
Technical Note

VisualWorks Memory Management

Software Release 7.2
Lat updated: October 21, 2003
© 2003 by Cincom Systems, Inc.

This document describes the memory management strategies used
by the VisualWorks virtual machine (object engine).

This information is helpful when performance tuning certain memory-
intensive applications. It is especially relevant for deploying
applications with large working sets (e.g. one gigabyte or larger).

The facilities and policies described here are subject to change from
release to release, so use this information with caution.

This technical note explores the following topics:

• Memory Layout

• Facilities for Reclaiming Space

• Managing the Object Memory

• Preparing for Deployment

• Implementation Limits

Memory Layout
At start-up, VisualWorks asks the operating system to allocate a portion
of the available address space to house objects, native code and other
resources, and then begins executing. Subsequently, VisualWorks may
grow or shrink its memory usage dynamically.

VisualWorks runs as an operating system process with access to the full
32-bit address space made available to it by the operating system. As
VisualWorks uses 32-bit pointers for Smalltalk objects, it can use as
much of the 32-bit address space for objects as the host operating
sytsem will allow, but on 64-bit operating systems only 32 bits of the
address space can be allocated for objects (this limitation may be
removed in a future release).

VisualWorks makes a number of demands upon the address space. For
example, each of the following can consume a fair amount of memory in
the address space:

• Code and static data that belong to the object engine

• Dynamic allocations made by the “C” run-time libraries (such as
stdio buffers)

• Dynamic allocations made by the window-system libraries

• Static and dynamic allocations made by the object engine

This section discusses only the algorithms associated with the last item.

The object engine manages two types of memory space: (1) a set of
fixed-size spaces associated with the object engine and (2) a set of
variable-sized spaces that comprise the Smalltalk object memory.

Fixed-Sized Spaces
The object engine allocates the following fixed-size memory spaces at
system start-up time:

• Compiled Code Cache

• Stack Space

• New Space

• Large Space

• Perm Space
2 VisualWorks

Variable-Sized Spaces
The object engine allocates an initial size for the following variable-sized
spaces at start-up, sufficient to hold the existing old and fixed space
objects, plus a free-space overhead in each.

• Old Space

• Fixed Space

Memory Organization
Each of these fixed- and variable-sized spaces is used by the object
engine to house program elements of a particular type.

The object engine organizes these spaces as shown below:

The diagram shows organization of the address space that belongs to a
VisualWorks process, with code, non-objects, and the fixed portions of
the object memory in the lower portion of the space, and the dynamic
spaces and segments of the object memory above.

Virtual Machine

New Space

Large Space

Perm Space

Old/Fixed Space (segment 1)

Old/Fixed Space (segment n)

Compiled code cache

Object memory

Nonobjects

0

Old Space (segment 0)

Fixed Space (segment 0)

Allocated
at startup

Mapped during
runtime

Stack Space

∞

3 VisualWorks

Compiled Code Cache
To avoid the overhead of interpreting bytecodes, the object engine
compiles each Smalltalk method into the platform’s machine code before
executing it. The compilation is automatic and transparent to the user.

When a Smalltalk method is invoked for the first time, the object engine
compiles it and stores the resulting machine-code in the Compiled Code
Cache, so that it can be executed. Once executed, this method’s
machine-code is left in the Compiled Code Cache for subsequent
execution.

As its name suggests, this space is only used as a cache. If the cache
begins to overflow, those methods that have not been executed recently
are flushed from the cache. This approach gives Smalltalk much of the
speed that comes with executing compiled code, most of the space
savings, and all of the portability that come with interpretation.

The size of this cache varies, depending on the density of the platform’s
instruction set. Default sizes are 640 KB for platforms with CISC-based
processors and 1152 KB for RISC platforms. These sizes are large
enough to contain the machine-code working sets of most applications.
The size can be changed at at image startup, as described under “Setting
Object Engine Space Sizes” (below), to a maximum of 16 MB.

The compiled code cache is also used by the garbage collector to store
the mark stack (for details, see “Global Garbage Collector” below), and to
decompress compressed virtual image files on start-up.

Stack Space
Each process that is active in the virtual image (VI) is associated with a
chain of contexts. Contexts are stored in two forms: the standard object
format and the frame format.

When a Smalltalk program tries to send a message to or access an
instance variable of a given context, that context must be in standard
object form and housed in object memory. If it is not already in standard
object form, then it is converted. The conversion to and from standard
object format is transparent to the user.

On the other hand, when the method associated with a given context is
actually being executed, that context must be in frame format and housed
in the Stack Space. Once again, the conversion to and from this form is
automatic and transparent to the user. The frame format of the contexts
has been designed to mate well with the typical machine’s subroutine-call
instructions.
4 VisualWorks

The Stack Space is used as a cache. If there isn’t enough room in the
Stack Space to store all of the contexts of all of the active processes, then
the object engine converts some of these contexts to standard object
form and places them in object memory to clear some Stack Space.
When the system needs to execute the methods associated with these
contexts, it converts the contexts back to frame format and places them
back in the Stack Space.

The default size of this space varies from 20 KB to 40 KB, depending
upon whether a given platform handles interrupts in another region of
memory, or whether it needs to handle these interrupts in Stack Space.
The size can be changed at image startup, as described under “Setting
Object Engine Space Sizes” below. You can reduce the size of the Stack
Space, at the cost of forcing the object engine to convert contexts more
frequently from frame format to standard object format and back again.
Or you can increase its size, at the cost of the additional memory.

New Space
New Space is used to house newly-created objects. It is composed of
three partitions: an Object Creation Space, which we call Eden, and two
Survivor Spaces.

When an object is first created, it is placed in Eden. When Eden starts to
fill up (i.e., when the number of used bytes in Eden exceeds a threshold
known as the scavenge threshold), the system’s scavenging mechanism
is invoked. Objects that are still reachable from the system roots are
placed in whichever Survivor Space happens to be unoccupied at the
time (one is always guaranteed to be unoccupied). Thereafter, objects
that survive each scavenge are shuffled from the occupied Survivor
Space to the unoccupied one. When the occupied Survivor Space begins
to fill up (i.e., when the number of used bytes in the occupied Survivor
Space exceeds a threshold known as the tenure threshold), the oldest
objects in Survivor Space are moved to a special part of object memory
called Old Space. When an object is moved from New Space to Old
Space, it is said to be tenured. Both the scavenge threshold and the
tenure threshold can be set dynamically (see the class ObjectMemory for
details).

The default size of Eden is 300 KB, and each Survivor Space (they are
always identical in size) is 60 KB. These sizes can be changed at at
image startup, as described under “Setting Object Engine Space Sizes”
(below).
5 VisualWorks

Large Space
Large Space is used to house the data of large byte objects (bitmaps,
strings, byte arrays, uninterpreted bytes, etc.). By “large,” we mean larger
than 1 KB.

When a large byte object is created, its header is placed in Eden and its
data in Large Space. This arrangement permits the scavenger to move
the object’s header from Eden to a Survivor Space without having to
move the object’s data. In fact, the data that is housed in Large Space is
only moved when Large Space is compacted, as part of a compacting
garbage collection or to make room for another large byte object or in
preparation for a snapshot.

Of course, the data of any object can be housed in Large Space, but
small objects and large pointer objects are only placed in Large Space if
there is no other place to house them. The data of large pointer objects is
not housed in Large Space because it would take up valuable space
without saving the scavenger much work. (Since such data is composed
of object pointers, the scavenger has to scan it anyway, and it’s not
expensive to move the data while scanning it.)

If there are too many large objects to fit in Large Space, older ones are
moved to object memory proper.

When the amount of data housed in the Large Space exceeds a
threshold known as the LargeSpaceTenureThreshold, the scavenger is
informed that it should start to tenure the headers of large objects. During
the next scavenge, the headers of the oldest large objects are tenured to
Old Space. However, the data of these large objects will not be moved
from Large Space until the allocator actually runs out of space in Large
Space. Only at that time will the data of these older large objects be
moved to Old Space. The LargeSpaceTenureThreshold can be set
dynamically.

The default size of Large Space is 200 KB. Again, the size can be
changed at image startup, as described under “Setting Object Engine
Space Sizes” (below).

Perm Space
Perm Space is used to hold all semi-permanent objects. Because they
are rarely ready to die, the objects housed in Perm Space are exempt
from being collected by any of the reclamation facilities other than the
global garbage collector. By removing such objects from Old Space, the
time required to reclaim the garbage that may be present in Old Space is
reduced many times.
6 VisualWorks

In the delivered virtual image, most of the objects in the system are
housed in Perm Space. Newly created objects that are placed in Old
Space by the scavenger are not automatically promoted to Perm Space.

Developers can move Old Space objects into Perm Space (and thus
improving the efficiency of garbage reclamation) by creating an image by
choosing File � Perm Save As... in the VisualWorks Launcher window.

For details, see “Promoting Objects to Perm Space” (below).

Smalltalk Object Memory
In addition to the above fixed-size memory spaces, the object engine also
manages two variable-size spaces known as Old Space and Fixed
Space. These spaces are warehouses for all objects that are not housed
in one of the fixed-size spaces described above.

Old Space
Unlike the above spaces, however, the size of Old Space is not frozen at
startup time. Instead, it is configured at startup time with a default of 1 MB
of free space. When Old Space begins to run short of free space, the
system has the option of increasing its size. This growth is accomplished
by means of a primitive that attempts to acquire additional address space
from the operating system.The decisions regarding when to grow Old
Space and by how much are controlled by an instance of MemoryPolicy.
See that class for the default policy.

Although Old Space may be thought of as a single contiguous chunk of
memory, it is implemented as a linked list of segments occupying the
upper portion of the system’s heap. Old Space’s growth capability
dictates this approach because, for example, I/O routines frequently
allocate portions of the heap for their own use, creating intervening zones
that divide Old Space into separate segments. In a growing system, then,
Old Space may be composed of multiple segments. When these multiple
segments are written out at snapshot time, they are stripped of their free
space to conserve disk space. In addition, to avoid fragmentation, the
segments are coalesced into one large segment when the snapshotted
image is loaded back into memory at startup time.

Each Old Space segment is composed of two parts: an object table (OT)
that is used to house the old objects’ headers, and a data heap that is
used to house the objects’ data. The data heap is housed at the bottom
of the segment and grows upward; the object table is housed at the top of
the segment and grows downward. Both the object table and the data
heap are compacted by the compacting garbage collector.
7 VisualWorks

Since the object table and the data heap grow toward each other (thereby
consuming the same block of contiguous free space from different
directions), the system should never run out of space for new object
headers while still having plenty of space for object data, and vice versa.
Nor is there any arbitrary limit on the total size of Old Space, the total size
of a given Old Space segment, or the number of Old Space segments
that can be acquired. The only memory-related resource that the system
can run out of is address space. On real-memory machines, this
translates to available real memory. On virtual-memory machines, it
corresponds to available swap space.

In addition, the system maintains a threaded list of free object table
entries and a threaded free list of free data chunks. The incremental
garbage collector recycles dead objects by placing their headers and
bodies on these lists, and the Old Space allocator tries to allocate objects
by utilizing the space on these lists before dipping into the free
contiguous space between the object table and the data heap of each
segment. Finally, a certain portion of the free contiguous data is reserved
for use by the object engine to ensure that it can perform at least one
scavenge in extreme low-space conditions, thereby providing the system
with one final opportunity to take the appropriate action.

The default size of Old Space is set to the amount needed to house the
old space objects in the image plus 1 MB of free space "headroom". The
headroom size can be changed at image startup, as described under
“Setting Object Engine Space Sizes” (below).

Fixed Space
Fixed Space is used to hold data (the body) of byte objects whose data
must not move. This is a requirement for data passed through the
threaded API (THAPI), since threaded calls may be in process
concurrently with a garbage collection. The data does not move during
the object’s life, but the space is reclaimed when the object is garbage
collected.

Since the contents of Fixed Space can’t move, it cannot be compacted,
and so quickly becomes fragmented. Fixed Space is coallesced at image
start-up, so can be compacted by saving the image, quitting, and then
restarting.

New Fixed Space segments are added as needed, like Old Space. When
the image is saved, these multiple segments are stripped of their free
space to save file space. They are then coalesced into one large segment
when the image is loaded back into memory at startup.

Object data ends up in fixed space if it is either:
8 VisualWorks

• allocated explicitly, or

• passed as an argument of a threaded call.

The default size of fixed space is 200 K. Again, the size can be changed
at image startup, as described under “Setting Object Engine Space
Sizes” (below).

Remembered Tables
Remembered Tables are structures used by the garbage collector to track
references between various spaces. They are housed in Old Space.

The remembered table (RT) is a special table that contains one entry for
each object in Old Space or Perm Space that is thought to contain a
reference to an object housed in New Space.

The objects in the remembered table are used as roots by the scavenger
— if an object is not transitively reachable from either the remembered
table or the Stack Space, it will not survive a scavenge. The remembered
table is expanded and shrunk as needed by the object engine. It is
expanded if the object engine tries to store more entries than the RT can
currently house, and it is shrunk during garbage collections when it has
become both large and sparse, which can occur if a large number of
entries were added and subsequently removed.

The old remembered table (OldRT) is a special table that contains one
entry for each object in Perm Space that is thought to contain a reference
to an object housed in Old Space or Large Space.

The objects in the OldRT are used as roots by the incremental garbage
collector and the compacting garbage collector — if an object is not
transitively reachable from the OldRT, it will not survive a garbage
collection. The OldRT is expanded and shrunk as needed by the OE. It is
expanded if the OE tries to store more entries than the OldRT can
currently house, and it is shrunk during garbage collections when it has
become both large and sparse, which can occur if a large number of
entries were added and subsequently removed.
9 VisualWorks

Facilities for Reclaiming Space
The object engine has several facilities for reclaiming the space occupied
by objects that are no longer accessible from the system roots:

• Generation scavenger

• Incremental garbage collector

• Compacting garbage collector

• Global garbage collector

• Data compactor

Except for the scavenger, the object engine does not invoke these
facilities directly. Policy decisions such as these are controlled at the
Smalltalk level — see the ObjectMemory and MemoryPolicy classes for the
default policies.

Generation Scavenger
The primary reclamation system is a generation scavenger. The
scavenger flushes objects that expire while residing in New Space (which
typically applies to more than 95 percent of objects).

Briefly, the scavenger works as follows. Whenever Eden is about to fill up,
the scavenger is invoked. It locates all of the objects in Eden and the
occupied Survivor Space that are reachable from the system roots. It
then copies these objects to the unoccupied Survivor Space. Once this
copying is done, Eden and the formerly occupied Survivor Space contain
only corpses — they are effectively empty and can be reused. The
scavenger uses the objects in the remembered table and the objects
referenced from the Stack Space as roots.

The scavenger’s operation is imperceptible to the user. To ensure that this
is so, the scavenger will start to tenure objects from New Space and
place them in Old Space if the number of survivors starts to slow down
the speed of the scavenger’s operation.
10 VisualWorks

Incremental Garbage Collector
Unlike the scavenger, which only reclaims objects in New Space and
Large Space, the incremental garbage collector (IGC) reclaims objects in
Old Space, New Space and Large Space. It does so incrementally,
recycling dead objects by placing their headers and their bodies on the
appropriate threaded free list.

The IGC can be made to stop if any kind of interrupt occurs, or it can be
made to ignore all interrupts. In addition, you can specify the amount of
work that you want the IGC to perform, both in terms of the number of
objects scanned or the number of bytes scanned — it will stop as soon as
either condition is satisfied.

The IGC has five distinct phases of operation:

• Resting — the IGC is idle.

• Marking — the IGC is marking live objects.

• Nilling — the IGC is nilling the slots of WeakArrays whose referents
have expired.

No reclamation

Reclamation policy in Object Engine

Generation scavenger

Global

Incremental garbage collector

garbage
collector

Garbage collector

Virtual Machine

New Space

Large Space

Perm Space

Old/Fixed Space (segment 1)

Old/Fixed Space (segment n)

Compiled code cache

Old Space (segment 0)

Fixed Space (segment 0)

Stack Space
11 VisualWorks

• Sweeping — the IGC is sweeping the object table, placing dead
objects on the threaded free lists.

• Unmarking — the IGC is unmarking objects as a result of the mark
phase being aborted, either at the user’s request or because the IGC
ran out of memory to hold its mark stack.

The typical order of operation is:

1. resting

2. marking

3. nilling

4. sweeping

5. resting

The unmarking phase is only entered if the mark phase is aborted, and it
leaves the IGC in the resting phase when it is finished unmarking all
objects. Each of the above phases is performed incrementally; that is,
each can be interrupted without losing any of the work performed prior to
the interruption. The IGC never performs more than one phase per
invocation. This provision permits clients to specify different workloads
and different interrupt policies for the different phases. Consequently,
clients will need to wrap their calls to the IGC in a loop if they want it to
complete all of the phases. There is protocol for doing this in the
ObjectMemory class.

The object engine never invokes the IGC directly. Only Smalltalk code
can run it. A typical memory policy might be to run the IGC in the idle
loop, in low-space conditions, and periodically in order to keep up with the
Old Space death rate. See the MemoryPolicy class for the default policy.

Compacting Garbage Collector
The compacting garbage collector is a mark-and-sweep garbage
collector that compacts both object data and object headers. This
garbage collector marks and sweeps all of the memory that is managed
by the object engine except for Perm Space, whose objects are treated
as roots for the purposes of this collector. This garbage collector is never
invoked directly by the object engine, since the duration of its operation
could be disruptive to the Smalltalk system.
12 VisualWorks

Global Garbage Collector
The global garbage collector is a mark-and-sweep garbage collector that
is identical to the compacting garbage collector except that it marks and
sweeps all of the memory that is managed by the object engine, including
Perm Space. This garbage collector is never invoked directly by the
engine, since the duration of its operation could be disruptive to the
Smalltalk system.

You might want to invoke the global garbage collector when you suspect
that there are many garbage objects in Perm Space. This would reduce
the size of the image file produced by a subsequent File � Save As.... It
would also reclaim the space occupied by garbage objects in Old Space,
New Space and Large Space that are only kept alive by references from
garbage objects housed in Perm Space.

Since the global garbage collector uses the compiled code cache to store
the mark stack, the default size may be inadequate for large images. If
garbage collection fails due to inadequate memory, change the size of the
compiled code cache at startup, by sending a sizesAtStartup: message to
ObjectMemory. For details, see “Setting Object Engine Space Sizes”
(below).

Data Compactor
The system also has an Old Space data compactor. Because this facility
does not try to compact the object table, or mark live objects, it runs
considerably faster than either of the two garbage collectors. It should be
invoked when Old Space data is overly fragmented.

For details using the data compactor, see “Promoting Objects to Perm
Space” (below).
13 VisualWorks

Memory Policies
The object engine only supplies the low-level mechanisms for managing
the object memory, allocation, and garbage collection. It is up to the
Smalltalk memory-management code to utilize these mechanisms in a
judicious manner. The latter belongs to the virtual image, and is
accessible to the application developer.

The object engine provides an interface to the Smalltalk memory-
management code via primitives, which is accessed via the classes
ObjectMemory and MemoryPolicy. Developers wishing to access or modify
the memory policies should use ObjectMemory’s public protocol, or by
creating a subclass of MemoryPolicy.

ObjectMemory
An instance of ObjectMemory represents a snapshot of object memory as
it existed when that instance was created. The information contained in
this object can be used to guide policy decisions for managing object
memory (see the class MemoryPolicy for one such policy). This class also
contains protocol for manipulating the state of object memory.

In general, if you want to access the current state of object memory, you
would create an instance of this class and then send messages to the
instance. If, on the other hand, you want to directly manipulate the state
of object memory (for example, to grow object memory, to compact object
memory, or to reclaim dead objects that exist in object memory), you
would do so by sending a message directly to the class itself.

Because the information contained in this class is implementation
dependent and because it may vary from release to release, it is
recommended that this information only be accessed directly by the low-
level system code that implements the various memory policies. Such
policy objects should provide an adequate set of public messages that
will permit high-level application code to influence memory policy without
resorting to implementation-dependent code.

MemoryPolicy
Class MemoryPolicy implements the system’s standard memory policy.
This policy is composed of two regimes for the object memory: one for
growth and one for reclamation. The growth regime is in force when
memory usage is below the growth regime upper bound, the reclamation
regime is in force whem memory usage is above it.

VisualWorks provides a default value for this upper bound, but it is the
developer’s responsibility to set it appropriately.
14 VisualWorks

In the growth regime, only the scavenger and incremental collectors are
active. The object memory is allowed to grow freely upon demand, up to
the growth regime upper bound, at which point the reclamation regime is
entered.

Under the reclamation regime, the object memory is not allowed to grow
without a garbage collection of Old Space. Since garbage collection
involves more overhead, overall performance is degraded somewhat
during the reclamation regime.

Caution: The default growth regime upper bound is 32 MB,
which is only suitable for small applications. To avoid frequent
garbage collections when using or deploying your application,
you may need to adjust this setting. For details, see “Working
with Memory Policies” on page 21.

When the reclamation regime is in effect, memory will be allowed to grow
if garbage collection fails to make space available up to the memory
upper bound. If the application attempts to grow memory above the upper
bound the system will enter an emergency low space condition. The
default MemoryPolicy response to an emergency low space condition is to
interrupt the current active user process. For example, since Smalltalk
stack frames are represented by Smalltalk objects, an infinite recursion
can cause a low space condition, and the infinite recursion is interrupted
once memory usage has grown up to the memory upper bound.

The memory upper bound is also adjustable via the Memory Policy
settings (see “Working with Memory Policies” on page 21, for details).
The default memory upper bound is 512 MB. On machines with less
memory to devote to VisualWorks, this value is too high, and certainly too
small for machines with more than 512 MB of memory (if you wish to use
it for objects). Machines with less RAM than the VisualWorks upper
bound, the operating system will typically begin paging furiously and
thrash badly once memory usage exceeds the amount of RAM (the
symptom being an error from the operating system that virtual memory
has been exhausted). Consequently, if the memory upper bound is too
high, an infinite recursion may take a long time to interrupt.

Unfortunately, on many platforms supported by VisualWorks there are no
operating system APIs to discover how much free RAM is available.
Hence VisualWorks does not automatically determine a suitable memory
upper bound. Therefore you must choose a suitable memory upper
bound for your installation. For single user development, we recommend
15 VisualWorks

that you set the memory upper bound to be between 75% and 90% of
total system RAM, and that you set the growth regime upper bound to be
about 67% of the memory upper bound.

Free Space Upper Bound
MemoryPolicy grows Old Space and Fixed Space memory using the
growOldSpaceBy: and growFixedSpaceBy: primitives, which, if they are
implemented, employ the operating system's memory mapping facilities.
Consequently, new segments can be returned to the operating system if
the garbage collector can empty them. The compacting garbage collector
compacts across segments and MemoryPolicy will release empty
segments back to the operating system until the amount of free space is
at or below the free memory upper bound. This upper bound determines
how much free Old Space the system keeps in reserve for new
allocations after a garbage collection. If your application cyclically
allocates large amounts of memory and releases it only to allocate the
memory once more, you may find it profitable to increase the free
memory upper bound to reduce the amount of growth and shrinkage the
system performs. For details on adjusting the free memory upper bound,
see “Working with Memory Policies” on page 21.

By default, the free memory upper bound is 8 MB. This value is effective
as long as it is significantly larger than the default growth increment,
which is 1 MB. The default growth increment, which determines the
minimum size of a newly allocated Old Space segment (its
preferredGrowthIncrement), is adjustable in the initialization method
MemoryPolicy>>setDefaults. Again, this is suitable only for small
applications. Developers of applications with a memory footprint above
256 MB should consider raising this along with the free memory upper
bound.
16 VisualWorks

Default MemoryPolicy Behavior
MemoryPolicy objects are given the opportunity to take action during the
following circumstances:

• During the idle loop

• When the system runs low on space

In addition, memory policy objects are responsible for determining
precisely what constitutes a low-space condition.

An instance of MemoryPolicy takes the following actions in these
circumstances:

idle-loop action
Runs the incremental garbage collector inside the idle loop, provided
that the system has been moderately active since the last idle-loop
garbage collector. Lets the idle-loop garbage collector run until it is
interrupted.

low-space action
Responds to true low-space conditions. If the system is biased
toward growth, then it attempts to grow object memory. If, however, it
is not biased toward growth, or if object memory cannot be grown,
then it tries various ways of reclaiming space. Failing that, it tries one
last time to grow object memory. Failing that, it summons the low-
space notifier.

The most interesting of these steps is the reclamation step. An
instance of this class will perform a full, compacting garbage collector
only if the free entries in the object table are consuming a significant
percent of Old Space. If, on the other hand, a compacting garbage
collector is not needed, the policy object will try to reclaim space by
simply finishing the incremental garbage collector (if one is currently
in progress). If that doesn’t free up enough space, then the
incremental garbage collector is run from start to finish without
interruption. Finally, a data compaction is performed if Old Space is
sufficiently fragmented.
17 VisualWorks

Managing the Object Memory
Several different mechanisms are provided to give application developers
precise control over the object memory and the policies for managing it:

• Promoting Objects to Perm Space

• Setting Object Engine Space Sizes

• Working with Memory Policies

• Creating a Custom Memory Policy

Promoting Objects to Perm Space
Moving Old Space objects into Perm Space (and thus improving the
efficiency of garbage reclamation) is done by creating an image by
choosing File � Perm Save As... in the VisualWorks Launcher window.

Creating an image in this way is similar to making a snapshot except that
all of the objects that are currently in Old Space will be promoted to Perm
Space when the new image is loaded back into memory at startup time.
For details on these spaces in the object memory, see “Perm Space” and
“Old Space” (above).

Alternately, you can cause all of the objects in Perm Space to be loaded
into Old Space at startup time if you create an image using
File� Perm Undo As... in the VisualWorks Launcher window.

Note that the current state of object memory is not changed by creating a
new image using Perm Save or Perm Undo. In other words, only the newly
created image will contain a modified Perm Space. For example, if you
use File � Perm Save As... to create an image and later in that same
session you create a normal snapshot on top of that image, Perm Space
is unaffected.

To place your application code in Perm Space, follow these steps before
deploying an image containing the application:

1 Create an image using the File � Perm Save As... command. Then
choose File � Exit VisualWorks... and start the new image. All of the
objects that were formerly in Old Space will be loaded into Perm
Space, including the application code.

2 A number of transient objects will also inhabit Perm Space, such as
those needed to display windows on the screen — to remove them,
perform a global garbage collection.

3 Create a normal snapshot.
18 VisualWorks

4 To make subsequent loads on the same platform even faster, you
may want to load the new image back into memory and perform one
last snapshot.

This last step is useful because the global garbage collector
compacts the objects in Perm Space, which forces the image loader
to relocate these objects at startup time. By performing one extra
snapshot, these objects will not need to be relocated on subsequent
loads, when it is possible for the object engine to load them into their
former locations.

Setting Object Engine Space Sizes
The default object engine memory space sizes are platform specific.
Sizes for the following memory spaces can be adjusted at startup:

1. Eden (Object Creation Space)

2. Survivor Space

3. Large Space

4. Fixed Space

5. Stack Space

6. Compiled Code Cache

7. Old Space Headroom

To change any of these values, send sizesAtStartup: to the ObjectMemory
class with an array specifying a multiplier for each space, then save and
restart the image. The order of the array elements is as listed above.

Each multiplier must be a floating point 0 ≥ x ≥ 1000. To get the requested
memory size, the system applies the multiplier to the default size. A
multiplier value of 1.0 yields the default size.

For example, to decrease Stack Space by 1/4 and increase New Space
by 1/2, while leaving the others at default sizes, send the message:

ObjectMemory sizesAtStartup: #(1.5 1.0 1.0 0.75 1.0 1.0 1.0)
This sets the size for the image at next startup. To make the new sizes
take effect, save the image, exit VisualWorks and then restart the image.

These values are recommended values only, and the object engine may
start with a larger size if required to load the image.
19 VisualWorks

Guidelines for Adjusting Memory Spaces
When adjusting memory spaces for most VisualWorks applications, you
should first consider changing Eden (New Space):

All new objects are created in Eden. If this space is too small, then
objects can get tenured in Old Space too quickly. On the other hand, if
New Space is too big, the incremental collector that scans New Space
can begin to impact performance. The "correct" size is generally a
balance between processor speed and application behavior. Generally,
the default setting is acceptable.

Since Old Space is grown automatically, there is no need to manipulate it
using the sizesAtStartup: method. Instead, you may control the size of Old
Space using the growth regime and memory upper bounds (for details on
adjusting these values, see “Working with Memory Policies” on page 21).
20 VisualWorks

Working with Memory Policies
Since the default MemoryPolicy is almost always sub-optimal for a
particular application, it is considered good practice to adjust the policy
before deployment. The following discussion explains the various
parameters that are available, and offers some guidelines for adjusting
them to maximuze the performance of your application.

For some applications, you may also want to create your own memory
policy. For details, see “Creating a Custom Memory Policy” (below).

To examine the default MemoryPolicy settings, open the Settings Manager
and select the Memory Policy page (choose System � Settings in the
VisualWorks Launcher window):

The default policy allows the object heap to grow unrestricted up to the
Growth Regime upper bound. Attempting to grow the object memory beyond
this bound will invoke the garbage collector to reclaim memory.

The default policy does not allow memory to grow above the Memory
upper bound. Instead, the currently active process is interrupted with a
low-space condition.

The Free Memory upper bound specifies the amount of memory that is
always dedicated to VisualWorks. After a garbage collection, the default
memory policy attempts to return any free memory above this bound to
the operating system.
21 VisualWorks

Guidelines for Adjusting the Basic Settings
While the default MemoryPolicy is generally suitable for application
development, it can almost always be optimized for deployment. The
Growth Regime upper bound, for example, is almost always too large for
small applications, and too small for large applications.

Especially for large applications, the Memory upper bound is almost
always too small. For an application that uses more than a gigabyte of
RAM, it is absolutely necessary to adjust the MemoryPolicy defaults.

The best way to set these parameters is to first measure your
application's memory usage. To get an idea of memory usage, use:

ObjectMemory current dynamicallyAllocatedFootprint
The number returned is the total size (in bytes) of the dynamically
allocated footprint.

When measuring memory usage, it’s important to measure the size of the
object memory at points of high load. Insert test code in the application to
take measurements (perhaps using a log file), and if you can identify a
point of high load, get the system to perform a garbage collect, making
sure to record the dynamicallyAllocatedFootprint both before and after the
garbage collection. If measurements show that no memory is reclaimed
and the application is still functioning, then the growth regime upper
bound is too small.

Use the results to set the MemoryPolicy parameters. The first and most
obvious adjustments can be made to the Growth Regime and Memory upper
bounds. The Growth Regime upper bound should be at or below the peak
usage. This bound must accomodate the maximum expected working set
for your application.

The Growth Regime upper bound should be set to keep the time spent in
garbage collection to an acceptably low interval. Attempts to grow the
object memory beyond this limit cause VisualWorks to garbage collect
before asking for more heap memory from the host OS. If the limit is too
low, the application spends too much time garbage collecting. If it’s too
high, the application wastes memory by not garbage collecting.

The Memory upper bound should be set to the application’s maximum
footprint plus a safety margin. You should keep in mind that since
memory growth is not allowed beyond the upper bound, computations will
be interrupted with a low space error if memory usage ever reaches the
upper bound. The safety margin should accommodate this error.
22 VisualWorks

MemoryPolicy has an availableSpaceSafetyMargin instance variable that
defines the amount of free space to maintain as a safety margin, ensuring
that the low space actions can be performed. By default, this instance
variable is intialized to the sum of ObjectMemory>>stackZoneFlushBytes and
ObjectMemory>>emergencyDebuggingHeadroom. This suits the default low
space actions. Your application may require a different value (if, for
example, its response to an emergency low space condition would be to
log an error to a log file or across a socket).

The Free Memory limit may need to be raised to a higher number, so that
the application doesn’t release as much free memory after a garbage
collection. While in principle it sounds good to have the application return
memory to the host operating system after garbage collection, in practice
this may degrade performance.

The VisualWorks MemoryPolicy contains a number of other adjustable
parameters, which are not shown in the Settings Manager. To adjust
these, you must create your own custom policy class.

Creating a Custom Memory Policy
For many applications, you can improve performance by using a custom
memory policy. You may can any aspect of the policy, inducling both the
constants and algorithms used to manage the object memory.

The basic steps to create a new policy are:

1 Define a new subclass of MemoryPolicy.

2 Make sure to implement the setDefaults method, invoking the version
in the superclass, and then setting the appropriate variables. E.g.:

setDefaults
super setDefaults.
preferredGrowthIncrement := 10000000.

3 Install the new policy:

ObjectMemory installMemoryPolicy: MyMemoryPolicy new setDefaults
In this example, we have created a new policy that uses a different growth
increment. This is the amount by which the object memory is grown when
an allocation failure occurs during the growth regime.

By default the growth increment is 1,000,000 bytes, which means heap
segments will be at least that big. In an application using more than a
gigabyte of memory, this yields an awful lot of small segments. Setting
the growth increment to something like 1/100 of available RAM might be
better.
23 VisualWorks

For a complete description of the MemoryPolicy API, see its class
comment.

MemoryPolicy Strategies
A custom memory policy might perform application-specific actions,
flushing application caches, making polciy decisions about process
allocation, and so forth. For example, the VisualWorks Application Server
uses VisualWave.ServerMemoryPolicy to assess system load, expire web
existing sessions, and refuse new connections.

Another example of a custom policy would be one that maintains a pre-
specified range of memory usage (suggested by Alex Pikovsky). That is,
if the available memory drops below a lower threshold, the policy enters
the growth regime, and if it reaches an upper threshold, it enters the
reclamation regime.

For the purposes of the example, let’s say the lower threshold is 10Mb,
and the upper threshold is 50Mb. We can implement this in a subclass of
MemoryPolicy that contains the two following methods:

setDefaults
super setDefaults.
maxMemorySize := Core.SmallInteger maxVal * 4.
self

memoryUpperBound: maxMemorySize;
preferredGrowthIncrement: 40000000; "40 MB"
growthRetryDecrement: 1000000; "1 MB"
maxHardLowSpaceLimit: 5000000; "5 MB"
availableSpaceSafetyMargin: 2500000; "2.5 MB"
contiguousSpaceSafetyMargin: 1000000; "1 MB"
threadedDataIncrement: 1000000; "1 MB”
freeMemoryUpperBound: 50000000; "50 MB"
growIfFreeBytesLessThan: 10000000. "10 MB"

And:

favorGrowthOverReclamation
"Answer true if we want to react (at this point in time) to the low-space
condition by growing memory rather than reclaiming memory."

^self memoryStatus availableFreeBytes <= self growIfFreeBytesLessThan
24 VisualWorks

Preparing for Deployment
The following steps are recommended for deploying a VisualWorks
image:

1 Load application code.

2 Prepare to create a new image, promoting Old Space objects into
Perm Space (in the Launcher window, select File � Perm Save As...).

3 Run the Global Garbage Collector (in the Launcher, select System �
Collect All Garbage).

4 Create a snapshot (in the Launcher, select File � Save As...).

5 Set MemoryPolicy paramaters correctly (for details, see “Working with
Memory Policies”, above).

6 Run the Global Garbage Collector (in the Launcher, select System �
Collect All Garbage).

7 Save the image in a ready-to-run state.
25 VisualWorks

Implementation Limits
The following table gives the size limitations for various aspects of the
VisualWorks system. A limit of “None” implies that no hard limit exists,
though available address space (32 bits) is an upper bound in every case.

Unit Limit Comment

Number of objects None Objects are limited only by address space.
Average object size is on the order of 64
bytes, so the maximum number of objects
available is approximately 232 / 64 =
67108864 when 4 GB of memory is
available.

Object size 256 MB for byte
objects

1 GB for pointer
objects

228 bytes for byte objects

228 slots for pointer objects

Named instance
variables

256 per class Includes inherited instance variables

Method variables 255 Includes arguments, named temporary
variables, unnamed temporary variables
(needed to implement to:do: loops, etc.).
Also includes pushes and pops, so the
effective limit may be a little less.

Block variables 255 Includes block arguments and temporaries;
in some circumstances, it also includes
arguments and temporaries from outer
scopes to which the block refers. Also
includes pushes and pops (see above).

Method literals 256 Includes ordinary literals (strings, numbers,
etc.), message selectors (other than about
200 of the most common selectors), static
variables (global, pool and class) that are
referenced, and one for each block.

Block nesting 256 levels

Method branches 1023 bytes, forward
or backward

This does not limit the length of regular code.
In practice, it means that the body of an
open-compiled loop or conditional cannot be
longer than 1023 bytes.
26 VisualWorks

	VisualWorks Memory Management
	Memory Layout
	Fixed-Sized Spaces
	Variable-Sized Spaces
	Memory Organization
	Compiled Code Cache
	Stack Space
	New Space
	Large Space
	Perm Space

	Smalltalk Object Memory
	Old Space
	Fixed Space
	Remembered Tables

	Facilities for Reclaiming Space
	Generation Scavenger
	Incremental Garbage Collector
	Compacting Garbage Collector
	Global Garbage Collector
	Data Compactor

	Memory Policies
	ObjectMemory
	MemoryPolicy
	Free Space Upper Bound
	Default MemoryPolicy Behavior

	Managing the Object Memory
	Promoting Objects to Perm Space
	Setting Object Engine Space Sizes
	Guidelines for Adjusting Memory Spaces

	Working with Memory Policies
	Guidelines for Adjusting the Basic Settings

	Creating a Custom Memory Policy
	MemoryPolicy Strategies

	Preparing for Deployment
	Implementation Limits

