
Integrated
Round-Trip Engineering

IC
&

C

ADvance
TM

IC&C GmbH

Software Foundations

Version 7.6 User’s Guide

 IC
&

C

ADvance
TM

Integrated
Round-Trip Engineering

Release 7.6

Created by

IC&C GmbH

Software Foundations
Hamburg/Germany

Copyright © 1994-2008 by IC&C GmbH Software Foundations.
All rights reserved.

ADvance User's Guide

Software Product Release 7.6

This document is subject to change without notice.

Trademark acknowledgments

VisualWorks® is a registered trademark of Cincom Systems, Inc.
TIC&C ADvanceT™ is a trademark of IC&C GmbH Software Foundations.
All other products or services mentioned here in are trademarks or registered
trademarks of their respective companies. Specifications are subject to change without
notice.

Intellectual property rights

Parts of the material described in this document are intellectual property of
IC&C GmbH Software Foundations.

The following copyright notices apply to software that
accompanies this documentation:

TIC&C ADvanceT is furnished under a license and may not be used, copied, disclosed
and/or distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.

No part of this manual may be copied, photocopied, reproduced, translated or reduced
to any electronic medium or machine-readable form without prior written consent
from IC&C GmbH Software Foundations.

February 2008

Created by

IC&C GmbH Software Foundations
Papenhöhe 14
D-25335 Elmshorn/Hamburg
Germany

Tel.: +49 (0) 4121/2392-0
Fax: +49 (0) 4121/2392-59
Email: Tadvance@icc-gmbh.deT
Web: Twww.icc-gmbh.deT

 Contents

 ADvance User's Guide i

Contents

About this Guide.. vii

Audience..vii

Organization..vii

Release Notes ..viii

Conventions ...ix

Typographic Conventions... ix

Special Symbols... ix

Mouse Operations ... x

1 Introduction...1-1

What is ADvance?... 1-1

Why use ADvance?... 1-1

2 Installation...2-1

System Extensions ...2-1

Reading the Disk... 2-1

PC Platform... 2-1

Unix ... 2-1

Mac ... 2-2

Using PC Disk on Other Platforms .. 2-2

VisualWorks Installation .. 2-2

Loading the ADvance parcels.. 2-2

Loading ADvance from StORE.. 2-3

Removing from VisualWorks ... 2-3

3 Overview..3-1

Objectives.. 3-1

Getting Started.. 3-1

Opening a Diagram ... 3-3

Resizing Diagrams .. 3-5

Viewing Program Structure.. 3-6

Contents

ii ADvance User's Guide

Understanding Diagram Notations .. 3-6

Emphasizing and grouping Classes by Color.............................. 3-7

Choosing the Level of Detail.. 3-9

Viewing Program Behavior .. 3-10

Viewing Message Paths .. 3-12

Filtering Methods and Attributes... 3-13

Printing Diagrams ... 3-15

Documenting Subjects ... 3-16

4 Reverse Engineering...4-1

Objectives.. 4-1

Creating a Subject from existing Code....................................... 4-1

Subject creation with the Subject Wizard 4-1

ADvance in the Refactoring Browser... 4-7

Creating an Overview Diagram.. 4-9

Revisiting the Class Comments... 4-11

Checking Types ..4-12

Editing Types ..4-13

Creating a Detailed Diagram .. 4-16

Revisiting the Subject Contents... 4-16

Adding a related Class..4-16

Adding an Initiator Class ...4-17

Adding a Class with Subject Editor..4-18

Applying Filters.. 4-19

Creating a Behavior Diagram... 4-23

Creating single Scripts .. 4-24

Creating nested Scripts ... 4-27

Set diagram focus on the Scripts... 4-27

Summary ... 4-29

5 Forward Engineering ..5-1

Objectives.. 5-1

Creating an empty Subject... 5-1

Creating a new Design ... 5-5

Creating a new Diagram.. 5-5

Adding Classes ... 5-6

Adding a single Attribute ... 5-10

Adding multiple Attributes.. 5-14

 Contents

 ADvance User's Guide iii

Adding Associations .. 5-17

Adding Message Sends .. 5-20

Summary ... 5-23

6 Additional Concepts ...6-1

Objectives.. 6-1

Typing .. 6-1

Inherited Attributes .. 6-1

Container Types.. 6-2

Wrapped Types... 6-2

Query Relationships .. 6-3

Named Filters .. 6-4

General .. 6-5

Inheritance by Implementation .. 6-5

Hiding Inferred Behavior.. 6-5

Hierarchical Subjects... 6-5

Compound Documentation.. 6-5

Namespaces and Types.. 6-6

Modeling .. 6-6

The Methods War.. 6-6

Use Case Modeling ... 6-7

Event Traces ... 6-8

7 User Interface Component Reference7-1

Objective ... 7-1

Workbench .. 7-1

Tools Pulldown Menu..7-1

Plug-ins Pulldown Menu..7-2

Diagram Painter .. 7-2

Menu Bar Options ... 7-2

File Pulldown Menu...7-2

Edit Pulldown Menu ..7-3

View Pulldown Menu...7-4

View�Layers Submenu..7-4

View�Toolbars Submenu...7-5

View�Layout Submenu..7-5

View�Zoom Submenu ...7-6

View�Grid Submenu..7-6

Add Pulldown Menu ..7-7

Contents

iv ADvance User's Guide

Window Pulldown Menu..7-8

Window�Plug-ins Submenu...7-8

Window�Diagram Windows Submenu...7-9

Pop-up Menus... 7-9

Diagram Menu ..7-9

Class Menu...7-10

Association Menu..7-10

Message Menu ...7-10

Text Menu...7-10

Shortcuts ... 7-10

Tools .. 7-10

Subject Browser .. 7-10

Filter Browser .. 7-10

Filter Palette .. 7-10

Documenter... 7-10

Choose Color Dialog ... 7-10

Plug-ins.. 7-10

Coding Assistant ... 7-10

Comment Generator.. 7-10

Smalllint Connect .. 7-10

Helper Dialogs... 7-10

Open Diagram Dialog.. 7-10

Print Dialog.. 7-10

Subject Wizard .. 7-10

Subject Editor .. 7-10

New Class Dialog.. 7-10

Attribute Editor... 7-10

Add Message Dialog ... 7-10

Script Selection Dialog .. 7-10

Script Documentation Dialog... 7-10

Diagram and Class Filter Editor... 7-10

Class Properties Dialog... 7-10

Preferences ... 7-10

General Preferences ... 7-10

Painter Preferences... 7-10

Page Setup.. 7-10

8 Tips and Techniques... 8-10

 Contents

 ADvance User's Guide v

9 Glossary .. 9-10

10 Index... 10-10

 About this Guide

 ADvance User's Guide vii

About this Guide

The TADvance User’s GuideT provides details about both a functional view of the
TADvanceT options and a view of how the tool would be used in real world situations.
It demonstrates the advantages of the tool from different perspectives and guides the
user through two distinct engineering exercises, forward and reverse engineering.

Audience

This guide addresses two primary audiences:

• Smalltalk developers

• System analysts.

Both groups should at least be familiar with Smalltalk syntax, object-oriented
programming concepts and basic VisualWorks programming tools, as described in the
TVisualWorks User’s GuideT. If you intend to develop complex applications, you may
wish to have a more thorough understanding of seamless and iterative system
development. For this issue we recommend [TWaldén/NersonT]TP

1
PT as complimentary

reading.

Organization

The TADvance User’s GuideT provides comprehensive instructions for using TADvanceT
and understanding its notation and concepts. It is divided into eight chapters.

The first chapter called TIntroductionT describes the tool philosophy and key benefits.

TInstallationT as the second chapter guides you through the installation process.

The next three chapters provide aT TutorialT. The tutorial should be worked through step
by step. Even though TADvanceT is fairly easy to use, there are many concepts of
depth which are not communicated to an inexperienced user at first sight. Thus, in
order to exploit the full range of TADvanceT capabilities, take your time! The tutorial
chapters are all based on a single library example that has been discussed in detail in
[TWilkersonT]TP

2
PT.

1 Kim Waldén and Jean-Marc Nerson. Seamless object-oriented software architecture:analysis and
design of reliable systems. Prentice Hall, Englewood Cliffs, NJ, 1995

2 Nancy Wilkerson: Using CRC Cards. SIGS, 1995

About this Guide

viii ADvance User's Guide

The third chapter called TOverviewT presents an overview of tool components. The goal
of the overview is to let the user become acquainted with the tool itself.

The fourth chapter describes the TReverse EngineeringT process of generating design
diagrams from existing code.

TForward EngineeringT as the fifth chapter provides instructions for capturing new
design diagrams and demonstrates the full integration of graphics to code.

The TAdditional Concepts iTn chapter six provide a discussion of various issues which
are important to gain an in-depth understanding of the role TADvanceT can play in the
iterative and seamless system development process. The TModelingT section describes
how Tbusiness process modelingT is supported by the tool. This chapter is mandatory.

The seventh chapter provides a TUser Interface Component ReferenceT, this is a detailed
descriptions for the tools, dialogs, menu items, shortcuts and commands in TADvanceT.

The eighth chapter provides a list of TTips and TechniquesT which have been recorded
from TADvanceT users’ comments.

The TGlossaryT provides brief descriptions for concepts which are mentioned in this
guide without further explanation.

Release Notes

- The integratedT ADvanceT 7.6 is adapted to the VisualWorks 7.6 release.

 About this Guide

 ADvance User's Guide ix

Conventions

This section describes the notational conventions used to identify technical terms,
Smalltalk constructs, user interface actions and keyboard operations.

Typographic Conventions

This guide uses the following fonts to designate special terms:

Example Description

TSubjectT Indicates new terms where they are defined.

TTemplateT Indicates dialog names, book titles and words as
words.

TEmphasisT Indicates emphasized words.

TDictionaryT Indicates Smalltalk constructs; it also indicates
any other information that you enter through the
graphical user interface.

TFileT menu Indicates user interface labels for menu names,
dialog-box fields, and buttons.

Special Symbols

The following symbols are used to designate certain items or relationships:

Example Description

TFile→→→→OpenT Indicates the name of an item on a menu.

<Operate> menu Indicates the pop-up menu that is displayed by
pressing the mouse button of the same name.

TInteger>>asCharacterT Indicates an instance method defined in a class.

TFloat class>>piT Indicates a class method defined in a class.

� Indicates an action to be performed by the user.

� Explains the result of an action and is usually
followed by a graphic showing that results.

TNote:T

Indicates important information.

About this Guide

x ADvance User's Guide

Mouse Operations

The following table explains the terminology used to describe actions that you
perform with mouse buttons. See the TVisualWorks User’s GuideT for details on mouse
buttons and mouse operations.

When you see: Do this:

Click Press and release the <Select> mouse button.

Double-click Press and release the <Select> mouse button twice without
moving the pointer.

<Shift>-double-click While holding down the <Shift> key, press and release the
<Select> mouse button twice.

<Control>-double-click While holding down the <Control> key, press and release
the <Select> mouse button twice.

 Introduction

 ADvance User's Guide 1-1

1 Introduction

What is ADvance?

TADvance Tis a multidimensional OOAD tool for supporting object-oriented analysis
and design, reverse engineering and documentation.

TADvanceT provides an always up-to-date graphical view on your object models. It
fully integrates into your VisualWorks image. Its visual interface helps you to quickly
develop your object model and allows understanding and/or modifying the object
design inherent in your code.

Using the powerful mechanisms of TADvanceT, the structural, behavioral and
architectural information contained in VisualWorks applications can be easily
extracted, visualized and analyzed. Furthermore, it provides a powerful mechanism for
supporting concurrent design documentation and construction of classes and
relationships. Adopting UML as notation, TADvanceT basically adheres to industry
standards. It should be noted that TADvanceT is focussing on ease of use in order to
enhance immediate feedgack and fast communications among project members. UML
is an important part used to support those goals.

The capital ‘AD’ in TADvanceT indicates one of our observations: Analysis and Design
are not separable in the iterative process of building systems. If they are, this should
be changed. We think that this view is useful to achieve a seamless integration of the
different views of a system.

Why use ADvance?

TADvanceT’s Tforward engineering T component let’s you graphically design, create
and iterate over your code. This speeds up the development process. The Treverse

engineering T component helps you in understanding and communicating code. Often a
diagram says more than a thousand words. The tool’s TdocumentationT facilities help
you creating textual and graphical documentation – for methods, classes, interactions
in use cases, subsystems, or complete applications.

When capturing a new object design with the graphical browser, TADvanceT
automatically generates Smalltalk code from the graphics. In this manner the integrity
of the design and software is maintained from design through implementation.

The tool also allows the user to view existing code as object design models. In this
manner the model can be used to review existing OO constructs or as a design
consistency check for the current iteration. The tool can also be used for analyzing the
model for accuracy to system requirements. With the TADvanceT diagram canvas

Chapter 1

1-2 ADvance User's Guide

integrated into the default VisualWorks System Browser, you can view automatically
created class diagrams for StORE packages or hierarchy diagrams for single classes.

In addition, TADvanceT is equipped with a plug-in interface, which allows seamlessly
integrating other tools into the TADvanceT tool suite.

 Installation

 ADvance User's Guide 2-1

2 Installation

The TADvance Tsoftware package is shipped on a single floppy disk or comes readily
with the VisualWorks system for versions after 5i.4. The files on this disk have to be
extracted to receive the contained parcel files, which you can install into your
VisualWorks environment.

System Extensions

Installation of the TADvance Tparcels will result in the extension of some existing
system classes. All system extensions are installed under protocol names that reflect
the owning module and the fact that the method is an extension.

For example, the method TApplicationModel>>iccEnable:group:T is installed under the
protocol TICC-Common ClassesT. As shown in this example we've chosen method name
prefixes to avoid naming conflicts.

Reading the Disk

The TADvanceT installation disk is formatted either for PC platform (Windows, OS/2),
Unix (tar), or Mac.

PC Platform

The files are stored as a self-extracting Zip archive. Run Tthe .exe Tto extract the parcel
files. Please provide a subdirectory (i.e. TiccT) of your VisualWorks home directory as
the installation path.

Unix

The files are tared, gzipped, then tared onto floppy disk. To extract, use TtarT to read

the T.gzT file from the floppy disk. For example, a Solaris platform may execute a
command similar to the following:

Ttar xvf /vol/dev/aliases/floppy0

Chapter 2

2-2 ADvance User's Guide

Executing the above command will result in extracting a .tar.gz file. To complete

the extraction process, ungzip the .tar.gz file; then use tar to expand the .tar file.

Mac

The files come in a self-extracting archive for the Mac. To extract the files, double
click on the file found on the floppy.

Using PC Disk on Other Platforms

When using a PC-platform Zip archive on other platforms a file conversion may be
necessary. Extract the Zip archive then convert all text files; these are files with

extensions txt, st, pst, htm, ext, rm, msc and inf. Files with extensions

pcl, gif, jpg and bos are binary files.

TNote:T All file- and pathnames are case sensitive. Please make sure that all

conversion options are turned off in your extraction tool.

VisualWorks Installation

Loading the ADvance parcels

Before loading TADvance Tinto your image, ensure that the path of the TADvanceT
parcels is part of the parcel path settings in your image (i.eT. $(VISUALWORKS)/iccT).
This is the case in the original settings of a VisualWorks 7.6 image.

In order to install TADvanceT in your image, simply load the parcel named TADvance2 T.
The required parcels ICC*, TStore-Base,T and TCompression-ZLibT will be loaded
automatically. The loading can be done either using the menu item TTools�Load

Parcel named...T and entering ADvance*, or using the TParcel Manager'sT Directories

tab and selecting icc. For further details on parcel loading and management please
have a look into the VisualWorks TApplication Developer's GuideT.

To load the plug-ins, tutorials and/or examples, load the respective parcels called
ADvance2PlugIns, TADvance2Tutorial and/or ADvance2ExamplesT the same way.

When loading of ADvance2 finishes, the Advance Workbench starts automatically. To
reopen TADvanceT later after closing the workbench, you can use the menu item
Tools� ADvance Workbench in the VisualLauncher.

 Installation

 ADvance User's Guide 2-3

TNote:T If you need to load the TADvanceT parcels into an image which already has an

ADvance version loaded, ensure that no of your own subject classes or
methods are added to the TADvanceT parcels.

Loading ADvance from StORE

There is an alternative way for loading TADvanceT if you have access to the public
TCincom StORE repositoryT: Load the bundle TADvance2BundleT to completely install
TADvanceT and its additional components. Depending on your image settings,
prerequistits will be loaded as parcels or as packages. The VisualWorks TSource Code
Managament GuideT contains more details about TStORET, bundles, packages, and
related issues.

Removing from VisualWorks

To remove TADvanceT and its components from a VisualWorks image, please unload
following parcels or packages:

- ADvance2PlugIns,

- ADvance2,

- ADvance2Tutorial,

- ADvance2Examples,

- ADvance2RefactoringBrowser,

- ICCResources,

- ICCLookExtensions,

- ICCCommonClasses,

- ICC-Namespace,

- ICCColorSelector,

- ICCIncrementalTypes.

 Overview

 ADvance User's Guide 3-1

3 Overview

Objectives

Present overview of tool components and philosophy.

Introduce two kinds of diagram views.

Explore editing, filtering, printing, and documenting techniques.

In this chapter we will examine the overall features of TADvanceT by looking at an
existing code example demonstrating a library check-in/check-out system. We will do
this by viewing several predefined diagrams that represent the library code. The
tutorial code comes with a domain model and a simple GUI. You can run the
application by evaluating the following statements:

TICC.Examples.T1UserConsole open.

ICC.Examples.T1LibrarianConsole open.

Getting Started

TADvanceT has its own launcher, the TADvance WorkbenchT. This workbench provides a
menu bar and corresponding toolbar for launching the high level tools from the
TADvanceT tool suite. Some capabilities are repeated through other menu options as
we will see later in the tutorial.

� To open the TWorkbenchT from a workspace execute the following statement:

ICC.ADvance.AD2Workbench open

Figure 1. The TADvance Workbench.T

Chapter 3

3-2 ADvance User's Guide

We will now open the TDiagram PainterT, a graphical browser which is the main
window for capturing, viewing and editing diagrams. We will use it to do the majority
of our design work: graphically adding and modifying classes and their relationships.

� To open the TDiagram PainterT from the TWorkbenchT use the left toolbar button
or select TTools→→→→Diagram Painter Tfrom the menu.

Figure 2. Opening a TDiagram PainterT.

� This opens a TDiagram PainterT.

Figure 3. The TDiagram PainterT.

The TDiagram PainterT contains a menu bar for selecting, editing or filtering menu
options. The toolbar iconsTP

3
PT provide shortcuts to the most important pull down menu

options, most of the context specific actions are repeated in pop-up.

3 When you move the cursor over each toolbar icon a tool tip describes the function of each button.

 Overview

 ADvance User's Guide 3-3

Opening a Diagram

� To open an existing diagram select TFile→→→→Open diagram...T from the TDiagram
PainterT.

Figure 4. Opening a diagram.

� This opens the TOpen DiagramT dialog.

Figure 5. The TOpen DiagramT dialog.

This dialog contains two panes. The left pane displays a tree of Tsubjects.T If a subject
is selected the right pane displays the subject’s Tdiagrams T.

A TsubjectT is a set of classes that you want to view with TADvanceT. Your subjects can
pick any view that is deemed necessary to communicate an important aspect of your
system design. A subject typically contains 5-30 collaborating classes and often
equates closely to a subsystem, business model structure or use case of your
application.

Chapter 3

3-4 ADvance User's Guide

A subject has TdiagramsT which represent different graphical views on the subject.
Diagrams let you choose the level of detail you want to use to look at; you can create
overview diagrams with the class hierarchy only or more detailed diagrams showing
attributes, services and/or relations. Furthermore, you can use diagrams to look at
different aspects of a subject, e.g. you can create structural diagrams with inheritance
and relations or behavioral diagrams, which show message paths.

Since subjects can contain other subjects they are arranged in a hierarchical way.
Thus, TADvanceT presents the list of available subjects as a tree.

In this tutorial the subject to work with is TICC.Examples.ADT1LibraryT, which
represents the library example.

� Expand the TICC.Examples.ADvanceTutorial1T subject in the left pane by
clicking on the T+T-field.

� Select TICC.Examples.ADT1LibraryT from the left pane.

� The right pane then reflects all the diagrams contained within this subject.

� Select the TOverview Tdiagram in the right pane, then click the TOpenT button.

Note that the diagram icon indicates that this is a structural (vs. behavioural)
view of these classes.

Figure 6. Selecting a diagram to open.

� A diagram with classes and relations is drawn in the TDiagram PainterT.

 Overview

 ADvance User's Guide 3-5

Figure 7. The ICC.Examples.TADT1Library/OverviewT diagram.

Resizing Diagrams

Originally the graphic may be too big to fit completely into the painter window.
Sometimes the components in a diagram need to be sized differently so that the
notations are easier to decipher or we can see the whole picture. In this case we would
like to see all classes within the one window frame.

� Adjust the size by selecting theT Fit to window Tbutton () in the painter’s
toolbar.

� This adjusts the diagram to fit into the currently sized window. Based on the
outcome, you may have to experiment with the window size or components to
get just the right view. Classes can be individually moved by selecting them
and then dragging them to the desired position in the diagram.

To change the diagram’s zoom , you can also use the zoom combobox in the painter‘s
upper right corner. It provides some entries with constant scaling factors. A special
entry TWindowT rescales the diagram to fit to the window everytime you resize the
window.

Problem with Fit to window

If you select the TFit to windowT zoom for your diagram and have set your Windows
settings to show window contents on mouse dragging, a resize of the diagram painter
window will cause multiple repaints of that diagram.

Chapter 3

3-6 ADvance User's Guide

Changing the Diagram Layout

Besides the resizing of a diagram and rearranging of classes you may change the
layout of diagram lines. You can move start and end point of relation lines by
dragging one end or the whole line, and you can change the layout style. These styles
can be separately assigned for relation and inheritance lines. You can select a TgriddedT
and TstraightT line style. See chapter 7 for the options of the TPainter Preferences’TT

LayoutT tab.

Viewing Program Structure

The selected diagram represents a high level structural view of the domain classes of
the library system. Note that the TDiagram Painter’sT window label contains the name
of the subject followed by the name of the diagram,
ICC.Examples.TADT1Library/OverviewT.

Understanding Diagram Notations

This diagram contains six classes represented by colored rectangles. The lines between
classes indicate TinheritanceT and Tassociations T, class TICC.Examples.T1BookT is
selected.

Figure 8. Notation overview.

A class is drawn as a rectangular box with three compartments, with the class name
(and optional namespace) in the top compartment, a list of attributes (with optional
attribute types) in the middle compartment, and a list of services in the bottom
compartment. Abstract classes (TICC.Examples.T1LendableT) use italics for the class

 Overview

 ADvance User's Guide 3-7

name, they may be displayed using a special color defined by the painter preferences
(default is light gray). Classes which are intended to be persistent are distinguished by
a marked upper right corner. Inheritance is shown by a line with a triangle where
TICC.Examples.T1JournalT, TICC.Examples.T1VideoT and TICC.Examples.T1BookT are
shown as subclasses of TICC.Examples.T1LendableT. Has-a relationships are shown by
lines with their cardinality and role name at one end. For example, a single Lendable
has one Borrower associated to it whereas a single Borrower has one or more
Lendables associated with it. Indirect attributes are shown in the same way as direct
attributes, for example TICC.Examples.T1EditLendableDialogT has an instance variable
TlendableT typed as <ValueHolder on: T1Lendable> which is shown as a line with
cardinality 0..1 and name lendable.

For further details on notation we may refer to a standard reference on UML [TThe
Unified Modeling Lanugage Reference ManualT]TP

4
PT as complimentary reading, or your

preferred book on UML.

Emphasizing and grouping Classes by Color

You may want to add more information to your diagram by highlighting some classes
or grouping some classes using background color. In addition to the default color
options of the painter preferences (see section Painter Preferences), each class may be
colored individually.

A class’ background color can be determined in the color dialog.

� Select class TICC.Examples.T1LibraryT, and then select TChange color...T from
the class pop-up menu.

Figure 9. Determining a background color for the selected class.

If the given choice does not provide the color you are looking for you can design your
own color by the clicking the ... button. The Tcolor pickingT dialog will open. You can
define colors using RGB- or HSB-system.

4 Rumbaugh, Jacobson, Booch: The Unified Modeling Language Reference Guide, Addison Wesley,
1999

Chapter 3

3-8 ADvance User's Guide

Figure 10. Defining individual Colors using the Tcolor pickerT.

Figure 11. Class T1Library is highlighted by individual color.

� Select class TICC.Examples.T1LibraryT, then select TDefault colorT from the
class pop-up menu to change its color back to the default color for concrete
classes.

 Overview

 ADvance User's Guide 3-9

Choosing the Level of Detail

Each diagram can display multiple layers conveying different types of information
aspects about the current diagram: TInheritanceT, TAttributesT, TAttribute typesT, T(has-a)
RelationsT, TServicesT and TScripts. TThese layers allow the user to focus in on what is
important for a particular view. The Glossary contains a complete description of each
aspect. Each of these layers may be toggled on or off individually. Toggling on any
aspect allows the user to examine specific characteristics of the code and/or model.

We will now look at each of these in detail.

� Examine the TView→→→→LayersT pull down menu.

Figure 12. Toggling layers on and off with a menu.

� You will see that the check marks indicate that inheritance, attributes, attribute
types, relations, and services are turned on. The scripts layer is off in this
view.

Each time you select a layer it will toggle its state to be on or off. Since this is a
structural view, we do not necessarily need to view the services to gain the
understanding the designer meant. Scripts are generally associated with behavioral
diagram views.

� Toggle TNamespacesT off. Notice the changes in the diagram. The class names
are reduced to their names without leading namespaces.

� Toggle TServicesT and TAttributesT off. Notice the changes in the diagram. The
class definitions are no longer readable.

� Now toggle TInheritanceT, then TRelations T. What do you see? Restore the
diagram to its original view by checking the first six options (not Scripts).

� The same layer toggling functionality can be achieved by using the TDiagram
PainterT’s toolbar buttons . These buttons are toggle switches for each of the
layer they represent.

Figure 13. Toggling layers on and off with buttons.

� Toggle the second button from left off then on - this is for the attributes layer.

Chapter 3

3-10 ADvance User's Guide

Viewing Program Behavior

As we saw in the TOpen DiagramT dialog, there were many diagrams to select from
within the tutorial subject. To view the library code from a behavioral perspective we
could choose to include scripts in our current diagram. This would make the diagram
very cluttered and less readable. Since there is a behavioral diagram already saved, we
are going to open this diagram.

� Select TFile→→→→Open Diagram...T

� First a dialog box appears asking if you want to save your changes.

� Answer TNOT.

� Choose TT1Librarian>>checkIn:T from the TICC.Examples.ADT1LibraryT as the
diagram to display.

Figure 14. Opening the TT1Librarian>>checkIn: Tdiagram.

� The diagram is drawn in the painter. Note that the window label contains the
diagram name.

 Overview

 ADvance User's Guide 3-11

Figure 15. Displaying behavior.

Now we see lines with arrows depicting potential message sends between classes -
hence the name TBehavior T. A collection of these message paths constructed from
tracing the message sends of an originating service is called a script . Scripts are
similar to UML collaboration interactions, the difference being that they are
abstractions depicted at the class level.

In this diagram we see the following from left to right:

• The service TICC.Examples.T1Librarian>>checkIn:T sends the message TcheckIn T to
an instance of TICC.Examples.T1LendableT.

• TICC.Examples.T1LendableT sends itself a message to calculate an overdue fine.

• TICC.Examples.T1LendableT sends messages TcheckIn: Tand TpayFine:T to a
TT1Borrower T.

A more comprehensive treatment of behavior derivation is given in the TReverse
EngineeringT chapter.

TNote: TIf the script layer is toggled on and no scripts are drawn, this indicates that no

scripts have been selected to be traced in the diagram.

Chapter 3

3-12 ADvance User's Guide

Viewing Message Paths

Once the message paths have been graphically drawn through the TADvanceT
derivation they can be examined for actual sequential message flow. This is supported
by listing methods involved in a path and offering the method comments for under-
standing. For every script a documentation to that end may be printed or previewed.

� Select TWindow→→→→Script Docu...T

� The Script Documentation dialog appears.

Figure 16. The TScript DocumentationT dialog.

� Check method TICC.Examples.T1Librarian>>checkIn:,T set TScript depthT to 3,
then click TPreview...T

� This produces a textual representation of the sequential flow of message sends
within the initiating script. We could verify this by looking at the same code in
a system browser.

 Overview

 ADvance User's Guide 3-13

Figure 17. The TScript Documentation PreviewT.

� Experiment with increasing the script depth of this script, then preview the
results again. When the script depth is equal to 3 does it reflect the same paths
as the documentation above?

Filtering Methods and Attributes

TADvanceT allows the user to exclude methods and attributes from diagrams that do
not add value to the special view; the most obvious ones being accessors. This
TfilteringT is provided for two levels: Tdiagram filtersT are applied to all classes in a
diagram while Tclass filtersT control filtering for individual classes in a diagram.The
filtering also effects the tracing of scripts and messages.

Since filters are diagram specific, filtering can be used to easily customize the view of
each diagram.

� To edit the class filter select the class TICC.Examples.T1LibrarianT in the
TDiagram PainterT, then select TFilter...T from the class pop-up menu.

� This opens a TClass Filter EditorT on TICC.Examples.T1LibrarianT.

Chapter 3

3-14 ADvance User's Guide

Figure 18. The TClass Filter EditorT on TICC.Examples.TT1Librarian.

The Diagram Filter Editor and Class Filter Editor provide interfaces to add and
remove method protocols and single methods or attributes to/from a diagram or class
filter. Each editor contains four filtering categories: TInstance methods T, TClass

methods, AttributesT, and TSpecialT. The instance and class methods categories contain
two sets of panes to display filtered protocols and methods respectively. With
TProtocolT panes filter, all methods of a filtered protocol become filtered, with TMethodT
panes individual methods can be filtered. The right hand panes display the filtered
protocols and methods. The attributes filter category is similar to the method
categories, providing panes for instance variables, class instance variables, and shared
variables. The TSpecialT page has predefined semantic filters that can be checked for
filtering as a whole.

� Select the Tlibrary activitiesT protocol, click the T>>T button, then select TOKT.

� The protocol is moved to the TFiltered ProtocolsT pane and the three methods
belonging to this protocol are removed from the TAvailable Methods Tpane.

Now we go back and look at the updated diagram view. Notice that the three methods
on TICC.Examples.T1LibrarianT are no longer drawn in the diagram - even though the
diagram filter did not filter these. These methods are no longer available to trace
either.

See the TAdditional ConceptsT chapter for more information about filtering.

 Overview

 ADvance User's Guide 3-15

Printing Diagrams

TADvanceT has a built-in diagram printing facility. It works with both, the
VisualWorks’ Postscript and Host printingTP

5
PT.

� To print the current diagram select TFile→→→→Print...T in the TDiagram PainterT.

� The TPrint DialogT appears.

Figure 19. The TPrint Dialog.

� Choose an appropriate area, scaling and orientation (the diagram should fit on
about 1 to 2 pages), then click TOKT.

� The current diagram is sent to printer.

5 You can change the VisualWorks printing setup in the Printing page of the VisualWorks settings.

Chapter 3

3-16 ADvance User's Guide

Documenting Subjects

The Documenter is a tool that automatically creates a compound HTML
documentation for a subject. The documentation includes the subject’s diagrams,
textual script representations, a HTML page for the table of contents, and optional
definitions for the subject classes.

� Open the Documenter by selecting TWindow����DocumenterT in the painter.

� The Documenter interface appears.

Figure 20. The Documenter Interface.

� Select subject ICC.Examples.ADT1Library, check TInclude sourceT and enter a
valid directory path in the input field. Then press the TCreateT button.

� Left the value for diagram zoom empty for normal resolution. Enter a value
greater 100 to enhance resolution if the HTML documentation shall be printed
later.

� A documentation for the library example is generated under the given path.

� Check the documentation with a HTML browser.

 Reverse Engineering

 ADvance User's Guide 4-1

4 Reverse Engineering

Objectives

Demonstrate ability to build object model from existing code.

Derivation of behavior descriptions from existing code

Use as a tool for analyzing encapsulation, abstractions, architecture, etc.

Summarize Reverse Engineering steps.

In the previous chapter we worked with the ICC.Examples.ADT1Library example that
has prepared TADvanceT diagrams already set up. There is a corrupted copy of this
example that has no diagrams and that lacks some typing information. In this chapter
we will reverse-engineer this copy. We will rebuild the diagrams that we’ve seen in
the last chapter. You will explore how to produce and improve graphical abstractions
from the pure code existing for this example.

We start creating an overview diagram of the library code. Then we will build a
second diagram which provides a more detailed view on the same code. Finally we
show how to explore behavior by building a third diagram.

Creating a Subject from existing Code

The first step for reverse engineering is the subject creation. The subject defines the
subset of your system you want to view. The first subsection shows how to build a
subject from scratch for different VisualWorks contexts like packages, parcels, and
categories, or an empty subject to manually add the classes. An alternative way for
building a subject for a package or for a single class’ hierarchy is shown in the second
subsection, describing the use of the integrated TADvanceT diagram painter in the
Refactoring Browser, the default VisualWorks System Browser.

Subject creation with the Subject Wizard

In our case, the context of interest is the ICC.Examples.ADT2Library code. We will
use this subject for all diagrams in this section.

Subjects are created from the Subject Browser.

Chapter 4

4-2 ADvance User's Guide

� Open a Subject Browser by selecting TTools����Subject BrowserT in the
Workbench menu or click on the corresponding toolbar icon.

� This opens a Subject Browser.

Figure 21. The Subject Browser.

The Subject Browser is much like the Open Diagram dialog that you’ve seen in the
previous chapter. In the left pane it displays a tree of subjects, while the right pane
shows diagrams, if a subject is selected. The browser has additional menu items and
toolbar icons for managing subjects, i. e. creating, deleting, editing, and finding. It is
also used to manage and to open diagrams.

We now will create a new subject from the library classes. The creation process itself
is done by the Subject Wizard. The wizard guides through the creation process.

TNote:T New subjects are created as children of the currently selected subject. So, if

you want to create a subject that should be placed under the root of the subject
tree, you should select the [Root] subject first.

� Select the [Root] subject in the Subject Browser’s subject tree.

� From the Subject Browser, select TFile→→→→New subject...T

� The Subject Wizard is opened.

 Reverse Engineering

 ADvance User's Guide 4-3

The wizard can create empty subjects or subjects with an initial contents. In the latter
case you may either start with a VisualWorks category, a VisualWorks parcel, a StORE
package, the classes in the change set, or you can copy all classes from an existing
subject.

We will create a subject from the VisualWorks category ADE-Tutorial 2. The
procedure is almost the same for the alternative subject creation methods.

Figure 22. The Subject Wizard (1).

� Select TCreate from CategoryT then click TNextT.

� A wizard page for choosing a category appears.

Chapter 4

4-4 ADvance User's Guide

Figure 23. Selecting a category with the Subject Wizard (2).

� Select category ADE-Tutorial 2 then click TNextT.

� A wizard page for choosing the subject class appears.

Figure 24. Choosing a subject class with the Subject Wizard (3).

 Reverse Engineering

 ADvance User's Guide 4-5

A subject needs a class to store the subject’s definition and diagrams. You can either
choose an existing class or create a new class. New classes can only be created for
existing name spaces; if name space is omitted, class is created in default name space
Smalltalk. The subject class is used to identify and transport subjects. It is also used to
version subjects in team environments.

The subject name should reflect the name of the modeled subsystem or use case. It is
restricted just like a VisualWorks class name.

In our case, we will go with the wizard’s proposal ADETutorial2, extended by a
special name space.

� To proceed click TNext T.

� Since ICC.Examples.ADETutorial2 is a new class, the New Class dialog
appears.

Figure 25. The New Class dialog for class ADETutorial2.

� Enter ADE-Tutorial subjects in the category input field, then click TOKT. Make
sure that your subject class shows a fully qualified name space.

� The package for the new class is determined by the general preferences (see
section General Preferences). The default is to use the System settings, so
normally the package defined as current package will be used, or you will be
prompted for a package.

� A class named ADETutorial2 in namespace ICC.Examples is created and the
last wizard page is opened.

Chapter 4

4-6 ADvance User's Guide

Figure 26. The Subject Wizard (3).

� Click TNextT to finish the subject creation process.

� The subject ADETutorial2 is created and shows up in the Subject Browser.

Figure 27. The new subject and its default diagram.

 Reverse Engineering

 ADvance User's Guide 4-7

ADvance in the Refactoring Browser

When the package or parcel named AD2RefactoringBrowser is present in the image,
the VisualWorks System Browser shows the tab TADvance DiagramT when a class or a
package is selected. For a parcel, the diagram on the tab contains all classes defined or
extended in the package. For a class, the class and each member of its class hierarchy
(superclasses and subclasses) are shown.

The generated subjects and its diagrams are not automatically stored in the image as
special classes and methods. If you edit the diagram (e.g. adding classes, or changing
the view), you will be asked on leaving whether to save the changed diagram. You can
save the diagram even without a prior change using the disk symbol of the toolbar.

The subject information and the diagram information of the package subject are then
stored in a new class; a New Class Dialog will open to enter the class information. The
subject information and the diagram information of the single class hierarchy subject
are stored in that class itself. As well as for wizard created subject classes, the
packages for the new class respectively the new methods are determined by the
policies defined in the General Preferences.

Figure 28. Refactoring Browser diagram for a package context

Chapter 4

4-8 ADvance User's Guide

Figure 29. Refactoring Browser diagram for a class hierarchy.

 Reverse Engineering

 ADvance User's Guide 4-9

Creating an Overview Diagram

We now will create a diagram for a structural view on the new subject. TADvanceT has
already created a Default diagram for our manually created subject. We will open,
modify and save it.

� Select ADETutorial2 in the Subject Browser.

� The Default diagram is displayed in the subject’s diagram list.

� Select the Default diagram as shown in the figure above.

� Open the Default diagram by double-clicking on it or by selecting TOpenT in the
corresponding pop-up menu.

� A Diagram Painter is opened and shows an initial layout for the classes in the
ADETutorial2 subject.

Figure 30. The Diagram Painter shows an initial layout.

Before we save this diagram we will improve the layout and customize the tool to give
a better presentation of the subject.

� Resize the painter window and change the zoom so that you can both read the
texts in the diagram and have an overview of the layout.

Chapter 4

4-10 ADvance User's Guide

� To improve the layout, rearrange the classes as shown in figure below.

Figure 31. The resized and rearranged diagram.

� Do a TFile→→→→Save As...T to name and save it. Name the diagram Overview.

� The diagram is saved and the painter’s window label changes.

Since we want to build a structural view of the librarian example, we will hide the
GUI classes T2UserConsole and the T2EditLendableDialog. Furthermore we will add
typing information to the diagram by switching on the corresponding layers.

� Select class T2UserConsole, then choose THideT from the class pop-up menu.

� The class becomes invisible in the diagram but is still part of the diagram’s
subject.

� Remove classes T2EditLendableDialog and T2LibrarianConsole from the
diagram by pop-menu item TDeleteT.

� The classes are removed from subject and therefore also removed from default
diagram, but they are still in the image.

� To add more structure information to the diagram switch on the layer for

attribute types by pressing the button in the toolbar.

� The resulting diagram includes attribute types.

 Reverse Engineering

 ADvance User's Guide 4-11

Figure 32. A draft for the overview diagram.

Revisiting the Class Comments

In the current example several classes have undefined types. In order to create a
diagram that will convey a more comprehensible message to the reviewer, we will
now improve the type information. This will lead to more relation lines and better
attribute descriptions.

TADvanceT uses static variable annotations which are extracted from class comments
or from special methods providing these annotations. The class comment format is
enforced by the VisualWorks Class ReporterTP

6
PT. See also the type syntax as described

in the method Parser>>typeExpression.

T

6 Contained in the VisualWorks Advanced Tools parcels.

Chapter 4

4-12 ADvance User's Guide

Note: TYou can define a selector for the class methods containing the

annotations by editing the General Preferences. This can be used to store
documentation in extensions to classes to avoid modifications. The default
method selector is #ad2ClassInfo. If preferences are set to take this method
and a class does not already have such a method, its comment will be taken
instead. The way how to edit preferences is discussed later in this guide.

Static variable annotations are interpreted as attribute types respective associations.
For a discussion of possible semantic differences and subtleties going with these
notions please refer to the UML reference books. VisualWorks system classes are
almost completely annotated using this standard. Thus, TADvanceT can build up a good
approximation of the system’s static association structure.

There are several ways to check, add and edit type annotations. In the next paragraphs
we will introduce the most frequently used approaches to easily manage types.

Checking Types

Statically declared type relationships can be checked using:

1. TADvanceT’s built-in type checking facility: This is a very detailed type check and
is recommended if you are checking a single class. Just select the classes you
would like to have checked and let the checker work.

2. The VisualWorks ClassReporter: This method is recommended if you are
checking multiple classes for several consistency properties.

3. The type reporting from the Comment Generator plug-in: This is the adequate
way to easily check multiple classes for comment consistency only.

ICC.Examples.T2Library has two attributes borrowers and lendables which are shown
to be undefined. We will check the problem with TADvanceT’s built-in type checking
facility.

� Select class ICC.Examples.T2Library, then select TUtilities→→→→Check types...T
from the class pop-up menu.

� Since there are invalid types, a type checking report is opened.

 Reverse Engineering

 ADvance User's Guide 4-13

Figure 33. A type checking report on ICC.Examples.T2Library.

Editing Types

There are several ways to create and edit types:

1. TADvanceT’s Class Properties dialog: This is the easiest way to edit type
annotations for a class visible in the Diagram Painter. It is recommended for
novice users.

2. Standard Browser: This is a fast way to edit multiple type annotations in one
class.

3. Comment Generator plug-in: This tool automatically infers variable types through
a static inference step and generates preformatted class comments for a set of
classes. It is the recommended tool if your subject classes have no comments at
all.

We will correct the types for ICC.Examples.T2Library with a standard browser and
we will modify the type annotation for ICC.Examples.T2Lendable.borrower using the
Class Properties dialog.

� <Shift>-double-click on class ICC.Examples.T2Library.

� A Hierarchy browser on ICC.Examples.T2Library is opened.

� Change the comment as follows: the type description of borrowers and
lendables must read <OrderedCollection of: ICC.Examples.T2Borrower>

Chapter 4

4-14 ADvance User's Guide

respectively. <OrderedCollection of: ICC.Examples.T2Lendable>. Then
close the browser.

� Press the update button () in the painter or select TFile����UpdateT.

� The Diagram Painter now displays the updated diagram with relations
inserted between ICC.Examples.T2Library and ICC.Examples.T2Lendable,
ICC.Examples.T2Borrower.

� Double click on class ICC.Examples.T2Lendable to open the Class Properties
dialog.

� A dialog is opened that lets you easily modify class and attribute definitions.

Figure 34. The Class Properties dialog on ICC.Examples.T2Lendable.

� Switch to the dialogs attributes page by clicking on the TAttributesT tab.

� Select the borrower attribute, then press the TEditT button.

� A requester appears and asks for the attribute type.

� Enter TICC.Examples.T2BorrowerT, press TOKT.

� Close the Class Properties dialog.

� The diagram is updated and now has a relation line from
ICC.Examples.T2Lendable to ICC.Examples.T2Borrower.

� Finally, make a few more changes to see how the graphics reflect the current
code: Add a class comment to ICC.Examples.T2Lendable with the following
attribute types: id <Integer>, dueDate <Date>. Remove the instance variable
myFine from ICC.Examples.T2Borrower. Then update the diagram again.

 Reverse Engineering

 ADvance User's Guide 4-15

Figure 35. The updated ADETutorial2/Overview diagram.

TNote:T The default filter may suppress information you would like to see. If you

suspect such unwanted suppressing, edit the diagram’s filter by menu action
TEdit ���� FilterT with no class selected, and start with removing the selections on
the TSpecialT tab. For the diagram above, this would add the Default variable as
a relation from and to T2Library in the diagram.

Chapter 4

4-16 ADvance User's Guide

Creating a Detailed Diagram

As a next step, we will extend the Overview diagram to get a new diagram that
presents more details about the library application. Therefore we

1. Add relevant classes to the subject,

2. Apply filters to fine tune services in the diagram.

Revisiting the Subject Contents

Adding collaborators and removing irrelevant classes is an important step to gain a
better understanding of an application. In this section we will learn three different
approaches for adding a collaborator class to the subject.

� To copy the diagram choose TFile����Save as...T and save it as Details.

Adding a related Class

Let’s navigate through relationships and add a class that is related to a subject class.

� Select TView����All classesT, to make all classes in the diagram visible.

� Select class ICC.Examples.T2UserConsole, then select TAdd����Related
classes...

� A list of classes that are related to ICC.Examples.T2UserConsole is presented.

� Select ICC.Examples.T2LibrarianConsole and click OK.

� This class is added to the subject. The diagram automatically reflects this.

 Reverse Engineering

 ADvance User's Guide 4-17

Figure 36. The updated ADETutorial2/Overview diagram.

Adding an Initiator Class

Now we temporarily remove ICC.Examples.T2LibrarianConsole to add it again with a
different approach. This time we will navigate over behavior instead of relationships.

� Select ICC.Examples.T2LibrarianConsole, then select Delete from the class
pop-up menu.

� After a request this will delete class ICC.Examples.T2LibrarianConsole from
the subject but not from the image.

� Select ICC.Examples.T2Librarian then select Add����Initiators...

� The system does a behavior inference and answers a list of classes that send
messages to the ICC.Examples.T2Librarian. Among them you find the
ICC.Examples.T2LibrarianConsole.

� Select ICC.Examples.T2LibrarianConsole, then click OK.

Chapter 4

4-18 ADvance User's Guide

� This class is added to the subject again.

In the same way we added an initiator class, we could add participant classes to the
subject by Add����Participants...

Adding a Class with Subject Editor

Again, we temporarily remove ICC.Examples.T2LibrarianConsole from the subject
and then we add it again. This time we use the Subject Editor to modify the subject.

The Subject Editor provides an interface for adding and removing classes to/from a
subject. It is the recommended way to change a subject, if you already have an
understanding, which classes are relevant and which are irrelevant.

� To open the Subject Editor double-click in the diagram (which is a shortcut
for Edit→→→→Subject...).

� The Subject Editor then appears and depicts which classes are contained in the
subject and which are not.

Figure 37. The Subject Editor in category mode, Filter checked.

The Subject Editor has four different views to modify the subject. The Tcategory view T
offers two panes, displaying all categories in the left pane and the contained classes of
the selected category in the right pane. This view is best if you want to add and
remove categories, or if you want to find a class by category. The other views from
left to rigth are Tparcel view T, Tpackage view T, and Talphabetical view T which offers a
sorted list of all classes.

In all views containters and classes that are already in the subject are shown in bold.
Categories that are partly in the subject are shown in italics. If the Filter option is
checked, the editor shows only containers (parcels, packages, categories) or classes (in
alphabetical view) that are at least partly in the subject.

 Reverse Engineering

 ADvance User's Guide 4-19

You can add and remove containers or classes by a variety of actions in the pop-up
menues of the different panes. They allow you to add/remove single items or using
patterns. The editor also provides actions to add classes from the change set, a
VisualWorks parcel or other subjects. Furthermore you can add and remove a class’
super and subclasses.

Figure 38. The Subject Editor in alphabetical mode, Filter unchecked.

� Select ICC.Examples.T2LibrarianConsole then select Add from the pop-up
menu.

� The ICC.Examples.T2LibrarianConsole is now in the subject and is shown in
the subject’s diagrams.

Applying Filters

To gain a better understanding of the services provided by the library classes, we will
switch on the services layer. Since this may lead to a cluttered diagram we will then
apply service filters. With filters you can fine tune the presentation of services in your
diagrams.

� Switch on the services layer by checking the toolbar checkbutton () or by

checking View����Layers����Services.

Chapter 4

4-20 ADvance User's Guide

� The services for all classes in the diagram will show up.

The diagram contains a lot of services that do not add value to it. Among these are
class methods (indicated by the $-prefix) and printing method, e.g. shortDisplayString.

We first will change the Tdiagram filterT to exclude these from the diagram.

� Have all classes deselected, then select Edit����Filter....

� The Diagram Filter Editor will be opened.

Figure 39. The Diagram Filter Editor.

� Move the printing protocol from Available Protocols: to Filtered Protocols:
by clicking on the upper >> button. Check the Filter class methods check
box in the Special tab, then click OK.

� The methods in printing protocols and the class methods are no longer
displayed in the diagram.

We now will change the Tclass filterT for ICC.Examples.T2Librarian.

� Select ICC.Examples.T2Librarian then select Edit����Filter...

 Reverse Engineering

 ADvance User's Guide 4-21

� A Class Filter Editor on ICC.Examples.T2Librarian will be opened.

� Filter protocols accessing and administration.

� ICC.Examples.T2Librarian is displayed with three services only.

TNote:T Class filters override diagram filters. For example, if the protocol private is

filtered at the diagram level but not filtered at the individual class level, the
class having this protocol unfiltered shows these methods and has them
included in script and association traces.

TADvanceT comes with predefined filters.These are built to match the Smalltalk
protocol and method naming conventions as described in the VisualWorks User’s
Guide. If your methods comply with these naming conventions, the filters will
automatically hide methods that typically do not add value to diagrams.

Class ICC.Examples.T2UserConsole has protocols that do not comply with these
conventions. Hence, the diagram contains some methods that are irrelevant. These
protocols could be filtered, but – in this case – the better way is to comply with the
standards.

Chapter 4

4-22 ADvance User's Guide

� <Shift>-double-click class ICC.Examples.T2UserConsole to open a browser.
Rename the protocols priv and priv-accessing to private and private-accessing
respectively. Close the browser and update the diagram. Rearrange the classes.

� The diagram should look as shown below.

Figure 40. The updated ADETutorial2/Details diagram.

Although all classes are defined within the same namespace you may wish to show the
namespace in the header of the classes.

� Switch on the namespace layer by checking the toolbar checkbutton () or
by unchecking View����Layers����Namespaces.

� The namespaces for all classes in the diagram appear.

You can also toggle namespace for a selected class by using Layers���� Hide / Show

Namespace from Class pop-up menu.

 Reverse Engineering

 ADvance User's Guide 4-23

Creating a Behavior Diagram

We now will create a behavioral diagram for our example. Therefore we will recreate
the behavior diagram for the librarian check-in process. We will examine two different
ways to explore behavior.

• First we follow the message path step by step, creating single scripts.

• We then will create a nested message path in one step.

To prepare, let’s focus on the service layer. As soon we’ve created scripts in this
diagram, we will save it under a new name.

� Using the toolbar buttons, switch off attributes, types, inheritance and
relations layers, and switch on the scripts layer for the diagram.

Figure 41. A draft for the behavior diagram.

Chapter 4

4-24 ADvance User's Guide

Creating single Scripts

� Select ICC.Examples.T2Librarian, select Scripts... from the class pop-up
menu.

� The Script Selection dialog is opened.

The dialog’s Visible scripts pane contains all services that send messages to classes
in the diagram. For any service that you check, the tool will generate a message trace.
If you uncheck a service, the corresponding message lines will be removed from the
diagram.

The message tracing is parameterized by two options. The Script depth parameter
determines how deep the message path should be traced. In this section we will use a
depth of 1; this will show the direct receivers of messages. In the next section we then
will increase the script depth to automatically dive into the message path.

The Association depth indicates which related classes are to be included in the trace.
See the sidebar How ADvance infers Message Passing below for further explanations.

Figure 42. The Script Selection dialog.

� Check checkIn:, set Script depth to 1, then click OK.

� The diagram then displays a message send from
ICC.Examples.T2Librarian>>checkIn:.

 Reverse Engineering

 ADvance User's Guide 4-25

Figure 43. A script for T2Librarian>>checkIn:.

How ADvance infers Message Passing

TADvanceT uses a behavioral inference to determine which are the potential receivers
of a message send. It infers all potential participant services for the originating
method. For gaining a high degree of accuracy, it then restricts the resulting set twice.
First it is restricted to subject classes. Furthermore it is restricted to classes that are
directly or indirectly related to the initiator. The idea behind the latter is that – in most
cases - classes send messages to related classes only.

The second restriction step requires type information. This is why variable typing is
imperative for the tool to work most accurately. In order to improve behavior analysis,
it is recommended to augment a diagram with association annotations which are
derived from the initiators/participants function.

With the Association depth you can control how deep the tool should look for related
classes of the initiator. It is used to define the depth of the transitive closure of related
classes. A depth of 1 will use directly related classes only. A depth of 2 will add the
related classes of directly related classes, and so on.

Chapter 4

4-26 ADvance User's Guide

We now will follow the message trace and add a script for
ICC.Examples.T2Lendable>>checkIn.

� Select ICC.Examples.T2Lendable, open the Script Selection dialog and check
checkIn.

� The diagram draws message lines to participants of
ICC.Examples.T2Lendable>>checkIn.

Figure 44. A nested script for ICC.Examples.T2Librarian>>checkIn:

� Select File����Save as... and accept the suggestion
(ICC.Examples.T2Librarian>>checkIn:).

Naming Conventions

This is a good time to make a point about diagram names and naming conventions.
There is no pre-defined standard enforced by TADvanceT, but we strongly encourage
that your project adopts standardized, readable names for diagrams so that users can
migrate easily through them and be able to organize each subject for ease of
maintainability. The point is to be consistent no matter what you choose.

 Reverse Engineering

 ADvance User's Guide 4-27

We choose to name structural diagrams with the view type (e.g. Overview, Services)
while we preface behavior diagrams with class>>selector. The latter convention is
suggested when saving behavior diagrams with File→→→→Save As...

Creating nested Scripts

In order to see how a complete message path can be drawn automatically, let’s start
from a clean state.

� Select Edit����Select all or press the corresponding toolbar button (). To
remove all scripts, select Add����Remove scripts. Confirm the request.

� All previously drawn scripts in the diagram disappear.

� Select ICC.Examples.T2Librarian, then invoke Scripts... from the class pop-
up menu.

� The Script Selection dialog appears.

� Check checkIn: and set Script depth to 2.

� The nested message passing is shown as seen in the figure on page 4-26.

A Note about Filtering

If a method is filtered, it is not available for selection in the Script Selection dialog.
Sometimes when a method is visible in the diagram class but not available for
selection to trace - this indicates that the participant methods have been filtered, since
filtered methods are not included in the inference.

You can use empty filters first, define your scripts to show and than apply
View����Filter non-script services... to hide the unused services in this diagram.

Set diagram focus on the Scripts

Among the classes being involved in the scripts, the diagram shows some classes not
connected with scripts. TADvanceT provides a simple way to hide classes which are not
relevant for the shown scripts.

� Select View ���� Hide non script classes or press the corresponding toolbar
button.

� All classes not involved in scripts are hidden.

Chapter 4

4-28 ADvance User's Guide

Figure 45. Classes involved in script for ICC.Examples.T2Librarian>>checkIn:

 Reverse Engineering

 ADvance User's Guide 4-29

Summary

Create Subject

Decide which subset of the system you want to view. A TsubjectT is the mechanism for
representing the subset's context. An example of a context may be a scenario,
VisualWorks category or a parcel. The Subject Wizard allows subject creation directly
from VisualWorks categories, parcels, and packages. Classes can then be added or
deleted with the Subject Editor as you begin to gain a better understanding of the view
that you want to represent.

Create Diagrams

A TdiagramT is composed of the classes that were defined in the subject with some of
them hidden. Each diagram can represent a different view on the subject, i.e. the
structure and/or behavior of your system.

Prior to opening a default diagram, switch on the following diagram layers in Diagram
Painter: Inheritance, Attributes, Associations, Namespaces. These settings allow
TADvanceT to assemble a better initial diagram layout. To clarify different views on
this subject, one can create multiple diagrams where each diagram highlights a
different aspect of the class interaction i.e. structural vs. behavioral.

Complete Variable Type Information

Make sure that each of the class' variables has a type declaration associated with it. In
order for the class comment section or the class method providing the information to
be complete it must include all variable names (including instance, shared, class
instance and overridden inherited variables).This is because TADvanceT uses these
mappings to both construct the class relationships and infer message flow in its
diagrams. If you are uncertain about the type that should be assigned to a variable,
check the code for what values may be assigned to it. A good starting point for this is
the #initialize method, instance creation code and senders of variable accessors.

Check the results by using the VisualWorks Class Reporter. Ideally it should report
nothing. You also may use the Comment Generator plug-in, which generates comment
stubs.

Edit Diagrams

The automatically generated diagram layout may be improved upon in different ways,
e.g. by rearranging classes, adding relations, defining scripts, using different colors
etc. For example, group classes with similar names; group by a common superclass or
group by collaborations or associations. If the classes in the diagram layout seem to be
unrelated or have few connections between them, these techniques can help find
relevant associations. Note that associations are not drawn to classes outside of the
subject, to hidden classes, or to classes declared as Containers i.e. Collection
hierarchy and ValueModels.

After applying these techniques, the diagram should reflect the basic class structure
relationships and/or selected message flows. Identifying and drawing any additional
association remain as optional exercises for the user to determine if this is important to

Chapter 4

4-30 ADvance User's Guide

this diagram. In order to build a complete diagram, this may require revisiting some of
the above mentioned steps in an iterative manner. The following steps profile what
may be highlighted when iterating.

Revisit Class Definitions and Type Information

If appropriate, make the variable type information given class comments or in the
respective class methods more current based on the information from the diagram.
Change variable types from generic to specific to gain a more detailed view in the
diagram. Remove obsolete variables.

Revisit the code to get more information about relations i.e. which class references are
used by, which classes have structural or behavioral relations and check whether they
are already shown in the diagram. Then update the diagram and continue with editing.

Add Collaborators to Subject

Good candidates to add are superclasses, associated classes, classes that refer to the
subject’s classes (initiators) and classes that the subject may refer to outside of the
current scope (participants). Navigate over relationships first, and then navigate over
behavior to explore which classes are collaborators of classes being already part of the
subject. Both types of navigation are supported by the Diagram Painter with the class
menu commands Add→→→→Related classes..., Add→→→→Initiators..., and
Add→→→→Participants...

If potential collaborators are not associated with any class in the subject, find out
which associations should be added which are not directed through state (i.e. query
relations). This normally needs some scrutiny of services which send messages to
parameters.

Update the diagram and continue with editing.

Remove irrelevant Classes from Subject

If there remain classes after iterating having no relations this may indicate that they
are not well placed in this subject. Remove them.

Generate Documentation

You may print diagrams, copy diagrams to clipboard, generate script docu, or create a
complete HTML document. For printing choose an appropriate scaling and print the
diagram. It should fit on about 1 to 6 pages

 Forward Engineering

 ADvance User's Guide 5-1

5 Forward Engineering

Objectives

Demonstrate how ADvance can be used as an object design capture tool -
creating structural and behavioral views.

Show ability to map into VisualWorks constructs directly.

Demonstrate full integration of graphics to code.

During an object oriented analysis and design iteration, TADvanceT can be used to
capture the design diagrams and generate initial class definitions.

One feature of this tool is that if the user creates new design using TADvanceT, the
class definitions are automatically generated as VisualWorks code. Thus the diagrams
serve as direct graphical representations of the code. This direct mapping holds true
when diagrams are generated from existing code, too. Therefore the integrity of the

design is maintained throughout the design ↔ implementation iterations.

The following steps guide you through the creation of subjects, diagrams, classes,
structure and behavior from scratch. To demonstrate these facilities we will rebuild
parts of the library example as introduced in the Overview chapter.

Creating an empty Subject

The first step for creating a new design is the subject creation. You might revisit the
subject creation in the previous chapter where it is explained more in detail.

Given that we are starting from scratch we will create an empty subject
ICC.Examples.ADETutorial3. We will use it for all diagrams in this chapter.

� Open the Subject Browser by selecting Tools����Subject Browser in the
Workbench menu or click on the corresponding toolbar icon.

� This opens the Subject Browser.

� Select the [Root] subject in the Subject Browser’s subject tree.

� From the Subject Browser, select File→→→→New subject...

� The Subject Wizard is opened.

Chapter 5

5-2 ADvance User's Guide

Figure 46. The Subject Wizard (1).

� Select Create empty Subject then click Next.

� A wizard page for choosing the subject’s class appears.

Figure 47. Choosing a subject class with the Subject Wizard (2).

� Type ICC.Examples.ADETutorial3 into the blank field then click Next.

� Since ICC.Examples.ADETutorial3 is a new class, the New Class dialog is
opened.

 Forward Engineering

 ADvance User's Guide 5-3

Figure 48. The New Class dialog for ICC.Examples.ADETutorial3.

� Click OK to create the new class.

� A class named ICC.Examples.ADETutorial3 is created and the last wizard
page is opened. Depending on the options available in the general preferences,
the class is put into the default / current package, a package asked from user,
or an explicitly named packaged. See section General Preferences for the
details of the options.

Figure 49. The Subject Wizard (3).

� Click Next to finish the subject creation process.

Chapter 5

5-4 ADvance User's Guide

� The subject ICC.Examples.ADETutorial3 is created and shows up in the
Subject Browser.

Figure 50. The new subject and its default diagram.

 Forward Engineering

 ADvance User's Guide 5-5

Creating a new Design

Once you have defined a subject you can then define any number of diagrams within
this subject. The number of diagrams associated with this subject will vary depending
on the scope of your subject and the number of views required to comprehensively
communicate your design.

Creating a new Diagram

We now will open the Default diagram of our subject where we can add classes and
relations graphically.

� Select ICC.Examples.ADETutorial3 in the Subject Browser.

� The Default diagram is displayed in the subject’s diagram list.

Select the Default diagram as shown in

� Figure 50. Then open it by double-clicking on it.

� A Diagram Painter is opened and shows an empty diagram for
ICC.Examples.ADETutorial3.

Chapter 5

5-6 ADvance User's Guide

Figure 51. The Diagram Painter shows an empty diagram.

� Do a File→→→→Save As... to name and save it. Name the diagram Overview.

� The diagram is saved and the painter’s window label changes.

Adding Classes

The first logical design step is to add classes to the diagram. To demonstrate this we
will add three classes for namespace ICC.Examples: T3Lendable with one subclass
T3Book, and T3Borrower. Since we already have library code in the image we use the
prefix T3 for the new classes.

� Select Add→→→→Class... from the menu bar or click the button in the left
pane of the tool.

� A dialog is opened that requests the class name for the class to add.

 Forward Engineering

 ADvance User's Guide 5-7

Figure 52. Entering the name of the new class.

� Enter ICC.Examples.T3Lendable and click OK.

� Since ICC.Examples.T3Lendable is not in the image the New Class dialog is
opened.

Figure 53. The New Class dialog for ICC.Examples.T3Lendable.

Chapter 5

5-8 ADvance User's Guide

Complete the dialog as shown in

� Figure 53, click OK and choose a package if no current packe is declared.

� A special cursor appears and the status bar at the bottom of the window
will prompt you to click on the spot in the diagram window where you would
like the class to be placed.

� Place the class in the middle of the diagram.

� Switch on the namespace layer.

� The tool creates a class ICC.Examples.T3Lendable with the appropriate
Smalltalk class definition. The class is then added to the diagram’s subject
ICC.Examples.ADETutorial3. Finally the diagram is updated and now
contains the new class.

TNote: TThe new classes’ package is determined by the system settings (current

package or user prompt), not by the TADvanceT general preferences. This
allows the user easily to keep apart application domain classes from
documentation classes.T

 Forward Engineering

 ADvance User's Guide 5-9

Figure 54. The diagram with the new class added.

Now we add a subclass to ICC.Examples.T3Lendable named ICC.Examples.T3Book,
and another class ICC.Examples.T3Borrower.

� First select ICC.Examples.T3Lendable. This will be used as superclass suggest
in the New Class dialog.

� Select Add→→→→Class... and add a new class ICC.Examples.T3Book. In the New
Class dialog define ICC.Examples.T3Book as concrete and persistent subclass
of ICC.Examples.T3Lendable.

� Now add the concrete and persistent class ICC.Examples.T3Borrower as
subclass of Object.

� The diagram now reflects the three classes.

Chapter 5

5-10 ADvance User's Guide

Figure 55. The diagram with three new classes.

There are different ways to add attributes to the new classes and to create associations
between them:

• add a single attribute through Add→→→→Attribute...,

• add multiple attributes via the Class Properties dialog,

• add associations graphically.

Adding a single Attribute

We will add an instance variable id to class ICC.Examples.T3Lendable.

� Select ICC.Examples.T3Lendable then press the button or invoke
Add→→→→Attribute...

� This opens an Attribute Editor.

� Complete it as follows and click OK.

 Forward Engineering

 ADvance User's Guide 5-11

Figure 56. Adding attributes with the Attribute Editor.

� This will modify the class definition and class comment (or the method
providing the variable type informations) of ICC.Examples.T3Lendable to
define an instance variable id with type Integer.

� Switch on the attribute types layer, to show the attribute types.

� The diagram should look like this:

Chapter 5

5-12 ADvance User's Guide

Figure 57. The diagram reflecting the new attribute.

� To review the modified code <Shift>-double-click on
ICC.Examples.T3Lendable.

� A VisualWorks Hierarchy Browser on ICC.Examples.T3Lendable is opened.

 Forward Engineering

 ADvance User's Guide 5-13

Figure 58. Browsing the class definition of T3Lendable.

� The example uses the TADvanceT preferences to store type information into a
special class method. If you did not change the default preferences, switch to
class side and view method T3Lendable>>ADvance>>ad2ClassInfo. If you
are using different preferences, you have to view the corresponding class
method or the class comment.

Chapter 5

5-14 ADvance User's Guide

Figure 59. Browsing the comment of T3Lendable.

� Close the Hierarchy Browser.

Adding multiple Attributes

We now will add entries to the attribute definition of T3Book. We use the Class
Properties dialog which provides an interface for modifying class definitions and class
comments.

� Doubleclick on T3Book or select it and invoke Edit→→→→Properties...

� This opens the Class Properties dialog on T3Book.

 Forward Engineering

 ADvance User's Guide 5-15

Figure 60. The General tab of the Class Properties dialog.

� Click the Attributes tab.

Figure 61. The Attributes tab of the Class Properties dialog.

The Attributes page displays the attributes and annotated types of class T3Book. It has
buttons for adding, editing and removing attributes.

� To add attributes click Add...

Chapter 5

5-16 ADvance User's Guide

� An Attribute Editor is opened, see Figure 56.Figure 56

� Add an attribute named title with attribute class String, then click OK.

� To complete the class definition add attributes author<String>,
publishingYear <Integer> and publisher <String>.

� The dialog contents will then be drawn as shown below:

Figure 62. Completed class definition for T3Book.

� To close the Class Properties dialog click OK.

� The diagram is updated automatically and reflects the current design.

Note: If the class name exists in different namespaces, the first class found is taken.

If this is not the right one for the attribute, you can use wildcards * whithin the
attributes type name to open a list to choose from.

 Forward Engineering

 ADvance User's Guide 5-17

Figure 63. The diagram reflecting the new attributes.

Adding Associations

In the section before, we added relationships from subject classes to classes not
contained in the current subject (Integer, String). In this section we will demonstrate
how two classes of a subject can be related interactively.

� Select T3Lendable then click the button (or select Add→→→→Association...).

� A special cursor appears and the status bar will prompt you to click on the
class that you would like to associate to T3Lendable.

� Click on class T3Borrower.

Chapter 5

5-18 ADvance User's Guide

� An Attribute Editor appears. Note that the Attribute class input field already
contains T3Borrower.

Figure 64. Adding an association.

� Add an attribute borrower as a single association with instance variable
implementation, then select OK.

� The updated diagram draws an association from ICC.Examples.T3Lendable to
ICC.Examples.T3Borrower as shown in the figure below.

 Forward Engineering

 ADvance User's Guide 5-19

Figure 65. Diagram with added association.

Note: Relationships are drawn to classes which are part of the diagram’s subject and

not hidden. The information about relationships to classes not in the subject is
presented in the class’ attributes compartment, relations to hidden classes are
hidden as well.

Chapter 5

5-20 ADvance User's Guide

Adding Message Sends

During analysis and design we find and create classes, relationships and services of
classes. Services are added to classes using a VisualWorks system browser. TMessage

sendsT between services can be defined interactively using TADvanceT.

� Use a system browser to add the service checkIn to
ICC.Examples.T3Lendable. Then add services checkIn: and payFine: to
ICC.Examples.T3Borrower. Close the browser.

� Update the diagram, then switch on the services and scripts layer.

� The diagram will reflect the new services.

Figure 66. Diagram displaying the new services.

� Select ICC.Examples.T3Lendable. Then click the button (or select
Add→→→→Message...).

� A special cursor appears and the status bar will prompt you to click on the
class that you would like to be the target class of the message send.

 Forward Engineering

 ADvance User's Guide 5-21

� Click on class ICC.Examples.T3Borrower.

� The Add Message dialog appears.

Figure 67. Adding a message send.

� Select checkIn in the left pane, checkIn: in the right pane as shown above.
Check the Add script in diagram option to automatically add a script in the
diagram. Finally click OK.

� A message relationship is drawn between
ICC.Examples.T3Lendable>>checkIn and
ICC.Examples.T3Borrower>>checkIn:.

Note: Be sure to have the scripts layer toggled on in the Diagram Painter.

Otherwise, the automatically generated script will not be shown.

Chapter 5

5-22 ADvance User's Guide

� Add a second message send from ICC.Examples.T3Lendable>>checkIn to
ICC.Examples.T3Borrower>>payFine:.

� The diagram reflects the added service relations as shown below.

Figure 68. Diagram with added message sends.

� Use a browser to have a look at the code of ICC.Examples.T3Lendable>>
checkIn.

� You may experiment by changing the ICC.Examples.T3Lendable>>checkIn
code to see how the changes are reflected by the tool.

 Forward Engineering

 ADvance User's Guide 5-23

Summary

We started to specify the library example graphically without much knowing about
Smalltalk itself. This way, work may progress from a domain expert with little
Smalltalk experience to an experienced Smalltalk programmer taking over.

These are the steps we followed:

Create Subject

Start by creating a new (empty) subject with Subject Wizard and the Subject Browser.

Create Diagram

Open the Default diagram and save it under a new name.

Add Classes

Use Add→→→→Class... to add classes to the diagram.

Add Attributes

Add attributes to classes. Use Add→→→→Attributes... from Diagram Painter to add single
attributes or open the Class Properties dialog to enter multiple attributes.

Add Associations

Invoke Add→→→→Associations... to relate subject classes.

Add Code

Use a system browser to add methods to the classes in your diagram.

Generate Message Sends

Generate message sends between classes with Add→→→→Message... from Diagram
Painter

 Additional Concepts

 ADvance User's Guide 6-1

6 Additional Concepts

Objectives

Address advanced issues which were not covered before to keep the
complexity of tutorials low.

Typing

Inherited Attributes

Attributes of a class may be redefined in a subclass. For instance variables, this is
noted under the section Inherited Instance Variables: in class comments. The type of a
redefining attribute is often a subtype of the type of the redefined attribute.

In the following example the classes MyView and MyController have specialized
variable types of their generic superclasses View and Controller.

Figure 69. An example for inherited instance variables.

Chapter 6

6-2 ADvance User's Guide

Container Types

Sometimes, only parts of a type are of interest for the current view. An example is
Collection where we are interested in the element type instead of Collection itself.
You can define which classes should be seen as such Tcontainer typesT by overriding
the class side method viewAsITCollectionType.

These classes also have a property genericTypeConstructor that determines the
available type constructor. E.g. Collection and its subclasses know the type
constructor of. Type constructors are used to specialize generic types. For example Set
of: Integer is a specialization of Set.

Type checking would show you information about wrong use of type constructors,
syntactically wrong type definitions, or missing type/class names.

Wrapped Types

As with container types, ValueModel types are seen in a special way. We often want
to see the ValueModel’s component type instead of the ValueModel itself. As
standard abstraction, TADvanceT depicts any ValueModel type as a relation line with
the wrapped type as the referenced entity.

Figure 70. An example for wrapped types.

You can choose which classes should be taken as wrapped types by adding or
removing a class’ viewAsITWrappedType class property.

 Additional Concepts

 ADvance User's Guide 6-3

Query Relationships

Smalltalk variables of classes are just a special case of attributes which describe the
static structural relationships between objects.

In general, collaborators may be defined dynamically, e.g. through a parameter
which is passed as an argument of a message to a method. This means that
collaboration with objects of the type of the parameter takes place.

In order to describe the collaborators of an objects properly, TADvanceT lets you add
associations between classes that have no physical implementation. The way to do this
is via the Attribute Editor. There you can set an attribute’s implementation to Instance

Query or Class Query.

Using this concept allows you to fully describe static structure and behavior of an
application. It will significantly increase the expressivity of your diagrams and system
documentation.

Figure 71. Choosing attribute implementations.

Chapter 6

6-4 ADvance User's Guide

Named Filters

In contrast to the individual filters that were presented in the tutorial chapters, named

filters are used to quickly assign frequently used filters to classes or diagrams. Named
filters are stored globally and are shared between several diagrams.

� Open the Filter Browser by selecting Window����Filter Browser in the
Diagram Painter.

� The Filter Browser is opened. It shows an alphabetical list of the available
named filters.

Figure 72. The Filter Browser.

The Filter Browser is a filter drag source. You can assign filters by dragging them
from it to a class or diagram in a Diagram Painter. It also provides an interface for
adding, editing, removing and saving filters.

� Open a diagram, switch on services and drag different filters from the Filter
Browser to the diagram and classes.

 Additional Concepts

 ADvance User's Guide 6-5

General

Inheritance by Implementation

TADvanceT does depict class interfaces following implementation rather than
following semantics. This means that a method which is defined in a superclass of a
given class cannot be part of a behavior description of a diagram unless

• the superclass is included in the diagram, or

• the method is redefined in the subclass.

The suggested workaround is to include the superclass, or to redefine - for the sake of
presentation - the method in the subclass with just a call to its super implementation.

Hiding Inferred Behavior

The internal TADvanceT heuristics to derive behavior provide a very high match of real
behavior. Wrong inferences are those where an object indicates service requests from
another object that should not provide the service at all. This situation can - but need
not - happen if a wrapped object and a wrapping object are present in the same
diagram with the same services.

In order to cope with this situation, it is possible to hide inferences graphically. Just
select a behavior relationship arrow and select Hide from the <Operate> menu.

Hierarchical Subjects

Subjects are represented as classes; every class can become a subject. Hence, a subject
can be component of other subjects. This allows you to build subject hierarchies and is
used to define different levels of abstractions.

Since subjects are classes, subjects can also have attributes and services. Thus, you
can express relations and behavior between subjects. Again, this is used to build high
level abstractions of code.

Check the Subject Browser for the representation of this concept.

Compound Documentation

TADvanceT provides graphical output in standard VisualWorks printable form by
File→→→→Print... and to the clipboard from Edit→→→→Copy to clipboard. Additionally, there
is textual script documentation.

Chapter 6

6-6 ADvance User's Guide

In order to produce a compound system document, a lean way is to produce text
documents with some text editor, store these text documents under some name, do the
same with TADvanceT output, and have a text editor arrange a document from the set
of files according to a descriptor which is kept under configuration control.

The TADvanceT HTML production facility is a way to provide up-to-date
documentation based on a de-facto-standard.

Namespaces and Types

TIn ADvanceT, class names in comments might be used without full qualification of
namespaces. In case a class has not been fully qualified in a type declaration,
ADvance searches the namespace of the class that is commented, then the enclosing
namespaces, finally the imported namespaces.

Modeling

The Methods War

As mentioned above, TADvanceT is a tool that supports and reinforces, but does not
enforce good object thinking - so it its highly recommended that a design method is
used to encourage good encapsulation and abstractions.

Which OOA/OOD method does TADvanceT support? Conceptually, TADvanceT is not
linked to any method at all. Methods are ways how to get around to system
descriptions using scenario/use case modeling, object modeling etc.

TADvanceT supports writing down what has been found and designed during an
analysis phase. The concepts TADvanceT offers to do this are at this point very close to
what Smalltalk offers as concepts. Some concepts like query relations go beyond basic
Smalltalk expressivity. At the current level, TADvanceT offers methodology support
that works seamlessly.

In programming languages we know the term syntactic sugar. Similarly, graphical
notations with equivalent semantics might be addressed under visual sugar.
Sometimes it seems that focus of OOA/OOD methods is not on semantics but on
visual syntax. TADvanceT takes the semantics stand that the most important thing in
describing complex systems is structure and abstraction. Therefore, visual notation
should be lean and should allow focusing on these goals. As UML is being adopted as
an important industry standard, TADvanceT basically follows its notation.

Another focus of TADvanceT is on affordable support of iteration. This is a prevailing
feature of any approach to building reliable, maintainable systems. This area has not
been successfully treated by methodologists; maybe that here TADvanceT brings about
new insights how to proceed.

 Additional Concepts

 ADvance User's Guide 6-7

Use Case Modeling

One of the frequently asked questions is whether TADvanceT supports use case
modeling. The answer is ‘yes’. However, TADvanceT may express use cases at a
formal level that is tied to Smalltalk syntax.

At the core of a use case we have a sequence of collaboration specifications of formTP

7
PT:

Initiator>action Participant>service

where in TADvanceT the Initiator and Participant roles are taken by objects, actions
translate into message sends, and services are message handlers implemented through
methods. Sequencing and conditionals are expressed through the standard Smalltalk
constructs. Preconditions and postconditions of use case actions can be modeled in the
same way.

The library example set up by Nancy Wilkerson actually describes use cases. The
ICC.Examples.T1Library example implements these use cases. Cross-check the prose
of the original text with the behavior scripts produced by TADvanceT to get an idea of
the scope of expressivity offered.

To give an example, consider the scenario where the borrower wants to check out a
book from the library. In prose with added Smalltalk structure, the check out scenario
reads as follows:

ICC.Examples.T1Librarian>>checkOut: aLendable for: aBorrower

Check and answer whether aBorrower can borrow, if so, check out aLendable for
him.

ICC.Examples.T1Borrower>>canBorrow

See if my fine is less than $100, check if I am over lendable limit and if any of my
previously borrowed items is overdue.

ICC.Examples.T1Lendable>>checkOutFor: aBorrower

Calculate and update my due date, then update the borrower.

From this, we derive the formalization expressed in the next picture.

7 Following Object Behavior Analysis by Goldberg/Rubin.

Chapter 6

6-8 ADvance User's Guide

Figure 73. Use case modeling with TADvanceT.

Note that the actions initiated by the borrower are depicted in sequential order from
top to bottom.

Event Traces

Events are expressed in different ways in Smalltalk. A direct representation of an
event is a message send. Another representation of an event is transferring an event
name to a message handler via a self changed: #eventName construct. The message
handler then proliferates the event to receivers.

TADvanceT currently supports event tracing at the level of message sending. Behavior
scripts then are event traces. Semantics of events like synchronous or asynchronous
mode is abstracted from at the graphics level.

 User Interface Component Reference

 ADvance User's Guide 7-1

7 User Interface Component Reference

Objective

List all functionality offered by TADvanceT.

Workbench

This is similar to the VisualLauncher in that the main system functions and browsers
are invoked from this launcher. It is automatically opened when TADvanceT is installed
in the VisualWorks image. Most menu bar options map directly to the toolbar icons.

The following list of menu options gives a short description of the functionalities
belonging to it. Details for the usage is given in the next sections of this guide.

Figure 74.The ADvance Workbench.

Tools Pulldown Menu

Diagram Painter Opens a Diagram Painter, the main TADvanceT tool.

Subject Browser Opens the Subject Browser for creating, editing, removing,
renaming, and saving subjects and diagrams.

Filter Browser Opens the Filter Browser for creating, editing, removing, and
dragging named filters.

Filter Palette Opens the Filter Palette as a drag source for named filters.

Documenter Opens the Documenter, providing generating of HTML documentation
for subjects.

Chapter 7

7-2 ADvance User's Guide

Plug-ins Pulldown Menu

Coding Assistant Opens the extended Coding Assistant to assist developers in
writing accessor methods and dependency mechanisms.

Comment Generator Opens the Comment Generator for generating comment stub for
classes that have no comment.

Smalllint Connect Opens the Smalllint Connect (see below) which automatically
invokes the TSmalllintTTP

8
PTTT code checker.

Diagram Painter

This is the main browser for viewing and modifying code graphically. Editing,
filtering, and documentation to both subject and diagrams can be done from this
browser. As with the Workbench there is both a menu bar and corresponding toolbar.
The image shown in the pulldown menu maps directly to its corresponding toolbar
icon. Each of he special dialogs opened by menu actions will be described in a later
section.

Menu Bar Options

This section describes the basic functionality of each of the Diagram Painter’s menu
bar options. In certain cases, to add clarity, an example or a reference back to the
tutorial is added.

File Pulldown Menu

 Figure 75. The File menu.

8 Smalllint is part of the Refactoring Browser by John Brant and Don Roberts. Both tools are public
available from the Smalltalk archive at http://st.cs.uiuc.edu/Smalltalk, they are integrated parts of
VisualWorks 7.x.

 User Interface Component Reference

 ADvance User's Guide 7-3

New diagram Creates an unnamed diagram with initial layout in the current subject.

Open diagram... Opens an Open Diagram dialog to select a diagram to open.

Update Repaints the diagram view with any updated code or class comment changes.

Close Closes this painter window.

Save Saves the current diagram under its existing name.

Save As... Saves the current diagram under a new name.

Page setup... Opens the Page Setup (see below) to setup print and page settings.

Print... Opens a Print Dialog for defining print parameters and printing diagrams.

Exit Closes all currently open tools.

Edit Pulldown Menu

Figure 76. The Edit menu.

Delete Deletes the selected components from the current diagram.

Copy to clipboard Copies the current diagram to clipboard.

Select all Selects all components (classes, relationships, texts) in the diagram. All
components are now in focus for whatever action the user performs i.e. remove, move.

Select subclasses Selects all subclasses of currently selected classes.

Subject... Opens a Subject Editor on the diagram’s subject.

Filter... Opens a Diagram Filter Editor or Class Filter Editor, depending on whether
the diagram or a class is in focus.

Scripts... Opens a Script Selection dialog on the selected class.

Properties... Opens the Diagram Properties or Class Properties dialog, depending on
whether the diagram is in focus or at least one class is selected.

Find... Asks for a class name to search for and scrolls to that class if found.

Preferences����General Preferences... Opens the General Preferences Dialog.

Preferences����Painter Preferences... Opens the Painter Preferences Dialog.

Chapter 7

7-4 ADvance User's Guide

View Pulldown Menu

This menu deals with the displaying of graphical components within the diagram.

Figure 77. The View menu.

All classes Makes all subject classes visible.

Hide selected classes Makes invisible any currently selected class but leaves them in
the subject.

Hide non-script classes Makes invisible any classes which do not currently have a
script selected but leaves them in the subject.

Class visibility... Opens a dialog that lets you individually select which classes are
visible and which are not.

All messages This will redisplay any previously hidden messages.

Hide selected messages This makes the selected messages invisible in the diagram.

Message visibility... Opens a dialog that lets you individually select which messages
are visible and which are not.

Filter non-script services... Sets the filter of each class to show only services which
are part of a script.

View����Layers Submenu

The different diagram layers can be toggled on and off to show or hide the respecting
details in the diagram. Check marks indicate the option is toggled on. The same toggle
functionality can be accomplished using the buttons in the lower left corner of the
browser.

Inheritance Toggles the inheritance layer in diagram.

Namespaces Toggles the namespace layer in diagram.

Attributes Toggles class attribute names for each class in diagram.

 User Interface Component Reference

 ADvance User's Guide 7-5

Figure 78. The View����Layers submenu.

Attribute types Toggles displaying of attribute types for each class in diagram.

Relations Toggles displaying of has-a relations between classes in diagram.

Services Toggles method names on each class in diagram.

Scripts Toggles displaying of scripts between classes in diagram.

View����Toolbars Submenu

With these menu you can show and hide the toolbar, the add buttons, and the status
bar.

Figure 79. The View����Toolbars submenu.

View����Layout Submenu

Figure 80. The View����Layout submenu.

Auto layout Use auto layout for the start and end point of the currently selected
relation lines.

Snap to grid Snaps all classes in diagram to closest grid mark.

Chapter 7

7-6 ADvance User's Guide

View����Zoom Submenu

Figure 81. The View����Zoom submenu.

200% - 25% Scales the diagram to predefined sizes in order to better fit the window.

Window After selecting this mode, the diagram will be rescaled to fit the painter
window each time you resize the window.

Viewport Invokes a rubberbanding select mechanism for zooming in on a specific
view in the diagram.

View����Grid Submenu

Figure 82. The View����Grid submenu.

On Turns grid pattern on

Off Turns grid pattern off. No snapping to grid when selected.

X only Snaps components along x axis.

Y only Snaps components along y axis.

Hide Hides the grid.

Show Shows grid.

Show if on Shows grid always if snapping is on.

 User Interface Component Reference

 ADvance User's Guide 7-7

Grid size 8 – Grid size 32 Sets grid size to a special number of pixels..

Grid size... Asks for a user defind grid size before setting it.

Add Pulldown Menu

Figure 83. The Add menu.

Class... Adds a class to the diagram’s subject and to the diagram. It first asks for a
class name (pattern). If a pattern contains the wildcard *, a list of matching class
names to choose from opens. If the class is not in the image it is created with the New
Class dialog (see below). The class then is to be placed somewhere in the diagram.

Attribute... A class must be selected prior to selecting this menu option. An Attribute
Editor providing an interface for attribute definition is opened.

Association... A class must be selected prior to selecting this menu option. A special
cursor appears, user has to click on the class to be associated. Once the other class is
selected, an Attribute Editor with predefined Attribute class field is opened.

Message... This option opens an Add Message dialog which serves to create message
sends during forward engineering. A class must be selected prior to selecting this
menu option. A special cursor appears, user has to click on the target class.

Note... Invokes a Text Editor for adding free form text directly to the diagram. A
special cursor appears, user has click on the spot in the diagram where the text shall be
placed. When editing is completed, <Operate> menu action accept saves the text. The
text then appears in the diagram.

Related classes... A class must be selected prior to selecting this menu option. This
opens an Add Related Classes dialog containing a list of related classes not already
contained in the subject, associated to the selected class by its variable type
declaration or inheritance relationship. You may select one or more classes. The
selected classes are added to the subject contents and auotmatically drawn in the
diagram.

Initiators... A class must be selected prior to selecting this menu option. A search is
run that finds all non-subject classes that potentially send a message to the selected
class. An Add Initiator dialog (similar to Add Related Classes) contains a list of the

Chapter 7

7-8 ADvance User's Guide

initiating classes. You may select one or more classes. The selected classes are added
to the subject and automatically drawn in the diagram.

Participants... This is similar to Add����Initiators but finds all non-subject classes that
potentially receive a message from the selected class.

Remove filters Removes all class filters of currently selected classes.

 Remove scripts Removes all scripts of currently selected classes.

Window Pulldown Menu

Figure 84. The Window menu.

Diagram Painter Opens a new empty Diagram Painter window.

Subject Browser Opens the Subject Browser, providing actions for creating, editing,
removing, renaming and saving subjects and diagrams.

Filter Browser Opens the Filter Browser, providing actions for creating, editing,
removing, and dragging named filters.

Filter Palette Opens the Filter Palette, a drag source for named filters.

Documenter Opens the Documenter to generate HTML documentation for a subjects.

Script Docu... Invokes a Script Documentation dialog to display a list of the currently
shown diagram scripts (hidden scripts are excluded).

Window����Plug-ins Submenu

Coding Assistant Opens the extended Coding Assistant, assisting developers in
writing accessor methods and dependency mechanisms.

Comment Generator Opens the Comment Generator, allowing generation of
comment stubs for classes that have no comment.

Smalllint Connect Opens the Smalllint Connect to automatically invoke the
TSmalllintT code checker.

 User Interface Component Reference

 ADvance User's Guide 7-9

Window����Diagram Windows Submenu

This menu contains a menu item for every open diagram painter to ease switching
between different diagrams.

Pop-up Menus

There are four pop-up menus associated with the diagram and its selected components
(classes, relations and texts). When no or more than one component is selected the
diagram itself is in focus concerning menu invocation. If a class is selected the pop-up
menu will reflect class options instead of diagram options. If a line segment or text is
selected the menu options reflect the corresponding menu options.

Diagram Menu

This menu is for operations on the diagram itself. Most options are repeated from the
menu bar options - they are noted as such. Some of the options need a non-empty
selection to be enabled.

Figure 85. The Diagram pop-up menu.

Subject... See section Edit Pulldown Menu.

Filter... See section Edit Pulldown Menu.

Remove filters See section Add Pulldown Menu.

Remove scripts See section Add Pulldown Menu.

Hide See section View Pulldown Menu.

Delete See section Edit Pulldown Menu.

Properties... Opens the Diagram Properties dialog to enter a description and review
diagram data.

Chapter 7

7-10 ADvance User's Guide

Class Menu

Figure 86. The Class pop-up menu.

Open... Opens a Hierarchy Browser on the selected class.

Filter... See section Edit Pulldown Menu.

Scripts... See section Edit Pulldown Menu.

Remove filters See section Add Pulldown Menu.

Remove scripts See section Add Pulldown Menu.

Layers See section View Pulldown Menu.

Hide See section View Pulldown Menu.

Delete See section Edit Pulldown Menu.

Properties... Open the Class Properties dialog.

Change color... Open the Choose Color dialog on the selected class.

Default color Change the selected class‘ color to the default color.

 User Interface Component Reference

 ADvance User's Guide 7-11

Figure 87. The Add submenu.

Add→→→→Attribute... See section Add Pulldown Menu.

Add→→→→Association... See section Add Pulldown Menu.

Add→→→→Message... See section Add Pulldown Menu.

Add→→→→Related classes... See section Add Pulldown Menu.

Add→→→→Initiators... See section Add Pulldown Menu.

Add→→→→Participants... See section Add Pulldown Menu.

Figure 88. The Utilities submenu.

Utilities→→→→File out as... Same as the system browser file out as... facility.

Utilities→→→→Hardcopy Same as system browser hardcopy.

Utilities→→→→Spawn... Opens a Class Browser on the selected class.

Utilities→→→→Move To... This is used to specify a new category for the selected class.

Utilities→→→→Remove... Removes the selected class from the VisualWorks image.

Utilities→→→→Check Types... Checks type definitions of the selected class and opens an
Type Checking Report window if the class is not properly typed.

Chapter 7

7-12 ADvance User's Guide

Association Menu

Figure 89. The Association pop-up menu.

Delete Removes the selected association, the code is changed accordingly.

Auto layout Changes the start and end points of the association line back to the
default.

Horizontal layout Changes start and end points of the association to equal vertical
coordinates (if possible). This action has no effect for associations with same start and
end class.

Vertical layout Changes start and end points of the association to equal horizontal
coordinates (if possible). This action has no effect for associations with same start and
end class.

Horizontal and vertical layout will last even when class symbols are moved. To break
up these automatic layouts, you can move one of the classes so that the horizontal
respective vertical layout is not possible.

Figure 90. The Aggregation submenu.

The following figure shows one of the Tutorial diagrams, enhanced by displaying
different aggreation types. The Borrowers of a Library are shown as aggreagtion, the
lendables are shown as composite.

 User Interface Component Reference

 ADvance User's Guide 7-13

Figure 91. Different aggregation symbols in a diagram.

Message Menu

The pop-up menu for a selected message provides just the action Hide to remove the
message from the visible diagram parts. No code is changed.

Text Menu

Edit Opens a text editor on the text.

Remove Removes the text.

Shortcuts

The toolbar on top of the diagram pane offers direct access to the most commonly
used menu bar options. For quick access to the Add menu options, you may use the
buttons at the left side of the window. Special access for toggling diagram layers is
available through the respective toolbar buttons.

The most frequently used commands can be invoked through double-clicking on either
a class or the diagram. These shortcuts can be changed in the Painter Preferences
Shortcuts tab.

Chapter 7

7-14 ADvance User's Guide

Many dialog panes have double-click actions as shortcut for accepting the dialog, e.g.
double-clicking on an item in the Diagram Name listbox of the Open Diagram dialog
opens the selected diagram.

Tools

Subject Browser

Figure 92. The Subject Browser.

The Subject Browser is similar to the Open Diagram dialog. In the left pane it displays
a tree of subjects, while the right pane shows diagrams, if a subject is selected.

The tool provides an interface to browse through the subject hierarchy and the related
diagrams. It is also used for creating, deleting, editing, saving, and finding subjects
and diagrams.

Note: New subjects are created as children of the currently selected subject. So, if

you want to create a subject that should be placed under the root of the subject
tree, you should select the [Root] subject first.

 User Interface Component Reference

 ADvance User's Guide 7-15

Filter Browser

Figure 93. The Filter Browser.

The Filter Browser is a filter drag source. You can assign filters by dragging them
from it to a class or diagram in a Diagram Painter. It also provides and interface for
adding, editing, removing and saving filters.

Filter Palette

Figure 94. The Filter Palette.

The Filter Palette serves as drag source for dragging filters onto the Diagram Painter.
Test the different filters and their impact on a diagram display.

Chapter 7

7-16 ADvance User's Guide

Documenter

Figure 95. The Documenter.

The Documenter is a tool that automatically creates a compound HTML
documentation for a subject. The documentation includes the subject’s diagrams,
textual script representations, a HTML page for the table of contents, and optional
definitions for the subject classes.

 User Interface Component Reference

 ADvance User's Guide 7-17

Choose Color Dialog

Figure 96. The Choose Color Dialog.

The Choose Color Editor is used to change a selected class‘ background color. As
soon as you select one of the displayed 104 predefined colors or customized another
one in Color Picker Dialog (by clicking the ... button), the OK button will be enabled
to confirm your choice.

Figure 97. The Color Picker.

The Color Picker is intended to define colors according to common color defining
systems RGB or HSB. The settings of both systems compete, so if you change one, the
other is adjusted automatically. Confirming the dialog by clicking the OK button
submits the composed color to the Choose Color Dialog.

Chapter 7

7-18 ADvance User's Guide

Plug-ins

The TADvanceT plug-ins can be invoked either from the Workbench’s Plug-in menu or
from the Diagram Painter’s Window����Plug-ins menu. In the latter case, the plug-ins
have access to the painter’s current subject, diagram and selection.

Coding Assistant

Figure 98. The Coding Assistant plug-in.

The Coding Assistant assists in writing accessors and dependency mechanisms. If it is
invoked from a Diagram Painter that has a class selected, the selection will be used as
preset class.

 User Interface Component Reference

 ADvance User's Guide 7-19

Comment Generator

Figure 99. The Comment Genrator plug-in.

This tool uses a static inference to generate class comment stubs. If it is invoked from
a Diagram Painter it focuses on the painter’s current class selection.

Smalllint Connect

The Smalllint Connect invokes the TSmalllintT code checker. If it is invoked from a
Diagram Painter it focuses on the painter’s current subject.

Chapter 7

7-20 ADvance User's Guide

Helper Dialogs

Open Diagram Dialog

Figure 100. The Open Diagram dialog.

This dialog provides an interface to show existing diagrams in the Diagram Painter.
Select a subject from the left pane. This displays all its diagrams in the right pane.
Select a diagram to view then select Open.

 User Interface Component Reference

 ADvance User's Guide 7-21

Print Dialog

Figure 101. The Print Dialog.

This dialog allows the user to select which diagram pages to print. TADvanceT
automatically segments the diagram into the correct number of pages if more than one
is needed.

Area

• All Prints all pages of diagram.

• Pages Print all pages in the selected range.

Scaling

• Scale XX%; User can select scale for printing.

• Fit to page If checked, the diagram is automatically scaled to fit one page.

Orientation

• Portrait Vertical presentation.

• Landscape Horizontal presentation.

Print to file If checked, diagram is saved as file only and is not send to printer.

Chapter 7

7-22 ADvance User's Guide

Subject Wizard

Figure 102. The Subject Wizard.

The Subject Wizard is used to create new subjects. It can create empty subjects or
subjects with an initial content. In the latter case you may either start with a
VisualWorks category, a VisualWorks parcel, a VisualWorks package, the classes in
the ChangeSet, or you can copy all classes from an existing subject.

In all cases you can define the subject name and choose a class that should bear the
subject definition.

 User Interface Component Reference

 ADvance User's Guide 7-23

Subject Editor

The Subject Editor is available from the Subject Browser or via Edit menu of a
Diagram Painter.

Figure 103. The Subject Editor in package mode, Filter checked.

It has four different views to modify the subject. The Torganization viewT offers two
panes, displaying all categories in the left pane and the contained classes in the right
pane. This view is best if you want to add and remove categories, or if you want to
find a class by category. The other views from left to rigth are Tparcel viewT, Tpackage

view T, and Talphabetical viewT which offers a sorted list of all classes.

In all views containters and classes that are in the subject are shown in bold text.
Categories that are partly in the subject are in italics. If the Filter option is checked,
the editor shows only containers (parcels, packages, categories) that intersect with the
subject, respectively classes (in alphabetical view) that are part of the subject.

You can add and remove containers or classes by a variety of actions in the pop-up
menues of the different panes. They allow you to add/remove single items or using
patterns. The editor also provides actions to add classes from the change set, a
TVisualWorksT parcel or other subjects. Furthermore you can add and remove a class‘
super and subclasses.

Chapter 7

7-24 ADvance User's Guide

Figure 104. The Subject Editor in alphabetical mode, Filter unchecked.

New Class Dialog

The New Class Dialog is opened whenever a new class has to be created like a new
class to hold the information of a new subject, or a class explicitly added to a diagram
in the Diagram Painter or in the Subject Editor.

Figure 105. The New Class dialog.

Class: The qualified name of the new class.

Superclass : The superclass name of the new class.

Category: Name of category in which the new class will reside.

 User Interface Component Reference

 ADvance User's Guide 7-25

Type: Select Abstract or Concrete, to indicate whether the class is intended to be
instantiated or not.

Persistence: Select Persistent or Transient to indicate whether the class is intended
to be maintained in permanent storage.

Note: Depending on the work context the dialog was started for, the packTage of the

new class is determined in Tdifferent ways – the package for a new diagram or
subject member class is determined by the policy given in System Settings,
the policy for a new subject class is taken from the TADvanceT general
preferences.

Attribute Editor

The Attribute Editor is started for adding or editing class attributes in a Diagram
Painter.

Figure 106. The Attribute Editor.

Attribute name: The name of the new attribute.

Attribute class: The class (or type) name (or pattern for it) of the attribute.

Relation type: Defines whether the relation is 1:1 or 1:many. In the case that it is a
1:many relation you may specify the collection type, i.e. Set, OrderedCollection, etc.

Chapter 7

7-26 ADvance User's Guide

Implementation: The variable implementation. Choices are offered for all Smalltalk
class definition variable types, for inherited variables and for TQuery relations T (see
Additional Concepts) that express a relation without having a variable representation.

Comment: Free form text describing the attribute.

Note: The attribute information is stored in the class comment or in a special class

method, depending on the TADvanceT general preferences.

Add Message Dialog

Figure 107. The Add Message Dialog.

The Add Message dialog serves to create message sends during forward engineering in
the Diagram Painter. A class must be selected prior to selecting this menu option.

When the cursor appears, select the collaborating class. Select a method name in
the Initiator pane and then one in the Participant pane. If you want the script
representation to show up immediately, then check Add script in diagram. Services
must exist on both classes prior to using this option.

When accepted, TADvanceT will automatically add a line of code in the initiator
method as such: ParticipantClass new participantMethodName. As you can see this is
just a placeholder for the correct code to be added later. Multiple messages can be
added to any one initiator method.

 User Interface Component Reference

 ADvance User's Guide 7-27

Script Selection Dialog

Figure 108. The Script Selection dialog.

This dialog is used for adding and removing scripts from behavior diagrams in a
Diagram Painter. The dialog is available through the operate menu on a single class
selection.

Script depth: The number of message sends to be followed from script starting
method. Depth of 1 means that only messages found in the starting method become
connected as target services. Depth of 2 means that in addition to the depth 1 behavior
arrows are drawn from target services to their potential message recipients, and so
forth.

Association depth: The potential message recipients are only searched in the set of
related classes, i.e. classes connected by an association. An association depth greater
than one means that in addition to the directly related classes the related classes of
related classes are taken also.

Chapter 7

7-28 ADvance User's Guide

Script Documentation Dialog

Figure 109. The Script Documentation Dialog.

This dialog can be reached by pull-down menu option Window����Script docu… in
ther Diagram Painter. It provides an interface for generating Script documentation for
the scripts visible in the diagram. Check the desired scripts, then select Print or
Preview... to print or preview the document.

You can choose to document the script to any depth - which may not necessarily be
the same as shown in the diagram. If no script is drawn or is currently hidden, a dialog
will notify you that no scripts are available.

 User Interface Component Reference

 ADvance User's Guide 7-29

Diagram and Class Filter Editor

Diagram Filter Editor and Class Filter Editor provide interfaces for editing filters (for
details on filtering see the Overview chapter). Both editors have an identical interface
but focus on two different filters: TDiagram filterT, which is applied to all classes
having no own filter defined, and TClass filters T respectively. Each of the four filtering
categories TInstance methods T, TClass methodsT, TAttributesT, and TSpecialT (semantic)
may be edited on its respective editor’s notebook page.

The buttons at the bottom of the dialog provide actions for the whole filter and not
only the selected notebook page.

OK button: Accepts the current changes, saves the filter for the selected classes (or
diagram if selection is empty) and closes the dialog.

Cancel button: Discards the current changes, leaves the filter in the previous state and
closes the dialog.

Read button: Reread current filter to override the changes done so far and restart
editing on the latest saved state.

Choose… button: Opens a list of the predefined filters to copy as a starting point.

Figure 110. The Instance methods page of a Class Filter Editor.

Chapter 7

7-30 ADvance User's Guide

Instance methods: The two protocol panes in the upper half show available and
filtered instance protocol names, the method panes in the lower half do the same for
instance method names. Protocols and methods can be moved from filtered to
available and vice versa with the << and >> buttons or via pop-up menu commands.
Name patterns can be added by entering a text with contained wildcard characters *
into the input fields on top of the filtered lists and accepting with operation menu.

Figure 111. The Class methods page of a Class Filter Editor.

Class methods: The two protocol panes in the upper half show available and filtered
class protocol names, the method panes in the lower half do the same for class method
names. Protocols and methods can be moved from filtered to available and vice versa
with the << and >> buttons or via pop-up menu commands. Name patterns can be
added by entering a text with contained wildcard characters * into the input fields on
top of the filtered lists and accepting with operation menu.

 User Interface Component Reference

 ADvance User's Guide 7-31

Figure 112. The Attributes page of a Class Filter Editor.

Attributes: The two instance variable panes in the upper third show available and
filtered instance variable names, the variable panes in the center and the lower third do
the same for class instance variable names and shared variable names. Protocols and
methods can be moved from filtered to available and vice versa with the << and >>
buttons or via pop-up menu commands. Name patterns can be added by entering a text
with contained wildcard characters * into the input fields on top of the filtered lists
and accepting with operation menu.

Chapter 7

7-32 ADvance User's Guide

Figure 113. The Special page of a Class Filter Editor.

Special: This page allows the user to apply predefined semantic filters. By checking
the appropriate checkboxes one can filter accessor methods, class methods, overridden
methods, or special kind of variables. The checking of an option immediately removes
the corresponding entries from the other notebook pages’ lists.

 User Interface Component Reference

 ADvance User's Guide 7-33

Class Properties Dialog

Figure 114. The Genral page of Class Properties Dialog.

The Class Properties Dialog provides an interface for editing a class’ definition,
attributes and services.

General: Identical to the New Class Dialog with read-only class name.

Attributes: Lists the attributes with type information, allows the user to add, edit or
remove attributes.

Services: Lists the existing methods, allows the user to remove selected ones.

Chapter 7

7-34 ADvance User's Guide

Figure 115. The Attributes page of Class Properties Dialog.

Figure 116. The Services page of Class Properties Dialog.

 User Interface Component Reference

 ADvance User's Guide 7-35

Preferences

General Preferences

The General Prefernces provide the options which are not accessible through the later
described Painter Preferences.

Figure 117. The General Preferences’ Identity tab.

The Identity preferences are used in printed diagrams to describe the diagrams author.

Chapter 7

7-36 ADvance User's Guide

Figure 118. The General Preferences’ Filter tab.

The default filter specified in the Filter preferences is taken as initial filter in new
diagrams.

Figure 119. The General Preferences’ Cache tab.

The Cache preferences provide no options, but you can clear the TADvanceT internal
cache.

 User Interface Component Reference

 ADvance User's Guide 7-37

Figure 120. The General Preferences’ Package for Subjects tab.

The Package for Subjects preference subsection may be used to work on separate
packages for development and documentation purposes. Both panes for subject classes
and subject methods provide the same functionality to define a package determination
policy.

The class package determined by the left pane’s options is used for new subject
classes created by the Subject Wizard, or by Refactoring Browser when saving a new
diagram for a package. The method package given by the right pane’s options is used
for new methods defining a subject and diagramon an existing class, which is not a
subject class already – this happens when a new Refactoring Browser diagram for a
class is saved.

The normal use would be to have the same policies defined for subject classes and
subject methods. But with two separated policies it is possible to divide the subject set
into more complex subjects like the manually defined package subjects or the
Refactoring Browser package subjects, and simple subjects for a single class, which
often have a more temporary character and therefore may be stored in the (none)
package.

Use default / current package will use the current package set with the
corresponding System Browser’s context menu option.

Use specified package takes the package selected with the Choose Package…
button (and displayed in the read-only input field) instead of the current package. If
the formerly selected package is unloaded now, this option works like the Prompt for

package option.

Use system settings uses the system settings for Store����Default Package to
determine the package. This is the default option after installing TADvanceT.

Chapter 7

7-38 ADvance User's Guide

Prompt for package lets TADvanceT ask the user each time a new subject class or
subject method for a not-yet subject class is created.

Figure 121. The General Preferences’ Advanced tab.

The Advanced preferences determine whether only class comments should be used
for type information or whether a special class method should be taken if implemented
by a class. However, for classes not implementing the method indicated by the
selector, the class comment is taken for initial type information. The method will be
created for each class with type information edited using TADvanceT.

 User Interface Component Reference

 ADvance User's Guide 7-39

Painter Preferences

The Painter Preferences provide options to change the diagram painter’s appearance.
All of the four preference tabs show an explaining text about the effect ot the options.

Figure 122. The Painter Preferences’ General tab.

The General tab allows you to define the shown grip and how to handle recursive
subjects, that means the expansion of classes which hold subjects again.

Chapter 7

7-40 ADvance User's Guide

Figure 123. The Painter Preferences’ Colors tab.

The selected colors on the Colors tab are used as initial color values for classes of the
named kind added to a diagram. The color for each class in a diagram may be
individually set.

 User Interface Component Reference

 ADvance User's Guide 7-41

Figure 124. The Painter Preferences’ Layout tab.

Using the Layout tab options, layout for relation and inheritance lines between classes
in a diagram may be switched fromgrid line layout to straight line layout and vice
versa. Grid line layout works independent from grid settings in the current view.

Chapter 7

7-42 ADvance User's Guide

Figure 125. The Painter Preferences’ Shortcuts tab.

The Shortcuts tab provides settings for double click actions on class symbols or on
the diagram background.

 User Interface Component Reference

 ADvance User's Guide 7-43

Page Setup

Figure 126. The General tab of the Page Setup.

The settings defined in the page setup are used for print outs, you can modify the
header and footer contents as well as the print margins.

Figure 127. The Margins tab of the Page Setup.

 Tips and Techniques

 ADvance User's Guide 8-1

8 Tips and Techniques

This section contains a number of tips which have been recorded from TADvanceT
users’ comments.

Q: How large should subjects be?

A: A heuristic that turned out to be useful is the following: If a subject cannot be
arranged graphically in a satisfyingly readable way (on screen and/or
printout), the subject should be decreased in size.

Q: When to use subject, when diagrams?

A: Subjects are used to capture the context of scrutiny. As an example, take
Diagrams for the different views.

Q: How can I modify the fonts used by ADvance?

A: See method ICC.ICC1Utils class>>defaultTextstyles.

Q: How can I modify the double-click actions used in Diagram Painter?

A: See Painter preferences...->Shortcuts.

Q: How can I get a good class comment template?

A: Sending the message #defineTypes to a class opens an error report, if it is
not commented correctly. Copy the error report and paste it in the class
comment. Replace type templates like <?type?> by type definitions.

Q: Given a script, is there an order on messages/actions originating at a method?

A: Messages which are sent from a method are ordered from top to bottom.

Q: When do I create a new subject as a copy from another subject?

A: When analyzing business processes and building an object model at the same
time, it may be realized that one starts off with a subject that reflects the
entities in focus at that first steps of the process. When moving to further steps
in a process, the view of the object model shifts along with it. To represent a
new view, the current subject is copied onto a new subject, some classes are
removed, some added.

Chapter 8

8-2 ADvance User's Guide

Q: Is it possible to define use cases in ADvance?

A: Check the remarks in the Modeling section of chapter 5. It is important to
notice that the services depicted in behavior diagrams are ordered from top to
bottom, thus indicating a sequence.
Conditionals are not explicitly expressed graphically. They can, however, be
programmed using standard Smalltalk conditional.

Q: How do I assign versions to ADvance graphics?

A: Since TADvanceT stores graphical specifications as Smalltalk code you can use
any VisualWorks team tool (e.g. StORE) to version TADvanceT subjects and
diagrams.

 Glossary

 ADvance User's Guide 9-1

9 Glossary

Abstract: Class is intended to be superclass that is never instantiated.

Association: A structural relationship between classes.

Association depth: (Levels 1,2,3 or infinite). This defines which class or classes are
valid as potential receivers of a message from the initiating service. The
specified level represents how directly related the collaborating classes are to
self from the initiating service. This is the factor used for determining Visible
Scripts.

 Level 1: message send is to self, superclass, subclass, or related (type) classes.

 Level 2: message send to a collaborator of superclass, subclass or related
classes.

 Level 3: message send to a collaborator of level2 participants.

Attribute: an attribute represents a variable implementation or an expressed relation
between classes.

Collaboration: Manner in which objects work together to achieve system
functionality. Specifically if class A requests a service of class B, then A is
said to collaborate with B. A collaborator is also known as a initiators and
participants.

Concrete: Class that is designed to be instanciable.

Diagram: A diagram is a graphical representation of class definitions and the relations
and collaborations between classes. The relationships include inheritance and
has-a. The definitions are attributes, services and attribute types.

Initiator: A class that initiates a message send.

Message: A message is the visualization of a potential message send.

Participant: A class that receives a message.

Persistent: Class state is maintained in permanent storage.

Relations: Associations between classes that represent has-a, collaboration (behavior),
or dependency relationships. Relations between classes fall into two
categories: those with a state implementation (i.e. instance variable), and those
without, where this expresses a relation between classes achieved through
channels such as dependency, global variables, or external interface.

Script: A script is a set of sequential message sends defined by a service.

Script depth: (Levels 1 through 5 and infinite). Script depth indicates how many
nested levels of message sends to trace. Level 1 indicates to trace only the
paths of the message sends in the originating service, or in other words, trace
paths for only the immediate potential participants services. Level 2 indicates

Chapter 9

9-2 ADvance User's Guide

to trace the paths of the next level of participant services from within the
originating service.

For example: If methodA: has the following code:

methodA: aBorrower

 aBorrower canBorrow

 ifTrue: [self library checkOutFor: aBorrower].

 Script depth = 1 will draw a message path from the initiating class to
Borrower>>canBorrow and from self to method #library.

 Script depth = 2 draws a message path from the initiating script to
Library>>checkOutFor:.

Service: An unfiltered method.

Subject: A logical placeholder or label for a collection of classes. These classes are
referred to as the Tcontents T of a subject. A class may reside in more than one
subject. Each subject has one or more diagrams associated with it where the
diagram is a graphical view of 1 or more of the classes contained in the
subject.

Transient: Class state is maintained during runtime only, i.e. non-persistent.

Types or typing: Every attribute defined in the TADvanceT environment must be
associated with a (Smalltalk class) type in order to enable the tool to construct
relations between classes. Expressions such as <Set of: Integer> are valid for
defining collection relationships.

 Index

 ADvance User's Guide 10-1

10 Index

A

abstract type 7-25

add association 5-17

add attribute 5-10

Add menu 7-7

Add Message 5-21

Add Message Dialog 7-26

advanced preferences 7-39

aggregation 7-12

assiciations 3-6

Association context menu 7-12

association depth 7-28

Association depth 4-24, 4-25

Associations 5-17

Attribute Editor 5-11, 7-25

attribute filter 7-32

attributes 4-14, 7-34

auto layout 7-5

B

behavior inference 4-25

behaviour diagram 4-23

C

cache preferences 7-37

Check types 4-12

Class Comments 4-11, 4-29

Class context menu 7-10

class definition 5-8

Class Filter Editor 3-13

class filters 3-13

Class Properties 4-13, 5-15

Class Properties Dialog 7-34

Class Query 6-3

Class Reporter 4-11, 4-29

ClassReporter 4-12

clipboard 4-30

Coding Assistant 7-18

Collaborators 4-30

collection 6-2

Color Picker 7-17

color picking dialog 3-7

color, choose 7-17

Comment Generator 4-12, 4-29, 7-19

composite 7-12

concrete type 7-25

container 7-23

container types 6-2

Create from Category 4-3

current package 4-5, 7-38

D

default color, class 3-8

Default diagram 4-9

default filter 7-37

diagram 3-3, 4-29

Diagram context menu 7-9

Diagram Filter Editor 4-20

diagram filters 3-13

Diagram Painter 3-1, 3-2, 7-2

diagram zoom 3-5

Documenter 3-16, 7-16

Documenting 3-16

double click actions 7-43

drag&drop 6-4, 7-15

Chapter 10

10-2 ADvance User's Guide

E

Edit menu 7-3

events 6-8

F

File menu 7-2

Filter Browser 6-4, 7-15

Filter Editor 7-30

Filter Palette 7-15

filter preferences 7-37

Filtering 3-13, 4-27

Filters 4-19

fit to window 3-5, 7-6

G

General Preferences 7-36

grid 7-6

H

hide message 7-13

hide non script classes 4-27

hinde relationship 6-5

Host printing 3-15

HTML 3-16, 4-30, 6-6, 7-16

I

identity preferences 7-36

individual filters 6-4

inheritance 3-6

Inherited Instance Variables 6-1

initial subject contents 4-3

initiator 7-26

Initiator 4-17

initiators 4-17

Instance Query 6-3

invalid types 4-12

L

layer, services 4-20

layers 3-9, 7-4

layers, attributes 3-9

layers, inheritance 3-9

layers, namespace 3-9

layers, relations 3-9

Level of Detail 3-9

M

margins 7-44

Message menu 7-13

Message Paths 3-12

Message Sends 5-20

message start class 5-20

message target class 5-20

method filter 4-20, 7-31

N

Named Filters 6-4

namespaces 6-6

Naming conventions 4-21

Naming Conventions 4-26

nested scripts 4-27

New Class 4-5, 5-7

New Class Dialog 7-24

new design 5-5

Notation 3-6

O

Open Diagram 3-3

P

package determination 5-8, 7-25, 7-38

package preferences 7-38

package, prompt for 7-39

package, prompted for 4-5

Page Setup 7-44

Painter Preferences 7-40

 Index

 ADvance User's Guide 10-3

painter preferences, colors 7-41

painter preferences, general 7-40

painter preferences, layout 7-42

painter preferences, shortcuts 7-43

participant 7-26

Participant 4-18

persistence 7-25

Plug-ins 7-18

Plug-ins menu 7-2

Pop-up Menus 7-9

Postscript printing 3-15

print 7-21

Print Dialog 3-15

Printing 3-15

R

Refactoring Browser 4-7

related classes 4-16

relationships 5-19

Resizing Diagrams 3-5

root subject 4-2, 7-14

S

save as 5-6

script 3-11

script depth 3-12, 7-28

Script depth 4-24

Script Documentation 3-12, 7-29

Scripts 4-24

searching classes 5-16

services 7-34

Shortcuts 7-13

Smallint 7-19

snap to grid 7-5

special filter 7-33

specified package 7-38

structural view 3-6, 4-9

subject 3-3, 4-29

Subject Browser 4-1, 7-14

subject creation 4-1, 5-1

Subject Editor 4-18, 7-23

subject hierarchies 6-5

Subject Wizard 4-2, 7-22

System Browser 4-7

System settings 4-5

System Settings 7-39

T

Text menu 7-13

The Subject Editor 4-18

tips 8-1

toolbar buttons 3-9

Tools menu 7-1

Tutorial 1 3-4

Tutorial 2 4-1

Tutorial 3 5-1

type constructor 6-2

type information 5-13, 7-26

type syntax 4-11

U

UML 1-1, 6-6

use cases 6-7

V

value holder 6-2

View menu 7-4

Visible scripts 4-24

W

Window menu 7-8

Workbench 3-1, 7-1

wrapped type 6-2

Z

zoom 7-6

Chapter 10

10-4 ADvance User's Guide

	Contents
	About this Guide
	Introduction
	Installation
	Overview
	Reverse Engineering
	Forward Engineering
	Additional Concepts
	User Interface Component Reference
	Tips and Techniques
	Glossary
	Index

