoder is an abstract superclass for classes that define stream
encoders. Many encodings are identified in the EncoderDirectory class
variable defined in StreamEncoder.

Encoding a Stream
There are two equivalent methods for creating an encoded stream.

One is to assign an encoding to the external connection, by sending a
withEncoding: message to the data source, and then open a stream on
that. For example:

('..\fileList.txt' asFilename withEncoding: #utf8) readStream
The withEncoding: message actually returns an encoded stream
constructor of some type (a subclass of EncodedStreamConstructor), which
then determines the kind of stream to create.

The alternative is to explicitly create an EncodedStream instance by
sending an on:encodedBy: instance creation message. The arguments are
the stream and the encoding. For example:

EncodedStream on: ('..\fileList.txt' asFilename readStream)
encodedBy: (StreamEncoder new: #utf8)

Both approaches return the same thing, and encoded stream on the data
source with the specified encoding.

Reading and Writing
An encoded stream is a stream of character data, so data is written and
read as characters (unless the stream is set to binary mode). The read
and write protocol is very simple:

next
Return the next character on the stream.

nextPut: aCharacter
Write aCharacter to the next position on the stream.

For example:

stream := (ByteArray new withEncoding: #ascii) readWriteStream.
stream nextPut: $A.
stream nextPut: (Character value: 66).
stream position: 0.
stream next. "$A"
2-16 VisualWorks

Stream Compression
Positioning on an Encoded Stream
Positioning on an encoded stream with position: works as usual.
Positioning using skip:, however, is restricted in a couple of ways.

• Skipping backward more than one character is prohibited, and

• Once having read past the end of an encoded stream, skipping back
is no longer allowed.

In either case, an exception is raised.

The prohibition against skipping backwards more that one character
applies to successive sends of skip: -1, as in

rstrm skip: -1; "ok"
skip: -1 "error"

as well as to sending with a smaller step:

rstrm skip: -2
To capture an attempt to read past the end, and so to protect the ability to
skip back one character, test for EndOfStreamNotification:

rstrm := ('..\fileList.txt' asFilename withEncoding: #ascii) readStream .
[rstrm atEnd] whileFalse: [rstrm next].
[rstrm next]

on: EndOfStreamNotification
do: [:x | Transcript cr; show: 'Attempt to read past end.']

rstrm skip: -1.

Stream Compression
Stream compression capability is provided by including the zlib library in
the virtual machine (see www.gzip.org for information about the library).
Access to the compression is available by loading the Compression-Zlib
parcel (in the parcels/ directory, Application Delivery category in the
Parcel Manager).

The interface classes are GZipReadStream and GZipWriteStream, although
much of their behavior is implemented in their immediate superclasses,
InflateStream and DeflateStream, respectively.

To decompress data, create a read stream on the data and read from the
stream. For example:

| input |
(input := 'myfile.gz' asFilename readStream) binary.
(GZipReadStream on: input) contents
Basic Libraries Guide 2-17

http://www.gzip.org

Streams
To use compress data, create a GZipWriteStream on a write stream, and
write to the GZipWriteStream.

| output |
(output := 'myfile.gz' asFilename writeStream) binary.
(GZipWriteStream bestCompressionOn: output)

nextPutAll: 'hello world' asByteArray readStream; close
Note that preferred GZipWriteStream creation method is
bestCompressionOn:, though on:compressionLevel: is also available allowing
you to specify the compression level.

Stream Exceptions
Only a few exception classes are defined for streams. The are organized
as follows:

Notification
EndOfStreamNotification

Error
StreamError

IncompleteNextCountError
PositionOutOfBoundsError

EndOfStreamNotification is raised on any attempt to read past the end of the
stream. As illustrated under “Positioning on an Encoded Stream” on
page 2-17, this can be used to protect the ability to skip backwards on an
encoded stream. Generally, it is useful for specifying actions to take once
the end of stream has been reached. As a test for the end of the stream,
sending an atEnd test message is generally the better approach.

StreamError is a general exception raised for errors occurring in stream
access. By default, stream errors are resumable.

IncompleteNextCountError is raised if a read operation requests more
elements from the stream than are available. The exception parameter
instance variable holds the number of elements that were read, which
may be useful for determining subsequent processing.
2-18 VisualWorks

Random Numbers
coll := #($a $b $c $d).
rstrm := coll readStream.
[rstrm next: 5]

on: IncompleteNextCountError
do: [:x | Transcript cr; show: 'Not enough elements;',

x parameter printString, ' read.']
PositionOutOfBoundsError is raised on an attempt to position beyond the
bounds of the stream. The exception parameter instance variable holds
the attempted position.

coll := #($a $b $c $d).
rstrm := coll readStream.
1 to: 5 do: [:n | [rstrm skip: 1. Transcript cr; show: 'ok']

on: PositionOutOfBoundsError
do: [:x | Transcript cr; show: 'Out of bounds:',

x parameter printString, '.']]

Random Numbers
A pseudo-random number can be generated by an instance of Random.
This object is a kind of stream, so the next message gets the next number
in the sequence.

Class Random is an abstract superclass for random number generators
that provides a uniform interface for accessing random numbers, and also
makes it simple to add further generators. The VisualWorks base
includes three sample generators: FastRandom and
MinimumStandardRandom (a subclass of ParkMillerRandom), and
LaggedFibonacciRandom. For applications depending on good security,
DSSRandom can be loaded and used (refer to the Security Guide for an
explanation of this generator and its use).

A random stream returns a Double as value, generally between 0 and 1
but dependent on the seed value.

| randomStream x |
randomStream := Random new.
x := randomStream next.
^x

The seed: message changes the seed value, allowing you to force a
specific sequence. This message is sent to an instance of Random, and
restarts the sequence:
Basic Libraries Guide 2-19

Streams
| randomStream x |
randomStream := Random new seed: 4.
x := randomStream next.
^x

The new message invokes the default random generator, which is set to
LaggedFibonacciRandom. FastRandom and ParkMillerRandom are available for
backward compatibility. You can easily subclass Random to implement
your own generator, and make it the default if you wish.
2-20 VisualWorks

3
Numbers

Overview
VisualWorks includes a variety of classes defining several types of
numerical and related objects.

• Standard numeric types (integers, floating point, etc.) are
implemented as subclasses of the Magnitude class.

• Complex numbers involve the “imaginary” number, i.

• Metanumbers allow dealing infinite and infinitary numbers, as well as
determining whether an arbitrary object is a number.

Numbers
VisualWorks provides several number types, each defined in its own
class. The basic types are:

Integer
The Integer class is an abstract superclass with two subclasses:
SmallInteger and LargeInteger. LargeInteger further has subclasses
LargePositiveInteger and LargeNegativeInteger. A SmallInteger is any
integer in the range 229-1 (536,870,911) to -229, inclusive. Large
integers are limited only by available memory. The system coerces
integers into the proper subclass transparently, so you rarely need to
pay attention to this issue.

Floating Point
The Float class creates instances of single-precision floating point
numbers between plus and minus 1038, with eight or nine digits of
precision. The Double class creates double-precision floating point
Basic Libraries Guide 3-1

Numbers
numbers between plus and minus 10307, with 14 to 15 digits of
precision. A floating-point number has a decimal point, at least one
digit before the decimal, and at least one digit after the decimal.

Because of the imprecise way floating point numbers are represented
in computer memory, mathematically equivalent representations of
floating point numbers may not turn out to be equivalent in
comparisons. So, for comparing numbers, avoid Float, and consider
using instances of Fraction or FixedPoint instead.

Fraction
An instance of Fraction is a number with an integral numerator and
denominator, separated by a division slash, as in 3/4. Fractions are
always reduced to lowest terms.

Fixed Point
A fixed-point number (an instance of FixedPoint) is useful for business
applications in which a fixed number of decimal places is required.
Their literal representation appends the character $s to the number
(e.g., 5.2s).

Three related classes, Random, Date, and Time, are described later in this
chapter.

Creating a Number
Numbers are created either by a literal numerical expression or by an
arithmetic operation. The kind (or class) of a number resulting from an
arithmetical operation depends on the numbers involved and the
operation.

The following are literal expressions for numbers:

100 integer (appropriate Integer subclass)

5.3 floating point (Float)

5.5d double-precision floating point (Double)

3/5 fraction

99.95s fixed point (“s” for “scale”, giving the precision)

99.95s4 fixed point, giving precision explicitly

1.555e3 exponential notation

3.955d2 double precision exponential notation. VisualWorks
accepts q in place of d for compatibility with other
Smalltalk systems
3-2 VisualWorks

Numbers
The following are arithmetical expressions for numbers:

As shown above, fractions are a real class of object. An alternative
method for creating a fraction is to explicitly declare its numerator and
denominator:

y := Fraction
numerator: 3
denominator: 4.

Arithmetic Operations
Arithmetic operators are defined as messages for each class of number,
but each number class defines the standard operations and many more.
Use the system browser to examine the messages in the arithmetic
protocol for each number class for details:

16r1A radix notation: base, followed by “r”, followed by the
number expressed in the base notation.

^3 + 8 integer

3 * 100.2 floating point

+ addition

– subtraction

* multiplication

/ division

// division, discarding any remainder for an integer
result

\\ division, returning only the remainder

sqrt square root

** raise to a power (x ** 3) or taking the root (x**(1/3))

abs absolute value

reciprocal reciprocal value
Basic Libraries Guide 3-3

Numbers
Rounding and Truncating
There are several methods for rounding or truncating numbers. These
are implemented in different numeric classes, as required.

Comparing Numbers
Numeric comparison operators are defined as messages for each class
of number, but each number class defines the standard operations and
many more. These tests all return a Boolean value:

Note that, when comparing floating point numbers (class Float), certain
comparisons may give incorrect results. For example, equality and
identity (= and ==) may fail between two representations that are
mathematically equal. This is due to the way floating points are
represented by computers, and has nothing specific to do with Smalltak
or VisualWorks. For such comparisons, consider representing these
numbers as Fraction or FixedPoint numbers instead.

rounded Answer the integer nearest the receiver.

roundTo: Answer the integer that is a multiple of the
argument, aNumber, that is nearest the receiver.

truncated Answer a SmallInteger equal to the value of the
receiver without its fractional part.

truncateTo: Answer the next multiple of the argument,
aNumber, that is nearest the receiver toward zero.

= equality

== identity. Identity works only for SmallInteger, so in
general test for equality instead.

~= inequality

~~ non-identity

< less than

> greater than

<= less than or equal to

>= greater than or equal to

min: returns the smaller of two numbers

max: returns the larger of two numbers
3-4 VisualWorks

Numbers
Testing Numbers for Properties
Because variables have no declared type in VisualWorks, it is sometimes
necessary to test a variable that is expected to hold a number. If it does
hold a number, you can safely send arithmetic and other number
messages to it.

To test whether a variable holds a number, send it a respondsToArithmetic
message. If the object is a number, it responds true.

| x |
x := 55.
^x respondsToArithmetic

More specific tests are also available, such as isInteger and isReal.

A large variety of messages are available for testing for specific
properties of numbers:

Converting Object Type
A number of type conversion messages are available. Refer to the
method definitions for details of their behavior.

isInteger tests for integers

isReal tests, in effect, for members of subclasses of
Number

even tests for even numbers

odd tests for odd numbers

isZero tests for zero

positive tests for zero or greater

strictlyPositive test for greater than zero

negative tests for less than zero

asFixedPoint: returns a fixed point number with the specified
number of decimal places

asFloat returns a floating point number

asDouble returns a double-precision floating point number

asRational returns an integer or a fraction

asCharacter returns the character represented by the number

printString returns a String representation of the number
Basic Libraries Guide 3-5

Numbers
Mathematical Functions
VisualWorks number classes support a large number of advanced
mathematical functions. Browse the number classes for details about
available functions.

Factoring
Three messages are defined for Integer, providing factoring operations:

Trigonometric Functions
Trigonmetrical functions are defined to either operate on or return the
value for an angle expressed in radians.

To convert an angle expressed in degrees to radians, send the
degreesToRadians message to the number:

| x |
x := 45 degreesToRadians.
^x sin

Conversely, to convert a result angle expressed in radians to degrees,
send the radiansToDegrees message:

| x y |
x := 45 degreesToRadians sin.
y := x arcSin radiansToDegrees.
^y

The functions supported are:

printStringRadix: returns a String representation of the number with
the specified radix (base)

gcd: greatest common denominator

lcm: least common multiple

factorial factorial

sin sine

cos cosine

tan tangent

arcSin ArcSine

arcCos ArcCosine

arcTan ArcTangent
3-6 VisualWorks

Numbers
Logarithmic Functions
Send the following unary messages to a number to perform logarithmic
functions:

Numeric Constants
There are three numeric constants defined in VisualWorks: zero, unity,
and pi. All three are returned by class methods for various numeric
classes.

Zero
The zero message is defined for all numeric classes, and returns the
appropriate value to ensure additive identity. The type of the zero value
varies; for example, Float returns 0.0 and Integer returns 0.

To get a zero of the same class as an existing number, first get the class
of that number by sending a class message to it and then send zero to the
resulting object.

| x y z |
x := Float zero.
y := Integer zero.
z := x class zero.
^x + y + z

Unity
The unity message is defined for all numeric classes, and returns the
appropriate value to ensure multiplicative identity. The type of one
returned varies; for example, Float returns 1.0 and Integer returns 1.

To get a one of the same class as an existing number, first get the class
of that number and then send unity to the resulting object.

| x y z |
x := Float unity.
y := Integer unity.
z := x class unity.
^x + y + z

log Return the base 10 logarithm

log: base Return the logarithm for the specified base

ln Return the natural logarithm (lowercase l)

exp Return the exponential
Basic Libraries Guide 3-7

Numbers
Pi
The pi message is defined for Float or Double. Float returns a single-
precision version while Double returns a double-precision version.

To get a pi of the same class as an existing number, first get the class of
that number and then send pi to the resulting object.

| x y z |
x := Float pi.
y := Double pi.
z := x class pi.
^x + y + z

Complex Numbers
An instance of class Complex has two components, a real number such as
a Float, and an imaginary number (a multiple of i, which represents the
square root of -1). A Complex number is represented in the following
format: (5.5 + 3 i)—white space inside the parentheses is ignored.

Support for complex numbers is an optionally loaded component. Load
the AT MetaNumerics parcel to add this support.

Creating an Instance
An instance can be created by using the literal form shown above, or via
the real:imaginary: method, as in Complex real: 5.5 imaginary: 3. When the
real component is zero, sending the message i to an integer is sufficient,
as in 3 i. When the imaginary component is zero, the shorter fromReal:
method can be used. In summary, the expressions in the left column
generate the Complex numbers in the right column below:

3 i (0 + 3 i)

5.5 + 3 i (5.5 + 3 i)

Complex fromReal: 5.5 (5.5 + 0 i)

Complex real: 5.5 imaginary: 3 (5.5 + 3 i)
3-8 VisualWorks

Metanumbers
Protocol Summary
Complex numbers support the usual numeric operations, including
accessing, arithmetic, mathematical functions, coercion, comparison,
conversion, testing, and generality. Nonequal comparison, truncation,
and rounding are not valid with complex numbers. Additional methods
include:

Metanumbers
The MetaNumeric class is an abstract superclass with four subclasses, as
follows:

MetaNumeric
Infinity
Infinitesimal
NotANumber
SomeNumber

Support for metanumbers is an optionally loaded component. Load the AT
MetaNumerics parcel to add this support.

Infinity and Infinitesimal are the best examples of metanumbers, providing
mathematically useful objects. NotANumber and SomeNumber provide
support for inquiring about the numberhood of an object.

Accessing

r Same as abs, which returns an absolute magnitude.
For example, (5.5 + 3 i) r returns 6.26498.

theta Return the angle between the receiver and the
positive real axis, in radians

Arithmetic

conjugated Reverse the sign of the imaginary component.

Converting

asPoint Return a Point with the real component as the x
value and the imaginary component as the y value.

i Multiply the receiver by (-1 sqrt). This message is
also understood by Number after MetaNum.st is
filed in.
Basic Libraries Guide 3-9

Numbers
The MetaNumeric class provides coercion and conversion support for its
subclasses. Must of this support comes in the form of double dispatching
methods, which bring coercion into play when two unlike numbers fail in
some arithmetic or comparison operation.

For example, suppose you execute the following expression:

 2.3 + (Infinity positive)
The Float method for addition doesn’t know how to add infinity to a floating
point number directly, so it asks the Infinity object to perform the addition.
It does so by evaluating:

(Infinity positive) sumFromFloat: self
The sumFromFloat: method is implemented by MetaNumeric, the abstract
superclass of Infinity. After coercing the floating point number into meta
form (making it an instance of SomeNumber), the superclass hands off to
Infinity to perform the specific addition. All metanumbers need to have
non-metanumbers coerced to meta form, so this behavior is performed
by their common superclass, MetaNumeric.

Infinity Class
Infinity represents a number too large to be represented in any other form.
We will use the terms +infinity and -infinity to denote the positive and
negative forms of this number.

It is defined to mean that for any real number x, the following is true:

-infinity < x < +infinity

Creating an Instance of Infinity
The expression Infinity positive creates a positive instance of Infinity, and
Infinity negative creates a negative instance.

Protocol Summary
The usual numeric operations are supported by Infinity, according to the
following rules (where x is any real number):

x + +infinity = +infinity
x - +infinity = -infinity
x * +infinity = +infinity when x > 0
x * -infinity = -infinity when x > 0
0 * +infinity = 0
+infinity + +infinity = +infinity
-infinity - +infinity = -infinity
+infinity * (+/-)infinity = (+/-)infinity
-infinity * (+/-)infinity = (-/+)infinity
+infinity - +infinity = undefined value, and an error occurs
3-10 VisualWorks

Metanumbers
Because +infinity is not a single value, but a set of all real numbers that
are unrepresentably large, it makes no sense to ask whether +infinity =
+infinity. Doing this will cause an error.

Infinitesimal Class
infinitesimal is a number so close to zero it cannot be represented as a
conventional number—it can be thought of as the reciprocal of Infinity.

Creating an Instance of Infinitesimal
Creating an instance of Infinitesimal is done exactly as with Infinity, by
executing an expression such as:

Infinitesimal positive
Infinitesimal negative
Infinitesimal negative: aBoolean

Protocol Summary
We will use the terms +tiny and -tiny to denote the positive and negative
forms of this number.

The usual numeric operations are supported, according to the following
rules (where x is any real number unless otherwise specified):

x + +tiny = x when x ~= 0.
0 + +tiny = +tiny
x * +tiny = +tiny when x > 0
x * -tiny = -tiny when x > 0
0 * +tiny = 0
+tiny + +tiny = +tiny
-tiny - +tiny = -tiny
+tiny * (+/-)tiny = (+/-)tiny
-tiny * (+/-)tiny = (-/+)tiny
+tiny - +tiny = undefined value, and an error occurs
x / +infinity = +tiny when x > 0
x / +tiny = +infinity when x > 0
+tiny * +infinity = undefined value, and an error occurs

Loosely speaking, +tiny is not a single value, but a set of all real numbers
that are unrepresentably small. As with infinity, it makes no sense to ask
whether +tiny = +tiny.

NotANumber Class
An instance of NotANumber can be used as a placeholder for the result of
an illegal mathematical expression, such as 8 arcSin. Since the behavior
of NotANumber consists of various kinds of error signals of the form “You
can’t do such-and-such with a NaN,” the result is substituting one kind of
Basic Libraries Guide 3-11

Numbers
error for another. In theory, NotANumber error signals could be trapped by
a signal handler at a high level in your application, which could then
decide, for example, to continue with some time-consuming computation,
noting the error in a log, rather than abort because of the error.
NotANumber was created for the sake of completeness—along with Infinity
and Infinitesimal, it is defined by IEEE in the set of floating point numbers.

Creating an Instance of NotANumber
To create an instance, execute NotANumber new.

Protocol Summary
NotANumber implements the common arithmetic and comparison
methods, raising an error signal for each.

The printable form of an instance is “NaN” so error strings use that term,
as in:

'Can't perform arithmetic functions on NaN'

SomeNumber Class
SomeNumber represents a conventional scalar number coerced into
metanumeric form so it can be used in both conventional and
metanumeric computations. Such a number responds to numeric
operations as usual, but has the same generality as other metanumbers
and can be used in metanumeric computations. It is essentially a support
class for the other metanumeric classes, so it has little potential for
reusability.
3-12 VisualWorks

4
Dates and Times

Dates, times, and time zones are closely related to numbers, all being
represented by subclasses of Magnitude.

Dates
Dates are supported in VisualWorks as instances of the class Date.

Creating a Date
There are a variety of messages for creating a date. Browse the class
methods defined instance creation protocol of Date for the complete list. We
will describe a few methods here.

To create a date for today’s date, send a today message to the Date class.

| date |
date := Date today.
^date

It is often useful to create a date from a string, which can be done by
sending a readFromString: message to Date. The argument is a string
containing the month, day, and year in any of several formats. The year is
always last. The month can be either a number (1 through 12) or the
unique first letters of the name (case is irrelevant). The month, day, and
year can be separated by a space, comma, hyphen, slash, period, or
nothing:

Date readFromString: 'January 31, 1994'
Date readFromString: '31 January 1994'
Date readFromString: '1/31/94'
Date readFromString: '1.31.1994'
Date readFromString: '1-31-1994'
Date readFromString: '31JAN94'
Basic Libraries Guide 4-1

Dates and Times
You can create a date by specifying the day, month and year. To specify
each by a number, send a newDay:monthNumber:year: message to the Date
class. Alternatively, specify the month by name, send a
newDay:month:year: message to Date. The month argument is the unique
first letters of a month name expressed as a Symbol:

| date1 date2 |

date1 := Date
newDay: 31
monthNumber: 1
year: 1994.

date2 := Date
newDay: 31
month: #Jan
year: 1994.

^date1 = date2
Note that if a two-digit year is specified, the year is given in the current
century, so

Date newDay: 2 month: 'jan' year: 52
Returns 1952 before the year 2000, and 2057 after 2000. To create a Date
for a year prior to 1000, use newDay:year:, for example:

Date newDay: 136 year: 52
in which the number of days is specified from the start of the year.
4-2 VisualWorks

Dates
Getting Information about a Day
Several messages retrieve information about a date. Browse the Date
class for a complete set of messages:

Adding and Subtracting with Dates
Doing arithmetic with dates is supported by a number of messages.

To add a number of days to a date, send an addDays: message to the
date. The argument can be a negative number:

| date daysToAdd |
date := Date today.
daysToAdd := 60.
^date addDays: daysToAdd

Similarly, you can send a subtractDays: message to the date.

To get the number of days between to dates, send a subtractDate:
message to a date with the date to be subtracted as argument:

| date1 date2 |
date1 := Date today.
date2 := Date readFromString: '31 December 1999'.
^date2 subtractDate: date1

Comparing Dates
The usual numerical comparison operations can be performed on dates:

weekday returns the name of the week day as a Symbol,
such as #Friday

dayOfMonth returns the day number within the month

day returns the day number within the year

asDays returns the day number since January 1, 1901

monthName returns the month name as a Symbol, as in #January

monthIndex returns the number of the month

daysInMonth returns the number of days in the month

year returns the year number

daysInYear returns the number of days in the year

= equality

~= inequality
Basic Libraries Guide 4-3

Dates and Times
Formatting a Date
A date can describe itself in a string having a variety of formats. The
printFormat: message takes as its argument an array containing six
elements. The six elements are interpreted as follows:

• Day’s position in the string (1, 2, or 3)

• Month’s position in the string (1, 2, or 3)

• Year’s position in the string (1, 2, or 3)

• The separator character

• Month’s format: 1 (numeric), 2 (abbreviation), or 3 (full name)

• Year’s format: 1 (with century) or 2 (without century)

To format a date string, send a printFormat: message to the date with a
six-element array as argument specifying the formats:

| date |
date := Date today.
^date printFormat: #(2 1 3 $- 3 1)

< earlier than

<= earlier than or equal to

> later than

>= later than or equal to
4-4 VisualWorks

Times
Times
VisualWorks provides the class Time to represent times. A Time consists
of some number of hours, minutes, and seconds, specified relative to
midnight. Time calculation is based on a microsecond clock in the virtual
machine.

Creating a Time
There are several methods for creating instances of Time. Browse the
class methods in the Time instance creation protocol for details and the
complete set.

To create a time to represent the current time, send a now message to the
Time class:

| time |
time := Time now.
^time

You can create a time from a string representation by sending a
readFromString: message to Time. The argument is a string containing the
hours, minutes, and seconds, separated by colons. The minutes and/or
seconds can be omitted. The “am/pm” designation can be omitted (“am”
is the default) and can be in upper- or lowercase.

| times |
times := OrderedCollection new.

times
add: (Time readFromString: '3:47:26 pm');
add: (Time readFromString: '03:47');
add: (Time readFromString: '::26 PM').

^times
In computations involving times on different dates, it is sometimes useful
to represent each time as a number of seconds since midnight. At the
end of the computation, you can convert the number of seconds back into
an instance of Time. To convert seconds back to a time, send a
fromSeconds: message to Time. The argument is the number of seconds
that have elapsed since midnight:

| time |
time := Time fromSeconds: (60 * 60 * 4).
^time
Basic Libraries Guide 4-5

Dates and Times
Getting the Seconds, Minutes, and Hours
Time includes protocol for retrieving its number of seconds, minutes, and
hours individually. Send a seconds message to the time.

| time scnds mins hrs|
time := Time now.
scnds := time seconds.
mins := time minutes.
hrs := time hours

Adding and Subtracting Times
Times can be added and subtracted.

To add times, send an addTime: message to a time. To subtract times,
send a subtractTime: message to the time. The argument is either a time
or a date:

| time1 time2 |
time1 := Time readFromString: '5'.
time2 := Time readFromString: '8:51:39 am'.
^time1 addTime: time2

Creating a Time Stamp
When an application needs to record the date and time that an event
occurred, there two primary options for providing it.

• The Time class provides a timeAndDateNow method, which returns an
Array containing two elements: the current date and the present time.

• The Timestamp class provides a now method, which returns an
instance of Timestamp containing numeric representations of the day,
month, year, hour, second, and millisecond.

Timestamp has other instance creation methods, too, as well as
conversion and arithmetic methods similar to those provided for Date and
Time.
4-6 VisualWorks

TimeZone
TimeZone
The virtual machine microsecond clock reports time in UTC (coordinated
universal time, formerly known as Greenwich Mean Time, GMT) on all
platforms. The Time class converts UTC to local time with the aid of
another class, TimeZone.

A TimeZone stores an offset from UTC for local time, including settings for
daylight savings time. In some parts of the world, this offset from UTC is
an integral number of hours, while in other places it is not; both kinds of
offset are handled by TimeZone.

Two instance creation messages are provided. The more general form is:

timeDifference: hours DST: amount start: startHour end: endHour
from: startDate to: endDate startDay: startDaySymbol

where:

• hours is the difference from UTC (e.g., -5 for Eastern time).

• amount is the amount of time change for Daylight Savings Time
(usually one hour).

• startHour is the hour at which the change takes effect.

• endHour is the hour at which the change ends.

• startDate is the integer number of the latest day DST starts.

• endDate is the integer number of the latest day DST ends.

• startDaySymbol is the name of the day, as a Symbol, of the week when
the change takes effect, prior to startDate and endDate.

This form is necessary in Europe where start and end times are
referenced relative to UTC, and so are an hour different. If DST starts and
ends at the same hour, as in the U.S.A., you can use the slightly shorter
form:

timeDifference: hours DST: amount at: startHour from: startDate to: endDate
startDay: startDaySymbol

where startHour is the hour DST begins and ends.

To set the time zone in VisualWorks, send a setDefaultTimeZone: message
to the TimeZone class, with a TimeZone instance:
Basic Libraries Guide 4-7

Dates and Times
TimeZone setDefaultTimeZone:
(TimeZone timeDifference: -5

DST: 1
start: 2
end: 2
from: 97 "on April 7"
to: 304 "until October 31"
startDay: #Sunday).

By default, the time zone is set for the Pacific time zone with daylight
savings time. You need to set these to appropriate values for your
location. The Time Zones page of the System Settings dialog (System
Settings) provides a set of sample expressions for various regions.

When properly set, the reference time zone returns the actual time zone,
and so should be used by application code that needs to know the time
zone:

timeZone := TimeZone reference.
For backwards compatibility, TimeZone keeps both a default time zone and
a reference time zone in the class variables DefaultTimeZone and
ReferenceTimeZone, respectively. There is no longer a distinction between
these.
4-8 VisualWorks

5
Graphical Images

An Image is a graphic object composed of a rectangular array of pixels. It
is similar to a Pixmap and a Mask in many respects, the main differences
being:

• An Image is stored in Smalltalk memory, so it is saved with the
Smalltalk image. For that reason, a graphical image can be used as a
storage device for Pixmaps and Masks.

• An Image is not a display surface, so you can’t display other graphic
objects on it as a means of assembling the desired picture.

• An Image can be either color-based or coverage-based, depending on
its palette.

Common uses of images in an application are for cursors and icons, and
increasingly as decoration for an application GUI.

VisualWorks includes support for BMP, JPEG, GIF, and XBM formats in
the base. Support for PNG can be loaded from the PNGImageReader
parcel.

Color Depth and Images
Class Image is an abstract class providing the general protocol for
images. Its concrete subclasses provide specific representations for
images of different color depths (or bits per pixel) of 1, 2, 4, 8, 16, 24, or
32.

For each pixel, an Image stores the value of the picture at that position,
which is either the color value or the coverage value of the pixel.

An Image’s palette can be either color-based or coverage-based (see
“Colors and Patterns” in Chapter 8). The type of palette determines what
kind of display surface the image can be displayed on and copied to. A
coverage-based Image can be displayed on any surface a Mask can, while
Basic Libraries Guide 5-1

Graphical Images
a color-based Image can be displayed on a Window or a Pixmap. When
copying a region from an Image to a display surface, however, the two
objects must have similar palettes.

To create a display surface bearing an Image’s contents, send
asRetainedMedium to the Image. A Pixmap is returned when the Image has a
color-based palette, and a Mask is returned when the palette is coverage-
based. This operation is equivalent to creating a new Pixmap or Mask and
then displaying the Image on it.

Creating a Graphic Image
A graphic image is a rectangular painting made up of colored pixels
arranged in rows. Complex graphics that involve non-geometric elements
are typically graphic images.

Using the Image Editor
VisualWorks includes an Image Editor that you can use to paint an image
pixel by pixel, and then store it in a compilable resource method. Because
of the size of the encoded image, the Image Editor is best suited for
producing small images, such as for cursor shapes or icons.

To open an Image Editor, choose Tools Image Editor from the VisualWorks
main window.

Paint the desired image in the scrollable pixel grid. The controls are pretty
standard for simple paint programs.
5-2 VisualWorks

To make the graphic available to your application, click the Install button,
then specify your application class as the class into which to install the
graphic, and a method name for the graphic. This installs the graphic as a
resource, which you can access in the resources browser. The method is
installed as a class method in a resource protocol of a selected class.

Reading an Image from a File
To creating an Image from an external source, such as a file, send a
fromFile: message to the ImageReader class, with the name of the file as a
String. The result is an instance of the ImageReader subclass appropriate
for the image format, such as GIFImageReader. To get the image from the
image reader, send an image message to it. For example:

image := (ImageReader fromFile: '..\bin\win\herald.bmp') image
This returns an Image instance.

It is often useful to store the image in a resource method. To do so, send
an imageFromFile:toClass:selector: message, with the file name, the target
class name, and the resource selector name as arguments:

ImageReader
imageFromFile: 'herald.bmp'
toClass: DummyTree
selector: #herald

Capturing an Image from the Screen
You can also capture a graphic image from the screen, whether the
image is in a VisualWorks window or another program’s window.

The Image Editor allows you to select a relatively small area of the
screen. To use its capability, open an Image Editor and choose the
Image Capture command. The cursor changes to a cross-hair. Move the
cursor to the top left of the selection area, press the mouse button, drag
the cursor to the lower-right corner, and release the mouse button. You
can then edit or install the resulting image.

To capture a larger area, or to invoke the screen capture capability from
your application, send a fromUser message to the Image class. The cursor
changes to a cross-hair, and you can select the area as above. You will
need to capture the image in a variable and process it as needed. This
example simply displays it in a scratch window:

| gc capturedImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
capturedImage := Image fromUser.
capturedImage displayOn: gc.
Basic Libraries Guide 5-3

Graphical Images
Creating a Bitmap Manually
You can create an Image manually by directly editing its bits. Except for
very simple graphics, this is seldom done directly. In general, you would
create a tool to do this, as is provided by the Image Editor.

An Image is stored in rows that have been padded to multiples of 32 bits,
called packed rows.

To manually edit an Image, you can create an intermediate ByteArray
containing one byte for each pixel. In intensive applications, this
wastefulness can become noticeably slow.

An alternate set of bitmap accessors operate on the packed row format
directly:

packedRowAt: rowIndex
packedRowAt: rowIndex into: anArray
packedRowAt: rowIndex into: anArray startingAt: destinationIndex
packedRowAt: rowIndex putAll: anArray
packedRowAt: rowIndex putAll: anArray startingAt: sourceIndex

Use these accessors to manipulate the bit values of one packed row at a
time.

Displaying an Image
As with other visual objects, an image can display itself on a graphics
context. The image’s palette must match that of the graphics context:
coverage-based to display a Mask, color-based to display on a Window or
Pixmap.

To display an image positioned at the origin (0@0), send a displayOn:
message to the image with the graphics context as argument. To specify
a display position other than the default 0@0, send a displayOn:at:
message to the image with a Point as the second argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
logo convertForGraphicsDevice: Screen default.

logo displayOn: gc.
logo displayOn: gc at: 50@50.

The convertForGraphicsDevice: message is necessary to ensure that the
image displays properly, by making sure that the color depth and bits per
pixel are correct. While it is not always required, it is strongly
recommended, especially for images that are read from files.
5-4 VisualWorks

Creating a Display Surface Bearing an Image
A common situation requires creating a hidden display surface (a Mask or
Pixmap) of the same size as an image, and then displaying the image on
it. The asRetainedMedium message returns a Pixmap if the image has a
color-based palette, and a Mask if the image has a coverage-based
palette:

| image pixmap |
image := LogoExample logo.

pixmap := image asRetainedMedium.
^pixmap

Caching an Image
A display surface such as a Pixmap or Mask, because it uses resources
from the operating system, usually can be displayed on another display
surface (such as a window) more quickly than an equivalent Image.
However, an Image has greater longevity because it does not require a
resource from the operating system, so it can be saved with the image to
survive when you quit and restart VisualWorks.

A CachedImage combines the longevity of an Image with the displaying
speed of a display surface. Whenever its display surface is unavailable,
as when it has been destroyed by a save-and-restart operation, it is
recreated from the image automatically. This relieves your application
from having to recreate such display surfaces manually.

A CachedImage must be treated like a display surface, not an image. For
example, you cannot rotate a CachedImage.

Create a CachedImage by sending an on: message to the CachedImage
class, with the image as argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

logo := CachedImage on: LogoExample logo.
logo displayOn: gc.

Coloring Pixels in an Image
Individual pixel colors can be changed by changing the color value at a
point. The colors that you substitute, however, must exist in the image’s
palette.
Basic Libraries Guide 5-5

Graphical Images
Changing Color by Color Value
To get the current color of a pixel, send a valueAtPoint: message to the
image, with a Point as argument indicating the coordinates of the pixel in
the image. To set the color of a pixel, send a valueAtPoint:put: message to
the image. The first argument is the location of the pixel, and the second
is a color that exists in the image’s palette.

| gc logo oldColor newColor white black |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
white := ColorValue white.
black := ColorValue black.

"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo valueAtPoint: x@y.
oldColor = white

ifTrue: [newColor := black]
ifFalse: [newColor := white].

logo valueAtPoint: x@y put: newColor]].

logo displayOn: gc

Changing Color by Numeric Value
To get the current color number of a pixel, send an atPoint: message to
the image. The argument is a Point indicating the coordinates of the pixel
in the image. The number that identifies the pixel color in the image’s
palette is returned.

To change the color of a pixel, send an atPoint:put: message to the image.
The first argument is the location of the pixel and the second argument is
a color number that exists in the image’s palette.
5-6 VisualWorks

| gc logo oldColor newColor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.

"Change each black pixel to white, and vice versa."
0 to: logo height -1 do: [:y |

0 to: logo width - 1 do: [:x |
oldColor := logo atPoint: x@y.
oldColor = 1

ifTrue: [newColor := 0]
ifFalse: [newColor := 1].

logo atPoint: x@y put: newColor]].

logo displayOn: gc

Masking an Image

Sometimes an image contains extraneous material that needs to be
removed. In the simplest case, you can mask off a rectangular area. For
more complex shapes, a Mask graphical object is used.

A Mask is a DisplaySurface, and so is not saved with the Smalltalk image,
so on startup has a nil value. To preserve a Mask, store it as a
CachedImage with color depth 1.

Creating a Mask
The simplest way to create a mask is using the Image Editor. Select Image

 Store B&W Mask, so this selection is checked. Then draw the mask
shape and install it as a resource in your application. The areas you draw
in black will allow the image to show through, and the areas in white will
be transparent, allowing the background to show through.

For regular geometric shapes, you can create a mask by sending
messages to the Mask class. Send an extent: message to the Mask class,
with a Point as argument specifying the size of the mask. You can display

You can mask out
a rectangular portion
of an image . . .

. . . or any other shape
Basic Libraries Guide 5-7

Graphical Images
the desired shape or shapes on the Mask as with a window or other
display surface. In the example, a solid oval is drawn. The shapes on the
mask define the visible regions of the image:

| ovalMask |
ovalMask := Mask extent: 66@66.
ovalMask graphicsContext

displayWedgeBoundedBy: ovalMask bounds
startAngle: 0
sweepAngle: 360.

^ ovalMask
You can also create a mask from an image by changing the palette of the
image to a coverage palette. Send a convertToCoverageWithOpaquePixel:
message to the image. The argument is an integer specifying the position
in the image palette of the color to make opaque, to allow the image to
show through.

Masking a Rectangular Area
For masking an image to a rectangular area, you do not need to create a
mask. Instead, you can simply specify the rectangle in a
completeContentsOfArea: message that you send to the display surface.

1 Create a display surface (Pixmap) containing the image by sending an
asRetainedMedium message to the image.

2 Send a completeContentsOfArea: message to the display surface, with a
rectangle as argument.

The copied portion is returned as an image, which can then be
displayed on the graphics context.

| gc logo subImage pixmap copyRect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.

pixmap := logo asRetainedMedium.
copyRect := 0@0 extent:

(logo width @ logo height / 2) rounded.

subImage := pixmap completeContentsOfArea: copyRect.
subImage displayOn: gc at: 10@10.

Notice the limitation to this approach, however, that part of the graphic
that you might expect to be treated as background is not. This is exhibited
in the example browser if the background is not white.
5-8 VisualWorks

Masking a Nonrectangular Area
When the desired portion of an image is not rectangular, you can either
create a Mask of the desired geometric shape, or specify a mask
resource. The mask is then used as a stencil through which the image is
displayed.

1 Create a display surface (Pixmap) for the image by sending
asRetainedMedium to the image.

2 Create the desired mask, if necessary.

The mask may be created in a resource method built by the Image
Editor, in another method, or on the fly in the displaying message.

3 Send a copyArea:from:sourceOffset:destinationOffset: message to the
graphics context of the destination display surface.

The copyArea argument is the mask. The from argument is the
graphics context of the source display surface. The sourceOffset
argument is a Point indicating the origin of the mask when placed
over the source display surface. The destinationOffset argument is the
origin of the subimage when displayed on the destination display
surface.

| gc logo pixmap ovalMask |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo magnifiedBy: 2@2.
pixmap := logo asRetainedMedium.

ovalMask := Mask extent: 66@66.
ovalMask graphicsContext

displayWedgeBoundedBy: ovalMask bounds
startAngle: 0
sweepAngle: 360.

gc copyArea: ovalMask
from: pixmap graphicsContext
sourceOffset: 0@0
destinationOffset: 10@10.

Modifying an Image
There are a variety of modifications you can make to images using
facilities provided in VisualWorks, such as rotating and expanding.
Basic Libraries Guide 5-9

Graphical Images
Expanding or Shrinking an Image
You can get a copy of an image that has been magnified or shrunken in
either the x dimension, the y dimension, or both.

To get an expanded copy of an image, send a magnifiedBy: message to
the image. The argument is a Point whose x value is multiplied by the
width of the image to derive the width of the expanded version; similarly,
the y value controls the height of the expanded version.

To shrink an image, send a shrunkenBy: message to the image. The
argument is a point that is used as a divisor to reduce the width and
height in the shrunken version.

| gc logo bigLogo tinyLogo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.

bigLogo := logo magnifiedBy: 1@2.
tinyLogo := logo shrunkenBy: 1@2.

logo displayOn: gc.
bigLogo displayOn: gc at: logo extent.
tinyLogo displayOn: gc at: logo extent + bigLogo extent.

Flopping an Image
Sometimes you need a mirror copy of an image. The basic steps show
how to get a reflected copy in which the imaginary mirror is aligned with
the x axis, the y axis, or both. This process of rotating an image about the
x axis or the y axis is known as flopping an image, from the photographic
process in which a negative is flopped onto its backside to produce a
mirror image.

To flop an image about the x axis, send a reflectedInX message to the
image. To flop an image about the y axis, send a reflectedInY message. To
flop an image about both axes, send a reflectedInX message followed by a
reflectedInY message.
5-10 VisualWorks

| gc helpImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := ToolbarIconLibrary help20x20 image.

helpImage
displayOn: gc at: 10@10.

helpImage reflectedInX
displayOn: gc at: 60@10.

helpImage reflectedInY
displayOn: gc at: 10@60.

helpImage reflectedInX reflectedInY
displayOn: gc at: 60@60.

Rotating an Image
You can rotate an image about the z axis in 90-degree increments by
sending a rotatedByQuadrants: message to the image. The argument is an
integer indicating how many 90-degree rotations you want. A rotated copy
of the image is returned.

| gc helpImage rotatedImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := VisualLauncher helpIcon image.

rotatedImage := helpImage rotatedByQuadrants: 1.

helpImage
displayOn: gc at: 10@10.

rotatedImage
displayOn: gc at: 60@10.

Each rotated copy uses time and memory resources. For a series of
rotations, you can reduce the resources required by reusing the same
scratch image for each subsequent copy, as shown in the variant. The
scratch image must be of the same size as the unrotated image, so this
technique works only when all images in the series are the same size.

Create a scratch image the same size as the image that is to be rotated
by sending a copyEmpty message to the original image. Then send a
rotateByQuadrants:to: message to the image to be copied. The first
argument is the number of quadrants to rotate the image. The second
argument is the scratch image.
Basic Libraries Guide 5-11

Graphical Images
| gc helpImage scratchImage |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
helpImage := ToolbarIconLibrary help20x20 image.

scratchImage := helpImage copyEmpty.

1 to: 4 do: [:quads |
helpImage rotateByQuadrants: quads to: scratchImage.
scratchImage displayOn: gc at: (60 * quads) @ 10]

Overlaying Images

You can achieve a variety of layering effects by combining two images
and applying a filtering algorithm to the overlapping portions.
VisualWorks provides 16 built-in algorithms, called combination rules.
The rules are numbered 0 through 15, and the more commonly used
rules have names. Thus, sending an erase message to the RasterOp class
returns the combination rule for erasing shared pixels from the combined
image. Combining two images involves copying a region from one image
(the source) onto the other image (the destination), applying the
combination rule.

Raster operations work correctly only on monochrome screens that have
the most commonly used polarity characteristics. On color screens and
on monochrome screens of the opposite polarity, the effects are
unpredictable. Because of this, only the RasterOp over rule is portable
across screen types.
5-12 VisualWorks

To preserve the destination image in its unchanged state, first make a
copy on which to merge the source image, by sending a copy message to
the image (in the example, triangle).

Next, send a copy:from:in:rule: message to the copy. The copy argument is
a rectangle identifying the region in the destination image to be merged
with the source image (the lower part of the triangle). The from argument
is the origin of the rectangle within the source image (the origin of the
circle, because we want to copy the entire circle). The in argument is the
source image. The rule argument is an integer identifying a combination
rule (which can be derived by sending and, over, erase, reverse, under, or
reverseUnder to the RasterOp class).

| gc triangle circle scratch |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

triangle := Pixmap extent: 50@100.
triangle graphicsContext

displayPolygon: (Array
with: 0@0
with: 0@50
with: 50@50).

triangle := triangle asImage.

circle := Pixmap extent: 50@50.
circle graphicsContext

displayDotOfDiameter: 50
at: 25@25.

circle := circle asImage.

0 to: 15 do: [:rule |
scratch := triangle copy.
scratch

copy: (0@20 extent: 50@50)
from: 0@0
in: circle
rule: rule.

scratch displayOn: gc at: (50 * rule \\ 400) @ (50 * rule // 400 *
100)]
Basic Libraries Guide 5-13

Graphical Images
5-14 VisualWorks

6
Working with Geometric Objects

Introduction
VisualWorks implements several types of geometric objects, in
subclasses of Geometric.

• A LineSegment connects two points, named start and end.

• A Polyline connects three or more points (its collection of vertices) as
a series of line segments, and is closed between the start and end
points. A polygon is a Polyline that is filled rather than stroked.

• A Rectangle represents a rectangular region whose axes are aligned
with the x and y axes. Rectangles are frequently used to describe
areas of a screen, but can also be used as a geometric shape.

• An ElipticalArc is a curved line defined by three parameters:

• The smallest rectangle that can contain the ellipse of which the
arc is a segment (adjusted for line width).

• The angle at which the arc begins, measured in degrees
clockwise from the 3 o’clock position (or counterclockwise for
negative values).

• The angle traversed by the arc, known as the sweep angle. The
sweep angle is measured from the starting angle and proceeds
clockwise for positive values and counterclockwise for negative
values.

• A Bezier is a curve between two endpoints, with a control point for
each endpoint determining the angle of the curve at that endpoint.

• A Circle is a circle, specified by a center and radius.

• A Spline is a curve interpolated through a series of points.
Basic Libraries Guide 6-1

Working with Geometric Objects
Geometric Objects
This section introduces the classes of geometric objects, all defined as
subclasses of Geometric. Many of the same operations are defined for
each class, and are described together later. This section will include
operations specific to the classes, if any.

Rectangles
Rectangles are used in a variety of graphic operations, from setting the
size of a window to specifying the bounding box of an ellipse, as well as
simply to create a rectangular graphic. Accordingly, rectangles figure
prominently in the discussion of the VisualWorks graphics framework in
the Application Developer’s Guide. In this section we focus on rectangles
simply as geometric objects.

Creating a Rectangle
There are several ways to create a Rectangle, accommodating a variety of
contexts.

One of the most common methods are to send an extent: or corner:
message to an origin (top left) Point. Both of the following expressions
create a rectangle 100 pixels wide, 250 pixels high, with its origin at
50@50:

50@50 extent: 100@250
50@50 corner: 150@300

The extent: message specifies the rectangle by its size, setting the x and y
distance from the starting point. The corner: message, on the other hand,
specifies the absolute corner position.

Most instance creation methods are defined on the Rectangle class itself.
Similar to the above are the origin:extent: and origin:corner: messages
which work the same way:

Rectangle origin: 50@50 extent: 100@250
Rectangle origin: 50@50 corner: 150@300

Instead of specifying the top left and bottom right as points, you can
specify the x- and y-values of the four sides:

Rectangle left: 50 right: 300 top: 50 bottom: 150
And if you prefer not to distinguish between the origin and the corner
point, you can let Rectangle do the comparison and create an instance:

Rectangle vertex: 300@150 vertex: 50@50
6-2 VisualWorks

Geometric Objects
These are only a few of the instance creation methods available. Browse
the Rectangle instance creation methods to see the whole set.

There are also a number of messages that return a new Rectangle based
on a model Rectangle.

align: aPoint1 with: aPoint2
Answer a new Rectangle with the same dimensions as the receiver,
but translated by aPoint2 - aPoint1.

expandedBy: aScalarPointOrRectangle
Answer a Rectangle that is outset from the receiver by the argument,
which is a Rectangle, Point, or scalar.

insetBy: aScalarPointOrRectangle
Answer a Rectangle that is inset from the receiver by the argumetn,
which is a Rectangle, Point, or scalar.

insetOriginBy: origin cornerBy: corner
Answer a new Rectangle that is inset from the receiver by the amounts
in origin and corner.

merge: aRectangle
Answer a new Rectangle that contains both the receiver and the
aRectangle.

translatedBy: aScalarOrPoint
Answer a new Rectangle translated by aScalarOrPoint.

A common use for these is to create the model Rectangle with the desired
dimensions, then create a new Rectangle positioned more appropriately,
and use the new Rectangle discarding the model. For example, to create a
rectangle aligned with another rectangle:

| gc rect1 rect2 modelRect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

rect1 := Rectangle origin: 10@10 corner: 50@50.
modelRect := Rectangle origin: 0@0 extent: 75@100.
rect2 := modelRect align: modelRect topLeft with: rect1 bottomLeft.
rect1 displayStrokedOn: gc.
rect2 displayStrokedOn: gc

Getting and Setting a Rectangle’s Dimensions
Once created, a Rectangle can tell you a number of things about its
dimensions and its contents.

Internally, a Rectangle is defined by its origin and corner points, held in its
origin and corner instance variables.
Basic Libraries Guide 6-3

Working with Geometric Objects
origin
Answer the origin point.

corner
Answer the corner point.

You can change the size and position of the Rectangle with these
corresponding messages:

origin: aPoint
Set the origin point to aPoint.

corner: aPoint
Set the corner point to aPoint.

origin: aPoint corner: anotherPoint
Set the origin point to aPoint and the corner point to anotherPoint.

A variety of other messages are available to getting and setting the
Rectangle dimensions. For example, the size can be changed by setting
the positions of the sides of the Rectangle.

left: xDimension
Set the position of the left side to xDimension.

top: yDimension
Set the position of the top side to yDimension.

right: xDimension
Set the position of the right side to xDimension.

bottom: yDimension
Set the position of the bottom side to yDimension.

Browse the accessing method category for additional messages.

Other useful information about a Rectangle can be accessed with these
messages.

area
Answers the receiver's area, the product of its width and height.

height
Answer the height of the receiver.

width
Answer the width of the receiver.

The height and width can also be set, and the size of the Rectangle is
adjusted relative to the origin.
6-4 VisualWorks

Geometric Objects
Moving a Rectangle
In addition to being able to create a new rectangle that conforms to
specified conditions, it is often useful to be able to move an existing
rectangle. This ability is provided by two messages:

moveBy: aPoint
Change the corner positions of the receiver so that its area translates
by the amount defined by aPoint.

moveTo: aPoint
Change the corners of the receiver so that its top left position is
aPoint.

Testing Rectangle Relations
It is often necessary or useful to know whether a rectangle contains a
point or an area (another Rectangle). These messages provide this
information.

areasOutside: aRectangle
Answer a Collection of Rectangles comprising the parts of the receiver
that do not lie within aRectangle.

contains: aRectangle
Answer true if the receiver is equal to or entirely contains aRectangle,
and false otherwise.

containsPoint: aPoint
Answers true if aPoint is within the receiver, inclusive of the Rectangle
itself, and false otherwise.

intersect: aRectangle
Answer a Rectangle that is the area in which the receiver overlaps with
aRectangle. Note, if the receiver and the argument do not intersect,
then the resulting rectangle will have negative width or height.

intersects: aRectangle
Answers true if aRectangle intersects the receiver at any point, and
false otherwise.
Basic Libraries Guide 6-5

Working with Geometric Objects
Lines
A straight line is represented by an instance of LineSegment, which is
simply a straight line between two points.

To create a line segment, send a from:to: message to the LineSegment
class. The first argument is the starting point of the line and the second
argument is the endpoint.

| gc line scaleFactor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
scaleFactor := 10@1.

5 to: 400 by: 5 do: [:i |
line := LineSegment from: 0@i to: i@400.
line := line scaledBy: scaleFactor.
line displayStrokedOn: gc].
6-6 VisualWorks

Geometric Objects
Polylines and Polygons
A jointed line, or polyline, is created as an instance of Polyline. A polygon
is a filled PolyLine.

To create and display a polyline object, create a Polyline by sending a
vertices: message to the Polyline class, with a collection of points (vertices)
as the argument. Then wrap the polyline in a stroking wrapper and
display it on the graphics context by sending displayStrokedOn:.

| gc points x y radians polyline |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

points := OrderedCollection new.
0 to: 360 by: 30 do: [:angle |

radians := angle degreesToRadians.
x := 200 - (200 * radians cos).
y := 200 - (200 * radians sin).
points add: x@y].

polyline := Polyline vertices: points.
polyline displayStrokedOn: gc.

0.9 to: 0.1 by: -0.1 do: [:scale |
polyline := polyline scaledBy: scale.
polyline displayStrokedOn: gc].

To fill the polyline, make the Polyline, then wrap it in a filling wrapper and
display it by sending displayFilledOn: to the wrapper with the graphics
context as argument.
Basic Libraries Guide 6-7

Working with Geometric Objects
Arcs and Ellipses

An arc is a curved line defined by three elements of information:

• The smallest rectangle that can contain the ellipse of which the arc is
a segment (adjusted for line width).

• The angle at which the arc begins, measured in degrees clockwise
from the 3 o’clock position (or counterclockwise for negative values).

• The angle traversed by the arc, known as the sweep angle. The
sweep angle is measured from the starting angle (not necessarily the
3 o’clock position) and proceeds clockwise for positive values and
counterclockwise for negative values.

An ellipse is an arc with a sweep angle of 360 degrees. An ellipse with a
square bounding box describes a circle.

If the arc does not describe a closed ellipse, the ends of the arc are
connected to the center of the ellipse to define the filling region, forming a
wedge.

To create either an arc or an ellipse, create an instance of EllipticalArc by
sending a boundingBox:startAngle:sweepAngle: message to the class,
specifying the rectangle that encloses it, the beginning angle, and the
number of degrees traversed (the sweep angle) from that starting angle.
6-8 VisualWorks

Geometric Objects
| gc arc box |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

box := 150@100 extent: 100@200.

"Black stroked arc"
arc := EllipticalArc boundingBox: box

startAngle: 45
sweepAngle: 135.

arc displayStrokedOn: gc.

"Black filled arc"
arc := EllipticalArc boundingBox: box

startAngle: 180
sweepAngle: 90.

arc displayFilledOn: gc.

"Red arc"
arc := EllipticalArc boundingBox: box

startAngle: 270
sweepAngle: 135.

arc displayFilledOn: (gc paint: ColorValue red)
For a complete ellipse, the angle is 360, regardless of the start angle.

gc := (Examples.ExamplesBrowser
prepareScratchWindow) graphicsContext.

"Black stroked ellipse"
ellipse := EllipticalArc boundingBox: (150@100 extent: 100@200)

startAngle: 0
sweepAngle: 360.

ellipse displayStrokedOn: gc.

"Black filled ellipse"
ellipse := EllipticalArc boundingBox: (160@110 extent: 80@180)

startAngle: -45
sweepAngle: 360.

ellipse displayFilledOn: gc.

"Red ellipse"
ellipse := EllipticalArc boundingBox: (150@175 extent: 100@50)

startAngle: 45
sweepAngle: 360.

ellipse displayFilledOn: (gc paint: ColorValue red)
Basic Libraries Guide 6-9

Working with Geometric Objects
Circles and Dots

A circle is created by specifying its center point and radius.

| gc circle |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

"Blue filled circle"
circle := Circle center: 200@200 radius: 100.
circle displayFilledOn: (gc paint: ColorValue blue).

"Black stroked circle"
gc paint: ColorValue black; lineWidth: 2.
circle displayStrokedOn: gc.

Graphics contexts understand a displayDotOfDiameter:at: message, which
displays a filled circle with the specified diameter and center point. This
can be used, for example, to display points, which are not otherwise
displayable objects:
6-10 VisualWorks

Geometric Objects
| gc random points |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

random := Random new.
points := OrderedCollection new.

"Create 10000 random points in a 100-pixel square."
10000 timesRepeat: [

points add: ((random next * 100) @ (random next * 100))].

"Display each random point."
points do: [:pt |

gc displayDotOfDiameter: 2 at: pt * 4]
Basic Libraries Guide 6-11

Working with Geometric Objects
Curved Lines
Besides circular and elliptical arcs, VisualWorks provides two kinds of
smooth curve: Spline and Bezier.

A Spline is similar to a polyline in that it connects a collection of vertices,
except that it smooths the corners.

| gc points spline random x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

points := OrderedCollection new.
random := Random new.

"Collect 10 random points."
10 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
gc displayDotOfDiameter: 8 at: points last].

spline := Spline controlPoints: points.
spline displayStrokedOn: gc.

A Bezier curve is similar to a line segment, in that it has a start and an end
point, but it also has two control points that determine the curve angle.
Each control point causes the line to curve toward it, as if exerting gravity
on the line.

spline Bezier curve
6-12 VisualWorks

Drawing a Geometric Object
| gc points bezier random x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
points := OrderedCollection new.
random := Random new.

"Collect 10 random points."
4 timesRepeat: [

x := random next * 400.
y := random next * 400.
points add: x@y.
gc displayDotOfDiameter: 8 at: points last].

bezier := Bezier
start: (points at: 1)
end: (points at: 2)
controlPoint1: (points at: 3)
controlPoint2: (points at: 4).

bezier asStroker displayOn: gc.
Splines and Bezier curves support comparison, intersection testing,
scaling, and transforming. A Spline can also be asked whether it folds
back on itself (isCyclic).

When drawing either a Spline or a Bezier, the curve is actually
approximated as a Polyline of some number of short line segments. To
some extent you can specify the number of segments, by setting the
value of the flatness instance variable for a Spline, or the scaledFlatness
instance variable for a Bezier. The are used as divisors on the number of
control points, so a larger number reduces the number of segments,
increasing the degree of “flatness.” See the demoFlatness class methods in
each class for examples.

Drawing a Geometric Object
As illustrated in the examples of the individual geometric objects,
geometrics can be drawn either as line drawings, or “stroked,” or as solid
objects or “filled.” By themselves, the geometrics do not know whether
they are line drawing or solids, although some, such as lines, can only be
line drawings.

There are two ways of specifying the drawing style for geometrics: either
using the display message specifying that style, or explicitly wrapping the
geometric in a StrokingWrapper or FillingWrapper. The approach you select
Basic Libraries Guide 6-13

Working with Geometric Objects
depends on whether the shape will be displayed once, without needing to
do any other operations on it, or whether the shape needs to be operated
on and displayed or refreshed repeatedly.

Drawing Style Display Messages
Geometric objects support a pair of messages for directly displaying
themselves on display surfaces:

displayFilledOn: aGraphicsContext
Displays the geometric on aGraphicsContext as a solid. Not all
geometrics implement this (LineSegment, Bezier, and Spline)

displayStrokedOn: aGraphicsContext
Displays the geometric on aGraphicsContext as a line drawing.

These messages provide a convenient method for displaying graphical
objects.

These messages have been demonstrated in the previous sections.

Using a Drawing Style Wrapper
A more flexible mechanism is to display such objects using a wrapper
object, either in a StrokingWrapper or in a FillingWrapper object, to
determine the drawing style. Both wrapper objects use a single message
to display themselves: displayOn:. Using the wrapper technique allows
VisualWorks to provide a uniform display interface for all geometric
objects.

The choice of Wrapping object depends on whether the drawing should
be a line drawing (StrokingWrapper), or should be filled with a color or
pattern (FillingWrapper). Some objects, such as lines, cannot be wrapped
in a filling wrapper since that would clearly be inappropriate.

To display any geometric object, create the object and perform any
needed transformations on it. Then create a wrapper for the geometric
object by sending it one of these message:

asStroker
Wrap the geometric for display as a line drawing.

asFiller
Wrap the geometric for display as a solid.

To display the wrapper object, send the displayOn: message to it, with the
target graphic context as its argument.

For example, the following expression creates a line, performs some
operations on it, wraps the line, and displays it in an examples browser:
6-14 VisualWorks

Drawing a Geometric Object
| gc line scaleFactor |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
scaleFactor := 10@1.

5 to: 400 by: 5 do: [:i |
line := LineSegment from: 0@i to: i@400.
line := line scaledBy: scaleFactor.
line asStroker displayOn: gc].

When displaying a filled object, you must also specify the color for the
filler:

| gc rect1 rect2 border |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

"Black rectangle"
rect1 := 100@100 extent: 200@200.
rect1 asFiller displayOn: gc.

"Gray rectangle"
border := 3.
rect2 := (rect1 origin + border) corner: (rect1 corner - border).
rect2 asFiller displayOn: (gc paint: ColorValue green).

Drawing Transient Shapes
If you do not want to create the geometric object itself at all, but simply to
draw a shape, GraphicsContext recognizes a number of messages to do
this. The arguments for the messages are recognizable from the usual
creation methods for the relevant geometric. The following is a sampling.
Browse the GraphicsContext displaying method category for additional
messages.

displayArcBoundedBy: aRectangle startAngle: start sweepAngle: sweep
Draws a stroked EllipticalArc on the graphics context.

displayWedgeBoundedBy: aRectangle startAngle: start sweepAngle: sweep
Draws a filled EllipticalArc on the graphics context.

displayLineFrom: start to: end
Draws a LineSegment (stroked).

No geometric object is actually created by these messages, so no
transformations or other operations can be performed.
Basic Libraries Guide 6-15

Working with Geometric Objects
| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.

5 to: 400 by: 5 do: [:i |
gc displayLineFrom: 0@i to: i@400].

Transformations on Geometrics
Geometrics respond to two standard transformations: scaling and
translation. Rectangles respond to many more transformations, as
described under “Rectangles” on page 6-2. The two common messages
are:

scaledBy: aScalarOrPoint
Answer a new Geometric scaled by the argument amount, which can
be a Point or a scalar value.

translatedBy: aScalarOrPoint
Answer a Geometric translated within the graphics context by
aScalarOrPoint, which can be a Point or a scalar value.

Note that these return new geometric objects of the same type as the
receiver, rather than transform the receiver itself.

Storing Graphic Attributes
The graphics context holds general display properties, such as line width
and paint policies, as described above in the Application Developer’s
Guide (refer to “Working with Graphics and Colors”). These attributes
provide the default properties for any object rendered on that graphics
context.

However, frequently the attributes need to be different for individual
graphical objects, for instance to draw lines of different width. When the
attribute properly belongs to the object rather than the context, it is
desirable to store it with the object. This ability is provided by wrapper
classes for the various objects, which allows encapsulating graphical
attributes with the graphical object.

More general and for graphical objects other than geometrics, but
applicable to geometrics as well, is the GraphicsAttributesWrapper.

It is frequently necessary to store color information with the graphic
object. To do this, wrap the geometric object in a
GraphicsAttributesWrapper.
6-16 VisualWorks

Storing Graphic Attributes
1 Wrap the geometric object in a stroking or filling wrapper by sending
asStroker or asFiller to it.

2 Wrap the stroking or filling wrapper in a GraphicsAttributesWrapper by
sending an on: message to that class, with the wrapper from the
basic step as the argument.

3 Create a new GraphicsAttributes and send a paint: message to it. The
argument is a color or pattern.

4 Install the graphics attributes in the GraphicsAttributesWrapper by
sending an attributes: message with the attributes as the argument.

5 Display the graphics attributes wrapper by sending a displayOn:at:
message to it. The first argument is the graphics context of the
display surface. The second argument is the origin point at which the
geometric object is to be displayed.

| gc circle wrapper1 wrapper2 random pt attributes1 attributes2 |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
circle := Circle center: 0@0 radius: 50.

wrapper1 := GraphicsAttributesWrapper on: circle asFiller.
attributes1 := GraphicsAttributes new paint: ColorValue red.
wrapper1 attributes: attributes1.
wrapper2 := GraphicsAttributesWrapper on: circle asFiller.
attributes2 := GraphicsAttributes new paint: ColorValue blue.
wrapper2 attributes: attributes2.

random := Random new.
100 timesRepeat: [

pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper1 displayOn: gc at: pt.
pt := random next * 300 + 50 @ (random next * 300 + 50).
wrapper2 displayOn: gc at: pt]
Basic Libraries Guide 6-17

Working with Geometric Objects
6-18 VisualWorks

7
Working with Text

Characters and strings are primarily managed by the two classes
Character and String. This chapter discusses operations at the character
level first, followed by string operations.

The final section places Character and String in the context of their abstract
superclasses and, in the case of String its concrete subclasses.

As a collection of characters, a string responds to the messages
described in Chapter 1, “Collections.” The more pertinent behavior is
reviewed in this chapter.

Characters
Character objects are instances of the class Character. As with all objects
in Smalltalk, and unlike many languages, characters are full blooded
objects, not primitive data types.

Note: Any application that manipulates characters should be
prepared to encounter any character value from 0 to 65535.

Creating Characters
Many characters can be represented by printable keyboard characters.
Instances of these characters can be created by preceding the desired
character with a dollar sign:

char := $C
Basic Libraries Guide 7-1

Working with Text
Certain characters cannot be created as keyboard literals, such as
<Delete> and <Return>. Smalltalk provides class messages for creating
many of these characters. Send one of the following messages to the
Character class to create the corresponding character: backspace, cr, del,
esc, leftArrow, lf, newPage, space, tab. For example:

char := Character cr
A character can also be created from its Unicode numeric equivalent.
Send a value: message to the Character class, with the numeric Unicode
representation for the character:

char := Character value: 67
The numeric value is displayed in a character’s print string.

A composed character is a character consisting of base character plus a
diacritical mark. To create a composed character, send a
composeDiacritical: message to a character. The argument is a diacritical
character, which can be obtained by sending diacriticalNamed: to the
Character class. The argument is a symbol naming a diacritical character.
A list of valid diacritical character names is included in the method
comment.

| baseChar diacrit composedChar |
baseChar := $a.
diacrit := Character diacriticalNamed: #grave.
composedChar := baseChar composeDiacritical: diacrit

Testing Character Types
Because the extended character set contains so many subsets, Character
provides a variety of tests to help you characterize an instance:

Character Tests

Method Returns true if the character is...

isLowercase a-z or a lowercase special character

isUppercase A-Z or an uppercase special character

isAlphabetic a-z, A-Z, or a special character

isVowel in the set: AEIOUaeiou (with or without
diacritical marks)

isDigit 0-9

isAlphaNumeric a-z, A-Z, 0-9, or a special character

isSeparator space, cr, tab, line feed, form feed, or null
7-2 VisualWorks

Strings
Comparing Characters
Characters can be compared using the usual binary comparison
operators defined for numbers: =, ==, <, >, ~=, and so on. Comparison is
performed based on the integer values of the characters, so

$C < $D
evaluates as True, but

$c < $D
evaluates as False.

Strings
A String in Smalltalk is a collection, or more specifically an array, of
characters. While protocol is defined at the level of the String class, a
string is actually represented as a platform-specific subclass of String.

Strings are the foundation of all text operations in VisualWorks, including
the text formatting and display operations described later in this chapter.

Creating a String
Most frequently a string is created by enclosing the desired characters in
single quotes:

| string |
string := 'This is a string.'.
^string

You can create an empty string by sending a new message to the String
class. This is equivalent to enclosing nothing between single quotes.

| emptyString |
emptyString := String new.
^emptyString

isDiacritical a diacritical mark (has a value in the range
16rC1 to 16rCF)

isComposed composed of base and diacritical parts (has a
value of 16rF100 or higher)

isLetter English alphabet or extended character

Character Tests (Continued)

Method Returns true if the character is...
Basic Libraries Guide 7-3

Working with Text
Although you can, in effect, grow as a string to accommodate added
characters, this is accomplished in a copy. If you know you will do this, it
is more memory efficient to create a string of the appropriate size and
then change its characters. To do this, send a new: message to the String
class with the length specified:

| newString |
newString := String new: 15.
^newString

By default, the string is filled with null characters, but you can specify the
default character by using the new:withAll: message. The first argument is
the number of characters, and the second argument is the character to fill
the string:

| filledString |
filledString := String new: 10 withAll: $x.
^filledString

It is frequently necessary to represent a character by a string. There are
several ways to create such a string, using obvious variations of the
methods already shown. Another way is to send a with: message to the
String class, with the character that is to be the sole element of the string
as the argument. This is especially useful, and often necessary, when the
character is a non-printing or white-space character:

| oneCharString |
oneCharString := String with: Character tab.
^oneCharString

Changing Characters in Place
You can change a character in a String at a specific location by sending
an at:put: message to the String, with the position and new character as
arguments:

| aString |
aString := String new: 5.
aString at: 1 put: $a;

at: 1 put: $b;
at: 1 put: $c;
at: 1 put: $d;
at: 1 put: $e.

Note, however, that because a literal String is immutable, this fails:

| aString |
aString := 'abcde'.
aString at: 2 put: $x. "ERROR"
7-4 VisualWorks

Strings
Instead, if you need to do this kind of substitution, create a copy of the
original String:

| aString |
aString := 'abcde'.
aString copy at: 2 put: $x. "SUCCESS"

Changing the Case in a String
Applications that manipulate strings sometimes need to convert one or
more lowercase letters to uppercase, or vice versa. You can change the
case of an entire string or of a selected letter.

Note: Do not use case-changing protocol with strings whose
characters are caseless (for example, Japanese Katakana
characters).

To convert a string to all lowercase letters, send an asLowercase message
to the string. Similarly, send asUppercase to convert the entire string to
uppercase letters:

| string |
string := 'North American Fertilizer Company'.
^string asUppercase

To change the case of individual characters in a string, you identify the
character by its index (place in the string), use the asUppercase or
asLowercase message to the character, then put the converted character
back in the string at the same location. The following example uses the
keysAndValuesDo: message to cycle through the string, and set all
characters to lowercase except the first and those preceded by a
separator character:

| string prevCharIsSeparator newChar |
string := 'NORTH AMERICAN FERTILIZER COMPANY' copy.
prevCharIsSeparator := true.

string keysAndValuesDo: [:index :char |
prevCharIsSeparator

ifTrue: [newChar := char asUppercase]
ifFalse: [newChar := char asLowercase].

string at: index put: newChar.
prevCharIsSeparator := char isSeparator].

^string
Basic Libraries Guide 7-5

Working with Text
Some character sets contain single lowercase characters that become
multiple characters in their uppercase form. If you are working with such a
character set, your code should handle the results of asUppercase
accordingly.

Getting a String’s Length and Width
A String is a kind of Collection with characters as its elements. Counting
the characters in a string is accomplished by sending a size message to
the string:

| string |
string := '123456789'.
^string size

The width of a string changes depending on the font and point size that is
used to display it. Because the font choice is controlled by the graphics
context of the display surface, that object can compute the width of a
string in pixels. Send a widthOfString: message to the graphics context of
the display surface on which the string will be displayed. The argument is
the string. The width in pixels is returned.

| window string width |
window := ScheduledWindow new.
string := 'Hello, world'.

width := window graphicsContext
widthOfString: string.

^width

Combining Strings
There are a variety of ways in which two or more strings can be combined
to form longer strings, or to perform replacements within a string.

The simplest operation is concatenation, which is performed by putting a
comma between the two string expressions, for example:

| firstName lastName fullName space |
firstName := 'Bill'.
lastName := 'Clinton'.
space := String with: Character space.

fullName := firstName, space, lastName.
^fullName
salutation := 'Dear ', fullName.

The result is a new string, without changing either of the original strings.
7-6 VisualWorks

Strings
Another useful approach, especially for constructing strings of
dynamically generated data, like reports, is to use a WriteStream. Create a
stream by sending an on: message to the WriteStream class. The
argument is typically an empty string, but it could be any string, such as a
preassembled report heading. Then append each string in the series to
the stream by sending a nextPutAll: message to the stream, with the string
as argument. Get the stream contents in the form of a string by sending a
contents message to the stream.

| classNames formalList |
classNames := Smalltalk classNames.
formalList := WriteStream on: String new.

classNames do: [:name |
formalList nextPutAll: 'Class: ';

nextPutAll: name;
cr].

^formalList contents

Comparing Strings
Unlike characters, strings are not compared by numerical value of their
characters. When comparing strings, case is ignored and alphabetical
order is used, unless the two strings have exactly the same letters in the
same order. In this latter case, numerical values are used to differentiate
uppercase and lowercase letters.

Testing for Equality and Identity
Two strings are equal when both have the same number of characters,
and both have the same characters in the same order.

To test for equality or inequality, send an = or ~= (not equal) message to
one string with another string as argument:

| str1 str2 |
str1 := 'abc'.
str2 := 'ABC'.
^str1 = str2

To compare based on identity, send an == or ~~ (not identical) message to
the object. Two different strings cannot be identical, though two variables
that refer to the same string are identical.
Basic Libraries Guide 7-7

Working with Text
| str1 str2 str3 |
str1 := 'Excellent'.
str2 := 'Excellent'.
str3 := str1.

^Array
with: (str1 == str2)
with: (str1 == str3)

The sameAs: message compares the equality of strings while ignoring
case:

| str1 str2 str3 |
str1 := 'north'.
str2 := 'North'.
str3 := 'northwest'.

^Array
with: (str1 sameAs: str2)
with: (str1 sameAs: str3)
with: (str2 sameAs: str3)

Comparing by Sorting Order
The usual comparison operators, in addition to equality and identity, can
be used to compare strings:

Comparison is by alphabetical order in most cases, rather than numerical
value of the characters. So,

'BCD' < 'bcde'
evaluates to true.

If two strings have exactly the same letters in the same order, the integer
values of the characters is used to differentiate them. So,

'bcD' > 'bcd'
evaluates to false, because uppercase letters have lower integer values
than lowercase letters.

Rating the Similarity of Two Strings
Two messages return a similarity rating of strings.

< less than

<= less than or equal to

> greater than

>= greater than or equal to
7-8 VisualWorks

Strings
A sameCharacters: message returns an integer indicating how many
characters are the same (including case) up to the first mismatch. So,

'bcDe' sameCharacters: 'bcde'
returns 2.

A spellAgainst: returns an integer from 1 (entirely different) through 100
(equal) is returned, giving a percentage of match to mismatch. So,

'bcDe' spellAgainst: 'bcde'
returns 75.

Searching
The ability to find a specific character or substring is essential in
applications that parse strings. Often a special character or series of
characters identifies a field within a string, especially when the string
represents the contents of a structured text file.

By default, searching is case-sensitive, but there are methods which
ignore case during a search.

Searches can also use wildcard characters. A pound sign (#) takes the
place of any single character, and an asterisk (*) takes the place of zero
or more characters.

Get the Index of a Character in a String
To get the index of a character, send an indexOf: message to the string.
The argument is the search character. If it is not found, zero is returned.

To find the starting index of a substring, send a
findString:startingAt:ifAbsent: message to the string. The first argument is
the substring to be found. The second argument is the character position
at which the search is to begin. The third argument is a block containing
actions to be taken if the substring is not found (often an empty block, to
avoid the default error).
Basic Libraries Guide 7-9

Working with Text
| classComment searchChar searchString index1 index2 |
classComment := String comment.
searchChar := $<.
searchString := 'Class Variables:'.

index1 := classComment indexOf: searchChar.
index2 := classComment

findString: searchString
startingAt: 1
ifAbsent: [].

^Array with: index1 with: index2

Ignoring Case in a Search
Send a findString:ignoreCase:useWildcards: message to the string. The
findString argument is the substring to be found. The ignoreCase argument
is true when case difference is to be ignored.

The useWildcards argument is true when the pound sign and asterisk are
to be interpreted as wildcard characters rather than literal characters.
Because the presence of an asterisk wildcard affects the endpoint of the
found string, this variant returns an Interval identifying the index range of
the found string. A zero interval is returned when the search string is not
found.

| classComment searchString interval |
classComment := String comment.
searchString := 'Var*:'.

interval := classComment
findString: searchString
startingAt: 1
ignoreCase: true
useWildcards: true.

^classComment
copyFrom: interval first
to: interval last

Substring Operations
When a string contains two or more parts, getting the parts as separate
strings is a common requirement. For example, you might need to extract
the first and last names from a string containing a full name. You can
copy a portion of a string, using the starting and stopping character
locations.
7-10 VisualWorks

Strings
In certain situations, the only part of a string that you need is a prefix that
ends at a specific character. You can copy the characters that precede a
specific endpoint character.

Copying a Substring
Send a copyFrom:to: message to the string. The first argument is the
starting index and the second argument is the ending index of the desired
substring.

| fullName firstName lastName spaceIndex |
fullName := 'Mahatma Gandhi'.
spaceIndex := fullName indexOf: Character space.

firstName := fullName
copyFrom: 1
to: spaceIndex - 1.

lastName := fullName
copyFrom: spaceIndex + 1
to: fullName size.

^Array with: firstName with: lastName

Copying a Prefix
Send a copyUpTo: message to the string. The argument is the character
that marks the end of the prefix (but is not included in it).

| fullName firstName |
fullName := 'Boris Yeltsin'.

firstName := fullName copyUpTo: Character space.
^firstName

Removing or Replacing a Substring
A string can be quite long and complicated, representing an entire report
or the contents of a lengthy text file. In long strings especially, replacing a
portion of the string with a new substring is frequently useful.

Removing characters is accomplished by creating a copy in which the
unwanted characters have been replaced by an empty string.

When a string contains multiple occurrences of a substring, you can
replace all occurrences.

Replacing a Substring
To replace characters in a string with another string, send a
copyReplaceFrom:to:with: message to the string. This returns a copy of the
original string with the replacement made. The first and second
Basic Libraries Guide 7-11

Working with Text
arguments are the index locations of the starting and stopping characters
in the substring that is to be replaced. The with: argument is the
substitution string.

You can also use this method to insert a substring without removing any
characters in the existing string, by making the ending index one less
than the starting index.

To remove characters, replace them with an empty string.

For details of the operation of this method, refer to the method comment.

| aString anotherString newString |
aString := 'abcd'.
anotherString := 'efgh'.

" Replacement, returns 'aefghd' "
newString := aString copyReplaceFrom: 2 to: 3 with: anotherString.

" Insertion, returns 'aefghbcd' "
newString := aString copyReplaceFrom: 2 to: 1with: anotherString.

" Prefixing, returns 'efghabcd' "
newString := aString copyReplaceFrom: 1 to: 0 with: anotherString.
^newString

For replacements with a return size greater than 1024, use
changeFrom:to:with: instead.

Replacing All Occurrences of a Substring
Send a copyReplaceAll:with: message to the string. The first argument is
the substring that is to be replaced. The second argument is the
replacement substring.

| colorNames |
colorNames := String new.
ColorValue constantNames do: [:name |

colorNames := colorNames, name asString, ' '].

colorNames := colorNames"Variant Step"
copyReplaceAll: 'Gray'
with: 'Grey'.

^colorNames
7-12 VisualWorks

Strings
Tokenizing Substrings
It can be useful to convert a String to a collection of elements in it. Send a
tokensBasedOn: message to a String to return a collection of substrings
separated by the argument. For example:

'brave new world' tokensBasedOn: Character space
returns a collection of three strings.

Notice that this method is implemented several classes above String in
the hierarchy. Browse these superclasses for methods that might provide
results that you need.

String Substitution Parameters
Strings can include formal parameters, enclosed in the angle brackets
< >. The parameters are expanded by sending a version of the
expandMacros: message to the string.

Simple parameters are <n> and <t>, which specify substitution of CR and
Tab, respectively. For example, the String 'This is a <n><t>test' can be
expanded:

'This is a <n><t>test.' expandMacros
to print:

This is a
test.

Positional substitution parameters are also allowed. Immediately following
the opening bracket there may be an integer that specifies which of the
expansion arguments to substitute for this parameter. This allows for
substitutions in the string to appear in a different order than that in which
the arguments are passed in, and for the same argument to be
substituted more than once.

Following this parameter index is a character that identifies how the
substitution is to be performed. The characters and the substitution they
indicate are:

p
Substitute the printString value of the argument. For example:

'This is a <1p> test.' expandMacrosWith: 'substitution'
expands to
Basic Libraries Guide 7-13

Working with Text
'This is a ''substitution'' test.'
s

Substitute the argument itself, which must be a CharacterArray. For
example:

'This is a <1s> test.' expandMacrosWith: 'substitution'
expands to

'This is a substitution test.'
?

Requires two arguments in the parameter, and a Boolean expression
argument. The first is substituted if the expression argument is true,
and the second if the argument is false. For example:

'One is greater than <1?zero:two>.' expandMacrosWith: true
expands to

'One is greater than zero.'
#

Requires two arguments in the parameter, and a numeric expression
argument. The first is substituted if the expression argument is equal
to 1; otherwise, the second is substituted. For example:

'The book "<1#War:Peace> and <2#War:Peace>" is a must read.'
expandMacrosWith: 1 with: 2.

expands to

'The book "War and Peace" is a must read.'
The versions of expandMacros in these examples take one and two
positional substitution arguments. For up to four arguments, there are
also expandMacrosWith:with:with:, and expandMacrosWith:with:with:with:. For
more than four arguments, use exapndMacrosWithArguments:, with an Array
of arguments. All of these expand <n> and <t> as well.

The character $% acts as the escape character. Unless otherwise
specified, any character following the escape character is itself, and is not
treated specially. For example, '%<' becomes '<', which, because it is
preceded by the escape character, is not treated as the beginning of a
formal parameter. So,

'This is %<1s%> test' expandMacrosWith: 'a'
expands to
7-14 VisualWorks

Strings
'This is <1s> test'

Abbreviating a String
Abbreviations are rarely as comprehensible as the full form of a string,
and automatically derived abbreviations tend to be even less readable. In
some situations, however, an abbreviation is useful, and VisualWorks
provides a few useful abbreviation messages. Here are two methods.
Browse the String class and its superclasses for others.

Contracting a String
Send a contractTo: message to the string. The argument is the number of
characters in the abbreviation, including three for the ellipsis. Half of the
abbreviation will be taken from the beginning of the string and the other
half from the end.

| string contractedString |
string := 'North American Free Trade Agreement'.

contractedString := string contractTo: 15.
^contractedString

Removing Vowels
Send a dropFinalVowels message to the string. An abbreviated string is
returned in which only the leading vowel (if any) remains.

| string noVowelString |
string := 'North American Free Trade Agreement'.
noVowelString := string dropFinalVowels.
^noVowelString

Inserting Line-End Characters
In Smalltalk methods, certain conventions of indentation and line
wrapping make the code more readable. Sometimes a string disrupts the
readability of the code because it contains embedded carriage returns.

Rather than embed returns in a string, you can substitute a backslash
character (\). Then, when you print the string, send a withCRs message to
the string to convert the backslashes back to carriage returns.

Dialog
request: 'This string\has 3 lines\when displayed.' withCRs
initialAnswer: 'No response needed'.
Basic Libraries Guide 7-15

Working with Text
Note: This technique is not recommended for cross-cultural
applications, because it interferes with text lookup in message
catalogs. Instead, use separate strings and recombine them with
literal line-end characters.

Formatted Text and Fonts
A ComposedText object is the displayable counterpart of a String. A
ComposedText consists of a string plus a set of attributes that control the
appearance of that string, such as boldness and font. Typically, a
composed text is created when you want to customize the appearance of
the text that is displayed in a textual widget such as a text editor or a
label.

A Text object is an intermediate text object between a string and a
composed text. It holds a string plus an array of emphasis values that
apply to the string. Because the emphasis values can be interpreted only
by a composed text, a Text is used during operations that involve applying
boldness or other emphasis values to a composed text.

Creating a Formatable Text Object
The basic approach to creating a ComposedText object is to send an
asComposedText message to a string:

| string txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
string := ComposedText comment. "Read class comment"

txt := string asComposedText.

txt displayOn: gc at: 5@5.
The resulting composed text has no interesting format, however. To
format the text, we need to assign text attributes.

Composed text display attributes are controlled by an instance of
TextAttributes. You can either create a new TextAttributes, or use one that is
already defined in the TextAttributes class by sending a styleNamed:
message to TextAttributes.

To create a ComposedText with attributes, we also need to use the
intermediate Text object. This object is created by sending the asText
message to a string.
7-16 VisualWorks

Formatted Text and Fonts
Now we can create the composed text by sending a withText:style:
message to the ComposedText class:

| txt gc textStyle |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := ComposedText comment asText.
textStyle := TextAttributes styleNamed: #large.

txt := ComposedText
withText: txt
style: textStyle.

txt displayOn: gc at: 5@5.
More interesting formatting options are discussed in the following
sections.

Displaying a Text Object
Because a ComposedText is a visual component, you can display it on a
window or other display surface.

This example gets the graphics context from the display surface by
sending a graphicsContext message. It then send a displayOn: message to
the composed text, with the graphics context of the display surface as
argument:

| txt gc |
txt := ComposedText comment asComposedText.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt displayOn: gc at: 5@5.

In practice, you seldom display text directly on a window. VisualWorks
provides a variety of textual widgets that are more appropriate targets for
textual objects. For example, the TextEditor widget available in the UI
Painter makes an appropriate target for composed text.

Controlling Line Length
By default, composed text word-wraps long sentences onto multiple lines,
to avoid running off the right edge of the display area.

Setting Line Length
Line length is determined by the composition width of the composed text.
Normally, the composition width is adjusted automatically when a
composed text is displayed in a text widget, so setting the line length is
unnecessary.
Basic Libraries Guide 7-17

Working with Text
If you are writing a displaying method (displayOn:) for a new text widget,
you need to handle and set line widths. In this example, a scratch window
is used as the display surface, illustrating a technique for controlling line
length.

The key is to send a compositionWidth: message to the composed text:

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := VisualComponent comment asComposedText.

txt compositionWidth: 380.

txt displayOn: gc at: 5@5.
Variations of the ComposedText creation methods include forms for
specifying the width.

To get the current line length, send a width message to the text.

Controlling Word Wrap
It is sometimes desirable to disable the default word-wrapping feature for
composed text, for instance to display columnar material or other text that
would be disrupted by wrapping.

Word wrapping is controlled by the text widget (ComposedText), not the
text itself, because frequently a string is the “text” of a widget and a string
has no notion of wrappability. To turn off word wrapping, you turn it off in
the text widget itself.

If you turn off word wrapping, however, be sure to provide a horizontal
scroll bar on the text widget, or fix the size of the widget to ensure that it
is wide enough.

Send a wordWrap: message to the composed text. The argument is false
to disable wrapping, and true to turn it on.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := ComposedText comment asComposedText.
txt compositionWidth: 380.

txt wordWrap: false.

txt displayOn: gc at: 5@5.
7-18 VisualWorks

Formatted Text and Fonts
Controlling Line Format

Setting Alignment
By default, a composed text is left-aligned, starting each new line flush
against the left margin. Other alignments are preferable in some
situations. Composed text allows you to set the alignment.

ComposedText provides four messages to set the alignment: leftFlush,
rightFlush, centered, and justified.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := VisualComponent comment asComposedText.
txt compositionWidth: 380.

txt rightFlush.

txt displayOn: gc at: 5@5.

Setting Indents
With a composed text, you can set two indents, one indent for the first line
and another for all subsequent lines in the same paragraph. Indents are
measured in pixels.

To set the first line indent, send a firstIndent: message to the composed
text. The argument is the width, in pixels, of the first line’s indentation
from the left edge.

To set the indent for later lines, send a restIndent: message to the
composed text. The argument is the width of the indentation from the left
edge for all lines after the first line.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Line 1\Line 2\Line 3\Line 4'

withCRs asComposedText.
txt compositionWidth: 380.

txt firstIndent: 50.
txt restIndent: 100.

txt displayOn: gc at: 5@5.

Setting Tab Stops
You can set any number of tab stops for composed text. Tab settings are
controlled by the TextAttributes object that is held by the composed text.
Tab stops are measured in pixels.
Basic Libraries Guide 7-19

Working with Text
When changing a composed text object’s attributes, first make a copy of
the attributes object, which you retrieve by sending a textStyle message.
You need a copy because the default text style for any composed text is a
systemwide object which, if changed, affects all texts that do not already
have custom attributes.

To define the tab stops, send a useTabs: message to the text style. The
argument is an array of integers specifying one or more tab settings.
Each setting indicates the number of pixels that tab stop is from the
restIndent setting.

If the array contains a single integer, that value is used as an increment,
and each tab is set as that distance from its predecessor.

Send a textStyle: message to the text with the style as the argument to set
the tab stops.

| txt gc style tab |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
tab := String with: Character tab.
txt := ('Line 1\Line 2\Line 3\',

tab, '1 Tab\',
tab, tab, '2 Tabs\',
tab, tab, tab, '3 Tabs').

txt := txt withCRs asComposedText.
txt compositionWidth: 380.

txt firstIndent: 50.
txt restIndent: 100.

style := txt textStyle copy.
style useTabs: #(15 20 25).
txt textStyle: style.

txt displayOn: gc at: 5@5.

Printing a Text Object
A composed text can be printed on paper very simply, by sending the
hardcopy message to the composed text. This technique assumes that
you have configured your system to send output to a printer. If you can
successfully print by using the hardcopy command in a System Browser,
you can also print a composed text as shown here:

| txt |
txt := Object comment asComposedText.

txt hardcopy.
7-20 VisualWorks

Formatted Text and Fonts
Text String Operations
You can perform the same operations on composed text as you can
perform on strings, such as counting characters, searching and replacing
strings, and so on. These operations are actually defined for the Text
object contained in the composed text.

Counting Characters
Text objects support a size message which returns the number of
characters in the text.

| composedText plainText |
composedText := Object comment asComposedText.

plainText := composedText text.
^plainText size

Search for Text
To search for text in composed text, you search through either its Text or
through the String contained in the text.

The following example is essentially the same as the example given
earlier for string searches, except that the search is performed on the text
object.

| composedText txt |
composedText := Object comment asComposedText.

txt := composedText text.
 "Could use: txt := composedText string."

^txt
findString: 'Var*:'
startingAt: 1
ignoreCase: true
useWildcards: true.

Replacing Text
Replacing part of a ComposedText is very much as with a string. The
substitution text can be either a Text or a String. If the replacement text is
a Text, it can have boldfacing or other emphasis properties.

To replace text, send a replaceFrom:to:with: message to the composed text.
This method is defined in the ComposedText class, so you don’t need to
extract the text or string.
Basic Libraries Guide 7-21

Working with Text
As with string replacements, the first and second arguments are integers
indicating the range of text to be replaced. The third argument is the
replacement text, which can be either a string or a text.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Red Green Blue' asComposedText.
txt compositionWidth: 300.

txt replaceFrom: 1 to: 3 with: 'BloodRed' asText allBold.

txt displayOn: gc at: 5@5.

Comparing Text Objects
A ComposedText can only tell whether it is the same object as another text,
that is, equality (=) tests the same as identity (==).

In most situations it is more useful to test the underlying Text objects,
which compare their underlying strings. The comparisons can then be
performed just like on strings.

| text1 text2 |
text1 := 'abcd' asComposedText text.
text2 := 'ABCD' asComposedText text.
^text1 > text2. " Returns true "

Copying a Range of Text
A ComposedText does not directly support copying a range of it, so copy
operations are performed on the underlying Text and used to create a new
composed text with the copied text. The text style can also be transferred
to the new composed text.

| composedText plainText descriptionEnd copy gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
composedText := Object comment asComposedText.
composedText compositionWidth: 300.

plainText := composedText text.
descriptionEnd := plainText

findString: 'Class Variables'
startingAt: 1.

descriptionEnd := descriptionEnd - 1.

copy := plainText copyFrom: 1 to: descriptionEnd.
copy asComposedText displayOn: gc at: 5@15.

The composition width and word-wrap setting are not copied in this
approach. If needed, these settings can also be copied.
7-22 VisualWorks

Character Formatting
To get the width of the original composed text, send a width message to it.
Then give this value to the copy by sending a compositionWidth: message.

To get the word-wrap property of the original composed text, send a
wordWrap message to it. Then give this value to the copy by sending a
wordWrap: message to it.

| composedText plainText descriptionEnd copy gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
composedText := Object comment asComposedText.
composedText compositionWidth: 300.

plainText := composedText text.
descriptionEnd := plainText

findString: 'Class Variables'
startingAt: 1.

descriptionEnd := descriptionEnd - 1.

copy := plainText copyFrom: 1 to: descriptionEnd.
copy := copy asComposedText.

copy compositionWidth: composedText width.
copy wordWrap: composedText wordWrap.
copy displayOn: gc at: 5@15.

Character Formatting
Character formatting for composed text is primarily controlled by two
objects contained in a composed text object: a Text object and a
TextAttributes object.

The Text object has two parts: a String and an array of modifiers that
indicate how each character in the string is formatted. Modifiers, which
are called emphases because the modifiers are often used to emphasize
a portion of a text, specify features such as bold, italic, color, and, to a
limited extent, character size.

More complete control over character formatting, including font selection,
is handled by the TextAttributes object for the composed text. VisualWorks
provides a default TextAttributes, which is used by composed text unless
an alternate is specified. The effect of modifiers applied to the Text object
are defined by the text attributes assigned to the composed text.
Basic Libraries Guide 7-23

Working with Text
Applying Character Variations
Character variations, such as bolding, underlining, and color, are
specified in a Text object’s array of modifiers.

Applying Boldfacing and Other Emphases
To apply an emphasis to a range of text, send an emphasizeFrom:to:with:
message to a Text. The first and second arguments identify the character
range to be modified. The third argument is the emphasis value.
Standard emphases are #bold, #italic, #serif, #underline, #strikeout, #large,
and #small.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'normal bold italic serif underline strikeout large small' asText.

txt emphasizeFrom: 8 to: 11 with: #bold.
txt emphasizeFrom: 13 to: 18 with: #italic.
txt emphasizeFrom: 20 to: 24 with: #serif.
txt emphasizeFrom: 26 to: 34 with: #underline.
txt emphasizeFrom: 36 to: 44 with: #strikeout.
txt emphasizeFrom: 46 to: 50 with: #large.
txt emphasizeFrom: 52 to: 56 with: #small.

txt displayOn: gc at: 5@25.
When two or more emphases apply to the same range of characters, as
when applying both bold and italic emphases, an array containing the
emphases is used as the third argument:

txt emphasizeFrom: 8 to: 18 with: #(#bold #italic).
txt emphasizeFrom: 20 to: txt size with: #(#large #bold #italic #underline).

When an entire text is to be given the same emphasis, you can send an
emphasizeAllWith: message to the Text. The argument is the emphasis
value or an array containing multiple emphasis values:

txt emphasizeAllWith: #(#bold #italic).
Because boldfacing an entire text is a common operation, a convenient
means of applying the #bold emphasis to a text is provided. Send an
allBold message to the Text.

txt allBold displayOn: gc at: 5@25.

Applying Color to Text
You can apply color to a text as an emphasis by specifying #color and
providing an argument. The argument is provided by making an
association, using the -> message.
7-24 VisualWorks

Character Formatting
Send an emphasizeFrom:to:with: message to the Text, with the third
argument as an association:

| txt gc boldBlue |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'BLACK RED GRAY BOLDBLUE' asText.

txt emphasizeFrom: 7 to: 9 with: #color -> ColorValue red.
txt emphasizeFrom: 11 to: 14 with: #color -> ColorValue gray.

boldBlue := Array with: #bold with: #color -> ColorValue blue.
txt emphasizeFrom: 16 to: 23 with: boldBlue.

txt displayOn: gc at: 5@25.
A Pattern object can be associated with #colorinstead of a color, if desired.

Changing Font Size
Two standard text emphases, #small and #large, give you limited control
over the font size within a narrow range.

Send an emphasizeFrom:to:with: message to the composed text’s
underlying Text. The first and second arguments define the character
range by specifying the starting and stopping indexes. The third argument
is #small or #large. The actual size depends on the fonts available from the
operating system, and on some platforms it may not differ at all. To return
to the default size, apply a nil emphasis to the text.

| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'large small' asText.

txt emphasizeFrom: 1 to: 5 with: #large.
txt emphasizeFrom: 7 to: 11 with: #small.
txt displayOn: gc at: 5@25.

txt emphasizeAllWith: nil.
txt displayOn: gc at: 5@40.

Applying Formats on a Text Stream
To create a Text object with character formatting in a constructive manner,
TextStream provides the essential protocol.

To build the Text, create a TextStream object, set a character format by
sending an emphasis: message, and then write the string of characters to
have that format to the stream. The following workspace script illustrates
several methods and format options.
Basic Libraries Guide 7-25

Working with Text
"Create the TextStream"
stream := TextStream on: String new.

"Add several strings of various emphasis"
title1 := 'Simple Text Emphasis Examples' asText

emphasizeAllWith: #(#bold #large).
stream nextPutAllText: title1.
stream cr tab.
stream nextPutAll:'normal'; space.
stream emphasis: #bold; nextPutAll:'bold'; space.
stream emphasis: #italic; nextPutAll:'italic'; space.
stream emphasis: #serif; nextPutAll:'serif'; space.
stream emphasis: #underline; nextPutAll:'underline'; emphasis: nil; space.
stream emphasis: #strikeout; nextPutAll:'strikeout'; emphasis: nil; space.
stream emphasis: #large; nextPutAll:'large'; space.
stream emphasis: #small; nextPutAll:'small'; space.

"Add strings emphasized to different colors"
stream cr cr.
title2 := 'Colored Text Emphasis Examples' asText

emphasizeAllWith: #(#bold #large).
stream nextPutAllText: title2.
stream cr tab.
stream emphasis: #color -> ColorValue blue; nextPutAll:'blue'; space.
stream emphasis: #color -> ColorValue red; nextPutAll:'red'; space.
stream emphasis: #color -> ColorValue green; nextPutAll:'green'; space.

"Add strings of combined emphases"
stream cr cr.
title3 := 'Combined Text Emphasis Examples' asText

emphasizeAllWith: #(#bold #large).
stream nextPutAllText: title3.
stream cr tab.
stream emphasis: #(#bold #italic); nextPutAll:'bold-italic'; space.
stream emphasis: #(#large #bold #italic #underline);

nextPutAll:'large-bold-italic-underline'; emphasis: nil; space.
stream nextPutAll: 'normal'.

"The contents of a TextStream is an instance of Text"
txt := stream contents.
txt inspect.
7-26 VisualWorks

Character Formatting
Defining Text and Character Styles
Fonts and other character attributes are defined within a composed text’s
TextAttributes. While the structure of the style definition is quite complex,
there are several operations that can be performed relatively easily,
employing the more useful text attribute components.

The general procedure for all of the operations described below is to
define a text style, which is a TextAttributes object. The text style specifies
a variety of attributes, including alignment, indents, leading, and
character attributes. Character attributes are, in turn, defined by a
CharacterAttributes object which, among other things, defines the font for
the style.

You can examine this structure by evaluating this expression, then
digging down into the component objects, especially the #textStyle
variable:

| txt style |
txt := 'Hello, World' asComposedText.
style := TextAttributes styleNamed: #systemDefault.
txt textStyle: style.
txt inspect.

The examples all build on the very simple structure of this expression.

Using the Platform Default Font
VisualWorks provides a virtual text style that corresponds to the default
font supplied by the underlying window manager, when applicable.

When the UI Look is set to something other than the host window
manager, VisualWorks selects a font that mimics the appearance of the
default font for that look. In the fonts menu, this is the System font. Thus, a
widget that uses the System font has the best chance of looking like other
applications on any platform on which it is deployed.

To apply the system default font to composed text, get the text style
nearest the platform default by evaluating:

TextAttributes styleNamed: #systemDefault.
Then send a textStyle: message to the composed text with the result of the
above as argument.
Basic Libraries Guide 7-27

Working with Text
| txt gc style |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'Hello, World' asComposedText.

style := TextAttributes styleNamed: #systemDefault.
txt textStyle: style.

txt displayOn: gc at: 5@25.

Defining a Custom Text Style
You create a custom text style by replacing values in a default style.
Some styles are replaced in the TextAttributes object and others are
replaced in the CharacterAttributes object.

Associated with each emphasis symbol in the CharacterAttributes is a block
that operates on a FontDescription. The font description controls font
selection by specifying the font size, family, boldness, and so on.

A simple “bottom up” procedure for constructing a custom text style is:

1 Create a new instance of FontDescription, and make desired changes.
The example uses the default font description. If you have a font
description that already has all or many of the desired characteristics,
it is useful to copy that definition and then make further changes.

2 Create a new instance of CharacterAttributes by sending a
newWithDefaultAttributes message to the CharacterAttributes class. This
message initializes the CharacterAttributes with the standard
emphases.

3 Install an instance of FontDescription in the new CharacterAttributes by
sending a setDefaultQuery: message.

4 Customize the CharacterAttributes as desired. For illustrative purposes,
the example defines a new emphasis called #title, which specifies that
the font must be 24 pixels in height.

If you create unusually large or small text, as in the example, you
need to adjust the line spacing and baseline of the text style. The
example does this by sending the lineGrid: and baseline: messages to
the text style. Refer also to “Adjusting the Line Spacing and Baseline”
on page 7-35 for another method.

The following sections explain other useful changes.

5 Create a new TextAttributes by sending a characterAttributes: message
to the TextAttributes class. The argument is the CharacterAttributes that
you customized in step 4.
7-28 VisualWorks

Character Formatting
6 Install the custom text style by sending a textStyle: message to the
composed text. The argument is the custom TextAttributes from step
5.

7 Apply the new emphasis to the desired portions of the composed
text’s underlying Text.

| txt gc ca ta |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.
txt compositionWidth: 300.

"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: txt textStyle defaultFont.
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24].
ta := TextAttributes characterAttributes: ca.
ta lineGrid: 27; baseline: 18.
txt textStyle: ta.

txt text emphasizeAllWith: #title.
txt displayOn: gc at: 5@25.

Set text typeface family
The default font belongs to Helvetica, Arial, or a similar font family,
depending on the operating system. For other fonts, set a text emphasis
attribute that chooses a font from a another typeface family. This
emphasis is available for any text style set for default character attributes.

Send an emphasizeFrom:to:with: message to the underlying Text of a
ComposedText. The first and second arguments identify the range of
characters to be affected. The third argument is an association between a
lookup key (#family) and the name string or an array of name strings for
the font family to use. The name may include the wildcard character ‘*’ to
match a family name with a partial description. The available font that
most nearly matches the name in the argument is used. If an array of
family names is specified, the first matching font family in the array is
used. If no font is available from any family name specified, a font from
the text style’s default font family is used.
Basic Libraries Guide 7-29

Working with Text
| txt gc |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := 'normal courier times helvetica terminal foobar' asText.

txt emphasizeFrom: 8 to: 14 with: #family->'courier'.
"Match Times New Roman or Times"

txt emphasizeFrom: 16 to: 20 with: #family->'times*'.

txt emphasizeFrom: 22 to: 30 with: #family->'helvetica'.
txt emphasizeFrom: 32 to: 39 with: #family->'terminal'.

“Use the default font for a family unknown to the installation”
txt emphasizeFrom: 40 to: 45 with: #family->'foobar'.

txt displayOn: gc at: 5@25.

Setting Font Family or Name
The default font is Helvetica, Arial, or a similar font, depending on the
operating system. Two of the built-in text emphases give you some
control over the choice of font family: #serif (for a font with serifs, such as
Times) and #sansSerif (for a font without serifs, such as Helvetica).

When you want to be more specific about the font family, you can create a
custom emphasis to do so.

Because an operating system may not supply the font family or name that
you specify, it’s a good idea to specify alternatives. You can also specify a
wildcard pattern for any of the three attributes, such as helv* to indicate
that a partial match is acceptable. You can also use the #serif and
#sansSerif emphases to guide the selection of an alternative. The family
attribute supersedes those settings, and the name attribute supersedes
the family.

Setting the Font by Family

To set the font family, send a family: message to the FontDescription you
create for defining the custom text style. (Refer to “Defining a Custom
Text Style” on page 7-28.) The argument is an array containing one or
more strings.

Each string names a font family or a wildcard pattern for partial matching.
A string containing only an asterisk is frequently used as the final element
in the array to indicate that any alternate is preferable to a “font not found”
error.

Remember to adjust the line spacing to suit the font, if necessary, by
sending a gridForFont:withLead: message to the text style.
7-30 VisualWorks

Character Formatting
"Create and install a custom text style."
fd := FontDescription new

family: #('bookman' 'times*' '*');
serif: true;
fixedWidth: false;
pixelSize: 14.

ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca.
ta gridForFont: nil

withLead: 2.
txt textStyle: ta.

Setting the Font by Name

The most specific technique is to provide the name string that the
operating system uses to identify a particular font. This approach is useful
when, for example, you want to examine the operating system’s fonts.

Rather than specifying a family, you can specify a font by name by
creating a new FontDescription and sending a name: message to it. The
argument is a string that names a font family.

The full name string is coded, for example,
'System~16~700~0~0~0~ansi~1', and so is not easily used. You can
partially specify the name, however, using a wildcard, for example,
'System*'. If this pattern matches several fonts, the first match is used, so
control is not precise.

A reasonable scenario might be to retrieve the list of font names using:

Screen default listFontNames
This returns an array that can be used to populate a list box widget. The
user can then select the font in the list, and the name string can then be
used.

The example shortcuts this longer process, taking the list of available
fonts from the operating system and using the first one.

"Create and install a custom text style."
fd := FontDescription new

name: (Screen default listFontNames at: 1).
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca.
ta gridForFont: nil

withLead: 2.
txt textStyle: ta.
Basic Libraries Guide 7-31

Working with Text
Defining Custom Sizes
Because fonts are supplied by the operating system, and VisualWorks
runs on several different operating systems, fonts are specified flexibly by
describing the desired properties. This font description is held by a
CharacterAttributes, which in turn is held by a composed text’s text style.
Font size is just one of the properties you can set by modifying the font
description.

A limitation to bear in mind is that a composed text applies the same line
spacing to its entire text, so mixing font sizes is effective within only a
narrow range for each composed text. Separate instances of
ComposedText are recommended in such situations.

The first variant shows how to define a #title emphasis, which modifies the
pixel size in the font description for any parts of the text that have the #title
emphasis.

When mixing font sizes in the same composed text, bear in mind that a
single text can have only one setting for line spacing. The second variant
shows how to adjust the line spacing and the baseline to suit the largest
font you are using. When this produces unsatisfactory results for smaller
text, put the smaller text in its own ComposedText, with appropriate line
spacing.

The built-in text styles (#large and #small, for example) automatically
adjust their pixel sizes to suit the pixel density of the display device. This
resizing feature is especially useful when deploying your application on
different types of hardware. To incorporate it into your custom text style,
use VariableSizeTextAttributes instead of its parent class, TextAttributes, in
the following examples.

Setting Font Pixel Size
To set a font size, send a pixelSize: message to a FontDescription. The
argument is the desired font size in pixels.

On platforms such as MS Windows and on PostScript printers, font size is
usually measured in points. On MS Windows, the font pixel size
equivalent to a given point size is given by the following relationship for
most VGA or better screen resolutions:

pixelSize := (pointSize * (96/72) asFloat) rounded.
The example below creates a text style for a 22 pixel font given the
default font preferences.
7-32 VisualWorks

Character Formatting
| txt gc ca ta fd |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
txt := Object comment asComposedText.

"Copy the default font description and set its pixel size to 22"
fd := txt textStyle defaultFont copy.
fd pixelSize: 22.
ta := TextAttributes defaultFontQuery: fd.
ta gridForFont: nil

withLead: 2.
txt textStyle: ta.

txt compositionWidth: 300.
txt displayOn: gc at: 5@25.

If the text style is scaled (the text style is an instance of
VariableSizeTextAttributes), then changing the pixel size of its FontDescription
has no effect in text size. Scaled text styles need to be rescaled instead.
Text styles #default, #small, #large, #systemDefault, and #fixed are scaled.
Send the message scalingFactor: to the scaled text style. The argument is
a ratio of the desired pixel size to the preferred pixel size.

Creating a Scaled Text Style
When text is displayed on different screen sizes or resolutions often there
is a need to resize text for better visibility. A text style based on an
instance of VariableSizeTextAttributes permits composed text to be scaled
relative to a single preferred font pixel size set for the VisualWorks Locale.
A VariableCharacterAttributes instance is used with a
VariableSizeTextAttributes to define the emphases and scaling applied to a
composed text. Instances of VariableSizeTextAttributes and
VariableCharacterAttributes will work in place of TextAttributes and
CharacterAttributes instances; all respond to the same methods to define
emphases and format text. The pixel size attribute for a FontDescription
installed in a VariableCharacterAttributes instance is not used however.
Instead, the scalingFactor: message to either a VariableSizeTextAttributes or
VariableCharacterAttributes instance determines text size.

1 Create a new text style from VariableSizeTextAttributes by sending its
class the message defaultFontQuery: with a FontDescription. The
example uses the FontDescription from the default text style.
Alternately, an instance of VariableSizeTextAttributes may be created by
sending the message characterAttributes: with an instance of
VariableCharacterAttributes.

2 To scale the text style either larger or smaller than the preferred pixel
size send the message scalingFactor: to the text style from step 1. The
Basic Libraries Guide 7-33

Working with Text
argument is a ratio of the desired pixel size to the preferred pixel size.
For example, if the preferred pixel size is 16 a scaling of 1.5 displays
the font at a pixel size of 24.

3 Install the text style in the composed text by sending a textStyle:
message to the composed text. The argument is the text style from
step 2.

| gc fd largeScaledStyle smallScaledStyle txt |
gc := ExamplesBrowser prepareScratchWindow graphicsContext.
fd := TextAttributes default defaultFont.

"Create scaled text styles"
smallScaledStyle := VariableSizeTextAttributes

defaultFontQuery: fd.
smallScaledStyle scalingFactor: 0.5.
largeScaledStyle := VariableSizeTextAttributes

defaultFontQuery: fd.
largeScaledStyle scalingFactor: 2.

"Display text one half the preferred pixel size"
txt:= ComposedText withText: 'This text is scaled small'

style: smallScaledStyle.
txt displayOn: gc at: 5@25.

"Display text normal size"
txt:= 'This text is scaled normal' asComposedText.
txt displayOn: gc at: 5@50.

"Display text twice the preferred pixel size"
txt:= ComposedText withText: 'This text is scaled large'

style: largeScaledStyle.
txt displayOn: gc at: 5@75.

Defining an Emphasis for a Custom Size
To define a new emphasis, send an at:put: message to the
CharacterAttributes. The first argument is the name of the emphasis (#title
in the example). The second argument is a block that sends a pixelSize:
message to the block argument, with the desired size of the font in pixels.

Then, create a new TextAttributes by sending a characterAttributes:
message to the TextAttributes class with the CharacterAttributes you have
defined. Install the custom text style in the composed text by sending a
textStyle: message to the composed text, as usual.
7-34 VisualWorks

Character Formatting
"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: txt textStyle defaultFont.
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24].
ta := TextAttributes characterAttributes: ca.
txt textStyle: ta.

txt text emphasizeFrom: 1 to: 6 with: #title.

Adjusting the Line Spacing and Baseline
As shown in “Defining a Custom Text Style” on page 7-28, you can
specify the line spacing and baseline of a text style by sending the
lineGrid: and baseline: messages to the text style.

The line grid is the number of spaces, in pixels, between two lines of text
in a paragraph.

The baseline is the height of a line, typically measured from the top of the
tallest character to the bottom of a standard character, a character
without descenders. For most fonts, the baseline is the height of the
capital “A” character.

"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: txt textStyle defaultFont.
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24].
ta := TextAttributes characterAttributes: ca.
ta lineGrid: 27; baseline: 18.
txt textStyle: ta.

txt text emphasizeAllWith: #title.
To change the line spacing for a named custom text style, send a
gridForFont:withLead: message to the TextAttributes of the composed text.
The first argument is the name of the text emphasis (#title). The second
argument is the leading, which is the vertical space to be left between
one line and the next, typically zero to two pixels. This adjusts both the
line spacing and the baseline to suit the font’s size.
Basic Libraries Guide 7-35

Working with Text
"Create and install a custom text style."
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: txt textStyle defaultFont.
ca at: #title put: [:fontDesc | fontDesc pixelSize: 24].
ta := TextAttributes characterAttributes: ca.
ta gridForFont: #title

withLead: 2.
txt textStyle: ta.

txt text emphasizeAllWith: #title.

Adding a Custom Font to the Fonts Menu
If you define a font, you may want to add it to the fonts menu in the
property sheet for widgets. This involves adding a new TextAttributes to the
system’s dictionary of text styles.

To install the text style in the system’s dictionary of styles, send a
styleNamed:put: message to the TextAttributes class. The first argument is a
lookup name, specified as a Symbol. A capitalized version of the name will
appear in the fonts menu. The second argument is the custom text style.

| fd ca ta |
fd := FontDescription new

pixelSize: 24.
ca := CharacterAttributes newWithDefaultAttributes.
ca setDefaultQuery: fd.
ta := TextAttributes characterAttributes: ca.
ta gridForFont: fd withLead: 2.

TextAttributes styleNamed: #title put: ta.
Removing a text style from the system’s dictionary can be troublesome
when existing widgets specify that font. For that reason, no supported
mechanism for removing a font exists. The best approach is to replace
the text style that is associated with a particular name, in the same way
that you added the original text style. For this reason, we recommend that
you expand the fonts menu with caution.

Changing the Default Font
The default font that is used by VisualWorks tools to display textual
information can be changed, as shown in the example. Widgets for which
the Default font has been selected, both in system tools and in your
applications, are also affected. Because many of the widgets use the
System font by default, they will not be affected unless you change their
font property to Default.
7-36 VisualWorks

Character Formatting
To set the default font, send a setDefaultTo: message to the TextAttributes
class. The argument is the Symbol that names the desired text style.

Note: The text style must have been defined previously and installed
in the fonts menu.

To refresh any open windows to use the new font, send a resetViews
message to the TextAttributes class.

TextAttributes setDefaultTo: #default.
TextAttributes resetViews.

Setting the Preferred Font Family
Each text style that displays a different typeface uses a FontDescription
with a font family list. It is often preferable to have all text styles choose a
font from a common list of preferred font families, before choosing from its
own list. If no font in the common list is found, the text selects a font family
from its own list.

1 Send a preferredFontFamily: message to the current Locale.

The argument is an array with one or more font family name strings.

2 Refresh any open windows by sending a resetViews message to the
TextAttributes class. When they are redisplayed, they will use the new
family preferences.

Locale current preferredFontFamily: #('system' 'gill').
TextAttributes resetViews.

Normally the family preference list is empty. To clear family preferences
set the list to be empty.

Locale current preferredFontFamily: #().
To determine what the current font family preferences are, if any, send the
preferredFontFamily message to the current Locale.

^Locale current preferredFontFamily

Setting the Preferred Font Pixel Size
When a scaled text style is used such as the default, the font is scaled
relative to the preferred pixel size set for the current Locale. You can
globally resize all scaled text styles by changing the preferred font pixel
size.
Basic Libraries Guide 7-37

Working with Text
1 Send a preferredPixelSize: message to the current Locale, with an
integer argument specifying the pixel size.

2 Refresh the windows that are already open by sending a resetViews
message to the TextAttributes class. When they are redisplayed, text
using a scaled text style will be resized.

Locale current preferredPixelSize:18.
TextAttributes resetViews.

To determine what the preferred font pixel size is send a preferredPixelSize
message to the current Locale.

^Locale current preferredPixelSize
7-38 VisualWorks

8
Colors and Patterns

Colors and Patterns
VisualWorks uses Colors and Patterns to draw lines and fill shapes.

Colors as represented as instances of ColorValue. VisualWorks stores
colors as red, green, and blue (RGB) components, but allows colors to be
specified by constant names, by RGB values, or by hue, saturation, and
brightness (HSB) values.

A Pattern is an arrangement of pixels created by replicating a tile
throughout a painted region. For example, the gray background used by
many window managers is created by employing a four-pixel tile. The tile
can be an Image, a Pixmap, or a Mask.

Pixel Coverage
A CoverageValue identifies the fraction of a pixel that is covered. Since a
pixel, by its nature, must be displayed in its entirety, only the values 0 and
1 are typically used. Fractional coverages can be specified, however, as
explained in the discussion of coverage palettes on “Image Color
Palettes” on page 8-7.

CoverageValue is the paint basis for Masks. An Image can also be coverage-
based, typically when it is used as a storage medium for a Mask, which
does not survive after the system is shut down.

A CoverageValue can be created by name or by value:

CoverageValue transparent
CoverageValue coverage: 0

CoverageValue opaque
CoverageValue coverage: 1
Basic Libraries Guide 8-1

Colors and Patterns
Creating a Color
ColorValue class methods provide simple protocol for creating instances
by either color constant name, RGB values, or HSB values.

Create by Color Name
Several color constants are defined by class method selectors for each
color name. To create a color, send the appropriate color message to
ColorValue class. For example, to create an instance of cyan, send the
cyan message to the ColorValue class:

| gc color |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

color := ColorValue cyan.

gc paint: color.
gc displayDotOfDiameter: 400 at: 200@200.

The following example displays all the predefined colors in a ray chart.

| gc endPoint colors |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 7.
endPoint := 350@0.

colors := ColorValue constantNames.

colors do: [:c |
endPoint := endPoint + (-10@12).
gc paint: (ColorValue perform: c).
gc displayLineFrom: 0@0 to: endPoint.
gc paint: ColorValue black.
c asString displayOn: gc at: endPoint + (0@8)]
8-2 VisualWorks

Colors and Patterns
Create by Red, Green, and Blue Values
Send a red:green:blue: message to the ColorValue class. All arguments are
numbers between zero and one, representing the intensity of their
respective colors. In the example, the intensity of green is varied while the
red and blue intensities remain at zero.

| gc origin |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
origin := 0@0.

1 to: 0 by: -0.01 do: [:grn |
gc paint: (ColorValue red: 0.0 green: grn blue: 0.0).
origin := origin + 4.
gc displayRectangle: (origin extent: 400 - origin)]

Create by Hue, Saturation, and Brightness Values
Send a hue:saturation:brightness: message to the ColorValue class. The hue
argument is a number from 0 to 1, where 0 is red, 0.333 is green, 0.667 is
blue, and 1 is red again. The saturation argument is a number from 0 to 1,
representing minimum vividness (white) to full color; a more saturated
color makes an object appear closer to the viewer. The brightness
Basic Libraries Guide 8-3

Colors and Patterns
argument is a number from 0 to 1, representing minimum brightness
(black) to full color; varying the brightness is useful for representing
shadows.

| gc r x y |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
r := 50.
gc lineWidth: 2.

gc translation: 150@150.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.5 brightness: i).
gc displayLineFrom: x@y to: 0@-100].

gc translation: 200@200.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 0.75 brightness: i).
gc displayLineFrom: x@y to: 0@-100].

gc translation: 250@250.
0 to: 1 by: 0.005 do: [:i |

x := (i * Float pi) cos * r.
y := (i * Float pi) sin * r / 2.
gc paint: (ColorValue hue: 0.0 saturation: 1.0 brightness: i).
gc displayLineFrom: x@y to: 0@-100]
8-4 VisualWorks

Colors and Patterns
Coloring a Graphical Object

By default, a color-based display surface (ApplicationWindow or Pixmap)
displays geometric objects in black. To change the color of an object, set
the color for the graphic context before drawing the object. To set the
color, send a paint: message to the graphics context of the display surface
with the color as argument:

| gc circle colors |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
circle := Circle center: 200@200 radius: 200.
colors := ColorValue constantNames.

colors do: [:colorName |
gc paint: (ColorValue perform: colorName).
circle := circle scaledBy: 0.9.
circle asFiller displayOn: gc]

Creating a Pattern
A Pattern is created by filling a space with a single graphic image that is
repeated in tiles. A Pattern can be used in any situation that you can use a
solid color.

To create a pattern, send an asPattern message to the graphic image to
serve as the tile:
Basic Libraries Guide 8-5

Colors and Patterns
| gc tile |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

tile := Image cincomSmalltalkLogo shrunkenBy: 4@4.
tile := tile asPattern.

gc paint: tile.
gc displayRectangle: (50@50 extent: 300@300).

The graphic image is typically an Image subclass instance, but can also
be a window, Pixmap, or Mask.

Applying a Pattern
Patterns are applied in the same way as colors. Send a paint: message to
the graphics context of the display surface on which the object is to be
displayed. The argument is a pattern, or in the case of a Mask, a
coverage.

| gc tile |
tile := Pixmap extent: 10@10.
gc := tile graphicsContext.

"Tile background"
gc paint: ColorValue chartreuse.
gc displayRectangle: (0@0 extent: 10@10).

"Tile foreground"
gc paint: ColorValue red.
gc displayDotOfDiameter: 10 at: 4@4.

"Patterned circle"
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc paint: tile asPattern.
gc displayDotOfDiameter: 400 at: 200@200.

Adjusting a Pattern’s Tile Phase
For some patterns, the placement of that first tile can be critical to the
pattern. By default, the first tile is placed with its upper left corner at the
origin of the display surface’s GraphicsContext.

To adjust the start location, send a tilePhase: message to the graphics
context of the display surface on which the patterned object is to be
displayed. The argument is a point that defines the origin of the first tile in
the pattern.
8-6 VisualWorks

Image Color Palettes
In the example, the tile phase is the same as the origin of the painted
object, which aligns the tiles with the top and left edges of the object.

| gc tile |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
tile := Image cincomSmalltalkLogo shrunkenBy: 4@4.
tile := tile asPattern.
gc paint: tile.

gc tilePhase: 50@50.

gc displayRectangle: (50@50 extent: 300@300).

Image Color Palettes
A Palette represents the collection of colors available for coloring pixels.
For colored objects, such as images, the color of each pixel is stored as a
numeric value. A palette is needed to translate those numeric values to
instances of ColorValue or CoverageValue.

Coverage Palettes
A CoveragePalette is used by Masks and masking images, to specify levels
of transparency. It has a maxPixelValue, which determines the number of
levels of transparency. Usually, maxPixelValue is set to 1, because a pixel
can only be fully transparent (pixel value 0) or fully opaque (1).

However, you may want to allow for intermediate levels of translucence.
By specifying the maxPixelValue, you can create an image having any
number of coverage levels (currently, masks are restricted to two levels).

Color Palettes
A color palette can have either of two representations: fixed or mapped. A
FixedPalette breaks a pixel value into red, green, and blue fields, each of
which controls the intensity of that primary color. A MappedPalette stores a
table of colors, so each numeric pixel value can be associated with an
arbitrary color. A MonoMappedPalette is a MappedPalette that is specialized
for the case in which the palette contains only black and white.

Mapped palettes are most appropriate for images on color-mapped
display screens and for images that use a small number of colors. Fixed
palettes support true-color display screens that don’t use a hardware
color map. Such true-color screens typically support a large number of
Basic Libraries Guide 8-7

Colors and Patterns
colors. A mapped palette for a typical true-color screen, which has a
depth of 24, requires a color mapping table with more than 16 million
elements.

Creating a Color Palette
Different types of palettes are created in different ways.

To create a mapped palette, send a withColors: message to MappedPalette,
specifying an array of colors used to initialize the palette.

A fixed palette uses RGB values. Depending on the depth of the image,
one set of RGB values might occupy 8 bits, 24 bits, or 32 bits (or even
something in between). When you create a fixed palette, you must arm it
with the means to locate the red bits, the green bits, and the blue bits.
You do so by indicating the number of the bit that begins each RGB
component as well as the maximum value for that component. In the
creation message, the starting bit is called the shift value and the
maximum value is called the mask value.

Eight-bit Color Palettes
Fixed palettes for 8-bit pixel values are structured in which the high three
bits specify the red component, the next three bits the green component,
and the low two bits the blue component.

8-bit color palette

Image Display Performance
The composition of an image’s palette greatly affects the amount of time
required to display the image. An image can be displayed quickly in either
of two circumstances:

• Its palette is the same as that of the display surface

• Its palette contains only two colors, which can be rendered without
halftoning.

Otherwise, displaying the image requires creating a temporary image,
which can take a substantial amount of time. To avoid generating a
temporary image, convert the image to the native palette and then display

red green blue

1 1010100
8-8 VisualWorks

Image Color Palettes
the converted image. For example, to convert an image to the color
palette of the default screen (and therefore also of all windows and
pixmaps on the default screen), perform:

anImage convertToPalette: Screen default colorPalette
By default, the convertToPalette: operation employs a NearestPaint renderer.

Device Color Map
The window manager’s color map is not accessible from within Smalltalk.
The screen’s colorPalette is assembled based on that color map, as
indicated in the following table. In the Comment column, “Fully populated”
means the VisualWorks palette is the same as the device color map.
“Partially populated” means VisualWorks uses only a portion of the color
map, leaving enough unused cells so neighboring applications will have a
chance to allocate their colors, too. When the platform provides a hint as
to the default set of colors to be shared by applications, we use that set.

Applying a Palette to an Image
In a graphic image, each pixel is associated with a color in the image’s
palette of colors. You can effectively change one or more colors in an
image by creating a new palette with the desired colors at the old colors
positions, and then install the new palette. The new palette must have the
same number of color entries as the old palette.

1 Create an array representing the old color palette.

Screen depth Window system Palette type Comment

1 All Mapped Fully populated

2 All Mapped Fully populated

4 All Mapped Fully populated

8 X Mapped* Partially populated

8 MS-Windows Mapped Partially populated

8 Macintosh Mapped Fully populated

15 MS-Windows Fixed RGB values

16 All Fixed RGB values

24 All Fixed RGB values

32 All Fixed RGB values

* Using X, an 8-bit color map can be made fixed instead of mapped.
Basic Libraries Guide 8-9

Colors and Patterns
To create the array, send a palette message to the image, and then
send a colors message to the resulting palette.

2 Modify the palette by replacing colors in the array as desired.

3 Create a new palette by sending a withColors: message to the
MappedPalette class, with the new array as argument.

4 Install the new palette by sending a palette: message to the image,
with the new palette as argument.

In this example, every white pixel is converted to yellow.

| gc palette image colors whiteIndex |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
image := InputFieldSpec paletteIcon asImage.

colors := image palette colors.
whiteIndex := colors indexOf: ColorValue white.
colors at: whiteIndex put: ColorValue yellow.

palette := MappedPalette withColors: colors.

image := image palette: palette.
image displayOn: gc at: 10@10.

Converting an Image to Use the Default Palette
When a color palette differs from the palette used by the display surface,
a temporary image is created so VisualWorks can simulate the desired
colors when necessary. This step can take a significant amount of time.
To display an image quickly, convert it to use the default palette that is
used by display surfaces.

To convert the palette for an image, send a convertToPalette: message to
the image. The argument is the default color palette, which can be
accessed by sending a default message to the Screen class and then
sending a colorPalette message to the resulting screen.

| gc image |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
image := Image cincomSmalltalkLogo magnifiedBy: 2@2.

image := image convertToPalette: Screen default colorPalette.
image displayOn: gc at: 10@10.

For a coverage-based image, send a coveragePalette message instead of
colorPalette.
8-10 VisualWorks

Color Rendering Policies
Color Rendering Policies
When an image makes liberal use of the color turquoise, what should a
black-and-white window do when asked to display that alien color? How
about a color window that doesn’t happen to have just the right shade of
turquoise in its palette?

VisualWorks provides three common techniques for rendering unknown
colors, represented by the classes: NearestPaint, OrderedDither and
ErrorDiffusion.

Any of the three can be used to render an image, but only NearestPaint
and OrderedDither are appropriate for rendering paints. A PaintPolicy object
holds both a paintRenderer and an imageRenderer, which may be the same.

The default renderers are determined as follows:

NearestPaint
NearestPaint simply chooses the nearest available paint from the screen’s
palette. On color screens, NearestPaint usually produces satisfactory
results and always gives the best performance of the three renderers.

On a limited palette, such as on a monochrome screen, the results can
be disappointing. For example, a magenta image on a chartreuse
background will result in a white rectangle, because both colors are
luminous enough to be converted to white by NearestPaint.

OrderedDither
OrderedDither employs a threshold array to synthesize unrecognized
colors by blending neighboring colors from the screen’s palette. This has
the effect of smoothing the transition from one palette color to the next in
a continuous tone. While the result is often more pleasing than with
NearestPaint, you pay a price in performance.

NearestPaint Used by Pixmaps and Windows on color systems

OrderedDither Used by Masks on all types of screens

OrderedDither Used by Pixmaps and Windows on monochrome or
gray-scale systems
Basic Libraries Guide 8-11

Colors and Patterns
ErrorDiffusion
An ErrorDiffusion uses a more sophisticated blending algorithm. When it
makes a choice from the screen’s palette, it keeps track of how far off that
choice was from the requested color. When this error accumulates
sufficiently, the renderer uses the color on the other side of the threshold.

For example, suppose that a region of the image uses a red-brown color,
but the screen’s palette has only red and brown. An ErrorDiffusion may
supply red at first, but keeps track of the numeric difference between red
and the red-brown. When that remainder accumulates to a breakpoint, a
brown pixel is displayed instead. In this way, red and brown pixels are
blended to give a red-brown effect.

Applying a Renderer to an Image
If an image is to be displayed repeatedly, there is a performance
advantage to converting it to use the screen’s renderer, rather than
leaving it to the display surface to perform the conversion each time the
original image is displayed on it.

To convert an image, send a convertForGraphicsDevice:renderedBy: message
to the image. The first argument is typically Screen default. The second
argument is the renderer to use.

| gc r g b im |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15
palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest:(ColorValue red: r green:g blue: b))]].

(im convertForGraphicsDevice: Screen default
renderedBy: NearestPaint new)

displayOn: gc at: 10@10.
8-12 VisualWorks

Color Rendering Policies
(im convertForGraphicsDevice: Screen default
renderedBy: OrderedDither new)

displayOn: gc at: 80@10.

(im convertForGraphicsDevice: Screen default
renderedBy: ErrorDiffusion new)

displayOn: gc at: 150@10.

Converting an Image to a Specific Palette
The image can be converted to a palette other than the screen’s palette.
This is useful for showing what the image would look like on a screen that
has a limited palette.

Send a convertToPalette:renderedBy: message to the image, where the first
argument is the desired palette (in the example, a monochrome palette),
and the second argument is the desired renderer.

| gc r g b im |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
im := Image

extent: 60@60
depth: 15 palette: (FixedPalette

redShift: 10 redMask: 31
greenShift: 5 greenMask: 31
blueShift: 0 blueMask: 31).

0 to: 59 do: [:x |
0 to: 59 do: [:y |

r := 1 - ((x@y - (10@10)) r / 30) max: 0.
g := 1 - ((x@y - (20@50)) r / 30) max: 0.
b := 1 - ((x@y - (50@30)) r / 30) max: 0.
im atPoint: x@y put: (im palette

indexOfPaintNearest:
(ColorValue brightness: 1-((1-r)*(1-g)*(1-b))))]].

(im convertToPalette: MappedPalette whiteBlack
renderedBy: NearestPaint new)

displayOn: gc at: 10@10.

(im convertToPalette: MappedPalette whiteBlack
renderedBy: OrderedDither new)

displayOn: gc at: 80@10.

(im convertToPalette: MappedPalette whiteBlack
renderedBy: ErrorDiffusion new)

displayOn: gc at: 150@10.
Basic Libraries Guide 8-13

Colors and Patterns
Setting the Rendering Policy for Nonimage Graphics
Graphic objects other than images do not have their own color, so the
rendering is performed by the graphics context of the display surface. To
change the renderer, you install the desired renderer in the graphics
context.

Install a paint policy in the graphics context of the display surface by
sending a paintPolicy: message to the graphics context. The argument is a
PaintPolicy, typically a new instance. Then, set the rendering algorithm by
sending a paintRenderer: message to the paint policy with either a
NearestPaint or an OrderedDither as argument. (ErrorDiffusion is only used
with images).

| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.

gc paintPolicy: (PaintPolicy new imageRenderer: OrderedDither new).

gc paintPolicy paintRenderer: NearestPaint new.
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(10@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 1).
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(80@10) extent: 4@4)]].

gc paintPolicy paintRenderer: (OrderedDither order: 6).
0 to: 60 by: 4 do: [:i |

0 to: 60 by: 4 do: [:j |
gc paint: (ColorValue red: i/60 green: j/60 blue: 0).
gc displayRectangle: (i@j+(150@10) extent: 4@4)]].

By default, a new OrderedDither has an order of 6, which means it
synthesizes 65 (2 to the sixth, plus 1) intermediate color values between
each pair of neighboring colors in the palette. You can set the order by
sending an order: message to the OrderedDither class to create an
instance; the argument is the desired order number.
8-14 VisualWorks

9
Socket Programming

Introduction
Sockets provide the basic communication structure for all internet
programming in VisualWorks. The VisualWorks socket implementation is
a thin Smalltalk API to BSD (UNIX) sockets.

VisualWorks supports all BSD socket types:

• SOCK_STREAM

• SOCK_DGRAM

• SOCK_SEQPACKET

• SOCK_RAW

• SOCK_RDM

Stream sockets are the most common for internet communications, so
this chapter focuses on that type.

While all socket protocols can be used, using the “raw” protocol, only
TCP and UDP protocols are explicitly supported by VisualWorks. Not all
socket options are supported, or supported well, at this time.

Socket communication is a peer-to-peer conversation; both “client” and
“server” sockets are identical kinds of things. They are configured
differently, however, so that a “server” socket listens for connection
requests from “clients.” VisualWorks allows you to implement both.

In the abstract, sockets are very simple. However, the intricacies of
making a socket-based application robust across multiple platforms
requires perseverance and practice. Those complications are (mostly)
beyond the scope of this document.
Basic Libraries Guide 9-1

Socket Programming
Socket Basics
Creating a socket is a simple matter of sending the appropriate socket
creation message to class SocketAccessor. The basic procedure is
essentially the same in VisualWorks as it is in other programming
environments that implement BSD sockets.

For simplicity, convenience methods for creating server and client TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol)
sockets are provided. We’ll create a simple TCP client and server using
the convenience methods to illustrate a simple pattern for implementing
both.

VisualWorks Implementation Classes
Socket support is provided primarily in these classes:

SocketAccessor
Corresponds to the BSD notion of a socket, and provides the
creation and connection protocol.

SocketAddress
Corresponds to the BSD sockaddr C-structure. For internet
purposes, the IPSocketAddress subclass is the most important, since it
provides for identifying an address by host name or IP address, and
port number.

Creating a socket
The bare socket creation protocol identifies the address family, the socket
type, and possibly the protocol family:

family: addrFamily type: sockType
Creates a socket for family addrFamily of socket type sockType. The
protocol family defaults to PF_UNSPEC.

family: addrFamily type: sockType protocol: protoFamily
Creates a socket for family addrFamily of socket type sockType, and
protocol family protoFamily.

The arguments are integer identifiers, but can be supplied by
SocketAccessor class methods that return the appropriate identifier. For
example, to create a TCP socket for transferring streams of ASCII data,
you can define the socket like this:

sockAccessor := SocketAccessor family: SocketAccessor AF_INET
type: SocketAccessor SOCK_STREAM
9-2 VisualWorks

Socket Basics
Browse the SocketAccessor class method categories constants-address
families, constants-socket types, and constants-protocol families for the
complete set of defined identifiers. The method names are the BSD API
family and type names.

Making a client or server socket
Whether a socket is a service provider (“server”) or user (“client”), it is the
same kind of object. The difference is how it connects to other sockets: a
client “connects” to a server socket at an IP address, and a server
“listens” on (or “binds” to) an IP address (a local address) on which it is to
provide services.

The IP address is represented by an instance of IPSocketAddress. The
address can be defined by host name or IP address, and either with or
without a port number. The available creation messages are:

hostAddress: ipAddress
Creates a new IPSocketAddress for the host specified by ipAddress, with
the port unspecified. ipAddress is specified as an array of integers
(see below).

hostAddress: ipAddress port: portNo
Creates a new IPSocketAddress for the host specified by ipAddress on
port portNo.

hostName: ipName
Creates a new IPSocketAddress for the host specified by ipName, with
the port unspecified.

hostName: ipName port: portNo
Creates a new IPSocketAddress for the host specified by ipName on
port portNo.

thisHostAnyPort
Creates a new IPSocketAddress for the local machine’s IP address,
with a system-assigned port number. (Send getName to the to socket
to get the assigned IPSocketAddress.)

For example, these both create new IPSocketAddress instances:

sockAddr := IPSocketAddress hostAddress: #[128 16 16 101]

sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559
The port number is typically specified by the service you are accessing,
which assigns the port that the server is “listening” on. Many common
services have reserved, well-known, port numbers. For example, port 80
is reserved for HTTP (web) servers, and port 21 is reserved for the FTP
control channel. (Refer to “Port numbers” below for more information.)
Basic Libraries Guide 9-3

Socket Programming
A client socket typically makes a connection to a server socket. To do
this, send a connectTo: message to the socket with an IPSocketAddress for
the server as the argument:

sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559.
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_STREAM.
sockAccessor connectTo: sockAddr.

This is essentially what newTCPclientToHost:port: does in a single
message. At this point the client can read and write data on the socket.

.A server, on the other hand, binds to the IP address on which it offers
services, i.e., on which it is willing to accept connections. To do this, send
a bindTo: message to the socket with the IPSocketAddress as the argument:

sockAddr := IPSocketAddress hostName: ‘bob.myco.com’ port: 10559.
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_STREAM.
sockAccessor bindTo: sockAddr.

The server then listens on the socket for incoming connection requests.
To begin listening, send a listenFor: message to the socket with an integer
argument specifying the maximum number of connection requests the
OS will queue up at one time:

sockAccessor listenFor: 5.
Multiple connection requests may come in all at once, and you don’t want
to lose them, or at least not all of them. The queue size specifies how
many will be held in the backlog for pending connection. Setting the
queue size to 5 means 6 connection requests can be handled at once;
one being processed and 5 in the backlog. This is also a typical system
maximum. Setting it to 0 allows handling only one connection request at a
time.

When a connection request does come in, the socket needs to accept the
request. To do this, send an accept message to the socket:

sockAccessor accept.
This creates a new socket on which the server handles communication
with the client, and clears the listening socket to handle the next incoming
connection request. Your application program will need to loop on the
accept message so more than one connection will be accepted. This is
illustrated below.

The original socket continues listening for connection requests.
9-4 VisualWorks

Socket Basics
Closing a socket
When you are finished using a SocketAccessor, you need to close the
connection. Two methods are available:

close
Informs the OS that the accessor's handle should be released. Also,
removes registry references. (Defined in BlockableIOAccessor.)

shutdown: anInteger
Inform the SocketAccessor that no more IO will be performed:
0 -- read channel
1 -- write channel
2 -- both

shutdown: 2 is more dramatic (and faster) than close because it discards
any pending data anywhere along the network path. Buffered data on the
receiving end may also be lost.

When a Stream is opened on a SocketAccessor, sending close to the Stream
also closes the socket.

Note that closing a socket involves network traffic, if the network is down
an error will result.

Port numbers
Some services are provided by a server only on a specific port number.

You can get the port number for many standard services in either of two
ways. You can send the servicePortByName: message to IPSocketAddress,
with the name of the service as a String:

IPSocketAddress servicePortByName: ‘ftp’
This retrieves the port number from a file, usually called services, on
your system (e.g., /etc/services, or c:\windows\services).

Alternatively, a number of service ports are returned by class methods in
SocketAccessor, in the constants-well known ports method category:

SocketAccessor IPPORT_FTP
Non-standard services typically use large (four digits or more) numbers to
avoid conflicts, just as we’re using 9009 in the example.

Even many four-digit numbers are reserved. For a list of “reserved” port
numbers, see http://www.graffiti.com/services.

“Well-known” ports are controlled by the IANA. An up-to-date list is
available from http://www.iana.org/assignments/port-numbers.
Basic Libraries Guide 9-5

http://www.iana.org/assignments/port-numbers
http://www.graffiti.com/services

Socket Programming
Building a TCP socket client
TCP socket clients are the most common clients for internet
communications. To simplify creating and connecting a TCP client socket,
VisualWorks provides the message newTCPclientToHost:port:. Send this
message to SocketAccessor, as follows:

sockAccessor := SocketAccessor newTCPclientToHost: 'hostname' port: 9009
This one line both creates the socket and connects it to the specified host
and port, reducing three lines to one.

The socket is now ready to read and write data, but we need to decide
how to do that. For the moment we’ll use Streams as a simple read/write
interface to our socket.

To attach a read/write stream to the socket, send the readAppendStream
message to the SocketAccessor:

stream := sockAccessor readAppendStream
The Stream could also have been created as a readStream or a writeStream,
but for most purposes you need a read/write stream.

Once you have the socket open and a stream attached to it, you are
ready to begin sending and/or receiving data using the usual Stream
protocols. (See “Stream Style Communication” below for more
information.)

For example, the following is a simple-minded log-in and close exchange
with an FTP server that simply dumps the server responses to the
Transcript. Stream protocol is used for sending the login commands and
receiving the responses.
9-6 VisualWorks

Socket Basics
| sockAccessor stream |
"connect a stream socket"

sockAccessor := SocketAccessor
newTCPclientToHost: 'ftp.parcplace.com' port: 21.

stream := sockAccessor readAppendStream.
"Set the FTP line-end convention"

stream lineEndCRLF.

"Read the server connection response before logging in"
Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush .

"Log in, writing responses to Transcript"
stream nextPutAll: 'USER anonymous'; cr ; commit.
Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush.
stream nextPutAll: 'PASS test@parcplace.com' ; cr ; commit.
Transcript nextPutAll: (stream upTo: Character cr) ; cr ; flush.

"close everything down"
stream close. "closes both the stream and the socket"

Obviously, there is a lot more work to do to make an interesting session.

Building a TCP socket server
A socket server has more responsibility than does a client, and so is a
little more complex. Instead of connecting to a port, the server has to
listen for a connection request on a port.

Analogous to the client, we create a TCP server socket by sending
newTCPServerAtPort: to SocketAccessor:

sockAccessor := SocketAccessor newTCPServerAtPort: 9009
This line creates the AF_INET socket and binds it to the host at the
specified port, on which it will accept connection requests. We’ll use a
good, high port number that isn’t currently reserved for anything.

Next, the server needs to start listening for connection requests. To do
this, send a listenFor: message to the socket, with the maximum number
of pending connection requests the OS should queue up before rejecting
requests (not the number of connections):

sockAccessor listenFor: 5
At this point the socket is set up and listening for connection requests. To
accept a request, send the accept message to the socket. When a
connection request is received, accept returns a new SocketAccessor
connected to that client:

newSocket := sockAccessor accept.
This message blocks, and will wait indefinitely for a connection request.
Basic Libraries Guide 9-7

Socket Programming
When a request comes in, the message returns a new SocketAccessor
over which the server can communicate with the client. The original
server socket itself returns to listening for and accepting further
connection requests.

Clearly, to accept multiple connections, the server must loop on the accept
message, and the new connections will need to be handled. One simple
way is to fork a process for each new connection. Another is to use the
non-blocking version of accept, acceptNonBlocking, and use the equivalent
of the BSD select() command. The latter approach will be described
later.

Having accepted the connection, we attach a Stream to the socket, to
provide a simple read/write protocol:

newStream := newSocket readAppendStream
Here’s a simple way to fork the new socket process that can be run in a
workspace. All the server does in this example is return anything the
client sends to it:

| server |
server := SocketAccessor newTCPserverAtPort: 9009.
server listenFor: 5.

[| acceptedSocket |
"wait for a new connection"
acceptedSocket := server accept.
"fork off processing of the new stream socket"
[| stream char |

stream := acceptedSocket readAppendStream.
stream lineEndTransparent.
[(char := stream next) isNil] whileFalse: [

stream nextPut: char; commit].
stream close. "close the stream when client disconnects"

] forkAt: Processor userSchedulingPriority -1.
] repeat. “end loop”

You can use your favorite telnet client to connect to port 9009 of your
machine (‘localhost’) to test this server.
9-8 VisualWorks

Socket Basics
Building UDP socket clients and servers
The UDP protocol is the protocol for transferring datagrams. It is referred
to as a “connectionless” protocol, meaning that it usually does not hold
open a connection the way a TCP connection does.

The UDP protocol does not give any guarantee that datagram packets
are received in any particular order, or that they are received at all, as
TCP does. Packets may also get duplicated. Responsibility for
acknowledging receipt of a packet and reassembling the packets in order
is the responsibility of your application. We do not cover these details
here.

To create a UDP socket, two instance creation convenience methods are
provided:

newUDP
Creates a UDP socket with the local machine as host on a system
assigned port.

newUDPserverAtPort: portNo
Creates a UDP socket with the local machine as host on portNo.

Both of these methods create the socket and bind it to an IPSocketAddress.
newUDP is most appropriate for clients, since the port number isn’t usually
important, and the server gets the address when it receives a message
(see below). You can use newUDP for a server as well, but you will have to
then make the system-assigned port number known somehow; typically
you want to specify the port number.

The long version of the server creation sequence, specifying port 9009,
is:

| sockAccessor sockAddr |
sockAccessor := SocketAccessor family: SocketAccessor AF_INET

type: SocketAccessor SOCK_DSOCK.
sockAddr := IPSocketAddress hostAddress: IPSocketAddress thisHost

port: 9009.
sockAccessor bindTo: sockAddr.

For a system-assigned port, the port can be specified as 0, the
anonymous port. The system then assigns the port.

Since UDP is a connectionless protocol, there is no equivalent to the
connectTo: or accept operations (though there is a “connected mode” which
we’ll describe below). Instead, communication is performed using the
sendTo:/receiveFrom: idiom, (see SendTo:/ReceiveFrom: style
communication below).
Basic Libraries Guide 9-9

Socket Programming
A very simple UDP server that receives a packet from any client, and
does nothing with it except record the fact by writing “Received” to the
Transcript, might look like this:

| server peerAddr |
server := SocketAccessor newUDPserverAtPort: 9009.
peerAddr := IPSocketAddress new.
buffer := ByteArray new: 1024.
[server readWait.
server receiveFrom: peerAddr buffer: buffer.
Transcript show: ‘Received’ ; cr ; flush.] repeat.

After receiving a message, the server knows the address of the client,
which is now held in peerAddr. This address can be used for sending back
an acknowledgement, or stored in a collection for broadcasting messages
back to all clients (see the chat server example in SocketAccessor).

An equally simple-minded client that only sends a message to the server
would be the following:

| client serverAddr buffer |
client := SocketAccessor newUDP.
serverAddr := IPSocketAddress hostName: 'bruce-linux' port: 9009.
buffer := 'This is a udp test packet'
client sendTo: serverAddr buffer: buffer.
client close.

The client doesn’t care what its port number is, so newUDP is appropriate
as the creation message. It does need the server address and port
number, which is uses for the sendTo: message. To receive an
acknowledgement, it would have to do a receiveFrom:.

Connected UDP
UDP sockets are usually connectionless, as shown above. There is a use
for connected UDP sockets, however, namely that using a connected
UDP socket is the only way that the client can receive ICMP error
messages back from the server.

When in connectionless mode, the socket must use sendTo: and
receiveFrom: messages. If the client sends a connectTo: message, however,
the IPSocketAddress to which it connects becomes the default address,
and it can now send and receive using the read/write idiom.

There is still no equivalent to accept on the server side; it continues to
operate connectionless. The differences are entirely on the client side.
Notably, when connected, only datagram packets received from the
connected peer are returned; all others are ignored.
9-10 VisualWorks

Reading from and Writing to a Socket
Reading from and Writing to a Socket
Once you have a socket created and connected, you have your choice of
methods for communicating over that socket.

The simplest defines a read and/or write stream on the socket, and then
communicates using the usual Stream protocol.

Slightly more complicated, but familiar to users of sockets especially in
Unix environments, are the “read/write” and “sendto/recvfrom” idioms.

Stream Style Communication
Creating a Stream on a socket provides a simple method of
communicating over a socket. The Stream protocol handles a number of
issues that can complicate communication, such as coordinating reading
and writing.

Using Stream protocols has been illustrated in the examples above. This
is a simple mechanism familiar to Smalltalk programmers, and is quite
straight-forward, except to note that you do need to send a commit
message to clear the Stream, to ensure that the entire contents of the
buffer is written.

An important sampling of the protocol for reading and writing a socket
stream is (assuming String and Character data):

next
Read and return the next Character on the Stream.

upTo: anObject
Read and return a subcollection from the current stream position up
to, but excluding, the first occurrence of the specified Character.

throughAll: aCollection
Read and returns the Stream from the current position up to, and
including, the first occurrence of aCollection, typically a String.

nextPut: anObject
Write the specified Character onto the Stream.

nextPutAll: aCollection
Write the specified String onto the Stream.

flush
Write any unwritten data in the buffer.

commit
Writes any buffered data to the OS.
Basic Libraries Guide 9-11

Socket Programming
Browse the accessing method category in the Stream class for other
important messages.

Note that a socket stream does not usually have an end-of-file (EOF) until
the socket is closed (when read(2) returns 0). Accordingly the upToEnd
message blocks until the socket has closed, and so must be used with
care.

In various examples in the chapter we use both flush and commit
messages. We use flush on internal stream writing to the Transcript, just
so the data goes somewhere. And, we send commit, on the other hand, to
the stream on a socket, which is an external stream, to ensure that the
data is written out to the OS. The commit message, in this context, is
equivalent to flush() on UNIX systems. Sending a flush message
generally works as well.

Positioning on a Stream
A Stream on a socket is not positionable, or at least not reliably so. For
positioning on a socket stream, limit yourself to the following messages:

peek
Answer what would be returned with a self next, without changing
position. If the receiver is at the end, answer nil.

peekFor: anObject
Answer false and do not move the position, if the next object is not
anObject, or if the receiver is at the end. Answer true and increment
the position if the next object is anObject.

skipToAll: aCollection
Skip forward to the next occurrence (if any) of aCollection. If found,
leave the stream positioned before the occurrence, and answer the
receiver; if not found, answer nil, and leave the stream positioned at
the end.

throughAll: aCollection
Answer a subcollection from the current position through the
occurrence (if any, inclusive) of aCollection, and leave the stream
positioned after the occurrence. If no occurrence is found, answer the
entire remaining stream contents, and leave the stream positioned at
the end.
9-12 VisualWorks

Reading from and Writing to a Socket
upToAll: aCollection
Answer a subcollection from the current position up to the occurrence
(if any, not inclusive) of aCollection, and leave the stream positioned
before the occurrence. If no occurrence is found, answer the entire
remaining stream contents, and leave the stream positioned at the
end.

skipUpTo: anObject
Skip forward to the occurrence (if any, not inclusive) of anObject. If not
there, answer nil. Leaves positioned before anObject.

Line-end conversion
Different operating systems and different protocols use different line-end
conventions, to indicate the end of a line in a text (ASCII) file. For
example, DOS/Windows CR-LF (carriage-return/line-feed), UNIX uses
LF, and Macintosh uses CR. Also, the FTP specification (RFC 959) gives
8-bit ASCII as the default data format, with CR-LF as the line-end
convention. Accordingly, converting line-end characters is necessary in
some Stream transactions, such as file transfers.

VisualWorks internally uses CR as the line-end character, and, based on
the operating system platform, assumes what a file’s line-end convention
is and converts accordingly. So, if reading a file on a Windows system, it
assumes the line-end is CR-LF, and converts it to CR upon reading.
Similarly, when writing, it converts its internal CR to a CR-LF, so the file is
stored properly according to the platform.

With data and stream formats coming over a socket connection, it is not
as obvious what convention to follow for reading and writing streams.
VisualWorks provides the following simple protocol for specifying the
proper conversion:

lineEndCR
Converts between VisualWorks’ line-end and CR.

lineEndLF
Converts between VisualWorks’ line-end and LF.

lineEndCRLF
Converts between VisualWorks’ line-end and CRLF.

lineEndTransparent
Does no line-end conversion.
Basic Libraries Guide 9-13

Socket Programming
For example, with a read/write Stream on a socket doing FTP transfers,
you can specify lineEndCRLF on the Stream. Then, on a read CRLF is
converted to VisualWorks’ internal CR representation, and on a write the
VisualWorks is converted to CRLF for FTP conventions. The conversion
is handled automatically.

We did this in the simple FTP example earlier in this chapter. It began like
this:

sockAccessor := SocketAccessor
newTCPclientToHost: 'ftp.parcplace.com' port: 21.

stream := sockAccessor readAppendStream.
"Set the FTP line-end convention"
stream lineEndCRLF.

By converting to CR within VisualWorks, searching up to an end-of-line is
simplified. Instead of having to know whether you are reading a stream
up to CR, LF, or CRLF to get a line, you can simply do:

line := stream upTo: Character cr.
Similarly, you can terminate a line simply with cr:

stream nextPutAll: buffer ; cr ; flush.
The conversion is handled by the specified line end convention for the
stream.

In some cases, however, you do not want the line-ends converted at all.
In this case, specify lineEndTransparent, and VisualWorks does no
conversion.

Waiting for data
For process synchronization, you should tell the read and write processes
to wait until data is available. This is handled “under the covers” by the
streaming mechanism. For the read/write and send/receive idioms
described below, however, you need to use readWait and writeWait
messages to wait for data. readWait and writeWait employ semaphores for
signaling when data is ready.

You may be able to get by for some limited testing without using these,
but in the long run you will need them. So, get used to using these
messages, as illustrated in the following sections.

readWait
Blocks indefinitely, until there is data on the socket to read, then
signals to proceed.
9-14 VisualWorks

Reading from and Writing to a Socket
readWaitWithTimeoutMs: anInteger
Blocks until there is data on the socket to be read, then signals to
proceed, or times out after the specified number of milliseconds.
Returns true if a time-out occurred, or false otherwise.

writeWait
Blocks indefinitely, until there is data in the buffer to write, then
signals to proceed.

writeWaitWithTimeoutMs: anInteger
Blocks until there is data in the buffer to be written, then signals to
proceed, or times out after the specified number of milliseconds.
Returns true if a time-out occurred, or false otherwise.

Read/Write Style Communication
The read/write idiom uses the protocol defined for a general, buffered I/O
in class IOAccessor. In general, this provides support for the read(2) and
write(2) buffered I/O defined on UNIX (but see the note below). The
read/write idiom only makes sense for “connected” socket protocols, such
as TCP. The read/write messages should only be used with streaming
sockets (type SOCK_STREAM). For “connectionless” protocols, like UDP,
and other socket types, use the send/receive commands.

Note: The readInto:* and writeFrom:* commands map to read(2)
and write(2) on all platforms except Windows, where they map to
recvfrom(2) and sendto(2). Because the error messages
returned are different, the readInto:* and writeFrom:* messages are
not cross-platform compatible.

Reading and writing is done through a buffer, which is either a ByteArray or
a String. The buffer itself is under application control, and must be
managed appropriately. It is also the responsibility of the application to
read from or write to the socket from the buffer precisely the intended
amount of data.

The basic protocol is as follows. Browse the IOAccessor class for
additional methods.

readInto: aBuffer
Attempts to read bytes into aBuffer, until either the buffer is filled or
data is exhausted. Returns the number of bytes actually read, as a
SmallInteger.

readInto: aBuffer startingAt: index for: count
Attempts to read up to count bytes into aBuffer, starting at index in
aBuffer. Returns the number of bytes actually read, as a SmallInteger.
Basic Libraries Guide 9-15

Socket Programming
readInto: aBuffer untilFalse: aBlock
Attempts to read bytes into aBuffer until aBlock evaluates to false or the
buffer is filled. aBlock is a one-arg block that is sent the count thus far.
While it evaluates to true, reads are repeated, up to the size of the
buffer. Returns the number of bytes actually read, as a SmallInteger.

writeAll: aBuffer
Attempts to write all data from the buffer onto the socket. Ensures
that the number of bytes written is the same as the buffer size, unless
an error occurs. Returns the number of bytes actually written, as a
SmallInteger.

writeFrom: aBuffer
Attempts to write all data from the buffer onto the socket. Returns the
number of bytes actually written, as a SmallInteger.

writeFrom: aBuffer startingAt: index for: count
Attempts to write count bytes onto the socket, starting at index in
aBuffer. Returns the number of bytes actually written, as a
SmallInteger.

writeFrom: aBuffer startingAt: index forSure: count
Attempts to write count bytes onto the socket, starting at index in
aBuffer. Ensures that count bytes are written, unless an error occurs.
Returns the number of bytes actually written, as a SmallInteger.

writeFrom: aBuffer startingAt: index for: count untilFalse: aBlock
Attempts to write bytes onto the socket, starting at index in aBuffer,
until either aBlock answers false or count bytes are written. aBlock is a
one-arg block which is sent the number of bytes written thus far.
Returns the number of bytes actually written, as a SmallInteger.

The following simple example collects text from a dialog, writes the text
out on a socket and reads the reply, displaying it in the Transcript. Used
with the server example above, it receives what it sent.

It maintains two buffers, one for reading and one for writing. The write
buffer is filled with text received from the dialog using Stream messages,
and the buffer contents are then written. Similarly, the read buffer is filled
from the socket, and the buffer contents is then written to the Transcript
using a Stream. The streams themselves, however, are not involved in the
socket communication.
9-16 VisualWorks

Reading from and Writing to a Socket
sockAccessor := SocketAccessor
newTCPclientToHost: 'bruce-linux' port: 6001.

buffer1 := ByteArray new: 100.
buffer2 := ByteArray new: 100.
outProc := [[(inputString := Dialog request: 'Say something') isEmpty]

whileFalse: [
sockAccessor writeWait.
outStream := (buffer1 withEncoding: #UTF_8) writeStream.
outStream nextPutAll: inputString ; cr.
sockAccessor

writeFrom: buffer1 startingAt: 1 for: inputString size + 1.]
] forkAt: Processor activePriority -1.

inProc := [[| size |
(sockAccessor readWaitWithTimeoutMs: 10000)

ifTrue: [sockAccessor close. ^nil].
size := sockAccessor readInto: buffer2.
inStream := (buffer2 withEncoding: #UTF_8) readStream.
1 to: size do: [:x |
"next line should use ForkedUI"
Transcript nextPut: inStream next ; flush]] repeat
] forkAt: Processor activePriority -1

Note that putting data to the Transcript, near the end, is performing a UI
operation in a forked process. This may cause VisualWorks to crash
since the UI is not thread safe. This code should use ForkedUI, as
described in the Application Developer’s Guide.

Since each successive input string can be of different length, and we only
want to write out the current string, not the entire buffer with any old data
or filler zeros, we use the writeFrom:startingAt:for: message, so just the
right part of the buffer is written.

For the read, on the other hand, we want to accept all the data that the
socket has to offer, so we use simply the readInto: message. But, since we
only want to process the new data received, we capture the number of
bytes read and use it when writing to the Transcript.

Notice also the use of writeWait and readWaitWithMs:. Waiting for data is in
general a good practice and will prevent some errors. Using the time-out
version on waiting for read data isn’t necessary, but does allow us to give
up and close a connection, as shown. Here, if there is no data to read for
10 seconds, we give up and close the socket.
Basic Libraries Guide 9-17

Socket Programming
SendTo:/ReceiveFrom: style communication
The send/receive idiom provides a socket-specific interface, similar to
that provided under UNIX by sendto(2), recvfrom(2) and
select(2). This idiom gives you access to all socket behavior,
regardless of the socket type or protocol, except for socket type
SOCK_RAW.

The send/receive idiom is very similar to the read/write idiom described
above, except that send/receive messages specify the socket accessor,
and they require synchronization using readWait and writeWait. These are
described in “Waiting for data” above.

The send and receive protocol is as follows:

receiveFrom: aSocketAddress buffer: aBuffer
Attempts to read bytes from host aSocketAddress into aBuffer. Returns
the number of bytes actually read. As a side effect, aSocketAddress is
set to the sender’s IPSocketAddress.

receiveFrom: aSocketAddress buffer: aBuffer start: index for: count
Attempts to read count bytes from host aSocketAddress into aBuffer,
starting at index. Returns the number of bytes actually read. As a side
effect, aSocketAddress is set to the sender’s IPSocketAddress.

receiveFrom: aSocketAddress buffer: aBuffer start: index for: count flags: flags
Attempts to read count bytes from host aSocketAddress into aBuffer,
starting at index. flags is a SmallInteger specifying any special
requirements. Returns the number of bytes actually read. As a side
effect, aSocketAddress is set to the sender’s IPSocketAddress.

sendTo: aSocketAddress buffer: aBuffer
Attempts to write bytes from aBuffer to the host aSocketAddress.
Returns the number of bytes actually written.

sendTo: aSocketAddress buffer: aBuffer start: index for: count
Attempts to write count bytes from aBuffer, starting at index, to host
aSocketAddress. Returns the number of bytes actually written.

sendTo: aSocketAddress buffer: aBuffer start: index for: count flags: flags
Attempts to write count bytes from aBuffer, starting at index, to host
aSocketAddress into. flags is a SmallInteger specifying any special
requirements. Returns the number of bytes actually written.

Modifying our previous example slightly, we get the same effect:
9-18 VisualWorks

Reading from and Writing to a Socket
sockAccessor := SocketAccessor
family: SocketAccessor AF_INET
type: SocketAccessor SOCK_STREAM.

sockAddr := IPSocketAddress hostName: 'bruce-linux' port: 6001.
sockAccessor connectTo: sockAddr.

buffer1 := ByteArray new: 100.
buffer2 := ByteArray new: 100.
outProc := [[(inputString := Dialog request: 'Say something') isEmpty]

whileFalse: [
sockAccessor writeWait.
outStream := (buffer1 withEncoding: #UTF_8) writeStream.
outStream nextPutAll: inputString ; cr.
sockAccessor sendTo: sockAddr buffer: buffer1 start: 1

for: inputString size + 1.]
] forkAt: Processor activePriority -1.

inProc := [[| size |
sockAccessor readWait.
size := sockAccessor receiveFrom: sockAddr buffer: buffer2.
inStream := (buffer2 withEncoding: #UTF_8) readStream.
1 to: size do: [:x |
"next line should use ForkedUI"
Transcript nextPut: inStream next ; flush]] repeat
] forkAt: Processor activePriority -1

Creating a socket is exactly the same, though in the example above we
show a variant, defining the socket and then connecting to the host as a
separate operation. We do that here because we have to hold a
SocketAddress to the host anyway, for use by the send and receive
commands.

Send/Receive Flags
The argument to the flags: keyword in the receiveFrom:buffer:start:for:flags:
and sendTo:buffer:start:for:flags: messages specify special handling, as
required. The argument is a SmallInteger, but is provided by using defined
constants. Three flags are implemented:
Basic Libraries Guide 9-19

Socket Programming
MSG_OOB
Permits processing out-of-bounds data. (Caution: this doesn’t work
properly at this time.)

MSG_PEEK
Causes the receiver to return data from the beginning of the receive
buffer, without removing the data from the buffer.

MSG_DONTROUTE
Sends data without using routing tables.

These constants are implemented as class messages, so the value is
accessed, for example, by:

optionFlags := SocketAccessor MSG_OOB
sockAccessor receiveFrom: host buffer: buffer start:1 for: 10 flags:

optionFlags
To use multiple flags, you can use bitOr: :

optionFlags := SocketAccessor MSG_OOB bitOr: SocketAccessor MSG_PEEK

Socket Error Handling
Sockets are an operating system provided feature, so socket
communication errors are caught as subclasses of OSError.

As the above table indicates, the error classes alone provide only a very
coarse-grained view of the errors that might be returned by a socket.
Accordingly, error trapping code such as:

OSError Subclass OS Errors Covered

OsIllegalOperation EAFNOSUPPORT, EISCONN, EISDIR, ENOTCONN, ENOTDIR,
ENOTSOCK, EOPNOTSUPP

OsInaccessibleError EACCES, EADDRINUSE, ENOENT, EPERM, EROFS

OsInvalidArgumentError EBADF, EFAULT, EINVAL, ELOOP, EMSGSIZE,
ENAMETOOLONG

OsNeedRetryError EAGAIN, EALREADY, EINTR, EWOULDBLOCK

OsNoResourcesError ENOBUFS, ENOMEM

OsNotification EINPROGRESS

OsTransferFaultError ECONNREFUSED, EIO, ENETUNREACH, ENOSPC, EPIPE,
ETIMEDOUT
9-20 VisualWorks

Socket Error Handling
[code that can fail with EACCES]
on: OsInaccessibleError
do: [:ex | ex someAction]

will respond to errors EACCES, EADDRINUSE, ENOENT, EPERM, or
EROFS. This is usually too coarse.

For a finer granularity, most OS errors are represented by instances of
Signal. (Error handling in VisualWorks was done using instances of Signal
before the ANSI-compliant, class-based exception system was
introduced in 3.0).

While not as fine-grained as the socket errors coming from the OS, it is
considerably better, and adequate for most purposes.

OsError subclass OSErrorHolder signal OS socket error

OsIllegalOperation inappropriateOperationSignal EISDIR, ENOTDIR, ENOTSOCK,
EOPNOTSUPP

unpreparedOperationSignal EISCONN, ENOTCONN

unsupportedOperationSignal EAFNOSUPPORT

OsInaccessibleError existingReferentSignal EADDRINUSE

nonexistentSignal ENOENT

noPermissionsSignal EACCES, EPERM, EROFS

OsInvalidArgumentsError (None) EFAULT, EINVAL

badAccessorSignal EBADF

rangeErrorSignal ELOOP, EMSGSIZE,
ENAMETOOLONG

OsNeedRetryError notReadySignal EAGAIN, EALREADY,
EWOULDBLOCK

transientErrorSignal EINTR

OsNoResourcesError noMemorySignal ENOBUFS, ENOMEM

OsNotification operationStartedSignal EINPROGRESS

OsTransferFaultError (None) EIO

peerFaultSignal ECONNREFUSED,
ENETUNREACH, EPIPE,
ETIMEDOUT

volumeFullSignal ENOSPC
Basic Libraries Guide 9-21

Socket Programming
The signals are returned by messages sent to the OSErrorHolder class,
where the message name is the same as the signal shown above. To use
the signals, we slightly modify the schematic example above:

[code that can fail with EACCES]
on: OSErrorHolder noPermissionsSignal
do: [:ex | ex someAction]

The more specific exception, or Signal, is referenced by the expression
OSErrorHolder noPermissionsSignal. The exception handler now responds to
EACCES, EPERM, and EROFS, but not to EADDRINUSE or ENOENT, a
small improvement. It is, however, a much larger improvement than
appears, because there is a large number of other OS errors that would
trigger OsInaccessibleError, but not OSErrorHolder noPermissionsSignal.

Note that EFAULT, EINVAL, and EIO do not have a Signal, but map
directly to an exception class (OsInvalidArgumentsError for EFAULT and
EINVAL, and for OsTransferFaultError EIO).

Also, be aware that not all operating systems return the same error code
for a given error; there is some variation. This can be important for
applications that are portable between operating systems, where you
may have to trap more than one error to catch an exception condition.

If your application needs to distinguish specific conditions for which a
Signal is not provided, you can add it. Browse the initialization class
methods in OSErrorHolder for examples. The system looks up the error by
its error code (using reportOn: and similar messages), some of which are
shown below.

Below are the error names, numbers, and brief descriptions that may be
returned by the principle socket commands. On MS Windows, the names
are prefixed with “WSA” and the error codes are 10000 higher than on
UNIX systems.

Error Name Description Code Win Code
EPERM Operation not permitted 1 10001

ENOENT No such file or directory 2 10002

EINTR Interrupted system call 4 10004
EIO I/O error 5 10005

EBADF Bad file number 9 10009

EAGAIN Try again 11 10011
ENOMEM Out of memory 12 10012

EACCES Permission denied 13 10013

EFAULT Bad address 14 10014
ENOTDIR Not a directory 20 10020
9-22 VisualWorks

Socket Error Handling
Trapping socket and protocol errors
The various protocols discussed in the following chapters have their own
error classes. Sometimes you need to trap both protocol-specific and
general socket errors. You do this by nesting on:do: statements.

For example, attempting to establish an HTTP connection may fail
because there is no internet connection at all. This produces a socket
error rather than an HTTP error. However, if the socket succeeds, an
HTTP error may still occur. To trap both, use a construct such as:

client := HttpClient new.
req := HttpRequest get: 'http://www.some.net/page.html'.
[[resp := client executeRequest: req]

on: OS.OsInaccessibleError
do: [:y | y inspect. "dialog - no connection"]
] on: HttpException do: [:ex | ex proceed]

EISDIR Is a directory 21 10021

EINVAL Invalid argument 22 10022
ENOSPC No space left on device 28 10028

EROFS Read-only file system 30 10030

EPIPE Broken pipe 32 10032
ENAMETOOLONG File name too long 36 10036

ELOOP Too many symbolic links
encountered

40 10040

ENOTSOCK Socket operation on non-socket 88 10088
EMSGSIZE Message too long 90 10090

EAFNOSUPPORT Address family not supported by
protocol

97 10097

EADDRINUSE Address already in use 98 10098
ENETUNREACH Network is unreachable 101 10101

ENOBUFS No buffer space available 105 10105

EISCONN Transport endpoint is already
connected

106 10106

ENOTCONN Transport endpoint is not connected 107 10107

ETIMEDOUT Connection timed out 110 10110

ECONNREFUSED Connection refused 111 10111
EALREADY Operation already in progress 114 10114

EINPROGRESS Operation now in progress 115 10115

EWOULDBLOCK Operation would block 11 10011

Error Name Description Code Win Code
Basic Libraries Guide 9-23

Socket Programming
Option level control
The socket level options controls the operation of sockets. Options may
exist at multiple protocol levels, and all are available at the socket level.

Protocols and options are identified by integer values

To get and set an protocol option, send these messages:

setOptionsLevel: protoInt name: optInt value: value
Sets the option optInt for protocol protoInt to value.

getOptionsLevel: protoInt name: optInt
Returns the value of option optInt for protocol protoInt.

Protocol levels and options are identified by integer values. For
convenience, many of these are represented by class methods, whose
selectors are the protocol and option names, that return the integer
values.

For example, the protocol level for sockets is named SO_SOCKET, and the
socket level option that specifies the size of the receive buffer is named
SO_RCVBUF. To retrieve that constant, send the message to
SocketAccessor:

SocketAccessor SO_RCVBUF
So, to set the value of this option, send this message to the socket:

sockAccessor setOptionsLevel: SocketAccessor SOL_SOCKET
name: SocketAccessor SO_RCVBUF
value: 8192.

To retrieve the current value of this option for the socket level, send this
message to the socket:

sockAccessor getOptionsLevel: SocketAccessor SOL_SOCKET
name SocketAccessor SO_RCVBUF

The returned value is a ByteArray representing a 32-bit (4-byte array) or
64-bit (8-byte array) signed integer. To interpret it, do a conversion such
as:

retVal := sockAccessor getOptionsLevel: SocketAccessor SOL_SOCKET
name: SocketAccessor SO_RCVBUF.

retVal changeClassTo: UninterpretedBytes.
retVal := retVal longAt: 1. “use longLongAt: for an 8-byte array”

Now, instead of something like #[0 32 0 0], the value is a more meaningful
8192, or whatever the value happens to be.
9-24 VisualWorks

Solving Common Socket Problems
Currently, the only protocol level defined is SOL_SOCKET, the socket
level. Others can be defined using the same pattern. Browse the
definition in the constants-socket option levels class method category in
SocketAccessor.

Options for a few protocols are defined in other class method categories.
See, for example, constants-socket options, constants-tcp options, and
constants-ip options. Method comments describe their usage.

Solving Common Socket Problems

How do I avoid the ‘Address in use’ error?
During development and testing, you frequently open a socket on an
address, close it, and then want to use it again for a repeat test. Since
addresses aren’t released immediately, you frequently get this error
message.

To avoid this message, set the socket option SO_REUSEADDR. Send a
soReuseaddr: message to your SocketAccessor, as follows:

sockAccessor soReuseaddr: true
Basic Libraries Guide 9-25

Socket Programming
9-26 VisualWorks

10
XML Framework

Overview
XML (eXtensible Markup Language) has become an accepted standard
for representing structured data between applications. XML is used
internally to VisualWorks as a portable source code representation.

This chapter describes the VisualWorks XML framework, and how to use
it to read and build XML documents for use with other facilities, such as
Web Services which is described in the Web Service Developer’s Guide.

The XML framework supports working with XML documents using either
the DOM (Document Object Model) or SAX (Simple API for XML) APIs.

Schema support as documented in this chapter remains in preview, but
can be loaded from the preview/parcels/ subdirectory of your
VisualWorks installation.

The discussion in this section assumes you already understand the
essentials of XML and its components. For more basic information, there
are a lot of resources available. See http://www.xml.org as a beginning
resource.

Working with XML Documents
XML presents data as a structured document. The XML DOM (Document
Object Model) is an programming interface for accessing that data as a
tree structure. Using the DOM, you can build documents, navigate their
structure, and add, modify, or delete elements and content.

The DOM represents an XML document as a hierarchy of objects. Being
an object model, it is a natural way for VisualWorks to operate on XML
documents.
Basic Libraries Guide 10-1

http://www.xml.org

XML Framework
Parsing an XML Document
Frequently you receive an XML document as a resource on the internet.
Or, you may have it stored as a file. In any case, a standard way to work
with it is to first represent it in memory. In VisualWorks, you do this by
representing it as a XML.Document, which you do using XMLParser. (Note
that XML.Document is a different class than Graphics.Document.)

The basic procedure is to generate an instance of XMLParser, and send it
a parse: message with the XML resource to be parsed.

| parser |
parser := XMLParser new.
parser parse: 'mydocument.xml' asFilename.

In this example, the resource is given as a Filename, but it could be an URI
or a ReadStream. For an URI, send asURI to a String describing the
protocol, host, and path (refer to the Internet Client Developer’s Guide for
information on URI support):

| parser |
parser := XMLParser new.
parser parse: 'http://www.w3.org/XML' asURI.

By default, the parser is validating, so the document must include a
document type declaration (DTD). If the document is only well-formed,
you need to turn off validation by sending a validate: message to the
parser with false as argument. For example:

| parser |
parser := XMLParser new.
parser validate: false.
parser parse:

'<?xml version="1.0"?><doc><para>Hello, world!</para></doc>'
readStream.

To summarize this protocol:

parse: aDataSource
Selects aDataSource, which may be an URI, a Filename, or a
ReadStream. If successful, returns a XML.Document.

validate: aBoolean
Sets the parser’s validation flag, determining whether the parser will
validate the document against its document type definition. By
default, this is set to true.
10-2 VisualWorks

Working with XML Documents
Validating Against a Schema
An XML Schema provides an alternative, and more powerful, document
structure specification than does a DTD document. As an alternative to a
DTD, you can validate a document against a schema. This is done by first
parsing the schema, then parsing the document, and finally by validating
the document against the schema. For example:

schemaURI := 'http://...' asURI.
docURI := 'http://...' asURI.
schema := SchemaHandler new parse: schemaURI.
doc := XMLParser new

validate: false;
parse: docURI.

schema validate: doc
A Schema is returned.

Schema support is provided as a preview at this time. Load the XSchema
parcel, preview/parcels/XSchema.pcl.

Selecting a XMLParser Driver
By default, the parser represents the XML document according to the
Domain Object Model (DOM), and the parser returns an XML.Document
that supports the DOM API. There are occasions, however, when other
processing is necessary.

The parser operates by handling SAX (Simple API for XML) events as
specified by a SAX driver. The default driver is DOM_SAXDriver. There are
a few other drivers provided, and you can build your own (see “Building a
SAX Driver” on page 10-17).

To specify another driver, send a handlers: message to the parser.

handlers: aSAXDriver
Assigns aSAXDriver as the parser’s current SAX driver.

In general, you only want to assign an alternate driver when you have
built one for your own application. One driver that might be of some use,
however, is the NullSAXDriver. This driver does simple syntax checking of
a XML document without further processing. So, to substitute this driver
to check the file, send a handlers: message with a new instance of the
driver:

| parser |
parser := XMLParser new.
parser handlers: NullSAXDriver new.
parser parse: 'http://www.w3.org/XML' asURI.
Basic Libraries Guide 10-3

XML Framework
This example does its work and returns nil, unless errors occur. For
syntax checking, you still need to provide handlers for syntax errors, as
described in “XML Error Handling” on page 10-28.

Browse the SAXDriver hierarchy to see what drivers are available. In
general the classes provide superclasses for your own drivers.

For advanced users, it is possible to specify handlers for different aspects
of a document. Browse the XMLParser contentHandler:, dtdHandler:,
entityResolver: and errorHandler: methods for this option.

Accessing XML Document Elements
In the DOM, a document is represented as a tree structure of nodes. The
main node is the document itself. In VisualWorks the DOM is
implemented as a collection of classes, all subclasses of Node.

The following classes give a high-level view of the parts of a Document:

Node
Attribute
Comment
Document

DocumentFragment
Element
Entity
Notation
PI
Text

To work with the document, a large number of messages are provided for
accessing these various parts of a document.

root
Sent to a Document, returns the root element of the document.

document
For any element, returns the enclosing Document object.

children
Returns an OrderedCollection of all nodes immediately in the receiver,
or an empty collection if there are none.

parent
Returns the node immediately containing the receiver.

elementNamed: aNodeTag
Returns the unique child element named aNodeTag in the receiver. An
error is raised if there is not exactly one.
10-4 VisualWorks

Accessing XML Document Elements
elementsNamed: aNodeTag
Returns an OrderedCollection of child elements named aNodeTag.

anyElementNamed: aNodeTag
Same as elementNamed:, except that the search is recursive from the
receiver, so the receiver, its children, grandchildren, etc., are included
in the search. An error is raised if there is not exactly one.

anyElementsNamed: aNodeTag
Same as elementsNamed:, except that the search is recursive from the
receiver, so the receiver, its children, grandchildren, etc., are included
in the search.

attributes
Returns a OrderedCollection of Attribute objects in the receiving Element.

selectNodes: aBlock
Returns an OrderedCollection of Node objects satisfying the selection
criteria specified in aBlock.

The following sections will use these messages to explore a Document.

Get Document Root Element
The Document object may have many elements besides the root element,
such as various comments or processing instructions. For example,
parsing a help file yields a document with two elements: a processing
instruction and the root element. To verify this, evaluate the following in a
workspace:

parser := XMLParser new.
parser validate: false.
pdoc := parser parse: '..\help\01-xml-language\01-language.xml' asFilename.
pdoc children inspect.

(The filename in the above example is not portable, so will have to be
written differently on non-Windows platforms.)

To extract only the root element, which contains the whole DOM tree
structure, send a root message to the parsed document:

docRoot := pdoc root.
This is an Element object to which you can send other messages, and so
traverse the document structure.
Basic Libraries Guide 10-5

XML Framework
Selecting Elements
An XML document is structured as a hierarchy of elements with a single
root element. Depending on the individual document, the structure may
be very shallow, as in the case of a well-formed but unstructured
document, or quite deep. To make use of the XML document involves
traversing and digging through this element hierarchy.

The children message returns an OrderedCollection of elements contained
immediately in the receiving element.

parser := XMLParser new.
pdoc := parser parse:

'http://www.w3.org/XML/1999/XML-in-10-points' asURI.
elementCollection := pdoc root children.

The contents of the resulting collection may not all be elements as such.
For example, elementCollection in the above code contains (at the time of
this writing) some XML.Text nodes as well as Element nodes. This can be
important when working down through the hierarchy because a Text does
not respond to children.

The isElement message returns a Boolean indicating whether the receiver
is an Element or not. You can use it to collect just those nodes that are
elements, for example:

elementCollection := pdoc root children select: [:el | el isElement]
The elements of this collection now all respond to children, and you can
continue digging into the hierarchy.

It is also frequently desirable to select only those elements with a
particular tag, or name. For example, when dealing with a specific node,
you may want to deal only with elements tagged “partNum”. To collect all
these elements in a node (aNode), send a elementsNamed: message with a
NodeTag or String argument:

partNumElements := aNode elementsNamed: 'partNum'.
The String format shown here only works if the element is in the default
XML namespace; otherwise the argument must be an instance of
NodeTag. You may retrieve a NodeTag from an element by sending a tag
message to the Element, and then use that tag to identify other elements
with the same tag. This can be useful for retrieving all other elements with
the same tag as one you already have:

subjTag := someElement tag.
tagGroup := newDoc root elementsNamed: subjTag.

Alternatively, you can create a NodeTag by sending a qualifier:ns:type:
message to a new instance:
10-6 VisualWorks

Accessing XML Document Elements
subjTag := NodeTag new
qualifier: '' ns: 'http://www.w3.org/1999/xhtml' type: 'a' .

tagGroup := newDoc root anyElementsNamed: subjTag.
There are variants of the elementsNamed: message, such as
elementNamed:, which returns the unique element, if there is one, or an
error otherwise. The messages anyElementNamed: and anyElementsNamed:
(used above) are similar, but are recursive from the receiver element, and
so include the receiver node and all children nodes, and all their children,
etc., in the search. So, the above example returns all elements tagged “a”
in the document.

Selecting Attributes
Elements often have attributes, specifying special features of the
element. The attributes message, sent to an Element (anElement), returns
an OrderedCollection of an element’s attributes.

attrs := anElement attributes.
Attributes are essentially key/value pairs, where the key is the attribute
name, and the value is a String. The messages for accessing these are:

tag
Returns the Attribute name, as a NodeTag.

value
Returns the Attribute value.

To make use of an Attribute, you will need to search through the collection
of attributes until you find one you are interested in, and then get its
value. For example, if you need to process an “href” attribute for an
element, you will search for that attribute and return the value. For
example:

(attrs detect: [:attr | attr tag type = 'href'] ifNone: []) value.
Since attributes are already key/value pairs, it may be worth setting them
into a Dictionary, especially for repeated access:

attrDict := Dictionary withAll: (aCollection collect:
[:each | Association key: each tag type value: each value]) .
Basic Libraries Guide 10-7

XML Framework
Building a Document
Besides handling XML documents that your application receives, for
conducting web-based commerce it is also necessary to build XML
documents. You can do this simply by assembling a long string and
transmitting that over the transport, but this places all of the responsibility
for building proper XML on your application.

VisualWorks provides facilities for building an XML DOM tree that
alleviates some of the responsibility for building a syntactically correct
XML document.

Not all aspects of a document are supported, however, so you may need
to provide some other mechanism for adding these aspects to the
document. For example, the XML prolog and DTD declarations are not
supported by the XML framework. If required in your application, these
need to be written onto output stream before any document elements,
and so are not handled as part of the document itself. (See “Writing the
XML Document” on page 10-12).

This section describes how to build an XML document using the
VisualWorks XML support, and noting where methods not included in the
XML framework are required. The general procedure is to create an
XML.Document instance and add nodes.

Create a Basic Document
The basic document is built simply by creating an instance of
XML.Document:

newDoc := XML.Document new.
This is too basic to be useful, but this is the object to which you add
nodes to build the document.

Node Ordering
The most straight-forward method for adding nodes is by sending
addNode: to an existing node, with the new node as argument. This is the
method we will use in the following discussion.

However, addNode: adds the new node to the end of the receiver’s
collection of nodes. Accordingly, you need to be careful to add nodes in
order, from the start of the XML document to the end.
10-8 VisualWorks

Building a Document
If you must insert a node someplace other than at the end, realize that
you can add it using OrderedCollection messages. This may be useful, for
example, to ensure that processing instructions are added early in the
document, prior to the root element.

Add Element Nodes
Most of the document content is in elements, which are represented as
instances of XML.Element. An Element is really just an envelope for other
nodes.

An Element must have a name, called its tag, an instance of NodeTag,
which is used to begin and end the element in the XML output. The
Element may also have attributes and/or entities. To create an Element with
only a tag, send a tag: instance creation message to the class:

XML.Element tag: 'XML'
This simple creation method builds a simple NodeTag for the element,
consisting only of the tag name.

If you employ XML namespaces, things become a little more
complicated. Refer to “Using XML Namespaces” on page 10-13 for
further information.

Add a Root Element
An XML document has a single root element. If the document has a DTD,
the root element tag must match the declared root in the DTD. To add a
root, send an addNode: message to the Document with the Element as
argument:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ') .
newDoc addNode: (XML.Element tag: ‘XML’).

A document can have only one root node. All further elements are added
to the root node or further subnodes. To access the root, send a root
message to the document:

newDoc root

Add Nested Elements
Adding other elements is similar; the only difference is the receiver node
of the addNode: message. For example, to create a document hierarchy
like:
Basic Libraries Guide 10-9

XML Framework
XML
heading1

heading2
body

send messages like this:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ').
newDoc addNode: (XML.Element tag: 'XML').
newDoc root addNode: ((XML.Element tag: 'heading1')

addNode: ((XML.Element tag: 'heading2')
addNode: (XML.Element tag: 'body'))).

The nodes can, of course, be constructed individually and added to the
containing node in other ways.

The PI element defines a processing instruction. Refer to “Add
Processing Instructions” on page 10-11 for more information.

If you assemble a collection of nodes, you can add them as subnodes as
a group when creating their parent, using the tag:elements: instance
creation method. For example, to add a node structure to newDoc, do:

nodeGroup := Array with: (XML.Element tag: 'body')
with: ((XML.Element tag: 'heading2')

addNode: (XML.Element tag: 'body')).
newDoc root addNode: (XML.Element tag: 'heading1' elements: nodeGroup).

Adding Element Attributes
An element may have attributes, which are additional labels identifying
the contents of an element. For example, an image element may include
alignment and source information:

Attributes are instances of XML.Attribute, which is a subclass of Node. To
add attributes, create the Attribute instances and add them as a collection
by sending a tag:attributes:elements: instance creation message to Element,
sending an addNode: message to the containing element as usual. The
argument to the elements: keyword can be provided as a collection of
elements or as nil.

attrGroup := Array
with: (XML.Attribute name: 'ALIGN' value: 'left')
with: (XML.Attribute name: 'SRC' value:

'http://www.w3.org/Icons/WWW/w3c_home'.)

newDoc root addNode:
(XML.Element tag: 'IMG' attributes: attrGroup elements: nil).
10-10 VisualWorks

Building a Document
Again, the element tag in this example is simple. To include a namespace
qualifier or declare a namespace, the specified tag must be an instance
of NodeTag.

Adding Text
Many elements have a text content. Text is added as another node, as an
instance of XML.Text. The instance creation method is simply text:, which
takes a String argument.

XML.Text text: 'Hello, World!'
The text node is added using the usual addNode: message.

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml' text: 'version="1.0" ').
newDoc addNode: (XML.Element tag: 'XML').
newDoc root addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Hello, World!')).

Add Processing Instructions
Processing instructions contain special instructions to the application that
will process the XML.

A processing instruction is represented by an instance of XML.PI. Its
instance creation method, name:text:, specifies the target application and
the specific instruction, both as Strings. To create the initial instruction,
send:

XML.PI name: 'target' text: 'instruction'
Note that the text contains all instructions for this processing instruction,
including any attributes and values for the instruction (see the next
example).

For example, the processing instruction that occurs at the beginning of a
VisualWorks help file is:

<?xml-stylesheet href="01-language.css" type="text/css" title="Smalltalk
Language" charset="UTF-8"?>:

To create the processing instruction in VisualWorks write:

XML.PI name: 'xml-stylesheet' text: 'href="01-language.css" type="text/css"
title="Smalltalk Language" charset="UTF-8" '

To add this to the document, we send addNode: with the new processing
instruction as the argument:
Basic Libraries Guide 10-11

XML Framework
newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml-stylesheet'

text: 'href="01-language.css" type="text/css"
title="Smalltalk Language" charset="UTF-8" ').

Evaluate and inspect the above code in a workspace to see that it
produces what we want.

Note that the XML prologue line,

<?XML version='1.0'?>
while it looks like a processing instruction, technically is not. It, together
with DTD declarations, is part of the prologue rather than part of the XML
data itself. No support for these items is included in the XML framework
at this time, and so they must be written separately, before the XML data.
Refer to “Writing the XML Document” on page 10-12 for a suggested
approach.

Writing the XML Document
Once you have built a DOM tree, you can write it out as XML on a Stream.
The stream can be on a file or a communication channel.

Remember that the XML framework does not support all aspects of an
XML document, such as the prolog and any document type definition
information. We can handle this, however, by writing this information on
the write stream before the document itself.

To write the document on the stream, send a saxDo: message to the
Document with a SAXWriter instance as argument. The SAXWriter has its
output set to the output stream.

Suppose the goal is this document:

<?xml version="1.0"?>
<!DOCTYPE XML SYSTEM "vwhelp.dtd">
<?xml-stylesheet href="01-language.css" type="text/css"

title="Smalltalk Language" charset="UTF-8" ?>
<xml>Hello, world!</xml>

We create the XML.Document, which has the document content:

newDoc := XML.Document new.
newDoc addNode: (XML.PI name: 'xml-stylesheet'

text: 'href="01-language.css" type="text/css"
title="Smalltalk Language" charset="UTF-8" ').

newDoc addNode: (XML.Element tag: 'xml').
newDoc root addNode: (XML.Text text: 'Hello, world!').
10-12 VisualWorks

Using XML Namespaces
Create an output stream:

str := 'c:\xmlTest\doc2.xml' asFilename writeStream.
Next, write the prolog and any DTD information:

str nextPutAll: '<?xml version="1.0"?>'; cr.
str nextPutAll: '<!DOCTYPE XML SYSTEM "vwhelp.dtd">'; cr.

Finally, we create a SAXWriter, write the document, and close the stream:

writer := SAXWriter new output: str.
[newDoc saxDo: writer] ensure: [str close].

Examine the resulting file to see that it is what we expected.

Using XML Namespaces
XML namespaces allow documents to employ multiple markup
vocabularies without collision. For example, different parts of a document
might need to refer to different elements both named “employee”. XML
namespaces provide a mechanism for differentiating these references by
associating each with a URI.

Declare Namespaces
A Document can specify one or more namespaces for resolving element
or attribute names within the document. A root element often specifies a
namespace, such as this, from http://www.w3.org/xml:

<html xmlns="http://www.w3.org/1999/xhtml">
A document can also have multiple namespaces, one of which may have
no prefix, as in the above. All additional namespaces must have a prefix.
To specify two XML namespaces, one without and the other with a prefix,
the XML is specified like this:

< html xmlns="http://www.w3.org/1999/xhtml"
xmlns:foo="http://www.noplace/foo" >

To declare these namespace specifications in an XML Document in
VisualWorks, create a Dictionary containing these namespaces, and then
add the Dictionary to the document root element by sending it a
namespaces: message. The Dictionary contains associations between a
prefix string and the URI string. A namespace without a prefix is
associated with an empty prefix.
Basic Libraries Guide 10-13

http://www.w3.org/xml

XML Framework
nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
newDoc := XML.Document new.
newDoc addNode: (XML.Element tag: 'XML').
newDoc root namespaces: nsDict.

Evaluate the above in a workspace and inspect newDoc to see that the
root element specifies the namespaces as intended.

There is one problem with the above example, however. If you inspect the
newDoc tag variable, which contains a NodeTag, there is no namespace
specified. This is a problem if you need to extract data from the DOM, or
pass it to a processor such as XSchema, XSLT, or XPath. To include the
namespace information in the document tag, modify the above to:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
newDoc := XML.Document new.
newDoc addNode: (XML.Element tag:

(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).
newDoc root namespaces: nsDict.

Note that holding the namespace declarations dictionary in a temporary
variable, as above, is not necessary (the dictionary could be defined
inline), but simplifies referring to the namespace, as it is in the tag
definition shown here.

Applying a Namespace to an Element
If you use namespaces, you should use them consistently, and include
the namespace in specifying the element tag. Do this by creating a
NodeTag, and specify the qualifier (namespace prefix name), namespace,
and type (tag name). This is the same as specifying the NodeTag for the
root element shown above. For example:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.

newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).

newDoc root namespaces: nsDict.
10-14 VisualWorks

Using XML Namespaces
newDoc root addNode:
((XML.Element tag:

(NodeTag new
qualifier: 'foo' ns: (nsDict at: 'foo') type: 'heading1'))

addNode: (((XML.Element tag:
(NodeTag new

qualifier: 'foo' ns: (nsDict at: 'foo') type: 'heading2'))
addNode: (XML.Element tag:

(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'body'))))).
which produces the XML:

<XML xmlns:foo="http://www.noplace/foo"
xmlns="http://www.w3.org/1999/xhtml">
<foo:heading1>

<foo:heading2>
<body/>

</foo:heading2>
</foo:heading1>

</XML>
Elements can also declare additional namespaces for use within their
scope. To do this, send a namespaces: message to the element, after it
has been created. In this example, while both the heading1 and heading2
elements specify the foo namespace qualifier, heading2 is in a different
namespace than heading 1 due to the new declaration:

nsDict1 := Dictionary new.
nsDict1 at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.
nsDict2 := Dictionary new.
nsDict2 at: 'foo' put: 'http://www.noplace/bar'.

newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'XML')).

newDoc root namespaces: nsDict1.

newDoc root addNode:
((XML.Element tag:

(NodeTag new
qualifier: 'foo' ns: (nsDict1 at: 'foo') type: 'heading1'))

addNode: ((XML.Element tag:
(NodeTag new

qualifier: 'foo' ns: (nsDict2 at: 'foo') type: 'heading2'))
namespaces: nsDict2 ;
addNode: (XML.Element tag:

(NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'body')))).
Basic Libraries Guide 10-15

XML Framework
The resulting XML is:

<XML xmlns:foo="http://www.noplace/foo"
xmlns="http://www.w3.org/1999/xhtml">

<foo:heading1>
<foo:heading2 xmlns:foo="http://www.noplace/bar">

<body/>
</foo:heading2>

</foo:heading1>
</XML>

Assigning a Namespace to an Attribute
Attribute names can be assigned a namespace to, as for elements.
Again, instead of a simple String for the name, you define and assign a
NodeTag. So, expanding the example used earlier for attributes, you can
assign a namespace as follows:

nsDict := Dictionary new.
nsDict at: '' put: 'http://www.w3.org/1999/xhtml';

at: 'foo' put: 'http://www.noplace/foo'.

attrGroup := Array
with: (XML.Attribute

name:
(NodeTag new qualifier: 'foo' ns: (nsDict1 at: 'foo') type: 'ALIGN')

value: 'left')
with: (XML.Attribute

name: (NodeTag new qualifier: '' ns: (nsDict1 at: '') type: 'SRC')
value: 'http://www.w3.org/Icons/WWW/w3c_home').

newDoc := XML.Document new.
newDoc addNode:

(XML.Element tag:
(NodeTag new qualifier: '' ns: (nsDict at: '') type: 'XML')).

newDoc root namespaces: nsDict.
newDoc root addNode:

(XML.Element
tag: (NodeTag new qualifier: '' ns: (nsDict at: '') type: 'IMG')
attributes: attrGroup elements: nil).

Namespace declarations are not allowed in attribute specifications.
10-16 VisualWorks

Building a SAX Driver
Building a SAX Driver
SAX (Simple API for XML) is an event-driven interface for accessing XML
documents without having to model the whole document in memory.
Using SAX is often preferred, such as when the application needs to
construct its own data structure from the XML document. In such a case,
modeling the entire node tree first only to discard it is inefficient.

A SAX parser breaks a document into a linear set of events. For example,
the XML document:

<?xml version="1.0"?>
<doc>
<para>Hello, world!</para>
</doc>

is rendered as this series of events:

start document
start element: doc
start element: para
characters: Hello, world!
end element: para
end element: doc
end document

The application specifies how to process each event in its event handlers.

Handling SAX Events
To create a SAX application, define a custom SAX driver as a subclass of
SAXDriver or one of its subclasses. Your driver class defines handler
methods for each of the SAX parsing events, specifying the action to take
for each element or attribute of interest.

The default action for events, defined in SAXDriver, is to do nothing. Your
driver overrides these with more appropriate handling. The following are
the basic events to handle. For additional events provided for special
purposes, browse the content handler method category in SAXDriver, and
read the method comments.

startDocument
Triggered once at the start of the document.

endDocument
Triggered once at the end of the document.
Basic Libraries Guide 10-17

XML Framework
startElement: namespaceURI localName: localName qName: name
attributes: attrList

Triggered by an element start tag. namespaceURI is the namespace
URI, or nil if there is none. localName is the name of the element,
without prefix. name is the literal name of the element, or nil if
processing namespaces. attrList is a SequenceableCollection of Attribute
instances.

endElement: namespaceURI localName: localName qName: name
Triggered by an element end tag. Parameters are as described for
startElement:localName:qName:attributes:.

startPrefixMapping: prefix uri: anURI
Triggered by an element with a namespace declaration. prefix is a
String, if a prefix is specified in the declaration. anURI is the
namespace URI, as a String.

endPrefixMapping: prefix
Triggered by the closing tag for an element that declared the
namespace. prefix, if any, is the declared namespace prefix as a
String.

characters: aString
Triggered by character data (CDATA). aString contains the character
data.

skippedEntity: name
Triggered by a skipped entity. name is the name of the skipped entity.
Parameter entity names start with '%'. If the entity is an external DTD
subset, name is '[dtd]'.

processingInstruction: name data: dataString
Triggered by a processing instruction. name is the instruction name,
and dataString is the instruction data.

ignorableWhitespace: aString
Triggered by ignorable whitespace in the document. aString contains
the whitespace characters.

For example, to handle the simple document above, a driver should
handle start and end document, start and end element, and character
events. These five methods could be implemented, say in MySAXDriver, to
simply write information to the Transcript:

characters: aString
Transcript show: 'cdata: ', aString; cr.
10-18 VisualWorks

Building a SAX Driver
startDocument
Transcript show: 'Start of Document'; cr.

endDocument
Transcript show: 'End of Doc';cr.

startElement: nsURI localName: lName qName: name attributes: attrList
Transcript show: 'start: ', name; cr.

endElement: namespaceURI localName: localName qName: name
Transcript show: 'end: ', name; cr.

To exercise this driver on the example document above, evaluate this in a
workspace:

| doc p |
doc := '<?xml version="1.0"?><doc><para>Hello, world!</para></doc>'

readStream.
p := XMLParser new.
p handlers: MySAXDriver new.
p validate: false.
p parse: doc.

Configuring SAX Features and Properties
VisualWorks supports the standard SAX2 interface for querying and
setting the parser’s feature and property set, to control the parser’s
behavior. Features and properties are identified by a URI with which is
associated a Boolean value.

The general messages to set and get parser features and properties are:

atFeature: featureURI
Returns the Boolean value of featureURI, if recognized; otherwise
raises a SAXNotRecognizedException exception.

atFeature: featureURI put: aBoolean
Sets the value of featureURI to aBoolean, if recognized; otherwise
raises a SAXNotRecognizedException exception.

atProperty: propertyURI
Returns the Boolean value of propertyURI, if recognized. No properties
are recognized, by default, so returns SAXNotRecognizedException.

atProperty: propertyURI put: aBoolean
Sets the value of propertyURI to aBoolean, if recognized. No properties
are recognized, by default, so returns SAXNotRecognizedException.
Basic Libraries Guide 10-19

XML Framework
Several common features are represented by shared variables defined in
the XML.SAX namespace. Each shared variable holds a default URI for
the feature, which is set in the variable’s initialization string. Note that only
the SAX namespace, namespace-prefixes, and validating features are
currently supported by the VisualWorks XML framework, though you may
add support for additional features and properties.

SAXExternalGeneralEntities
Not currently supported. Attempting to set or get the value raises a
SAXNotSupportedException. Would be set false to ignore external
general entities in the document.

SAXExternalParameterEntities
Not currently supported. Attempting to set or get the value raises a
SAXNotSupportedException. Would be set false to ignore external
parameter entities in the DTD.

SAXNamespace
Default true. Set to true if the parser should process namespaces, or
false if the parser should ignore xmlns attributes.

SAXNamespacePrefixes
Default false. Set to true if xmlns attributes should appear in the
attribute list of an element, or false if they should be filtered out.

SAXValidate
Default true. Set to true if the parser should do full validation, or false
to suppress validation.

For accessing the values of the SAXNamespace, SAXNamespacePrefixes, and
SAXValidate features, send these messages to the parser:

isValidating
Returns the Boolean value of the validation feature (SAXValidate).

validate: aBoolean
Sets the Boolean value of the validation feature (SAXValidate).

processNamespaces
Returns the Boolean value of the namespaces feature
(SAXNamespace).

processNamespaces: aBoolean
Sets the Boolean value of the namespace feature (SAXNamespace).

showNamespaceDeclarations
Returns the Boolean value of the namespace-prefixes feature
(SAXNamespacePrefixes).
10-20 VisualWorks

Building a SAX Driver
showNamespaceDeclarations: aBoolean
Sets the Boolean value of the namespace-prefixes feature
(SAXNamespacePrefixes).

Setting the validating feature using the validate: message was illustrated
above, to parse a document without a DTD (see “Parsing an XML
Document” on page 10-2). Using the more general messages, turning off
validation can be done like this:

parser := XMLParser new.
parser atFeature: SAXValidate put: false.

The feature can also be identified by an URI, in which case the above
could be:

parser := XMLParser new.
parser atFeature: 'http://xml.org/sax/features/validation' put: false.

For setting or getting SAX feature and property values, you should trap
SAXNotRecognizedException and SAXNotSupportedException.

parser := XMLParser new.
featureStr := 'http://xml.org/sax/features/validating' .
[[parser atFeature: featureStr]

on: SAXNotRecognizedException
do: [:e | Dialog warn: 'Feature ', featureStr, ' is not recognized.']]

on: SAXNotSupportedException
do: [:e | Dialog warn: 'Feature ', featureStr, ' is not supported.']

Document Fragments
When using XML to exchange data, it is frequently inconvenient, or
inefficient, to have to parse an entire document up to the element that
one is actually interested in. For example, if you are only interested in one
chapter (e.g., chapter 23), or one paragraph, of a book, it would be
inefficient to have to parse all of the book up to that element.

Document fragments provide a way to represent a part of a document.
The challenge for using fragments is to have enough context to be able to
parse the fragment correctly.

The VisualWorks XML framework supports document fragments in the
XML.DocumentFragment class. The main difference between a Document
and a DocumentFragment is that a DocumentFragment does not require a
single top-level element, but may have a sequence of elements at its top
level. It may also have character data outside of an element. So, for
example, a document fragment could include:
Basic Libraries Guide 10-21

XML Framework
<body>Some introductory text.</body>
<heading2>

Some heading
<body>Discussion of this topic</body>

</heading2>
<heading2>

Some other heading
<body>Discussion of this topic</body>

</heading2>
This is understood as being parsed within a larger XML context that
provides the missing information.

Building a Fragment
To build the above fragment, send the appropriate addNode: messages to
an instance of DocumentFragment.

docFrag := XML.DocumentFragment new.
docFrag addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Some introductory text.')).
docFrag addNode: (((XML.Element tag: 'heading2')

addNode: (XML.Text text: 'Some heading'))
addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Discussion of this topic.'))).
docFrag addNode: (((XML.Element tag: 'heading2')

addNode: (XML.Text text: 'Some heading'))
addNode: ((XML.Element tag: 'body')

addNode: (XML.Text text: 'Discussion of this topic.'))).
Attempting this construct with a Document instance would result in errors
due to the multiple top-level nodes, but it is acceptable as a
DocumentFragment.

Parsing a Fragment
If an XML document references a fragment as an entity, you can parse
the entire document as usual. The fragment is simply included in the
document as if it were physically present within the XML.

A fragment-aware application, however, will want to deal with fragments it
may receive from a data source. The application will have to be able to
provide the context necessary for including the fragment in a document.
In the case of the above fragment, the context may be simply:
10-22 VisualWorks

XSL Stylesheet Processing
<document>
<heading1>

Title
</heading1>

insert fragment here
</heading1>

</document>
The XML framework provides no specific support for providing this
context. Recommendations are available from the World Wide Web
Consortium (see http://www.w3.org/TR/xml-fragment), but it is the
responsibility of your application to implement a strategy.

XSL Stylesheet Processing
VisualWorks supports applying an XSL stylesheet to an XML file to
transform the XML file into another representation.

Most XSL Transformation elements are supported, and are implemented
as subclasses of XSLCommand.

Loading XSL Support
XSL support is an add-in component to VisualWorks. To use XSL
facilities, load the XSL parcel (xsl.pcl).

XSL support classes are in the XSL namespace. Your application may
need to import this namespace into its own namespace or into relevant
classes.

Applying a Stylesheet to a Document
XMLParser does not automatically apply a stylesheet to an XML
document, even if the stylesheet is specified in the document. Instead,
you generate an XSL rule database from the stylesheet and apply it to
the parsed XML document.

For example (borrowed from The XML Bible, second edition, by Elliotte
Rusty Harold), suppose we have an XML document representing the
periodic table (periodictable.xml):
Basic Libraries Guide 10-23

http://www.w3.org/TR/xml-fragment

XML Framework
<?xml version="1.0"?>
<?xml-stylesheet type="text/xml" href="table.xsl"?>
<PERIODIC_TABLE>

 <ATOM STATE="GAS">
 <NAME>Hydrogen</NAME>
 <SYMBOL>H</SYMBOL>
 <ATOMIC_NUMBER>1</ATOMIC_NUMBER>
 <ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
 <BOILING_POINT UNITS="Kelvin">20.28</BOILING_POINT>
 <MELTING_POINT UNITS="Kelvin">13.81</MELTING_POINT>
 <DENSITY UNITS="grams/cubic centimeter">

 <!-- At 300K, 1 atm -->
 0.0000899

 </DENSITY>
 </ATOM>
 <ATOM STATE="GAS">

 <NAME>Helium</NAME>
 <SYMBOL>He</SYMBOL>
 <ATOMIC_NUMBER>2</ATOMIC_NUMBER>
 <ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
 <BOILING_POINT UNITS="Kelvin">4.216</BOILING_POINT>
 <MELTING_POINT UNITS="Kelvin">0.95</MELTING_POINT>
 <DENSITY UNITS="grams/cubic centimeter"><!-- At 300K -->

 0.0001785
 </DENSITY>

 </ATOM>
</PERIODIC_TABLE>

and an XSL document (table.xsl) to transform the document into
HTML:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="PERIODIC_TABLE">

 <html>
 <xsl:apply-templates/>

 </html>
 </xsl:template>
 <xsl:template match="ATOM">

 <P>
 <xsl:apply-templates/>

 </P>
 </xsl:template>

</xsl:stylesheet>
First generate the rules database, then parse the document and apply the
rules as follows:
10-24 VisualWorks

Using XPath
xslRules := (XSL.RuleDatabase new) readFileNamed: 'c:\xmlTest\table.xsl'.
parser := XMLParser new validate: false.
doc := parser parse: 'c:\xmlTest\periodicTable.xml' asFilename readStream.
transDoc := xslRules process: testDoc.

The result is a new document, actually a DocumentFragment, that has been
transformed according to the rules in the stylesheet:

<html>
<P>

Hydrogen
 H
 1
 1.00794
 20.28
 13.81
0.0000899

</P>
<P>

 Helium
 He
 2
 4.0026
 4.216
 0.95
0.0001785

</P>
</html>

Note that the XSL namespace declared in the stylesheet must be
http://www.w3.org/1999/XSL/Transform. If it is not, the resulting document
contains the stylesheet itself and not a transformed document.

There are several examples of applying an XSL transformation in class
methods of RuleDatabase which you can examine and execute.

Using XPath
XPath is a language for addressing parts of an XML document. XPath
models a document as a tree structure, allowing elements to be accessed
by specifying a path to those elements, like a filesystem path.

Creating a Path Expression
An XPath expression is a string specifying selection criteria for a
collection of nodes in a document. The XPath specification
(http://www.w3.org/TR/xpath) provides the full, abstract syntax for XPath
expressions. A few examples are:
Basic Libraries Guide 10-25

XML Framework
The return value of an XPath expression can be either a Number, String,
Boolean, or XPathNodeContext. The above expressions return an
XPathNodeContext, which is a collection of XML nodes.

To use an XPath expression in VisualWorks, it must be parsed, using
XPathParser. For example:

exprString := '//CCC[text()]'.
expr := XML.XPathParser new

parse: exprString as: #expression.
In this example, exprString holds is assigned some legal (per the XPath
specification) XPath expression, as a String. The XPathParser returns an
instance of XPathRoot, which can then be applied to an XML node to
retrieve the desired information.

If the XML uses namespaces, you must also provide the parser with an
XML node that gives the context in which to resolve the namespace
qualifiers. For example, if the expression includes a namespace qualifier
“foo”, a node defining the qualifier must be provided:

Expression Selection

/AAA The root node AAA

/AAA/BBB/CCC All elements tagged CCC that are children of BBB
that are children of root AAA.

//CCC All elements CCC in the document

//BBB/CCC All elements CCC that are children of BBB

//BBB/* All elements that are children of BBB

/*/*/* All elements with two ancestors

//BBB/CCC[2] Each second instance of element BBB that is a child
of BBB

//CCC[text()] All text elements in any CCC

//BBB | //CCC All elements BBB and CCC

/AAA/BBB/descendant::*i All elements that are descendents of /AAA/BBB

//@id All attributes id

//BBB[@id] Al elements BBB with an id attribute
10-26 VisualWorks

Using XPath
exprString := '//foo:CCC[text()]'.
expr := XML.XPathParser new

xmlNode: (myDoc root) ;
parse: exprString as: #expression.

The element’s sole purpose is to map "foo" to an URL, but could be, for
example, the document root node, as done above. If you don't use
namespaces in the path, the XML Element is optional.

Applying an XPath Expression
You apply the expression to an XML node by sending a
xpathValueFor:variables: message to the XPathRoot instance, the result of
parsing the expression string.

result := expr
xpathValueFor: otherXmlNode
variables: Dictionary new.

The XML document, or node, to be searched is the first argument value.
The Dictionary passed as the second argument maps variable names to
values, and is only important if the XPath expression uses variable
references.

The return value of an XPath expression can be either a Number, String,
Boolean, or XPathNodeContext, which is a collection of nodes. Usually the
programmer will know, based on the syntax of the expression string, what
type of value will be returned. These four return types can be converted
amongst themselves using xpathAsBoolean, xpathAsString, and
xpathAsNumber. These messages use the XPath conversion rules.

Selecting Nodes with an XPath
For expressions that return a collection of nodes, you can now use the
XPathRoot to select nodes. First, get the XPathNodeContext by applying
the expression to a node. To do this, send an xpathValueFor:variables:
message to the XPathRoot instance. You can then retrieve the nodes as a
sorted or unsorted collection, by sending sortedNodes or unsortedNodes
message:

nodeSet := expr
xpathValueFor: otherXmlNode
variables: Dictionary new.

nodeSet xpathIsNodeSet
ifTrue: [nodeSet := nodeSet unsortedNodes].
Basic Libraries Guide 10-27

XML Framework
XML Error Handling
The VisualWorks XML engine is a SAX engine, so all error handling is
provided by SAXException subclasses:

Error
SAXException

SAXNotRecognizedException
SAXNotSupportedException
SAXParseException

InvalidSignal
MalformedSignal

BadCharacterSignal
WarningSignal

Most of these exceptions are raised only during parsing, the exceptions
being SAXNotRecognizedException and SAXNotSupportedException, which are
raised when querying or setting a SAX parser’s features or properties.
Catching these exceptions is shown under “Configuring SAX Features
and Properties” on page 10-19.)

The argument passed into the handler block is an instance of the specific
error class, which you can use for further handling.

parser := XMLParser new.
[pdoc := parser parse:

'..\help\01-xml-language\01-language.xml' asFilename]
on: SAXException do: [:e | Transcript show: e printString ; cr]
10-28 VisualWorks

11
Parser Compiler

Overview
The standard VisualWorks parser/compiler classes, Scanner, Parser, and
Compiler, are in the base VisualWorks class library, and are used for the
usual code compiling processes.

For cases creating special parsers and compilers, additional classes are
provided as in an optionally loadable component, in the AT Parser Compiler
parcel.

Standard Parser-Compiler
Although not often used directly, there are three classes that parse and
compile Smalltalk programs: Scanner, Parser and Compiler. The Scanner
parses a string into a sequence of tokens (numbers, names, punctuation,
etc.) according to the lexical rules of the Smalltalk language. The Parser
parses a string into a complete expression or method definition. The
Compiler compiles a string into a method.

Scanner
To create an instance of Scanner, use new. To convert a string to a
sequence of tokens, use scanTokens: as in the expression:

tokenArray := Scanner new scanTokens: aTextOrString
The string is interpreted approximately as though it were an Array, each
word being converted to the equivalent literal (number, symbol, etc.) and
installed as an element. However, the pound sign (#) that introduces a
Basic Libraries Guide 11-1

Parser Compiler
literal array is incorrectly treated like a binary operator, and the words
“nil”, “true”, and “false” are not treated specially. For example, the
following expression is true:

(Scanner new scanTokens: '3.5 is: GPA') = #(3.5 #is: #GPA)

Parser
To create an instance of Parser, use new.

To extract the selector from the source string of a method:

selector := Parser new parseSelector: aString
For example, the following expression is true:

(Parser new
parseSelector: 'from: here to: eternity

^eternity - here')
= #from:to:

To parse an entire method or a doIt (just like a method without the initial
pattern), use an expression such as the following:

methodNode := Parser new
parse: sourceStream
class: aClass
noPattern: noPattern
context: nil
notifying: anEditor
ifFail: aBlock

The noPattern argument is true for a doIt, false for a method. If the source
was constructed by a program, or a TextEditor for interactive use, anEditor
should be nil. If the source is not syntactically legal, this expression
returns the result of evaluating aBlock; otherwise, it returns an instance of
MethodNode.

Compiler
Compiler’s class methods provide the most interesting public behavior, so
there is usually no need to create an instance.

To evaluate a string as a Smalltalk expression:

Compiler
evaluate: aString
for: anObject
notifying: anEditor
logged: logFlag
11-2 VisualWorks

Advanced Parser-Compiler
The string will be evaluated as though it were the body of a method that
had been invoked with anObject as the receiver. If logFlag is true, the string
is written on the changes log. For example, the following expression
returns 7:

Compiler
evaluate: 'x + y'
for: 3 @ 4
logged: false

As for parsing, anEditor should be nil for noninteractive use, or a TextEditor
for interactive use. To compile a source method into a CompiledMethod
object, use an expression of the following form:

aMethod := Compiler
compileClass: aClass
selector: aSymbol
source: aString

This message will rarely be useful, however. More useful methods in
Behavior (such as compile:notifying:) perform the compilation and also
install the result in the method dictionary of a class.

Advanced Parser-Compiler
The parser compiler classes make it easier to write compilers in
Smalltalk. SQL classes (in the AT Parser Example parcel) provide an
example of an SQL compiler written using the parser compiler facilities.

A typical compiler handles four functions:

• Scanning—breaking the source code into tokens (words, numbers,
operators, etc.).

• Parsing—combining tokens into larger structured units.

• Semantic analysis—verifying that variables have been declared,
performing type checking, etc.

• Code generation—producing a program in machine code or other
final form. This may occur in several phases if optimization or more
than one representation of the output code is involved.

The parser compiler classes provide the following support for these
activities:

• Scanning—the Smalltalk Scanner, slightly modified.

• Parsing—This phase is the primary focus of the Parser Compiler,
providing an efficient language for writing your parser.
Basic Libraries Guide 11-3

Parser Compiler
• Semantic analysis—the Parser Compiler makes it fairly easy to mix
in semantics during parsing. This helps to generate an error message
that points at the right place in the source code.

• Code generation— you’re on your own. The Parser Compiler itself
demonstrates one style of code generation: It generates Smalltalk
source code during parsing. The complexity of most languages
prevents being able to combine code generation with parsing.

Scanning Source Code
The ParserCompiler class defines seven standard types of token:

• word—a variable or unary message selector

• number—integer or floating point

• character

• string

• binary—infix operators such as + and >=

• keyword—a word followed by a colon (see below)

• signedNumber—a number optionally preceded by a minus sign, with
no intervening delimiters

There is an eighth standard token type, keywords, for one or more
keywords in succession with no intervening delimiters. This produces a
single token. Keywords are only recognized specially if your grammar
uses the word keyword or keywords, or if your grammar includes any literal
keywords. (This is for the benefit of grammars that don’t use keywords,
but use the colon for other purposes.)

In addition, the scanner makes assumptions about delimiters (blank, tab,
end-of-line, and new-page), which separate tokens but aren’t tokens
themselves. It also assumes that the following characters are tokens on
their own: # () | [] . : = ^ and ;. To change any of these assumptions
requires an understanding of the Scanner’s mechanics—you have to write
your own initScanner method that calls super initScanner and then
substitutes the appropriate entries in the typeTable.

Parsing
For the parsing phase, begin by making your parser a subclass of
ExternalLanguageParser—SQLCompiler has been provided as an example. If
your source language is method-oriented and you want the output of the
parser to be executable CompiledMethods, make your parser a subclass of
GeneralParser instead.
11-4 VisualWorks

Advanced Parser-Compiler
This gives your class basic parsing functionality. The parser scans source
code one character at a time and one token at a time. You must then write
production rules describing the various parts of your language. These
rules define parsing algorithms, which your parser will use to recognize
constructs such as functions and clauses in the source code. The syntax
of production rules will be described in a moment.

Each clause or other construct found in the source code must be
instantiated as a node in a parse tree. For example, when an SQL clause
is recognized in the source code by SQLCompiler, an instance of SQLClause
is created. Classes such as SQLClause typically are subclassed from a
more general class such as SQLNode.

As an example of this node-creation mechanism, the production rule
implemented by SQLCompiler for recognizing an SQL commit statement
creates an instance of SQLStatement as follows:

EmulationBorderDecorationPolicy unInstallcommitStatement =
#COMMIT #WORK

[statement: 'COMMIT WORK']
In this example, the word COMMIT followed by WORK in the source causes
execution of the block. A statement: message is sent to SQLCompiler, and
that method sends an instance creation message to SQLStatement with
the 'COMMIT WORK' string as the statement name.

The ultimate output of the parser is an array containing objects such as
SQLFunction, which themselves are often composites of smaller language
constructs such as SQLClause. This array represents a parse tree that you
can use to generate code.

As the parse tree is being assembled, it is stored in an OrderedCollection
called stack, held by GeneralParser. This stack responds to collection
protocol such as removeLast, and stack operations are frequently
embedded in blocks within the production rules. For example, the
SQLCompiler>>queryTerm rule contains the following assignment into a
temporary variable:

tableExp := stack removeLast.

A Rule has a Name and a Definition
A production rule describes a semantic unit of the language in terms of
other semantic units combined with literal tokens. It introduces the name
of the semantic unit, followed by =, followed by the definition, which may
include references to other production rules or to literal keywords that are
expected at various points in the source-code.

As an example, the following production rule is taken from SQLCompiler:
Basic Libraries Guide 11-5

Parser Compiler
assignment =

column #= (scalarExp | #NULL)

When a production rule is invoked, its definition is used as a template for
the current source code. If the template fits, the rule returns true,
triggering creation of the appropriate node in the parse tree. If the
definition doesn’t match, either the rule returns false, or an error
notification occurs.

Rules are Similar to Methods
It is no accident that a production rule looks like a Smalltalk method. It is
created just as a Smalltalk method is, by adding it to the instance protocol
for your compiler class (SQLCompiler, in this case). You can use the
System Browser to do so, or you can file it in. This is possible because
the ParserCompiler’s responsibility is to take production rules and translate
them into equivalent Smalltalk code, which is then translated into an
executable method. Each production rule is translated into a method
whose selector is the name of the production rule. As a result:

• You can browse production rules in the same way you browse
Smalltalk methods.

• Production rules can call Smalltalk code, and vice versa.

Temporary Variables Can be Used
A production rule can have temporary variables. These are defined the
same way as in Smalltalk, by enclosing the list of names between two
vertical bars.

A production rule begins with a method pattern consisting of the name of
the rule, plus names for any arguments. Except for the terminating equal
sign (=), the syntax is identical to that of a Smalltalk method, allowing for
unary, binary, and keyword patterns.

A Rule Definition is a Series of Alternatives
The body of a production rule, called its definition, is a series of
alternatives, separated by vertical bars (|). The parser tries to match the
current source code to each alternative in turn. If a given alternative
succeeds, the definition succeeds and returns true. If an alternative fails,
the next alternative is tried.

The final alternative in a series can be left empty to return true
immediately. If the series is enclosed in parentheses, the empty
alternative is indicated by a vertical bar preceding the closing

name of the rule

definition
11-6 VisualWorks

Advanced Parser-Compiler
parenthesis. If the series is the body of the definition, the empty
alternative is indicated by making a vertical bar the last element of the
definition.

For example:

(a | b) c The next tokens must match either 'a' or 'b',
followed by 'c'

(a |) c The next token or tokens must match either 'a'
followed by 'c', or 'c' alone

An Alternative is a Series of Terms
An alternative is a series of terms, each alternative optionally preceded
by an at sign (@). Each term is evaluated sequentially against the source
code. If a term succeeds, the parser proceeds to the next term; otherwise
it fails. If the last term in the alternative succeeds, the alternative returns
true. If the alternative fails, behavior depends on several factors:

• If the at sign is present, the source code stream is rolled back to the
state it was in when the alternative was started, and false is returned.

• If the term that failed was the first in the alternative, false is returned.

• Otherwise, an error notification is returned.

The following figure summarizes these outcomes in a decision tree
showing the action that results when a term is evaluated under various
conditions.
Basic Libraries Guide 11-7

Parser Compiler
Summary of the outcomes in a decision tree

Two examples follow:

a b c
Expect to find an a, followed by b and c. If a is not found, proceed to the
next alternative or return false. If b or c is not found, print an error
message.

@ a b c
Expect to find an a, followed by b and c. If a, b, and c are not found when
expected, proceed to the next alternative or return false.

Suppose the parser matches a, but fails to match b. For accurate error
detection, the ParserCompiler will not automatically back up on failure, so
in this case a message would appear saying b expected. However, it is
possible that if the source stream were backed up, we might be able to
match c d rather than a b. Therefore, in this case, it is appropriate to write
the rule as:

@ a b | c d
Then, if a succeeds but b fails, the parser will back up and try to match c
followed by d.

Another way to think about it is: When the first term in an alternative is
matched, the parser assumes it has found the correct alternative. If a
later term fails to match, the parser reports an error based on its

Term matches code

Last term in

First term in

@ precedes alternative

^true

Rollback source

BagLast alternative

Y

NY

Y

Y

N
N

N

N

alternative

proceed
alternative

Rollback source
^false

proceed

BagLast alternative

Y N

^false

error

to next
alternative

proceed
to next
alternative

Y

11-8 VisualWorks

Advanced Parser-Compiler
assumption that the correct template was applied unsuccessfully. The at
sign removes the assumption so that, instead of generating an error in
this situation, the compiler proceeds to the next alternative.

A Term is an Action or a Unit-Plus-Qualifier
A term can be an action, or it can be a unit followed by one of the
following symbols:

* * ! + +! \ \! !*
We will discuss the more common type of term first: units and their
quantifying modifiers.

A Unit is a Word, Terminal, or Parenthesized Definition
A unit can be a word, a terminal, or a definition wrapped in parentheses.
If it is a word, that word is assumed to be the name of another production
rule. Some examples:

Word and associated production rule

foo Evaluate the production rule foo on the current
source code. If it returns false, fail the current
alternative, else continue.

word=#ABC If the next token in the source is ABC, push it on
the stack and scan another token, else fail the
alternative.

keyword=#ABC: If the next token in the source is ABC:, push it on
the stack and scan another token, else fail the
alternative.

$(If the next token is the open parenthesis
character, scan another token, else fail the
alternative. The stack is unaffected.

#ABC If the next token in the source is ABC, scan
another token, else fail the alternative. The stack
is unaffected.

#ABC:[keyword type] If the next token in the source is ABC:, scan
another token, else fail the alternative. The stack
is unaffected.

#~= If the next token in the source is ~=, scan another
token, else fail the alternative. The stack is
unaffected.
Basic Libraries Guide 11-9

Parser Compiler
The following examples illustrate the use of the seven quantifying
symbols with units. In these examples, foo pushes a FooNode onto the
stack, while foo2 does not affect the stack.

A Terminal is a Single Token
A terminal is a single token in the language, such as a number, a string, a
variable name, or a keyword. In the ParserCompiler, the following terminals
are recognized:

• A dollar sign ($) followed by a single character, representing a literal
character in the source.

• A number sign (#) followed by:

#’<<=’ If the next token in the source is <<=, scan
another token, else fail the alternative. The stack
is unaffected.

(...) When parentheses are encountered, the
enclosed part of the rule is parsed according to
the rules for definition described in “A Rule
Definition is a Series of Alternatives” on
page 11-6.

Quantifying symbols

foo * Expect zero or more repetitions of foo. The top
value on the stack will be an Array of FooNodes.

foo *! Expect zero or more repetitions of foo. The top N
values on the stack will be FooNodes, where N is
the number of repetitions.

foo + Expect one or more repetitions of foo. The top
value on the stack will be an Array of FooNodes.

foo +! Expect one or more repetitions of foo. The top N
values on the stack will be FooNodes.

foo \ foo2 Expect one or more repetitions of foo, separated
by foo2. The top value on the stack will be an
Array of FooNodes.

foo \! foo2 Expect one or more repetitions of foo, separated
by foo2. The top N values on the stack will be
FooNodes.

foo !* Expect one occurrence of foo. Assume that foo
leaves an Array on the stack. Pop the Array off the
stack and push each of its elements onto the
stack.

Word and associated production rule (Continued)
11-10 VisualWorks

Advanced Parser-Compiler
• A string (any sequence of characters enclosed in single quotes)

• A word (an alphabetic character followed by alphabetic
characters or digits)

• A keyword (a word followed by a colon)

• A binary symbol (anything that represents a legal binary operator
in Smalltalk, such as //, \\, *, ~~, and ~=)

• The sequence word=#someWord, where someWord is a word as
defined above.

• The sequence keyword=#someKeyword, where someKeyword is a
keyword as defined above.

The difference between #someWord and word=#someWord is that in the
former case someWord becomes a reserved word in the language and is
always treated specially. In the latter case, someWord does not become a
reserved word and is treated specially only when it is preceded by word=.

An Action is a Block or a Special Symbol
An action can be either a Smalltalk block or one of the following special
symbols:

Action symbols

Symbol Description

< Saves the source position in a local variable (specifically,
the temps instance variable in ParserCompiler). Note that
only one source position per production rule is saved, so if
you overwrite it, the old value is lost.

> Assumes that the source position was previously saved
via <, and that the top value on the stack is a parse node.
The parse node is sent a sourcePosition:to: message, with
the saved position as the first argument and the current
position as the second argument. This implies that your
node classes must implement a sourcePosition:to: message
when you use this symbol in a production rule.

<< Pushes the source position onto the stack.

>> Assumes that the top value on the stack is a parse node,
and that the next value is a source position saved by <<.
The parse node is sent a sourcePosition: message, with an
interval from the saved position to the current position as
the argument. The source position is removed from the
stack, and the parse node remains the top element.

? Pops the top value off the stack. If it is true, proceed,
otherwise fail the current alternative.

. Pops the top value off the stack and proceed.
Basic Libraries Guide 11-11

Parser Compiler
The first four operations are for matching source code positions to parse
nodes. The last two are for use with Smalltalk blocks. When a Smalltalk
block appears in a production rule, the block is evaluated and the result is
pushed onto the stack. If you are interested in the effect of the block but
not the returned value, follow the block with a period to get rid of the
unwanted value. To decide whether to continue parsing after a block has
been evaluated, follow the block with a question mark to cause the
current alternative to proceed or abort depending on the returned value.

Two Types of Block Syntax are Allowed
Two distinct syntaxes are accepted for Smalltalk blocks. One form of
syntax is identical to that of normal Smalltalk blocks having zero
arguments. The second form is nonstandard and requires further
explanation—it has the advantage of very concise coding, with the
disadvantage of very restricted syntax.

Like a normal block, this special block is enclosed in square brackets. It
consists of exactly one message —the message can be either a binary or
keyword message, but not a unary message. The receiver is specially
coded:

• If there is no receiver, the message is sent to the parser itself.

• If the message selector is preceded by a colon (:), the top value is
popped off the stack and used as the receiver.

Each of the arguments is likewise specially coded:

• If there is no argument, or if the argument is a colon (:), the top value
is popped off the stack and used as the argument.

• If the argument is a normal Smalltalk literal (Symbol, String, Number,
Array, ByteArray, Character, or nil, true or false), it is used in the ordinary
way.

• If the argument is a temporary variable, instance variable, class
variable, or global variable, it is used in the ordinary way.

For example, the following block sends a copyWith: message to the top
value on the stack, with the second value on the stack as argument:

[:copyWith:]
Note that no argument can be the result of a message send.
11-12 VisualWorks

Advanced Parser-Compiler
Summary of Grammar for Parsing Methods
Here is a simplified version of the grammar for parsing methods, written
in itself:

method = pattern #= temporaries definition

pattern = word | (keyword word)+

temporaries = $| word* $| |d

definition = alternative ($| alternative)*

alternative = ($@ |) term*

term = unit
((#* | #*!)
| (#+ | #+!)
| (#\ | #\!) unit |)

unit = word | character
| $# (word | keyword | binary | string)
| $(definition $)

Creating your Own Compiler
In preparation for writing programs in your new language, first define a
compiler class MyLanguageCompiler, then define a dummy class
MyLanguage. Define the following class method for MyLanguage:

compilerClass

^MyLanguageCompiler
Then any methods defined in class MyLanguage or any of its subclasses
will compile with MyLanguageCompiler rather than the standard Smalltalk
compiler. The example methods in the SQL class are compiled by
SQLCompiler in just this way.

The typical instance creation protocol for a parser takes either a Stream or
a String as input, as well as the name of the top-level production rule to be
applied. For example:

CParser parse: aStream as: #cFile
The final step in code generation is done by the message generate:. This
message is defined in GeneralParser on the assumption that the output of
your compiler (i.e., the single element left on the stack at the end of
recognizing a method) is a string that is actually a Smalltalk source
method, which then gets handed to the Smalltalk compiler.
Basic Libraries Guide 11-13

Parser Compiler
However, you can override this method in your own compiler to do
something different. It should return a selector if the code generation
succeeds, or nil if it fails. In the case of the SQL example, the final object
is an Array containing a parse tree in the form of a hierarchy of nodes. Try
the examples on the instance side of the SQL class, inspecting the results
recursively to see the structure of the parse tree.

This object responds to Smalltalk messages and can thus be
manipulated to suit the next phase of compilation.
11-14 VisualWorks

Index
Symbols

$ 7-1
* (multiplication) 3-3
** (power function) 3-3
- (minus)

collection subtraction 1-15
numeric subtraction 3-3

+ (plus)
numeric addition 3-3

/ (division) 3-3
// (integer division) 3-3
<$nopagenum 6-1
<Operate> button xv
<Select> button xv
<Window> button xv
\ (division remainder) 3-3
’ (single quote) 7-3

A
abbreviating a string 7-15
abs 3-3
absolute value function 3-3
add: 1-5, 1-6, 1-7
add:before: 1-7
add:beforeIndex: 1-8
addAll: 1-8
addAll:beforeIndex: 1-8
addAllFirst: 1-8
addDays: 4-3
addFirst: 1-7
adding

elements to a collection 1-6
addTime: 4-6
after: 1-19
aligning

text 7-19
allBold 7-24
allSatisfy: 17
anyElementNamed: 10-5
anyElementsNamed: 10-5
anySatisfy: 17
appending

a string 7-6
arc function 6-8

arithmetic operations 3-3
array

expanding 1-9
removing an element 1-11
size 1-5, 1-9

Array class 1-3
asComposedText 7-16
asDays 4-3
asDouble 3-5
asFixedPoint: 3-5
asLowercase 7-5
asPattern 8-5
asRational 3-5
asRetainedMedium 5-5, 5-8
association

in a dictionary 1-4
removing from dictionary 1-11

Association class 1-4
at: 1-18, 1-19
at:ifAbsent: 1-19
at:put 1-12
at:put: 1-7
atAllPut: 1-12
atFeature: 10-19
atPoint: 5-6
atPoint:put: 5-6
atProperty: 10-19
attributes 10-5

B
Bag class 1-3
baseline in text 7-35
baseline: 7-28, 7-35
Bezier class 6-12
Bezier curve 6-1
Bezier curve, defined 6-12
bold text emphasis 7-24
boundingBox

startAngle
sweepAngle

 8
buttons

mouse xv
ByteArray class 1-3
Basic Libraries Guide Index-1

Index
C
caching a graphic image 5-5
centered 7-19
changeFrom:to:with: 12
character

See also string
counting in text 7-6, 7-21
line ends 7-15
operations 7-2
testing 7-2

Character class 7-1
CharacterAttributes class 7-32
characterAttributes: 7-28, 7-34
characters: 10-18
children 10-4
circle 6-8
Circle class 6-1
client sockets, creating 9-4
collect: 1-24
collection

adding elements 1-6
capacity 1-17
choosing a class 1-1
classes 1-1
combining 1-15
concatenating 1-15
converting types 1-22
copying elements 1-14
counting occurrences 1-17
creating 1-5
inserting an element 1-7
looping 1-22
removing elements 1-9
replacing elements 1-12
size 1-5, 1-16
sorting 1-21
subtracting a subset 1-15
testing for emptiness 1-17

Collection subclasses 1-1
color 8-1–8-14

See also palette, pattern
applying 8-5, 8-6
creating 8-2
dithering 8-11
geometric object 8-5
map 8-9
predefined 8-2
rendering policies 8-11
rendering policy 8-11

color text emphasis 7-24

coloring
a graphic image 5-5
text 7-36

colorPalette 8-10
colors 8-10
ColorValue class 8-1
combining collections 1-15
commit 10
comparing

dates 4-3
numbers 3-4
texts 7-22

Compiler class 11-2
defined 11-1

completeContentsOfArea: 5-8
Complex

components 3-8
instance creation 3-8
protocol 3-9

composed character 7-2
composeDiacritical: 7-2
ComposedText

See also text
compositionWidth: 7-18
compressing a string 7-15
compression 2-17
concatenate strings 7-6
contains: 17
contentHandler: 10-4
contractTo: 7-15
conventions

typographic xiv
convertForGraphicsDevice: 5-4
convertForGraphicsDevice:renderedBy: 8-12
converting

collection types 1-22
numeric types 3-5

convertToPalette: 8-10
convertToPalette:renderedBy: 8-13
copy:from:in:rule: 5-13
copyArea:from:sourceOffset:destinationOffs

et: 5-9
copyEmpty 5-11
copyFrom:to: 1-15, 7-11
copying

elements in a collection 1-14
copyReplaceAll:with: 7-12
copyReplaceFrom:to:with: 7-11, 11
copyUpTo: 7-11
copyWith: 1-9
copyWithout: 1-11
corner: 2
Index-2 VisualWorks

Index
coveragePalette 8-10
CR (line end) 7-15
creating

parser instance 11-2
scanner instance 11-1

curves 6-12

D
date

comparing 4-3
day information 4-3
formatting 4-4

Date class 4-1
day information 4-3
dayOfMonth 4-3
daysInMonth 4-3
daysInYear 4-3
default

paint policy 8-11
palette 8-10

degreesToRadians 3-6
detect:ifNone: 1-20
diacritical mark 7-2
dictionary

adding elements 1-7
removing an association 1-11

Dictionary class 1-4
dimension

of a rectangle 6-3
of an image 5-10

displayArcBoundedBy:startAngle:sweepAngl
e: 15

displayDotOfDiameter:at: 6-10
displaying

a graphic image 5-4
points 6-10
text 7-17

displayOn: 7-17
displayOn:at: 5-4
displayStrokedOn: 7
displayWedgeBoundedBy:startAngle:sweep

Angle: 6-15
dithered color 8-11
dithering color 8-11
do: 1-22
document 10-4
Document class 10-2, 10-4
document object model (DOM), See XML
Double class 3-1
dropFinalVowels 7-15
DSSRandom 2-19
dtdHandler: 10-4

E
elementNamed: 10-4
elements

adding to collection 1-6
elementsNamed: 10-5
ElipticalArc class 6-1
ellipse

graphic 6-8
EllipticalArc class 6-8
emphasis

 25
emphasizeAllWith: 7-24
emphasizeFrom:to:with: 7-24, 7-25
EncodedStream class 2-16
EncodedStreamConstructor class 2-16
endDocument 10-17
endElement: 10-18
endPrefixMapping: 10-18
entityResolver: 10-4
enumerating, See looping
ErrorDiffusion class 8-12
errorHandler: 10-4
errors

avoiding the ’Address in use’ error 9-25
handling in sockets 9-20
trapping socket and protocol errors 9-23

even 3-5
examples xviii
exp 3-7
expanding

graphic images 5-10
extent: 2
F
family: 7-30
FastRandom class 2-19
finding, See searching
findString:ignoreCase:useWildcards: 7-10
findString:startingAt:ifAbsent: 7-9
firstIndent: 7-19
FixedPoint class 3-2
fixed-point number

definition 3-2
Float class 3-1
FloatingPoint

comparing 3-4
flopping an image 5-10
flush 9
font

family 7-29
in a text 7-24
Basic Libraries Guide Index-3

Index
name 7-29
size 7-25

FontDescription class 7-28, 7-31
fonts xiv
formatting

a date 4-4
Fraction class 3-2
from:to: 6-6
fromFile: 5-3
fromSeconds: 4-5
fromUser 5-3

G
geometric

circle 6-1
elliptical arc 6-1
line and line segment 6-1
polyline 6-1
rectangle 6-1
spline curve 6-1

geometrics
arcs, circles, and wedges 6-8
color 8-5
rendering color 8-14
splines and Bezier curves 6-12

getting help xv
graphic image

as graphic object 5-1
caching 5-5
capturing 5-3
coloring 5-5
converting to display surface 5-5
creating 5-2
displaying 5-4
expanding and shrinking 5-10
flopping 5-10
masking 5-9
packed rows 5-4
palette 5-1
performance 8-8
read from file 5-3
rotating 5-11
save as resource 5-3

graphics
image 5-1

graphics context 7-17
GraphicsAttributes class 6-17
GraphicsAttributesWrapper class 6-16
grid in lines of text 7-35
gridForFont:withLead: 7-30, 7-35
GZipReadStream class 2-17
GZipWriteStream class 2-17

H
handlers: 10-3
hue:saturation:brightness: 8-3

I
IdentityDictionary class 1-5
IdentitySet class 1-3
ignorableWhitespace: 10-18
image 5-3

See also graphic image
Image class 5-1
imageFromFile:toClass:selector: 5-3
includesAssociation: 1-17
includesKey: 1-17
indenting text 7-19
indexOf: 1-18, 7-9
indexOfSubCollection:startingAt: 1-18
Infinitesimal 3-11
Infinitesimal class 3-9
Infinity 3-10
Infinity class 3-9
Integer class 3-1
Interval class 1-3
isEmpty 1-17
isInteger 3-5
isZero 3-5
italic emphasis 7-24
iterating, See looping

J
justified 7-19

K
keyAtValue: 1-19
keysAndValuesDo: 1-23
keysDo: 1-23

L
LaggedFibonacciRandom 2-19
LaggedFibonacciRandom class 2-19
large emphasis 7-24, 7-25
LargeInteger class 3-1
LargeNegativeInteger class 3-1
LargePositiveInteger class 3-1
lastIndexOf: 1-18
leftFlush 7-19
length of a string 7-6
LF (line end) 7-15
line end characters 7-15
line spacing in text 7-35
line-end conversion 2-14
lineEndAuto 14
lineEndCR 15
Index-4 VisualWorks

Index
lineEndCRLF 15
lineEndLF 15
lineEndTransparent 15
lineGrid: 7-28, 7-35
LineSegment class 6-1
LinkedList class 1-4
List class 1-4
ln 3-7
log 3-7
looping

through a collection 1-22

M
macro expansion 7-13
magnifiedBy: 5-10
MappedPalette 8-10
mask 5-9
mask value 8-8
MetaNumeric class 3-9
MinimumStandardRandom class 2-19
monthName 4-3
mouse buttons xv

<Operate> button xv
<Select> button xv
<Window> button xv

N
name: 7-31
negative 3-5
new:withAll: 1-5
newDay:monthNumber:year: 4-2
newReadAppendStream 11
newReadWriteStream 11
newWithDefaultAttributes 7-28
nextIndexOf:from:to: 1-18
nextPutAll: 7-7
NotANumber 3-11
NotANumber class 3-9
notational conventions xiv
notEmpty 17
now 4-5
number

See also fixed-point 3-2
comparing 3-4
creating 3-2

numeric operations 3-3

O
occurencesOf: 16
occurrencesOf: 1-17
on:encodedBy: 16
OrderedCollection class 1-3
OrderedDither 8-11

origin:corner: 2
origin:extent: 2
P
packed row, in an image 5-4
paint

See also color
applying 8-5, 8-6
color 8-1
coverage 8-1

paint policy 8-11
paint: 8-5, 8-6
PaintPolicy class 8-14
paintPolicy: 8-14
paintRenderer: 8-14
palette 8-10

8-bit color 8-8
color 8-7
conversion 8-8
coverage 8-7
creating 8-8
default 8-10
defined 8-7
effect on performance 8-8
fixed 8-8
mapped 8-8

Palette class 8-7
parent 10-4
ParkMillerRandom class 2-19
parse: 10-2
Parser class

creating an instance 11-2
defined 11-1

Parser Compiler
action terms 11-11
alternatives in rules 11-6
at sign (@) 11-7
backing up in the input 11-7
block syntax 11-12
code generation 11-3
CompiledMethods as output 11-4
compilerClass 11-13
compiling source code 11-13
generate: 11-13
parse tree 11-5
parsing phase 11-4
production rule 11-5
production rules 11-5
quantifying symbols 11-10
rule grammar summary 11-13
rules vs. methods 11-6
scanner delimiters 11-4
Basic Libraries Guide Index-5

Index
scanner tokens 11-4
scanning 11-3
semantic analysis 11-3
SQL example 11-3
stack 11-5
subclassing ExternalLanguageParser

11-4
subclassing GeneralParser 11-4
temporary variables in rules 11-6
terminals 11-10
terms in an alternative 11-9
unit terms 11-9

pattern
See also tile
applying 8-6
tile phase 8-6

Pattern class 8-1
phase of a tiled pattern 8-6
pi 3-8
PI class 10-11
pixelSize: 7-34
Polyline 6-7
Polyline class 6-1
port numbers 9-5
position: 17
positive 3-5
power function 3-3
printFormat: 4-4
printing

text 7-20
processingInstruction: 10-18

Q
quotation mark

creating a string 7-3

R
radiansToDegrees 3-6
Random class 2-19
RasterOp class 5-12
read/write communication in sockets 9-15
readFromString: 4-1, 4-5
reciprocal function 3-3
rectangle

creating 6-2
dimensions 6-3
messages 6-3

Rectangle class 6-1
red:green:blue: 8-3
reflectedInX 5-10
reflectedInY 5-10
reject: 1-20

remove: 1-9
remove:ifAbsent: 1-9
removeAll: 1-10
removeAllSuchThat: 1-11
removeFirst 1-10
removeFirst: 1-10
removeFrom:to: 1-10
removeKey: 1-11
removeKey:ifAbsent: 1-11
removeLast 1-10
removeLast: 1-10
rendering color 8-11
replaceAll:with: 1-13
replaceFrom:to:with: 7-21
replaceFrom:to:with:startingAt: 1-14
replacing

elements in a collection 1-12
part of a text 7-21

resetViews 7-37
respondsToArithmetic 3-5
restIndent: 7-19
reverse 1-21
RGB color 8-3
root 10-4
rotateByQuadrants:to: 5-11
rotatedByQuadrants: 5-11
rotating a graphic image 5-11
rounded 4
roundTo: 4
RunArray class 1-3

S
sameAs: 7-8
sameCharacters: 7-9
sansSerif font 7-30
SAXDriver class 10-4
SAXExternalGeneralEntities class 10-20
SAXExternalParameterEntities class 10-20
SAXNamespace class 10-20
SAXNamespacePrefixes class 10-20
SAXValidate class 10-20
Scanner class

creating an instance 11-1
defined 11-1

screen
capture 5-3
default palette 8-10

searching
a string 7-9
in a text 7-21

security 2-19
select: 1-20
Index-6 VisualWorks

Index
selectNodes: 10-5
sendTo:/receiveFrom: style communication

introduction 9-18
send/receive flags 9-19

serif emphasis 7-24, 7-30
server sockets, creating 9-4
Set class 1-2
setDefaultQuery: 7-28
setDefaultTo: 7-37
shift value 8-8
shortening a string 7-15
shrinking graphic images 5-10
shrunkenBy: 5-10
Simple API for XML (SAX), See XML
size 1-16, 7-6

of a string 7-6
of font 7-25
of text 7-6, 7-21

skip: 17
skippedEntity: 10-18
small emphasis 7-24, 7-25
SmallInteger class 3-1
SocketAccessor class 9-2
SocketAddress class 9-2
sockets

basics 9-2
building

TCP socket client 9-6
TCP socket server 9-7
UDP socket clients and servers 9-9

classes that provide support 9-2
client or server 9-3
closing 9-5
connected UDP 9-10
creating 9-2
error handling in 9-20
introduction to programming with 9-1
line-end conversions in Streams 9-13
option level control 9-24
positioning on a socket stream 9-12
read/write communication 9-15
reading from and writing to 9-11
sendTo:/receiveFrom: style

communication 9-18
stream style communication 9-11
types supported by VisualWorks 9-1
waiting for data in streams 9-14

SomeNumber 3-12
SomeNumber class 3-9
sort 1-21
SortedCollection class 1-4
sorting a collection 1-21

sortWith: 1-21
spacing

lines in text 7-35
special symbols xiv
spellAgainst: 7-9
spline 6-12
Spline class 6-1, 6-12
SQL, parsing example 11-3
sqrt 3-3
square root function 3-3
startDocument 10-17
startElement: 10-18
startPrefixMapping: 10-18
stencil, See mask
streams

line-end conversions in 9-13
positioning 9-12
stream style communication 9-11
waiting for data 9-14

strictlyPositive 3-5
strikeout emphasis 7-24
string

See also character
abbreviating 7-15
concatenation 7-6
converting to text 7-16
evaluating as Smalltalk expression 11-2
getting a substring 7-10
length and width 7-6
removing a substring 7-11
replacing a substring 7-11
searching 7-9

String class 7-1, 7-3
string substitutions 7-13
style, See text style, font
styleNamed: 7-16, 7-27
styleNamed:put: 7-36
substitution parameters 7-13
substring operations 7-10
subtractDate: 4-3
symbols used in documentation xiv
System font 7-36
systemDefault text style 7-27

T
tab stops in text 7-19
TCP socket, building

client 9-6
server 9-7

technical support xv
text

adding emphasis 7-24
Basic Libraries Guide Index-7

Index
aligning 7-19
boldfacing 7-24
changing case 7-24
color 7-36
comparing 7-22
creating 7-16
displaying 7-17
font family 7-29
font size 7-25
indents and tabs 7-19
line spacing 7-35
printing 7-20
replacing a subtext 7-21
searching 7-21
size 7-6, 7-21
string 7-16

TextAttributes 7-16, 7-32, 7-36, 7-37
See also text style

TextStream class 7-25
textStyle: 7-20, 7-27, 7-29, 7-34
tile

pattern 8-1
phase 8-6

tilePhase: 8-6
time

creating 4-5
zones 4-7

time stamp 4-6
Timestamp class 4-6
today 4-1
tokensBasedOn: 13
truncated 4
truncateTo: 4
truncating a string 7-15
typographic conventions xiv

U
UDP sockets

building UDP socket clients and servers
9-9

connected 9-10
underline emphasis 7-24
useTabs: 7-20

V
validate: 10-2
valueAtPoint: 5-6
valueAtPoint:put: 5-6
VariableSizeTextAttributes class 7-32

W
wedge 6-8
weekday 4-3

width
of a string 7-6

withAll: 1-6
withColors: 8-10
withCRs 7-15
withEncoding: 16
withText:style: 7-17
WordArray class 1-3
wordWrap: 7-18, 7-23
WriteStream 7-7

X
XML

accessing elements 10-4
add attribute 10-10, 10-23
add element 10-9
add text 10-11
attributes 10-7
build document 10-8
children 10-6
document fragment 10-21
DOM 10-1
DTD 10-2
error handling 10-28
parser drivers 10-3
parsing 10-2
processing instruction 10-11
root 10-5
SAX 10-17
SAX event handler 10-17
SAX2 10-19
Schema 10-3
select elements 10-6
stylesheet 10-23
validating 10-3

XMLParser class 10-2, 10-4
XSL, See XML

Y
yourself 1-5

Z
zlib 2-17
Index-8 VisualWorks

	Contents
	About This Book
	Overview
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	News Groups
	VisualWorks Wiki
	Commercial Publications

	Collections
	Overview
	Choosing the Appropriate Class
	Set
	Bag
	Array
	Interval
	OrderedCollection
	SortedCollection
	List
	LinkedList
	Dictionary

	Creating a Collection
	Adding Elements
	Adding an Element to a Collection
	Inserting an Element at a Specific Location
	Adding a Collection of Elements
	Expanding an Array

	Removing Elements
	Removing a Subcollection
	Removing an Element or Range of Elements by Index
	Removing All Elements That Pass a Test
	Removing an Association from a Dictionary
	Removing an Element from an Array

	Replacing Elements
	Replacing Individual Elements
	Replacing All Elements
	Replacing Specified Elements
	Replacing All Occurrences of an Object
	Replacing a Subcollection

	Copying Elements
	Copying a Subcollection
	Concatenating Two Collections
	Subtracting One Set from Another

	Testing Collections
	Equality and Identity
	Getting the Number of Elements
	Getting the Capacity
	Testing for Emptiness
	Testing for the Presence of an Object

	Retrieving Elements
	Getting the Element at an Index
	Finding the Index of an Object
	Finding a Subcollection by Index
	Getting the Value at a Key
	Retrieving an Object by Relative Position
	Finding Elements That Pass or Fail a Test

	Sorting a Collection
	Converting Collection Types
	Looping through the Elements (Iterating)
	Looping by Index or Key
	Collecting the Results of the Processing
	Looping through Two Parallel Collections

	Streams
	Overview
	Stream Class Hierarchy
	Basic Protocol
	Instance Creation
	Positioning
	Reading
	Writing
	Closing a Stream

	Internal Streams
	Creating an Internal Stream
	Reading and Writing Internal Data
	Reading and Writing Past the End of Data
	Writing and Immutable Objects

	External Streams
	Creating an External Stream
	Reading and Writing External Data
	Buffered Reading and Writing
	Reading and Writing Past the End of Data
	Positioning

	Encoded Streams
	Line-end Conventions
	Encodings
	Encoding a Stream
	Reading and Writing
	Positioning on an Encoded Stream

	Stream Compression
	Stream Exceptions
	Random Numbers

	Numbers
	Overview
	Numbers
	Creating a Number
	Arithmetic Operations
	Rounding and Truncating
	Comparing Numbers
	Testing Numbers for Properties
	Converting Object Type
	Mathematical Functions
	Factoring
	Trigonometric Functions
	Logarithmic Functions

	Numeric Constants
	Zero
	Unity
	Pi

	Complex Numbers
	Creating an Instance
	Protocol Summary

	Metanumbers
	Infinity Class
	Creating an Instance of Infinity
	Protocol Summary

	Infinitesimal Class
	Creating an Instance of Infinitesimal
	Protocol Summary

	NotANumber Class
	Creating an Instance of NotANumber
	Protocol Summary

	SomeNumber Class

	Dates and Times
	Dates
	Creating a Date
	Getting Information about a Day
	Adding and Subtracting with Dates
	Comparing Dates
	Formatting a Date

	Times
	Creating a Time
	Getting the Seconds, Minutes, and Hours
	Adding and Subtracting Times
	Creating a Time Stamp

	TimeZone

	Graphical Images
	Color Depth and Images
	Creating a Graphic Image
	Using the Image Editor
	Reading an Image from a File
	Capturing an Image from the Screen
	Creating a Bitmap Manually

	Displaying an Image
	Creating a Display Surface Bearing an Image

	Caching an Image
	Coloring Pixels in an Image
	Changing Color by Color Value
	Changing Color by Numeric Value

	Masking an Image
	Creating a Mask
	Masking a Rectangular Area
	Masking a Nonrectangular Area

	Modifying an Image
	Expanding or Shrinking an Image
	Flopping an Image
	Rotating an Image
	Overlaying Images

	Working with Geometric Objects
	Introduction
	Geometric Objects
	Rectangles
	Creating a Rectangle
	Getting and Setting a Rectangle’s Dimensions
	Moving a Rectangle
	Testing Rectangle Relations

	Lines
	Polylines and Polygons
	Arcs and Ellipses
	Circles and Dots
	Curved Lines

	Drawing a Geometric Object
	Drawing Style Display Messages
	Using a Drawing Style Wrapper
	Drawing Transient Shapes

	Transformations on Geometrics
	Storing Graphic Attributes

	Working with Text
	Characters
	Creating Characters
	Testing Character Types
	Comparing Characters

	Strings
	Creating a String
	Changing Characters in Place
	Changing the Case in a String
	Getting a String’s Length and Width
	Combining Strings
	Comparing Strings
	Testing for Equality and Identity
	Comparing by Sorting Order
	Rating the Similarity of Two Strings

	Searching
	Get the Index of a Character in a String
	Ignoring Case in a Search

	Substring Operations
	Copying a Substring
	Copying a Prefix
	Removing or Replacing a Substring
	Replacing a Substring
	Replacing All Occurrences of a Substring
	Tokenizing Substrings

	String Substitution Parameters
	Abbreviating a String
	Contracting a String
	Removing Vowels

	Inserting Line-End Characters

	Formatted Text and Fonts
	Creating a Formatable Text Object
	Displaying a Text Object
	Controlling Line Length
	Setting Line Length
	Controlling Word Wrap

	Controlling Line Format
	Setting Alignment
	Setting Indents
	Setting Tab Stops

	Printing a Text Object
	Text String Operations
	Counting Characters
	Search for Text
	Replacing Text
	Comparing Text Objects
	Copying a Range of Text

	Character Formatting
	Applying Character Variations
	Applying Boldfacing and Other Emphases
	Applying Color to Text
	Changing Font Size
	Applying Formats on a Text Stream

	Defining Text and Character Styles
	Using the Platform Default Font
	Defining a Custom Text Style
	Set text typeface family
	Setting Font Family or Name
	Defining Custom Sizes
	Setting Font Pixel Size
	Creating a Scaled Text Style
	Defining an Emphasis for a Custom Size
	Adjusting the Line Spacing and Baseline

	Adding a Custom Font to the Fonts Menu
	Changing the Default Font
	Setting the Preferred Font Family
	Setting the Preferred Font Pixel Size

	Colors and Patterns
	Colors and Patterns
	Pixel Coverage
	Creating a Color
	Create by Color Name
	Create by Red, Green, and Blue Values
	Coloring a Graphical Object

	Creating a Pattern
	Applying a Pattern
	Adjusting a Pattern’s Tile Phase

	Image Color Palettes
	Coverage Palettes
	Color Palettes
	Creating a Color Palette
	Eight-bit Color Palettes
	Image Display Performance

	Device Color Map
	Applying a Palette to an Image
	Converting an Image to Use the Default Palette

	Color Rendering Policies
	NearestPaint
	OrderedDither
	ErrorDiffusion
	Applying a Renderer to an Image
	Converting an Image to a Specific Palette
	Setting the Rendering Policy for Nonimage Graphics

	Socket Programming
	Introduction
	Socket Basics
	VisualWorks Implementation Classes
	Creating a socket
	Making a client or server socket
	Closing a socket
	Port numbers
	Building a TCP socket client
	Building a TCP socket server
	Building UDP socket clients and servers
	Connected UDP

	Reading from and Writing to a Socket
	Stream Style Communication
	Positioning on a Stream
	Line-end conversion
	Waiting for data
	Read/Write Style Communication
	SendTo:/ReceiveFrom: style communication
	Send/Receive Flags

	Socket Error Handling
	Trapping socket and protocol errors

	Option level control
	Solving Common Socket Problems
	How do I avoid the ‘Address in use’ error?

	XML Framework
	Overview
	Working with XML Documents
	Parsing an XML Document
	Validating Against a Schema
	Selecting a XMLParser Driver

	Accessing XML Document Elements
	Get Document Root Element
	Selecting Elements
	Selecting Attributes

	Building a Document
	Create a Basic Document
	Node Ordering
	Add Element Nodes
	Add a Root Element
	Add Nested Elements
	Adding Element Attributes
	Adding Text

	Add Processing Instructions
	Writing the XML Document

	Using XML Namespaces
	Declare Namespaces
	Applying a Namespace to an Element
	Assigning a Namespace to an Attribute

	Building a SAX Driver
	Handling SAX Events
	Configuring SAX Features and Properties
	Document Fragments
	Building a Fragment
	Parsing a Fragment

	XSL Stylesheet Processing
	Loading XSL Support
	Applying a Stylesheet to a Document

	Using XPath
	Creating a Path Expression
	Applying an XPath Expression
	Selecting Nodes with an XPath

	XML Error Handling

	Parser Compiler
	Overview
	Standard Parser-Compiler
	Scanner
	Parser
	Compiler

	Advanced Parser-Compiler
	Scanning Source Code
	Parsing
	A Rule has a Name and a Definition
	Rules are Similar to Methods
	Temporary Variables Can be Used
	A Rule Definition is a Series of Alternatives
	An Alternative is a Series of Terms
	A Term is an Action or a Unit-Plus-Qualifier
	A Unit is a Word, Terminal, or Parenthesized Definition
	A Terminal is a Single Token
	An Action is a Block or a Special Symbol
	Two Types of Block Syntax are Allowed
	Summary of Grammar for Parsing Methods

	Creating your Own Compiler

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

