
Appendix A
Updates for VisualWorks 7.4.1

Overview
VisualWorks 7.4.1 is a “patch” release, consisting mainly of fixes to
problems we have found or have been reported with 7.4. There are also a
couple of features being moved from preview into full supported product.

With only a few exceptions, documentation has not been updated for this
release. These release notes cover the essential changes and additions.

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Trouble+Shooter.

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in:
fixed_ars.txt in the doc/ directory.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.
Release Notes 7.4.1 (P46-0106-12) 1

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/Trouble+Shooter

Updates for VisualWorks 7.4.1
VisualWorks Base

ExternalInterface Symbol Lookup
(AR50458) A problem has been noticed that UnixSystemSupport could
not find libc on some Linux distributions. The problem has been resolved
with the following change.

It is now possible to specify that ExternalInterfaces look-up symbols within
the VM and its associated libraries. To specify that an ExternalInterface do
this, use the symbol #linkedIn in the same place one uses a library name.
Here is an actual example from UnixSystemSupport:

Smalltalk.OS defineClass: #UnixSystemSupport
superclass: #{OS.OSSystemSupport}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: '

OS.UnixSystemSupportDictionary.*
'

category: 'OS-Unix'
attributes: #(

#(#includeFiles #())
#(#includeDirectories #())
#(#libraryFiles #(#linkedIn))
#(#libraryDirectories #())
#(#beVirtual false)
#(#optimizationLevel #full))

Note that you can mix libraries in the file-system with #linkedIn. Library
lists are searched in order. So to search the VM and its libraries first, put
#linedIn first in the list of libraries.

MustBeBoolean Exception
When a sender sends a message to an object that does not understand
the message, doesNotUnderstand: is sent to the receiver, which, by default,
raises a MessageNotUnderstood exception. This is a subclass of Error, thus

[a not understood message] on: Error do:[:ex| do something]
catches the situation.

This behavior does not apply when sending ifTrue:ifFalse:. In this case the
message mustBeBoolean is sent to the receiver. This message has been
raising a Notification which is not a subclass of error. Thus
2 VisualWorks 7.4.1

Security
[send ifTrue:ifFalse:: to nil] on: Error do:[:ex| do something]
does not catch the situation.

In 7.4.1 we have introduced a new Error subclass, MustBeBoolean. This
class is marked resumable to maintain the current behavior of "proceed
with true," which is raised as the default behavior of the mustBeBoolean
method. In previous releases, a Notification was raised.

Note that any code that relies on mustBeBoolean raising a Notification,
rather than an Error, must be updated. If you have used a proprietary fix
for the original condition, you are advised to remove the proprietary code
in favor of this solution.

Security

Private Key Encryption
This package implements PKCS #8: Private-Key Information Syntax
Standard (http://www.rsasecurity.com/rsalabs/node.asp?id=2130). This
standard describes a binary encoding for transfer and storage of private-
keys. Private-key information includes a private key for some public-key
algorithm and a set of attributes.

The standard also describes encoding for encryption of private keys to
protect their confidentiality. It proposes few specific methods of
encryption based on password-based encryption algorithms from
PKCS#5 (http://www.rsasecurity.com/rsalabs/node.asp?id=2127). See
also package PKCS5. Given the highly sensitive nature of private keys,
there is rarely a good reason to store or transport them unencrypted.

The standard does not cover the actual format for specific kinds of private
keys, and it is apparently non-trivial to find authoritative descriptions of
those. The openssl man page for the pkcs8 command points in the
direction of PKCS#11
(http://www.rsasecurity.com/rsalabs/node.asp?id=2133). We have used
this source for our definititions. The relevant section from PKCS#11 v2.01
is section 11.9. The latest version, PKCS#11v2.20, covers it in section
12.6, which also adds few more formats for eliptic curve algorithms. This
section is quoted in the PKCS8 class comment.

Limitation
We support 2 types of keys

• RSAPrivateKey

• DSAPrivateKey
Release Notes 3

Updates for VisualWorks 7.4.1
Encryption algorithm support is limited by the capabilities of our PKCS#5
implementation, which currently means that we support the following:

• DES for encryption and MD5 for key derivation (OID
pbeWithMD5AndDES-CBC)

• DES for encryption and SHA1 for key derivation (OID
pbeWithSHA1AndDES- CBC)

These are among the most widely supported algorithms. Our plan is to
add more secure versions based on RC4 and tripple DES (defined by
PKCS#12, http://www.rsasecurity.com/rsalabs/node.asp?id=2138) in the
near future. The default algorithm used for encryption is DES with SHA1.

Usage
The API is fairly straightforward. To encode a key on a stream use
message writeOn:, for example

key := (RSAKeyGenerator bitSize: 512) privateKey.
stream := ByteArray new readWriteStream.
key writeOn: stream.

Note, that the stream must be binary and positionable. If you are writing
the key out into a file, use an ExternalReadWriteStream, not
ExternalWriteStream which is not positionable.

To read the key back from the stream use class side readFrom: message.

stream reset.
RSAPrivateKey readFrom: stream.

There is an alternative API for reading keys on class side of PKCS8
class, so you can also read the key back as follows.

stream reset.
PKCS8 readKeyFrom: stream.

This is useful if you are not sure which type of key is next in the stream
(DSA or RSA). The PKCS8 API will return whichever key type is there.
The reading methods on the key classes (RSAPrivateKey or
DSAPrivateKey) will raise a PKCS8Error if the key type on the stream
does not match the key class, to prevent inadverent use of wrong key
type. Therefore, use PKCS8 class if you do not care what type of key
you'll get, and use specific key class if you want specific key type.

The PKCS8 encoded keys are sometimes distributed in additional ASCII
“armoring,” called PEM format. This is basically the PKCS#8 bytes
encoded in Base-64 encoding with some identification header and footer
4 VisualWorks 7.4.1

Security
lines attached. For convenience we also provide equivalent reading
methods for this PEM format readPEMFrom: and readKeyPEMFrom:. So you
could read a key from a .pem file like this:

PKCS8 readKeyPEMFrom: 'key.pem' asFilename readStream.

Encrypting Keys
Private keys are highly sensitive information, therefore most of the time it
is preferrable to keep the key encrypted while it is not used. The API to
store a key encrypted is very much like the one shown earlier, it just
acquires additional password: keyword and parameter. The password
parameter must be a ByteArray. We purposely choose not to provide a
String based equivalent to avoid any ambiguities. It is up to the application
to take care of the character encoding issues. For example, to write the
key:

stream reset.
password := 'very secret password' asByteArrayEncoding: #utf_16.
key writeOn: stream password: password.

and to read the key back in

stream reset.
RSAPrivateKey readFrom: stream password: password.

or

stream reset.
PKCS8 readKeyFrom: stream password: password.

The default algorithm used for key encryption is the PKCS#5, password-
based encrytption using DES and SHA1 used to derive the encryption
key from the provided password (identified by the PKCS#5 specification
as pbeWithSHA1AndDES-CBC). It is possible to use other algorithms as
well. See the documentation of the PKCS5 package for more details
about these algorithms. Here we will discuss only how to choose and
tune an algorithm for key encryption. Let's take the following example.

stream reset.
info := EncryptedPrivateKeyInfo PBE_MD5_DES.
info algorithmIdentifier parameters count: 2048.
info key: key password: password.
info writeOn: stream.

We have to work directly with the EnryptedPrivateKeyInfo objects to tune
encryption parameters. Choose the desired encryption algorithm by using
the corresponding instance creation method, in this case PBE_MD5_DES
(as opposed to the default which uses SHA1 instead of MD5). With the
information instance in hand, we can tweak specific parameters of the
chosen algorithm. In this example we are explicitly increasing the iteration
Release Notes 5

Updates for VisualWorks 7.4.1
count to 2048. Again, details about these algorithms and their parameters
belong to the PKCS#5 realm. Once the we have the algorithm set up the
way we want we can store a key in the info instance using the
key:password: message. Note that the key is encrypted immediately, so
any parameters must be tuned before this step. Finally we need to write
the info instance out on the stream.

Reading this is much easier because all the information about the
encryption altgorithm and specific parameters is stored along with the
encrypted key. Therefore reading this is no different than reading a key
encrypted with the default setup.

stream reset.
PKCS8 readKeyFrom: stream password: password.

COM

COM Automation Wizard
The COM Automation Wizard can now save and restore settings to
create a VW COM server image.

GUI Development

FontPolicy No Matching Font Default Action
A block or evaluable action may now be assigned to a FontPolicy to
answer the default font to be used in case no font matches a request. If
defined, the NoMatchingFontError exception is not raised. Users will define
this block if it is preferable for the image to continue operating with their
best font guess available rather than halt with an unhandled exception.

The following example defines a noFontBlock that uses the first available
font if no font otherwise matches the requested font:

policy := Screen default defaultFontPolicy.
policy noFontBlock:[:fontRequested| policy availableFonts first].

Pollock Namespace Change
Of special note is that the Pollock namespace has been renamed to
Panda, and all Pollock classes have been moved to that namespace. This
was done in recognition of the fact that Pollock is only one phase of a
much larger GUI framework redesign, which is being called “Panda.”
6 VisualWorks 7.4.1

Web Services
Web Services

WebServices.Struct Moved
Starting in 7.4.1, WebServices.Struct is a subclass of Protocols.Struct, rather
than of Dictionary. The 7.4 release notes mentioned this pending change,
though anticipated it for 7.5; the change over has been advanced to this
release.

This change may well affect your application code, so careful testing and
revision is required.

For further information, refer to the comments on Protocols.Struct in the
7.4 release notes, especially in the Security and Opentalk sections.

Setting SOAPClient Retries and TImeout
WsdlClient now allows you to set a number of retries and timeout. Default
values are configurable using Net Client settings (load the NetConfigTool
parcel, then use the Net Client page). The values are initially set to 5 (not 2,
as it had been in SoapHttpBindingDescriptor>> sendAndWaitForReply:.

SoapHttpBindingDescriptor allows setting the exception raised when the
retry limit is exceeded. The default exceptions are set in
SoapHttpBindingDescriptor class>>defaultRetryExceptionsValue:

^(ExceptionSet new: 4)
add: HttpTimeout;
add: OSErrorHolder unpreparedOperationSignal;
add: OSErrorHolder needRetrySignal;
add: HttpStatusLineError;
yourself

The exception set can be customized, by sending retryExceptions: to the
class with a new ExceptionSet.

Resetting the retry exception to the default can be done using a wsdl
client:

client := MyWsdlClient new.
client resetRetryExceptions.

or

b := WebServices.WsdlBinding bindingAt: 'bindingName' ifAbsent: [].
b transport retryExceptions: nil.
Release Notes 7

Updates for VisualWorks 7.4.1
Net Clients

Digest and NTLM Authentication HttpClient
The new class AuthenticationPolicy provides different types of
authentication for HTTP messages. An HttpClient creates an instance of
the authentication policy when it receives 407/401 messages.

The policy selects a supported authentication scheme from the server
challenge, creates an instance of the specific authentication, and adds an
authorization field to a request.

The policy will try to handle the server challenge if:

• a user name and password is provided

• the server challenge includes an authentication scheme that is
supported by HttpClient

Currently supported authentication schemes are: Basic, Digest, and
NTLM. The client side preferences for authentication mechanism are
controlled by the authentication order (#authOrder), which can be
specified either at the global level (class side) or at the individual instance
level.

How to Use AuthenticationPolicy
An HTTP client always sends an unauthorized message first, which
results in a challenge response if the site requires
authentication/authorization. How the challenge is answered depends on
the information available to the HttpClient. Here are a few cases.

1. The user name and password provided before the request, by being
set in the HttpClient instance.

cl := HttpClient new.
cl username: 'winUsername' password: 'winPass'.
reply := cl get: aURI.

The authentication scheme will be selected from the server 401/407
reply. The user name and password will then be encoded based on
this scheme and the request will be sent to the server.

2. The HttpClient may be configured to respond with a specific
authorization scheme:

cl := HttpClient new.
cl username: 'winUsername' password: 'winPass'.
cl useBasicAuth.
reply := cl get: aURI
8 VisualWorks 7.4.1

Net Clients
If the specified scheme is not acceptable to the server, the request
will fail. In addition to useBasicAuth, used above, there is also
useNTLMAuth to specify the policy.

3. If the user name and password are not provided, the HttpClient will
raise an HttpUnauthorizedError exception. Your error handling code will
specify the handling.

cl := HttpClient new.
[reply := cl get: aURI.
] on: Net.HttpUnauthorizedError
do: [:ex |

cl username: 'winUsername' password: 'winPass'.
ex retry]

4. You can also specifying authorization information for a proxy server.

proxy := (HostSpec new
name: 'ntlmAuthProxyServer';
type: 'http';
yourself).

proxy netUser:
(NetUser username: 'winUsername' password: 'winPass').

cl := HttpClient new.
cl

proxyHost: proxy;
useProxy: true.

reply := cl get: html.
This next sample demonstrates how an HTTPClient uses the
Authentication policy.

The HttpClient received the 401 reply from the server. The server can
accept the NTLM and Basic authentication.

request := HttpRequest readFrom:
'GET http://www.cincomx.com/en/index.asp HTTP/1.1
Host: www.cincom.com:4545
Connection: Keep-Alive' readStream.

reply := HttpResponse readFrom:
'HTTP/1.1 401 Unauthorized
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="testrealm@host.com"' readStream.

To process the 401 message the HttpClient creates an instance of the
authentication policy.

polBuilder := AuthenticationPolicy new.
Release Notes 9

Updates for VisualWorks 7.4.1
The default policy order is set as

AuthenticationPolicy class>>defaultAuthOrder
^Array

with: NTLMAuthentication
with: DigestAuthentication
with: BasicAuthentication

This order can be changed at the instance level, if desired:

polBuilder policiesOrder: (Array
with: BasicAuthentication
with: DigestAuthentication
with: NTLMAuthentication).

Set the authentication information:

polBuilder username: 'aUser' password: 'password'.
Check if the policy can process the reply challenge.

polBuilder acceptChallenge: reply request: request.
Based on the authentication policy order the Basic scheme will be
selected to authorize the request.

polBuilder addAuthorizationTo: request.

Application Server
The Application Server now has the ability to pass arbitrary data to an
application through either the global or a site specific INI file. Simply add
name/value entries to the [configuration] section of the appropriate
file.

Two methods have been added on the class side of
WebConfigurationManager: to obtain the data once server configuration is
complete:

configParameterNamed:
configParameterNamed:forSite:

These answer the value of the named parameter from the global INI
configuration file or the INI configuration file for the named site
respectively, or the empty string if the parameter does not exist.

Note that in a deployment environment, the application server does a lazy
configuration when the first request is served. Therefore, if you want your
application to start its own servers, you need a postLoad action on your
application parcel, or some other mechanism which you can use to
invoke:
10 VisualWorks 7.4.1

WinCE Device VM
WebConfigurationManager configureServer
which will initiate the configuration process before a request is received.

In order to be sure all the relevant configuration data is available to your
application, if you are planning to provide information with which to
configure server listeners, for example, you can register to receive
notification of the finishedServerConfiguration event triggered in
WebConfigurationManager class >> installConfigurationUsing:.

WinCE Device VM
The problem is that VisualWorks will just crash on some CE device
because the device does not like the way we flush the processor cache.
The problem does not depend on the processor but on the device
manufacturers implementation of the operating system. Therefore we
have not found a reliable way to find out, which of our cache flushing
routines will work.

Instead the user can configure the VM to use the correct one by adding
(or not adding) a resource to the VM.

To add the resource you can use the program ResHacker from
$(VISUALWORKS)\packaging\win.

1 Open the executable with File->Open...

2 Add the resource with Action->Add a new resource, in the dialog, press
Open file with new resource... and select file flush.res (in the codeFixes
directory).

3 In the tree view select 1033 and press Add resource.

4 Save the modified executable.

Devices that require the resource include most of the machines from
Psion and Demolux.

Devices that must not have the resource include HP's iPAQ.

DotNET Connect
This version of DotNET Connect fixes several minor bugs and
incompatibilities with VW 7.4/7.4.1. It also now works with Microsoft's
new compiler.

This release includes two new files:
Release Notes 11

Updates for VisualWorks 7.4.1
• DotNETConnect\libraries\ReflectionProxy.dll

• DotNETConnect\Sources-Dll\standard.mainfest

Two DLLs are no longer needed, and have can been removed:

• DotNETConnect\libraries\DotNETProxy.dll

• DotNETConnect\libraries\DotNETReflection.dll

Opentalk

Realigning configuration and component names
Since configurations parallel the broker component hierarchy, it is
desirable for the two to follow the same naming conventions. Therefore
we have renamed ConnectionOrientedAdaptor to just ConnectionAdaptor, to
match the ConnectionAdaptorConfiguration. We also added a backward
compatibility alias for the old name to keep old code working but that will
be removed in future releases.

Controlling pass mode of indexed instance variables in STST
In previous releases there was no way for an object to control the pass
mode of its indexed instance variables. Users would have to write custom
marshaling code for their classes to achieve that. In this release we have
added a mechanism modeled after the one used for named instance
variables (passInstVars). The new method, passModeForIndexedSlot:value:, is
invoked for each indexed variable of an object being marshaled with the
index and the value of that slot, and is expected to return one of the pass
mode symbols, #default, #skip, #value, #reference, etc. These are the same
as with the passInstVars method.

Here is an example of how CompiledCode uses this feature to make sure
any "embedded" block closures are passed by value and not by
reference:

CompiledCode>>passModeForIndexedSlot: index value: anObject

^(anObject isKindOf: BlockClosure)
ifTrue: [#value]
ifFalse: [#default]
12 VisualWorks 7.4.1

Graphics
Graphics

GIF and PNG Image Readers
(ARs 50543 and 50247) The ImageReader framework has been improved
to correctly read some GIF and PNG files. Prior to this release, GIF files
with local color table definitions could not be read without an exception.
PNG files of Color Type 2 that define a color in its palette as transparent
now create a correct mask. These errors have been fixed.

ActiveX Browser Plugin
Deployment of the VisualWorks ActiveX Control Plugin has changed to
use two CAB files: one for the ActiveX Control DLL and one for the
remaining Smalltalk components. This configuration allows you to update
the Control (DLL) and the supporting Smalltalk code (your Applet)
independently.

Please see plugin/deploy/readme.txt for more information and specific
instructions for using the supplied tools to build your plugin deployment
files.

To ensure the most recent version of your plugin is used, you must
specify a version on the CODEBASE= URL in the OBJECT tag in your
HTML, is in this example for the HelloWorld applet.

<!-- VisualWorks ActiveX PlugIn -->
<OBJECT ID="VWHelloWorld"

CLASSID="CLSID:FF48278C-094A-4188-95AA-4B1E03F3163C"
CODEBASE="http://localhost/plugin-install/vwpluginax.cab#version=

-1,-1,-1,-1"
WIDTH="200" HEIGHT="200" ALIGN="BOTTOM">

<PARAM NAME="PARCEL" VALUE="pcl/HelloWorld.pcl">
<PARAM NAME="VWOPEN" VALUE="HelloWorldExample">
The ActiveX PlugIn was not installed!

</OBJECT>
When you update your plugin to a new version, you only recompile the
DLL if you need to change the C/C++ code. For updates to anything
Smalltalk, you simply rebuild your image and then rebuild/redeploy your
CAB files.

To update only Smalltalk bits, rebuild/redeploy both CAB files, including
the existing DLL referencing its version in vwpluginax.inf, namely run the
following tools in this order:
Release Notes 13

Updates for VisualWorks 7.4.1
• mkcabplugin.bat

• mkcatplugin.bat

• mkcabpluginax.bat

(This is the function of the mkaxdeploy.bat tool.)

To update only the DLL, rebuild/redeploy vwpluginax.cab, including the
new DLL referencing its new version in vwpluginax.inf, namely run the
following tools in this order

• mkcatplugin.bat

• mkcabpluginax.bat

To update both, rebuild/redeploy both CAB files, including the new DLL
referencing its new version in vwpluginax.inf, namely run the following
tools in this order

• mkcabplugin.bat

• mkcatplugin.bat

• mkcabpluginax.bat

As long as the version is -1,-1,-1,-1 on the object, IE will pull down and
install any new CAB file(s). However, the ActiveX Control DLL will not be
installed again until its version changes. When it does change, both the
version in the DLL and the version in the INF file must match.
14 VisualWorks 7.4.1

	Updates for VisualWorks 7.4.1
	Overview
	ARs Resolved in this Release
	VisualWorks Base
	ExternalInterface Symbol Lookup
	MustBeBoolean Exception

	Security
	Private Key Encryption
	Limitation
	Usage
	Encrypting Keys

	COM
	COM Automation Wizard

	GUI Development
	FontPolicy No Matching Font Default Action
	Pollock Namespace Change

	Web Services
	WebServices.Struct Moved
	Setting SOAPClient Retries and TImeout

	Net Clients
	Digest and NTLM Authentication HttpClient
	How to Use AuthenticationPolicy

	Application Server
	WinCE Device VM
	DotNET Connect
	Opentalk
	Realigning configuration and component names
	Controlling pass mode of indexed instance variables in STST

	Graphics
	GIF and PNG Image Readers

	ActiveX Browser Plugin

