A Cincom.

Cincom Smalltalk

DLL & C Connect User's Guide
P46-0112-07

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

© 1993-2008 by Cincom Systems, Inc.
All rights reserved.
This product contains copyrighted third-party software.

Part Number: P46-0112-07

Software Release 7.6

This document is subject to change without notice.
RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.

This manual set and online system documentation © 1993—-2008 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246

Phone: (513) 612-2300
Fax: (513) 612-2000
World Wide Web: http://www.cincom.com

Contents

About This Book Xi
0 Lo 1= T U EPPPN Xi
CONVENTIONS ...ttt ettt et et e e ettt e e e s e e e eeeeeeaaaeaeseseseeeeeenenes Xi

Typographic CONVENTIONScciiiiiiiiiiiieiee e Xi
Special SYMDOIS.......uuiiiiiiiee e a e Xii
Mouse Buttons and MENUSoouuieiiiiiiiiic e Xii
LTy g I =Y [o PRSP RR Xiii
ComMMETrCIal LICEBNSEEScci e et e e e e e e e e eeeeeees Xiii
Non-Commercial LICEBNSEEScceeeeieiiieiiieeeeeeeeeeeeeeeeeeee e Xiv
Additional Sources of INformationeueueiiiiiiiiei e XV

Chapter 1 Tools and Techniques

Installing DLL @nd C CONNECTccoiuuiiiiiiie ittt 1-1
External Interface ArchiteCture ... 1-1
Dynamic-LinK LIDrariesocuueeiiiiiiii et 1-3
Placing C Declarations into Smalltalkccccooiiiiiiiiiniiieiee e 1-3
Accessing C Data ODbJECESccocueeiiiiiiiiiiii e 1-5
Constructing the External Interfacecccoiieiiiiiiiiiiciee e 1-7
User INterface TOOISiiiiiiiiiiieii e 1-11
ACCESSING the TOOIS ...eiiiiiiiiiie e 1-11
External Interface Finder TOOIcoooiiiiiiiii e 1-12
Building an Example: StandardLibInterfacecccoocoeiiiiiiiiiiiiiiieeens 1-12
Testing the Example: StandardLiblnterfaceccccoociiiiiieeiiiiiene, 1-13
External Interface Builder TOOIcoooiiiiiiiiiiiiie e 1-15

Chapter 2 Defining External Interfaces

Defining INTErfaCeS ..o 2-1
Defining External Methodsccciiiiiiiiiiii e 2-5
Declaring C Data TYPESeeiiiiieiiieeeiiee ettt 2-5

Declaring ENUMSooiiiiiiieeeee e 2-6
Declaring C FUNCHONSeiiiiiiiiiiee e 2-7

DLL & C Connect User’s Guide i

Contents

Calling C FUNCHIONSoiiiiiiiiiieiiiie et 2-8

C FUNCHON FailUre ... 2-9

Declaring Defines, Macros and Pragmascccooevveeeeiiiiieee e 2-9
Declaring Variablesoc.eeiiiiii e 2-11
External Variable Failurecccccoiiiiiiiiiieee e 2-12

Virtual External Interfaces ... 2-12
External Interfaces and Snapshots ..., 2-13
Dynamic-Link LIDraries ...t 2-16
Finding Entry POINSoeuiiiiii e 2-16

Library Search Order ... 2-17

Libraries and Environment Variablescccccocciiiiiiiiiiiiiieeenns 2-17

Programmatic Searchccccovoiiiiiii e 2-18

Parsing C Header Filesoo e 2-19
Pre-Defined COoNStantsooceiiiiiiiiiiii e 2-23

SYNTAX EFTOIS oo 2-24
Interfacing with Other Languagescccocovveviieiiieenieee e 2-26

Chapter 3 Creating and Accessing C Data

v

Memory Allocation in SMAltalKccceiiiiiiiiiie e 3-1
RECIAIMING SPACE ..ottt 3-2
AlloCating C Data TYPES ...veeeiuvieiiiieeiiie ittt sb e ne e 3-3
Allocating Space on an External Heapcccoocveiiiiiiiiiiei e 3-8
Creating € Datacuveeiiiieiieee e 3-11
SCAlAr DALA ...eeieiiiie i 3-11
Enumeration TYPES ...ccooiiiiiiiiie e 3-13

COomMPOSItE DAtaA ...cooiiiiiie e 3-13

POINTEr DAtaccooiiiiiiiii e 3-17

ATTAY DATa ..o 3-18

SENG DALA ..o e 3-19
(OF- 1 i1 Lo RO T PO PP PSP 3-20
External Heap COPYING ...oouueiiiiiiiiee ettt 3-21
External Heap AlIGNMENTeiiiiiie e 3-22
Unexpected Data Alignment in C Structure Objectsccccoeeviiiiiiieenne 3-24
Changing the Alignment Algorithmcccoiiiiiiiiee e, 3-25

External Heap and SNapsShotscoooeiiiiiiiii s 3-26
Allocating Objects in FIXEASPACEciiiiuiiiiiiiiiieie e 3-26
Representing C TYPES ..coouieiiiiiie ettt 3-29
Limitations of CType Definitionscoceiiiiiiiiiiie e 3-31
Protocol for C Data ODJECEScciceiiiiiiieiiiee et 3-33

VisualWorks

Contents

Chapter 4 Calling Smalltalk From C

DefiniNg CallDACKSoiiiiiieiie et 4-1
EXtErnal CallDAcCKSooiiiiiiiiiiiiiiiiee et e e e e s 4-2
An External Callback EXampleccooiiiiiiiiiiiieeciiece e 4-4
Returning From @ BIOCKCIOSUIEoiiiiiiiiiiieiiee et 4-6
EXIErNal MESSAGES ...uueiiiiiiiiiiii ettt e e a e e e 4-7
Limitations of CallDacKSuiviiiiiiiiiieiiie et 4-11
TRUNKING ettt e e e e e 4-11
Ordering Of CallDACKSccueiiiiiiiiiii et 4-12
Valid Callback LOCAtIONScoviiiiiiiiieiiiiiiie e 4-12
ODBJECT POINTEIS ..ttt 4-12

Chapter 5 Threaded Interconnect

(@ XV Y=Y 5-1
B I €= 7= o [T 5-2
Threaded Interconnect EXample ... 5-5
Specifying Threaded External Methodscccoociiiiiiiiiiiiiii e 5-7
(072111 0= T 2 5-14
Additional Control OVEr TRIEAAScevueeeiieeieitee et eeaeees 5-15
Managing Threadsoooi i 5-15
Thread Limit and LOW Tideuuueiieiieeiee et 5-15
Attaching Processes to Threadsccccccoiiiiiiiiiiiiecee e 5-17
Threaded Calls and FIXedSPaceccceeviiiiiiiiiiiiiiiee e 5-20
I a1 7= (0] o 1= N 5-22
Thread-Safety of Foreign Codecoociiiiiiiiie e 5-22
Use of Object Pointers and Message Sendscccoccveviveeiiieciiieeenneens 5-22
Thread Priority ...ooooeeeeieiee e 5-22
Maximum Number of Threadsccooveiveeiiiiieieeee e e 5-23
Performance CoNSIAEIratioNSccuuuiiiiiiiiiiie e e e e e e e e eaees 5-24
S T0N Y I e f0] o] =Y 0 1= 5-25
Process TerminNationooueiiieiiieee e e e 5-25

Chapter 6 Exception Handling

External Interface EXCEPLIONSeiiiiiiiiiiie it 6-1
C FUNCHON FAIUIE ..eiiiiiiiiiec et 6-2
C Datum AcCCEeSS EXCEPLIONSeviiieiiiiiiiie e 6-8

DLL & C Connect User’s Guide v

Contents

Chapter 7 Packaging Considerations

OVEBIVIBW ettt a et b et et e et et e s b e e et e e e nnre e e nneas 7-1
General CoNSIAEIAtiONSceiiiiiiiiiii et 7-1
Preparing Your Interface ClasSescooiiiiiiiieiiiiie e 7-2
Packaging Your Interface ClaSSEeSccoiiiiiiiieiriiieiiie e 7-3
ReliNKING C LIDIArIESoiiieieiiiieiieee ettt 7-3

Chapter 8 Platform Specific Information

Platform-Specific Developmentoooiiiiiii e 8-1
Compiler Compatibilityooeiiiiiiiie 8-2

Unsafe COMPIIING ..eeeeiiiiiiiiiee e 8-2
Incremental Loading of Dynamic-Link Librariescccocceeiiiiiiiiiiiiieeens 8-3

STALIC LINKING -.eeeeeee ittt e et e e e 8-4
MACOS ClASSIC ...ttt e st e e et e e e s s anraee e e e aanes 8-5
Y= o] 1 1 PP PPPOTUPRR 8-6
DynamicC LiDrariesc.oooiiiiiiieee e 8-6
BUNGIES .t 8-6
IMS-WINAOWS .ot e e e e e e e snbe e e e eares 8-7
Object Engine Access Interface with MS-WIindOwscccccevveeviiiiicneinnne. 8-7
MS-WiINndows XP and ViStacceeeeiiiiiiiiiiiiiiiee e 8-8

32-bit Dynamic-Link Librariescccoiiiiiiiiiiii e 8-8

Structure Layout Issues under MS-Windows XP and Vista 8-8

Declaring the C FUNCHONScciiiiiiiieee e 8-9

(@ 7o 1= £ PP 8-9
Declaring the C Data TYPES ..ccoiuieiieiiiiiiee e 8-10

RS (] 0 PSP UPRPPRIPPRIN 8-11

LO7= 1| o 7= Lo & PSSR 8-12

Library Search Pathsoooiiiiiiii e 8-13
Defining the DLL Interfacecccooveiiiiiiiii e 8-13
Creating the Definition File ... 8-14
Compiling the External Library Codec.cccviiiiiiiiiiiireee e 8-15
Creating the DLLoceeiieee e e 8-16
Creating a Makefilecoooriiii e 8-17

Chapter 9 Object Engine Access Functions

Vi

OVEBIVIEW .ottt ettt ettt e ettt e e e e bttt e e e e emt bt e e e e abte e e e e enbaeeeeeabteeeeesanteeeaeaans 9-1
BasiC Capabilitiesccueiiiiiiiiiie et 9-2
Predefined C Data TYPESoooiiiiiiiieiiiie ittt 9-2
FaIlUre COOES ...ttt e e e e e e e s e e e e e e 9-3
Dynamic-Link LiDraries ... 9-3
GENETAI AQVICE ..ottt ettt s et e e e et e e e s ns e e e s sse e e e e e s nnsneeeenan 9-4

VisualWorks

Contents

Registering Long Lived ODJECEScciiiiiiiiiiiiiiiec et 9-5
=TS} 1 o (o] o < SRS 9-6
Object ENGINe ACCESS OVEIVIEWueiiiiiiiiiiieeiieeee ettt 9-6
Object Engine Access Reference ..o 9-10
OCANOCAITAY ..ttt e e 9-10
OCANIOCBYIEAITAY ... 9-11
OCAIIOCFSODJECT ... 9-11
OCAIIOCREGISIIYSIOL ..o 9-12
OCANOCSTIING eeiiiiiie it 9-13
OCAIIOCVSODJECT ...t 9-13
7= =] (o A S 9-14
0EBASICATPUL ... 9-14
OBBYLEAL .o 9-15
OEBYLEATIPUL .. 9-16
T =10 =TT 9-17
OCCIASSTYPE .eetieiie ittt e s 9-17
0CCOPYCIOOEDYIES ...oeiiiiiiiiiie e 9-18
0COPYCLOOEFIOALAITAYeeeiiiiiiiiiee ettt 9-18
0CCOPYCIOOEINTAITAY oottt 9-19
0CCOPYCIOOESINNG ..eeiiiiiiiiiieeiiee ettt 9-20
OCCOPYOETOCHYIES ...eeiieiiiiieiie it 9-21
0ECOPYOEIOCTHOALAITAYeeeiieiiiiiieee et 9-22
O0CCOPYOETOCINTAITAY ooeiieeieii ettt 9-23
(o<1 07070}V @ = (o] 02 151 o I PRSP 9-23
0ECSENAMESSAGE ...eveeiveieitiee et 9-24
OBCTOOEDOOI ...t 9-26
OBCTOOECRNAN ... 9-26
OECIOOEAOUDIE ... e 9-27
OBCTOOEFIOAL ... 9-27
OBCTOOEINT ... 9-28
0CDOUDIEAL ... 9-28
ORIl . 9-29
OBFIOATAL ... 9-30
OCFIOAtATPUL ... 9-30
OBGELEITOrCOUEviiiiieie it 9-31
0€INAEXVAISIZE ... 9-32
0INItLINKREGISIIY .o 9-32
OCINSTAIL .. 9-33
oelnstallPOIHANAIE!oeiiii e 9-34
OCINSTVAIAL ... e 9-35
0CINSTVArATPUL ..o 9-36
0€INSVAISIZE ..o 9-36
T =T E= A g =17/] (o Y- SRR 9-37

DLL & C Connect User’s Guide vii

Contents

0CISAITAYOFINEGET .. 9-37
0CISBOOIBAN ... 9-38
OCISBYLEAITAY ...ttt 9-38
0CISBYLELIKE .. 9-39
0CISCNAIACTET ... 9-39
0CISDOUDIE ..o 9-39
OCISFIOAL ... 9-40
0€ISIMMEIALE ... 9-40
OCISINTEYET e 9-41
0CISKINAOT .. e 9-41
OBISSENG oo s 9-42
NI e 9-42
0EPOSHINTEITUPT .. 9-43
oeRegisteredHandIEAL ..o 9-43
oeRegisteredHandIEAtPULcooiiiiiii 9-44
oeRegisterSymbolAndHandIe ... 9-45
0ESENAMESSAGE ...eeiieieeeiriie it 9-46
0eSigNalSEemMAaPRNOreccoiiiiiiiiee e 9-48
Lo =T @] = o107 o o T LRI 9-48
(o<1 @] = ol 0 o7 o -1 SRR 9-49
OCOETOCAOUDIE ..ottt e e e 9-49
OCOETOCTIOALeeiiiee i 9-50
Lo =T @] = o107 o | PRSPPI 9-50
UNSafe FUNCHIONSoiiiiiiiie e e e e 9-51

Chapter A #define Operators

Chapter B Resolving Exceptions

Common Externallnterface EXCEPLiONSccooeiiiiiiiiiiiii e B-1
ExternalLibraryHolder>>libraryNotFoundSignalcccccooiiiiiiiiiiiiennn. B-2
ExternalLibrary>>libraryNotLoadedSignalcccccoviiiiiiiiiiiiiee s B-2
ExternalMethod>>externalObjectNotFoundSignalccccocoieiiiiiinnens B-3

Object Engine Access Interface EXCEPLioNSoooveiiiiiiiiiiiiie e B-4

EXCEPLON ErrOr COUES ...ooiiiiiiiiiie ettt B-5

Chapter C Examples

Launching Applications under WindOWSuuiiiiiiiiiiiiiiiiiiieeee e C-1
The Win32SystemSupport ClaSSESccovvveiiieiiiiiiiiee e C-2
Launching an Application ProCessccceeeeiveiiiiiiiiiiiiiiiieeeeeeee, C-2

Launching and Terminating an Application Process C-3

Portability of the APoe e C-3

Viii VisualWorks

Contents

VECTOr FUNCHONS ...t C-4
BUilding the C LIDFaryccooiiiiiiiieeee e C4

Calling the Vector Functions Packageccccoooiiiiiiiiii e C-5

Organization of the Vector Math Libraryccccoiiiiiiniinn C-5

Description of Class VECtOr ..o C-6

Configuring Class VectorMathExternalccccoocoiiiiiiiiiiinninn, C-6

Testing the External Vector Math Librarycccooeiiiiiiiiinns C-6

Index Index-1

DLL & C Connect User’s Guide ix

Contents

X VisualWorks

About This Book

This User’s Guide provides comprehensive instructions for using DLL and
C Connect®. This package allows your Smalltalk application to invoke
functions written using the C programming language, to create, modify,
and use C language datatypes, and to send messages to Smalltalk
objects from your C code. The C functions can either be statically linked
into your application’s executable, or dynamically loaded at run-time using
the target platform’s dynamic library loading facilities.

Audience

This User’'s Guide assumes you are familiar with VisualWorks tools, as
well as the syntax and basic concepts of the Smalltalk language. You
should also be familiar with the C programming language. All C code
examples are written using ANSI C syntax.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions

The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

DLL & C Connect User’s Guide Xi

Chapter - About This Book

Xii

Example Description

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Special Symbols

This book uses the following symbols to designate certain items or
relationships:

Examples Description

File = New Indicates the name of an item (New) on a menu
(File).

<Return> key Indicates the name of a keyboard key or mouse

button; it also indicates the pop-up menu that is
<Select> button displayed by pressing the mouse button of the
<Operate> menu same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Mouse Buttons and Menus

VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

VisualWorks

These buttons correspond to the following mouse buttons or
combinations:

3-Button 2-Button 1-Button
<Select> Left button Left button Button
<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Getting Help

There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees

If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb @ cincom.com.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

e The version id, which indicates the version of the product you are
using. Choose Help — About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

* Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help — About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

* The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support

Cincom Technical Support provides assistance by:

DLL & C Connect User’s Guide Xiii

mailto:supportweb@cincom.com

Chapter - About This Book

Xiv

Electronic Mail

To get technical assistance on VisualWorks products, send email to:
supportweb@cincom.com.

Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com

Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees

VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of lllinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:
vwne-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".
An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:
http://st-www.cs.uiuc.edu/
A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks

e Avariety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information

This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

DLL & C Connect User’s Guide Xxv

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation

Chapter - About This Book

Xvi VisualWorks

1

Tools and Techniques

This chapter gives an overview of DLL and C Connect, introducing you to
the basic features of the product, and the special tools it provides for
connecting your Smalltalk applications with C code modules. This chapter
also presents a simple example to demonstrate the different techniques
available for building interfaces to C modules.

Installing DLL and C Connect

Before you begin working with DLL and C Connect, make sure that you
have first installed VisualWorks on your system. For more information on
installing VisualWorks, see the VisualWorks Application Developer’s
Guide. Once VisualWorks has been installed, you may load the DLL and
C Connect parcel to begin development.

External Interface Architecture

The purpose of DLL and C Connect is to enable your Smalltalk
application to interact with code written using a C compiler. Your Smalltalk
application can directly call C functions and directly modify C data
objects. The DLL and C Connect interface provides the mechanism to
allocate C data objects that adhere to a particular platform layout, and
provides the mechanism to call C functions that use that platform’s C
calling conventions.

For multiprocessing applications, threaded function calls are fully
supported. DLL and C Connect maps C data objects into Smalltalk
objects, so not only can you use Smalltalk messages to manipulate C
objects, but you can also share object references (pointers) between your
C code and your Smalltalk application.

DLL & C Connect User’s Guide 1-1

Tools and Techniques

1-2

DLL and C Connect also enables your C code to send messages to
Smalltalk objects. Finally, the product provides the mechanism to load
(and link) dynamic-link libraries into your Smalltalk application’s address
space. This linking mechanism makes all the public entry points within
the library available to your Smalltalk application.

The term function is used in this document as a generic term to represent
code routines. Language specific terms include procedure, function, and
subroutine.

DLL and C Connect introduces a new abstract class to the Smalltalk
class hierarchy called Externalinterface. You can define subclasses of the
Externallnterface class for the various C function and data object interfaces
that your application must access. Your interface class is used both
during the development of your application and during its deployment.

During development, the interface class provides a way to create the
Smalltalk methods associated with the procedures, the data types, the
macros, and the variables used by the external code. The interface class
can be used to parse existing C header files and automatically generate
all the interface methods. It enables you to load and unload libraries, and
to package your interface into a parcel file so that it may be distributed to
clients. Parcels are now the preferred mechanism for unloading and
reloading interface classes; for a more detailed discussion, see the
VisualWorks Application Developer’s Guide. When your development is
complete and your application is deployed, the interface class is used
(typically transparently) by clients to access the external entry points. It is
possible for your application to define and use multiple libraries,
controlled with one or more interface classes.

The following diagram illustrates a Smalltalk application containing three
interface classes. The first interface class encapsulates control of two C
code modules. The second and third each encapsulate a single module.
Module refers to C code statically linked to the Smalltalk application or
contained in a dynamic-link library.

VisualWorks

Dynamic-Link Libraries

Smalltalk Application

Interface 1 Interface 2 Interface 3

C Module 1 I C Module 2 I C Module 3 | C Module 4 |

Smalltalk application model

Dynamic-Link Libraries

Vendors of C code modules typically package their products as
dynamically-linkable libraries (DLLs) of functions. In this situation, DLL
and C Connect provides the means to convert the state and behavior of
Smalltalk objects to C data and functions in a DLL, and vice versa.

Dynamic-linking provides the following benefits:

Smalltalk applications can take advantage of software provided by
third-parties, such as commercial databases, network
communications packages, or drivers for unusual devices.

Smalltalk applications are not affected when library updates are
distributed, as the application communicates with the library only
through a well-defined interface.

Smalltalk applications require less disk space as they do not need to
contain the code that resides in the library.

Multiple Smalltalk applications can share the same library. Because
there will probably be only one copy of the library in memory, there
will be fewer demands on physical memory and swap space.

Placing C Declarations into Smalltalk

DLL and C Connect extends the syntax of Smalltalk methods to place C
language declarations directly into Smalltalk methods. However, this
extended syntax is only available to subclasses of Externallnterface.

DLL & C Connect User’s Guide 1-3

Tools and Techniques

1-4

Examples of C language declarations that may appear as methods to
subclasses of Externallnterface appear below. The constructs are
described here only as an introduction to the syntax extensions provided.

C #define statements
Use the #define methods to answer commonly used constant
expressions. DLL and C Connect supports #define methods that
evaluate to numbers or strings. The following example is a #define
method that answers the Smallinteger 1024.

MAX_FILENAME_LENGTH
<C: #define MAX_FILENAME_LENGTH 1024

>
C type statements
Use typedef methods to answer type objects. These type objects are
used to allocate C data objects, to build larger type structures, and to
define C function prototypes. The following example answers an
instance of the class CTypedefType that represents the Point typedef
type declaration.

Point
<C: typedef struct {
float x;
floaty;
} Point>
C function prototypes
Use function prototype methods to define a C function’s argument
types and return type. These prototypes are required so the Smalltalk
execution machinery can correctly make a call to your C function.
The following example declares a procedure, addPoint(), that accepts
two Point type arguments and returns a Point type argument.
addPoint: arg1 with: arg2
<C: Point addPoint(Point arg1, Point arg2)>

C variable declarations
Use variable declaration methods to define the global variable type.
The first method shown below returns the value of the global variable
and the second method sets the global variable’s value to the given
argument.

globalVariable
<C: unsigned long globalVariable>

globalVariable: newValue
<C: unsigned long globalVariable>

VisualWorks

Dynamic-Link Libraries

Accessing C Data Objects

DLL and C Connect also adds the ability to create and access C data
objects. This occurs in two ways.

e By creating wrapper, or proxy, objects that enable your application to
manipulate C data as if it were a Smalltalk object.

* By providing access to a new memory area called the external heap.
C data objects that are allocated on the external heap are protected
from movement and automatic reclamation by the Smalltalk memory
manager.

A typical Smalltalk application is relieved of the standard memory
management issues by the Smalltalk Object Engine. The Object Engine
releases storage when it is no longer referenced, and compacts memory
fragmented from repeated object allocation and deallocation. To allow a
Smalltalk application to supply data pointers to C code, or to receive data
pointers from C code that was not designed to work with an automatic
memory manager, DLL and C Connect makes available several new
strategies for managing application memory. In particular, it provides
access to a new memory space that is under the control of the application
rather than the Smalltalk memory manager. Pointers to data that reside in
this memory space can be passed freely to your C code. Your application
is responsible for allocating and deallocating memory blocks located in
this space.

Since the memory allocated by dynamic-link libraries is owned and
controlled by the library, the Smalltalk image snapshot routines do not
save the state of a dynamic-link library. It is the responsibility of the
application developer to perform the necessary operations during image
save and restore operations. For further information, consult “External
Interfaces and Snapshots” on page 2-13.

A Smalltalk application can also receive pointers from your C code.
These pointers are packaged into C data proxy objects which enable your
Smalltalk application to manipulate the C data using standard Smalltalk
message expressions.

A general overview of this data proxy and memory space layout is
depicted in the following diagram.

DLL & C Connect User’s Guide 1-5

Tools and Techniques

Smalltalk Application Memory

Smalltalk Heap External Heap
(Movable memory-manager controlled (Non-movable C-code controlled
memory) memory)
Smalltalk C Data Proxy C data
C data object A
C data type

Smalltalk C Function Proxy
C function object
C function type

C function

These links are broken on a return from snapshot

Smallitalk application memory

Notice the following items in the above design:

e The Smalltalk C data proxy object contains a reference to the C data
object that resides in the external heap. Your Smalltalk application
can access the C data object through the data proxy object.

e The Smalltalk C data proxy object contains a type object. The proxy
object knows the size and layout of the C data object from the data
proxy object.

e The Smalltalk C data proxy object’s external heap reference is broken
on a return from snapshot. The external heap does not survive
across snapshots, so all external heap memory must be
reconstructed after every return-from-snapshot.

In addition to enabling your Smalltalk application to access code written
in C, DLL and C Connect enables your C code to manipulate Smalltalk
objects. This includes creating new object instances, accessing and
setting the fields of an object, or sending messages to objects. This is
done by using the Object Engine Access protocol, which is a set of C
language functions. This interface is described in the chapter “Object
Engine Access Functions” on page 9-1.

1-6 VisualWorks

Dynamic-Link Libraries

Finally, DLL and C Connect enables you to invoke C code that is either
statically linked to the Smalltalk executable, or dynamically loaded using
the platform’s dynamic-link library facility. Instructions for creating and
using dynamic link libraries on various platforms are provided in the
chapter “Platform Specific Information” on page 8-1. Both static and
dynamic linking are available on all supported platforms.

Constructing the External Interface

The process of developing an interface can be broken into two stages:
first, the creation of Smalltalk Externallnterface classes, and second, C data
type and function prototype creation. To create an Externallnterface you
need access to the C module’s Application Programming Interface (API).
The API typically consists of a set of C language type declarations that
specify the data types and function prototypes implemented by the C
code. Use these C language declarations to build your Smalltalk
Externallnterface class. These declarations enable your interface to
correctly communicate with the C code. Defining and using these C data
types and function prototypes is described in greater detail in following
chapters. For the time being, assume that you have access to these
declarations, either in a manual or in a C language header file.

Starting with the C code’s API, the Smalltalk interface can be created with
the following two techniques:

* The first technique is to create the Externallnterface class and its
methods manually by using the standard Smalltalk source browsing
and compilation tools. This technique is similar to programming in the
Smalltalk development environment (VisualWorks), and involves
manually entering the Smalltalk methods that represent the C
language interface to the external C module. For each function or
variable you want to access in the C code API, you must define a
corresponding method in your interface class.

DLL & C Connect User’s Guide 1-7

Tools and Techniques

1-8

Source Files

% Access method - StandardLibInterface > >abs: -] 5|
Browssr Edt Find Yiew Class Method Tools Help ‘
Method! | Ciass |

StandardLiblnterface abs:
Saure | Rewie| Code Citic|
abs: argl _l
<0 int abs(int arg1)>
Mself externaldocessFailedWith, _errorCode

Externalinterface
Subclass

Creating the Externalinterface class

The second technique is to use the automated External Interface
Builder tool to generate the Externallnterface class. This tool parses a
C language header (. h) file, and builds the interface class using the
C language definitions. Every C language construct in the header file
is compiled into an associated Smalltalk method in the interface
class. This technique is faster, but may result in larger interface
classes if your interface header file includes other header files
(typically system supplied header files). Use this automatic facility
with care.

VisualWorks

Dynamic-Link Libraries

Externallnterface
Subclass

C code modules are platform dependent, but typically consist of one of
the following code objects:

Source Files

.h

.h

Generating the Externallnterface class

* Third-party dynamic-link libraries
* User generated dynamic-link libraries

* C code statically linked to your Smalltalk Object Engine (either third-
party code or your own code)

The process of building dynamic-link libraries and statically linked Object
Engines is summarized in the following diagram, which illustrates the
various possible paths when designing and building interface classes.

DLL & C Connect User’s Guide 1-9

Tools and Techniques

Source Files

° Third-party
h| .. |.c libraries

Compiler

Shared Libraries

|| I |

Linker

Statically-linked
and/or
Dynamically-linked

Object Engine

Externallnterface
Subclass

Smalltalk Application

Building dynamic-link libraries and statically linked Object Engines

Conceptually, DLL and C Connect is divided into two parts. The first part
is a group of development tools. These are used only while developing an
application that makes use of the Externallnterface functionality. The

VisualWorks

User Interface Tools

second part is a collection of classes known as the run-time or support
classes. These classes are used while your application is running and
must be present in the base system.

User Interface Tools

DLL and C Connect provides two special development tools for
constructing interfaces to external code: the Finder and the Builder.
These tools are used specifically for automating the task of building and
integrating an Externallnterface into your Smalltalk application, and are thus
designed as extensions to the standard VisualWorks development tool
set. These special tools are the following:

e The External Interface Finderis a special browser that enables you to
view a group of different Externallnterface classes.

e The External Interface Builderis a more specialized tool that provides
you with greater control over the process of automatic interface
construction.

In this section, the Finder and the Builder tools will be described roughly
in the order in which they might be used in a typical project.

Accessing the Tools

&

To begin using the DLL and C Connect user interface tools, perform one
of the following:

¢ In the VisualWorks main window, choose Tools — DLL and C Connect.

¢ Click the DLL and C Connect icon in the VisualWorks Launcher
window.

The External Interface Finder tool opens. You may now begin using the
tools to build or manipulate external interfaces.

DLL & C Connect User’s Guide 1-11

Tools and Techniques

External Interface Finder Tool

#» External Interface Finder 10l =|
View Clazz Esternal Help
Browse | Fiegenerate | Mew | Femove
Clazz Cateqgory Procedures

include files 2| |int abs(int arg1) 1=
include directorie

library files

library directories

pr Ures

vatiables

Ul Windowslnputh typedefs
U2 InputManag 5| |strusts =l _I_I

05 Win953ystem S«
05 WinMT Systern £

StandardLiblnterfa
Teols.CommonDial

Ul InputManager el
UI.NuIIInputManag.J

Finder Tool

The External Interface Finder enables you to navigate easily among a
group of Externallnterface classes. Individual Externalinterface classes are
listed hierarchically in the main view.

The buttons above the list views in the Finder enable you to Browse the
code for a selected interface, Regenerate the external methods, add a
New interface, and Remove an existing interface class. Note that double-
clicking on a class name in the list view has no effect.

Building an Example: StandardLiblInterface

The following steps describe how you can build an example
Externallnterface class which can be used to make calls on the standard C
library known as stdlib. This example presupposes that you have
access to a dynamic-link library (DLL) version of stdlib available on
your development workstation. Note that each platform will use different
conventions to identify this library (for example, on Windows, these
libraries are identified with the .d11 extension).

Perform the following steps to create a new class, StandardLibInterface. In
this example, we will define the class and then add a method for calling
the standard C function abs(), which performs the absolute value
mathematical function.

1 Within the Finder tool, add a new Externallnterface class by pressing
the New button.

2 In the interface definition dialog, enter the name of the new class
(StandardLiblnterface) in the Name field and click OK.

VisualWorks

User Interface Tools

The new class and a list of categories appear in the Finder. The
external objects that are available are procedures, variables,
typedefs, structs, unions, enums, defines, and macros.

3 To add a new procedure, select the external category, procedures in the
column under Category, and press the New button.

A dialog box appears that prompts for the information required to
define a well-formed external declaration. The dialog box has
additional selection buttons depending on the external’s category.

4 Inthe procedure dialog box, enter abs (absolute value) as the name of
the procedure.

5 Choose the int menu option as the return type.

Instead of choosing one of the menu options, you may also enter a
return type that is not included as an option.

Select argument 1 under the list of argument types.
Choose the int menu option, to correspond to argument 1.

Additional arguments are defined by selecting the consecutive
arguments, and choosing their corresponding argument types. The
type you select for each argument will be stored as you move down
the list.

8 Click OK.

Clicking on OK & Browse adds the new procedure and brings up a browser
on the new method. You can add to or change the procedure declaration
from the browser.

You have now defined a method in the class StandardLibiInterface that will
enable you to call the C function abs(). To complete the interface, you
must next add some additional information about the external C library
stdlib. To define external objects for the interface, you first select one of
the italicized external categories (include files, include directories, library
files, or library directories).

Testing the Example: StandardLiblInterface

By following the steps in the previous section, you have constructed a
new class StandardLibInterface that contains methods for calling C
functions in the library stdlib. All that is needed now to actually make a
call to this library from Smalltalk is a reference from the interface class to
the library DLL.

DLL & C Connect User’s Guide 1-13

Tools and Techniques

The name and location of this library file varies depending upon the
platform that you are using. On Windows, the C library is one of the
MSVCRTnn.DLL files, while on Solaris the C library is
/usr/lib/libc.so. You can also make use of environment variables
to simplify the path specifier to the stdlib library DLL on your platform
(for details, see “Libraries and Environment Variables” on page 2-17). If
you are unsure how to locate the stdlib library DLL on your system,
consult the documentation for the C development environment supported
by your platform.

For example, assuming that the target platform is running Windows NT
4.0, we would set up the libraries for StandardLibInterface as follows:

1 Return to the External Interface Finder tool and select
StandardLibInterface in the list of interface classes (the left-most pane
in the view).

2 Select library files, under the Category list, and press the New button.

3 Addialog box appears. Enter the name of the library file (for example,
on Windows NT 4.0, enter msvert40.d11) and click OK.

4 Select the external category, library directories, and press the New
button.

5 Enter the directory path where the library file is located and click OK.
You can make use of an environment variable here to simplify the
path (for example, on NT platforms, the path of this directory is either
$(windir) \system Or $ (windir) \system32). You can specify
both, and the system will search for the library file.

The external interface class has now been associated with the specified
C library, and the library will be loaded and linked dynamically as soon as
you call the function. To test this, you may execute the following Smalltalk
expression in a workspace. Select the code and choose Print It from the
<Operate> menu to see the returned value. Execute it a second time to
see that it runs much faster after the linking step has been performed
once:

StandardLibInterface new abs: -10.
The result should be: 10.

Evaluating the previous expression may result in a notifier that indicates
the entry point for abs() could not be found. In this example, because abs()
resides in a dynamic-link library, the notifier may indicate that the library
could not be found or loaded. In either case, verify that the library name
and library paths specified in the Externallnterface class definition are

VisualWorks

User Interface Tools

correct and that a correct version of the library actually resides in the
specified location. To troubleshoot any exceptions raised during the
external call, see “Resolving Exceptions” on page B-1.

The procedure for building an Externallnterface described in this section
requires that you define the interface methods by hand. DLL and C

Connect also provides a more sophisticated mechanism, the External
Interface Builder tool, for automatically generating your interface class.

External Interface Builder Tool

To construct an Externalinterface class from declarations in a C language
header file, DLL and C Connect provides a special tool for automatically
parsing the declarations in an interface file and then compiling the
corresponding methods for your Externallnterface class. The Builder tool
provides a means to accomplish these two tasks (parsing and compiling).

Once the Builder has parsed all the header files that define a given C
interface, you may select only those declarations from the parsed set that
you wish to include in your interface class. Thus, by using the Builder tool,
you may parse a group of header files and then selectively construct an
interface class.

To open the Builder from the External Interface Finder, choose the
Class — Builder menu item in the Finder. The External Interface Builder
tool opens on your screen.

'ﬂ__External Interface Builder =l
Builder Clasz Estemals Help |
Cateqgory Typedefs
include files 1= typedef unsigned long STColor =
include directories typedef unsigned long STXDisplay
procedures typedef unsigned long STXEwvent
variables typedef unsigned long STXFontSet

t cfs typedef unsigned long STXIC
structs typedef unsigned long STXIM
uniens typedef unsigned long STXIMStyle
enums typedef unsigned long STXWindow
defines
macros =li=

Farse Files | Add Methods | Define Class | Add | Remove |

Builder Tool

The Builder tool contains an input field to specify the header files to parse
and an input field indicating the directories that contain the named header
files (i.e., the paths to the header files). When you have entered the
name(s) and paths of the header file(s), the tool is ready to parse them.

DLL & C Connect User’s Guide 1-15

Tools and Techniques

Note that only the declarations you select will be compiled. The tool will
then automatically generate the selected methods in your interface class.

This tool is especially useful in situations where you are presented with a
large header file (for example, Motif’s xm.h header file). This tool enables
you to parse the header file and extract only the declarations you require.
It is intelligent enough to automatically mark dependent types for
inclusion in your interface class.

Note that the Builder was written to parse ANSI format source code.

The buttons located on the bottom of the Builder tool enable you to Parse
header files, Add Methods to a class, Define a new class, Add new
external categories, and Remove external categories.

Continuing with our example from the previous section, we can now
automatically construct an interface to the standard C library stdlib.
You may include some or all of the functions from this library by first
parsing the header file std1lib.h. To parse this header file, perform the
following steps using the Builder Tool:

1 In the list of external protocols, select the category include files, and
press the Add button.

2 A dialog box appears. Enter the name of the include file (for this
example, stdlib.h) and click OK.

3 Select the external category, include directories, and press the Add
button.

4 Enter the directory path where the include file is located and click 0K
(for example, on UNIX platforms, the path of this directory is usually
/usr/include, while on Windows machines it is usually
C:\MSDEV\include\). For additional details on path specifiers, see
“Libraries and Environment Variables” on page 2-17.

5 By defining the include files and include directories variables, you
have set up your Externallnterface to automatically parse a C interface.
To actually perform the parsing operation, press the Parse Files button.

The files and directories are parsed top to bottom. If more than one
directory is listed, the parser looks at the first directory. If the header file is
found in the first directory, the file is parsed from that directory. If it is not
found, the parser proceeds to the next directory, until a match is found. In
this manner, you can define interfaces that can be parsed on platforms
with different path or name specifiers for the external libraries.

VisualWorks

User Interface Tools

Once the header file has been parsed, you can choose particular
methods simply by selecting them individually on the list of function
definitions. As you select them, a check mark will appear in the left
margin of the list view.

For example, suppose you want to add the methods atoi() and atof() to be
included in the StandardLiblInterface class.

1 Select procedures, under the Category list.

2 Select int atoi(const char *) and double atof(const char *) under the
Procedures list. A check mark appears next to the selected methods.

You can select all the procedures in the header file by choosing the
Externals — Select All menu option (located on the top of the parser
window). Conversely, you can also deselect all of the procedures
using the Externals menu.

3 For now, add only the selected methods atoi() and atof() to the
external class StandardLibinterface. Press the Add Methods button. The
default class name (StandardLibInterface) appears in the dialog box.
Click OK.

When you next open the Finder tool, it will display the added methods.
Note that if the Finder is already displayed, you may need to perform
View — Update in the Finder.

Since the external library has already been specified (see “Testing the
Example: StandardLibinterface” on page 1-13), you may now test these
function calls. For example, to test the atoi(), execute the following code
fragment:

StandardLibInterface new atoi: '12.05".

Since the C library function atoi() takes an ASCII string and returns a C int
type, the result is converted into the Smalllnteger 12.

These simple examples demonstrate some of the principal aspects of

DLL and C Connect’s Externallnterface class. In the next chapter, we will
look more closely at the protocol of this class, and how you can define
your own interface classes.

DLL & C Connect User’s Guide 1-17

Tools and Techniques

1-18 VisualWorks

2

Defining External Interfaces

This chapter explains how to define your own External Interface classes,
how to declare and call C functions, how C header files are parsed, and
how to access external variables defined in C libraries. It also explains in
more detail how to link your interface classes with the appropriate
external libraries, and how you can also call external code modules
written in languages other than C.

Defining Interfaces

Defining and using External Interfaces is a three-stage process:

1. Create an interface class with Smalltalk methods that parallels the
declarations in the external code’s C header files or from the external
code’s programming interface manual. Parsing C header files is
typically done automatically.

2. Register the C code modules.
3. Inyour Smalltalk application, invoke the C functions.

In the previous chapter, the External Interface Finder tool was used to
create a new interface class (the example StandardLibinterface).
Sometimes, however, it is easier or necessary to create a new
Externallnterface class using the System Browser. For example, if no C
header file exists, this approach may be necessary.

To create a new interface class using the Browser, first select the name
space and class category in which you want to include the new interface.
In the example that follows, we shall assume the category name is
Externalinterface-New. If a class in that category is already selected,
deselect it.

DLL & C Connect User’s Guide 2-1

Defining External Interfaces

2-2

Starting with the standard class definition template, remove and replace
the dummy names, as in the following finished example:

Smalltalk defineClass: #Examplelnterface

superclass: #{External.Externallnterface}

indexedType: #none

private: false

instanceVariableNames: "'

classInstanceVariableNames: "

imports: "

category: 'Externallnterface-New'
After you are finished, select Accept from the code view’s <Operate> menu
to display the class name. Notice that the class definition template has
changed. Several new elements now appear in the class creation
message of the code view:

Smalltalk defineClass: #Examplelnterface
superclass: #{External.Externallnterface}
indexedType: #none
private: false
instanceVariableNames: "'
classinstanceVariableNames: "
imports: '
private Smalltalk.ExamplelnterfaceExternalDictionary.*

category: 'Externallnterface-New'

attributes: #(
#(#includeFiles #())
#(#includeDirectories #())
#(#libraryFiles #())
#(#libraryDirectories #())
#(#beVirtual #false)
#(#optimizationLevel #debug))

The above example is a typical Externallnterface subclass creation
message. The attributes: argument provides information specific to
external interface classes. When subclassing Externalinterface with the
standard class creation template, these attributes are given the default
values shown above. The attributes are as follows:

includeFiles
The Array argument is a sequence of Strings, each being the file name
of a C language header file associated with the external interface, for
example: #('stdio.h'). The Externalinterface class enables you to
automatically parse the listed header files and generate the
corresponding Smalltalk methods. The process of parsing header
files is explained in “Parsing C Header Files” on page 2-19.

VisualWorks

Defining Interfaces

includeDirectories
The Array argument is a sequence of Strings, each being the file
system directory name that is searched when attempting to locate
the include files listed in includeFiles. The directories are searched left
to right in the list, so ordering is important.

libraryFiles
The Array argument is a sequence of Strings, each being the filename
of a dynamically loadable library (DLL) associated with the interface.
Each platform has different naming conventions for libraries. For
details, see “Platform Specific Information” on page 8-1. Optionally,
each filename string can also be matched against the current
platform in order to create a cross-platform interface definition. For
details, see “Libraries and Environment Variables” on page 2-17.

libraryDirectories
The Array argument is a sequence of Strings, each being a directory
in the file system that will be searched when attempting to locate a
library file listed in libraryFiles. The directories are searched left to right
in the list, so ordering is important. Directory names can also include
environment variables. For details, see “Libraries and Environment
Variables” on page 2-17.

beVirtual
The argument is a Boolean value. A value of true indicates the new
interface class is a virtual class. A value of false indicates it is a
normal class. For more details, see “Virtual External Interfaces” on
page 2-12.

optimizationLevel
The argument is either the Symbol #debug or #full, which indicates the
level of optimization used when compiling each function method in
the interface. In #debug mode, function methods contain strict type-
checking wrapper code. This type-checking code helps in the
development and debugging of your interface class at the expense of
performance. With a #full optimization level, the type-checking
wrappers are removed from the function methods, resulting in a
significant decrease in function call overhead.

The rest of the Examplelnterface class definition behaves the same as the
standard subclass definition template. You can use the normal class
editing tools to add class comments, rename the class, delete the class,
move the class to a new category, or file the class in and out of the
system. Class Examplelnterface also provides protocol for changing these
attributes at run-time.

DLL & C Connect User’s Guide 2-3

Defining External Interfaces

24

Note that when you Accept the Examplelnterface class definition, a
namespace called ExamplelnterfaceDictionary is created and a private
general import to its contents is added to the imports. Its purpose is to act
as a repository for special interface objects created during the
compilation of your C language interface objects. You need not be
concerned with the contents or format of this dictionary.

To look in more detail at a working interface class, use the Browser to
select the example class StandardLibInterface, which was described in the
previous chapter. The libraryFiles and libraryDirectories attributes of the
class specify the library (or libraries) used by this interface. Each platform
names these libraries differently. In addition, each platform has its own
mechanism for creating a dynamic-link library. In the example described
previously, the Windows library msvert40.d11 was registered as the
library containing functions for std1ib (each platform uses different
library file extensions).

Using the System Browser, you can edit these library definitions. For
example, if you wanted to associate another DLL file with the interface,
you would simply change the libraryFiles and libraryDirectories attributes of
the class definition. Re-accepting the class definition using the code
view’s <Operate> menu recompiles the StandardLibinterface class,
registering the new library file(s) with the class.

You can also edit method definitions directly using the code view in the
System Browser. Function call method definitions are contained in the
category named procedures.

For example, you can add the atol() function prototype definition within
your interface class. As defined in std1ib, this function converts a C
string into a long integer. Make sure the StandardLibInterface class is
selected in the class view of your browser, and within the procedures
category, type the following method definition:

atol: aString
<C: long atol(const char *)>
When you are satisfied with the method definition, select Accept in the
code view’s <Operate> menu.

Since the stdlib dynamic-link library is already associated with the
example class StandardLiblnterface, you can immediately execute the
following Smalltalk expression in a workspace. Select the code and
choose Print It from the <Operate> menu to see the returned value.

StandardLibInterface new atol: '98765432'
The result of this expression should be a LonglInteger.

VisualWorks

Defining Interfaces

In most cases, you will be linking pre-existing C library and header files,
so the procedures you just followed can be abbreviated. Simply create an
interface class and then send messages to that class from your Smalltalk
application.

Defining External Methods

To define interface methods for C declarations, create a Smalltalk method
in the following form:

declarationName
‘comment’
<C: declaration>
failure code

The syntax for Smalltalk external methods is as follows:

e Except for the identifier, a C: instead of a primitive: appears enclosed
in the angle brackets.

* The C declaration appears after the colon, and specifies one of the
following C declarations: typedefs, function prototypes, defines,
macros, and variables.

» failure code is a set of Smalltalk expressions for handling function call
or global variable access failure situations.

Declaring C Data Types

DLL and C Connect provides a type-matching facility that equates
standard C data types with equivalent Smalltalk classes. GType and its
subclasses represent C types such as integers, floating-point numbers,
pointers, arrays, structures, unions, enumerations, procedures, and voids.

All CType classes provide various instance-creation methods to create
instances of the CType objects, which represent the actual C types. For
example, the expression ClntegerType char returns an instance of
CIntegerType that represents the actual C char type. The expression
Clntegertype char pointerType returns a CPointerType object that represents
the C char * type. In general, you do not have to deal with these classes
directly.

The standard C data types are built into the product and conversions to
these types from Smalltalk objects are handled automatically. Each
custom data type that you define using a typedef expression in your C
code must have a corresponding accessing method in the C code’s
interface class. As with function declarations, a data type declaration

DLL & C Connect User’s Guide 2-5

Defining External Interfaces

2-6

consists of the C typedef statement prefaced by C: and enclosed in angle
brackets. For example, suppose the size_t type is declared in a C header
file as follows:

typedef int size_t;
The equivalent declarative method in the interface class is as follows:

Size_t
<C: typedef int size_t>
DLL and C Connect constructs these methods automatically for all typedef
statements in the header files that are named in the includeFiles attribute
of the interface class definition. To further restrict the list of included
declarations, use the generateMethods: protocol in Externallnterface class.

When you send the size_t message to your interface class, it answers an
instance of a CTypedefType, a subclass of the base abstract class CType
described previously. In general, you will only need the memory allocation
protocol that all CType objects understand. Use this protocol to allocate C
data objects of the given type.

Note: DLL and C Connect provides several strategies for managing
C data objects passed to external libraries. It is absolutely critical that
you choose the strategy that is appropriate for the allocation behavior
of both your application and the functions in the external library.

A complete discussion of the various C type objects and appropriate
memory allocation strategies appears in the chapter “Creating and
Accessing C Data” on page 3-1. For multi-threaded applications, also
see “Managing Data Objects with Multiple 1/0 Threads” on page 5-4.

In the following section, we’ll look more closely at how C functions are
called from Smalltalk methods.

Declaring enums

DLL and C Connect provides support for enumeration types.
Enumeration types are symbolic names with integer values. These are
defined in essentially the same way as data type declarations, with a
method that contains a pragma. For example, the months type might be
declared in a C header file as follows:

enum months{ Jan, Feb, Mar, Oct = 10};
The equivalent declarative method in the interface class is:

fewMonths
<C: enum months{ Jan, Feb, Mar, Oct = 10}>

VisualWorks

Defining Interfaces

This method returns a CEnumerationType object containing the symbolic
values. DLL and C Connect constructs these methods automatically for
all enum statements in the header files that are named in the includeFiles
attribute of the interface class definition.

For details on accessing enumeration types, see “Enumeration Types” on
page 3-13.

Declaring C Functions

For each C function that you use, create a Smalltalk method that takes
the appropriate number of arguments and defines the function prototype.
The function prototype is in the ANSI C prototype format. It is also
prefaced by C: and enclosed in angle-brackets, so the Smalltalk compiler
can recognize it as a C declaration. Returning to the StandardLibinterface
example, recall that the header file contained a prototype for the abs()
function. After defining the StandardLiblInterface class, the following
Smalltalk method was also defined:

abs: arg
<C: int abs(int)>
The method, like the function, takes one integer argument. The following
example takes two string arguments (note: this function is defined in
string.h, not stdlib.h). It calls the C strcmp (string comparing)
function:

stremp: s1 with: s2
<C: int strcmp(const char *s1, const char *s2)>

Looking at the two example methods given above, notice that argument
names in the declaration are included in the second example, but not in
the first, illustrating their optional nature. However, note that in any given
method you must either include all of the argument names or omit all of
them.

When arguments are passed, an ellipsis can be used in the declaration,
but all of the function’s arguments must be passed in an array. This holds
true even if you specify arguments before the ellipsis. For example,
consider this declaration of the printf function (C printing function):

printf: argArray
<C: void printf(const char *, ...)>
The argument to printf: must be a Smalltalk Array. The first element of the
array is a Smalltalk String object (or a char * C pointer object) and the
subsequent array elements are the arguments as expected by the printf()
function based on the string encoding of the first argument. Use this array
as the argument to printf..

DLL & C Connect User’s Guide 2-7

Defining External Interfaces

2-8

As mentioned previously, declaration methods can be created
automatically after you specify one or more header files in the definition
of the interface class. You can also create them manually, using the
System Browser as you would for an ordinary Smalltalk method. You
might prefer that approach when no C header file exists, and you have no
other reason to create one. You might also want to rename the keywords
and arguments in the method selector to give them a Smalltalk flavor
rather than the parser’s C flavor. For example, the strcmp method might
be written as follows:

compare: string1 to: string2
<C: int stremp(const char *string1, const char *string2)>
You can assign the result of a function into an instance variable within the
brackets, using an equal sign. For example, the following code shows
how to store the result of atol() in an instance variable named result:

atol: aString
<C: result = long atol(const char *)>

Any variable that exists within the scope of the method can be used as an
argument in a declaration; this includes instance or temporary variables.

Note: There is an important limitation with the scheme used by DLL
and C Connect to represent C types. In particular, if you plan to
define a number of different interface classes, using the Smalltalk
class hierarchy to distinguish between “abstract” and “concrete”
interface definitions, then you should read the discussion “Limitations
of CType Definitions” on page 3-31.

Calling C Functions

After you declare the necessary functions and link the library, your
interface class is ready to invoke external functions. To do so, create an
instance of the interface class and send it messages from its procedures
message category. These methods contain function-prototype
declarations as described in the previous section of this chapter. When
you generate an interface automatically by parsing a header file, the
parser places all procedure methods in the procedures category.

In the StandardLibInterface example described previously, the atol() function
was invoked by sending an atol: message to an instance of
StandardLiblInterface:

StandardLiblnterface new atol: '98765432'

VisualWorks

Defining Interfaces

C Function Failure

In a manner similar to Smalltalk primitive methods, failure code can follow
a method’s C procedure prototype declaration. The failure code, which
consists of Smalltalk expressions, is only invoked when the C function
fails to return a value. An example of a method with failure code is as
follows:

atol: aString
<C: long atol(const char *)>
AaString asNumber

In general, however, you will probably want to have error handling code
follow the C function call. Class Externallnterface also provides a standard
error handling protocol which provides a framework for resolving C
function call failures. The cause of the function call failure is made
available to you for more sophisticated error handling. Thus, a more
typical example would look like this:

atol: aString
<C: long atol(const char *)>
Aself externalAccessFailedWith: _errorCode

When the C function call fails, the cause of failure is stored in _errorCode,
which is a special temporary variable in the method containing the C
function prototype. This hidden temporary variable holds an instance of
the class SystemError which indicates the reason for the failure. By
convention, the method Externallnterface>>externalAccessFailedWith: is
invoked to raise an externalAccessFailedSignal. In the code fragment shown
above, the signal will be raised with the SystemError object that contains
the exact cause of the failure.

The type of error is stored in the name field of the SystemError object, and
this field is usually tested by the error handler. There are a number of
standard errors that can occur during a C function call failure, and your
application must provide an exception handling mechanism to recover
from these errors. A more detailed discussion of C function call failures,
as well as a general discussion of exceptions, is located in the chapter
“Exception Handling” on page 6-1.

Declaring Defines, Macros and Pragmas

DLL and C Connect can parse and generate methods for #define
statements. Unfortunately, many #define statements in C are complex
expressions, or source code that requires both a run-time parser and
context in which to evaluate the #define.

DLL & C Connect User’s Guide 2-9

Defining External Interfaces

2-10

Note: DLL and C Connect imposes a run-time restriction that any
interface method representing a #define returns the value nil, unless
the #define represents a scalar or string object.

An example of a #define statement and its associated Smalltalk method is
as follows. The C define statement is:

#define ARRAY_SIZE 100
The corresponding Smalltalk method is:
ARRAY_SIZE

<C: #define ARRAY_SIZE 100
>

Note that a carriage return is embedded inside the angle brackets. This is
required because the #define statement is terminated by a newline. It is
important to note that the statement will not parse correctly without this
newline character.

This restriction in the parsing of #define statements will be removed in a
future release of DLL and C Connect.

Example expressions that are possible in the body of a #define, and that
are correctly parsed into a Smalltalk object are as follows.

Example expressions

Example expression Evaluates to the class ~ Whose value is
#define CHAR 'c' Number 98

#define MULTI_CHAR "abcd' Number 0x61626364
#define STRING "aString" String ‘aString’
#define EXPRESSION (1 << 3) Number 8

For details on arithmetic operators supported by the last type of #define
expression listed above (#define EXPRESSION), see the Appendix “#define
Operators” on page A-1.

Define statements that accept arguments (macros) are only supported in
a development image (an image where the DLL and C Connect classes
are loaded). The evaluation of a macro will answer nil if it does not reduce
to a scalar or string value.

An example of a #define macro statement and its associated Smalltalk
method is shown below. The example macro computes the number of
bytes required to represent a multi-element data structure. Note that a

VisualWorks

Defining Interfaces

carriage return is embedded inside the angle brackets used in the
Smalltalk method. This is required because the #define statement is
terminated by a newline. The C define statement is:

#define NUM_BYTES(type, nElem) (sizeof(type) * nElem)
The corresponding Smalltalk method is:

NUM_BYTES: type with: nElem
<C: #define NUM_BYTES(type, nElem) (sizeof(type) * nElem)
>

The following code snippet is an example of evaluating the macro. The
first argument is the C long type and the second argument is the number
of elements. Note that the arguments are String objects. Evaluating the
expression on a platform whose long data type is 4 bytes will answer the
Smallinteger 20.

InterfaceClass new NUM_BYTES: 'long' with: '5'

Various compilers implement compiler-specific #pragma directives. The
parser correctly parses these pragma directives. However, they are not
used for any purpose and are discarded. For more information on
#pragma directives, consult your compiler’s reference manual.

Declaring Variables

In addition to function entry points, C libraries can export global variables.
To retrieve and set the value of a global variable, you must first define two
Smalltalk methods in your interface class. The first method takes no
arguments and is used to return the variable’s value. The second method
accepts one argument and is used to set the variable’s value. When you
generate methods using the automatic parsing mechanism to build your
Externallnterface class, it always generates both accessing methods.

The C language type qualifier extern is optional, and it is simply discarded
by the parser. For additional details on the parsing of C header files, see
“Parsing C Header Files” on page 2-19.

The following example methods are used to set and retrieve the value of
a global variable, in this case globalVariable, that is defined in a library or
statically linked to the Object Engine.

globalVariable
<C: extern int globalVariable>

globalVariable: value
<C: extern int globalVariable>

DLL & C Connect User’s Guide 2-11

Defining External Interfaces

External Variable Failure

When attempting to access an external variable that is located in a linked
library (i.e., a static, global variable), DLL and C Connect may raise one
of the three following exceptions:

Cannot load library
This error may occur when your application first attempts to access
an external variable. The variable is accessed by loading the library
that your external interface class indicates contains the variable. If the
library could not be loaded for any reason, the signal
ExternalLibrary>>libraryNotLoadedSignal is raised.

Cannot find library
This error may occur when DLL and C Connect cannot find the library
specified in your interface’s class creation template. To indicate this
failure, the signal ExternalLibraryHolder>>libraryNotFoundSignal is raised.

Cannot find external object entry point
If DLL and C Connect successfully loaded the library associated with
your interface class, but subsequently could not find the external
variable within the library or as a statically linked object. The signal
ExternalMethod>>externalObjectNotFoundSignal is raised.

To catch these signals, you can write signal handlers in the callers of your
interface methods. For a more detailed discussion of these errors, see
“Exception Handling” on page 6-1.

Virtual External Interfaces

Externallnterface classes contain a special attribute that can be helpful if
you want to link multiple versions of the same C function library to your
Smalltalk application. The virtual attribute controls the way that method
lookup is performed in a hierarchy of Externallnterface classes.

A subclass inherits the includeDirectories, libraryFiles, and libraryDirectories
attributes of its parent interface class. Function look-up begins in the
receiver’s libraries and continues up the hierarchy. For example, you
could create Oraclelnterface and Sybaselnterface as subclasses of
Databaselnterface. Selected functions in the parent’s directories could then
be overridden by more specific functions in the subclass directories.

2-12 VisualWorks

Defining Interfaces

The following diagram illustrates this scheme:

beVirtual: false,
libraryA is searched

beVirtual: true,
libraryB is searched

Parentinterface

libraryA
methodA

Childinterface
libraryB

methodA

client

Inheritance

A subclass does not inherit includeFiles, though the associated methods
are inherited by the normal method-inheritance mechanism. When an
inherited method is invoked, the function look-up order is affected by
whether the parent is virtual or not. With a nonvirtual parent, an inherited
method causes the function look-up to begin in the parent class’s
libraries. That is, in the libraries associated with the class that implements
the method. With a virtual parent, the function look-up begins in the
message receiver’s libraries. In effect, the subclass of a virtual parent can
substitute an alternate version of the parent’s libraries, and need not re-
implement the accessing methods.

An interface class can be made virtual in two ways:
* Send beVirtual: true to the class

* Recompile the interface class, specifying beVirtual: true in the class-
creation template

If you plan to define a number of different interface classes, using the
Smalltalk class hierarchy, then you should read the discussion
“Limitations of CType Definitions” on page 3-31.

External Interfaces and Snapshots

Smalltalk preserves the semantics of objects across a snapshot in most
cases. The means to do this are provided by the snapshot facility itself,
which preserves the state of the object memory. For objects whose
interpretation is completely contained in an image, this is sufficient.

DLL & C Connect User’s Guide 2-13

Defining External Interfaces

2-14

However, some types of objects are affected by the external environment
and must be given special treatment. In particular, references to external
libraries that were active when the snapshot was made will become
invalid. When a snapshot is made, all references to dynamically loaded
libraries are broken.

When an image is restarted, all external interfaces will, on demand,
reload libraries listed in the external interface’s libraryFiles attribute. If
there is a possibility that the image file will be moved to a new
environment, or if the library files might be moved, your application should
re-install the new location of the library files using the libraryFiles: and
libraryDirectories: messages available to the Externallnterface class. This is
fully described in the section “Programmatic Search” on page 2-18.

The Externallnterface class provides two mechanisms for coping with
snapshot returns:

e (Class Externallnterface sends a returnFromSnapshot message to each of
its subclasses, informing the class that the image is starting,
potentially on a new platform. Subclasses can override the default
behavior to perform platform-specific initialization.

e The class also detects the current platform.

When Smalltalk returns from a snapshot, it performs the following
sequence of events:

1. When the image first starts, the class ObjectMemory receives the
message returnFromSnapshot. That method performs some system
initialization and sends the change message earlySystemInstallation to
itself.

2. Any object that registered itself as a dependent of ObjectMemory is
notified of the earlySysteminstallation. Externalinterface is one class that
is registered as a dependent of ObjectMemory. Note that if you use the
earlySysteminstallation notification, the window system will not have
been correctly installed, so notifiers will not work. Unhandled errors
may crash the system without warning.

3. ObjectMemory performs more installation, then sends a
returnFromSnapshot change message to itself. Any object that
registered itself as a dependent of ObjectMemory will be notified of the
returnFromSnapshot.

To provide a hook for its subclasses, Externallnterface is registered as a
dependent of ObjectMemory. When ObjectMemory sends the
earlySysteminstallation change message, Externalinterface performs its own
initialization, sending the installOn: message to each of its subclasses.

VisualWorks

Defining Interfaces

By default, installOn: flushes any cached information in external methods.
You may override installOn:, but be sure to use super installOn: as the first
line of your method. This ensures that external caches get flushed,
ensuring an easier migration to future implementations.

The argument to installOn: is a two-element array. The first element is a
Symbol that indicates the platform class your application is currently
running on (for example, #win32, #mac, #0s2, or #unix). The second
argument is a string that describes details of the current platform. For
example, the argument to installOn: for a MS-Windows NT platform would
be #(#win32 'win32 V4.0 nt i386'). The second argument varies depending
on the current configuration of your machine.

The argument to installOn: is available anytime during the execution of
your application by sending the message currentPlatform to the class
Externallnterface, or any of its subclasses.

A list of platforms and their currentPlatform array is shown in the following
table. Note that the second array argument is dynamically generated on
some platforms based on the current operating environment. Note that
these values may vary depending on the actual platform configuration.

Platform-specific currentPlatform arrays

Platform Example identification

MS-Windows 98 #(#win32 'win32 V4.10 95 i386')
MS-Windows 95 #(#win32 'win32 V3.10 win32s')
MS-Windows NT #(#win32 'win32 V4.0 nt i386')
MS-Windows 2000 #(#win32 'win32 V5.0 nt i386')
MS-Windows XP #(#win32 'win32 V5.1 nt i386')

0S/2 #(#0s2 '0s2 0S/2 V2.0')

Mac0S 9.x #(#mac 'mac macOS V8.00 PowerMacintosh')
MacOS X #(#unix 'unix bsd apple Power MacOSX")
IBM RS/6000 #(#unix 'unix bsd ibm rs6000 aix')
Solaris 2.5 #(#unix 'unix sysV sun solaris')

HP 9000 Series 700 #(#unix 'unix sysv hp 700 hp-ux')

Other initializations occur when the image is first started and are
discussed in the section “External Heap and Snapshots” on page 3-26.

DLL & C Connect User’s Guide 2-15

Defining External Interfaces

Dynamic-Link Libraries

2-16

Depending upon whether you choose static or dynamic linking of C
modules, the strategies for loading the actual C code differs slightly. With
dynamic linking, you only need to arrange for the library files to be loaded
by DLL and C Connect. With static linking, the code is already linked into
the Object Engine executable, but you need to register the functions that
you call. Although it is recommended that you choose dynamic rather
than static linking, DLL and C Connect does support both approaches. To
register your statically linked files, use the special mechanism described
in the section “Static Linking” on page 8-4. The following discussion
explains how to arrange for DLL and C Connect to load dynamic-link
libraries.

Finding Entry Points

On a platform that supports dynamic-linking, a library is registered when
you compile the interface class (by accepting the class definition). The
library file is specified in your interface class by setting the file name in
the libraryFiles class template attribute.

DLL and C Connect uses a lazy approach to library loading and linking.
When an interface class needs to find an entry-point address for an
exported symbol, it looks for that unbound entry point in the interface’s
libraryFiles list. It scans the library list in the left-to-right order you specified
in the libraryFiles attribute. When it encounters a library that has been
loaded, it simply performs an entry-point look-up. If the library has not
been loaded, it first loads and links the library into memory, and then
performs a lookup of the entry-point. If the entry-point is not found in the
library, it continues the look-up with the next library in the list.

When the library list is exhausted, it is checked for entry-points statically
linked and registered with the running Object Engine. To statically link
and register an entry point, see the section “Static Linking” on page 8-4.
Because the look-up mechanism searches libraries before statically
linked code, a dynamically linked function overrides a statically linked
version.

If the search fails to find the entry-point in any library or the statically
linked code, the exception ExternalMethod externalObjectNotFoundSignal is
raised. Consult “External Interface Exceptions” on page 6-1 for a
comprehensive discussion of exceptions your interface code may raise.

VisualWorks

Dynamic-Link Libraries

Once the look-up is complete and the correct entry-point has been
identified, the function’s address is cached so that future calls on the
library routine will not require a complicated look-up. Thus, the speed of
subsequent calls will be faster than the first call.

Library Search Order

In the interface class-creation template, you can specify multiple
libraryFiles and libraryDirectories attributes. As the name suggests,
libraryDirectories are the directories in which the libraryFiles are located.

Your interface class searches for a library file in the directories listed
using a left-to-right search order. If the library file cannot be found in the
first library, the search continues with the next library in the list. If the end
of the list is reached and the library has not been found, an ExternalLibrary
libraryNotLoadedSignal is raised. See “External Interface Exceptions” on
page 6-1 for a comprehensive list of exceptions your interface code may
raise.

Libraries and Environment Variables

VisualWorks provides two useful conventions for identifying composite file
paths that may be used across a number of platforms. You can make use
of these conventions when designing your Externallnterface classes for
different platforms.

The first convention enables you to specify attributes for libraryFiles or
libraryDirectories that include square brackets, such that the bracketed
string is taken to be a pattern which is matched against the current
platform ID. If it matches, then the library will be loaded. For example, if
libraryDirectories included the following names
[alpha_osf]dllcc.adux [solaris]dllcc.solaris
[win32*i386]dllcc.nt [win32*AXP]dllcc.ant, then the file
dllcc.solaris would only be searched for if the OSHandle's
currentPlatformld matched *solaris*. Note that underscore characters are
mapped to spaces, so dllcc.adux is searched if the platform ID
matches *alpha osf*. For additional details, examine the mapping
mechanism in ExternalLibraryHolder>>findFile:inDirectories:.

Note that when an interface uses this mechanism to optionally load
libraries based on the platform it must also provide an exception handler
for the libraryNotFoundSignal, which is raised when an attempt is made to
load a library that doesn't exist (for examples, see page 5-12, and the
DLLANDCTestlInterface in the DLL and C Connect Test Suite parcel
DLLCCTestSuite.pcl.)

DLL & C Connect User’s Guide 2-17

Defining External Interfaces

2-18

The second useful convention enables you to use environment variables
that are expanded within both the libraryFiles and libraryDirectories
attributes. VisualWorks follows the UNIX convention; that is, an
environment variable is some alphanumeric string starting with a dollar
character ($) and enclosed in parentheses. Thus, under MS-Windows the
following directory name expands to the system32 subdirectory of the
current Windows directory: $ (windir) \system32.

Using these two conventions together, you can set up the libraryFiles and
libraryDirectories attributes of your Externallnterface classes as follows:

libraryFiles: '[unix]libc.so [win]msvcrt20.dll [win]msvcrt40.dil !

libraryDirectories: '[unix]/usr/shlib [unix]/ust/lib
[win]$(windir)\system [win]$(windir)\system32 '

This example would work across a number of different platforms. For
example, on platforms whose currentPlatformID matches *unix*, the library
libc.so will be searched for in /usr/shlib and /usr/1ib. On
platforms whose currentPlatformID matches *win*, the libraries
msvert20.d11 and msvert40.d11 will be searched for in
%windir%\system and %windir%\system32.

When using environment variables, be aware that the Object Engine sets
these variables only once when you start a virtual image, and that any
subsequent changes made to the environment variables in the operating
system will not be reflected for mapping the path(s) of your library files.
This is a consequence of the way that most operating systems pass
environment variables to processes (in this case, the Object Engine).

Programmatic Search

The class definition template provides a fixed means for you to specify
the library files and their directories. However, there may be situations
where these lists are not known at compile-time, but can only be
determined at run-time. In these situations, you can use the following
Externallnterface class protocol to define the library list and the library
directory list. Send these messages directly to your interface class.

VisualWorks

Parsing C Header Files

Defining the library list and library directory list

Method name Purpose

libraryFiles: Reset my libraryFiles. The libraries are

unloaded immediately, so that a new search
for the affected libraries will occur the next
time they are invoked.

libraryDirectories: Reset the private part of the library path,

which is linked to the superclass’s library path.
To have this take effect immediately, this
method will unload the library and the
subclasses’ libraries, so that a new search for
the affected libraries will occur the next time
they are invoked.

unloadLibraries Unload the libraries without changing how

they are specified. The next time the libraries
are accessed, it will be relinked.

Parsing C Header Files

The StandardLibInterface example used a feature of DLL and C Connect
that enables you to parse C language header files and generate interface
methods that correspond to the declarations contained in those files. The
parser recognizes the following C language declarations:

typedefs

enumeration types and constants
macros

defines

function prototypes

variables

In addition, the parser recognizes the following standard preprocessing
directives:

#if, #ifdef, #ifndef, #else, #elseif, #endif
#define

#pragma

#line

#error

DLL & C Connect User’s Guide 2-19

Defining External Interfaces

2-20

e #include
e #assert

The parser evaluates all preprocessor directives. However, it effectively
ignores #pragma which contains compiler-specific directives. In addition,
the #line directive is simply ignored.

When you define an interface class and specify header file names in the
includeFiles class attribute, the class stores the header files that can be
subsequently parsed. You may then use the External Interface Builder to
parse the specified header files, and then to compile methods into your
interface class that correspond to the declarations contained in the
header files. For details about using the Builder tool, see the discussion
of the “External Interface Builder Tool” on page 1-15.

You can also control which declarations in the file are automatically
generated, by using a special pattern-matching string as the argument to
the class-side method generateMethods: in Externallnterface class. For
example, if you only wanted to use the multiply() function in a large library,
you could avoid generating all the other methods by providing 'multiply' as
the argument to the generateMethods: keyword.

MyInterfaceClass generateMethods: 'multiply'.

Wildcarding is recognized in the pattern-matching string, and you can
include multiple patterns separated by spaces.

The following table summarizes the variations that you can use for the
argument to Externallnterface class>>generateMethods:

Wildcard variations

Argument Result

" [empty string] (Re)generate none
"' [space] Regenerate existing methods only

‘add sub*' (Re)generate add and any externals beginning with
sub, in addition to existing methods

(Re)generate methods for all externals declared in
the header files

You should be very careful about which header files you parse using this
technique. Many header files include other header files, which recursively
include yet more header files. It is very easy to specify a system header
file that eventually produces an interface class with hundreds or even
thousands of interface methods. Each interface method consists of

VisualWorks

Parsing C Header Files

several bytes of information, potentially adding thousands of bytes of
method definitions to your VisualWorks image. Be very careful to create
and parse header files that contain the bare minimum of interface
declarations. Make sure you remove automatically generated method
declarations that are not required by your external interface class.

When you generate an interface by parsing a header file, the interface
class automatically defines the following selector protocol. You can create
your own protocol and move the methods to a more descriptive location if
you want to change the default naming.

Selector protocol contents

Protocol Contents

macros All the macros in the header files. Macro is defined
as a #define that accepts arguments.

defines All the #define statements in the header files.

types All the typedef statements in the header files.

variables All the global variables in the header files.

procedures All the function prototypes in the header files

To clarify this mechanism, we can return to the example class
StandardLibInterface, which was described earlier in this chapter. To parse
the C header file that describes this interface, the class generator needs
to search for and read the contents of the stdlib.h file. If you have not
specified a full path name to the file, or have not specified any directories
in the includeDirectories attribute, the system assumes the header file is
located in the current directory.

If a header file cannot be found, a dialog is displayed with an error
message indicating this fact. Click the 0K button to proceed. You should
then check the includeFiles and includeDirectories attributes of the interface
class definition for invalid entries or check for the existence of the named
file to correct the error.

If, for example, you selected the abs() function prototype, an instance
method named abs: will be created automatically. When the DLL and C
Connect parser reads the file std1lib.h, it uses the function prototype to
create the abs: method. Your C code has now been registered. The abs()
function in the DLL will be linked the first time you invoke it.

The parser evaluates #define (defines and macros) statements that
evaluate to scalar values (numbers) and strings. No claims are made that
the parser correctly evaluates more complex C code expressions.

DLL & C Connect User’s Guide 2-21

Defining External Interfaces

For example, the following evaluates correctly because it evaluates to a
scalar:

#define CONSTANT ((long) sizeof(int) * 4) + ((short) 3 << 8)
The following evaluates correctly because it also evaluates to a scalar:

#define STRING "string"

However, the following #define statement contains code fragments, and
does not evaluate to a scalar:

#define MEMBER_ACCESS(a) ((a) -> foo)

2-22 VisualWorks

Parsing C Header Files

Pre-Defined Constants

The C declaration parser defines the following predefined macro names,
as specified by the ANSI C standard.

ANSI C predefined macro names

__LINE__ Line number of the current source program line
_ FILE__ Name of the current source file

_ DATE__ Calendar date of the translation

__TIME__ Time of the translation

__STDC__ Set to 1 if the compiler is ANSI C

If your C compiler is nonstandard, then some or all of these declarations
may be missing. Your C compiler may also supply other predefined
macros for your use.

Currently, _ DATE__ and __TIME__ work as specified in the ANSI C
standard. __STDC__ indicates where ANSI C (as opposed to K&R) is
being parsed. If you want your C code to be able to be compiled by both
an ANSI C or K&R C compiler, then your C code should contain versions
for both ANSI C and K&R C wherever the syntax differs.

The different versions can be marked with the following C pre-processor

code.
#if __STDC__ /* ANSI C code */
#else /* K&R code */
#endif

DLL and C Connect currently does not provide a mechanism to pre-
define constants prior to starting a header file parse. This is contrary to
most C pre-processors, where a compiler switch is available for such a
purpose.

However, you can take advantage of the header file parsing order when
defining your Externallnterface subclass. Simply place all pre-defined
constants in a header file and list that header file first in the includeFiles
attribute of your class definition template. All the #define statements in that
file will be pre-processed before the remaining header files.

For example, suppose you have a header file designed for use on
multiple platforms and wish to create a pre-defined constant indicating on
which platform the header file is to be parsed. Assume your library is
called 1ib.d11 and the library’s header file is called 1ib.h. You want to

DLL & C Connect User’s Guide 2-23

Defining External Interfaces

parse the header file for the Win386 platform (this platform identifier is
completely arbitrary and is used only for example purposes). First create
a header file called win386 . h that contains the following line (or any
other #define statements that you wish to declare):

#define PLATFORM platWin386

Your header file may then contain conditional compilation directives such
as the following:

#if PLATFORM == platWin386

#endif
To actually build this example interface to the Win386 platform, you would
use the following class creation template:

Smalltalk defineClass: #Win386
superclass: #{External.Externallnterface}
indexedType: #none
private: false
instanceVariableNames: "'
classinstanceVariableNames: "
imports: '
private Smalltalk.Win386ExternalDictionary. ™

category: 'Externallnterface-Examples'

attributes: #(
#(#includeFiles #('win386.h lib.h"))
#(#includeDirectories #())
#(#libraryFiles #(lib.dIl’))
#(#libraryDirectories #())
#(#beVirtual #false)
#(#optimizationLevel #full))

Again, notice that the pre-definition file, win386 .h, appears before the
library header file.

Syntax Errors

On rare occasions you might attempt to parse a header file that contains
constructs not recognized by the C declaration parser. When the parser
encounters such an error, it displays a Syntax Error notifier window. The
window contains the pre-processed text of the entire header file contents.
This includes the top-level header file, and recursively any header files it
includes. Because you are viewing pre-processed source code, the
actual text does not look the same as the original source.

2-24 VisualWorks

Parsing C Header Files

Within the window a highlighted string, syntax error ->, marks the
suspected position of the syntax error. This highlighted text is not always
visible in the new window. You may need to scroll through the text to the
location of the syntax error marker. Although the parser attempts to be as
accurate as possible when indicating the location of the error, many times
it indicates only an approximate location. You should look several
characters or statements before the marker to locate the actual cause of
the error.

To proceed from a syntax error, and ignore the current error, you can
allow the parser to attempt a recovery by simply selecting proceed from
the <Operate> menu. Most of the time, however, this results in further
notifiers, because the parser is now in a confused state.

To proceed from a syntax error and halt parsing, select close from the
<Window> menu, or use the window’s close mechanism. Once the
window is closed, your interface class does not contain any method
declarations for the current parse. Edit the header file to fix the syntax
error and re-parse the file.

Due to the restrictions on the parsing of #define statements, it is possible
to encounter trouble with C definitions such as the following:

#define APIENTRY _System

’Eyp]edef int (APIENTRY _PFN) ();

typedef _PFN *PFN;
This code will produce a syntax error during parsing. This limitation will
be eliminated in a future release of DLL and C Connect. Under the
current implementation, you can work around the limitation by creating a
“wrapper” header file which #defines the offending types to nothing. Since
the types are not handled by the DLL and C Connect parser, and are
therefore meaningless for Smalltalk, this approach is easier than editing
your header files. Including these “wrapper” header files will allow you to
parse the files without error.

For example, the previous example can be parsed correctly if it is
preceded by a file containing the following wrapper definitions:

#define _System

(define any other problematic types as well)

DLL & C Connect User’s Guide 2-25

Defining External Interfaces

2-26

When you simply want to see the definitions in a header file, or test to
verify that it parsed correctly, you can do so without having to create a
new subclass of Externallnterface. A utility protocol provided by class
Externallnterface parses one or more files and returns a dictionary
containing the names that are defined in the #include files. For example,
on a Windows NT platform you could inspect the following expression to
see the contents of stdlib.h:

Externallnterface
parselncludeFiles: 'stdlib.h'
includeDirectories: 'C:\MSDEWinclude\

When defining a new interface class, you should bear in mind that the
superior strategy is to use the External Interface Builder tool (for details
and a discussion of its use, see the section entitled “External Interface
Builder Tool” on page 1-15).

Interfacing with Other Languages

Instead of calling external code compiled with a C compiler, you might
want to call code compiled with a different language compiler. DLL and C
Connect can provide access to other languages, as long as the interface
to the external code conforms to a calling convention for supported C
functions. Be aware that interfaces to external code written in languages
other than C are not officially supported.

To access DLLs written in another language, you must use the standard
development tools to create an appropriate Externallnterface and
associated accessing methods. You can use either the VisualWorks
programming tools, or the special tools that are part of DLL and C
Connect.

An example of this feature is to use DLL and C Connect to access
dynamic-link libraries built with a C++ compiler. Although calling C++
member functions or accessing C++ objects are not supported, it is
possible to write a C language wrapper to your C++ code.

To do so, you must wrap external library function prototypes within an
external C block. Each function declared in this block will conform to C
calling conventions. The body of the function can then call C++ member
functions and access C++ objects.

VisualWorks

Parsing C Header Files

For example, you can access C++ code using C wrappers in the following
manner:

extern "C" {
int wrapperFunctioni(void);
long wrapperFunction2(long);
}

int
wrapperFunction1(void)
{

}

<<C++ code>>

long
wrapperFunction2(long aLong)

<<C++ code that uses the argument aLong>>
1

The above C++ example does not discuss the problems associated with
global variable constructor execution when dynamic-link libraries are
loaded. We leave this detail to the particular compiler implementation.

Other language bindings, for example COBOL, may be possible given a
C language wrapper layer.

DLL & C Connect User’s Guide 2-27

Defining External Interfaces

2-28 VisualWorks

3

Creating and Accessing C Data

A function in an existing C library sometimes requires an argument
having a custom data structure, such as a structure containing several
members. To create a suitable C data object for such a function, you must
be able to create an equivalent object in Smalltalk. In addition, C data
objects that survive across function calls or callbacks need to be
allocated in a special memory heap where they are protected from the
Smalltalk garbage collector.

This chapter describes:

* General strategies for sharing data objects between your Smalltalk
applications and C modules.

* The notion of an external heap, and its relation to the Smalltalk object
memory.

Memory Allocation in Smalitalk

Smalltalk provides fully automatic memory management that frees
developers from the traditional concerns of storage allocation imposed by
C. Since the two languages have very different underlying assumptions
about memory management, it is absolutely critical that you use the
correct strategy for passing parameter data between Smalltalk and C.

To choose the proper strategy for passing data objects between Smalltalk
and C, it is important to first look briefly at the way that the Smalltalk
Object Engine handles storage allocation.

At system startup time, Smalltalk allocates and controls the following
fixed-size memory spaces: CompiledCodeCache, StackSpace, NewSpace,
LargeSpace, PermSpace, and FixedSpace. Each of these spaces is used by
Smalltalk to hold program elements of a particular type. The default size

DLL & C Connect User’s Guide 3-1

Creating and Accessing C Data

of most of these spaces can be altered at system startup (see the
protocol for ObjectMemory class). For Smalltalk applications that pass data
to C functions, the most important of these spaces is FixedSpace. In
addition to the above fixed-size memory spaces, the system also
manages a variable-size space known as OldSpace.

The CompiledCodeCache contains methods whose byte codes have been
compiled directly into machine code for the current platform.

The StackSpace contains the stack of activation contexts created during
the execution of a Smalltalk process.

NewSpace is used to house newly created objects. It is composed of three
partitions: an object-creation space, which is called Eden, and two
survivor subspaces.

LargeSpace is used to hold the data of large byte objects (bitmaps, strings,
byte arrays, uninterpreted bytes, and so on). In this case, “large” means
byte objects greater than 1 kilobyte.

PermSpace is used to hold all semipermanent objects. Because they are
rarely ready to die, the objects held in PermSpace are exempt from being
collected by any reclamation facilities other than the global garbage
collector.

FixedSpace is used to hold semipermanent, non-pointer objects that are
passed as arguments to selected C function calls. This space is designed
specifically for use with DLL and C Connect. The object bodies held in
FixedSpace are never relocated, but they are still garbage collected.
Objects are promoted to FixedSpace automatically when they are passed
as arguments to a threaded call (these are discussed in the chapter
“Threaded Interconnect” on page 5-1).

OldSpace holds all objects that are not held in one of the fixed-size spaces
previously described. Although OldSpace can be thought of as a single
contiguous chunk of memory, it is implemented as a linked list of
segments which occupy the upper portion of the system heap.

Reclaiming Space

3-2

Smalltalk has automatic collection and compaction facilities for reclaiming
space occupied by objects that are no longer accessible from the system
roots. These facilities include: a generation scavenger, an incremental
garbage collector, a compacting garbage collector, a global garbage

VisualWorks

Allocating C Data Types

collector, and a data compactor. Smalltalk uses these collection and
compaction facilities to provide transparent object allocation, object
movement, and object reclamation.

The interaction between the memory management facility and your
Smalltalk program is typically transparent. Smalltalk takes care of
updating pointers when objects are moved in memory (for example,
during a scavenge or compaction).

However, this automatic memory management scheme does not mesh
easily with C code. An external C function can be passed references
(pointers) to objects, and it may expect to maintain these references long
after Smalltalk has had a chance to reclaim memory and potentially move
memory objects.

DLL and C Connect provides a means to reconcile all of the differences
between the automatic storage management employed by Smalltalk and
the manual allocation of C. However, it is critical that you choose the
correct strategy for allocating C data objects passed to external functions.

The following section provides a more detailed discussion of allocation
strategies. If your application is multi-threaded, also see “Managing Data
Objects with Multiple /O Threads” on page 5-4.

Allocating C Data Types

In general, your application must ensure that all C data objects remain in
a fixed location for a predictable amount of time. Data objects passed to
external functions must not be referenced by the external library after
they have been deallocated by Smalltalk.

To safely share data objects with external libraries, DLL and C Connect
provides two general strategies for creating C data objects that will never
be moved by the Smalltalk memory management facilities.

1 The first strategy involves explicitly requesting that an object be
created in the external heap. This heap is a segment of memory not
controlled by the Smalltalk memory manager, and so objects
allocated there will never be relocated. You are responsible for
allocating and freeing objects located in this heap.

2 The second strategy involves creating objects in FixedSpace, a special
zone in the object memory that is not subject to compaction. Objects
allocated in FixedSpace (like those in the external heap) will never be
relocated. However, unlike objects in the external heap, those in
FixedSpace will be subject to automatic garbage collection.

DLL & C Connect User’s Guide 3-3

Creating and Accessing C Data

The advantages and tradeoffs between these two strategies are
discussed in a separate section on FixedSpace later in this chapter (see
“Allocating Objects in FixedSpace” on page 3-26). It is important to bear
in mind that regardless of which strategy you choose, both FixedSpace and
the external heap are limited resources, so you must be careful to

manage t

hem accordingly.

The following diagram summarizes the structure of the Smalltalk
ObjectMemory in relation to the external heap:

Smalltalk Application Memory

Smalltalk Controlled Heap

(OldSpace (segment n))

(OIdSpace (segment 1)>

PermSpace

< LargeSpace) N
(NewSpace)
(FixedSpace) B
(Compiled code cache>]
< StackSpace)

Incremental
— garbage
collector
Global
Garbage
Collector
| | Generation
scavenger
Reclamation
I policy in OF

— Mo reclamation

(Object Engine >

Application memory structure

34

Application Controlled Heap

Memory allocated using
malloc Application
malloc: garbage
gcMalloc collected
gcMalloc:

N/

VisualWorks

Allocating C Data Types

DLL and C Connect provides six methods that allocate C data types.
These methods are new, newInFixedSpace:, malloc, malloc:, gcMalloc, and
gcMalloc:. The first two methods, new and newlInFixedSpace:, allocate data
in parts of the Smalltalk object memory, so it can be managed
automatically by the Smalltalk memory manager.

The remaining methods (malloc, malloc:, gcMalloc, and gcMalloc:) allocate
data in the external heap. Data allocated in the external heap will not be
moved by the Smalltalk memory manager. Thus, references to the
external heap can be passed to C functions that store the reference for
an indeterminate amount of time, or the references can be passed to
functions which invoke callbacks that allow the memory manager a
chance to relocate Smalltalk objects. Much like the data in the external
heap, objects allocated in FixedSpace will not be moved and can be safely
manipulated by C functions.

The following table is an overview of the C object allocation protocol that
you can send to the objects answered by the typedef methods in your
interface class.

C object allocation protocol

Method Description

new Allocates a C object in Smalltalk memory. This object will
be under the control of the Smalltalk memory manager,
and thus will be moved in memory, and its space
reclaimed when no Smalltalk object continues to
reference it.

newInFixedSpace: aSize Allocates a C object in Smalltalk memory. This object will
be under the control of the Smalltalk memory manager,
but it will never be moved in memory. lts space will be
reclaimed when no Smalltalk object continues to
reference it.

malloc Allocates a C object in the external heap. Enough
memory is allocated to contain one copy of the receiver.
This memory is not controlled by the Smalltalk memory
manager and it must be explicitly released by sending the
free message to the object answered by the malloc
method.

malloc: numCopies Allocates a C object in the external heap. Enough
memory to contain numCopies of the receiver is allocated.
A pointer to the first element is answered. This memory is
not controlled by the Smalltalk memory manager and
must be explicitly released by sending the free message
to the object answered by malloc:.

DLL & C Connect User’s Guide 3-5

Creating and Accessing C Data

3-6

C object allocation protocol (Continued)

Method Description

gcMalloc Allocates a C object in the external heap. Enough
memory is allocated to contain one copy of the receiver.
This memory is not controlled by the Smalltalk memory
manager. The memory will be automatically released
when no Smalltalk object references the object answered
by this method. Do not send free to the object answered
by gcMalloc—this is handled automatically.

gcMalloc: numCopies Allocates a C object in the external heap. Enough

memory is allocated to contain numCopies of the receiver.
A pointer to the first element is answered. This memory is
not controlled by the Smalltalk memory manager. The
memory will be automatically released when no Smalltalk
object references the object answered by the method. Do
not send free to the object answered by gcMalloc: —this is
handled automatically.

free Release the memory allocated by the malloc and malloc:
methods. Do not send free to an object referencing
memory that was allocated by gcMalloc or gcMalloc:.

Note: The MS-Windows 98/95 platform supports memory allocated
for both 32-bit linear pointers and 16-bit segmented pointers. The
memory allocation protocol has been expanded to support the direct
allocation of segmented pointers. This protocol is only valid on the
MS-Windows 98/95 platform. The protocol is malloc16, malloc16:,
gcMalloc16, and gcMalloc16:.

If the memory manager is unable to meet an external heap allocation
request to malloc, malloc:, gcMalloc or gcMalloc:, an exception will be raised
with the error #'C allocation failed'. The parameter field in the SystemError
object associated with the exception may contain the number of bytes
needed to satisfy the allocation request. Your code should include an
exception handler to catch these errors. For more details on the specifics
of error handling, you may refer to the section “Exception Handling” on
page 6-1.

The allocation strategy that you choose depends upon several factors.
For data that you would like to persist in the form of Smalltalk objects (for
example, across snapshots), it may be preferable to use FixedSpace.
Tradeoffs in this strategy include the requirement that pointers must be
updated after snapshots, and that only byte-field objects may be
allocated in FixedSpace. Objects allocated by calling newlInFixedSpace: can
be more efficiently manipulated by both Smalltalk and C, but they also

VisualWorks

Allocating C Data Types

involve additional storage overhead. For data that you would like to
persist in the form of C data objects (e.g., across several C function calls),
the best approach may be to use malloc or gcMalloc.

Allocating space on the external heap for a C data object is performed
with a malloc message. This message is sent to an instance of subclass
CType, which represents the type of data to be allocated.

To illustrate the use of malloc, consider the following hypothetical example
class Customerinterface, which will be used to instantiate a series of
Customer objects. The memory requirements of the instances are
described by class CustomerType, which is a subclass of CType. Assume
that these classes are generated during the automatic parsing of a C
interface specification. To allocate space on the external heap for the
CustomerType object, you would use the following expression:

pointer := Customerinterface new CustomerType malloc.

You can also use the malloc: message to allocate multiple CustomerType
slots on the heap:

pointer := CustomerInterface new CustomerType malloc: 5.

The result is a CustomerType * pointer, which points to the first element of
an array for five CustomerType C data objects.

To deallocate the heap space associated with a pointer, send free to it, as
in the following example:

pointer := Customerinterface new CustomerType malloc.
"pass the pointer to functions that use its datum."
pointer free.

You can also use a variant of malloc (gcMalloc or gcMalloc:) to allocate
garbage-collectable space on the heap. When the pointer to storage
allocated using gcMalloc is no longer referenced within Smalltalk, the
space on the heap is freed automatically. An example is:

| pointer |
pointer := Customerlinterface new CustomerType gcMalloc.
"Pass the pointer to functions that use its datum"

When the above code is completed, and the pointer variable no longer
exists, the CustomerType pointer object is no longer referenced by any
Smalltalk object, so it will be deallocated the next time the Smalltalk
garbage collector finalizes objects. Note that you do not need to be
concerned with the finalization process here. For more information on
finalization, consult the VisualWorks Application Developer’s Guide.

DLL & C Connect User’s Guide 3-7

Creating and Accessing C Data

3-8

C procedures that retain copies of pointer arguments can cause
referencing problems. If you use gcMalloc, gcMalloc:, or newlInFixedSpace: to
allocate external memory subject to automatic garbage collection and
pass the associated CPointer to external code that maintains a copy of this
pointer, you must maintain a Smalltalk reference to that CPointer for as
long as the external copy of the pointer is valid. If the CPointer is dropped
and garbage collected, the block of referenced memory is freed, and may
be reallocated. When the external C code attempts to use its (now stale)
copy of the pointer, it may find garbage where you once had valid data.
This can be a very difficult problem to isolate, and is potentially fatal.
Therefore, take care that your CPointer objects are referenced for the
lifetime of their corresponding heap pointer.

Allocating Space on an External Heap

Of the two allocation strategies described at the beginning of this chapter,
the first strategy is used to allocate new C data objects on the external
heap. This allocation protocol is comprised of the methods malloc, malloc:,
gcMalloc, and gcMalloc:. A variant of this strategy involves those situations
where you may want to begin with a Smalltalk object and then move it
onto the external heap. This is typically done in cases where the C code
references the object indefinitely. To copy a selected set of Smalltalk
objects to the heap, use one of the following methods:

Copying Smalltalk objects to a heap

Method Description

copyToHeap Copies the receiver to the external heap and answers
a pointer to the heap location. This memory is not
controlled by the Smalltalk memory manager and
must be explicitly deallocated by sending the free
message to the answered object.

gcCopyToHeap Copy the receiver to the external heap and answer a
pointer to the heap location. This memory is
automatically deallocated when the Smalltalk object
answered by the message is no longer referenced.

Note: The MS-Windows 98/95 platform supports memory allocated
for both 32-bit linear pointers and 16-bit segmented pointers. The
memory allocation protocol has been expanded to support the direct
allocation of segmented pointers. This protocol is only valid on the
MS-Windows 98/95 platform. The protocol is copyToHeap16 and
gcCopyToHeap16.

VisualWorks

Allocating C Data Types

The heap copy protocol cannot copy an arbitrary Smalltalk object (or
object graph) to the heap. It is designed to copy scalar objects (numbers,
strings, and byte arrays). The classes whose instances can be copied
directly with this protocol are as follows: Integer, Double, Float, Character,
ByteArray, ByteEncodedString (and its subclasses), IntegerArray,
TwoByteString, UninterpretedBytes, and WordArray.

To copy an instance of a Smalltalk object to the heap, send it a
copyToHeap message, as follows:

pointer := aninteger copyToHeap.

Since external heap space that is allocated in this manner is not subject
to automatic storage management, your application must explicitly
deallocate this memory with a free message. An alternative approach is to
use the message gcCopyToHeap to return a pointer that is marked as
being collectible. When the Smalltalk pointer object is no longer
referenced, its associated heap space is freed automatically.

To copy a Smalltalk object to the heap and return a pointer that is subject
to garbage collection, use an expression such as the following:

pointer := aninteger gcCopyToHeap.

The following table indicates which type of C pointer is returned when
copying a Smalltalk object of a particular class. With respect to the
abstract class ByteEncodedString, it should be noted that the pointer
attribute also pertains to each of its subclasses, and not simply the
abstract class as the table might seem to suggest. (This includes
ByteString, MacString, 0S2String, and 1S08859L1String.)

Pointer returned after a copy

Class Pointer

Integer long *

Double double *

Float float *

Character unsigned char * orunsigned short *
ByteEncodedString unsigned char *

TwoByteString unsigned short *

ByteArray unsigned char *

WordArray unsigned short *
UninterpretedBytes unsigned char *

DLL & C Connect User’s Guide 3-9

Creating and Accessing C Data

You must override the implementation of copyToHeap if you want to write
specialized code to copy instances of one of your application classes to
the heap. It is impossible to copy an arbitrary Smalltalk object to the heap,
as the object can be a complex graph with no direct C representation.

For example, suppose your application contains a class that references a
Smalltalk array of float objects. You determine that when this class is
copied to the heap, the application’s behavior that you defined requires
that the class creates a C float array containing the information in the
Smalltalk float array. To do this, you can use the following code fragment
to perform the copy. Assume that the class instance variable that
references the Smalltalk Array object is called floatArrayInstVar.

copyToHeap
| floatArrayPtr arraySize tempPtr |
arraySize := floatArrayInstVar size.
floatArrayPtr ;= CLimitedPrecisionRealType float malloc: arraySize.
tempPtr ;= floatArrayPtr copy.
1 to: arraySize do: [:i |
tempPtr contents: (floatArrayInstVar at: i).
tempPtr +=1].
MloatArrayPtr

Note the following about the above code fragment:

* The C float type object allocated enough storage in the external heap
to contain all the array’s Float data. It constructs a C float type
(CIntegerType float) and then calls malloc: with the correct size of the
array as a parameter.

* Atemporary pointer was created by copying the heap float array
pointer (floatArrayPtr). This is required because the copy loop
destructively modifies the loop pointer using the += message. You
must maintain a pointer at the beginning of the array, so it can be
answered as the value of copyToHeap.

3-10 VisualWorks

Creating C Data

Creating C Data

All generic C data types are available for use by your Smalltalk code.
These data types are defined by special interface classes that are part of
DLL and C Connect. This includes scalar types (integer, float, character,
and enumerated), composite types (union, structure, and array), and pointer
types.

DLL and C Connect provides a class hierarchy that parallels C data
types. CDatum and its subclasses represent actual C data, such as string,
or the pointer represented by an address, such as 0x734521.

CDatum subclasses provide the means to represent more complex data
types, such as structures and arrays. When a C function has an argument
or return value of one of these data types, DLL and C Connect converts
between the C data and an instance of a subclass of CDatum. The
subclasses of CDatum also provide appropriate accessing methods so
that your application code can insert data into and extract data from the
CDatum.

Each CDatum contains an object to hold the actual data, plus an instance
of CType to represent the C type of the data.

For simplicity, you should avoid creating instances of CType and CDatum
objects by directly sending allocation messages to these classes.
Instead, create them as a side-effect of access methods defined in their
Externalinterface subclass and the type instance creation messages (new,
newlnFixedSpace:, malloc, malloc:, gcMalloc, and gcMalloc:.)

Scalar Data

Scalar value types are represented directly by ordinary Smalltalk objects:
Integer, Double, and Float. For example, a function that expects an integer
as an argument can be passed an instance of Smallinteger,
LargePositivelnteger, or LargeNegativelnteger. Conversion to and from the
correct integer class is handled automatically. A #'bad argument' exception
is raised when an incorrect value is passed, such as when a
LargePositivelnteger is passed to a function that expects a short integer (for
details on exceptions, see “Exception Handling” on page 6-1).

DLL & C Connect User’s Guide 3-11

Creating and Accessing C Data

3-12

The following table lists the corresponding scalar types:
Correspondence between scalar C types and Smalltalk classes

C type Smalltalk object

unsigned char ~ Smallinteger
char Smallinteger
unsigned short ~ Smallinteger
short Smallinteger

unsigned int Smalllnteger or LargePositivelnteger depending on a
particular platform’s int type size.

int Smallinteger, LargePositivelnteger or LargeNegativelnteger
depending on a particular platform’s int type size.

unsigned long Smallinteger or LargePositivelnteger

long Smallinteger, LargePositivelnteger or LargeNegativelnteger
float Float or Double
double Float or Double. If Float is used, it is promoted to

Double-precision.

Notice that Smalllnteger, LargePositivelnteger, and LargeNegativelnteger are
used to represent [unsigned] int and [unsigned] long data types. Smalltalk
imposes a range limit on Smalllntegers, typically -22° to 229 - 1. Depending
on the platform’s default byte size for these types, the maximum or
minimum Smallinteger values can be exceeded. In this case Smalltalk
uses a LargePositivelnteger or LargeNegativelnteger representation. However,
not all LargePositivelnteger or LargeNegativelnteger objects can be used, only
those that fall into the default range of the platform’s byte size for
[unsigned] int and [unsigned] long types. If an out-of-range Smalltalk
number is used for a given C scalar type, your C function call will fail with
a #'bad argument' exception.

For float and double scalars, use both Smalltalk Float and Double objects.
Note, however, that every Float can be coerced into a Double, but not every
Double can be coerced into a Float. If you use a Double when a float is
expected, your C function call will fail with a #'bad argument' exception that
identifies the invalid argument (for details on exceptions, see “Exception
Handling” on page 6-1).

VisualWorks

Creating C Data

A Smalltalk Character object does not undergo a conversion process. You
are responsible for converting the character object to and from an integer
value using the current platform’s encoding. You can convert the
character by performing the following:

aninteger := String defaultPlatformClass encode: aCharacter
aCharacter := String defaultPlatformClass decode: aninteger

Do not assume the asinteger message returns the correct Character
encoding.

Enumeration Types

DLL and C Connect represents enums (enumeration types) using
instances of CEnumerationType. For example, an interface class might
include the following declarative method:

fewMonths
<C: enum months{ Jan, Feb, Mar, Oct = 10}>

You can access members of this enum using an instance method e.g.:

getMonth
| anEnum |
anEnum := self new fewMonths.
anEnum memberNamed: #Feb.
anEnum memberNamed: #0ct.

The last two lines of the method return the small integers 1 and 10
respectively. If the enum definition included a typedef, i.e.:

fewMonths
<C: typedef enum {Jan, Feb, Mar, Oct = 10} months>

Then the getMonth method shown above would need to be changed:

getMonth
| anEnum |
anEnum := self new fewMonths.
anEnum type memberNamed: #Feb.
anEnum type memberNamed: #0ct

Note that you cannot change the value of the member outside its
definition (this is consistent with the semantics of enums in C). Also, you
cannot pass an enum object directly to a C function. Instead, you must
pass the members as Integers.

Composite Data

Your interface class can declare structures or unions using a typedef
method. For example, suppose you want to pass a structure containing
customer information to a function. The structure contains two members:

DLL & C Connect User’s Guide 3-13

Creating and Accessing C Data

3-14

the customer’s name and account number. The definition appears ina C
header file, and the typedef declaration in the header file resembles the
following:

typedef struct {
char *name;
int account;
} Customer;

When you use the External Interface Builder to parse the header file and
compile the interface class, a Smalltalk method named Customer is
automatically created in the interface class that parallels this declaration.
You can also manually create this method by simply adding the method to
your interface class. The resulting Smalltalk method would look like the
following:

Customer
<C: typedef struct {
char *name;
int account;
} Customers>

To create an empty instance of a customer structure, use the following
code fragment:

| interface customerType customerRecord |
interface ;= Customerinterface new.
customerType := interface Customer.
customerRecord := customerType gcMalloc.

Notice the following about the above code fragment:

* The second line creates an instance of a hypothetical interface class,
the class that encapsulates the Customer interface and defines the
Customer typedef method.

e The third line asks the interface for the Customer type. The type is an
object that represents the C typedef declaration.

* The fourth line asks the type object to create a new instance of itself.
The gcMalloc message is used to allocate the object in the external
heap, so that it will be suitable to pass as a parameter to C code.
Note that once the code fragment is completed, the customerRecord
will no longer be referenced by any Smalltalk object, and will thus be
reclaimed during the next finalization.

The expressions for creating an instance of a customer structure can be
further condensed, as shown in the first expression below. The second
expression places an actual number into the account member, using a
memberAt:put: message, and retrieves the account field using memberAt:.

VisualWorks

Creating C Data

| customerRecord |
customerRecord := CustomerInterface new Customer new.
customerRecord
memberAt: #account
put: 346.
AcustomerRecord memberAt: #account

The above method simply returns the number 346, the account member.

There may be situations where you need to access a structure member
that is a structure itself. The process to access the structure member
depends on the method in which the structures were created. The
following strategy should be employed when the structure is allocated in
the external heap, using the CType protocol malloc, malloc:, gcMalloc, or
gcMalloc:. The example structure is:

subStruct
<C: typedef struct {
intA;
int B;
} subStruct>

baseStruct
<C: typedef struct {
char *name;
subStruct number;
} baseStruct>

Assume the following C function is defined:

printStruct: arg
<C: int printStruct(baseStruct *)>

Data can then enter into the structures with the following code fragment:

| aBaseStruct aSubStruct customer name |
customer := Customerinterface new.

name := 'Gincom' copyToHeap.

aBaseStruct := customer baseStruct gcMalloc.
aBaseStruct memberAt: #name put: name.
aSubStruct := aBaseStruct refMemberAt: #number.
aSubStruct memberAt: #A put: 16.

aSubStruct memberAt: #B put: 20.

(customer printStruct: aBaseStruct) inspect

name free.

However, when the structure is allocated in Smalltalk memory using the
CType protocol new, use the following method. After aSubStruct is
populated with data, it should be placed into aBaseStruct:

DLL & C Connect User’s Guide 3-15

Creating and Accessing C Data

| aBaseStruct aSubStruct customer name |
customer := Customerlinterface new.

name := 'Cincom' copyToHeap.

aBaseStruct := customer baseStruct new.
aBaseStruct memberAt: #name put: name.
aSubStruct := customer subStruct new.
aSubStruct memberAt: #A put: 16.

aSubStruct memberAt: #B put: 20.

aBaseStruct memberAt: #number put: aSubStruct.
(customer printStruct: aBaseStruct gcCopyToHeap) inspect.
name free

Those accustomed to writing C code (as opposed to Smalltalk code)
might notice a design philosophy that differs slightly from the C
philosophy regarding composite member accessing. DLL and C Connect
implements a simple load/store/reference design for composite members.
All member access protocols either answer a copy of a member (load),
sets the value of a member (store), or answer a reference to a particular
member. This is contrary to the C language notion of an Ivalue and rvalue
(consult a C language reference manual if you are not familiar with this
terminology), where the same C expression is used to both load and
store values into a member (or expression in general). Keep this in mind
when writing Smalltalk code that attempts to mimic existing C code.

In general, the Smalltalk composite accessing protocol answers a copy of
a member that is independent of the member’s type. The modification
protocol sets the value of a member only if the protocol’s argument is of
the same type as the member. This is true even if a structure member is
itself a more complicated type, such as another structure, union, or array.
For example, assume the following structure declaration:

struct {
<T1> membert;
<T2> member2;
<T3> members3;
}
The protocol memberAt: answers a copy of member1, member2 or member3
that is independent of the types T1, T2, or T3. Similarly, memberAt:put: fails
if the second argument is not an object type equal to T1, T2, or T3. If you
do not wish to receive a copy of a member (for example, you want to
modify the member in place) use the refMemberAt: message.

An exception to this rule is array member accessing. If a structure
contains a member that is an array of objects, accessing that member will
answer a pointer to the first element of the array (zero-based). For
example, assume the following structure definition:

VisualWorks

Creating C Data

PersonName
<C: typedef struct {
char firstName[10];
char lastName[40];
} PersonName>
Creating an instance of the structure and asking for the firstName member
will answer a char * pointer object to firstName[0].

| aPersonName firstNamePtr |

aPersonName := Customerinterface new PersonName gcMalloc.
firstNamePtr := aPersonName memberAt: #firstName.
firstNamePtr contents: 97

Pointer Data
C pointers may be used in Smalltalk code. You can create an instance of
a C pointer object in one of three ways:
* Allocate space on the external heap
e Copy a Smalltalk or C object to the heap
* Receive a pointer as the result of a function call

Using the Customer structure from the previous example, assume the
following function declaration. This creates a new Customer object and
answers a pointer to that object:

Customer *CreateDefaultCustomer(void);

The following interface method corresponds to the above C procedure
declaration:

CreateDefaultCustomer
<C: Customer *CreateDefaultCustomer(void)>

The following expressions can be used to access the name member of
the Customer returned by CreateDefaultCustomer:

| customerPtr |

customerPtr := Customerinterface new CreateDefaultCustomer.
customerPtr memberAt: #name.

customerPtr free.

Note: Use the Smalltalk value nil to represent NULL C pointers.

DLL & C Connect User’s Guide 3-17

Creating and Accessing C Data

3-18

Array Data

It is a well-known feature of the C language that the distinction between
array data and pointers is not very strong. Pointers can be used as if they
were declared as arrays. If these pointers are used to index array data,
bounds checking on the array object is typically not performed.

When using arrays and pointers, it is very important to remember that C
array accessing is 0-based as opposed to Smalltalk’s 1-based array
accessing.

An example array type declaration is as follows:

FloatArray
<C: typedef float FloatArray[10]>
To create an instance of this array of 10 floats in the external heap, use
the following code:

MyInterface new FloatArray malloc.
To access an element of the array, use the following code:

| aFloat floatArray |

floatArray := MylInterface new FloatArray malloc.
floatArray at: 3 put: 1.234.

aFloat := floatArray at: 3.

floatArray free

AaFloat

Multi-dimensional array protocol is not supported. To access an element
of a multi-dimensional array, you must calculate the location of the
element yourself. For example, assume the following 10x10 float matrix
declaration:

Matrix
<C: typedef float Matrix[10][10]>

You can access the float located in the third row and the fourth column by
using the following:

| aMatrix aFloat threeAtFourindex |
aMatrix := Mylnterface new Matrix malloc.
threeAtFourindex :=3 * 10 + 4.

aMatrix at: threeAtFourindex put; 1.234.
aFloat ;= aMatrix at: threeAtFourindex.
aMatrix free.

AaFloat

VisualWorks

Creating C Data

It is also possible to obtain a pointer to a sub-element within a
multidimensional matrix by simply performing pointer arithmetic on the
array pointer. The refAt: method can be used to index a pointer into an
array.

| aMatrix aFloat aFloatPtr threeAtFourindex |
aMatrix := MyInterface new Matrix malloc.
threeAtFourindex := 3 * 10 + 4.
aFloatPtr := aMatrix refAt: threeAtFourlndex.
"Same as:"
"aFloatPtr := aMatrix + threeAtFourlndex."
aFloatPtr contents: 1.234.
aFloat := aMatrix at: threeAtFourindex.
aMatrix free.

AaFloat

In the fourth line of this example code fragment, the refAt: message
returns a pointer that is threeAtFourindex elements from the origin of
aMatrix. The argument to the refAt: method must be a zero-based index.

String Data

Smalltalk String objects are treated as a special case when passed as
function arguments typed as char *.

In the case of String arguments, a direct pointer to the Smalltalk String is
passed if the String can be properly NULL terminated. If not, Smalltalk
makes a NULL terminated copy of the string in Smalltalk’s object memory
and a pointer to the new copy is passed as the function’s argument. It
should be noted that objects allocated in FixedSpace are always created
with extra space for NULL termination, and thus it may be more efficient to
allocate String objects using newlInFixedSpace:.

Because of Smalltalk’s ability to copy the String argument, do not assume
that strings can be destructively modified. If you wish to destructively
modify a string, first copy the string to the heap and then copy it back into
a Smalltalk String object after the function returns, or allocate the
character array directly in either FixedSpace or the external heap.

Care must be taken when passing String objects. Smalltalk implements
an assortment of string classes, and each class is used to represent a
different type of string. For example, ByteEncodedStrings all use character
arrays to represent strings where each character is mapped to a single
byte, and TwoByteStrings are used to represent character arrays where
each character is mapped to two bytes.

DLL & C Connect User’s Guide 3-19

Creating and Accessing C Data

Various platforms maintain different rules about which byte value maps to
which character object. To facilitate this mapping in a transparent way,
Smalltalk maintains subclasses of ByteEncodedString for various platform
character encodings. For example, instances of class 1S08859L1String are
used for MS-Windows.

Consistency is maintained by using the current platform’s string encoding
scheme when sending string object references to C. Every string object
undergoes an encoding process if it is not already a platform string. This
is true of function arguments. The encoding process may require
Smalltalk to make a local copy of the string (similar to the NULL
termination scheme described earlier), so do not assume that your C
code may destructively modify the string argument. This encoding
process will also degrade the performance of your function call, so you
should pass Smalltalk String objects with care. An alternative approach is
to use newlnFixedSpace: to allocate String objects that will not need to be
NULL terminated by copying the entire string.

Casting

3-20

It is sometimes necessary to convert one C data type into another form.
The C programming language uses a special casting syntax to
accomplish this. For example, the following line of C code casts a pointer
into an unsigned long value:

unsigned long ulObject;
char *szString;

ulObject = (unsigned long) szString;

Using the facilities of DLL and C Connect, this same casting operation
would look like this:

| ulObject szString |

szString := 'daniel' gcCopyToHeap.

ulObject := ClntegerType unsignedLong cast: szString.
The first line of this example copies the Smalltalk String object to the
external heap. The object szString would be the instance of a CPointer. The
second line performs two functions. First, it asks the class CintegerType for
the CType object that represents an unsigned long C type. Then, this type is
asked to cast the char * pointer represented by szString. The result is a
conversion of the string pointer value into a Smalltalk Integer object. It
should be noted that the special case of casting a pointer to an integer
scalar type can also be accomplished by sending the message
referentAddress to a CPointer object.

VisualWorks

External Heap Copying

External Heap Copying

It is sometimes helpful to perform a wholesale copy of data to and from
the external heap. Although the C data type protocol copies individual C
data types to and from the heap, there are times where you may need to
copy arrays of data, or large chunks of uninterpreted byte data where the
data size is only known at run-time.

The C pointer protocol that provides the protocol for bulk data copying is
implemented as follows:

Copying protocol

Method Purpose

copyAt: offset Writes count bytes to the receiver’s address +
from: byteLikeObject ~ offset from byteLikeObject starting at startindex.
size: count The argument byteLikeObject must indeed be a

i . byte-like object. startindex must be a positive
startingAt: startindex Integer, and startindex + the number of bytes
copied must be less than or equal to the size of

byteLikeObject.
copyAt: offset Reads count bytes to the receiver’'s address +
to: byteLikeObject offset from byteLikeObject starting at startindex.
size: count The argument byteLikeObject must indeed be a

i - byte-like object. startindex must be a positive
startingAt: startindex Integer, and startindex + the number of bytes
copied must be less than or equal to the size of
byteLikeObject.

Suppose you want to create an array of floating point numbers in order for
your C code to manipulate the array. After the C function completes
execution, you want to move the entire array back into a Smalltalk object,
so that you can further manipulate the data, and have the data stored
when you save your image.

The following code fragment shows how to allocate the array in the
external heap and copy it into a Smalltalk UninterpretedBytes object. It
answers two identical arrays. The first array is constructed by copying the
data to an UninterpretedBytes object; the second array copies the same
data but uses the pointer-access protocol to fetch each float data object.

Take some time to study the following example carefully. It contains many
of the product’s important programming features.

DLL & C Connect User’s Guide 3-21

Creating and Accessing C Data

| floatArrayPtr numberOfFloats floatByteSize floatBytes arrayByteSize
floatArray1 floatArray2 tempPtr |
numberOfFloats := 10.
floatByteSize := CLimitedPrecisionRealType float dataSize.
arrayByteSize := floatByteSize * numberOfFloats.
floatArrayPtr := CLimitedPrecisionRealType float malloc: numberOfFloats.
[tempPtr := floatArrayPtr copy.
"Fill'in the array with some data."
1 to: numberOfFloats do: [:i | tempPtr contents: i. tempPtr += 1].
"Between the previous line and the next line, pass the floatArrayPtrto a C
routine that will fill in the Float data. For this example, we omit this step and
simply begin extracting the resulting float data."
floatBytes := UninterpretedBytes new: arrayByteSize.
floatArrayPtr
copyAt: 0
to: floatBytes
size: arrayByteSize
startingAt: 1.
floatArray1 := Array new: numberOfFloats.
1 to: numberOfFloats do: [:i |
floatArray1
at:i put: (floatBytes floatAt: i - 1 * floatByteSize + 1)].
floatArray2 := Array new: numberOfFloats.
tempPtr := floatArrayPtr copy.
1 to: numberOfFloats do: [:index |
floatArray?2 at: index put: tempPtr contents. tempPtr += 1]
valueNowOrOnUnwindDo: [floatArrayPtr free].
MArray with: floatArray1 with: floatArray2

External Heap Alignment

3-22

DLL and C Connect is designed to provide seamless access to C
functions and data on a variety of hardware platforms running various C
compilers. Because of this, each platform and compiler combination
enforces certain restrictions on how C data objects must be placed in
memory. For example, some platforms do not permit byte addressing,
while others impose a performance penalty if data is accessed on a byte
boundary, as opposed to the machine’s word boundary.

In addition to hardware restrictions, a platform’s compiler may impose its
own restrictions on the organization of data in memory. This organization
is most evident with C structures and unions, where the compiler
implements a particular alignment algorithm. This alignment algorithm is
a mechanism the C compiler uses to position the data members within a
structure.

VisualWorks

External Heap Alignment

To ensure that DLL and C Connect works predictably with C libraries or
compilers that employ non-standard data alignment algorithms, the
product provides a means to define alternate alignment algorithms. This
mechanism is useful when the memory layout of C data objects must be
under the control of the programmer.

To support each platform and compiler combination, a flexible approach
is taken to structure and union layout, by implementing a layout algorithm
class called CStructureLayout. This class is responsible for implementing
various layout and aligning algorithms for C data structures.

CStructureLayout operates in the following way. Very early in the Smalltalk
application start-up sequence, the CStructureLayout class receives an
installOn: message. This message is sent by the Externallnterface class in
response to ObjectMemory’s earlySysteminstallation change request (see
“External Interfaces and Snapshots” on page 2-13 for more details on the
earlySysteminstallation change request). CStructureLayout uses the
argument to installOn: to determine which platform your application is
running on and proceeds to realign all the structure and union objects in
the system to use the platform’s default alignment algorithm for the
current platform.

CStructureLayout implements the most common structure layout algorithm
for each platform. However, many compilers allow various layout
algorithms to be used by setting certain compile time switches. If you
need to implement your own layout algorithm, you can do so by
performing the following steps:

* Add a new class instance creation message for your new layout
algorithm to either the subclass CStructureLayout, or your own
subclass. CStructureLayout implements the layout algorithms using a
series of alignment blocks. You may consult CStructureLayout’s class
comment and the existing layout algorithm implementations for
details on how to implement your own layout algorithm.

* Alter the method CStructureLayout>>installOn: to recognize the platform
and install your new layout algorithm.

* During a response to ObjectMemory’s returnFromSnapshot change
request, after CStructureLayout has initialized itself, set the default
layout algorithm by sending defaultLayout: to CStructureLayout. The
argument is an instance of a CStructureLayout that implements your
layout algorithm. Then realign all the structures and unions in the
system by sending CCompositeType the realign message.

DLL & C Connect User’s Guide 3-23

Creating and Accessing C Data

3-24

Unfortunately, the returnFromSnapshot change request may arrive too late
in your application’s start-up sequence. This opens up the possibility that
you will use your interface class before it is properly initialized. Use either
CStructureLayout’s installOn: method, or the earlySystemInstallation change
request for this reason.

Existing libraries assume a particular structure layout algorithm. If you
implement your own layout algorithm, or change the default, you must
make sure that libraries used with this new layout are compatible.

Unexpected Data Alignment in C Structure Objects

To understand how alignment algorithms may be implemented, let’s
consider the following example.

On the MS-Windows platform, suppose that we have defined the
following structure in our Externallnterface subclass:

<C: struct teststruct1 {
double d;
char * p;
>

Ordinarily, we would expect that the compiler aligns the structure
elements as follows:

Byte Number: 0123456701234567
Expected Layout: | DOUBLE [[rowren |
Actual Layout: | DOUBLE TIEEN |

Since the second element in our structure is defined as a pointer, we
expect the size of this object to be determined by the size of platform’s
address-space (in this case, 32-bits). Although we expect that the whole
structure only occupies 12 bytes, the compiler adds an extra 4 byte space
for alignment (as shown in the lower layout). The pointer object p is still
located in the same byte location, but the overall size of the structure is
padded with four empty bytes.

A similar situation can be observed in the following struct definition:

<C: struct teststruct? {
float f;
double d;
>

VisualWorks

External Heap Alignment

Again, the structure definition produces an unexpected layout, which may
be illustrated as follows:

Byte Number: 0123456701234567
Expected Layout: | roar || DOUBLE |
Actual Layout: [roar | || DOUBLE |

In both of these cases, the compiler sets an alignment and size for the
structure elements in order to align them at eight-byte multiples (this is
called natural alignment, because a double is eight bytes in size). The
whole struct object is aligned at eight-byte multiples according to the
most-restrictive-member rule; in this case the most restrictive size is
double. Moreover, the byte size of the struct must be a multiple of eight
even if it contains members with data-sizes less than a machine word in
length (i.e., four bytes in the WIN32s environment).

Since the Microsoft WIN32s/NT environment aligns struct objects
containing eight-byte data on eight-byte boundaries, DLL and C Connect
normally uses this alignment algorithm for proper compatibility. However,
some third party libraries may not follow this alignment rule.

Changing the Alignment Algorithm

For compatibility with non-standard libraries, you can implement alternate
alignment algorithms. DLL and C Connect provides a special class
named CStructureLayout to implement this algorithm. By default, this class
provides a 32-bit packing algorithm, but by adding new methods, you can
support various layout algorithms.

Depending on the alignment you need, it may or may not be necessary to
implement a new layout method. Browse the class protocol for
CStructureLayout to see the standard implementation. provides methods
for to DOS layout, two-byte, and four-byte layouts.

You can change the default alignment by evaluating a Smalltalk
expression similar to the following (the receiver is a subclass of
Externallnterface):

Subclassinstance teststructi
typeDo: CStructureLayout twoByteLayout

Or, alternately:

Subclassinstance teststructi
typeDo: CStructureLayout dosLayout

DLL & C Connect User’s Guide 3-25

Creating and Accessing C Data

Note that you must change the default alignment before you allocate a
pointer to a structure object. Alternately, you can realign all existing
structure and union objects by sending class CCompositeType the
message realign. Also, the alignment will only be applied to the structures
associated with the Externallnterface subclass that receives the typeDo:
message. If you have multiple interface classes that need to use a
different alignment algorithm, you must send this message to each one
separately.

For discussions of platform-specific alignment issues, you may consult
“Platform Specific Information” on page 8-1.

External Heap and Snapshots

Smalltalk preserves the semantics of objects across a snapshot in most
cases. The procedures to perform this are provided by the snapshot
facility itself, which preserves the state of object memory. This is sufficient
for objects whose interpretation is completely contained in an image.

However, some types of objects are affected by the external environment
and must be given special treatment. In particular, pointers into the
external heap that were active when the snapshot was made will be
invalid.

For example, suppose you created an object located in the external heap
using the malloc message sent to a C data type. The C data pointer,
represented by an instance of the Smalltalk class CCompositePointer,
CProcedurePointer, or CPointer, remains in the image after a snapshot.
However, the pointer into the external heap becomes invalid when you
restart the image.

On image startup, the external interface machinery clears all your pointer
objects so that a subsequent reference will raise an exception rather than
dereference an invalid (i.e., nil) pointer (for details on exceptions, see
“Exception Handling” on page 6-1). In general, you should try to structure
your application to re-construct all external data after start-up.

Allocating Objects in FixedSpace

As an alternative to copying byte arrays or strings between Smalltalk and
C data objects, it is possible to allocate the objects in a special zone of
the object memory known as FixedSpace. Throughout their lifetime, objects
allocated in FixedSpace are managed by the Smalltalk memory manager
but they are not subject to relocation during compaction. When they are

3-26 VisualWorks

Allocating Objects in FixedSpace

no longer referenced by the system, they will be reclaimed by the
garbage collector. FixedSpace provides a storage mechanism that satisfies
the general storage semantics of both Smalltalk and C.

For efficiency reasons, only object bodies are located in FixedSpace, and
only non-pointer objects can have their bodies in FixedSpace. Further, all
object bodies in FixedSpace have at least two extra bytes allocated to
provide for null-termination of single and double-byte strings.

The Object Engine automatically ensures that the body of any byte-like
object that is passed as a pointer argument to a threaded call gets
promoted to FixedSpace (threaded calls are discussed in the chapter
“Threaded Interconnect” on page 5-1). This ensures that the garbage
collector does not move the object’s body during the _threaded call,
although the garbage collector might move the object’s header (and
hence need to change its object pointer). If you are allocating an object in
FixedSpace, for efficiency you might want to avoid promoting objects during
a call, hence DLL and C Connect provides protocol for instantiating byte-
like objects in FixedSpace (described below). By initially allocating the
object in FixedSpace, you can avoid the additional overhead incurred when
the object body is promoted.

Of the two general strategies for storage allocation that have been
described in this chapter, the best approach is often to allocate your
objects in FixedSpace using the message newlInFixedSpace:. There are a
number of advantages to using this approach; first, the data object can be
more easily shared between Smalltalk and C, because a C function call
isn’t required to manipulate the object’s fields; second, unlike objects
allocated on the external heap using malloc, objects in FixedSpace are
automatically garbage-collected; and third, String objects allocated in
FixedSpace do not need to be copied to add NULL termination required by
C string functions. The decision to use FixedSpace instead of the external
heap should include a consideration of the life of the objects that will be
shared between Smalltalk and C. For allocating certain types of
persistent data, a better approach is to allocate space on the external
heap using malloc. In general, if long-term persistence of C data is an
issue, it may be better not to use FixedSpace.

The following protocols enable you to instantiate objects in FixedSpace,
promote mobile objects to FixedSpace, and to test whether or not objects
have been instantiated or promoted to FixedSpace:

DLL & C Connect User’s Guide 3-27

Creating and Accessing C Data

3-28

FixedSpace allocation, conversion, and testing protocol

Method

Description

Behavior>>

Answer with a new instance of the receiver,

newlnFixedSpace: aninteger a class, with the number of indexable

SequenceableCollection>>
asFixedArgument

Object>>
isFixedArgument

Object>>
hasFixedData

variables specified by the argument
aninteger. Arrange that the object’s data
resides at a fixed address throughout the
object’s lifetime. Such an object is suitable
for passing to foreign code, because it
does not move over time, and can be
effectively shared between Smalltalk and
foreign code.

Fail if the class is not bits-indexable, or if
the argument is not a positive Integer.

Coerce the receiver to an object whose
data resides at a fixed address. If the
receiver already has fixed data, return the
receiver; otherwise return a copy of the
receiver which does have fixed data.

Answer whether the receiver, when passed
as an argument through DLL and C
Connect, represents data at a fixed
address. This is true for objects created via
the newInFixedSpace: primitive. Fail if the
receiver is immediate, because it has no
data.

Answer whether the receiver’s data resides
at a fixed address. This is true for objects
created via the newInFixedSpace: primitive.
Fail if the receiver is immediate, because it
has no data.

For example, to allocate a String object in FixedSpace that is appropriate to
your platform, evaluate the following Smalltalk expression:

| buffer |

buffer := String defaultPlatformClass newInFixedSpace: 64.
The String will be 64 characters long, and contain space for NULL

termination.

It is important to bear in mind that if you allocate an object in FixedSpace
and pass the associated CPointer to external code that maintains a copy
of this pointer, you must maintain a Smalltalk reference to that CPointer
object for as long as the external copy of the pointer is valid. If the
Smalltalk object in FixedSpace is deferenced, it will be reclaimed and the

VisualWorks

Representing C Types

pointer passed to the external function will become invalid. To avoid
serious corruption of the object memory, take care that your CPointers are
referenced for the lifetime of their corresponding heap pointer.

Because FixedSpace is not subject to compaction, it is possible that the
zone can suffer fragmentation that exhausts the available space. When
an allocation request in FixedSpace fails, the object memory will be notified
and attempt to grow the space. Severe fragmentation could possibly
result in repeated attempts to grow FixedSpace, eventually producing
behavior that resembles a storage leak. Any application that makes use
of FixedSpace for dynamic allocation should be tested for this potential
problem. Be aware that the object memory will coalesce FixedSpace when
resuming from a snapshot, so fragmentation problems are only an issue
when an image is running for long periods of time.

Since the size of FixedSpace is automatically adjusted by the object
memory, there is no public protocol for manually setting the allocation for
this zone.

Representing C Types

Two class hierarchies are fundamental to the operation of run-time C data
accessing in DLL and C Connect. The roots of these two hierarchies are
CDatum and CType. These classes interact in a tight fashion to provide a
mapping between Smalltalk data objects and C data objects. Every C
data object that cannot be represented directly by a Smalltalk class (such
as Character, Float, Double, or Integer) must be wrapped by an instance of a
CDatum. However, in order for a CDatum object to know anything about the
size or type of the object that it wraps, it must store a description of that
object type. It references an instance of CType for just this purpose. CType
and its subclasses represent the various C data types that your C
interface may be using. They include C structures, unions, type
definitions, enumerations, numeric scalars, and pointers.

DLL & C Connect User’s Guide 3-29

Creating and Accessing C Data

3-30

The following diagram illustrates the interaction between a CDatum
instance and its associated type:

CDatum
datum Actual C data object

type

CType

Relationship between CDatum and its associated type

The actual C data object may be located either in the external heap, or in
the Smalltalk object memory. As we have already discussed, the
allocation protocol for C data objects enables you to choose where the
object will be located. Be aware that the manner of representing the C
datum will be slightly different in each case.

As an example of the former case (in which the C datum is located in the
Smalltalk object memory), suppose your Externallnterface class declared
the following C structure type.

typedef struct {
float x;
float y;
} Point;
A method declaration would appear in your hypothetical interface class
called PointInterface.

Point
<C: typedef struct {
float x;
floaty;
} Point>

You could create an instance of the Point structure using the following
expression:

PointInterface new Point new

Evaluating this expression answers an instance of a CComposite, a
subclass of CDatum, that encapsulates two objects:

* The bytes representing the two float objects contained in the Point
structure.

e The type of the object, which in this case is a CCompositeType.

VisualWorks

Representing C Types

To create an instance of the Point structure on the external heap, you
would use the following expression:

PointerInterface new Point malloc

This expression answers an instance of a CCompositePointer, a subclass of
CDatum, that encapsulates two objects:

* Aninteger value representing the pointer to the bytes in the external
heap which contain the two float objects.

e The type of the object, which in this case is a CCompositeType.

In general, instances of class CComposite are used to represent C data
objects held in the Smalltalk object memory, while instances of class
CCompositePointer are used to hold references to C data objects stored on
the external heap. Note that instances of CComposite can be used to hold
references to objects on the external heap, but it is the programmer’s
responsibility to explicitly deallocate these objects when they are no
longer in use.

Note: You do not need to create instances of CDatum objects
yourself. They are automatically created when allocating CType
instances, accessing structure or union members, or calling
functions.

Limitations of CType Definitions

Although DLL and C Connect provides a convenient means to define C
types using the standard VisualWorks tools, the present strategy used for
representing types suffers from a serious limitation. If you are trying to
use the Smalltalk inheritance hierarchy to define “abstract” and “concrete”
interface classes, you should understand the following limitation.

To clarify the nature of this limitation as well as its possible impact on the
design of your interface classes, we shall consider the following two
example type definition methods:

Somelnterface methodFor: 'types'

Long
<C: typedef long Long>

Size
<C: typedef struct {
Long cx;
Long cy;
} Size>

DLL & C Connect User’s Guide 3-31

Creating and Accessing C Data

3-32

Beginning with the observation that the value of the method Size depends
upon the method Long, we notice that these two methods represent not
merely type definitions, but also nodes in a graph of C type objects. In
effect, the references from one C type to its sub-types are the arcs in the
graph. Here in our example, this arc is the reference from type Size to type
Long.

The complication arises as a side-effect of the way that DLL and C
Connect represents these type-relations. When the type definition
methods are created, variables which refer to type nodes are stored in
each Externallnterface’s type pool. For the example above, Somelnterface’s
SomelnterfaceDictionary would contain CTypedefType objects which
represent the binding between the name of the type (e.g., Long) and the
actual CType object for every type defined. In this case, the long would be
represented by a ClntegerType. The limitation in this scheme arises
because the semantics of a C type dictates that the reference from one C
type to its subtypes is direct and does not involve the use of variables (in
our example, the contents of the Externallnterface’s type pool).

Because DLL and C Connect uses Smalltalk methods to represent C
typedefs, the semantics of the C typing scheme are not reproduced in an
entirely faithful manner. As we recall, Smalltalk methods are late-bound
via inheritance. This means that in a hierarchy of classes, subclasses
may override methods defined in their superclasses, and a message-
send will invoke these subclass methods instead of those overridden in
the superclass. Since the typedef methods used by DLL and C Connect
resemble normal Smalltalk methods, it is natural to assume that
subclasses may modify the type graph by overriding methods that define
C types in superclasses. But since the references between C types are
direct, they are not actually affected by the inheritance hierarchy. The
immediate consequence of this is that the effect of defining a typedef
method in a subclass is not as expected.

The problem is precisely that it is possible to override the root note of a
type graph in a subclass. For example, if there were no other typedefs that
referred to Size in an Externallnterface hierarchy that includes Somelnterface,
then one of Somelnterface’s subclasses could override Size. This is
because the Size type refers to other types (e.g., Long), but no other types
refer to Size. However, one cannot override an interior or leaf node in the
hierarchy. So, for example, if in a subclass of Somelnterface we were to
override the Long method, then the Size type would not be affected. This is
because the Size type directly refers to the Long type object defined by the
Long method in Somelnterface. Reimplementing the method in a subclass
does not affect this type graph.

VisualWorks

Protocol for C Data Objects

To achieve the desired effect of redefining one type in a subclass, we
would have to redefine all the methods in the typing graph. In the given
example, this would mean redefining both Size and Long. The effect would
be to produce a new type graph independent of the one in Somelnterface,
in which the new Size type object directly refers to the new Long type.

The principle consequence of this design limitation is that you must
exercise caution when designing any interface that involves a hierarchy of
Externallnterface classes that make use of typedefs. The Smalltalk
inheritance mechanism does not allow you to define a complex C type
graph by simply overriding selected definitions in your subclass. Note that
this limitation does not affect type graphs that you construct using the
External Interface Builder tool. You need to be aware of this limitation only
when you are using the Smalltalk class hierarchy to define interfaces via

inheritance.

Protocol for C Data Objects

Subclasses of CDatum support a set of messages that mimic C
expressions for common operations on C data and pointers. The tables
below list these messages, using cd to represent C data objects, cp to
represent C pointers and ct to represent C types:

C pointer protocol

C pointer expression

Smalltalk expression

cd="*cp
*cp=cd
*cpl = *cp2
cp + offset
cpl - cp2
cp += offset
cp -= offset

++Cp

__Cp

cd := cp contents
cp contents: cd
cp1 contentsFrom: cp2
cp + offset

cpl - cp2

cp += offset

cp -= offset

cp increment
cp+=1

cp decrement
cp-=1

DLL & C Connect User’s Guide

3-33

Creating and Accessing C Data

C array protocol

C array expression

Smalltalk expression

cd = cp [index]

cd = cp[index1][index2]
cplindex] =cd
cplindex1][index2] = cd
cp1 = &(cp2[index])

cd := cp at: index
cd := (cp + index) contents

cd := cp at: index1 * rowSize + index2
cp at: index put: cd
cp at: index1 * rowSize +index2 put: cd

cpl :=cp2 + index
cp1 := cp2 refAt: index

C structure protocol

C structure expression

Smalltalk expression

cd = cp->member
cd2 = cd1.member
cp->member = cd
cd1.member = cd2

cp1 = &(cp2->member)

cd := cp memberAt: #member

cd2 := cd1 memberAt: #member
cd memberAt: #member put: cd
cd1 memberAt: #member put: cd2

cp1 := cp2 refMemberAt: #member

Memory allocation protocol

Memory allocation expression

Smalltalk expression

cp = malloc(sizeof(cdType))

cp = malloc(sizeof(cdType) * count)

free(cp)

cp := cdType malloc.
cp := cdType malloc: count

cp free

The table below outlines the mapping between C data types and their

corresponding CDatum objects:

C data mapping

C datum Smalltalk datum
<type> * CPointer

<struct> * CCompositePointer
<proc> * CProcedurePointer
<type>[<arraySize>] CArray

3-34

VisualWorks

Protocol for C Data Objects

C data mapping (Continued)

C datum Smalltalk datum
<struct> CComposite
<union> CComposite

DLL & C Connect User’s Guide 3-35

Creating and Accessing C Data

3-36 VisualWorks

4

Calling Smalltalk From C

Defining Callbacks

At times, the relationship between Smalltalk and C should be closer than
that provided by a simple call-and-return mechanism. For example, you
might want to use Smalltalk’s user-interaction facilities to prompt the user
for information without exiting from one C function and then calling
another to finish the job.

Smalltalk
Application

Invoke Callback Return Return

Function

| Cfunction

Callback process

As illustrated above, a C function that is invoked from within Smalltalk can
also invoke a Smalltalk operation. This temporary exit from C back into
Smalltalk is known as a callback. DLL and C Connect supports two
distinct callback mechanisms:

e An external callback is a Smalltalk block which can be passedtoa C
function, in order to be invoked as if it were a C function itself.

* An external message-send is a message to a Smalltalk object that
can be sent from within a C function.

DLL & C Connect User’s Guide 4-1

Calling Smalltalk From C

When considering either mechanism, it is important to remember that
callbacks give the Smalltalk memory manager an opportunity to relocate
objects. The rest of this chapter demonstrates not only how you can set
up callbacks, but also how to arrange for the memory manager to safely
update Smalltalk object pointers, which are referenced by the C code.

External Callbacks

42

In the first type of callback supported by DLL and C Connect, a Smalltalk
BlockClosure is passed to a C function as a function-pointer parameter. In
doing so, the closure can be treated as an ordinary function call. The
return value and arguments of the closure must be declared in a typedef
statement. The best way to generate the typedef object is to create a
typedef method in your interface class.

For example, suppose you have a set of network management functions
written in C that you want to invoke from within Smalltalk. One of these
functions, called nameNode(), normally calls another C function to prompt
the user for the name of a new node on