A Cincom.

Cincom Smalltalk

Application Developer's Guide
P46-0101-13

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Copyright © 1993-2008 by Cincom Systems, Inc.
All rights reserved.
This product contains copyrighted third-party software.

Part Number: P46-0101-13

Software Release 7.6

This document is subject to change without notice.
RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.

This manual set and online system documentation copyright © 1993—-2008 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246

Phone: (513) 612-2300
Fax: (513) 612-2000
World Wide Web: http://www.cincom.com

Contents

About This Book XXi
OVBIVIBW ...ttt e ettt e e et et e e e e e e e e e et e et ee e e et aeeeseeeeeaaaeaeaeeeseeeeeenssereres XXi
F U Lo 1= o T PSRRI XXii
CONVENTIONS ...ttt ettt et ettt e ettt e e e e e aeeaeeaeaeaeseseseeeeeeees XXii
Typographic CONVENTIONScoiiiiiiiiie e XXii

Special SYMDOIS.......uuiiiiiiieeee e XXiii

Mouse Buttons and MENUScouueiiiiiiiiiie e XXiv

(oYt g I =1 | o PR XXiV
CommerCial LICEBNSEESccceeeeeieeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e eeeeaees XXV
Non-Commercial LICENSEESccoeeeeeeieeeeeeeeeeeeeeee et XXVi
Additional Sources of INformationeveviiiiiiiiiiie e XXVi
Smalltalk TULOTTAL.......eeieeeiee e e e e e e e e e e e eeeeaaens XXVii

ONlINE HEIP e e e XXVii
VisUAIWOIKS FAQcooeieieeeieeeeeeeee ettt e e e e e e e e XXVii

NEWS GIOUPS ..vvvvrreieiieeeeeeee i sttt e e ee e e e e e e s e eeaa e eeeeaaaeeesesssnsrnrrnneeeaaaaeaeas XXVii
ViISUAIWOTIKS WIKI ...cceveiiieee e XXVii
Commercial PUDIICAtIONS............cooeiiiiiiiieeeeeee e XXVii
EXAMPIES ..o ——————— XXVili

Chapter 1 The VisualWorks Environment

OVEBIVIEW ..ttt e et e e et e e e bbbt e e e e bt e e e e e nbbe e e e e nnees 1-1
RUNNING VISUAIWOIKS ...ttt e e 1-1
VisualWorks Startup Commandsc..eeoiiiiiiiiiiiiiiie e 1-2
VisualWorks Command Line OptioNScoocuiiiiiiiiiiieieiieiee e 1-3

Image Level SWItCheSoccuueiiiiiiiiii e 1-3

Running Multiple Versions Under WINdOWSccooueeieiiiiiiiieniiieee e 1-4

SAVING YOUE WOTK ...ttt e s 1-5
SaviNg the IMAQJE ...eeiiiiiieii e 1-5
Restoring the Original IMageoooiiiiiiii e 1-6
Sources and Changescooiiiiiiiiiiiiie et 1-6

EXItiNG VISUAIWOIKS ...coiiiiiiiie et 1-7
Closing on Windows ShUutdOWNeeeiiiiiiiiiiiiiieiec e 1-7
EMeErgency EXIt ... 1-7

Application Developer’s Guide i

Contents

Chapter 2 Programming in VisualWorks

OVEBIVIBW ettt a et b et et e et et e s b e e et e e e nnre e e nneas 2-1
VisSUIWOIKS LAUNCNET ...cooiiiiiiiii et 2-2
Mouse (Pointer) OPEerationScooiiiiiiei it e e 2-2
Text Entry and FOrmattingooooiiieiiiiie e 2-3
Character FOrmattingooooueiiiiiiiiie e 2-3
SHhOrt-Cut CONTIOIS ...t 2-4
ENClosing an EXPreSSIiONccuueiiiiiiiiiieiiiiiiee e 2-6
Evaluating Smalltalk Code in @ WOrkSPaceccceevuriiiiiieiiiieiieee e 2-7
Evaluating Commandscoocuiiiiiiiiiiie e 2-8
Workspace Variables ... 2-9

Name Spaces iN WOrKSPACEScveiiiuiiiieiiiiiiee e 2-9

Saving Workspace CONtENTSccoieeiiiiiiiiiie e 2-10
Loading Code LIDraries ... 2-10
Using the Parcel Managercceoeoiiiiieiiieee e 2-11
Loading Parcels Programmaticallyccccoocviiiiiiiiiiieiiieec e 2-12

Setting the Parcel Path ... 2-12
Browsing and Editing Smalltalk Codeccoooiiiiiiiiiiii e 2-13
Browsing the SyStem ... 2-15
Browser NaVIgatorcooceeeiioiiiiii et 2-16
Package VIEW ... 2-16

Parcel VIEWccoiiiiiiiie e 2-16

HIerarchy VIBWcuiiiiiiiiecc e 2-17

Class / Name Space VIEWccocoiiiiieiiniiieiiee e 2-17

Instance, Class, and Variable VIEWScccvveviiiieiiiieieeieeeeeenn, 2-17

Icons in the Navigator ... 2-17

Working with the BroWSErccoiiiiiiiiiiiic e 2-18

Editing Source Codecoceiiiiiiiiiiieiieee e 2-18

MisSSING SOUICE COUEuueiiiieiiiiie e 2-19

SEAICHING it 2-19

Drag and DIOPccoioueeeeiiiiiie e 2-19

Controlling Visibility of Methodscccoiiiiiiiiiiiie e, 2-19

UsiNg MUIIPIE VIEWS ..ot 2-20

Source Code FOrmattingcceeeeeiriiei e 2-20

BrowSING FlES ... 2-21
EXPIOrNG ODJECES ..o e 2-22
Inspecting @n ODBJECTooiuiiiiiiie e 2-22
INSpecting COlIECHIONSccuveiiiiie et 2-23
MOodifying ODJECESeeiiiiii i 2-24
Evaluating EXPreSsions ... 2-24
Browsing and Editing Behavior ... 2-25
PaiNtiNg @ GUI ..coeeeee et 2-26

v VisualWorks

Contents

SYSIEM SELHNGS . 2-27
ViSUIWOIKS HOME ... 2-27
SOHINGS i s 2-27
Saving and Loading System Settingsccccceriiiiiiiiiiii e 2-28

Chapter 3 Object Orientation

OVBIVIBW ...ttt ettt e et e e e et e et e e e e e e e e e e e e ettt ee e e e sae e et aeseseeeeaeaaeaaaeeeeeeeseensnnreres 3-1
Procedures Vs. ODJECEScociiiiiiiiiiii e 3-1
Objects and MeEthOdSooiiiiiiiiie e 3-2
COMPOSItE ODJECLSuveieiiiie ittt 3-4
Variables and MethOASuuuiiiiiiii et eee 3-5
MEthOod NAMEScoveeiiieee et ee s 3-5
Method CategOoriesooiiiiiiiiieiie e 3-6
Classes aNd INSLANCESccceeeiiiiiiiee et eeeeeeeaeranes 3-6
Class Variablescceeeieiiieii it 3-7
Class Methods vs. Instance Methodscouveviieeiiiiiiiiiiiieieeeeeeeee e, 3-7
(O =TT 1] =1 41 7= U [t TP UPPN 3-8
LooKing Up @ Methodccoiiiiieiiieee e 3-9
Overriding an Inherited Method ... 3-10
ADSEIACt ClASSESciiiiiiiiieeeeeeeee raaaaaaaas 3-11
ChoO0SING @ SUPEICIASS ..couvviieiieieiiee ettt 3-12

Chapter 4 Syntax

(@ 1T Y=Y 4-1
(=Y = 4-1
I U700] 01T £ 4-1
INEEOEIS i 4-2

Floating Point NUMDEIScooiiiiiiiiiii e 4-2

Fixed-Point NUMDEISoovveiieeieeeeee e 4-2

Nondecimal NUMDErSoiiiiieee e 4-2

Numbers in Scientific Notationoouveeiiiiiiiiiiiiieeeeeeeee. 4-2

(07 F= [r=To3 (= £ 4-3

1101 TP OPPUPRPROPPPRP 4-3
SYMDOIS . e e 4-3

BYIE AITAYS .ottt 4-3

N1 =) £ SRR 4-4
270 [=T= 1= 4-4

1 4-4

RV 2= L= o] 1= 4-5
Variable TYPES ..o 4-5
Variable Names and ConVENtiONScooveeieveeeeiieeieeee e e eeees 4-5

Private Variableso oo 4-6

Application Developer’s Guide v

Contents

Temporary Variables ... 4-6

Argument Variablescoooiiiiiii 4-7

Instance Variables ... 4-8

Class Instance Variables ... 4-10

Shared Variables ... 4-10

Class Variables ... 4-11

POl Variablesoooiiiiiiii 4-12

As Global Variables ... 4-14

Class and Name Spaces Namesccoccvvviiiiiieeiiiniieeee e 4-15

Constant and Variable Bindingscccoovueeiiiiiiiiieeiiiee e 4-15

Public and Private Shared Variablescccccoviiiiiiiininnne 4-16

Defining a Binding as Private or PUDIICccccooiviiiiiieiies 4-16

Initializing Shared Variablesccccoooiiiiiiic 4-17

Assigning a Value to a Variablecccoociiiiiiii e 4-17

Special Variablesooooiiiiiii 4-18
Undeclared Variables ... 4-20
MeSSage EXPreSSIONScoiiiiiiiei et 4-20
UNAry MESSAJESoeeiiiiiiiiiie et 4-21

Binary MESSAQJESooiiiiiiie e 4-21
KeyWOord MESSAJEScocoiiiiiiiiiiiie e 4-22
MeSSages iN SEQUENCEoooiiiiiiiieiiie e 4-23
Cascading MESSAGEScccvcrieriiieiieie e 4-23
Parsing Order for MeSSagEsccvcveieiiiiiiieesie e 4-23

BIOCK EXPIrE@SSIONS ...eeeeeiiiiiieiiiiii ittt ettt e e e e e e e e e e e e e e annnne 4-25
Pragmaso 4-26
Declaring Pragmaseeeeoiooooiiiiieee e 4-26
Including a Pragma in @ Method ..o 4-27
Processing Pragmascooooiiiiiiiiiiiiieeeee et 4-28
Collecting Pragmasoooiiiiieiiiiiiieie e 4-28

Performing Operations with Pragmascccccooiiiiiiiineeneee 4-29

Accessing Pragma Componentsccccoeeuveeeeiiiiiene e 4-29

Formatting ConventionSoiiiiiiiiiie e s 4-30

Chapter 5 Classes and Instances

OVEBIVIBW ettt ea et e bt e et e e et e e bt e et e e e nnre e e nneas 5-1
DefiNiNG @ ClASSuveiiiiiiieiei et 5-1
Creating a Class using the New Class Dialogc.cccceivieinieeiniieiniieeen 5-1
Editing a Class Definitionoooiiiiiiiiiiiiie e 5-3
ClaSS TYPES ittt 5-5
Locating a Class BY NAMEcc.uiiiiiiiiiiiie e 5-6
Working With INSTANCESeviiiiiii e 5-7
Creating an INStANCEoiiiiiiiiiie e 5-7

Vi VisualWorks

Contents

Destroying an INStaNCeoccuveiiiiiiiii e 5-7
Garbage ColleCtiNgcooiuieiiiiiiie e 5-7
FINAliZationcueeiii e 5-7
Lingering INStaNCEeSeviiiiiiiiiie 5-7

Immutable ODJECES ... 5-8

ODbjJeCt COMPATISON ...ciiiiiiiiie et e e 5-9

/1= e Yo [PP PPR 5-10

Creating @ Methodc.uueiiiiiiii e 5-11

Fixing Common Errors at Compile TiIMecccceeiiiiiiiiiiiiee e 5-11
Undeclared temporary variablescccooooeiiiiiiiniiniiieee e 5-11
Undeclared class and instance variablesccccoooviiiinnnnen. 5-12
MISSING PEFIOT ... 5-12
Missing delimiItersc.coovceiiiiiii e 5-12

Returning from a Methodccoiiiiiiii e 5-12
Returning From an Enclosed BIOCKccccoooviiiiiiniiiiiiece, 5-12
Returning the Result of a Messageccccovviriecnce e, 5-12
Returning a Conditional Valueccccooveiiiiniiecce e, 5-13

Chapter 6 Name Spaces

OVEBIVIBW ..ttt ettt e bt e e bt e e ab et e e nn e e e bre e e anbeeenes 6-1
MUIEIPIE NAME SPACES ...eiiiiiiiiiiie et e e e e e e nneeas 6-2
Getting StArted ... 6-2
Name Spaces and Their CONtENTSoooiiiiiiiiieiie e 6-3
Name Space CONTENTSociiiiiiiie it e e enee 6-3

The Name Space HIerarChyccocevoiiiiiiiiciiee e 6-4
Smalltalk.Root.Smalltalkccccoiiiiiiiiiiii e 6-5

Working with Name SPacesccciiiiiiiiiiiei e 6-6
Browsing Name SPaCESccceieiiiiiiiiiiiiiiee et 6-6
Creating Name SPACEScoiiiiiieiiiie et 6-7
Naming @ Name SPACEccoiiuiiiiiiieiiii et 6-8

When to Create a New Name SPacecccoccveeviiiiiiiiee i 6-9
Rearranging Name SPacCESc.coiiuiiiiiiiiiiiieiiee et 6-9
Classes as Name SPACEScccuieiiiiiiiiiie et 6-9
Referencing Objects in Name SPacescccciiiiiiiiiiiiie e 6-10
Dotted Names and Name Space Pathscccoccviiiiiiiiiiiiiiceee e 6-10

Binding ReferenCesoooiiiiiiiiiiiic e 6-12
Binding Reference Resolution ... 6-14

When to Use BindingReference or LiteralBindingReference 6-14

IMPOrting BINAINGS ...eeeieieeeee e 6-14
Importing Classes and Name Spacescccccceevieeeriiieenniieennnenn. 6-16

Importing Class Variables ..o 6-16

Application Developer’s Guide Vi

Contents

Importing Pool Variables ..o 6-16
Circular System IMpPOrtSoevviiiiiiiieeeie e 6-17
Binding RUIES @Nd EFTOrSccooiiiiiiieiiiiiiie ettt 6-18

Chapter 7 Control Structures

(@ 117 V1= 71
BranCRING .o e e e 7-1
BOOIEAN VAIUEBSeeeeiiiee e 7-1
(O7e] gl 11 ToT =Y I F =Y 7-2
Compound CONAIIONScocuviiieeiiiieie e e 7-3

(o o] o] o T PSP R PTR PP 7-4
Conditional LOOPING ...eeevveieiiiieiiei ettt 7-4
whileTrue: and wWhileFalse:ccoeeiiiiiiiiiiec e, 7-4

FEPCAL .ot 7-5

NUmMber RErationoeuoiii e 7-5
HMESREPEAL: ... 7-5

TOIDY IO 7-5

(0 [0 LSRR 7-6

(7o) | 1=Yel 1 1o g 1 (=Y = 11T o HU 7-6

(o [0 SRS 7-6

IO it 7-6

(=7 = e o PP PP PP PPPP 7-7

AETBCT: e 7-7

(o0 | [=To3 SRS 7-7

101 =Te] ST) (o PP O PP PRPPPPPPRPPN 7-7

Chapter 8 Managing Smalltalk Source Code

OVEBIVIBW .ttt e bttt e e e e et e e e e e bttt e e e e ab et e e e e e btn e e e e snbeeeeeaans 8-1
Organizing SMalltalk COAEoiuiiiiiiiiiii e 8-2
Package and Bundle CONtENtScoeviiiieiiiiiiiiiiiieeeee e 8-2
Browsing Packages and Bundlesocooiiiiiiiiiniie e 8-3
Loading Code into Packages and Bundlescccoociiniiiiiiiciceeee. 8-4
Loading from ParCelsc.eoiiiiiiiiiiiiiee e 8-4

Loading from a File-in Files ... 8-5

Loading from a Store Repositoryccccceeviiieee i 8-5

Controlling Load and Unload Behaviorcccooiiiiieeiiiiiiiiceeieeee e 8-5

SAVING ittt e 8-5

LOAAING .eeiiiiie e 8-6

UNIOAAING v 8-6

Managing PaCKagescccovriimiiriieeiie e 8-7
Creating @ Packageccccoeoiiiiiiiiie e 8-7

Viii VisualWorks

Contents

Adding Definitions 10 a Packagecccoeeeiiiiiieiiiiiiiiii e 8-7
Removing a Package ... 8-8
Managing BUNAIESoooiiiiiiiii e 8-8
Creating and Arranging Bundlesccccooiiiiiiiiiiiieie e 8-8

Editing a Bundle Specificationccccooiiiiiiiiii e 8-9
Removing a Bundle ... 8-9
Designing a Package StruCturecoooiiiiiiiiiiiiee e 8-10
Package and Bundle Properties ... 8-10
PrerequISItes ...o.uvviii i 8-11
Warning Suppression ACtiONoooiiiiiiiiiiiiiiee e 8-11
Prerequisite Version Selection Actioncccccecvveveeiveicicciiiiiee, 8-11

Load and Unload ACHIONSc.eeeiiiiiiiiiieiiiee e 8-11

Other Properties ... 8-12
Specifying PrereqUISITEScoouveiiiiiiiiiieeecee e 8-12
Specifying Deployment PrerequiSitescccccevviieeiiiiiiieee e, 8-13
Specifying Development Prerequisitesccccvvvveeeeiiiiieee e, 8-13
Specifying a Prerequisite Versioncccooocveiiiieee i 8-14
References Between Packagescccccviiiiiiiiieniie e 8-15
(0700 [@ 1 =Y gy o Y PRSP 8-16
Creating an OVerridecccccvoviieeree e 8-17
Reviewing OVerridesccccciieiiiiieiiee e 8-17
ResoIVINg OVEITIAEScocvviiiiieieee e 8-19
Publishing Parcels and Packages with Overridesccccc....... 8-19
Publishing Packages ..o 8-20
Publishing as Parcels ... 8-20

SOUICE COUE FlES ...t 8-22
Archiving Source FileS ..o 8-23
Managing ChanQESooeiiiiiiiiiei e e enb e e 8-23
Recovering ChanQEesoocuiiie ittt 8-24
Compressing Changesooioiiiiiiieiiiiiee e 8-24
USING Change SEtSueiiiiiiiiiiii ettt 8-24
Change Set Managercoooiiiiiieiiiiiee e 8-25
Selecting a Current Change Setcccccveiiiiiiieiiiciee e 8-25
Creating a New Change Setcccooviiiiiiiiiie e 8-26

Saving Changeseeiiiiiiiiee e 8-26
FIle-OUL FIES ..ttt 8-26
FiliNG OUt COTE .. 8-27
FIlING IN COTE .. e 8-27
PACEIS .o 8-28
Loading and Unloading Parcels ..o 8-28
Parcel Files ... 8-29
Loading Parcels Programmaticallyccccciiieeiiiiiiniiiiiiiiiee, 8-29

Application Developer’s Guide ix

Contents

Loading Parcels with Command Line Optionscccccvivieeeenne 8-29
Parcel Search Path ... 8-31
Managing ParCelSoooiiiiiiiiiiie e 8-32
Parcel Condition INdIiCatorsccccooiviiiiiiiiiie e 8-33
Creating a New Parcel ... 8-33
Adding and Removing Definitionsccocciiiiiiiiiniiniiiee e 8-33
SaviNg @ Parcel ... 8-34
Finding Unparcelled Methodsccccoiiiiiiiiiiiiiieeee e 8-34
Guidelines for Clean Loading and Unloadingccccceeiiiieveeiniineeeenee, 8-35
Limitations and ReStriCtONSveiiiiiiiiiie e 8-36
Restrictions on Parcel Contentsccccovviiiiiiiiiiie e 8-36
Partial Loadingcccoovoeeiiiieiiieeecee e 8-37
Shape Change TOIEranCecccccvvvieeercieeiie e 8-38

Chapter 9 Application Framework

OVEBIVIBW .tttk ettt e e e bt e e et e s bt e et e e e nnre e e nneas 9-1
Separating the Domain and the User Interfacecccoooiiiiiiiiiiiicie 9-1
Application Model Acts as Mediatorcccvviiiiiiiiiiieee e 9-2

Value Model Links Widget to Attributeccoooiiiiiiii e 9-3

Builder Assembles User Interfacecccccoviiieiiiiiciieeee e 9-4
Dependencies Between ODJECESocuiiiiiiiiiiiiiieee e 9-5
The Update/Change SyStemcccoooiiiiiiiiiiiiciee e 9-5
Notifications From Value Model to Application Modelcocooiiiiiiieeeeen. 9-6
Notifications From Any Object to Any Objectcoccveviiiiiiiiiiiciee 9-7
DependencyTranSformer ... 9-7

Direct DEPendENCYcccoiiiiiieiiiiiii e 9-8

Removing Dependentsoccceviiiiiiiiiiiiiiee e 9-9

Circular DEPeNdENCIESccvvvieeiiiiiiie e 9-9

Application Startup and ShutdOWNccoociiiiiiii e 9-10
Selecting an INterface ..o 9-10
Prebuild INtervention ... 9-11
Postbuild INterventionoooiie e 9-11
Postopen INtervention ... 9-11
ApPlICation ClEANUPooiiiiiiiiiii ettt 9-11

User Settings FrameWOrKoooiiiiiiiii e 9-12
SBINGS ittt 9-13
Browsing the Definition for a Settingccocviiiiiiii e 9-14
Defining @ SEHiNGeeiiiiii i 9-14
Additional Setting Parameterscoccvoiiiiiiiiin e 9-15
Controlling the Vertical Position of @ Settingccoocoeiiieiiiiiiiiiee e 9-15
SettiNGS PAGgESeiiiiiiie e 9-16
Defining a Page of SettiNgSccooiiiiiiiiiii e 9-17

X VisualWorks

Contents

SEHING TYPES i 9-18
Creating a Setting Modeloc.uuiiiiiiii e 9-20
Backward Compatibility with VisualWorks UlSettingsccccceveeieiiiinnnes 9-20
Using Drop-Down List and Radio Button Settingsccccceiiviiveeieiiiinns 9-21
Defining a Settings DOMAINccoiiiiiiiiiiiiie e 9-22
Saving and Loading Settingscoooiiiiiiiiii e 9-23
Responding t0 System EVENLS ... 9-24
Defining System Event ACtiONSoeiiiiiiiiiiie e 9-24
Command Line Processing in @ Subsystemcccccoviiiiiiiiiiiieiiee, 9-26
Activating @ SUDSYSIEMooiiiiiii 9-28
Dependency Ordering of SUDSYSIEMSuviiiiiiiieeiiiiieeeee e 9-29

Chapter 10 Trigger-Event System

OVEBIVIBW <.ttt ettt ettt e et e e e e b e e e e e e e abeeeenneean 10-1
TrQQEriNgG EVENTS ..o 10-2
Event Triggering MESSAJESoccuviiiiiiiiiiee et 10-2
Registering an Event Handler ... 10-3
Handling an Event with Arguments ... 10-4
Handler Registration MeSSagesccccvouviiiiiiiiiiiciiiieeee e 10-4
Removing Event HANAIEIS ..o 10-6
ReMOVEACHION MESSAJEScvveiiiiiiiiee ittt 10-7
DefiniNg EVENT SISoiiiiiiiiiieeee e 10-7
Specifying event StriCINESSc.ooiiiiiiiiii e 10-7
Specifying events t0 triggercuii i 10-8
EVENT CIASSES ..o 10-8
How Handlers are RegiSteredoeiiiiiiiiiiiiiee e 10-8
Trigger Event System Support Methods ... 10-9
Trigger Event Support Methods Available to All Objectsccccevvieennee 10-9
Trigger Event Support Methods In ApplicationModelccccocoeeinenne 10-10

Chapter 11 Announcements

OVEBIVIEW ...ttt et e ettt e e e e s b et e e e e b et e e e enbe e e e e e nnees 11-1
Subscribing to ANNOUNCEMENTSeiiiiiiiiiee e 11-1
UNSUDSCIIDING .t 11-4
ANNOUNCING aN EVENT .. 11-6
Accepting SUDSCIIPIONSciiiiiiiiiie et 11-7
Handling an ANNOUNCEMENToiiiiiiiiiiiiie et 11-8
Processing an ANNOUNCEMENToiiiiiiiiiiiiiiee e 11-8
Vetoing an EVENT ... 11-9
Advanced Announcement Managementcoooiiiiiiiiiiie e 11-9
How Subscriptions are Managed ... 11-9
Selecting SUDSCIIPONSoviiiiie e 11-10

Application Developer’s Guide Xi

Contents

Suspending @ SUDSCHPLIONooiiiiiiiii e 11-12
Batching Missed ANNOUNCEMENTSoiiiiiiiiiiiiiieee e 11-15
Substituting @ Handler ... 11-16
Making Subscriptions Weakoocieiiiiiiiiiiiieee e 11-18

Chapter 12 Working With Graphics and Colors

OVEBIVIBW ettt ettt e et eab et e et et e s b e e e st e e e nnne e e 12-1
A Note about the EXamples ... 12-1

The VisualWorks Graphics ENVIrONMENtcc.eiviiiiiiiieeeiiiiee e 12-2
PIXEIS e 12-3
Coordinate SYSIEMcoiiiiiiiie e 12-3

POINTS e 12-4
RECIANGIES ..o 12-5
GraphiCal ODJECESoeiiiiiiiiiie e 12-6

TEXE ODJECES ..t 12-6

Geometric ODJECESeeviiiiiiiee e 12-6

Bitmap Image ODbJECEScccceiiiiiiiiiiiere e 12-7

ViISUAIPAIT ..o 12-7

Colors and Patternsoooiiiiiiiieiiiee et 12-8
Graphics Media and Display SUMacesccccviiieiiiiiiiiee e 12-8
WINAOWS ...t 12-9

PIXMAPS e 12-9

IMIBSKS ...ttt 12-9

GraphiCs CONTEXE ...coueiiiiiie it 12-10
GraphiCs DEVICEccueiiiiiieiiiie ettt 12-10
Displaying @ GraphiCccoueeeiuieiiiiie ittt 12-10
Getting a GraphicSCONEXTcoouiiiiiiiiiii e 12-11
Displaying a Graphical Object on a GraphicsContextcc.cccccvveeeeennee. 12-11
Drawing a Transient Shapeccocueiiiiiiiiie e 12-12
Displaying a Bitmap IMagecceeeeiiiiiiieiiee e 12-12

Shifting (Translating) the Display Positionccccooiiiiiiiiiiiieee, 12-13
Displaying a Restricted Areaccoocuieieiiiiiieee e 12-14
Copying from @ DiSPIaycceeeiiieieiiiieiiiee e 12-14
Working with Unmappable Display Surfacescccceeerieeeniineiieienie e 12-16
Creating a Display Surface from an Imageccccoeoiiiniiniininiieeee, 12-17
Creating a New Display SUfacecccooeiiiiiiniieeiee e 12-17
ComposiNg 0N @ PIXMEP ..coeiiiieiiiieiiiee et 12-18
Displaying a Display SUMacecccceiriiiiiiiiiiiiie e 12-18
Copying from a Display SUMacecccooeiiiiiiiniiieiee e 12-18
GraphicsContext AHDUIEScc.eiiiiie e 12-19
LiNe Properti©socveeiiiiiieiie et 12-20

Line WIdLh ... 12-20

Xii VisualWorks

Contents

Line Cap StYIe .. 12-21

Line JOIN StYIE .o 12-22

FONt PrOPertiesoooiiiiiiiee e 12-22

Paint Propertiesooueeeioiiiiiee e 12-23
ClippiNg Properti€scuueeiiiiiiiiie ettt 12-24

Xand Y OffSEIS oo 12-24

SCAIING weiii ittt 12-24
ANIMAatiNg GraphiCSoooiuiiiiiiiie e 12-25
Moving a Static ObJECTccooiiiiiiii 12-25
Animating a Changing ObJectcooiiiiiiiiiiii e 12-27

Using Graphics in an APPlICatioNcceeiiiiiiiiiiiiiiee e 12-29
LO1U] £=To] £ PRSP 12-29

oo 1= S PRSPPI 12-31

As a Component in an Application WIiNdOWccccceeriiiiieiiiiienee e, 12-32
Graphics as Labels and Decorationcccccccoeevviciiiiieiieeeeeennn, 12-32

AS 8 CUSIOM VIBW ... 12-32

Chapter 13 Files

FIle NAMES ... 13-1
Creating @ Filenamecccoooiiiiiiiie e 13-2
Constructing a Portable Filenamecccocoeiiiiiiiiiieni e, 13-2
Creating a File OF DIr€CIOIYuoiiiiiiiiiee ettt 13-3
Creating an EmMPty Fileccoooiiiiiie e 13-3
Creating a New Disk Dir€CtOrycoccueiiiieeiiieieiiiee e 13-4

Getting File INformationc.oooiiiiii e 13-4
Testing for EXiSTENCEcooviiiiiii e 13-4

Getting the Size of @ Filecooiiiiiiii e 13-4

Getting and Setting the Working Directorycccocoeeriiiiiiiie e, 13-5

Getting the Parent DIreCIOryoooueiiiiiiiieeeee e 13-5

Getting the Parts of a Pathnamecccoooiiiiii e, 13-6
Distinguishing a File from a DireCtoryccccoevvveiiiiiiiiciiiiec e 13-6

Getting the Access and Modification TIMescccceevieiiiiiie e, 13-6

Getting File or Directory CONtENESoooiiiiiiiie i 13-7
Getting the Contents of @ Fileccooiiiiiiiii e 13-7

Getting the Contents of @ DIreCtorycooceeiiiiiiiiiieniee e 13-7

SyStEM Variablesooo i 13-8
Storing TexXt iN @ Fileeeiiiie e 13-8
Writing @ Stream 10 @ Fileooiiiiiii e 13-8
Appending Text 10 @ Fileoovii e 13-9
Deleting @ File OF DIr€CIOIYoviiiiiiiiii ittt 13-9
Copying or MOVING @ FilEciiiiiiiiiii e 13-10
COPYING @ FilE ..o e 13-10

Application Developer’s Guide Xiii

Contents

MOVING @ FIlE e 13-10
RenNaming @ Fileooiiii e 13-11
Comparing Two Files or DIF€CIOMESeviiiiiiiieieiiiiiee e 13-11
Comparing Two Filenames or TWO Filescccccoviiiiiiiiiiiiiii e 13-12
Comparing Two Filenames or Two Directoriescccccvviiieeiiiiiieeeenns 13-12
Printing @ File e 13-13
Print @ TEXE File o 13-13
Printing @ File DIr€CHYooviiiiiieii e 13-13
Writing Fields to @a Data Fileccueeeiiiiiiiii e 13-13
Reading Fields from a Data Filecccoooiiiiiiiiieee e, 13-14
Setting File PErmiSSIONSoooiiiiiiiii e 13-15
UNIX VOIUME LISt ...t 13-16

Chapter 14 Binary Object Files (BOSS)

Storing Objects iN @ BOSS Fileccuiiiiiiiiiiiie e 14-1
Storing a Collection of ODJECESccceeiiiiiiiiiiieieee e 14-2
Appending an Object to a Filecoocviiiiiiii e 14-2

Getting Objects from @ BOSS Fileccociiiiiiiiiiie e 14-3
Retrieving All OBJECEScouiiiiieie e 14-3
Searching Sequentially for an ObJeCtcoccvviiiiiiiiii e 14-4
Getting an Object at a Specific POSItioNccoociiiiiiiiiee 14-5

Storing and Getting @ Classouviiiiiiiiiie e 14-6
Storing a Collection of CIaSSEScceeiiiiiiiieieiiie e 14-7
Loading a Collection of ClasSescccceveriiiiiiiie e 14-7

Converting Data After Changing @ Classccceeiieiiiiiie e 14-8

Customizing the Storage Representationcccoceiiiiiii i 14-9

Chapter 15 Exception and Error Handling

OVEBIVIBW .ttt ettt e ettt e e ettt e e et e e e e nbb et e e e annnneeeas 15-1
ANSI Exception HaNAlNGoeeiiiiiiiiie e 15-1
Adapting Signal-based COdeccueiiiiiiiiiiiiiiieee e 15-2
Reinitializing Signal Creators and Initializerscccccceveeeeiiiinnns 15-2

NaME SIGNAIS ...coiiiiiiiiie e 15-2

Do Not Depend on Signal noHandlerSignalccccceviiiieeene 15-2

EXCEPLON ClaSSES ... 15-3
Handling EXCEPLIONScuiiiiiiie e 15-4
EXCEPON SIS i 15-6
SigNaling EXCEPLIONS ...ooiiiiiiiiiii s 15-6
Exception ENVIFONMENT ..o 15-7
Exiting Handlers EXPlCItIYcooiiiiiiiii e 15-9
Resumable and Nonresumable EXCEPLioNScoooiiiiiiiiiiiiiiieieiee e 15-11
Translating EXCEPLONScooiiiiiiii e 15-13

Xiv VisualWorks

Contents

UNWING ProteCION ... 15-13
Using a Signal to Handle an ErrOrocueeiiiiiiiie e 15-14
Choosing or Creating @ Signaloccuveeiiiiiiiii e 15-14
Proceedabilitycueiiiiiiiii 15-15
Creating an EXCeplion ... 15-15
Setting Parameters ... 15-16
Passing Control From the Handler BIOCKoooiiiiiiiiiiiiiiiiiiieeeee 15-16
Using Nested SigNalscoooiiiiiiiiiiee e 15-17

Chapter 16 Debugging Techniques

OVEBIVIBW <.ttt ettt ettt e et e e e e b e e e e e e e abeeeenneean 16-1
SOFtWAIE PrODESoiiiiiieieie e 16-2
BreaKpOint ... 16-2
WaLCPOINT ..o 16-3

SEHING PrODES . 16-4
Setting a breakpointoocueiiiiii 16-4

Setting a variable watchpoint ... 16-4

Setting an expression watchpoint ..o 16-5
Removing Probes ... 16-7

Making a probe conditionalccceeeiiiiiiiiiiiii e 16-7

Select a WatCh WINAOWcooiiiiiiiiieiiee e 16-10
MOodifyiNng @ ProDEcooeiiiiiiie e 16-10

Probe 10CatIoNoooiiiiiiie e 16-11
Recompiling a Probed Method ... 16-11
LIMITAIONS ... 16-12

Probe highlightScuiiiiii e 16-12

Inserting probes at returNs ... 16-12

Class PrODESooiiiiiiiiie e 16-13
Adding Class ProbEScviiiiiiiii 16-13

On Instance Variable ACCESS... ...coociviiiiiiiiiiiiiee e 16-13

On Message Receipt... ..o 16-15

Remove Class Probes ... 16-17

Browse probed methodscoooiiiiiiiiii 16-17
DEIOUGGET i 16-18
Walkback NOTIfIErccoiiiiiiiiii e 16-18
Debugger WINAOWoiiiiiiiiiice e 16-18
Reading the Execution Stackcccccoiiiiiiiiiieiceee e 16-20

Editing a Method Definitionccoooiiiiiiiiiiiie e 16-22
Inspecting and Changing Variablescccccciiiiiniiiiiiiiee e 16-22
Inspecting the Stackoooiiii 16-23

Tracing the Flow of MeSSagesccooiiiiiiiiiiiiie e 16-23

STACK MENU ..o e 16-24

Application Developer’s Guide Xxv

Contents

MEthOd MENUcoiiiiiiiiii e 16-24

EXECULE MENU ..ooiiiiiiiii e 16-25

COITECE MEBNU .. 16-26

Inserting Probes in the Debugger ... 16-26
TEMPOTAry ProbeSueiiiiiiiiie et 16-26

Probe context management ... 16-27

(D =ToT0 o o1 oo N] =S PRSPPI 16-28
Inserting probes iNto BIOCKSccoiiiiiiiiiii e, 16-28
[teration debUGQING ...ccooiieiiiiiiie s 16-28
Interrupting @ Program ooo i 16-29

Global Probe Managementoooiiiiiiie e 16-30
Probe IDrary ... 16-30
EXPression lIDraries ... 16-31

Storing CompiledMethods Externallycocooeiiiiiiiiiiii e 16-31
Debugging Within the Virtual Machineccccovoiiiieii e 16-32

Chapter 17 Process Control

OVEBIVIBW ettt ettt e et eab et e et et e s b e e e st e e e nnne e e 17-1
UL PTOCESSES ..coiiittieiee ettt ettt ettt et e e e e e s s e e e e ann e e e e nnnn e e e e e e 17-1
Creating @ PrOCESScciiuiiiiiiie ittt 17-1
SCheduling @ ProCESScoiiiiiiiiiieiit e 17-2
Setting the Priority LEVEIooiiiiii e 17-3
SYNCHIrONIZING PrOCESSESeiiiiiiiiiiiiie ettt 17-4

SEMAPNOIE .. 17-4
Sharing Data BetWeen ProCESSESceiiiiiiiiiiieiiiie ittt 17-6
USING @ DEIAY ..o 17-6

Delay and Time Change Interactionc.cccovieiriiieeiiiee e 17-6

Chapter 18 Refactoring

OVEBIVIBW .ttt ettt e ettt e e ettt e e et e e e e nbb et e e e annnneeeas 18-1
Refactoring for ADSIraction ... 18-4
Creating an AbStract Classccueeiiiiiiiiiiiiieiee e 18-4

Moving Instance Variables to a Superclasscccoceeiiiiiieeenns 18-5

Consolidating Common COdeeeviiiiiiiieiiiiiee e 18-6

ININING METNOAS ... 18-7
Individual Refactoringsocuueiiiiiiiiee e 18-9
Refactoring ClasSesuuiiiiiiiiiiie e 18-9
Creating @ SUDCIASScoiiiiiiiiiiieiee e 18-9

Renaming a Class and Its Referencesccccoociiiniicniennnne 18-9

Safely Removing @ Classcoooviiiiiiiiiiiiiieceiiiee e 18-9

Changing a Class to @ Siblingcocovviiieiniieeee e, 18-9

Adding @ Variableoocoiiiiiiii 18-10

Xvi VisualWorks

Contents

Renaming a Variable and its Referencesccccccviieiininnen. 18-10
Removing a Variable ... 18-10
Moving a Variable from orto a Subclassccccccveiiiieiiinnnnen. 18-10
Creating Variable ACCESSOISccoiiiiiiiiiiiiiiiee e 18-11
Abstracting a Variableccccooiiiiiiii 18-11
Making a Variable Concrete ..., 18-11
Refactoring Methods ... 18-11
Moving a Definition to Another Componentccccoecieeeeinnnen. 18-11
Renaming a Method and its Referencesccccccceevviiiiciiinnennn. 18-11
Safely Removing a Methodcccooviiiiiiiieee 18-12
Adding a Parameter to a Methodccceeeiriiiiiiiiiiee, 18-12
Inlining all Sends to Self ... 18-12
Moving a Method to or from a Superclasscccceeevviiieneennee. 18-12
Refactoring Portions of a Methodccooviiiiii e 18-12
Extracting a Method ..o 18-12
Inlining a Temporary Variableccccoooiiiiiiiiiiieee 18-13
Converting a Temporary into an Instance Variable 18-13
Removing a Parameter ... 18-13
Inlining @ Parameter ... 18-13
Renaming @ TeMPOIAryeeeeeiieiiiiiiiiiieee e 18-13
Moving a Temporary to an Inner SCOPecccoeviveveeeiiiieeeeennnen. 18-13
Extracting to @ Temporary ... 18-13
INlining @ MEeSSAgeeeiiiiieee e 18-14

Chapter 19 Weak Reference and Finalization

(@ Y=Y o PRSP RS 19-1
WEEK AITAYS ...eeieiiieteeee ettt ettt ettt e e e s et e e e e e e e s sn e e e e e anrneeeenan 19-2
FINAIIZATION .o 19-2
WEAKDICHONAIY ...t e e e e 19-5

HaNAIEREGISIIY ..o 19-5
FInalization EXAmMPIE ... e 19-5
EPNEMEIONS ...t e e e e e e e e 19-7

Chapter 20 Creating an Application without a GUI

OVEBIVIEW ...ttt et e ettt e e e e s b et e e e e b et e e e enbe e e e e e nnees 20-1
KEY CONCEPES .t 20-1
Setting Up a Headless IMaQEeoiiiieieeiiieeeeeie e 20-2
Running an Application in Headless Modeoccueeviiiiiiiiiiiiieeceieeee e 20-3
Starting 0N UNiIX/LINUXceeeeeeiieeecieee e 20-3
Starting 0N WINAOWSeveiiiiiiiiiee e 20-3
When an Image SEartSoooviiiii e 20-4
If an Application Attempts to Access a Displaycccccevviieiiiiiiiieie e, 20-4

Application Developer’s Guide XVii

Contents

Debugging a Suspended PrOCESScccoiiiiiiiiiiiiiiieee ittt 20-5
Creating a Headful Copy of a Headless Imagecccccoviiiiiiiiiiiieiiniiec e, 20-5
Tips for Programming a Headless Application ... 20-5
Techniques for Starting a Headless Applicationccccooiiiiiiiiinnnns 20-6
Techniques for Communicating with a Headless Application 20-6
Terminating a Headless Applicationooooiiiiiiiiiiiiee e 20-6
Sending Output to the System Consoleccevveiiiiiiiiiiiie e 20-6
Preventing Access to the Displaycooviiiiiiiiiiiieiee e 20-7
Delivering a Headless AppliCationccoiiiiiiiiiiiiiee e 20-8

Chapter 21 Application Delivery

OVEBIVIBW ettt ettt e et eab et e et et e s b e e e st e e e nnne e e 21-1
Choosing a Delivery STrategyococeieiiiieiiiieiiiee e 21-2
SiNgle IMage Fileueiiiiiiiiie e 21-2
PACEIS ... 21-2
Combined DepIOYMENTcociiiiiiiiiieie e 21-2
Packaging for DiStribDULIONcooooiiiiiiii e 21-3
Deploying as a Single File ..o 21-3
VisualWorks INStallerocuieiiiiiii e 21-3
Running a Deployed IMageueiiiiiiiiiiie e 21-4
Loading Parcels At Start Upc.cooviiiiiiiieie e 21-4
Opening a Runtime Applicationccocveiiiiiiii e 21-4

Exiting a Deployed IMageoeviiiiiiiieiie e 21-5
Installing as a Service 0N WINAOWSooicuiiiiiieiiiieeiee e 21-5
Preparing an Image for Deploymentcoooiiiiiiiiiiiee e 21-6
Loading Application COdec.eiiiiiiiiiiiiiiie e 21-6

Code Developed in the Imageccceviiiieniiie e 21-6

Code Saved in File-0UtSccceeiiiiiiiee e 21-7

Code Saved in Parcelsoccccoiiiiiiiieniieeee e 21-7

Code in a Store Databasecccceviieiiiiiiinee e 21-7

Removing SOUICE FlESooiiiiiiiiiiiee e 21-8

THE TraNSCHIPL ... 21-8
HaNAIING EFTOIS oo 21-8
Registering an Interest in System Events ..., 21-8
Pragma-based Event Dependencyccccccceeeiiiiiiieinniieeeeee 21-9
Message-based Event Dependencyccccoveeeiiiiiiiciiiiinneenns 21-9

Shutdown When the Last Window CIOSEScccceeiieeeriiieiiiiee e 21-10
Handling Command Line Optionscccooiieiiiieiniiiieieee e 21-11
Pragma-based Option Processingcccoceeerieeriieeeniieneniieeenns 21-12
Message-based Option Processingccccceeevveeeriieeenineesnenn. 21-13

Unload TOOIS ParCelSooiiiiiiiiii e 21-14
Removing Undeclared Variablesccoocoiiiiiiiiiiiece, 21-14

XViii VisualWorks

Contents

Garbage Collecting Lingering InStancescccooocveeviiiiiienniee e, 21-15
Splashscreen and SOUNc..uviiiiiiiiii e 21-15
Replacing the Splashscreen and Soundcccceeeviiieeeeiiinen, 21-15

Suppressing the Splashscreen and Soundcccceeiviiieeennee 21-15

Controlling Splashscreen Durationccocceeeviiiieeiiiiiiieeeennne 21-16

Creating the Deployment IMageoooiiiiiiiiiie e 21-16
Running Runtime Packager ..o 21-17

A Short-Cut Procedure ... 21-18
EXAMPIES oo 21-18
Building a Stand-alone IMageccccceviieei e 21-18

Building an Image Using Parcelscccocvieiiiiiieii i, 21-19

Runtime Packager Process Detailsccocoviriiiiiiieiiie e 21-21
Saving Runtime Packager Parametersccoccvoeeniiiiiiec e 21-21

Clean Up IMAQJE ...ccveveiiieeeiee et 21-21

Set CommOon OPLIONSeiiiiiiiiie e 21-22

Details Pageoceeeeeiee e 21-23

Platforms Pageooocveiiiieiee e 21-24

EXCeptions Page ... 21-24

Parcels Page ... 21-25

Parcel 0perations ..o 21-26

SHIPPING PAGE ..o 21-26

Specify Iltems to Keep and Deleteoovvviiiiiiiiiiiiiiiee e 21-28

POP-UP MENUS ... 21-29

Scan for Unreferenced HEMScoooiiiiiiiiii e 21-31

Review Kept ITEBMS ... 21-32

POP-UP MENUS .t 21-33

Save Loadable Parcels ... 21-33

Test the APPlICatiONccoe i e e e e e 21-34

Set Runtime Memory Parameterscccccceeeeieiecciiiieiieeeee e 21-37

SPACE SIZES oeeeei et ——————————— 21-37

POlICY ValUES ... 21-37

NOTES e 21-37

Strip and Save IMagEveeiieiiiie e 21-38
Debugging a Deployed IMagecoeeiiiiiiiiiiee e 21-40
Customizing the Emergency NOtIfier ..., 21-40
Customizing Detected ReferencCescoocueeiiiiiiiiiie e 21-41
Customizing IMage SIHPPING ..veeeeeiiiieiee e e e 21-43
(e8] o] (=3 g T o)] o [R 21-43
Workspace or Browser is Opened with the Applicationcccccvveeee. 21-43

Parcel File not Readable ... 21-43
Application Cannot Find a Parcel Source Fileccccccevveeeeeiieiiiiciiinee, 21-43
Application Exits Immediatelyooouveieiiiiiiiiii e 21-44

An Identifier has no BindiNgccooiiiiiiiiii e 21-44

Application Developer’s Guide Xix

Contents

Appendix A VisualWorks Smalltalk Syntax Description A-1
OVEBIVIBW ...eeeeeeeee ettt e e e ettt e e e e e e e e ea et e et eeeeaeeeaeaaannnnsaeeeeeaaaeeeeeanannns A-1

LeXiCal PHMITIVESeeeiiiiiieee et e e e er e e e e e e e e e e nees A-1
Character ClaSSESciiiicuuiiiiiiiiieie et e e e e e e e e s er e e e e e e e e e e e aennnnes A-2

NN 10 0] =T = S A-2

Other Lexical CONSIIUCTSoiiiiiiieieiieeeieeee e A-2

N (o0 T =Y g 41 SRR A-3
Expressions and Statements ... A-4
11 1 T o £ EEURI A-5
Appendix B Special Characters B-1
OVEBIVIBW ...eeeeeeie ettt e oo e ettt e e e e e e e e e s e et aaeeeeeeaeeeaeeannnnnsaeeneeaaaneeeaanannns B-1
CompoSed CharaClerseoiiiiiiiiii e e e B-2

[Tl g o= | Y= U SRR B-5
Appendix C Virtual Machines C-1
OVEBIVIBW ...eeeeeeie ettt e oo e ettt e e e e e e e e e s e et aaeeeeeeaeeeaeeannnnnsaeeneeaaaneeeaanannns C-1
VisualWorks Virtual Machinesoooioiiiiiiiiiiiee et C-1
Production ENQINESvueiiiiiiiiiie e C-1

DEDbUG ENGINES ..ot C-2

ASSEIt ENQINES ..ottt C-2

Headless and Headful ENQINEScoccuiiiiiiiiiiiii e C-2

Linkable ObJjeCt ENQINEScoiiiiiiiiiiiiiiieee et C-3

Console ODbJECt ENQINESeeiiiiiiieiieeiiee et C-3

Virtual Machine Command Line OptionNscceeeiiiiiiiii i C-3
AlLPIAtFOIMS e C-3

WiINdows PlatformSeeiiiiiieiie e C4

Unix/LINUX PIatfOrMS ...coooiiiiiiiii e C4

System Colors 0N XTT e e e e ee e C-5

Index Index-1
Method Index Method Index-1

XX VisualWorks

About This Book

Overview

VisualWorks documentation is designed to help both new and
experienced developers create application programs effectively using the
VisualWorks® application frameworks, tools, and libraries.

This document, the Application Developer’s Guide, focuses on the basics,
such as:

e Smalltalk syntax

e VisualWorks development tools

e Data structures (classes, methods, namespaces, etc.)

* Program control structures

* Application and graphics frameworks

¢ Error handling and debugging

Other documents in the VisualWorks documentation set present

* using basic and add-in libraries that provide features useful for
specific application tasks,

¢ detailed information about VisualWorks tools, and
e tutorial introductions.

The documentation typically does not say everything there is to say about
a particular feature, nor does it cover the features in complete detail.
VisualWorks, like Smalltalk systems in general, is designed for
exploration and experimentation. In this sense, the documentation is
more like a map, identifying major features and how to get there, but the
level of detail is often variable and leaves lots of room for discovery. Read
the documentation as pointing out what is available in VisualWorks, and
then explore beyond what is described, becoming increasingly “at home”
with your environment.

Application Developer’s Guide XXi

About This Book

One strength of Smalltalk that makes this exploration and discovery
approach possible is that all of the source code available for browsing. Of
course, that also means there is more code there than you need to
understand, so you will need to figure out what to focus on and what to
ignore. Class and method comments, and special documentation
methods, can help here, and often provide details missing from the formal
documentation.

Read the documentation to orient yourself to the language, tools, and
libraries and their general use. It will help you to become successful
quickly, and providing a foundation for your further exploration and
mastery of the system.

Audience

The Application Developer’s Guide makes very few assumptions about
your level of knowledge about object-oriented programming, but does
assume you have a basic knowledge of computer programming in some
environment. The description of VisualWorks begins at an elementary
level, with an overview of the system tools and facilities, and a description
of Smalltalk syntax, but does not attempt to be a tutorial. For readers with
a good understanding of object-oriented programming principles and
practice, the document serves as an orientation to specific terminology
used in Smalltalk and the specific environment provided by VisualWorks.

For additional help, a large number of books and tutorials are available
from commercial book sellers and on the world-wide web. In addition,
Cincom and some of its partners provide VisualWorks training classes.
See “Additional Sources of Information” on page xxvi below for a listing of
some of these resources.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions

XXii

The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.

VisualWorks

Conventions

Example Description

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Special Symbols

This book uses the following symbols to designate certain items or
relationships:

Examples Description

File = New Indicates the name of an item (New) on a menu
(File).

<Return> key Indicates the name of a keyboard key or mouse

button; it also indicates the pop-up menu that is
<Select> button displayed by pressing the mouse button of the
<Operate> menu same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Application Developer’s Guide XXiii

About This Book

Mouse Buttons and Menus

VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

These buttons correspond to the following mouse buttons or
combinations:

3-Button 2-Button 1-Button
<Select> Left button Left button Button
<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.

If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the Ul Feel page of the Settings Tool.

Getting Help

There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

XXiv VisualWorks

Getting Help

Commercial Licensees

If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb @ cincom.com.

Before Contacting Technical Support

When you need to contact a technical support representative, please be
prepared to provide the following information:

e The version id, which indicates the version of the product you are
using. Choose Help — About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

* Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help — About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

* The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb @ cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:
http://supportweb.cincom.com

Telephone
Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Application Developer’s Guide XXV

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book

Non-Commercial Licensees

VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of lllinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

e A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

* An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

* A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

* Avariety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information

XXVi

This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

VisualWorks

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

Additional Sources of Information

Smallitalk Tutorial
A new VisualWorks Smalltalk tutorial is available online at:
http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

The tutorial information is growing, so revisit this site.

Online Help

VisualWorks includes an online help system. To display the online
documentation browser, open the Help pull-down menu from the
VisualWorks main menu bar and select one of the help options.

VisualWorks FAQ

An accumulating set of answers to frequently asked questions about
VisualWorks is being compiled in the VisualWorks FAQ, which
accompanies this release and is available from the Cincom Smalltalk
documentation site.

News Groups

The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://wiki.cs.uiuc.edu:8080/VisualWorks

This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications

Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.

Application Developer’s Guide XXVii

http://wiki.cs.uiuc.edu:8080/VisualWorks.1
http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

About This Book

Examples

There are a number of examples in file-in format in the examples
subdirectory, under the VisualWorks install directory. In addition, several
example listings in the document, especially those in Chapter 12,
“Working With Graphics and Colors,” invoke an Examples Browser. This
browser is provided in a parcel, also in the examples directory.

XXVili VisualWorks

1

The VisualWorks Environment

Overview

VisualWorks is a complete Smalltalk development environment, including
* animplementation of the Smalltalk language,

e avirtual machine (also called the object engine) for executing
Smalltalk code,

* an extensive class library, and
e awide assortment of development tools.

This document, the Application Developer’s Guide, provides an
introduction to the primary features of the VisualWorks environment with
a focus on developing and deploying VisualWorks applications.

In this chapter, we describe how to start up VisualWorks, including
several startup options, how to save your work as you develop in
VisualWorks, and how to exit VisualWorks.

Running VisualWorks

The VisualWorks executable runs the virtual machine, which processes
the data in a Smalltalk image file. The virtual machine interprets and
executes the Smalltalk byte-codes stored in the image. Because it is an
executable file, there is a separate virtual machine for each operating
system platform supported by VisualWorks. The image file, however, is
portable across all supported platforms.

As you work in VisualWorks, the usual way of saving your work is by
saving the image, either periodically while working or when exiting
VisualWorks. In normal practice, Smalltalkers accumulate several

Application Developer’s Guide 1-1

The VisualWorks Environment

1-2

images, at least one for each project. To start a specific image, simply
specify that image in the startup command, as described in the next
section.

When starting a development image, the VisualWorks Launcher window
opens, serving as the command center for development operations. For a
description of the Launcher and other tools, refer to Chapter 2,
“Programming in VisualWorks.”

VisualWorks Startup Commands

To start VisualWorks, you run the virtual machine with the image file
passed as the argument:

virtual machine image file options
There are several engines provided for each platform.

* For development work, we recommend using the engines named
vw<plat>, for example, vwnt . exe for Microsoft Windows systems
or vwlinux86 for Linux systems. These engines include debug
symbols which can be helpful in diagnosing engine crashes.

* For application deployment, the preferred virtual machines are
visual.exe on Windows systems and visual on Unix and MacOS
systems. These are stripped versions of the object engines, and so
are smaller.

There are additional virtual machines for special purposes, particularly for
debugging. See Appendix C, “Virtual Machines,” for more information
about all of the engines.

By default, the virtual machine is installed in the bin/ <platform>/
subdirectory of the root VisualWorks installation directory.

If no image file is specified, the virtual machine looks for an image with
the same name as the engine. For example, if you execute visual (or
visual.exe) without an image name, it will look for visual.im,.

Typically, you will start by changing to the image subdirectory, and
execute the object engine with the image as argument. For example:

> cd c:\visual\image
> ..\bin\win\visual.exe visual.im

If you use a file manager to start VisualWorks, you may need to specify
full paths for both the object engine and the image.

If both the virtual machine and the image file are in the same directory, no
path information is required at all.

VisualWorks

Running VisualWorks

VisualWorks Command Line Options

There are three types of command line options that you can use when
starting VisualWorks: object engine switches, image level switches, and
user-defined switches.

The generic command line syntax is:

<oe name> [oe switches] <image-name>
[image switches] [user-switches]

For a complete description of the various object engine switches, see
“Virtual Machine Command Line Options” on page C-3.

For additional information on providing your own splash screen and
startup sound, refer to “Splashscreen and Sound” on page 21-15.

Image Level Switches

The following image level switches are available to specify actions to
perform when the image starts up.

-pcl parcelFile
Load the parcelFile into the image on startup, checking both as a
filename and as a name to be searched in the parcel path. Parcels
are external file representations of packages (refer to Chapter 8,
“Managing Smalltalk Source Code”).

-enf configurationFiles
Load all of the parcel files named in configurationFiles (one or more)
on image startup.

-psp dir1 dir2 ...
Sets the parcel search path to include the specified directories.

-err errorFile
Set the path and file name for the error log file.

-notifier notifierClass
Set class for unhandled exceptions to notifierClass.

-filein fileNames
Treat the argument(s) as Smalltalk files to be filed in

-settings fileNames
Treat the argument(s) as XML files containing Smalltalk settings, and
load them.

-doit stringArguments
Treat the argument(s) as strings to be evaluated

Application Developer’s Guide 1-3

The VisualWorks Environment

1-4

-evaluate stringArgument
Treat the argument (only one) as a string to be evaluated. After
evaluation, put the displayString of the result onto the standard output
and exit the image.

Application-specific switches may be defined in the image. For a
description of the mechanisms used to define command line options,
refer to “Responding to System Events” on page 9-24.

Running Multiple Versions Under Windows

On Microsoft Windows systems, you can launch VisualWorks by double-
clicking on an image file, as long as the .im extension is associated with
the virtual machine. However, if you have multiple versions of
VisualWorks installed, Windows only associates one engine with the
extension. In this case, associate the small executable,
VisualWorks.exe with the .im extension, and edit VisualWorks.ini
to identify the location of the engine for each applicable version.

Both VisualWorks.exe and VisualWorks.ini are installed, by
default, in the bin\win\ directory. Copy these to a different directory
that you will maintain independently of any specific installation of
VisualWorks, such as ¢: \visualworks.

Associate the . im extension in Windows with this executable by creating
an “open” action for the extension, and specify in the “Application used to
perform action” field:

C:\visualworks\VisualWorks.exe "%1"

When you double-click on an image file, visualWorks . exe is launched
with the image clicked as argument.

Each release of VisualWorks includes a new visualWorks. ini that
contains a line with a default listing for the current release. Copy the line
from this file into your own copy of the file, and edit the vm path name for
your installation. After accumulating for several releases, you may have a
file that looks like:

72 00 c:\vw7.2\bin\win\vwnt.exe

71 00 c:\vw7.1\bin\win\vwnt.exe

70 00 c:\vw7\bin\win\vwnt.exe

54 00 c:\vw5i.4\bin\win\visual.exe

53 00 c:\vw5i.3\bin\win\vwnt.exe

53 78 c:\vw5i.3\bin\win\visual.exe

52 00 c:\vw5i.2\bin\win\vwnt.exe

52 78 c:\vw5i.2nc\bin\win\visualnc.exe

VisualWorks

Saving Your Work

The first two digits indicate the VisualWorks release number, and the
second two are either 00 or 78, indicating commercial and
noncommercial releases, respectively. visualWorks . exe matches
these numbers with a version identifier in the image file to invoke the
appropriate virtual machine. These numbers are the fifth and sixth bytes
of the array returned by:

ObjectMemory versionld

which is also shown by selecting Help — About VisualWorks... in the
Launcher.

Saving Your Work

In most programming environments you write code by editing a source
code file, and your work is saved in that editable file. This is the file that
you then compile to create the executable version of your program.

In VisualWorks, the primary location of your work is in the virtual image,
or simply image. The image is a “snap-shot” of the VisualWorks
environment, including all the code that makes up the development
environment, class libraries, tools, and your application. Tools and other
windows that are open when the image is saved are opened again when
you launch the image again. Saving the image is the traditional Smalltalk
way of saving changes to the system as you develop an application.

When you save an image, all this information is written to a binary image
file. The original image file distributed with VisualWorks is called
visual.im (visualnc.imin non-commercial distributions).

For more about source code files, including additional source code
archiving mechanisms, see below and Chapter 8, “Managing Smalltalk
Source Code”

Saving the Image

To save the current state of the image, select File = Save Image in the
VisualWorks Launcher. The current image file is then overwritten with the
current image.

To save the image to a new name, select File — Save Image As... A dialog
prompts you for the name of the image, with the current image name as
the default. To save the image to a different file, keeping the previously
saved image safe, enter a new name, without the . im extension.

Application Developer’s Guide 1-5

The VisualWorks Environment

1-6

Restoring the Original Image

It is recommended that you keep a known good backup image, either a
copy of the image as originally supplied with VisualWorks, or a copy of
the basic image with optional tools and add-ins installed.

A clean copy of the original visual.im (or visualnc.im) image file is
included in the image/ directory, in the file visual.zip (or
visualnc.zip). If you accidentally overwrite the original image file or
otherwise need to restore it, unzip this file into the image/ directory.

Caution: Be aware that unzipping this file will overwrite the
visual.im in that directory, destroying any changes it might
contain.

Sources and Changes

When you save the VisualWorks image, three files updated: the image
file, the sources file, and the changes file. These three files are
synchronized, and so must be backed up together in order to have a
complete record of the system.

The image file has already been described at the beginning of this
chapter.

The sources file holds source code for the original VisualWorks system
image before you made changes. By default it is named visual.sou
which is the original image name with a . sou extension.

The changes file, which typically has the same name as the image file but
with . cha as its extension, contains source code for changes you have
made to the system, specifically for any application code you have
created. Changes are recorded to this file every time you accept an edit,
whether or not you save the image, so you always have a history of work.
The changes file can become very large, and so should occasionally be
condensed using Changes — Condense Changes from the Launcher’s System
menu. This removes all but the latest version of each system change.

You can change the name of the sources file and of the changes file on
the Source Files page of the Settings Tool (to open this tool, select System
— Settings in the Launcher window).

VisualWorks

Exiting VisualWorks

Exiting VisualWorks

To end a VisualWorks development session, select File = Exit VisualWorks
in the Launcher. A dialog prompts you to save the image before exiting. If
you choose to save the image, you may provide a new filename.

Selecting Cancel continues your session in the VisualWorks development
environment.

Note that closing the Launcher window, for example by clicking the
window’s close icon, allows you to either exit VisualWorks, or simply
close the Launcher window itself.

Closing on Windows Shutdown

When you shut down a Microsoft Windows system with VisualWorks
running, the image closes ending the VisualWorks session. The exit may
ungracefully close resources, possibly resulting in data loss. This is
important, for example, in database applications that might have an open
session.

Windows shutdown events are delivered to the VisualWorks image as a
QuitSystem event. There are a couple of ways to handle this.

e You can put a dependent on ObjectMemory and have an update
method that watches for #aboutToQuit (which would also be triggered
every time the image is quit).

e You can modify InputState>>#send:eventQuitSystem: to provide some
special hook only invoked on an exit event.

* Instead of modifying #send:eventQuitSystem:, you can add your own
quit method to InputState, such as #send:myEventQuitSystem:, and then
at system startup, you can go to InputState.EventDispatchTable and put
your own message at position 19.

Alternatively, you can block VisualWorks from exiting, though this is not
the best solution. By default, the InputState class method
setDispatchTableForPlatform registers true with the acceptQuitEvents object.
To prevent VisualWorks from being prematurely shut down, set this to
false instead.

Emergency Exit

If VisualWorks stops responding to inputs such as mouse movements,
there are a few options.

Application Developer’s Guide 1-7

The VisualWorks Environment

1-8

You can press <Control>-\ to open the Process Monitor, which lists all
running VisualWorks processes. All Ul processes are paused, as can be
seen by examining the listings. You can select a process and debug it to
find the problem.

Pressing <Control>-Y opens a debugger directly on the current process, by-
passing the Process Monitor.

If that doesn’t work, you can use the Emergency Evaluator. To open an
Emergency Evaluator, type <Shift>-<Control>-Y. An Emergency Evaluator
window will appear, with instructions to type a Smalltalk expression
terminated by <Escape>. Enter:

ObjectMemory quit
in the window, then press <Escape>. The system will shut down, after which
you can restart it.
To save the image before quitting, send:

ObjectMemory saveAs: ‘filename' thenQuit: true
Then press <Escape>.

VisualWorks

2

Programming in VisualWorks

Overview

One of the major differences between Smalltalk environments and most
other development environments is the dynamic way the system is
modified. Rather than writing code to a source file, compiling the code,
then running the executable, in Smalltalk you program by directly
modifying a running system. The environment incrementally becomes
your application.

The VisualWorks tools, accordingly, are far more than text editors and
compilers. Instead, they provide a variety of views into the system as well
as mechanisms for interacting with it and changing its state.

This section introduces several of the tools in the context of doing
development in VisualWorks. For detailed information about individual
tools, refer to the VisualWorks Tools Guide.

Application Developer’s Guide 2-1

Programming in VisualWorks

VisualWorks Launcher

When you start a VisualWorks development image, the Visual Launcher
(or “Launcher”) is the first, and possibly only, window displayed. This is
the VisualWorks “command center,” from which you perform system-wide
operations and open other tools.

2 YisualWorks c:\ww /. 4\imagelvisual

File Svstem Browse Cebug Tools Window Help

B E &ahh| a0

visual.im created at May 16, 2005 10:36:56 am|

¥ Default-

The Launcher primarily provides a way to launch the main VisualWorks
tools, either by selecting menu items or by clicking one of the buttons on
the button bar. Individual items are described throughout the VisualWorks
documentation. Menus, menu options, and toolbar buttons are often
added to the Laucher when their supporting components are installed.

Attached to the Launcher is the system Transcript. This is a text pane that
shows a running list of informational messages generated by
VisualWorks or your code. You can evaluate code in the transcript, but it
does not have the features of a workspace, and so is not as convenient.
More often you will use it as a place to write system messages. The
Transcript is an instance of class TextCollector, and so displays string data.
This will be illustrated several times in this document, for example in
“Evaluating Smalltalk Code in a Workspace” on page 2-7.

For descriptions of individual menu items, press F1 to open the
VisualWorks Help browser and display the Launcher help.

Mouse (Pointer) Operations

2-2

While working in VisualWorks, you will need to perform a variety of
operations, such as opening tools and evaluating (executing) Smalltalk
expressions. The menus and buttons in the Launcher and other tools
provide some number of these operations. Others are available in pop-up
menus throughout the system.

VisualWorks

Text Entry and Formatting

VisualWorks, like all Smalltalk systems, requires a mouse as a pointing
device. There are 1-, 2-, and 3-button mouses in common use now, and
VisualWorks supports each of these. The method for invoking common
operations varies, however.

There are three primary operations performed using the mouse:
e <Select> selects objects and text.

e <Operate> opens the <Operate> menu, which contains commands
appropriate to the current view. This context-sensitive menu changes
based on the current window and selection.

e <Window> opens the <Window> menu, which contains commands
that operate on the current window.

To invoke each of these operations, there are different methods for
invoking operations on the different systems and mouse configurations.

Operation 3-Button 2-Button 1-Button
<Select> Left button Left button Button
<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

The <Operate> menu is the most important in VisualWorks. Many of the
operations and procedures described throughout this document involve
picking a command from the <Operate> menu. Commands on the
<Operate> menu are explained as needed throughout this manual. As
usual, the most effective way of learning about the many options is to
experiment with them.

Text Entry and Formatting

For writing code and test expressions, you type into various text panes.
While this is obvious, there are some non-obvious options available within
VisualWorks.

Character Formatting

The basic text used for text entered in VisualWorks is specified in the
settings tool (System — Settings in the Launcher) on the Tools page. The
options are minimal, allowing you to select a small, medium or large sans

Application Developer’s Guide 2-3

Programming in VisualWorks

24

serif character typeface, or a fixed spacing (fixed-width, serif typeface).
There are other possibilities (see Chapter 7, “Working with Text”) but
these are the usual options for text editing in the VisualWorks tools.

Occasionally there is reason to give text a little different formatting, as we
do in the introductory workspace pages in the noncommercial version.
Several such formatting changes are supported:

Format Effect Add (Esc + char) Remove (Esc + char)
Bold b B
Serif s S
Underline u U
Italic i I
Increase size + -
Remove all formatting X

For example, to apply a bolding to some text in a workspace or code
editor, select the text in the editor. Then press <ESC> followed by the
key. To remove the bolding, select the text and then press <ESC>
followed by (<shift>+).

Similarly, to set the formatting for text you will be typing, place the cursor
at the text entry point, careful not to select any text. Press the ESC
sequence, then type. The text you type will take on the specified format.
To turn off the formatting, press the remove sequence.

A text editor that provides various text formatting commands as menu
selections is available, in the ComposedTextEditor parcel. Use the Parcel
Manager and browse the directory contributed/Heeg.

Short-cut Controls

Short-cut key sequences are provided for several common operations in
text and/or code editing pains.

Text Editing

Ctrl+A Select all text

Ctrl+C Copy

Ctrl+D Insert date (non-code view)
Ctrl+Shift+D Insert date (all views)
Ctrl+K Compose characters

VisualWorks

Text Entry and Formatting

Text Editing

Ctrl+S Save/Accept

Ctrl+V Paste

Ctrl+Shift+V Paste from list
Ctrl+W Delete word back
Ctrl+X Cut

Ctrl+Z Undo

Find and Replace

Ctrl+F Find (non-code views)
Ctrl+G Find again (non-code views)
F3 Find again

Ctrl+L Find (all views)
Ctrl+Shift+L Find again (all views)
Ctrl+R Replace
Ctrl+Shift+R Replace again
Coding Shortcuts

Ctrl+F ifFalse:

Ctrl+G =

Ctrl+T ifTrue:

Ctrl+B Debug It

Ctrl+D Do It

Ctrl+E Explain

Ctrl+P Print It

Ctrl+Q Inspect It

Ctrl+S Save/Accept

Ctrl+Y User interrupt

Ctrl+\ Process interrupt

Application Developer’s Guide

2-5

Programming in VisualWorks

2-6

Enclosing an Expression

When writing code or comments, is it common to need to enclose a
section of text in parentheses, brackets, or quotation marks. You can
enter the left and write enclosure individually, of course, but VisualWorks
provides a shortcut for enclosing an expression in pairs of any of these
enclosure characters: (),[],<>,{}," ", and"".

To enclose an expression, select the text in the text editor (generally a
code editor or workspace). Then press <ESC> followed by the left
enclosure character.

For example, when entering code it is common to realize that
parentheses are required around part of an expression you have already
typed, such as:

Rectangle origin: 10@20 extent: 50@50 translatedBy: 4

Parentheses are required because there is no such message as
origin:extent:translatedBy: for class Rectangle. What is intended is to send
the translatedBy: message to the result of the rectangle created by the
origin:extent: message. To fix this, we can select that part of the
expression, press <ESC> followed by <(>, and the parentheses are
added to enclose the selection.

Page Edit Smalltalk Options Help
n = PR s AR

‘Workspace | Yariables

(REHEGIERT BRI ESA) translatedBy: 4

Text or Smalltalk code Al

The same technique can be used to enclose an expression in the other
characters shown above.

To select just the expression within such enclosures, double-click just to
the inside of one of the enclosing characters. The enclosed expression is
selected, even if it is separated on several lines.

To remove the enclosures, select the enclosed expression, then use the
ESC sequence again. Since the expression is already enclosed, the
enclosing characters are removed.

VisualWorks

Evaluating Smalltalk Code in a Workspace

Evaluating Smalltalk Code in a Workspace

A Workspace is a window in which you can evaluate Smalltalk code. This
is useful for launching applications and for testing code samples.

A workspace is open when you open a new VisualWorks image. Most
developers keep a workspace open while they work. Open workspaces,
like the rest of the tools, are saved with the image, and so are opened
when you launch any image that was saved while opened.

m | To open a new workspace, choose Tools — Workspace or click on the
Workspace icon in the VisualWorks Launcher.

Page Edit Smalkalk oOptions Help
O e F DB £ AA

Wworkspace | variables

2+5[

Text or Smallkalk code Al

While developing in VisualWorks, there several ways to use a workspace.
Often it is useful to see the return value of an expression. For example,
type a simple arithmetic expression on an empty line of the workspace.
Then place the cursor somewhere on the line, or select the expression,

@l and either press <Citrl>-<P>, click on the Print it toolbar button, or select
Smalltalk = Print it. The result is printed following the expression.
Unsurprisingly, it is the number 7.

Similarly, type the String expression:

'Hello World'
and invoke Print it. Slightly more interesting, though, is to see the result of
sending a conversion message to the String, such as:

‘Hello World' asArray

and again invoke Print it. The results this time a less obvious, and can be
instructive if you are interested in the kind of object is returned by an
expression.

Application Developer’s Guide 2-7

Programming in VisualWorks

2-8

Kd

You can evaluate expressions for to perform other operations as well,
such as launching the application you are developing within the system.
For example, type the following expression in the workspace:

Transcript cr; show: 'Hello World'

but this time invoke Do it. Either press <Ctrl>-<D>, click on the Do it toolbar
button, or select Smalltalk = Do it. This time nothing shows in the
workspace, but ook in the Transcript attached to the Visual Launcher.

When you develop an application with a GUI, one way will open it is by
evaluating (usually with Do it) a message like:

ParcelManager open

The Inspect it and Debug it evaluation messages can also be invoked.
These are described later.

The workspace is a multi-page tool, each page containing independent
contents. One page, labeled Variables, displays the current workspace
variables and their values. Each workspace page can be saved into its
own file. The multipage structure allows you to have several workspaces
open at a time, sharing workspace variables. You can also “tear off” a
workspace page to have it in its own single-page workspace.

The following sections summarize additional features of the workspace.

Evaluating Commands

% |2 |5

The workspace is a test bed for Smalltalk code. When you enter a
Smalltalk expression into a workspace, or any other code pane for that
matter, there are four evaluation methods to use. To invoke any of these,
either select the expression to evaluate or, to evaluate a whole line simply
position the cursor somewhere on the line. Then, using either the
<Operate> menu, the Smalltalk menu, or the button, select the operation:

Do it
Silently evaluates the selected expression. Any output is the
responsibility of the expression being evaluated.

Print it
Evaluates the selected expression and prints the return value in the
workspace.

Inspect it
Evaluates the selected expression and opens an inspector on the
return value.

VisualWorks

Kd

Evaluating Smalltalk Code in a Workspace

Debug it
Evaluates the expression and opens a debugger on the first
message-send. This is similar to placing a self halt in the code and
evaluating. You can then use Step into and Step commands to explore
the code’s operation. See Chapter 16, “Debugging Techniques,” for
suggestions.

Workspace Variables

Temporary variables used in a workspace have the workspace as their
scope, and exist as long as the workspace does, or until they are
explicitly cleared. These variables, called workspace variables, are
created when first assigned a value. That assignment then persists and
can be referenced by subsequently evaluated expressions in that
workspace. The variable and its assignment are saved with the image,
and so are available when reloading the saved image.

For example, you can define a variable to hold an array simply by
evaluating an assignment operation:

fred := Array with: 5
The variable fred persists now, and so is available for further operations,
such as:

fred at: 1 put: ‘this is a test’

To inspect, remove, or otherwise edit workspace variables, click on the
the Variables tab. This toggles the display of an inspector on the current
variables for this workspace. Select a variable and use the commands on
its <Operate> menu to perform operations on the variable.

Name Spaces in Workspaces

Workspaces can import name spaces, enabling them to better simulate
the name scopes of running code. Without imports, the default name
space is Smalltalk, so you would have to reference shared variables, such
as your application class names, using a long dotted name.

By default, and for convenience, a workspace imports all name spaces in
the system. This allows you to refer to all shared variables by their
unqualified names. For better simulations of naming scopes, you can
specify just which name spaces to import.

To set the name space selection, select the Smalltalk = Namespaces...
menu. In the selection dialog, select either All or Some. If you select Some,
also select which name spaces to import. Imported name spaces are
then indicated by a check mark.

Application Developer’s Guide 2-9

Programming in VisualWorks

Saving Workspace Contents

You can save the contents of your workspace as a text file for later
opening. This is useful, for example, for saving collections of test
expressions. Note that workspace variables are not saved with the file,
and so must be recreated when the file is opened back into a workspace.

To save the contents as a file, select Page — Save or Page — Save As... in
the workspace menu. If the workspace has not already been saved, you
are prompted for a name, with the .ws extension supplied.

To load a saved workspace, open a new workspace, then select
Page — Open, and enter the workspace name.

Loading Code Libraries

2-10

The initial visual.im image contains fairly minimal development
facilities, including basic class libraries and tools. VisualWorks includes
additional tools and libraries that you will also want to use while
developing. Most of these are provided, either with VisualWorks or by
third-party vendors, as parcel files. There are other options as well, but in
this section we only deal with parcels. See Chapter 8, “Managing
Smalltalk Source Code,” for descriptions of these options.

For most non-Smalltalk development environments, code libraries are
imported during a compile operation, as specified by an “include”
command. For Smalltalk systems, these libraries need to be loaded into
the running system, and become part of the environment. This provides a
uniform approach for loading additional support code, such as internet
support services, and tools that enhance the development environment.

For example, the Ul Painter is a standard tool for developing the GUI in a
VisualWorks application. It is provided as a standard tool with
VisualWorks, but is optionally loadable. By loading the tool’s parcel, it
becomes immediately available for use.

When a parcel is loaded into the system it is organized as a package or
as a bundle of packages. When browsing the code that is loaded from a
parcel, locate the bundle or package with the same name, and explore
that. Browsing code is explained in “Browsing and Editing Smalltalk
Code” on page 2-13.

VisualWorks

Loading Code Libraries

Using the Parcel Manager

The Parcel Manager provides an easy-to-use way to manage the parcels
that are loaded in the system. The Parcel Manager provides a variety
views listing the available parcels and their descriptions, and support to
load and unload a selected parcel.

To open a Parcel Manager, choose System — Parcel Manager or click on the
Open a Parcel Manager icon in the Launcher.

Parcel Manager EJ@@J

File Parcel Help

| EE &8

Suggestions l Duecmriasl Lﬂadedl Alphabetical 1 Prerequisite Treel
[|| [@ Al Advanced Tools [7.2] 4]
1 Developer Taols (D) DLLCC [Pre-Release 7.4 - mar05.2]

Z1 Environment Enhancements 6] ProgrammingExtensions [7.2]
|1 store Tools (D) RBSUnitExtensions [7.3]
21 Application Development M RuntimePackager [Pre-Release 7.4 - may05.3
21 Application Server () SUnit [Camp Smalltalk 3.1 RC2]

1 Database &) SUnitUl [Camp Smalltalk 3.1 RC1] p
(1 Distributed Computing (D UlPainter [Pre-Release 7.4 - mar05.2] =
C1Web Services

1 Graphics Cormment l Plnpalliasl

% gest_‘tf;:mg Runtime Packager is an image deployment utility that removes =
1 0S-Windows development tools and other unwanted classes from an image,

21 Security leaving an image file that occupies significantly less disk space

[C1 Advanced Utilities because it contains enly objects required by your application.

1 Compatibility

1 Toys

To open the Runtime Packager, use the Tools menu in the Launcher

1 Japanese Locale)
window.

Further infoermation on the Runtime Packager can be found in the "
Application Developer's Guide" (located in the /doc subdirectory of

|| VT =

Wisuahw'orks Parcel (loaded): cww?. 4\packagingRuntimePackager pcl

The Parcel Manager displays all parcels that are on the parcel path
associated with the image, which is a list of directories in which
VisualWorks will look for parcels. Three organizational views are provided
by the tab control over the left list pane: Suggestions, Directories, and Loaded.

Select the Suggestions tab to see a pre-defined set of recommended
parcels. Each category under Suggestions contains parcels that have been
identified as key add-in features for VisualWorks. By selecting a particular
category, you may view a list of recommended parcels (shown in the
upper-right view). For example, the Ul Painter, located under Essentials, is
the main VisualWorks tool for GUI development.

Application Developer’s Guide 2-11

Programming in VisualWorks

2-12

The Directories tab gives a directory-tree view of the parcel path. Use this
view to find parcels that are not included in one of the Suggestions
categories, or to find a parcel by its component, which is often installed in
a separate directory.

The Loaded tab lists all parcels that are currently loaded into the image.

To load a parcel, select it from the parcel list (upper-right corner of the
tool), and choose Leoad from the <Operate> menu. You may also use the
toolbar button, or simply double-click on the name of the parcel.

To browse those parcels that have already been loaded in the image,
select Browse from the <Operate> menu.

The Parcel Manager uses several special icons to distinguish product
parcels from others (the “shopping sack” icon):

Icon Description
Iﬂ Supported VisualWorks product parcels
@ Goodies or add-in components from other vendors

Use the tab controls on the parcel list view to view parcels sorted in
alphabetical order, or a hierarchical presentation ordered by parcel
prerequisites. The parcel details view (lower-right corner) shows
comments and properties associated with the selected parcel.

Loading Parcels Programmatically

In addition to using the Parcel Manager to load parcels, you can load
parcels programmatically. This allows you to include the ability to load
and unload parcels as an operation performed by your application.

Refer to “Loading and Unloading Parcels” on page 8-28 for details about
this process.

Setting the Parcel Path

By choosing the Directories tab, you may view the parcel paths as a
directory tree. Selecting a particular directory displays all the parcels
contained within it.

To change, add or remove items from the parcel path, use the Parcel Path
page in the Settings Tool (select System — Settings in the Launcher
window). For more information about parcels, see “Parcels” on

page 8-28.

VisualWorks

Browsing and Editing Smalltalk Code

Browsing and Editing Smalltalk Code

In most traditional programming environments, including those for object-
oriented languages, you directly edit a plain text source code file. That file
contains a large number of definitions of functions, classes, and methods.
The typical source editor presents this file as a single text document,
though often with search facilities to assist the programmer in finding the
definition to be viewed and edited.

In VisualWorks the view is considerably different. Source code definitions
are presented as individual classes and their method definitions. You
browse classes either in the overall class hierarchy or as they are
organized into packages. Method definitions are browsed as they are
defined in a given class. (Shared variable and name space definitions are
similar to class definitions, but will be discussed elsewhere.)

The principal VisualWorks tool for browsing and editing these definitions
is the System Browser. In this section we introduce the principle features
of the System Browser and its use in performing common programming
tasks. For additional information, refer to the Tools Guide.

Application Developer’s Guide 2-13

Programming in VisualWorks

2

Navigator

Code View

2-14

To open a browser, choose Browse — System or click on the Browser icon
in the VisualWorks Launcher.

Package / Bundle Class / Namespace Protocol Method / Variable
List List List List

%> ByteArray>=at: put:

Browser Edt Find Yiew Package Class| Probocol Method Tools Help
b #_ # # = .
B WK o BB WY % | Find | v
Package rHieralch}l Instance | |Class | Shared \-"ariable" Instance Variablel
Local Imaye - &
[@] Base VisualWorks bit processing
-[E] Kernel N omparing 4 basicAt:
-[] System &b IntegerArray onverting & basicAt:put:
-[@ Collections &5 LargeArray printing byteAt:
-([) Collections-¢ ||& LargeWordArray —| |private byteAt:put:
J Collections-2 # QueueOverflowE replaceBytesFrom
) [ESTRER: . || RunArray = sizelnBytes

Source | Rewite | Code Critic

at: index put: byteValue ”~
"Store the argument value in the indexable field of the receiver
indicated by index. Fail if the index is not a Smalllnteger or
is out of bounds, or if the byteValue is not a Smalllnteger
between 0 and 255. Answer the value that was stored."
<primitive: 421>
“super at: index put: byteValue
A

Method: #at:put: [accessing) || Parcel: none || Package: Collections-turayed

The System Browser has several list panes and several code views. The
list panes allow you to navigate to the definition you want to view or edit,
as well as to select the location in the class hierarchy of new class and
method definitions. The code view provides several tab-selectable tools
for viewing properties and relations of the definitions, as well as to edit
them.

VisualWorks

Browsing and Editing Smalltalk Code

%By’lelrrdy»dl:pul: g@@
Browser Edt Find View Package Class Protocol Method Tools Help

Fl oS oo d DB WS Z e v
Package | Hierarchy Instance | Class | SharedVariable | Instance Variable
Local Image A% Ar A 2 at:

[0 Base VisualWorks Eh bit processing

S5 DwordArray comparing 4 basicAt:

System &5 IntegerArray converting A basicAt:put:
Collections < LargeArray printing byteAt:

i-(D Collections-€ || LargeWordArray private byteAt:put:

(@ Collections-2 # QueueOverflowE replaceBytesFrom
E"@» < RunArray a sizelnBytes

Source | Rewrite | Code Critic

at: index put: byteValue
"Store the argument value in the indexable field of the receiver .
indicated by index. Fail if the index is not a Smallinteger or NaV|gat0r
is out of bounds, or if the byteValue is not a Smallinteger
between 0 and 255. Answer the value that was stored."

<primitive: 421> COde TOOl
“super at: index put: byteValue
v
Method: #at:put: [accessing) Parcel: none Package: Collections-Arrayed

Browsing the System

Browsing the system consists of navigating through the library of classes
that are in the system, observing their relations to other classes and the
methods that are defined in those classes. It will take some experience to
become comfortable with the browser, but the following comments will
guide your learning.

Using the tabs above the top left list pane, select either the Package (the
default) or Hierarchy view of the system. The Package view organizes
classes into related groups, according to component. Packages in this
way serve as categories. The Hierarchy view shows all classes in the class
hierarchy of the class that is selected, or the entire Object hierarchy if no
class is selected, when the tab is clicked. This view allows you to browse
the inheritance relations of classes.

For some special purposes, there is also a Parcel view, available from the
Browser menu. Some operations on parcels, the external file
representation of a package or bundle, this view is necessary. Refer to
“Parcels” on page 8-28 for information about parcels and operations on
them.

The VisualWorks system is organized as a class library. Classes are
defined in an inheritance hierarchy, which you can browse by selecting
the navigator’s Hierarchy tab.

Application Developer’s Guide 2-15

Programming in VisualWorks

2-16

For organizational purposes, classes are grouped into packages, and
packages can be grouped into bundles. Packages and bundles can be
saved, or “published,” as parcels, which are the external, file-based
representation of packages and bundle. This organization is described
more fully in Chapter 8, “Managing Smalltalk Source Code.”

You use the navigator to traverse the VisualWorks class library, viewing
definitions for classes, namespaces, methods, and variables.

The Package, Parcel, and Hierarchy views each has its own <Operate>
menu, offering commands that are appropriate to its contents. Many of
the commands are obvious. Specific commands are explained throughout
this document as the operation is discussed. For details on individual
menu functions, view the online help available from the browser’s Help
menu.

Browser Navigator

The different parts of the browser’s navigator provide different views of
the system. Here is a brief summary of their function and use:

Package View

The VisualWorks library is organized into packages and bundles.
Packages and bundles provide an organizational view on the class library,
allowing you to categorize code according to related functionality. In this
respect, packages and bundles serve as did class categories in earlier
versions of VisualWorks and other Smalltalk systems.

Each code definition is contained in a package, and can be viewed by
selecting the package. Packages can also be grouped into bundles and
the contained definitions browsed. The browser displays packages and
bundles when Package tab is selected in the Browser.

When Store support is loaded, packages and bundles are extended to
support code revisioning features and repository publishing to assist in
source code management. For information about working with packages
and bundles in a Store environment, refer to the VisualWorks Source
Code Management Guide.

Parcel View

Parcels are primarily a deployment mechanism, providing an external file
container for the code defined in packages and bundles. Currently is
useful to be able to browse parcel and the code they contain, to perform
operations that packages do not yet support. To switch to the Parcel view,
select Browser — Parcel in the system browser.

VisualWorks

Browsing and Editing Smalltalk Code

Hierarchy View

Occasionally it is useful to explore a class in terms of the other classes
from which it inherits behavior, or that inherit behavior from it. The
navigator allows you to do this by displaying the hierarchy of the selected
class.

To view the entire class hierarchy, start by selecting class Object. You can
then find and browse a class by navigating through the hierarchy to it.
Although this is seldom very useful, it can be instructive.

Class / Name Space View

Classes and name spaces are defined in packages, so the contents of
the Class / Name space view depend upon the selected Package.

In addition to having a superclass, each class is defined in a name space,
which identifies the s. A name space is a name resolution scope for name
space, class, and shared variable names. Typically, you create your own
name space and then create your applications within that name space.
(Refer to “Working with Name Spaces” in Chapter 6 for more
information.)

When the class hierarchy view is selected, this view shows the containing
package for the selected item.

Instance, Class, and Variable Views

The Instance, Class, Shared Variable and Instance Variable tabs toggle the
contents of the method category and method/variable views, selecting
whether the categories and definitions of instance methods, class
methods, shared or instance variables are shown. In some situations,
such as when a namespace is selected that has only shared variables
defined in it, only one of the buttons, in this case Shared Variables, is shown.
Usually, any of the buttons can be selected, even though there may be no
entries for that view.

Icons in the Navigator

The browser’s navigator uses a number of special icons to distinguish
code components, special system classes, as well as the condition of
individual methods. The following table offers a brief summary:

Icon Description

() Package

m Bundle

Application Developer’s Guide 2-17

Programming in VisualWorks

2-18

Icon Description

Name space

Subclass of Model

Subclass of ApplicationModel

Subclass of Collection

Subclass of Exception

Method redefined by at least one superclass.

< Wk O EE

Method redefined by at least one subclass.

Working with the Browser

The System Browser separates code tools from the navigator so that a
variety of code tools may be used with each navigator. Generally, you use
the Source tool to examine class, namespace and variable definitions, and
to browse and edit source code.

The browser includes a feature-set for automated code refactoring (refer
to Chapter 18, “Refactoring,” for details). For advanced development, the
browser also provides special tools for code checking, rewriting, and unit
testing (refer to the VisualWorks Tool Guide).

To encourage learning and experimentation, each operation in the
browser can be reversed with the Undo function (on the Browser menu).

Editing Source Code

The Source code tool in a System Browser is where you do most writing

and editing of your application’s class and method definitions. Common
editing operations, such as cut, paste, find and replace, are available on
the <Operate> menu for this pane.

When you select a package but no class, a package description
(comment) is displayed. Similarly, when you select a class or name
space, a comment is displayed. If you select a class or name space and a
protocol, but no method, a method definition template is displayed. To
create a new package, class, or name space, use the menu options, or
edit an existing definition. To create a new method, edit the template, or
an existing method, with the appropriate definition. When you have edited
a definition, you need to save, or accept, your changes. Select Accept from
the code pane <Operate> menu.

VisualWorks

Browsing and Editing Smalltalk Code

Missing Source Code

Your Smalltalk image is associated with a sources file, as described in
“Sources and Changes” on page 1-6. If the sources file is not correctly
identified in the Settings Tool, or your VisualWorks home directory is not
correctly set, or if the sources simply are not available, you may see code
in the browser with a comment explaining that it is decompiled code. If
you see this comment, set the home directory and/or edit the Source Files
page of the Settings Tool, making sure the . sou file name agrees with
the image name. (To open the Settings Tool, choose System — Settings in
the Launcher window.)

Searching

The navigator tool bar includes an entry field to do a quick search by
name for classes, variables, or methods:

To find a class, simply enter its name and select Accept from the
<Operate> menu, or press the <Return> key. To find a method, enter its
name, preceded by the # (pound) character. Wildcard searches are
possible using the * (asterisk) character.

Drag and Drop

To reorganize code, you can drag and drop methods on classes or
protocols; protocols on other classes or on protocols; classes on other
categories; and categories on other categories.

Controlling Visibility of Methods

By default, the browser’s method list only displays those methods
belonging to the currently selected class and protocol. Several options
are provided for controlling and expanding the visibility of methods.

When a class is selected, the browser may optionally be set to show all
methods in the class when no protocol is selected. To enable this option,
select Show all Methods when No Protocols Selected on the Browser page of the
Settings Tool.

Just as it is often useful to see class inheritance using the Hierarchy view,
so too it is often useful to see inherited methods. To expand the visibility
of the Method List to include inherited methods located in a superclass,

select the name of the superclass from the Method — Visibility menu. This
setting remains active until you navigate to another class.

Application Developer’s Guide 2-19

Programming in VisualWorks

2-20

To fix the initial visibility setting so that it remains active while viewing
different classes, select Show All Inherited or Show All Inherited Except for Object.
To disable the expanded visibility, choose Show No Inherited.

Using Multiple Views

The System Browser can have with multiple active “views” on a method.
For example, while editing one method, you can switch to a new view to
look up some value in another method, and then return back to your
edited method without opening a new browser.

To create a new view, use View — New View or corresponding icon in the
browser’s tool bar. Select the entries on the View menu to toggle rapidly
between the different views you’ve created. Use

View — Remove Current View to delete a view.

Source Code Formatting

To format a method using the browser’s integrated code formatter, select
Format from the source code tool’'s <Operate> menu or in the Edit menu.

Many of the browser’s refactoring commands also invoke the code
formatter, so you should expect a formatting change any time you refactor
a method.

The formatting rules are user-accessible and may be changed. The rules
are located in class RBConfigurableFormatter, and they may be changed
using a special tool. To set the browser to use the configurable formatter
by default, evaluate:

RBProgramNode formatterClass: RBConfigurableFormatter
To open configuration the tool, evaluate:

FormatterConfigurationTool open

The Configuration Tool presents about 20 separate rules. When changing
a rule, you must Accept the changed value using the <Operate> menu in
the value’s input field. To examine the effects of the rules on a test
method, click on the tool's embedded Format button. To save any changes
you make to the rules, click on the 0K button.

Method source in the browsers may also be color coded. To enable color
coding, load the ColorEditing parcel (it can be found in the Parcel
Manager’s Environment Enhancements category).

VisualWorks

Browsing Files

Browsing Files

The File Browser allows you to navigate the local file system, listing and
E‘l—'l selecting directories and files. It is commonly used to find Smalltalk
source files to file-in (. st files), and for editing simple text files.

To open a File Browser, choose File = File Browser or click on the
corresponding icon in the Launcher window.

3 File Browser

Directory File Wiew Help

¥ e Show Filss: | * |
~ |02 web ”
1 webservices
3 wadl
-] advanced [autorun
7 airport_codes [autorun.inf
1 bin
-] database [install.log
£ dllee O install.map -
1 doc O Install.pdf =

w0 dst

-] examples Text | Binary | File Information

Show Enliie File |

Following is a list of all files in the distribution and a brief
description of each. Parcels typically come in two files, the
— || parcelfile {.pcl) and the parcel source file {.pst). Parcel
source files are omitted from the list since the description is
provided for the associated parcel file.

][>

#-] packaging
-1 parcels Install. pdf Installation instructions
< 1 =~ Install. txt This file does not get installed. Text

o 7. 24 fileList bt | 165 KB

Volumes and directories are shown on the right, files and their contents
on the left. When a file is selected in the upper-right view, its contents are
displayed in the lower-right view.

Special structured viewers are included for displaying VisualWorks
source files (. st), parcels, parcel source files, and XML source files. Use
the tab controls on lower-right view to select the desired view.

See the VisualWorks Tools topic in the online Help for more information
about the File Browser (select Help — Topics).

Application Developer’s Guide 2-21

Programming in VisualWorks

Exploring Objects

2-22

An inspector allows you to examine objects by exploring their constituent
objects, the values of the object’s instance variables. The VisualWorks
inspector incorporates a number of additional editing tools that greatly
enhance the control you have over live objects.

The inspector has a variety of options, and you can use it to perform a
number of operations that otherwise might require several tools. We
describe a few features here, but you should explore and experiment
further.

Inspecting an Object

At the core of the inspector are two views, with the object’s variables
listed in the left-hand view. When you select a variable, its value appears
in the right-hand view.

For example, to inspect a point, enter this expression in a Workspace,
select it, and then select Inspect it from the <Operate> or Smalltalk menu:

50@30
Alternatively, evaluate this expression using Do it:

(50@30) inspect
The resulting Point has two variables, x and y.

25 a Point =] 3

Object Edit Go History Egplore Options

i e B N T e

Basic | Methodsl

-self Al 50@30 o

X

¥

=

4| IFI -

—

To view the value of a variable, select it. The value is shown in the right-
hand view. You can also do a multi-select of values, to see the values of
the selected variables all at the same time.

VisualWorks

Exploring Objects

You can inspect the component objects also, by selecting the object in the
left view and selecting dive in the inspector's <Operate> menu, which then
shows the selected object in the current inspector. To back out of a diving
inspector, select Back in its <Operate> menu. To open a new inspector on
the object, select Inspect from the Object menu.

For some objects, the Basic view may include extra parts which are not its
instance variables. -self, for example, is a part that is always there even
though it is not an instance variable (these aspects of the object are
distinguished with a leading hyphen “-” character). For a further example,
have a look at a compiled method. Evaluate:

(Object compiledMethodAt: #printString) inspect

The basic view includes -bytecode and -source. These are not really parts of
the receiver, as instance variables are, but they are included in the basic
view as “virtual” attributes, just like -self, the object itself. For more
examples, inspect an Integer or a Character.

Drag-and-drop operations can be performed on the elements. If you
select a variable and drag it on top of another, its value will be assigned to
the target variable.

Inspecting Collections

Specialized inspectors for dictionaries and other collections provide
extended inspecting capabilities. For example, evaluate:

(OrderedCollection with: 1 with: 2 with: 3 with: 4) inspect
The resulting special inspector opens on the elements of the collection.

% an OrderedCollection [[T =]
Object Edit Go History Egzplore Options

o i B R =N e

Elements | Basicl Methodsl

1 || OrderedCollection (1 2 3 4} e
2

3

4

1| | bl z

Notice that there is an additional tab, labeled Elements. This gives a
higher-level view of the object, showing only the elements of the
collection. The Basic tab, which is in all of the inspectors, is the general
inspector, equivalent to evaluating with basiclnspect.

Application Developer’s Guide 2-23

Programming in VisualWorks

2-24

In addition to using drag-and-drop for value assignment, you can use it to
reorder the elements of a collection. Select an element, drag it between
two other elements, and drop it.

Modifying Objects

The right-hand view is a code view, in which you can type and execute
Smalltalk expressions. In this respect, it is like a workspace. Variables are
resolved within the scope of the code view.

Occasionally it is useful to set the value of a variable. You can do this by
entering an expression in the code view, and then selecting Accept in the
view’s <Operate> menu. This evaluates the expression and assigns the
return value to the variable under inspection.

For example, in the OrderedCollection inspector shown above, select the
first element. It’s current value is 1. In the code view, enter:

1+1

Select it and pick Accept in the view’s <Operate> menu. The expression is
evaluated to 2, which is then assigned to the variable.

Evaluating Expressions

While you can evaluate an expression in a code view, you lose that
expression as soon as you select another variable. A convenience feature
is a code evaluator view that can preserve expressions entered in it.

To open the evaluator, select Options — Evaluation Pane. The pane is
opened at the bottom of the inspector.

VisualWorks

Exploring Objects

g\ an OrderedCollection =]

Object Edit Go History Egxplore Options
Sl o e 1 B EE R e

Elements Basic | Methodsl

2
e
3

-self sl |
firstindex
lastindex

|»

o hlr\: pry

il

4| | »

[N

self at: 3 put: 4

-

The pane works much like the workspace. However, the evaluation
context is the object under inspection. Accordingly, you can use self to
refer to the object itself, and can perform operations on the object.

You can also “save” the contents of the evaluation pane, making the
same contents available to all inspectors. The contents are stored in the
inspector’s class variable, and so is shared by all instances. To write the
contents to the variable, select Accept on the pane’s <Operate> menu.

Browsing and Editing Behavior

The Methods tab displays a class browser on the object’s class. This
makes it convenient to modify the object’s behavior without opening a
separate browser.

The features are the usual ones, with one notable addition. The Inheritance
menu lists the class and its superclasses, and allows you to select the
depth of the inheritance for the methods is displays. This makes is easy
to browse and edit the object’'s methods no matter where they are
defined.

Application Developer’s Guide 2-25

Programming in VisualWorks

Painting a GUI

|

by the Ul Painter.

‘;&EUI Painter Tool on: Unlabeled Canvas

Edit Tools

Lapout Arange Grd Leok Special

I [=] B3

The “Visual” in VisualWorks emphasizes the graphical approach to
Graphical User Interface (GUI) design and development. This is provided

‘;:'k Palette M [=1[E3

Edit Arange

TreeWiew2
ek ActionButton]
=M ActionButton2
Lokl ActionButtand

@l@l%l@-l |0 @[% %

Basics | Dela\lsl Colorl Dirop Targetl
wfindow

Label: ™ Supplied by Application

G|w| ole|d| eS| sl |6 e

[a] =] E]E] B EEL
531 3 |) = G

String:

[Comtup key I

[Eatalma: I

~ Menu Bar

™ Enable

Menu: I

~ Tool Bar

Merr I

;I Al I [Eafiee]

Frey

(= |

Mat Sticky
%5 Unlabeled Canvas [_ (O]
Action Action Action |

2-26

The UlPainter is initially unloaded from the commercial base image (it is
loaded in the non-commercial version). To load it, open the Parcel
Manager, locate the Ul Painter in the Essentials category, and select the

Load command.

The Painter tool is in three parts:

* Canvas (lower right) - represents a single window, on which you
place widgets, the graphical components of the GUI.

e Palette (top right) -

presents a collection of widgets that are

commonly used in a GUI, and some widget arrangement buttons.

e GUI Painter Tool (left) - provides a collection of menu commands and
buttons for performing formatting and other operations on the canvas,
a hierarchical view of the widgets on the current canvas, and the
properties of the selected widget.

VisualWorks

System Settings

The Palette has one button for each type of widget. To add a component,
for example an input field, to your canvas, you simply click on the Input
Field icon in the Palette to select it, and then click in the canvas to place
the widget.

For a fuller description of this and related GUI building tools, as well as a
detailed description of GUI building in VisualWorks, refer to the GU/
Developer’s Guide.

System Settings

VisualWorks Home

A number of system resources and directories are selected relative to the
VisualWorks home directory. This directory is set by the installer, so
normally you do not need to set it yourself. Occasionally, however, it is
necessary to reset the variable, if, for example, you move the
VisualWorks environment to another directory location.

To set the home directory, select File = Set VisualWorks Home... in the
Launcher window, which opens the Settings manager to the System page.
Specify the root VisualWorks installation directory, typically the parent
directory for bin and image, by either typing its pathname or clicking the
Browse button and selecting it in the directory tree. Then click OK to save
the change and close the Settings manager, or Apply to save the change
without closing the manager window.

On Windows systems, the home directory is recorded in the system
registry. On Unix and Linux systems, you can set the variable in a startup
script or in your user profile.

Settings

VisualWorks includes a Settings tool that allows you to control a variety of
global parameters, such as the appearance of windows (Look and Feel),
source file name (Source), default font for text (Text), and so on. Groups of
customizable features are organized as a tree on the left hand side of the
Settings manager. Select a group in the tree to see and change its
settings in the right hand side of the window

To open the Settings Manager, choose System — Settings in the
VisualWorks Launcher window, or click the corresponding button.

Application Developer’s Guide 2-27

Programming in VisualWorks

2-28

The Settings tool consists of three parts: a tree of settings pages on the
left, the currently selected page on the right, and a row of buttons at the
bottom:

=10] |
% Look and Feel =] oo Browser
Z-@ System
-Lin Fly-by Help Default browser type: Category LI
- Memory Policy ™ Show all methods when no protocals are selected
-6 Message Catalogs
~(@) Parcel Path ™ Show refactoring changes
: 223?23 [V Only show methods in selected packages/parcels
-3 Time Zones [Show harizontal scrollbars
IV Show toolbar
~&@ Debugger IV Show status bar
-3 Ul Painter
-] Workspace Default namespace: I Smallalk,
tenu parsing tewt limit: I 10000
Selector protocol order: I Traditiohal LI
Undo count: I]
ak, I Cancel | Apply | Help |

Settings are organized into pages. Settings on the same page are usually
related and affect the same area of application functionality. Each page
has a context-sensitive Help button that displays additional information to
guide you in the proper setting of each parameter.

Press the OK button to apply all unapplied changes on all pages and close
the window. It is not necessary to apply changes made to a page before
switching to another page. Use the Apply button to apply all changes,
leaving the window open.

Saving and Loading System Settings

The <Operate> menu of the settings tree includes allows you to
manipulate and modify settings. To save all settings on all pages in a file,
select Save... and specify the name of the file. Use Load... to read all
settings from a previously saved settings file. The values are accepted
immediately. To immediately restore the values of all settings to default,
select Reset to Default.

VisualWorks

System Settings

To load, save, or restore the settings of the current page, select Load
Page..., Save Page..., or Restore Page to Default. The values that are loaded or
restored are displayed, but not applied until either the 0K or Apply button is
pressed.

You can also load settings files using the -settings command line
option when launching VisualWorks.

Application Developer’s Guide 2-29

Programming in VisualWorks

2-30 VisualWorks

3

Object Orientation

Overview

Much of the literature on object-oriented programming (OOP) tends to
emphasize how it differs from procedural programming. And it is different,
in many important respects. Working with objects involves ways of
thinking very different from that required for procedural programming.

Unfortunately, too often the strangeness of it all is overemphasized. Also,
as object-oriented programming has become increasingly common, most
frequently in the guise of C++ and Java, considerably less defense and
explanation is required now than when Smalltalk was first introduced.

This chapter presents an overview of object-oriented terms and concepts,
reflecting a definite Smalltalk terminological bias, using your
programming expertise as a bridge to the world of object-oriented
programming.

Procedures vs. Objects

In a conventional programming language, a procedure typically performs
multiple operations and handles several items of data. For example, when
a user inputs a customer record in an accounts receivable system and
then executes a “save” command, a procedure might be invoked to
validate the dozen or more fields of information in the customer record.

What happens when the five-digit field for a postal code in an application
has to be changed to accommodate the six-character Canadian format?
Three sources of inefficiency become apparent immediately.

Application Developer’s Guide 3-1

Object Orientation

First, what amounts to a single conceptual change (modify postal code)
has to be programmed in two locations (database structure and
procedure code, as shown in part A of the illustration). Wouldn't it be nice
if the data were somehow bound more tightly to the code, so that only
one system element had to be changed?

Second, there are likely to be multiple procedures that handle postal
codes—besides customer data maintenance, there may be supplier
maintenance, distributor maintenance, and so on (part B). In each such
procedure, the postal code validation routine has to be modified. In an
ideal system, such a change would affect all pertinent procedures
simultaneously.

Third, although only the portion of a procedure’s code pertaining to postal
codes is affected by the change, the entire procedure has to be scanned
by the programmer and recompiled (part C).

ompile
tion routines

Rec
4Expand postal code > ‘ Expand postal code > ‘ valida ’

Customer —
—»[Name |

-

Supplier
_’ —»= | Address _
L

Distributor —

Modifying zip code in procedural programs

- Database

—P» Procedure

Objects and Methods

3-2

There has to be a way to isolate the changes more intelligently. In an
ideal programming language, each field in the database would be a
separate entity for the purpose of changing its attributes. Each atomic
routine in a program would be a separate entity for the purpose of
maintaining the code. So we would have a set of atomic data elements
and a set of atomic procedures.

VisualWorks

Objects and Methods

It turns out that the procedures cluster very naturally around the data.
The procedure for validating a postal code is something that only the
postal code object needs to know. Likewise, only the address object
needs to know what its valid inputs are. So if we can make each data
object smart enough to perform the useful operations on itself, we no
longer need separate procedures at all.

®) ® ©

Expand postal code

Postal code
object -

Modifying postal code in Smalltalk

This simple strategy of making data smart is at the core of Smalltalk. An
application is no longer a collection of procedures that act on a database,
but a collection of data objects that interact with one another via built-in
routines called methods. The language is object-oriented rather than
procedure-oriented.

In fact, because Smalltalk variables are not statically bound to specific
data types, no change is required for client programs to be able to store a
string rather than an integer in a postal code.

To expand the definition of a postal code in Smalltalk, all you need to do
is broaden the postal code object’s validation routine. When another
object, such as the customer or supplier object, needs to know whether a
postal code is valid, it passes the proposed value to a postal code object,
which uses its built-in mechanisms to do the testing.

Application Developer’s Guide 3-3

Object Orientation

Composite Objects

34

Most objects are composite objects, being composed of several other
objects. For example, a customer object would contain identifying objects
such as customer number, name, address, city, state, postal code, and
telephone number. Why have a customer object at all? Because some
procedures have to be performed for a customer rather than a postal
code or a telephone number.

Financial Management System object

Accounts Receivable Application object

Account object

Customer object

Postal Code object

Hierarchy of Objects

The create command, for example, is best centralized up at the customer
level of abstraction, because it is an operation that affects all of the data
objects that make up a customer. What does that create operation consist
of? In our example, the customer object simply fires off the same
message to each member of its collection: “Here’s your input— validate it
and store it. Let me know if there’s a problem.”

Theoretically, the customer object would provide the customer-
identification part of an “account” object that handles requests related to
a customer’s account status. A collection of account objects would make
up the accounts-receivable system, itself an object that knows how to
answer questions about its collection of accounts. And the accounts-
receivable object joins an accounts-payable application and a general-
ledger application as parts of a financial-management package. Hence,
programming an application in Smalltalk consists of building a hierarchy
of objects. Another way of looking at it is that you're creating a single
object (the application) that contains component objects, each of which
may contain smaller components, and so on. The figure above illustrates
a portion of such a hierarchy.

VisualWorks

Variables and Methods

Variables and Methods

An object typically is made up of one or more private variables (the data)
combined with a set of methods for manipulating that data. Each method
is a specialized subroutine.

An object containing
variables and methods

Variables) [Methods
zip getZip
setZipTo:
isValid

Zip Code Object
Variables and methods of an object

The two parts of an object are also known as state and behavior. The
values held by an object’s variables define its state. Its methods—what it
knows how to do—define behavior.

For example, a postal code object might have a variable called zip to hold
the postal code string. It needs at least two methods to be a civilized
object, as listed in the following table.

Method name Description

getZip Return a string containing the postal code

setZipTo: Replace the contents of the zip code variable with
the string that follows the colon

As you can see, each variable typically generates two accessing
methods, one for inquiry and one for update. Even a simple postal code
object will often have other methods. For example, it might have a method
called isValid, which checks to make sure the string conforms to a
recognized postal code format.

Method Names

The method name is used by other objects to select the operation defined
in a method. The method name is used when sending a message to
specify the requested operation. Accordingly, it is also called method
selector, a message selector, or simply a selector.

Application Developer’s Guide 3-5

Object Orientation

A message is sent by specifying a selector plus any argument values. We
frequently refer to, for example, “a getZip message,” meaning a message
selector plus arguments, if any.

The fundamental unit of any Smalltalk expression is an object reference
followed by a message, as in postalCode getZip. This expression asks the
postalCode object to return the value stored in its zip code variable.

Method names may contain letters, numbers, and underscores, but may
not begin with a number. When two or more words are combined to form
a name, as in this case, second and later initials are capitalized to
improve readability. This convention applies to all names in the system:
objects, variables and methods. All method names begin with a lower-
case letter.

Method Categories

It is not uncommon for an object to have dozens of methods. From class
to class, methods tend to cluster in recurring groups—for example,
objects that have data also have a set of methods for accessing the data.
Collectively, such methods are known as accessing methods. You may
encounter the phrase “accessing protocol,” which refers to the set of
methods for accessing data within an object.

Variables | | Methods

zZip getZip .
setZipTo: } accessing protocol
isValid - testing protocol

postal code object

A message category is a convenient grouping of related methods, much
as a file folder holds related documents. The method editing tools, such
as the Package Browser and Class Hierarchy Browser, use categories to
help you search the code library.

Classes and Instances

3-6

The question arises: How can there possibly be only one postal code
object that serves both a customer and a supplier when the real-world
customer and supplier might reside in different zip zones? For that matter,
each new customer might have a different postal code.

VisualWorks

Classes and Instances

Obviously, there is a separate postal code object in each instance
because the values stored in the variables are different. On the other
hand, it would be silly to duplicate the postal code object’s methods for
each instance, so there must be one postal code object that is unique in
that it knows how a postal code ought to behave. The data-only object is
known as an instance; the method-holding object is called a class.

Class names may contain letters, numbers, and underscores, but may not
begin with a number. The first letter of a class name is capitalized, as are
all global variable names.

A class can be thought of as the object behavior affixed to a data
template. An instance is created by cloning the template so a new set of
variables can be stored. The ZipCode class has a template specifying that
each instance of ZipCode will have one variable named zip. Any given
instance of that class consists of a value for that variable.

Class Variables

A class can also have its own state values, which serve as system
constants. These states are stored in shared variables. For example, the
class Date has a shared variable called MonthNames, which stores an Array
containing names for the 12 months. Our ZipCode class might have a
shared variable called Formats, to store a collection of known formats. In
either of these examples, it would be wasteful to store a new copy of the
variable in every instance that is cloned from it because the value is
constant for all instances.

Like class names, shared variable names begin with a capital letter.

Class Methods vs. Instance Methods

If an instance doesn’t have its own copy of the methods on board, how
can it respond to messages? In a manner that is transparent to the
programmer, the system looks for the appropriate method in the class
from which the instance was spawned.

The expression zipCode getZip is equivalent to “ask the ZipCode class to
execute its instance method called getZip using the variables in the
instance called zipCode.” Thus, though each instance does not use up
unnecessary memory space by creating a copy of the instance methods,
the effect is the same.

A message can also be sent to a class, which is also an object. Each
class has two different sets of methods, one for itself and one for its
instances. When a class receives a message directly, it looks for the
corresponding method among its class methods.

Application Developer’s Guide 3-7

Object Orientation

Thus, the expression zipCode getZip executes an instance method that
returns the value of the instance variable. On the other hand, the
expression ZipCode formats causes a class method to be performed and

the value of a class variable (i.e., a constant) to be returned.

ZipCode (class)
(Class) | class
variables methods
Formats formats
aZipCode (instance)
N J
Instance
VRSP
Template Instance variables
for methods Zip
instance getZip
variables setZipTo:
zip isUSZip
isCanadianZip
-

i

The parts of a class and an instance, and their interconnections

To summarize, the Smalltalk language consists of thousands of
subroutines called methods that are organized as a library of class
objects. The typical class object consists of class variables, class
methods, instance methods, and a template for instance variables.

Class Inheritance

3-8

The class library is organized in a hierarchy of specialization, very much
like the taxonomy applied to the animal kingdom. At the root of the tree is
class Object. One kind of Object is a class called Magnitude. If you dig down
through a few more levels of specialization within the Magnitude
subhierarchy, you come to a class called Smallinteger. An instance of class
Smallinteger is an integer such as 3.

VisualWorks

Class Inheritance

If you execute the expression 3 raisedTo: 4, the correct result (81) will be
returned. A raisedTo: message with an argument of 4 is being sent to 3,
which is an instance of Smalllnteger. From the prior discussion about
instance methods, one would assume that the class Smalllnteger has an
instance method called raisedTo:, but that is not the case.

Object
Magnitude
ArithmeticValue
Number

Integer
Smalllnteger

Inheritance hierarchy for the Smallinteger class

Looking up a Method

Smalltalk provides a method-lookup mechanism that starts its search for
a given method in the obvious place—the class of the object to which the
message was sent. If no such method exists there, the method finder
climbs up through the hierarchy, stopping at each level to look for the
method. In our example, the method finder has to go up two levels, past
the Integer class to its parent, Number. There it finds the raisedTo: method.

Smallinteger is a subclass of Number, because it provides specialized
variables and/or methods. Number is a superclass of Smallinteger, as is the
class that sits between them in the hierarchy, Integer. Class Object is the
top-level superclass of all other objects.

The method finder has two ladders at its disposal, one for finding class
methods and the other for locating instance methods. As it climbs upward
through the superclasses, it uses only one ladder or the other, but not
both. Its choice of ladder is determined by the message recipient. If the
message is sent to an instance (3, in our example), only instance
methods are searched. A message sent to a class such as Smallinteger
would push the method finder onto the class-method ladder. The
expression Smalllnteger raisedTo: 4 would cause a fruitless search resulting
in an error.

Application Developer’s Guide 3-9

Object Orientation

L — Object L

— Magnitude —

ArithmeticValue 1

raisedTo: Number :
: Integer :
: Smallinteger :
instance class

The upward search path of the object hierarchy

Overriding an Inherited Method

An instance of any subclass of Number can respond to a raisedTo:
message, but that doesn’'t mean they all use Number’s version of it. The
subclass Float, for floating point numbers such as 3847.029, has its own
instance method called raisedTo: because floating-point numbers require
a specialized algorithm for exponentiation. When the method finder goes
to work on the expression 3847.029 raisedTo: 4, it stops at class Float and
never gets as high as Number.

Inheritance also applies to variables. Thus, each class inherits all of the
methods and variables of its superclasses.

For example, the ApplicationModel class provides variables and methods
that support a mechanism for notifying dependent objects of a change in
state. This mechanism is inherited by all subclasses of ApplicationModel.
The Customer class that we mentioned earlier might well be created as a
subclass of ApplicationModel. Then, if we create a View that displays the
values in the Customer object, the Customer inherits methods for keeping
that View in sync with the data changes. We don’t have to write any code
for such dependency coordination.

VisualWorks

Class Inheritance

Abstract Classes

Some classes are designed only to provide inheritable features, and are
never meant to be instantiated. For example, the class Object, the ultimate
superclass of all other classes, has an empty template for instance
variables. This may seem odd considering that instance variables hold
the actual data. What would an instance of class Object hold as its nugget
of data? The answer is that Object is not intended to have instances. lts
behavior is inherited and used by its subclasses and their instances.

When a class is not intended to be used to create concrete instances, it is
called an abstract class. An abstract class is frequently useful as a
repository for variables and methods that are useful to two or more
classes, none of which is a logical subclass of the other. Another way of
looking at it is that the similarities shared by a group of objects are
squeezed up from their separate locations into a common superclass.

The postal code can serve as an example once again. Until now, we have
been trying to make a single ZipCode class handle two very different
postal code formats. Presumably, as the customer base expands, more
methods would have to be added to handle other postal systems.
Eventually, a plain old United States numeric zip code would have to be
stored in a class that had more irrelevant methods than relevant ones—
and that’s the sort of awkwardness this object-oriented technology is
supposed to avoid.

Let's make ZipCode an abstract superclass, with two new subclasses:
USZip and CanadianZip. They can both inherit the zip variable and the
accessing methods (getZip and setZipTo:) as well as any class variables
and class methods. The isValid method must be re-implemented in each
of the subclasses, to handle their specific formats. The ZipCode class’s
version of isValid can then hand off the validation request to the
appropriate subclass. To Customer, Supplier and any other objects that
interact with ZipCode, the mechanism for finding out whether a zip code is
valid has not changed.

A subclass of an abstract class can be abstract itself. One might make
USZip abstract, for example, and create one subclass representing the
five-digit format (01dUSZip) and another for the hyphenated-nine-digit
format (SlowToBeAdoptedUSZip).

Application Developer’s Guide 3-11

Object Orientation

3-12

Choosing a Superclass

When you create a new class, choosing its superclass is an important
design decision. The choice is made easier when you employ an
architecture that has been proven in many diverse applications.

‘ Object ‘

‘ Model ‘ ‘ View ‘ ‘ Controller

Data & processing Display Menu

EEEEEEE Copy
HF
EEEEEEE 2””
EEEEEEE ave
EEEEEEE

The containment hierarchy of the class library

The key to this architecture is to divide your application into two parts.
First develop the data structure and the attendant processing, then invent
the user interface. The user interface is further subdivided into input and
output modules. The data-and-processing module is referred to as the
model. The output module usually consists of the screen displaying
mechanisms—it’s called the view. The input module is called the
controller because it enables the user to control the sequence of events
by entering data and commands.

Not surprisingly, Smalltalk provides an abstract class as the intended
starting point for each of these three modules: Model, View and Controller.
Thus, the architecture is known as model-view-controller, or MVC,
programming. For detailed information about MVC design, see Chapter 9,
“Application Framework.”

We use the term “application” broadly here—an object as lowly as a
postal code can be regarded as a self-contained model that can have an
associated view (a box on the screen in which the postal code is
displayed) and controller (for accepting keyboard input to the model in the
form of data entry). This implies that an MVC application can be a

VisualWorks

Class Inheritance

component of a larger MVC application, and so on. That is indeed the
case, furthering the cause of reusability by segmenting any given
program into easily separated components. In this sense, a model-view-
controller triad is the fundamental unit of design just as an object is the
fundamental unit of implementation.

When you choose a superclass for a new class, you are selecting an
inheritance hierarchy—positioning the method finder’s ladder in the class
library, so to speak. Model, View, and Controller head three major
subhierarchies within the library. Your choice of superclass typically
resolves to a class within one of those subhierarchies, and often to the
head classes themselves.

Many of the user-interface components that have been layered on top of
Smalltalk to form VisualWorks are subclassed from Model, View or
Controller. The remaining classes are typically subclassed from Object,
because as linguistic elements they stand apart from the MVC
machinery.

Application Developer’s Guide 3-13

Object Orientation

3-14 VisualWorks

4

Syntax

Overview

Smalltalk has a very simple syntax, consisting of literals, variables,
messages, and block expressions. This simplicity makes Smalltalk syntax
easy to learn.

VisualWorks Smalltalk complies with ANSI standards for Smalltalk
syntax, but employs some extensions.

For an abstract description of the VisualWorks Smalltalk syntax in BNF,
refer to Appendix A, “VisualWorks Smalltalk Syntax Description.”

Literals

A literal is a Smalltalk expression that always refers to the same object.
This reference cannot change.

There are several kinds of literals in VisualWorks, including numbers,
characters, strings, symbols, arrays, byte array literals, and three special
literals: nil, true and false.

Note that literals are strongly typed, meaning that each is a full-blooded
object, an instance of a class, and so respond to the full protocol of their
class.

Numbers

Numbers are represented in the usual way, using a preceding minus sign
and embedded decimal point as required.

Application Developer’s Guide 4-1

Syntax

42

Integers

Integers are expressed as numeric literals such as 101, or as the result of
arithmetic operations involving one or more integers such as 55 + 46.

Floating Point Numbers

Floating point numbers must have at least one digit to the left of the
decimal point, so the compiler can distinguish a decimal point from a
period used as an expression delimiter. Thus, 0.005 is legal, but .005 is
not. In scientific notation, the e is replaced by a d in a Double and a q for
quad-precision.

Fixed-Point Numbers

A fixed-point number is useful for business applications in which a fixed
number of decimal places is required. Fixed-point numbers are
expressed by placing the letter s after a literal integer or a floating-point
number. The number of decimal places preceding the s implicitly specifies
scale of the number (the number of decimal places to be preserved).
Note that an explicit scale takes precedence over an implicit one, so that
99.95s4 is the same as 99.9500s, while 99.9500s2 is an error.

Nondecimal Numbers

Number literals can also be expressed in a nondecimal base by prefixing
the number with the base and the letter r (for radix). For example:

Octal Decimal
8r377 255
8r34.1 28.125
8r-37 -31

When the base is greater than ten, the capital letters starting with “A” are
used for digits greater than nine. For example, the hexadecimal
equivalent of the decimal number 255 is 16rFF.

Numbers in Scientific Notation

Numbers can also be expressed in scientific notation by including a suffix
composed of e (for exponent) or d (for double-precision) plus the
exponent in decimal. Note that you can also use the letter g instead of d.
The q (quad-precision) is available for portability to other Smalltalk
systems, but in VisualWorks, q has the same effect as d.

VisualWorks

Literals

The base is raised to the power specified by the exponent and then
multiplied by the number. For example:

Scientific Notation Decimal
1.586d5 158600.0
1586e-3 0.001586
8r3e2 192
2r11e6 192
Characters
A character literal is always prefixed by a dollar sign. For example:
$a
$M
$-
$$
$1
Strings

A string literal is enclosed in single quotes (double quotes are used to
delimit a comment). Any character can be included in a literal string. If a
single quote is to be included, it must be preceded by a single quote, as
in:

‘| won''t fail'

Symbols

A symbol is a label that conveys the name of a unique object such as a
class name. There is only one instance of each symbol in the system. A
symbol literal is preceded by a number sign, and optionally enclosed in
single quotes. For example, #Float and #'5%' are legal symbols. If a
symbol is enclosed in an array, it must still be preceded by a number sign.

Byte Arrays

A literal byte array is enclosed in square brackets and preceded by a
number sign. Elements of the array must be integers between 0 and 255.
They are separated by one or more spaces. The result, as in the following
example, is an instance of class ByteArray:

#[255007]

Application Developer’s Guide 4-3

Syntax

4-4

Arrays

An array literal is enclosed in parentheses and preceded by a number
sign. Elements of the array are separated by one or more spaces (extra
spaces are ignored). An array literal embedded in another array must still
be preceded by a number sign. The following example contains a
number, a character, a string, a symbol and another array (of three
characters):

#(1586.01 $a 'sales tax' #January #($x $y $z))

Note: When you change an element in a nonatomic literal constant
(a String, an Array, or a ByteArray), the change is reflected globally. For
that reason, experienced Smalltalk programmers rarely pass a
mutable literal constant from one method to another, but pass a copy
instead.

Booleans

The boolean constant true is the sole instance of class True, and the
constant false is the sole instance of class False, both of which are
subclasses of Boolean. Unlike most instances, the values of true and false
are hard-wired in the compiler, which qualifies them as constants.

Even though they are constants, their behavior is defined in the instance
methods of the classes True and False, which implement boolean tests
and operations, such as ifTrue:, ifFales:, and:, or:, and not.

A Boolean value is seldom used directly, but is the return value of
comparison operations, and then used in branching control structures.
Refer to “Branching” on page 7-1 for more information.

The nil object is the sole instance of class UndefinedObject. As the class
name implies, nil is the null value given to variable slots that have not yet
been assigned a more interesting value. Like the booleans, nil is hard-
wired in the compiler. Its behavior is defined in UndefinedObject—for
example, it overrides the isNil method implemented by Object (answering
true instead of false).

It is expected that there is only one instance of nil in the system. Do not
create additional instances, even though this is possible using basicNew,
because this will cause VisualWorks to crash.

VisualWorks

Variables

Variables

Objects are referred to by their names. Except in the case of literals,
objects are named by being assigned to a variable.

Variables are of two types, depending on their reference scope. Private
variables can be referenced only by a single object; they are private to
that object. Shared variables are accessible by multiple objects.

Variable Types

Unlike some other object-oriented environments, Smalltalk variables are
untyped, meaning that any variable can hold an object of any type.

Another way to say this, and perhaps better, is that Smalltalk variables
are dynamically typed. What makes this a better way to think of it is that
Smalltalk itself is strongly typed; everything in Smalltalk is a full-blooded
object, an instance of a class. There are no “primitive” types

Variahle Names and Conventions

Variable names are made up of letters and digits, and may include the
underscore (_) character. A name must begin with either a letter or the
underscore.

Object names tend to be lengthy in Smalltalk, in comparison with most
other languages, to make the code more readable. For descriptive
purposes, a name is frequently made up of two or more words.
Convention dictates that the first letter of each embedded word is
capitalized. This convention is not enforced by the language or by any of
the development tools, but it does improve readability.

The following table provides conventions that apply to the first letter of a
variable names. In general, the initial capitalization indicates the
variable’s scope: upper-case for shared variables, and lower-case for
private variables.

Capitalization Conventions

Type of variable Initial capital Example
Argument variable No asString

Class instance variable No wordCollection
Class name Yes Date

Class variable Yes Location

Application Developer’s Guide 4-5

Syntax

46

Capitalization Conventions (Continued)

Type of variable Initial capital Example
Instance variable No year

Name space Yes Smalltalk
Shared variable Yes MaximumUsers
Temporary variable No aDate

In conformance with the ANSI standard, VisualWorks does not allow the
use of periods in identifiers. VisualWorks does, however, employ a
notational extension for referencing bindings (the primary referents of
shared variable, class, and name space names) that does use periods.
This notation provides a way for referencing a binding in terms of the
name space and/or class and/or shared variable in which it is defined.
Refer to “Binding References” on page 6-12 for more information.

Private Variables

A variables is an association between a name and a changeable value.
The variable’s name is used to reference its value within the variable’s
name resolution scope. VisualWorks Smalltalk has several kinds of
variables for various naming scopes. The following variables are “private,”
in the sense that they are accessible only to specific objects. Shared
variables are discussed later (see “Shared Variables” on page 4-10).

Temporary Variables

A temporary variable is most often encountered in a method, where it
provides temporary storage for an argument or a calculated value. Its
lifetime begins when it is declaration is evaluated, within the method or a
block expression within the method, and ends when the block or method
finishes processing and returns control to the calling object. The naming
scope of the variable is the method or block in which it is declared, and is
inaccessible outside of that scope.

A temporary variable is declared by enclosing its name between vertical
bars. The declaration must follow the message definition, and usually
follows a comment explaining the method, but is otherwise the first part of
the method definition.

VisualWorks

Variables

For example, the occurrencesOf: method for Dictionary is:

occurrencesOf: anObject
"Answer how many of the receiver's elements are equal to anObject."
| count |
count := 0.
self do: [:each | anObject = each ifTrue: [count := count + 1]].
Acount

The third line declares the variable count, which is used as a counter. The
third line assigns its initial value, using the := assignment operator.
Temporary variables are free to change their values through the life of the
method, as is shown in the fourth line, which increments count.

Multiple temporary variables can be declared in the same declaration
expression, by including them between the vertical bars, with one or more
white-space characters (space, tab, etc.) separating each variable name.
For example:

| var1 var2 var3 |
would declare three temporary variables.

Argument Variables

An argument variable is a special kind of temporary variable, declared in
the signature of a binary or key-word method definition. The variables
take their values from the arguments passed with the message send.

For example, the class Time provides an instance method called
hours:minutes:seconds:, defined as:

hours: hourinteger minutes: mininteger seconds: secinteger
"Initialize all the instance variables."
hours := hourlnteger.
minutes := mininteger.
seconds := secinteger

This method declares three temporary variables in its method signature,
italicized in the first line above, and names them hourinteger, mininteger
and secinteger.

When a client object sends this message to an instance of Time, which it
might refer to as aTime, appropriate integers are provided. For example:

aTime hours: 11 minutes: 42 seconds: 15

When the method is invoked, the supplied values are assigned to their
respective variables, so hourlnteger is set to 11, mininteger to 42, and
seclnteger to 15. Argument variables, unlike other temporaries, do not
accept new values by assignment, so these assignments do not change
during the life of the variables.

Application Developer’s Guide 4-7

Syntax

4-8

As a convention, an argument temporary is named to indicate the object
type it is intended to hold (e.g., aSet, aString, aninteger). However, no
typing is enforced, and any object can be stored in any variable. Errors
might occur at runtime, if the method can’t handle the object provided.

Instance Variables

Instance variables hold data that is specific to an individual instance of a
class. The variable’s value describes a state or attribute of the instance.
An instance variable is created when the instance is generated, and
exists as long as the instance does. The name scope is the instance
itself, which is the only object that can reference the variable itself.

There are two kinds of instance variables, named and indexed. The type
of instance variable is specified for the class in the class definition (refer
to Chapter 5, “Classes and Instances,” for more information).

Named instance variables are the most commonly used. The variables
are declared by naming them in the class definition, in a String argument
to the instanceVariableNames: keyword. Accordingly, every instance of the
class will have an instance variable with that name. For example, a
Customer class may define an instance variable firstName as follows:

ABCorp.Billing defineClass: #Customer

superclass: #{Core.Object}

indexedType: #none

private: false

instanceVariableNames: ' firstName '

classInstanceVariableNames: "

imports: "

category: 'Customer-Records'
Named instance variables are accessed by name in instance methods,
which either assign or retrieve a value from the variable. For example, in
Customer, an instance method would assign it a value using the usual
assignment syntax:

firstName := ‘Bruce’
and another method would retrieve its value simply by referencing its
name:

MirstName

Indexed instance variables are not named, but are accessed by an
integer index. All indexed instance variables for an object hold the same
kind of value, which are either arbitrary objects or byte values. The type
of value is specified in the class definition, which specifies the index type
as:

VisualWorks

Variables

e #object, for arbitrary objects
e #byte, restricting values to byte values
* #weak, making the class a weak container class, like WeakArray

* #immediate, restricting values to immediate objects such as instances
of Character, Smallinteger, and Symbol

e #ephemeron, restricting values to instances of Ephemeron

If the class does not use indexed instance variables, the index type is
specified as #none. See “Class Types” on page 5-5 for details.

Individual instances of a class may have different numbers of indexed
instance variables. Collections, for example, vary in size, and so use one
indexed instance variable for each member.

Indexed instance variables set up an association between an index
location and a value, and so are accessed using at: and at:put: messages.
For example, if names is an instance of Array, the first element in the array
is retrieved by sending the message:

names at: 1
To add a name at the fourth position, send the message:

names at: 4 put: ‘Bruce’

which stores the string ‘Bruce’ as the value of the fourth indexed instance
variable.

A class can define its instances as having both named and indexed
instance variables. For example, the class Set defines its instances as
having both indexed instance variables, which hold object values, and a
single named instance variable, as show in the class definition:

Smalltalk.Core defineClass: #Set
superclass: #{Core.Collection}
indexedType: #objects
private: false
instanceVariableNames: "tally '
classInstanceVariableNames: "
imports: "
category: 'Collections-Unordered'

The tally variable is used to record the number of elements in the set, and
the indexed variables hold the individual elements.

Application Developer’s Guide 4-9

Syntax

Instance variables are inherited, so an instance has its own copy of the
instance variables declared by all of its superclasses. For example, the
class SystemDictionary is a subclass of Set, so it does not need to declare
its own tally variable because it can use the tally that is declared in its
superclass.

Class Instance Variables

A class instance variable stores data that varies with each subclass in a
hierarchy. It is declared as part of the class definition, and can only be
accessed by a class method.

For example, suppose you have an abstract LanguageDictionary class that
has methods for looking up words to verify spelling, etc. You give
LanguageDictionary a class instance variable named wordCollection. Now
you create a series of subclasses corresponding to the English language,
the Polish language, and so on. The EnglishLanguage class can initialize
wordCollection to hold English words. The other subclasses can initialize it
differently. Then when an instance of any subclass asks for wordCollection,
it gets the appropriate language-specific version.

LanguageDictionary class
wordCollection ()

EnglishDictionary class
wordCollection (‘aardvark’ ...)

PolishDictionary class

wordCollection (‘abak’ ...)

Class instance variable

The advantages of this approach are that you still only have to initialize
the wordCollection once for each subclass (unlike instance variables) and
all subclasses can reuse methods that employ a common variable name
(unlike class variables).

Shared Variables

A shared variable is a variable that can be shared, or referenced, by
multiple objects. In previous releases of VisualWorks, shared variables
included class variables, pool variables, and global variables. These
various variable types are unified as a single type, called simply a “shared
variable.”

VisualWorks

Variables

A shared variable’s value is logically independent of any single instance
of an object. Unlike instance variables, in which each object holds its
individual state, and class instance variables, in which each class holds
its state, shared variables can be shared among multiple objects.

Shared variables are implemented as bindings, which are instances of
either class VariableBinding or its subclass InitializedVariableBinding.
Accordingly, we sometimes refer to “a binding,” and mean specifically an
instance of one of these classes, rather than in the more general sense of
a value assignment.

The value of a shared variable, or of the binding it refers to, is either a
name space, a class, or an arbitrary object. In the third case, they serve
the roles formerly served by globals, pools, and class variables.

When defining a shared variable, give careful consideration to where you
create it, based on the referential scope expected for the variable. For
example, if only a single class needs to reference the variable, define it in
a class, as a class variable. But if it is to be referenced by all objects in a
name space it is probably more appropriate to define it in the name space
itself, as a pool or “global” variable.

To define a shared variable, create a new category (protocol), and use
either the definition template, as described in the following sections, or
the New Shared Variable dialog, Class — New — Shared Variable....

Class Variables

A shared variable, when defined relative to a class, implements a class
variable.

Class variables are inherited by, and accessible to, the class itself, its
instances, its subclasses, and their instances. This is true even if the
classes are in different name spaces; explicit importing is not necessary.

For example, the class Date has a shared variable called MonthNames,
which stores an array containing names for the 12 months. It would be
wasteful to store the array in every instance that is cloned from it because
the names are the same for all instances. Instead, the array is defined
once in the shared variable. It is then accessible by instances of the class
Date and its subclasses, and by instances of any other class that imports
it.

To define a class variable:

1 In any system browser, select the class that will serve as the name
space for the variable, and select the Shared Variables tab.

Application Developer’s Guide 4-11

Syntax

4-12

2 Select, or add and select, a category for the new shared variable, in
the methods/shared variables list pane. The shared variable definition
template is displayed in the code pane:

Smalltalk.MyNameSpace.MyClass defineShared: #NameOfBinding
private: false
constant: false
category: 'category description’
initializer: 'Array new: 5'
3 Inthe template:

e Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

e Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

* Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

e Enter an initialization expression, as a String, in the initializer: field,
or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

4 Select Accept from the browser’s <Operate> menu to save the
definition and create the shared variable.

Your new shared variable is added to the list. It can be viewed in any
class browser by selecting the Shared Variables tab and its category.

Pool Variables

Shared variables can also be defined directly in name spaces (non-class
name spaces). For example, in the Graphics name space are defined a lot
of classes, and two further name spaces: SymbolicPaintConstants and
TextConstants. These name spaces exist solely as the name scopes for
collections of shared variables.

Each shared variable is defined directly in the name space. Initialization
values for the variables are provided either on the definition’s initializer:
line, as is done for most of the TextConstant variables, or in an appropriate
class initialization method, as is done for the SymbolicPaintConstants
variables.

VisualWorks

Variables

For these variables to be accessed within a name space other than its
defining name space, the variable must be imported, usually by a general
import of its name space. (Refer to “Importing Bindings” on page 6-14 for
more information.)

You

can define a pool by creating a name space, which is the pool, and

then adding shared variables to it using a series of at:put: messages.
Browse SymbolicPaint class method initializeConstantPool for an example.

A better approach is to define the pool name space, and then add shared
variables to it:

1

Application Developer’s Guide

In the System Browser class/name space list, select the name space
that will contain the pool.

Select the most local name space that makes sense for the breadth
of availability appropriate for this shared variable.

Select Add — Name space from the browser’s Class menu. The name
space definition template is displayed in the code pane.

Complete the template, specifying the name of your pool as the name
space name. (Refer to “Creating Name Spaces” on page 6-7 for
completing this template.)

Select the pool name space, then pick Add — Shared Variable from the
browser’s Class menu. The shared variable definition template is
displayed in the code pane:

Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

In the template:

* Replace #NameOfBinding with a symbol specifying the shared
(pool) variable name, such as #MySharedObject.

e Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

e Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

e Provide an appropriate category: string.

e Enter an initialization expression, as a String, in the initializer:

4-13

Syntax

4-14

field, or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

6 Select Edit — Accept in the browser to save the definition and create
the shared variable.

At this point the pool variables are all defined and initialized. You may
which to edit the definitions, however, to make the variables private or
constant, or to change.

To see your new shared variables, open a System Browser, select the
Shared Variables tab, select the pool’'s super-name space in the name
space list, select the pool name space in the class/name space list, and
select a category.

As Global Variables

Globals are seldom used in VisualWorks, having been largely replaced
by pool variables. Even before VisualWorks 5i, only a few “system
globals” such as Transcript and Processor have remained in the system. In
general, they are a bad practice in object-oriented programming, because
they break encapsulation, and so are to be avoided.

Instead of globals, these remaining system objects are defined as shared
variables in a name space that is almost certainly accessible to all name
spaces. Transcript, for example, is defined as a shared variable in the
Smalltalk.Core name space.

To browse these definitions, examine the Core name space in the System
Browser (select the Base VisualWorks bundle then find Core in the
class/name space list), and browse the shared variables. You can do a
search for Transcript using the browser’s built-in search mechanism
(upper-right corner of the tool).

The resulting shared variables aren’t truly “global” to the system, since it
is easy to define a name space that doesn’t import Core.

To define a shared variable:

1 Inthe System Browser, select a name space in the class/name space
list to be the super-name space.

Select the most local name space that makes sense for the breadth
of availability appropriate for this shared variable. For the widest
availability, select the Smalltalk name space.

2 Select Add — Shared Variable from the browser’s Class menu. The
shared variable definition template is displayed in the code pane:

VisualWorks

Variables

Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

3 Inthe template:

* Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

e Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

* Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

* Provide an appropriate category: string.

e Enter an initialization expression, as a String, in the initializer:
field, or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

4 Select Edit — Accept in the browser to save the definition and create
the shared variable.

To see your new shared variable, open a System Browser, select the
Shared Variables tab, select the variable’s super-name space in the name
space list, select its name space in the class/name space list, and select
its category.

Class and Name Spaces Names

In VisualWorks, both class and name space names refer to shared
variables whose values are classes and name spaces, respectively.
Because of their special roles in the system, these are covered
separately in later chapters.

Constant and Variable Bindings

Sometimes it is desirable to set the value of a shared value and have it be
immutable, or constant. The constant: field in the shared variable definition
provides this option.

When set to false, the variable can be set and initialized by the usual
means by any object in the system. (Refer to “Initializing Shared
Variables” on page 4-17.) When set to true, however, the value cannot be
changed by the usual means.

Application Developer’s Guide 4-15

Syntax

For constant shared variables (which sounds odd, but they are still
variables), changing the value requires rerunning the initializer, and so
the variable is essentially protected from a runtime value change. The
value is, for all intents and purposes, constant. Even a class initialization
method that sets the variable will fail.

Note that you can change a shared variable’s definition, and so change it
from being variable to being constant. If you do so, be aware that
methods that set the variable will now fail.

Public and Private Shared Variables

Most Smalltalk dialects lack an enforceable distinction between public
and private classes and methods. Variables have traditionally been either
private (instance, class, and class instance variables) or public (global
and pool variables), depending on the kind of variable.

VisualWorks uses name spaces and shared variables provide a way to fill
some of this lack, by allowing you to control imports at two levels:
definition and import.

At either its creation or when imported, a shared variable can be declared
to be either public or private.

e If abinding is public, it is available for import by a name space or
class.

e If a binding is private, it is not available for import by a name space or
class.

Refer to “Importing Bindings” on page 6-14 for more information on
importing.

Defining a Binding as Private or Public

At one level, in its definition, each individual class, name space, and
shared variable is declared as either public or private by setting the
Boolean argument to the private: field. When set to false the binding is
public, and so can be imported. When set to true the binding is private,
and cannot be imported. At this level, privacy or publicity is set for the
object itself, and so is absolute.

So, for example, a shared variable that is defined in MyNameSpace and
declared as private is accessible only in the scope of MyNameSpace, and
cannot be imported by any name space or class. It is hidden from
anything that imports MyNameSpace.

Name spaces and classes are usually defined as public, since they
should be imported by name spaces that need to access them. Pool
variables also should be defined as public, since they also are meant to

VisualWorks

Variables

be imported. Class variables, shared variables that are defined within the
scope of a class, are also usually defined as public, so they can be
accessed by the class’s subclasses, and their instances.

Defining a name space, class, or general shared variable as private is the
exception, but an option if appropriate.

Initializing Shared Variables
There are a variety of ways to initialize a shared variable.

If you specify an initialization string in the shared variable’s definition, to
initialize the variable either:

e select the variable in a browser, and then select Shared Variable —
Initialize in the <Operate> menu (or in the Method browser menu), or

e send the initialize method to a binding reference of the variable, for
example:

#{Smalltalk. MyNameSpace.MyBinding} initialize

These initialization methods work whether the variable is declared
constant or not (whether the constant: field is true or false).

In the case of class variables and pool variables, initializing shared
variables is frequently done as part of class initialization. In this case, the
value is set in the class initialize method, or in a method called by initialize.

For example, the Dummy class initialize method may simply set a value to
a shared variable (DummyShared) defined in the class, like this:
initialize
‘Dummy initialize"
DummyShared := String fromString: "abcde'.
Note that to initialize a shared variable in a method, the variable must not
be set as constant; the constant: field must be set to false.

Assigning a Value to a Variable

The default value for any variable is the nil object. To assign a new value
to a variable, use the assignment operator := (a colon followed by an
equal sign), as in the expression:

prompt := 'Enter your name'

The expression on the right-hand side of the assignment can be any legal
Smalltalk expression. The following examples are all valid assignment
expressions. They have the effect of creating an array of ice cream flavors
and selecting one of those flavors at random:

Application Developer’s Guide 4-17

Syntax

4-18

flavors := #('chocolate’ 'vanilla' ‘mint chip").
index := (Random new next)* 3.
flavorChoice := flavors at: index truncated + 1

Assignments can be chained when two or more variables are to store the
same value, as in:
majorLoopCounter := minorLoopCounter := 1

Chained assignments should only be used with literal or read-only
values—otherwise, updating one variable has the side effect of changing
the value of the other variable similarly.

Special Variables

For three special variables, the value changes according to the execution
context but cannot be changed by assignment: self, super, and thisContext.

The most prevalent of these special variables is self, which holds a
reference to the object that is executing the current message.

In the simplest case, self merely allows the programmer to direct a new
message to the specific instance that is executing the current method. In
effect, an object can execute another of its own methods. A hypothetical
doSomething method could use a computeX method to calculate a number,
for example, with the expression self computeX.

A more complicated case arises when inheritance is involved. Suppose
the doSomething method is located in the superclass of the object that
received the doSomething message. But computeX is implemented by the
subclass. How do we send the method finder back to the bottom of the
ladder to search for computeX, rather than just starting from its superclass
location?

doSomething method

aSuperclass

self computeX

~

anObject | computeX methoD

anObject doSomething

The special variable self is a pointer to the object (in this case, anObject)
that received the message being executed (doSomething)

VisualWorks

Variables

The surprising but pleasing answer is that the expression self computeX
still works. The new message (computeX) is directed at self, which refers to
the object that received the previous message (doSomething).

It's important to remember that self does not necessarily point to an
instance of the class whose method is being executed. In our example,
self is used in the parent’s method but it refers to the child. Thus, using
self in a method automatically provides for downward growth in the
hierarchy.

The super variable is very similar to self, except super tells the method
finder to begin its search one level above the executing method in the
class hierarchy. The receiver is the same as for self, namely the sending
object. This is useful when a subclass wants to add operations to its
parent’s method without having to duplicate the parent’s code. Note that
super is in the nature of a qualifier applied to the method finder, so it
cannot be assigned to a variable (as self can).

aSuperclass | computeX method +7
getX method
> anObject

super computeX
anObject getX

Special variable super

The third special variable, thisContext, is a reference to the stack context
of the current process. While self and super are commonly used by
Smalltalk programmers, thisContext is rarely needed by application
developers. It is used by the system’s exception handler and debugger.

Note: In some of the literature on Smalltalk, self and super are
referred to as pseudovariables. However, other objects have also
been called pseudovariables, so the term is ambiguous—we call
them special variables instead.

Application Developer’s Guide 4-19

Syntax

Undeclared Variables

When a variable is deleted while references to it still exist, or a reference
to a variable is loaded (by a parcel or package) but never declared, its
name is entered in the Undeclared name space. This name space is
maintained by the system and need not concern you under normal
circumstances—but it can provide useful clues to certain kinds of
program errors.

To inspect the contents of Undeclared, select in the Launcher Browse —
Global, and enter undeclared in the prompter. This opens a Namespace
Inspector on the name space.

Message Expressions

4-20

A message expression is the fundamental unit of programming in
Smalltalk. It has three kinds of components: a receiver, a method name,
and zero or more arguments. In 9 raisedTo: 2, the receiver is 9, the method
name is raisedTo:, and the argument is 2. The term message technically
refers to the method selector and arguments, while a message
expression includes the receiver.

Every message returns an object to the message sender. In the example
just given, the raisedTo: method returns an instance of Smalllnteger—
specifically, 81. There are three ways to denote the object to be returned
from a method:

e By default, the message receiver (self) is returned to the sender.

e Areturn operator (*, entered as <Shift-6> on most keyboards)
preceding a variable name causes that object to be returned. For
example, the expression *an0Object causes an0bject to be returned.

* A return operator preceding a message expression returns the value
of that expression. For example, the expression "3 + 4 causes the
object 7 to be returned.

A period is used to separate message expressions. No period is
necessary after the final expression in a series.

There are three types of message: unary, binary, and keyword
expressions. In addition, two or more messages can be joined in
sequence. Each of these constructs is described below.

VisualWorks

Message Expressions

Unary Messages

A unary expression has a receiver and a method name but no argument.
The following are all unary expressions:

1.0 sin. "Returns the sine of 1.0."
Random new."Returns a random number generator."
Date today. "Returns today's date."

Binary Messages

A binary expression uses a special character, such as a plus sign ($+), as
its method name and takes one argument. Some binary selectors are
combinations of two special characters, such as the comparison selector

>= (greater than or equal to). The characters that allowed in a binary
selector and the construction rules for a binary selector are specified
precisely in Appendix A, “VisualWorks Smalltalk Syntax Description.”

The most common binary messages have to do with arithmetic
operations, comparisons, and string concatenation. The table below
describes many of the commonly used binary selectors. One or more
white-space characters before and after the selector are optional.

Common Binary Method Selectors

Selector Example Description

+ counter + 1 Add

- 100 - 50 Subtract

* index * 3 Multiply

/ 1/4 Divide

- 4**3 Raised to

1 13//-2 Integer divide (round the quotient to the
next lower integer; in the example, -7). An
instance of Point can also be rounded via
this operator.

\ 13\ -2 Modulo (return the remainder after division;

in the example, -1).

counter<10

Less than

<= index <= 10 Less than or equal

> clients > 5000 Greater than

>= files >= 2000 Greater than or equal
= counter=5 Values are equal

Application Developer’s Guide

4-21

Syntax

4-22

Common Binary Method Selectors (Continued)

Selector Example Description

~= length ~= 5 Values are not equal

== X == Same object (identity; receiver and
argument are the same object or point to
the same object)

~~ X ~~Yy Not the same object

& (x>0) & (y>1) Logical AND (return true if both receiver

and argument are true, otherwise false).

(x>0) | (y<0)

Logical OR (return true if either receiver or
argument is false).

, ‘abc','def’ Concatenate two collections.

@ 200 @ 300 Return an instance of Point whose x
coordinate is the receiver and whose y
coordinate is the argument.

-> #Three -> 3 Return an instance of Association whose
key is the receiver and whose value is the
argument.

<< #All << #labels Create a UserMessage

>> #All << #labels >> 'All' Assign a catalog ID to a UserMessage

The second character of a two-character selector cannot be a minus sign
($-). The other permitted characters are: $+, $/, §\, $*, $~, $<, $>, $=, $@,
$%, §|, $&, $2, $!,and $..

Note that the assignment expression (:=) is not a method selector. Also,
the linking symbol (>>), as used in the debugger and browsers to refer to
a method and its implementing class (for example, Set>>size to refer to the
Set instance method size), is not a binary selector.

Keyword Messages

A keyword expression has a receiver, one or more argument descriptors
(keywords), and one argument for each keyword. Each keyword ends in a
colon. The following are valid keyword expressions:

aDate addDays: 5 'Add five days to aDate."
anArray copyFrom: startIndex to: stopIndex

"Return a copy of that portion of anArray

that begins at startindex and ends at stopIndex."

VisualWorks

Message Expressions

When there is more than one keyword, the method name is formed by
concatenating the keywords. In the second example above, the method
name is copyFrom:to: (formally pronounced “copyFrom colon to colon”).
There is no limit on the number of keywords in a method name.

Messages in Sequence

Frequently, the receiver of a message is the object returned by the
previous message expression. To avoid creating a temporary variable to
store the returned object, you can create a sequence of messages. For
example, the first and second expressions below can be compressed into
the form of the third expression:

interest := principal * interestRate.
principal := principal + interest.

principal := principal + (principal * interestRate).
This technique reduces the wordiness of the code, though sometimes at
the expense of readability. Parentheses can be inserted, as shown in the
example, to improve the readability and to assure that the intended
parsing order is followed.

Cascading Messages

When two or more messages are to be sent to the same object, a
semicolon can be used to cascade the messages. This avoids having to
repeat the name of the receiver, though frequently at the expense of
readability. For example, the first set of expressions below has the same
effect as the final expression, in which the messages are cascaded:

Transcript show: 'This is line one.".

Transcript cr. "Carriage return."
Transcript show: 'This is line two.".

Transcript cr.

Transcript show: 'This is line one."; cr;
show: 'This is line two."; cr

Parsing Order for Messages

When two messages have the same parsing precedence, parentheses
are sometimes required. For example, 3 + 4 * 5 is very different from
3 + (4 * 5) because binary selectors are all evaluated from left to right.

Application Developer’s Guide 4-23

Syntax

4-24

Parentheses are also necessary when a keyword expression is in the
argument expression for another keyword expression. For example, the
first expression below is valid but in the second version the method
selector is interpreted by the compiler as readFrom:on:, which does not
exist.

Time readFrom: (ReadStream on: '10:00:00 pm').
Time readFrom: ReadStream on: '10:00:00 pm'. "WRONG"

The following rules summarize the parsing order:

1. Parse parenthesized expressions before nonparenthesized
expressions.

Parse multiple unary expressions left to right.

Parse multiple binary expressions left to right.

A 0D

Parse unary expressions before binary expressions.
5. Parse binary expressions before keyword expressions.

The result of the following code fragment is that a number is printed in the
System Transcript—can you trace the logic using the rules above?

| aSet nbr |
nbr:=207.
Transcript show: (aSet := Set new add: nbr + 3 * 5 sin) printString

In the first line, two temporary variables are declared. In the second line,
one of the variables is assigned the number 207. In the third line, the
following sequence of events takes place:

1. Setnew Create an instance of Set.

2. 5sin Calculate the sine of 5 (-0.958924).

3. nbr+3 Add 3 to nbr (210).

4, L* L Multiply 210 by -0.958924 (-201.374).

5. ..add: .. Add -210.374 as an element in the Set created in
Step 1.

6. aSet:= Assign the Set to the variable aSet.

7. ... printString Convert the Set to a printable string.

8. Transcript show: Output the printable string to the Transcript.

VisualWorks

Block Expressions

Block Expressions

A block expression represents a deferred sequence of operations. Blocks
are used in several contexts, including control structures, exception
handling, and finalization. The syntactic characteristics of block
expressions are described here.

A block expression is enclosed in square brackets, as in:

[index :=index + 1.
anArray at: index put: 0]

The messages inside the block are not sent until the block object receives
the unary message value. The following expressions have the same
effect:

index :=index + 1.
[index :=index + 1] value.

Up to 255 separate arguments can be passed to a block. Argument
names must be listed just inside the opening bracket. Each argument
name must be preceded by a colon. The final argument name must be
followed by a vertical bar. For example:

[:counter | counter := counter + 1]

The argument variables are private to the block. The values of the
arguments are passed by using variants of the value message. There are
four variants, to be used depending on the number of arguments:

value: anObject

value: anObject value: anObject

value: anObject value: anObject value: anObject
valueWithArguments: anArray

Passing an argument to the example above would be arranged thus:

[:counter | counter := counter + 1] value: 3

Temporary variables can also be declared within a block. They must be
enclosed in vertical bars and placed after the vertical bar that separates
argument variables. They are local to the block.

The full syntax for a block is as follows:

[:argl :arg2 |
| temp1 temp2 |
statementi.
statement2.

-

Application Developer’s Guide 4-25

Syntax

Pragmas

Pragmas are a special method expression used to annotate a method. By
themselves, pragmas do nothing. During compilation, methods with
pragmas are rendered as instances of AnnotatedMethod rather than
CompiledMethod. The class Pragma provides methods for finding and
processing methods that contain pragmas.

Pragmas are specified with a syntax that resembles either a keyword or
unary message expression enclosed in angles. So,

< keyword1: arg1 ... keyword/V: arg/t>
for keyword pragmas or

< unaryword >

for unary pragmas. The method also includes standard Smalltalk code
that returns a value.

Pragmas are used in various parts of the system. For example,
windowSpec methods created by the UlPainter include the pragma:

<resource: #canvas>

a keyword pragma identifying the method as a resource method defining
a canvas. Other resource pragmas identify methods as defining menus or
graphic images.

While the form of a pragma resembles a message, and in some cases a
class might define a message with the same selector, there is no direct
relation between those; the form of the pragma is simply used to locating
the method that includes it. It is up to the application to determine
whether and how to use the pragmas.

Declaring Pragmas

4-26

Before using a pragma to annotate a method, it must be declared in a
class method. The method must be defined in the class of the method
that uses it, or some superclass of the class.

”

The method name is not important, but by convention includes “Pragmas
in its name, such as resourceMethodPragmas defined in Object. The method
itself contains one or two pragmas, with keyword pragmas: and argument
either #instance or #class, or both, determining whether the pragmas can
used in class methods, instance methods, or both. The return value is a
collection of pragma selector symbols. For example, again,
resourceMethodPragmas declares the resource pragma:

VisualWorks

Pragmas

resourceMethodPragmas
<pragmas: #instance>
<pragmas: #class>

N (#resource:)

This method declares a single keyword pragma selector that can be
invoked in either instance or class methods. This Subsystem method
declares a few pragmas, but only for use in instance methods:

dependencyPragmas
<pragmas: #instance>

N (#prerequisites #option:sequence: #option:)

This declaration declares both a unary pragma, a pragma with two
keywords, and a pragma with one keyword.

Including a Pragma in a Method

You can include one or more pragmas in any method. If included,
pragmas must be the first expressions in the method following the
selector, except for a comment. Keyword pragmas must have a literal
value argument for each keyword.

Following the pragmas is any normal Smalltalk code. This expression is
evaluated whenever the method is invoked, as usual, but can additionally
be invoked when the pragma is processed.

Suppose we have declared three pragma selectors: #doStuff, #doStuffWith:
and #doStuffWith:and:. A method might include only one of them, for
example:

doSomething

<doStuff>
Transcript cr; show: 'Stuff done'

In this case, only a single pragma is used. It is a unary selector pragma,
s0 no arguments are supplied. Similarly, a method might use multiple
pragmas.

methodWithPragmas
<doStuff>
<doStuffWith: #this>
<doStuffWith: #this and: #that>
Transcript cr; show: 'l''m here'
The arguments are literals and will be passed to the pragma processor.

Application Developer’s Guide 4-27

Syntax

4-28

Processing Pragmas

Pragmas can be used for wide variety of actions. In the case of resource
methods, they are used to select the editor when “Edit” is selected in the
Resource Finder. Some tools, such as the Visual Launcher, use the set of
menultem:... pragmas to dynamically modify menus when the containing
method is edited or loaded. Pragmas can be similarly used to run tests
automatically upon updating a method. The options are unlimited.

The Pragma class provides facilities to assist in locating and processing
pragmas. Pragma instances hold information about the method containing
the pragma, its class, the pragma’s name and its arguments.

Collecting Pragmas

To create a collection of Pragma instances, send one of the allNamed.:...
location messages to Pragma. There are several forms, the simplest being
allNamed:in: which takes a pragma name and a class as arguments. For
example, suppose the above doSomething and methodWithPragmas
methods are defined in a class, MyPragmaExample. To collect all doStuff
pragmas, send:

Pragmas allNamed: #doStuff in: MyPragmaExample

which will return a collection with two pragma instances, one for the
doStuff pragma in each of the messages. Similarly,

Pragmas allNamed: #doStuffWith:and: in: MyPragmaExample

returns a collection with only a single Pragma instance. In this case, the
pragmas are in instance methods. If they were in class methods, the
class argument would be: MyPragmaExample class.

This method searches for pragmas in only one class. Several of the other
location methods search a branch of the class hierarchy, taking a start
and end class for the search. For example, by sending an
allNamed:from:to: message, you can collect all resource: pragmas in class
methods between ApplicationModel and UlPainterTool (or whatever
hierarchical sequence of classes you need to search):

Pragma allNamed: #resource:
from: UlPainterTool class
to: ApplicationModel class

Browse the Pragma class methods for the full set of locating methods
(“finding” category). Additional methods provide various sorting options
on the collection of Pragma instances.

VisualWorks

Pragmas

Performing Operations with Pragmas

There are two ways to use pragmas methods. One is to evaluate the
Smalltalk code in the message; the other is to evaluate some other
expression based on the arguments provided in the pragma. Both of
these can be used together.

Unary pragmas have no arguments, so their only use is as a means to
locate and evaluate the message containing them. For example, the
doStuff pragma is only useful for sending the message containing it, as in:

(Pragma allNamed: #doStuff in: PragmaExampleClass) do:
[:pragma | PragmaExampleClass new perform: pragma selector]

Rather than naming the method class explicitly, we can get it from the
pragma itself by sending it a methodClass message.

Most pragmas are keyword pragmas, and are useful because of the
arguments they carry. For example, in resource: pragmas the argument
indicates what editor to open: a Ul Painter for a #canvas argument; a
Menu Editor for a #menu argument; a Bitmap Editor for an #image
argument.

To use the arguments, send a withArgumentsDo: message to the pragma.
The argument is a block with the same number of block arguments as
keywords. For example:

(Pragma allNamed: #doStuffWith:and: in: PragmaExampleClass) do:
[:pragma |
pragma withArgumentsDo:
[:first :second |
Transcript cr; tab; show: first printString;
cr; tab; show: second printString]]

Accessing Pragma Components

A few accessors for parts of a Pragma instance have already been
mentioned and illustrated. There are accessors both for the pragma itself
and its containing method.

Messages for accessing the method containing a pragma are:

method
Returns the compiled method containing the pragma.

methodClass
Returns the class of the method.

selector
Returns the selector of the method containing the pragma.

Messages for accessing the parts of the pragma itself are:

Application Developer’s Guide 4-29

Syntax

argumentAt: aninteger
Returns the argument at aninteger from the collection of arguments
to the pragma keywords.

arguments
Returns the collection of arguments to the pragma.

keyword
Returns the keyword (selector) for the pragma.

message
Returns a Message formed from the pragma keyword and arguments.

numArgs
Returns the number of arguments.

Formatting Conventions

The compiler ignores tabs, carriage returns, and extra spaces. Formatting
conventions vary but readability favors the following guidelines:

1. Start the message definition at the left margin and indent all other
contents of the method by one level.

2. Leave a blank line beneath the method comment and as a separator
between sections of a long method.

Follow each period that ends an expression by a carriage return.

Indent as needed to visually identify each subordinate section of
code.

The code browser provided with VisualWorks Smalltalk provides a format
command for automatically applying these rules.

4-30 VisualWorks

S

Classes and Instances

Overview

Every object in VisualWorks is an instance of some class (including
classes themselves). Instances have a message interface, which
describes the messages, or operations, that an object will perform. The
class defines the behavior for that message, or how the operation is
performed. The set of messages understood by an object is referred to as
the object’s protocol or message category.

In this chapter we describe how to define a class and its methods,
including how to generate an instance of a class.

Defining a Class

A class is defined in a name space, as the value of a shared variable in
that name space. The variable is defined as “constant,” so the name of
the class cannot easily be changed.

Creating a Class using the New Class Dialog

The New Class dialog provides an easy to understand interface for
creating a class. Select New — Class in a system browser’s Class menu, to
open the New Class dialog:

Application Developer’s Guide 5-1

Classes and Instances

5-2

% New Class g|

Basic | Advanced
Package: MyPackage D
Mame Space: Smalltalk. D
Marme: MyClass
Superclass: Core.Object
Instance Yarables: anlnstyar another\u"ari
Create methods: Accessors

Initializer

Subclass responsibilities

I ok l ’ Cancel]

The class definition properties are on two pages: Basic and Advanced. A
“Caution” icon (yellow triangle with an exclamation point) is displayed next
to any required field that lacks legal value.

The Basic properties are:

Package
The name of the package in which to create the class. The package
must already exist in the system. To define the class unpackaged,
select (none).

Name Space
The name space in which to create the class. The name space
determines the referential scope of the class name.

Name
The name for the class being created. There is no default. The name
must be new and unique in the specified name space, and must
begin with an uppercase letter.

Superclass
The name of the superclass, in literal binding reference (dotted
name) notation, as shown (see “Binding References” on page 6-12).

Instance Variables
A space separated list of instance variable names.

VisualWorks

Defining a Class

Create Methods
Three check boxes specify which, if any, stub methods are created in
the class automatically when the class is created. The methods
generally need to be edited to provide the desired behavior.

Accessors, if checked, creates get and set accessor methods for each
instance variable specified.

Initializer, if checked, creates an initializer method with lines setting the
initial values of each instance variable specified.

Subclass responsibilities, if checked and if any of the superclasses define
methods marked as #subclassResponsibility, creates stub methods in
the new class for all of those methods. Initially, the stubs will signal an
error when evaluated, so you need to replace their bodies with
appropriate implementations.

The Advanced properties are:

Private
If checked, makes the class unavailable for import by another class or
namespace (see “Public and Private Shared Variables” on
page 4-16).
Indexed Type
This field specifies the class type, and particularly the type of value

that can be held by its indexed variables. See “Class Types” on
page 5-5 for descriptions of the types.

Class Instance Variables
A space separated list of instance variable names (see “Class
Instance Variables” on page 4-10).

Imports
A list bindings to import (see “Importing Bindings” on page 6-14).

When the dialog values are set, click 0K to define the class and any
specified methods.

Note that class variables are not declared in the class definition, but are
created as shared variables in the class name space. Refer to “Class
Variables” on page 4-11 for more information.

Editing a Class Definition

When a class is created, its definition is represented as a message send
to a name space. The definition is displayed in the source code view of
the system browser when the class is selected, but no method categories
or methods are selected. The definition looks like this:

Application Developer’s Guide 5-3

Classes and Instances

Smalltalk defineClass: #MyClass

superclass: #{Core.Object}

indexedType: #none

private: false

instanceVariableNames: 'oneVar twoVar threeVar more '

classInstanceVariableNames: "

imports: "

package: 'MyStuff'
To modify a class definition, you can edit the values in the code view and
save the definition. Typically, you would only change the definition by
adding or removing variable names or imports, but any of the lines can be
changed. The keyword arguments are as follows:

* The message receiver is the name space in which the class will be
created. Changing the name space name and saving the definition
will create a new class in the specified name space. To move a class,
use the appropriate Class = Move menu command.

e The name of the class is a symbol literal (see “Symbols” on page 4-3)
following defineClass:. The name must begin with an upper-case letter.
Changing the name will create a new class.

* The superclass is specified in the superclass: field using the literal
binding reference notation shown (see “Binding References” on
page 6-12).

e The indexedType: field is filled based on the class type you selected
(see “Class Types” on page 5-5).

e Set private: to true to make the class unavailable for import by another
class or namespace (see “Public and Private Shared Variables” on
page 4-16).

* Instance variable names are listed in a space-delimited String
following the instanceVariableNames: keyword (see “Instance Variables”
on page 4-8).

» Class instance variable names are listed in a space-delimited String
following the classinstanceVariableNames: keyword (see “Class Instance
Variables” on page 4-10).

* Following imports: list, in a white-space delimited String, any bindings
you want to import, or make freely available to this class (see
“Importing Bindings” on page 6-14).

e The containing package is shown in the category: fields.

5-4 VisualWorks

Defining a Class

If you make changes and save the defintion, the class is recompiled. This
is common, for example, to add and remove instance variables during
development.

Do not attempt to rename a class or move it to another name space or
package by editing the class definition. Instead, use the appropriate
menu command; either Class — Rename or Class — Move.

Class Types

Classes are of different types, determined by the value of the Indexed
Type in the definition. The permissible types are as follow:

#none
A class with zero or more named instance variables (possibly
inherited) and no indexed variables (e.g., True, Point). Can have any
kind of subclass.

#objects
A class of indexable object with zero or more named instance
variables and whose indexed variables hold arbitrary objects (e.g.,
Array, OrderedCollection). Subclasses can be either #objects or #weak),
since subclasses must also be object-indexable.

#bytes
A class of byte indexable object with no named instance variables
and whose indexed variables hold only byte objects (e.g., ByteString).
Indexed variable contents are defined by the at: and at:put: primitive
methods defined in the class defines, providing one and two-byte
character strings, byte and word arrays, etc. A #bytes class cannot
inherit named or indexed instance variables, because the instances
contain only raw binary data. Consequently a #bytes class can only
inherit from a chain of #none classes with no named instance
variables. Subclasses must also be #bytes classes, because they
must also be byte-indexable.

#immediate
A class of immediate object, an object whose class and value are
encoded directly in the pointer to that object, (e.g., Smallinteger,
Character). An immediate class cannot inherit named or indexed
instance variables, because the instances do not have room for
instance variables. Consequently, immediate classes can only inherit
from a chain of #none classes with no named instance variables. Also,
immediate classes cannot have subclasses, because there is no way
to differentiate instances of the subclass in the immediate
representation.

Application Developer’s Guide 5-5

Classes and Instances

#ephemeron
A class with one or more named instance variables (possibly
inherited) and no indexed variables (e.g., Ephemeron). The first
instance variable is treated specially by the garbage collector.
Consequently, an #ephemeron class must inherit from a chain of #none
classes. Subclasses can only be type #ephemeron.

#weak
A class of object-indexable objects with zero or more named instance
variables and weak indexed variables containing objects (e.g.,
WeakArray). The indexed variables are weak, so do not prevent their
referents from being garbage collected. Consequently, a #weak class
must inherit on