
Cincom Smalltalk™

Database Application
Developer's Guide
P46-0128-06

 

 

 

 
 

S I M P L I F I C A T I O N  T H R O U G H  I N N O V A T I O N ®

InstallGuide Cover 0107  1/17/07  10:19 AM  Page 1



© 1995 – 2008 Cincom Systems, Inc. 

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0128-06

Software Release 7.6 

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as 
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer 
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are 
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are 
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in 
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk, 
Database Connect,  DLL & C Connect, COM Connect, and StORE are trademarks of 
Cincom Systems, Inc., its subsidiaries, or successors. ENVY is a registered trademark of 
Object Technology International, Inc. All other products or services mentioned herein are 
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this 
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or 
distributed except in accordance with the terms of said license. No class names, 
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1995 – 2008 by Cincom Systems, Inc. 
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or 
reduced to any electronic medium or machine-readable form without prior written consent 
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com



Contents

About This Book xi

Audience ....................................................................................................................  xi
Overview ....................................................................................................................  xi
Conventions ............................................................................................................... xii

Typographic Conventions .............................................................................. xii
Special Symbols........................................................................................... xiii
Mouse Buttons and Menus .......................................................................... xiii

Getting Help .............................................................................................................. xiv
Commercial Licensees................................................................................. xiv
Non-Commercial Licensees .........................................................................  xv

Additional Sources of Information ............................................................................. xvi
Online Help ............................................................................................................... xvi

News Groups ............................................................................................... xvi
VisualWorks Wiki ......................................................................................... xvi
Commercial Publications.............................................................................. xvi

Chapter 1 Configuring Database Support

Loading Database Support ......................................................................................1-1
Preparing a Database Connection ...........................................................................1-2

Environment Strings ....................................................................................1-2
Oracle Library Access on UNIX Platforms ..................................................1-2
Setting the Database Login Defaults ...........................................................1-2
Setting the Object Lens Login Defaults .......................................................1-3
Testing the Database Connection ...............................................................1-4
Troubleshooting Oracle Access ...................................................................1-5

Installing Examples and Data ...................................................................................1-6
Loading the EXDI Workbook .......................................................................1-6
Setting Up the Example Lens Application ...................................................1-7

Chapter 2 EXDI Database Interface

EXDI Framework ......................................................................................................2-2
Data Interchange ......................................................................................................2-3
Database Application Developer’s Guide iii



Using Database Connections .................................................................................. 2-4
Securing Passwords ................................................................................... 2-4
Getting the Details Right ............................................................................. 2-4
Setting a Default Environment .................................................................... 2-5
Default Connections ................................................................................... 2-6
External Authentication ............................................................................... 2-6
On the Importance of Disconnecting .......................................................... 2-6

Using Sessions ........................................................................................................ 2-7
Variables in Queries .................................................................................... 2-8
Named Input Binding .................................................................................. 2-9

Getting Answers .................................................................................................... 2-10
Handling Multiple Answer Sets ................................................................. 2-12
Sending an Answer Message ................................................................... 2-12
Waiting for the Server ............................................................................... 2-13
Did the Query Succeed? .......................................................................... 2-13
How Many Rows were Affected? .............................................................. 2-13
Describing the Answer Set ....................................................................... 2-14
Buffers and Adaptors ................................................................................ 2-14
Processing an Answer Stream ................................................................. 2-15
Using an Output Template ........................................................................ 2-18
Setting a Block Factor to Improve Performance ........................................ 2-20
Cancelling an Answer Set ......................................................................... 2-21
Disconnecting the Session ....................................................................... 2-21

Controlling Transactions ........................................................................................ 2-21
Coordinated Transactions ......................................................................... 2-22

Releasing Resources ............................................................................................ 2-22
Tracing the Flow of Execution ................................................................................ 2-23

Directing Trace Output .............................................................................. 2-23
Setting the Trace Level ............................................................................. 2-23
Disabling Tracing ...................................................................................... 2-24
Adding Your Own Trace Information ......................................................... 2-24

Error Handling ....................................................................................................... 2-25
Exceptions and Error Information ............................................................. 2-25
Exception Handling ................................................................................... 2-26
Choosing an Exception to Handle ............................................................ 2-26
Exceptions and Stored Procedures .......................................................... 2-27

Image Save and Restart Considerations ............................................................... 2-27

Chapter 3 Using the Database Connect for Sybase CTLib

CTLib EXDI Classes ................................................................................................ 3-2
CTLibConnection ..................................................................................................... 3-3
iv  VisualWorks



Class Protocols ...........................................................................................3-3
Instance Protocols .......................................................................................3-3

CTLibSession ...........................................................................................................3-4
Instance Protocols .......................................................................................3-5
Using Cursors and Scrollable Cursors ........................................................3-5

CTLibColumnDescription .........................................................................................3-6
Instance Protocols .......................................................................................3-6

CTLibError ................................................................................................................3-6
Instance Protocols .......................................................................................3-6

Data Conversion and Binding ...................................................................................3-8
Exception Handling ..................................................................................................3-8
Calling Sybase Stored Procedures ..........................................................................3-9
Sybase Threaded API ............................................................................................3-11

Limitations .................................................................................................3-11
Using CTLibThreadedConnection .............................................................3-11
Example ....................................................................................................3-11

Chapter 4 Using the Database Connect for Oracle

Database Connect for Oracle Classes .....................................................................4-2
OracleConnection ....................................................................................................4-3

Class Protocols ...........................................................................................4-3
Instance Protocols .......................................................................................4-3

OracleSession ..........................................................................................................4-4
Instance Protocols .......................................................................................4-4

OracleColumnDescription ........................................................................................4-6
Instance Protocols .......................................................................................4-6

OracleError ...............................................................................................................4-6
Instance Protocols .......................................................................................4-6

Data Conversion and Binding ...................................................................................4-7
Binding NULL and Backward Compatibility .................................................4-8
Binding Numbers and Conversion ...............................................................4-8
Array Binding ...............................................................................................4-9

Using PL/SQL ........................................................................................................4-11
Preparing a PL/SQL Query .......................................................................4-11
Executing a PL/SQL Query .......................................................................4-12
Binding PL/SQL Variables .........................................................................4-12
Variable Type and Size ..............................................................................4-13
Retrieving PL/SQL Variables .....................................................................4-14

Oracle Threaded API .............................................................................................4-15
Configuring the Threaded API ...................................................................4-15
Using OracleThreadedConnection ............................................................4-15
Database Application Developer’s Guide  v



Connection Pooling ................................................................................... 4-16
Using THAPI with the Object Lens ........................................................... 4-17

Calling Oracle Stored Procedures ......................................................................... 4-20
CLOB/BLOB support ............................................................................................. 4-23

Chapter 5 Using the ODBC Connect

ODBC EXDI Classes ............................................................................................... 5-2
ODBCConnection .................................................................................................... 5-3

Transactions ................................................................................................ 5-3
Instance Protocols ...................................................................................... 5-3

ODBCSession ......................................................................................................... 5-5
ODBCColumnDescription ........................................................................................ 5-7
ODBCError .............................................................................................................. 5-8
ODBCDataSource ................................................................................................... 5-8

Instance Protocols ...................................................................................... 5-8
Data Conversion and Binding .................................................................................. 5-9

Restrictions on Binding ............................................................................... 5-9
Unicode Support .................................................................................................... 5-10

Storing and Retrieving Unicode ................................................................ 5-10
Using Stored Procedures ...................................................................................... 5-12

Preparing a Stored Procedure Query ....................................................... 5-13
Executing a Query .................................................................................... 5-13
Binding Variables for Stored Procedures .................................................. 5-13
Retrieving Stored Procedure Variables ..................................................... 5-15

Large Objects ........................................................................................................ 5-15
Support for Large Objects ........................................................................ 5-15
Binding for Input ........................................................................................ 5-16
Binding for Output ..................................................................................... 5-17
Restrictions on Retrieving Large Objects ................................................. 5-17

Chapter 6 Using the DB2 Connect

DB2 EXDI Classes .................................................................................................. 6-2
DB2Connection ....................................................................................................... 6-3

Instance Protocols ...................................................................................... 6-3
DB2Session ............................................................................................................. 6-4

Transactions ................................................................................................ 6-4
Executing Queries ...................................................................................... 6-4
Instance Protocols ...................................................................................... 6-4

Data Conversion and Binding .................................................................................. 6-7
Restrictions on Binding ............................................................................... 6-8

Using Stored Procedures ........................................................................................ 6-9
vi  VisualWorks



Large Objects .........................................................................................................6-10
Binding for Input ........................................................................................6-10

DB2LOBLocator .....................................................................................................6-12
DB2LOBFileReference ...........................................................................................6-13

Using LOB File References .......................................................................6-14
Using Data Links ....................................................................................................6-15
Threaded API .........................................................................................................6-17

Using the Threaded API ............................................................................6-17
Known Limitations ..................................................................................................6-17

Chapter 7 Developing a Database Application

Overview ..................................................................................................................7-2
VisualWorks Application Structure ...........................................................................7-3
Components of a Database Application ...................................................................7-5

Entity Classes .............................................................................................7-5
Database Application Class ........................................................................7-7
Data Form Classes .....................................................................................7-8

VisualWorks Database Tools .................................................................................7-11
Data Modeler .............................................................................................7-11
Mapping Tool .............................................................................................7-11
Database Tables Viewer ............................................................................7-11
Query Editor ..............................................................................................7-11
Menu Query Editor ....................................................................................7-11
Ad Hoc SQL Tool .......................................................................................7-12
Canvas Composer .....................................................................................7-12
Tool Extensions .........................................................................................7-13

Lens Name Space Control .....................................................................................7-14
Name Space Options ................................................................................7-14

Chapter 8 Building a Data Model

An Example Data Model ..........................................................................................8-2
Create a New Data Model ........................................................................................8-4
Defining Database Entities .......................................................................................8-5

Define Entities from an Existing Table .........................................................8-5
Create Entities for a New Table ...................................................................8-7

Creating Relations Between Entities ......................................................................8-12
Create Relations Automatically .................................................................8-12
Create Relations Manually ........................................................................8-13

Check and Save the Data Model ............................................................................8-14
Database Application Developer’s Guide  vii



Chapter 9 Creating a Data Form

Generating a Data Form .......................................................................................... 9-2
Connecting a Data Form to an Application .............................................................. 9-6
Testing an Application .............................................................................................. 9-7
Replacing Input Fields with Other Widgets .............................................................. 9-7

Embedding a Data Form ........................................................................... 9-10
Editing a Query ......................................................................................... 9-11
Removing the Fetch Button ...................................................................... 9-12

Creating a Custom Data Form Template ............................................................... 9-12
Specifying an Aspect Path ..................................................................................... 9-13

Chapter 10 Lens Programmatic API

Connecting to a Database ..................................................................................... 10-1
Using a Lens Session Connection from an Application ............................ 10-1
Getting an Unconnected Session from a Data Model ............................... 10-2

Performing a Query ............................................................................................... 10-4
Sending a Query to a Lens Session ......................................................... 10-4
Limiting the Number of Rows Fetched ...................................................... 10-5
Processing on Individual Rows from a Lens Session ............................... 10-5

Beginning and Ending Transactions ...................................................................... 10-7
Adding Objects to the Database ............................................................................ 10-8
Removing an Object from the Database ................................................................ 10-9
Updating Objects in a Database .......................................................................... 10-11

Posting Changes for Multiple Objects ..................................................... 10-13
Generating Sequence Numbers .......................................................................... 10-13

Using Database Generated Sequence Numbers ................................... 10-13
Generating Sequence Numbers in Lens ................................................. 10-15

Reusing an Interface with a Different DBMS ....................................................... 10-17
Basing a Data Form or Query on Multiple Tables ................................................ 10-18

Using Object Navigation ......................................................................... 10-18
Using a Database Join ............................................................................ 10-18

Responding to Transaction Events ...................................................................... 10-18
Accepting Edits Automatically at Commit Time ................................................... 10-20

Verifying Before Committing ................................................................... 10-20
Disconnecting and Reconnecting ........................................................................ 10-21
Maintaining Collections ........................................................................................ 10-22

Creating a Child Set Via Foreign-Key References .................................. 10-22
Maintaining a Collection With a Query ................................................... 10-23
viii  VisualWorks



Chapter 11 Writing Queries

Editing a Query ......................................................................................................11-1
Query Syntax .........................................................................................................11-3

“From” Clause ...........................................................................................11-3
“Select” Clause ..........................................................................................11-4
“Where” Clause .........................................................................................11-5
“Order By” Clause .....................................................................................11-7
“Group By” Clause ....................................................................................11-7

Alternate SQL ........................................................................................................11-7
Editing Generated SQL .............................................................................11-7
Programmatically Modifying SQL ..............................................................11-8
Constants in the Object Lens ..................................................................11-10

Index Index-1
Database Application Developer’s Guide  ix



x  VisualWorks



About This Book

The VisualWorks® Database Connect provides support for accessing 
relational databases from within a VisualWorks application. A variety of 
industry-standard database servers are supported, including Oracle, 
Sybase, ODBC, and PostgreSQL. This guide describes the general 
database access features for VisualWorks and the particular 
implementations for specific vendors.

Audience
This guide presumes that you are familiar with relational database 
systems (RDBMS) and the SQL query language.

Some chapters in this book also presuppose a general knowledge of 
object-oriented concepts, Smalltalk, and the VisualWorks environment.

For an overview of Smalltalk, the VisualWorks development environment 
and its application architecture, see the VisualWorks Application 
Developer’s Guide.

Overview
The VisualWorks Database framework is divided into two parts:

• External Database Interface (EXDI)

• Object Lens

The EXDI provides a basic, lower-level API for database access, 
connection and session control, SQL operations and simple object 
mapping. To the EXDI, the Object Lens adds more elaborate object-
relational mapping features, including tools for building Smalltalk classes 
from tables in an existing database.
Database Application Developer’s Guide xi



About This Book
If your application requires an API for basic database access, then you 
may only need to use the EXDI. If, however, you require more elaborate 
object-relational mapping, or you wish to use GUI tools to model tables in 
an existing database, then you also need to use the Lens.

Accordingly, this guide begins with a discussion of the EXDI, and then 
continues with a presentation of the Object Lens.

If you intend to primarily use the EXDI, we suggest beginning your review 
of this guide with Chapter 1, “Configuring Database Support” and 
Chapter 2, “EXDI Database Interface”. Specific discussions of Oracle, 
Sybase, and ODBC APIs follow.

For developers who wish to focus on the Object Lens and its tools, we 
suggest briefly skimming the discussion of the EXDI, and then focusing 
on Chapter 7, “Developing a Database Application” and Chapter 8, 
“Building a Data Model”.

Conventions

We have followed a variety of conventions, which are standard in the 
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined, 
emphasized words, book titles, and words as words.

cover.doc Indicates filenames, pathnames, commands, and 
other constructs to be entered outside VisualWorks 
(for example, at a command line).

filename.xwd Indicates a variable element for which you must 
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any 
other information that you enter through the 
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu 
names, dialog-box fields, and buttons; it also 
indicates emphasis in Smalltalk code samples.
xii  VisualWorks



Conventions
Special Symbols
This book uses the following symbols to designate certain items or 
relationships:

Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on 
various platforms. Smalltalk traditionally expects a three-button mouse, 
where the buttons are denoted by the logical names <Select>, 
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or 
combinations:

Examples Description

File  New Indicates the name of an item (New) on a menu 
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse 
button; it also indicates the pop-up menu that is 
displayed by pressing the mouse button of the 
same name.

<Control>-<g> Indicates two keys that must be pressed 
simultaneously.

<Escape> <c> Indicates two keys that must be pressed 
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

<Select> button Select (or choose) a window location or a menu 
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are 
appropriate for the current view or selection. The 
menu that is displayed is referred to as the 
<Operate> menu.

<Window> button Bring up the menu of actions that can be 
performed on any VisualWorks window (except 
dialogs), such as move and close. The menu that is 
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button
Database Application Developer’s Guide  xiii



About This Book
Getting Help
There are many sources of technical help available to users of 
VisualWorks. Cincom technical support options are available to users 
who have purchased a commercial license. Public support options are 
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help, 
you can contact Cincom Technical Support. Cincom provides all 
customers with help on product installation. For other problems there are 
several service plans available. For more information, send email to 
supportweb@cincom.com. 

Before Contacting Technical Support
When you need to contact a technical support representative, please be 
prepared to provide the following information:

• The version id, which indicates the version of the product you are 
using. Choose Help  About VisualWorks in the VisualWorks main 
window. The version number can be found in the resulting dialog 
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have 
imported into the standard image. Choose Help  About VisualWorks in 
the VisualWorks main window. All installed patches can be found in 
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the 
symptom of the problem. To do so, select copy stack in the error notifier 
window (or in the stack view of the spawned Debugger). Then paste 
the text into a file that you can send to technical support.

Contacting Technical Support 
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>

3-Button 2-Button 1-Button
xiv  VisualWorks

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com


Getting Help
Web
In addition to product and company information, technical support 
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone 

Within North America, you can call Cincom Technical Support at 
(800) 727-3525. Operating hours are Monday through Friday from 
8:30 a.m. to 5:00 p.m., Eastern time. 

Outside North America, you must contact the local authorized 
reseller of Cincom products to find out the telephone numbers and 
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical 
support from Cincom. There are, however, on-line sources of help 
available on VisualWorks and its add-on components. Be assured, you 
are not alone. Many of these resources are valuable to commercial 
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides 
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which 
serves a growing community of VisualWorks Non-Commercial users.  
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu 
with the SUBJECT of "subscribe" or "unsubscribe". 

• An excellent Smalltalk archive is maintained by faculty and students 
at UIUC, who are long-time Smalltalk users and leading lights in the 
Smalltalk community, at: 

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things 

VisualWorks related at: 

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks 

at: 

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active 
discussions about Smalltalk and VisualWorks, and is a good source for 
advice.
Database Application Developer’s Guide  xv

http://supportweb.cincom.com
mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk


About This Book
Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk 
publications website:

http://www.cincom.com/smalltalk/documentation
is a resource for the most up to date versions of VisualWorks manuals 
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system. 

To display the online documentation browser, open the Help pull-down 
menu from the VisualWorks main menu bar and select one of the help 
options. 

News Groups
The Smalltalk community is actively present on the internet, and willing to 
offer helpful advice. A common meeting place is the comp.lang.smalltalk 
news group. Discussion of VisualWorks and solutions to programming 
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about 
VisualWorks. You can ask questions and, in most cases, get a reply in a 
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a 
large library of documents published by major publishing houses. Check 
your favorite technical bookstore or online book seller.
xvi  VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1
http://www.cincom.com/smalltalk/documentation


1 
Configuring Database Support

VisualWorks Database support is provided in several parcels. This 
chapter describes how to get the support properly installed in the 
development image, how to load example code, and how to resolve some 
common configuration issues.

VisualWorks provides EXDI support for Oracle, Sybase, ODBC, MySQL, 
and DB2. A PostgresSQL EXDI is available as a contributed component, 
though it is not supported by Cincom. The Object Lens may be used only 
with Oracle, Sybase, and DB2.

Loading Database Support
Basic database support is contained in four parcels provided with the 
standard VisualWorks release:

• Database.pcl

• Lens-Runtime.pcl (runtime functionality)

• Lens-Dev.pcl (full development functionality)

• LDM-Framework.pcl (used by the Store toolset)

Database-specific extensions (e.g. Oracle, PostgreSQL) are provided as 
options during installation of VisualWorks. When installing by hand, copy 
the parcels containing support for your database to either the /parcels 
or /database subdirectory of the VisualWorks installation.

To load the database support parcels into your image, open the Parcel 
Manager (select System  Parcel Manager in the Launcher window), select 
the suggested Database extensions, and load the EXDI and/or Lens 
parcels by double-clicking on the desired items in the upper-right-hand 
list of the Parcel Manager.
Database Application Developer’s Guide 1-1



Configuring Database Support
Preparing a Database Connection
In general, setting up your database software to work with VisualWorks 
should be straightforward. This section addresses a few setup issues that 
can occur, and explains how to test your database connection.

Environment Strings
The Database Connect requires that you enter a database environment 
string. This can be any string that identifies the database, according to 
conventions for the specific database and platform.

Throughout this document we will assume your database is configured 
such that an environment string in the following format is recognized:

<host_name>_<dbSID>
For example:

ocelot_ORCL
would identify an Oracle database named ORCL on the system named 
ocelot, as defined in the TNSNAMES.ORA configuration file.

If you do not know the environment string for your database, consult your 
database administrator or the database administration documentation.

Oracle Library Access on UNIX Platforms
Starting with VisualWorks 3.0, all database libraries are dynamically 
bound to the object engine, using shared libraries.

To access these libraries, it is essential that the UNIX environment 
variable LD_LIBRARY_PATH contains the path containing these libraries. 
For example, enter this line in your script file:

• for Solaris: setenv LD_LIBRARY_PATH

• for HPUX: SHLIB_PATH

For details on setting the environment variable correctly, see 
“Troubleshooting Oracle Access” on page 1-5. 

Setting the Database Login Defaults
You can create database profiles with login and environment settings as 
part of your VisualWorks image, which are available to all VisualWorks 
tools and to the applications that you build. These profiles are available in 
all database connection dialog boxes.
1-2  VisualWorks



Preparing a Database Connection
You can also create profiles from within any database connection dialog 
(by editing the properties and then clicking on Save... to define the profile’s 
name).

To set your database login information:

1 In the VisualWorks Launcher window, choose System  Settings.

2 In the Settings tool, select the Database - Profiles page by clicking on its 
tab (listed under Tools).

3 On the profiles Settings page, click Add... to create a new profile.

4 Enter a Name for the database profile, the Interface to use (e.g., 
OracleConnection), the Environment (e.g. ocelot_ORCL), User Name, and 
Password.

5 When finished, click OK.

6 Return to the Launcher window and save your VisualWorks image by 
choosing File  Save Image As....

Any database profiles you have created are now a part of the 
VisualWorks image, available to all database applications.

You can also export these profiles as an XML-format file, which can be 
used to import your profiles into other images. To save all profiles in a 
single XML file, select Database - Profiles in the tree of settings, and then 
choose Save Page... from the <Operate> menu.

Setting the Object Lens Login Defaults
To use the Object Lens functionality, you need to set up a distinct Lens 
profile. Skip this discussion if you only wish to use the EXDI layer of the 
database connect.

The Object Lens requires a username and password for the Lens tools (a 
developer login that has rights to create tables), and a separate individual 
username for executing Lens applications.

To set the Lens connection profile:

1 In the VisualWorks Launcher window, choose System  Settings.

2 In the Settings tool, select the Database - Lens page by clicking on its 
tab (listed under Tools).

3 Enter the Developer name, password, and environment that you use to log 
in to your database. These are the defaults used by the Database 
Development Tools.
Database Application Developer’s Guide  1-3



Configuring Database Support
4 Enter the default User name and Password for individuals using your 
application to access databases. These are the defaults for user 
applications, which appear in database access dialog boxes.

5 When finished, click OK.

6 Return to the Launcher window and save your VisualWorks image by 
choosing File  Save Image As....

Testing the Database Connection
With the database support parcels loaded, follow these steps to test your 
database connection:

1 In the VisualWorks Launcher window, choose 
Tools  Database  Ad Hoc SQL to open the Ad Hoc SQL tool.

2 In the Ad Hoc SQL tool, click on the Connect button.

3 In the login dialog, select the desired connection profile, and click 
Connect (you can also create a new connection profile from this dialog; 
for details, see “Setting the Database Login Defaults” on page 1-2).

If the connection is successful, the Connect button in the Ad Hoc SQL 
tool is disabled and the Disconnect button is enabled.

If the connection is not successful, verify that:

• The VisualWorks Database Connect product (e.g., Oracle, 
Sybase, etc.) for your database management system has been 
installed on your system and is available from your image.

• Your database vendor’s client and server software and 
networking have been installed and configured properly.

4 Click Disconnect and close the Ad Hoc SQL tool.
1-4  VisualWorks



Preparing a Database Connection
Troubleshooting Oracle Access
Sometimes it is difficult to properly configure Oracle client libraries, 
because Oracle tends to change their file structure from release to 
release. Also, you can install several different versions of the Oracle client 
library on a single machine. This means that proper configuration 
requires that the developer have a more detailed understanding of the 
installation on a given platform.

The VisualWorks Oracle Connect relies solely upon the environment 
variable to find the right library files to load. The folder which contains 
OCI.DLL must be included in the environment variable (e.g., PATH on 
Windows) so that VisualWorks can find the right OCI.DLL to load.

On machines that have multiple Oracle clients installed, the folder 
containing the desired OCI.DLL should appear first (meaning before 
other Oracle clients' folders) in the list of environment variables. Oracle 
provides a tool called Home Selector that can help you to select the desired 
version, or you can do it manually.

To set the path manually under Windows, modify the environment 
variable so that the folder containing the OCI.DLL you want to use 
appears the first in the environment string (including the full path).

1 For example, under Windows XP, open the System control panel and 
select the Advanced tab.

2 On the Advanced tab, click the Environment Variables button.

3 In the Environment Variables dialog, select Path from the list of System 
variables, and click Edit.

4 In the editing dialog, enter the appropriate value. Note that this input 
field may contain a very long string of text. It is probably best to just 
keyboard arrow keys to position and edit this.

5 If you have Oracle clients 8.1.7, 9.2 and 10 installed on your machine 
and you want to use Oracle 9.2, you can modify the environment 
string to make the folder conaining OCI.DLL in 9.2 installation 
appear before the folders for other Oracle clients.

6 Click OK to close the Environment Variables editor.
Database Application Developer’s Guide  1-5



Configuring Database Support
Installing Examples and Data
The VisualWorks Database Connect includes a Workbook of code 
examples for exploring the EXDI, and a sample Lens application and 
data. Both examples are provided as code parcels which can be loaded 
into your development image.

The EXDI Workbook provides an interactive programmatic interface to 
the EXDI. Using predefined code samples or your own additions, this tool 
provides a simple way to learn about the connection and session objects.

An example Lens application is referred to in this guide, and is available 
for your inspection. It includes a simple GUI, and sample data which can 
be installed into your database.

Loading the EXDI Workbook
The EXDI Workbook is a simple Workspace application that includes a 
mechanism for connecting and disconnecting from a database, and 
example code fragments you can use to exercise the EXDI.

To install and open the EXDI Workbook:

1 Load the Database-Examples parcel.

In the Launcher, select System  Load Parcels Named..., and enter 
Database-Examples.

2 Ensure the required database support parcels have been loaded 
(located in the database directory).

E.g. for Sybase database systems, load CTLibEXDI. For Oracle 
databases, load OracleEXDI, and for other vendors, choose the 
appropriate EXDI parcel.

3 In the Launcher window, select Database  Database Examples Workbook 
from the Tools menu.

When prompted for a database, either select a connection profile (for 
details, see “Setting the Database Login Defaults” on page 1-2), or 
enter connection parameters and click Connect.

Once the connection has been established, the Workbook window 
opens.

4 The Workbook includes two workspace variables: connection and 
session, corresponding to the objects representing the current 
database connection. You can now interactively evaluate simple code 
fragments to manipulate these objects.
1-6  VisualWorks



Installing Examples and Data
For example, to query the status of the database connection, 
highlight the code fragment:

connection isConnected
Then, select Inspect It from the <Operate> menu. An inspector opens 
on the result of sending isConnected (it should be True).

5 When you are finished with the Workbook, you can close the 
connection by evaluating connection disconnect, or by selecting 
Disconnect from the Database menu.

The Workbook includes code to manipulate the connection object, to 
CREATE and DROP a table, to INSERT data and SELECT rows. You can 
edit the code samples or use any of the behavior of the connection and 
session objects.

Setting Up the Example Lens Application
This Lens example is a simple library application for tracking books, the 
people who borrow them, and the book-loan transactions.

The sample application and several database examples mentioned in this 
guide assume the existence of sample database tables. You must load 
these into a database before using the application. The tables are:

• BookExample

• BorrowerExample

• BookloanExample

• AdminExample (for Sybase only)

To install and set up the sample application:

1 Load the Lens-Examples parcel.

In the Launcher window, select System  Load Parcels Named..., and 
enter Lens-Examples.

2 Ensure the required database support parcels have been loaded 
(located in the database directory).

E.g. for Sybase database systems, load CTLibEXDI. For Oracle 
databases, load OracleEXDI, and for other vendors, choose the 
appropriate EXDI parcel.

3 To set up your login and environment information, open the Settings 
Manager (System  Settings), and on the Database - Lens page, enter 
appropriate values for Developer name, password, environment, and Apply 
these changes.
Database Application Developer’s Guide  1-7



Configuring Database Support
4 In a workspace evaluate:

Examples.Database1Example addSampleData.
When the action completes successfully, VisualWorks displays a 
notifier saying the sample tables and data were installed. Click OK to 
dismiss the message.

Database1Example is now ready for use.

You should now be able to use the example to add and remove books.

To run the example application, execute the following code in a 
Workspace:

Examples.Database1Example open.
When prompted, confirm or enter your database login information, 
including the kind of database, your user name and password, and the 
environment string, and click OK.

To remove the example tables and data from your image, evaluate:

Examples.Database1Example removeSampleData.
1-8  VisualWorks



2 
EXDI Database Interface

The VisualWorks Database Connect is based upon an API for low-level 
access known as the External Database Interface (EXDI). For many 
applications, the EXDI is sufficient for interacting with a database. 
Applications that require more sophisticated object-relational mapping 
may use the Object Lens, which is described in subsequent chapters.

The EXDI package provides a set of protocols supported by several 
superclasses, but does not provide direct support for any particular 
database. Database Connect extensions are provided for connectivity to 
specific databases, such as Oracle and Sybase. These extensions to the 
EXDI are described in the following chapters.

This chapter provides an overview of the EXDI framework, explains the 
general rules for data interchange between Smalltalk and a relational 
database, how to connect, disconnect, create sessions, make queries, 
get results and handle errors. It also describes how you can trace the flow 
of a transaction.

The examples in this chapter assume that you have installed and 
configured a VisualWorks database connection according to the 
instructions provided in “Configuring Database Support” and that the 
necessary database vendor software has been installed and correctly 
configured.
Database Application Developer’s Guide 2-1



EXDI Database Interface
EXDI Framework
Interacting with a relational database involves the following activities:

• Establishing a connection to the database server

• Preparing and executing SQL queries

• Obtaining the results of the queries

• Disconnecting from the server

The External Database Interface consists of a set of classes that provide 
a uniform access protocol for performing these activities, as well as the 
other activities necessary for building robust database applications. The 
classes that make up the External Database Interface are found in the 
Database package. Each of these classes is listed in the tables below with 
a more detailed explanation to follow later in this chapter.

In addition to these three core classes, the following classes provide 
useful functionality.

Core External Database Interface Classes

Database Interface Class Description

ExternalDatabaseConnection Provides the protocol for establishing a 
connection to a relational database server, 
and for controlling the transaction state of 
the connection.

ExternalDatabaseSession Provides the protocol for executing SQL 
queries, and for obtaining their results.

ExternalDatabaseAnswerStream Provides the stream protocol for reading 
the data that might result from a query.

External Database Interface Support Classes

Database Interface Class Description

ExternalDatabaseColumnDescription Holds the descriptions of the columns of 
data retrieved by queries

ExternalDatabaseError Bundles the error information that may 
result if something goes awry.

ExternalDatabaseFramework
ExternalDatabaseBuffer
ExternalDatabaseTransaction

Provide behind-the-scenes support for 
the activities above, and are not 
accessed directly.
2-2  VisualWorks



Data Interchange
Data Interchange
Before going further, it is important to understand how relational data is 
transferred to and from the Smalltalk environment. Data in the relational 
database environment is stored in tables, which consist of columns, each 
having a distinguished datatype (INT, VARCHAR, and so on). When a 
row of data from a relational table is fetched into Smalltalk, the relational 
data is transformed into an instance of a Smalltalk class, according to the 
following table.

NULL values for relational type become the Smalltalk value nil on input, 
and nil becomes NULL on output.

The row itself becomes either the Smalltalk class Array or an instance of 
some user-defined class. The choice is under your control, and is 
described later in this chapter.

If a particular DBMS supports additional datatypes, the mapping between 
those datatypes and Smalltalk classes is explained in the documentation 
for the corresponding VisualWorks database connection. For example, 
VisualWorks CTLib Connect supports a datatype called MONEY. See 
“Using the Database Connect for Sybase CTLib” on page 3-1, for a 
description of how that datatype is mapped to a Smalltalk class.

Relational Type Conversion 

Relational Type Smalltalk Class

CHAR, VARCHAR, LONG String

RAW, LONG RAW ByteArray

INT Integer

REAL Double

NUMBER FixedPoint

TIMESTAMP Timestamp
Database Application Developer’s Guide  2-3



EXDI Database Interface
Using Database Connections
To establish a connection to a database, you create an instance of 
ExternalDatabaseConnection (or one of its subclasses), supply it with your 
database user name, password, and environment (connect) string, then 
direct the instance to connect. In the following example we connect to 
(and then disconnect from) an Oracle server.

| connection |
connection := OracleConnection new.
connection

username: 'scott';
password: 'tiger';
environment: 'ocelot_ORCL'.

connection connect.
connection disconnect.

The environment string format follows the conventions described in the 
discussion of “Environment Strings” on page 1-2.

Securing Passwords
In the connection example above, references to the username, password, 
and environment string are stored in instance variables of the connection 
object, and will be stored in the image when it is saved. For security 
reasons, you may wish to avoid having a password stored in the image. A 
variant of the connect message allows you to specify a password without 
having the session retain a reference to it. The example below assumes 
that the class that contains the code fragment responds to the message 
askUserForPassword. The string it answers is used to make the connection.

connection
username: 'scott';
environment: 'ocelot_ORCL'.

connection connect: self askUserForPassword.

Getting the Details Right
Environment strings (also called connect strings by some vendors) can 
be tricky things to remember. As a convenience, class 
ExternalDatabaseConnection keeps a registry of environment strings, 
allowing them to be referenced by logical keys. This enables applications 
to provide users with a menu of logical environment names, instead of the 
less mnemonic environment strings.
2-4  VisualWorks



Using Database Connections
ExternalDatabaseConnection supplies the following class-side messages for 
manipulating the registry:

addLogical: aKey environment: anEnvironmentString
Add a new entry in the Dictionary, associating aKey as the logical 
name for the environment and anEnvironmentString as the value to 
use when connecting.

removeLogical: aKey
Remove an entry from the logical environment map.

mapLogical: aKey
Answer the string to use for the environment in making a connection.

environments
Return the Dictionary of all mappings from logical names to SQL-
environment strings.

For example, executing the following example establishes a logical 
environment named 'test'.

OracleConnection 
addLogical: 'test' 
environment: ‘ocelot_ORCL’.

Thereafter, applications that specify 'test' as their environment will 
actually get the longer Oracle connect string. Actually, any string that an 
application provides as an environment is first checked against the logical 
environment registry. If no match is found, the application’s string is used 
unchanged.

Setting a Default Environment
ExternalDatabaseConnection also remembers a default key, enabling 
applications to connect without specifying an environment. The default 
key is set by sending ExternalDatabaseConnection the message 
defaultEnvironment:, passing the default environment string as the 
argument. The message defaultEnvironment answers with the current 
default environment, which may be nil.

The following code sets 'test' to be the default logical environment, 
enabling applications to connect without specifying an environment.

ExternalDatabaseConnection 
defaultEnvironment: 'test' 
Database Application Developer’s Guide  2-5



EXDI Database Interface
Default Connections
In addition to hiding the details of the environment, 
ExternalDatabaseConnection has the notion of a default connection, enabling 
some applications to be coded without direct references to the type of 
database to which they will be connected. As an abstract class, 
ExternalDatabaseConnection does not create an instance of itself. Instead, it 
forwards the new message to the subclass whose name it has 
remembered as the default. For example, to register OracleConnection as 
the default class to use, execute:

ExternalDatabaseConnection 
defaultConnection: #OracleConnection.

This feature, along with the environment registry explained above, 
enables the connection example to be rewritten as:

| connection |
connection := ExternalDatabaseConnection new.
connection

username: 'scott';
password: 'tiger'.

connection connect.
connection disconnect.

The default is set initially by the ExternalDatabaseInstallation application 
when the first database connection is installed.

External Authentication
Some databases (e.g. Oracle) allow so-called “external authentication” in 
which the host OS authenticates the database connection, instead of 
using a username and password provided via the EXDI.

The VisualWorks EXDI performs external authentication, when both 
username and password are empty strings. When one or both are 
provided, users can still choose external authentication, by using the 
authenticationMode: method.

On the Importance of Disconnecting
Establishing a connection to a database reserves resources on both the 
client, VisualWorks, and the host, database server, side. To ensure that 
resources are released in a timely fashion, it is important to disconnect 
connections as soon as they are no longer needed, as shown in the 
examples above.
2-6  VisualWorks



Using Sessions
VisualWorks provides a finalization-based mechanism for cleaning up 
after a connection if it is “dropped” without first being disconnecting. 
Since finalization is triggered by garbage collection, the eventual cleanup 
could take place long after the connection has been dropped. If your 
application or application environment is resource-sensitive, we 
recommend proactively disconnecting the connections.

Using Sessions
Having established a connection to a database server, you can then ask 
the connection for a query session, which reserves the “right” to execute 
queries using the connection. 

A session is a concrete subclass of ExternalDatabaseSession, and is 
obtained from a connected connection by sending the message 
getSession. The connection answers with a session. If the connection is to 
a Sybase server (i.e., is a CTLibConnection), the session will be a 
CTLibSession.

You can ask a session to prepare and execute SQL queries by sending 
the messages prepare:, execute, and answer, in that order. Depending on 
the DBMS, prepare: will either send the query to the server or defer the 
send until the query is actually executed. This is important to note, 
because errors can be detected (and signals raised) at either prepare: or 
execute time.

To examine the results of the query execution, send an answer message 
to the session. This is important to do even when the query does not 
return an answer set (e.g., an INSERT or UPDATE query). If an error 
occurred during query execution, it is reported via answer. More on answer, 
and how it is used to retrieve data, later in this chapter.

We can extend the connection example shown previously to execute a 
simple query. Note the use of two single quotes around the name. These 
are needed to embed a single-quote within a Smalltalk String.

| connection session |
(connection := ExternalDatabaseConnection new)

username: 'jones';
password: 'secret';
connect.

(session := connection getSession)
prepare: 'INSERT INTO phonelist VALUES( ''Smith'', ''x1234'' )';
execute;
answer.

connection disconnect.
Database Application Developer’s Guide  2-7



EXDI Database Interface
Variables in Queries
Repetitive inserts would be very inefficient if each insert required that a 
query be prepared and executed. This overhead can by side-stepped by 
preparing a single query, with query variables as placeholders. This 
prepared query can then be repeatedly executed with new values 
supplied for the placeholders.

Query variables (also called parameters) are placeholders for values in a 
query. Some databases (e.g., Oracle) produce an execution plan when a 
query is prepared. Preparing the plan can be expensive. Using variables 
and binding values to them before each execution can eliminate the 
overhead of preparing the query for subsequent executions, which can be 
a substantial performance improvement for some repetitive applications.

To execute a query containing one or more query variables, the session 
must first be given an input template object, which will be used to satisfy 
the variables in the query. The method by which values are obtained from 
the input template depends on the form of the query variable. If the input 
variable is a question mark, then the input template must either have 
indexed variables or instance variables. The first template variable will be 
used to satisfy the value for the first query variable, the second template 
variable will be used to satisfy the second query variable, and so on. 
Consider the example:

session prepare: 'INSERT INTO phonelist (name, phone) VALUES(?, ?)'.
#( ( 'Curly' 'x47' ) ( 'Moe' 'x29') ( 'Larry' 'x83' ) )

do:
[:phoneListEntry |
session

bindInput: phoneListEntry;
execute;
answer].

Here the input template is an Array with two elements. The first element, 
the name, will be bound to the first query variable, and the second 
element, the phone number, will be bound to the second.

A closely related form for query variables is a colon followed immediately 
by a number. Again, the input template must contain indexed or instance 
variables, and the number refers to the position of the variable. The query 
above could be rewritten to use this form of query variable as follows:

session prepare: 'INSET INTO phonelist (name, phone) VALUES(:1, :2)'.
2-8  VisualWorks



Using Sessions
Named Input Binding
The third form that a query variable can take is a colon followed by a 
name. This form of binding is intended for use with objects which have 
named accessor methods. For example, let’s assume that we have a 
PhoneListEntry object that we want to persist in the database, which is 
defined as the following class:

Smalltalk.Database defineClass: #PhoneListEntry 
superclass: #{Core.Object} 
indexedType: #none 
private: false 
instanceVariableNames: 'name phone' 
classInstanceVariableNames: '' 
imports: '' 
category: 'Database-Examples'

Further, let’s say that PhoneListEntry includes the following accessor 
methods:

name
"Answer the receiver’s name"
^name

phone
"Answer the receiver’s phone number"
^phone

Using named input binding, we can write a query like this:

session 
prepare: 'INSERT INTO phonelist (name, phone) VALUES (:name, :phone)'.

newPhone := PhoneListEntry name: ‘Joe’ phone: ‘00’.
session bindInput: newPhone.

The name in a query variable represents a message to send to the input 
template. The input template is expected to answer a value, which will 
then be bound for the variable.

This form of binding is very powerful, but should be used with care. If the 
input template does not respond to the message selector formed from the 
bind variable name, a Message Not Understood notifier will result. Also, there 
are many messages that all objects respond to that would have 
unexpected effects if used as bind variables, such as halt.

Binding NULL
To bind a NULL value to a variable, use the “value” nil. This works in 
general, but causes problems in a particular scenario with Oracle. The 
query:
Database Application Developer’s Guide  2-9



EXDI Database Interface
SELECT name, phone FROM phonelist WHERE name = ?
will not work as expected if the variable's value is nil. Oracle requires that 
such queries be written as:

SELECT name, phone FROM phonelist WHERE name IS NULL

Getting Answers
Once a database server has executed a query, it can be queried to 
determine whether the query executed successfully. If all went well, the 
server is also ready with an answer set, which is accessed by way of an 
answer stream. Verifying that the query executed successfully and 
obtaining an answer stream are both accomplished by sending a session 
the message answer.

In responding to the answer message, the session first verifies that the 
query has finished executing. If the database server has not yet 
responded, the session will wait. If the server has completed execution 
and has reported errors, the session will raise an exception. See the 
discussion of “Error Handling” on page 2-25 for information on the 
exceptions that might be raised, and details on how to handle them.

If no error occurred, answer will respond in one of three ways. If the query 
is not one that results in an answer set (that is, an INSERT or UPDATE 
query), answer will respond with the symbol #noAnswerStream. If the query 
resulted in an answer set (that is, a SELECT query), answer will return an 
instance of ExternalDatabaseAnswerStream, which is used to access the 
data in the answer set, and is explained below. 

The third possible response to answer is the symbol #noMoreAnswers. 
When a database supports multiple SQL statements in one query, or 
stored procedures that can execute multiple queries, you can send answer 
repeatedly to get the results of each query. It will respond with either 
#noAnswerStream or an answer stream for each, and will eventually 
respond with the symbol #noMoreAnswers to signify that the set of answers 
has been exhausted.

The following (complete) code sample illustrates the use of 
#noAnswerStream and #noMoreAnswers:

| connection aSession | 
connection := CTLibConnection new. 
connection 

username: 'myUsername'; 
password: 'myPassword'; 
environment: 'SybaseEnv'. 
2-10  VisualWorks



Getting Answers
connection connect. 
 
aSession := connection getSession. 
aSession 

prepare: 'CREATE TABLE phonelist (name varchar(50), phone 
char(20))'; 

execute; 
answer; 
answer. 

 
aSession 

prepare: 'INSERT INTO phonelist VALUES(:1, :2)'. 
#( ( 'Curly' 'x47' ) ( 'Moe' 'x29') ( 'Larry' 'x83' ) ) do: 

[:phoneListEntry | 
aSession 

bindInput: phoneListEntry; 
execute; 
answer; 
answer]. 

 
aSession 

prepare: 'CREATE PROCEDURE get_some_phonenumbers 
as  
SELECT * FROM phonelist WHERE  phone = ''x47'' 
SELECT * FROM phonelist WHERE  phone = ''x83'' '. 

aSession 
execute; 
answer; 
answer. 

 
aSession 

prepare: 'EXEC get_some_phonenumbers'; 
bindOutput: PhoneListEntry new; 
execute. 

numbers := OrderedCollection new. 
 
[ | answer | 

[ (answer := session answer) == #noMoreAnswers] 
whileFalse: 

[answer == #noAnswerStream 
ifFalse: 

[numbers := numbers , (answer upToEnd)]]] 
on: connection class externalDatabaseErrorSignal 
do: [:ex | Dialog warn: ex parameter first dbmsErrorString]. 

 
aSession prepare: 'DROP PROCEDURE get_some_phonenumbers'. 
aSession 
Database Application Developer’s Guide  2-11



EXDI Database Interface
execute; 
answer; 
answer. 

 
aSession prepare: 'DROP TABLE phonelist'. 
aSession 

execute; 
answer; 
answer. 

 
numbers inspect. 
connection disconnect.

Handling Multiple Answer Sets
If your application is intended to be portable and support ad hoc queries, 
we recommend that you send answer repeatedly until you receive 
#noMoreAnswers. This enables your code to work with servers (e.g., 
Sybase) which can return multiple answer sets.

The following code fragment retrieves the answer sets that might result 
from executing a Sybase stored procedure:

session
prepare: 'exec get_all_phonenumbers';
bindOutput: PhoneEntry new;
execute.

numbers := OrderedCollection new.

connection class externalDatabaseErrorSignal
handle: [:ex | Dialog warn: ex parameter first dbmsErrorString]
do:[ | answer |

[ (answer := session answer) == #noMoreAnswers]
whileFalse: [ answer == #noAnswerStream
ifFalse: [numbers := numbers , (answer upToEnd) ] ] ].

For more information on managing Sybase stored procedures, refer to 
“Using the Database Connect for Sybase CTLib” on page 3-1.

Sending an Answer Message
When you send answer to a session, a number of things happen in the 
background as the session prepares the resources needed to process an 
answer set. Most of these steps are out of the direct view of the 
application. However, an understanding of them may help when you are 
debugging database applications.

To answer a query, the session performs the following steps: 
2-12  VisualWorks



Getting Answers
1. Waits for the server to complete execution.

2. Verifies that the query executed without error.

3. Determines whether an answer set is available.

4. If the query returns an answer set, then the session performs the 
following additional steps:

5. Obtains a description of the answer set.

6. Allocates buffers to hold rows from the answer set.

7. Prepares adaptors to help translate relational data to Smalltalk 
objects.

Waiting for the Server
Some database servers, such as Sybase, support asynchronous query 
execution, giving control back to the application after the server has 
begun executing the query. To determine whether the server has 
completed execution, a session sends itself the message isReady, which 
returns a Boolean indicating that the server is ready with an answer, until 
isReady returns true. If the target DBMS does not support asynchronous 
execution (for example, Oracle), isReady will always return true.

Queries to Oracle databases block the OE for the duration of the query 
execution, unless run on an Oracle threaded connection. Refer to “Oracle 
Threaded API” on page 4-15 for more information.

Did the Query Succeed?
The session next verifies that the query executed without error. Errors 
that the server reports are bundled into instances of ExternalDatabaseError 
(or a Connection-specific subclass). A collection of these errors is then 
passed as a parameter to an exception. See “Error Handling” on 
page 2-25 for more details.

How Many Rows were Affected?
Some queries, such as UPDATE or DELETE, do not return answer sets. To 
determine how many rows the query affected, send the message 
rowCount to the session, which will respond with an integer representing 
the number of rows affected by the query. Because database engines 
consider a query to have executed successfully even if no rows where 
matched by a WHERE clause, testing the row count is an easy way to 
determine whether an UPDATE or DELETE query had the desired effect.
Database Application Developer’s Guide  2-13



EXDI Database Interface
Database-specific restrictions on the availability of this information are 
documented in the release notes for your Database Connect product.

Describing the Answer Set
If the query has executed without error, the session determines whether 
the query will return an answer set.

If the session returns an answer set, the session will obtain from the 
server a description of the columns in the set. Sending the message 
columnDescriptions to the session (after sending answer) will return an Array 
of instances of ExternalDatabaseColumnDescription (or a connection-specific 
subclass), which describes the columns in the answer set. 

A column description includes: the name, length, type (expressed as a 
Smalltalk class), precision, scale, and nullability of a column. A column 
description will respond to the following accessing protocol messages:

name "Answer the name of the column"
type "Answer the Smalltalk type that will hold data

 from the column"
length "Answer the length of the column"
scale "Answer the scale of the column, if known"
precision "Answer the precision of the column, if known"
nullable "Answer the nullability of the column, if known"

Connection-specific subclasses may make additional information 
available. Note that the names returned for calculated columns may be 
different depending on the target DBMS.

For example, the query:

SELECT COUNT(*) FROM phonelist
determines the number of rows in the phone list table. Oracle names the 
resulting column "COUNT(*)", while Sybase does not provide a name.

Buffers and Adaptors
Finally, the session uses the column descriptions to allocate buffers to 
hold rows of data from the server, and adaptors to help create Smalltalk 
objects from the columns of relational data that will be fetched from the 
server into the buffers. This step is invisible to user applications, but can 
be the source of several errors. For example, if insufficient memory is 
available to allocate buffers, an unableToBind exception will be raised. An 
invalidDescriptorCount exception will be raised if the output template 
doesn’t match the column descriptions.
2-14  VisualWorks



Getting Answers
Care must be exercised when using EXDI methods such as 
bindVariable:value: or bindVariable:value:type:size:, which require buffers of 
adequate size to handle all possible return values for a given column.

Processing an Answer Stream
After the session has completed the steps above, and assuming that the 
query results in an answer set, the session creates an 
ExternalDatabaseAnswerStream and returns it to the application. 
ExternalDatabaseAnswerStream is a subclass of Stream, and is used to 
access the answer set. There are a few restrictions. Answer streams are 
not positionable, they cannot be flushed, and they cannot be written.

Answer streams are created by the session; your application should not 
attempt to create one for itself.

Answer streams respond to the messages atEnd, for testing whether all 
rows of data from an answer set have been fetched, and next for fetching 
the next row. Attempting to read past the end of the answer stream 
results in an endOfStreamSignal.

In our example, all rows of the phone list could be fetched as follows:

numbers := OrderedCollection new.
answer := session answer.
[answer atEnd] whileFalse:

[ | row |
row := answer next.
numbers add: row].

Sending upToEnd causes the answer stream to fetch the remaining rows 
of the answer set and return them in an OrderedCollection. Using upToEnd, 
the example above can be simplified as:

answer := session answer.
numbers := answer upToEnd.

While this works well for small answer sets, it can exhaust available 
memory for large answer sets.

Unless the session has been told otherwise, data retrieved through the 
answer set comes packaged as instances of the class Array.

Using Cursors and Scrollable Cursors
The VisualWorks EXDIs for Oracle, Sybase, and DB2 provide support for 
cursors and scrollable cursors. A cursor represents a movable position in 
the result set. When using a cursor, the results of a query are held in a 
set of rows which may be fetched either in sequence or via random 
access.
Database Application Developer’s Guide  2-15



EXDI Database Interface
A cursor is used for sequential access, while a scrollable cursor is used 
for random access. The scrollable cursor can fetch results moving either 
forward or backward from a given position, and the specified result may 
be indicated either via an absolute or relative row offset.

When using cursors, the rows in the result set are numbered starting with 
one. With a scrollable cursor, you can fetch the same rows several times, 
you can fetch a specific row, or a specific row relative to the current 
position.

The cursor API is implemented in class ExternalDatabaseAnswerStream. The 
following public methods are available in the accessing protocol:

moveTo: anInteger
Answer the row at cursor position anInteger, where anInteger must 
be a positive integer.

skip: anInteger
Answer the row at current cursor position + anInteger, where 
anInteger can be either a positive or a negative value.

next
Answer the next row from the answer stream.

previous
Answer the previous row from the answer stream.

Additionally, in class ExternalDatabaseSession, two methods are provided 
for querying the state of a cursor:

scrollable
Answer a Boolean indicating whether the cursor is scrollable or not.

scrollable: aBoolean
Set whether the cursor is scrollable or not.

Note that certain vendors may have specific requirements or restrictions 
on the use of cursors. For example, Sybase requires that the connection 
object be initialized with a special call before using cursors (see “Using 
Cursors and Scrollable Cursors” on page 3-5 for details).

Caution:  Forward-only cursors can be used to delete and update 
rows, but the block factor must be set to 1. If blockFactor: is used with 
a value greater than 1, the cursor position can get out of sync.

The following two code examples illustrate the use of cursors and 
scrollable cursors. First, to create a sample data set, use the following:
2-16  VisualWorks



Getting Answers
aConnection connect.
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE TestScroll (id INT, A VARCHAR(20) )'.
aSession execute.
aSession answer.

[aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestScroll(id, A) VALUES ( ?, ?)'.
array := Array new: 100.
1 to: array size

do: [:i|
aSession bindInput: (Array with: i with: i printString).
aSession execute.
aSession answer]]

ensure:
[aSession disconnect.
aConnection disconnect].

The cursor API may be used as follows:

aConnection connect.
[aSession := aConnection getSession.
aSession scrollable: true.
aSession prepare: 'SELECT * FROM TestScroll'.
aSession execute.
answer := aSession answer.
Transcript show: 'Using >>moveTo:'; cr.
1 to: 100 do:

[:i |
rec := answer moveTo: i.
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString; cr].

Transcript show: 'Using >>previous'; cr.
1 to: 99 do:

[:i |
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString; cr].
rec := answer previous].

Transcript show: 'Using >>skip:'; cr.
1 to: 95 by: 5 do:

[:i |
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString; cr].
rec := answer skip: 5].

Transcript show: 'Using >>moveTo:'; cr.
1 to: 100 by: 5 do:

[:i |
rec := answer moveTo: i.
Transcript show: 'pos = ', i printString , ', Data = ' , rec printString; cr].

] ensure:
[aSession disconnect.
aConnection disconnect].
Database Application Developer’s Guide  2-17



EXDI Database Interface
Using an Output Template
Having rows of a table (or columns from a more complex query) arrive 
packaged as instances of the class Array might suffice for some 
applications. For more complex applications, it is preferable to have the 
data appear as instances of some user-defined class. In our example, we 
would want rows of data fetched from the phonelist table to appear as 
instances of class PhoneListEntry.

To achieve this, ExternalDatabaseSession supports an output template 
mechanism. If an output template is supplied to the session, it will be 
used instead of the class Array when creating objects to represent rows of 
data in the answer set. In our example, this would look like:

session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
execute.

answer := session answer.
Rows of data from the table will now appear (by sending answer next) as 
instances of PhoneListEntry.

Columns of data from a row of the answer set are loaded into the output 
template's variables by position. Column 1 loads into the first variable, 
column 2 loads into the second variable, and so on. The output template 
can have either instance variables or indexed variables. When both are 
present, the indexed variables are used.

Skipping Slots in an Output Template
To skip a variable in the bind template, place an instance of the class 
Object in it. There must be exactly as many non-Object variables in the 
output template as there are columns in the answer set. For example, 
consider the scenario of having the additional instance variable unused in 
an instance of PhoneListEntry. If this instance variable is not fetched from 
the database, you could add the method

newForSelect
"Create a new instance of the receiver, 
and initialize it to be fetched from the database."

^super new initializeForSelect
to the instance creation protocol on the class side of PhoneListEntry, and
2-18  VisualWorks



Getting Answers
initializeForSelect
"Initialize an instance of the receiver to be fetched from the
database."

unused := Object new.
to the initialize-release protocol on the instance side. This enables us to 
safely rework the example above by writing

bindOutput: PhoneListEntry newForSelect;
to specify the output template.

Using Column Names to Bind for Output
As with input binding, a name-based alternative is provided for output 
binding. Sending a session the message bindOutputNamed:, with the 
output template as an argument, causes the session to create a set of 
mutator messages to send to the output template to store values fetched 
from the database. These mutator messages are formed by appending 
colons to the column names. Our phone list example could use named 
output binding if the class PhoneListEntry provided the following instance-
side accessing methods:

name: aName
"Set the phone entry’s name"

name := aName

phoneNumber: aPhoneNumber
"Set the phone entry’s phone number"

phone := aPhoneNumber
The same caveats apply to named output binding as apply to named 
input binding. If the output template does not answer the message, a 
Message Not Understood notifier will result. Be sure that the needed method 
names do not override methods that are necessary for the functioning of 
the object.

If you are connecting to an Oracle database, be aware that Oracle 
answers column names in uppercase letters. In this situation you should 
write methods with uppercase names. If you connect to both Oracle and 
other databases, create methods with both uppercase and lowercase 
names.
Database Application Developer’s Guide  2-19



EXDI Database Interface
Another approach is to use a “column alias” to explicitly label the column 
in the SQL query. Enclose the column alias in quotation marks 
immediately following the column name in the query. For example,

sess prepare: 'select id "id", str "str" from foo'.
forces Oracle to use the the lowercase “id” and “str” as the column labels.  
These lowercase labels will be used by VisualWorks to construct the 
mutator methods, id: and str:.

Reusing the Output Template
By default, a new copy of the output template is used for each row of data 
fetched. If your application processes the answer set one row at a time, 
the overhead of creating a copy can be eliminated by arranging to reuse 
the original output template. Sending allocateForEachRow: false to the 
session tells it to reuse the template. Output template reuse is temporarily 
disabled when sending upToEnd to the answer stream.

Setting a Block Factor to Improve Performance
Some database managers allow client control over the number of rows 
that will be physically transferred from the server to the client in one 
logical fetch. Setting this blocking factor appropriately can greatly improve 
the performance of many applications by trading buffer space for time 
(network traffic).

If our phone list database resided on an Oracle server, the performance 
of the example might be greatly improved by sending the message 
blockFactor: to the session, as follows:

session
prepare: 'SELECT name, phone FROM phonelist';
bindOutput: PhoneListEntry new;
blockFactor: 100;
execute.

Since the phone list entries are small, asking for 100 rows at a time is not 
unreasonable.

Note that the block factor does not affect the number of objects that will 
be returned when you send the message next to the answer stream. 
Objects are read from the stream one at a time.

If a database connection does not support user control over blocking 
factors (as with Sybase), the value passed to blockFactor: is ignored, and 
the value remains set at 1. Additional restrictions on the use of 
blockFactor:, if any, are listed in the release notes for your Database 
Connect product.
2-20  VisualWorks



Controlling Transactions
Cancelling an Answer Set
If your application finishes with an answer stream before reaching the end 
of the stream (perhaps you only care about the first few rows of data), it is 
good practice to send the message cancel to the session. This tells the 
database server to release any resources that it has allocated for the 
answer set. The answer set will be automatically canceled the next time 
you prepare a query, or when the session is disconnected, but a proactive 
approach is often preferable.

Disconnecting the Session
Establishing a session reserves resources on the client side, and often on 
the server side. When you're done with a session, sending the message 
disconnect to the session disconnects it and releases any resources that it 
held. The connection is not affected. A disconnected session will be 
automatically reconnected the next time a query is prepared. If you 
expect your application to experience long delays between queries, you 
might consider disconnecting sessions where possible.

Sessions will automatically disconnect when their connection is 
disconnected. Sessions are also protected by a finalization executor, and 
will be disconnected, eventually, after all references to them are dropped.

Controlling Transactions
By default, every SQL statement that you prepare and execute is done 
within a separate database transaction. To execute several SQL 
statements within a single transaction, send begin to the connection 
before executing the statements, followed by commit after the statements 
have executed. To cancel a transaction, send rollback to the connection.

The connection keeps track of the transaction state. If an application 
bypasses the connection by preparing and executing SQL statements like 
COMMIT WORK or END TRANSACTION, the connection will lose track 
of the transaction state. As a rule, stored procedures should not change 
the transaction state, because the caller will be unaware of the change. 
This might lead to later problems. 
Database Application Developer’s Guide  2-21



EXDI Database Interface
Coordinated Transactions
Several connections can participate in a single transaction by appointing 
one connection as the coordinator. Before the connections are connected 
(that is, sent connect or connect:), send the coordinating connection the 
message transactionCoordinatorFor: once for each participating connection, 
passing the connection as the argument.

After the coordination has been established, sending begin to the 
coordinator begins the coordinated transaction. Sending commit or 
rollback to the coordinator causes the message to be broadcast to all 
dependent connections.

If the database system supports two-phase commit, the coordination 
assures the atomic behavior of the distributed transaction. If the database 
does not support two-phase commit, a serial broadcast is used.

Participants in a coordinated transaction must be supported by a single-
database connection. It is not possible, for example, to mix Oracle and 
Sybase connections in a coordinated transaction.

Releasing Resources
If your application has relatively long delays between uses of the 
database, you may want to release external resources during those 
delays. To do so, send a pause message to any active connections. This 
causes the connections to disconnect their sessions, if any, and then 
disconnect themselves. Any pending transaction is rolled back. Both the 
connections and their sessions remain intact, and can be reconnected.

To revive a paused connection, send it resume. The connection will then 
attempt to re-establish its connection to the database. 

Note:  If the password was not stored in the connection, as 
discussed in “Securing Passwords” on page 2-4, the proceedable 
exception requiredPasswordSignal will be raised.

Sessions belonging to resumed connections will reconnect themselves 
when they are prepared again.

Sending pause or resume to ExternalDatabaseConnection has the same effect 
as sending pause or resume to all active connections.
2-22  VisualWorks



Tracing the Flow of Execution
Tracing the Flow of Execution
A tracing facility is built into the VisualWorks database framework, and is 
used by database connections to log calls to the database vendors’ 
interfaces. Enabling this facility can be quite useful if your application’s 
use of the database malfunctions.

A trace entry consists of a time stamp, the name of the method that 
requested the trace, and an optional information string. Database 
connections use this string to record the parameters passed to the 
database vendor’s interface routines, and the status or error codes that 
the interfaces return. This information can be invaluable when tracking 
down database problems.

Directing Trace Output
To direct tracing information to the System Transcript window, execute the 
following expression in a workspace (or as part of your application):

ExternalDatabaseConnection traceCollector: Transcript
To direct tracing into a file, execute the following:

ExternalDatabaseConnection traceCollector: 'trace.log' asFilename 
writeStream

Setting the Trace Level
The framework supports the following of levels of tracing. The default 
trace level is zero. 

The trace level is set by executing:

ExternalDatabaseConnection traceLevel: anInteger

Trace Levels

Trace Level Description

0 Disables tracing. 

1 Limits the trace to information about connection and 
query execution.

2 Adds additional information about parameter binding 
and buffer setup.

3 Traces every call to the database.
Database Application Developer’s Guide  2-23



EXDI Database Interface
Disabling Tracing
Setting the trace level to 0 disables tracing.

Adding Your Own Trace Information
To intermix application trace information into the trace stream, place 
statements like

ExternalDatabaseConnection trace: aStringOrNil
in your application. An argument of nil is equivalent to an empty string; 
only a time stamp and the name of the sending method will be placed in 
the trace stream.

You can avoid hard-coding the literal name ExternalDatabaseConnection by 
asking a connection for its class, and sending the trace message to that 
object, as in:

connection class trace: ('Made it this far ' , count printString , ' times').
See the tracing protocol on the class side of ExternalDatabaseConnection for 
additional information.
2-24  VisualWorks



Error Handling
Error Handling
Error handling in the VisualWorks database framework is based on 
Exception subclasses and exception handlers. This is a change from the 
previous exception handling framework, which was based on signals. The 
interface is such that no changes should be necessary to old code to 
switch to the new framework.

For practical purposes, the set of errors that a database application might 
encounter can be divided into two groups.

The first group are state errors, and these normally occur when an 
application omits a required step or tries to perform an operation out of 
order. For example, an application might attempt to answer a query 
before executing it. If the application is coded correctly, these kind of 
errors generally do not arise.

The second group are execution errors, and they occur when an 
application performs a step in the correct order but for some reason the 
step fails.

When either type of error is encountered, an exception is signaled and 
any available error information is passed as a parameter of the exception. 
The application is responsible for providing exception handlers and 
recovery logic.

Exceptions and Error Information
The database framework provides a family of exceptions, most of which 
are subclasses of the common parent ExternalDatabaseException.

If an exception is the result of a database error, the connection code that 
raises the exception first collects the available database error information 
into instances of ExternalDatabaseError, and then passes the information as 
a parameter of the signal. If the signal results from a state error, the 
signal is sent without additional information.

An instance of ExternalDatabaseError, or a connection-specific subclass, 
stores a database-specific error code, and, when available, includes the 
string that describes the error. The error code is retrieved by sending a 
database error the message dbmsErrorCode, and to get the string the 
message dbmsErrorString is sent. See the ExternalDatabaseError accessing 
protocol for additional information.

VisualWorks defines the following basic exceptions:
Database Application Developer’s Guide  2-25



EXDI Database Interface
externalDatabaseErrorSignal
The most general external database error signal. This signal and its 
descendents are not proceedable.

invalidTableNameSignal
A table named in a query does not match a table in the database.

missingBindVariableSignal
A binding was not provided for a query variable.

unableToCloseCursorSignal
Cannot close the table of query results created by the open 
statement, ending access by the application program.

unableToOpenCursorSignal
Cannot open the table of query results for access by the application 
program.

Exception Handling
The example below shows one way to provide an exception handler. The 
handler is for the general-purpose database exception 
externalDatabaseErrorSignal. If this exception, or one of its children, is 
signaled from the statements in the do: block, the handle: block is 
evaluated. In this example, the handle: block extracts the error string from 
the first database error in the collection that was passed as a parameter 
to the exception handler, and uses this string in a warning dialog.

[session
prepare: 'SELECT name, phone FROM fonelist';
execute.
answer := session answer]

on: connection class externalDatabaseErrorSignal
do: [:ex |

 "If the query fails, display the error string in an OK dialog"
 Dialog warn: ex parameter first dbmsErrorString].

In this example, the error is caused by the invalid table name in the query. 
If the connection in this example is to an Oracle database, the database 
error in the collection passed to the handler (that is, the database error 
accessed by ex parameter first) will be an instance of OracleError, and will 
hold as its dbmsErrorCode the number 942, and as its dbmsErrorString the 
string 'ORA_00942: table or view does not exist'.

Choosing an Exception to Handle
With the wealth of exceptions that might be signaled, which ones should 
an application provide handlers for? The answer, as with many of life’s 
difficult questions, is “it depends.” For many applications, it only matters if 
2-26  VisualWorks



Image Save and Restart Considerations
a query “works.” In this case, providing a handler for 
externalDatabaseErrorSignal is usually sufficient. Other applications might be 
more sensitive to specific types of errors, and will want to provide more 
specific handlers.

Unfortunately, the use of exception-specific handlers is complicated by 
the fact that the errors that the low-level database interface reports may 
at first appear to be unrelated to the operation being performed. For 
example, the connection to a remote database server can be interrupted 
at any time, but the exception signaled will depend on the database 
activity that the application was performing at the time the problem was 
detected.

The recommended strategy is to provide a handler for as general a signal 
as you feel comfortable with (for example, externalDatabaseErrorSignal), and 
invest effort, if necessary, in examining and responding to the database-
specific errors that will be passed to the handler. We recommend against 
providing a completely general handler (for example, for Object 
errorSignal), especially during development, as this will make 
nondatabase problems more difficult to isolate.

Exceptions and Stored Procedures
As a general rule, if your application makes use of stored procedures, you 
should use exception handlers there as well. These allow a graceful 
return to Smalltalk, which can then attempt to handle the exception. For 
example, you might add a boolean success flag as the last statement in 
the procedure, and if the return value is nil or false (anything but true), 
assume that an exception was raised and that the results are invalid.

Image Save and Restart Considerations
When an image containing active database connections is exited, the 
connections are first paused, and any partially completed transactions are 
terminated via rollback.

To arrange for your application to perform some set of steps before the 
transaction is terminated, your application model must first register as a 
dependent of the class ExternalDatabaseConnection. For example:

anExternalDatabaseConnection addDependent: self.
The application model then creates an update: (or update:with:) method, 
and tests for the update: argument #aboutToQuit. For example:
Database Application Developer’s Guide  2-27



EXDI Database Interface
update: anAspectSymbol with: aValue
anAspectSymbol == #aboutToQuit

ifTrue:[ "perform desired action." ].

Reconnecting When an Image is Restarted
When an image is restarted, all references to external resources are 
initialized, as if a pause message had been sent to the class 
ExternalDatabaseConnection. To arrange for your application to take further 
action, take the steps described above, testing for the update: argument 
#returnFromSnapshot.

Your application can reconnect its connections by sending them connect 
(or connect: with a password). This re-establishes the connection to the 
database server (subject to the constraints discussed in “Releasing 
Resources” on page 2-22). Any sessions will need to be re-prepared by 
sending the sessions prepare: with the query to prepare, though your 
application might as easily drop the old sessions and get new ones.
2-28  VisualWorks



3 
Using the Database Connect for Sybase 
CTLib

This chapter describes the Database Connect for Sybase CTLib External 
Database Interface (EXDI) features and implementation, which includes 
the following:

• CTLib EXDI Classes

• Data Conversion and Binding

• Calling Sybase Stored Procedures

• Sybase Threaded API
Database Application Developer’s Guide 3-1



Using the Database Connect for Sybase CTLib
CTLib EXDI Classes
The EXDI defines application-visible services and is composed of 
abstract classes. The Database Connect for Sybase CTLib is a set of 
concrete classes that implement EXDI services by making calls to the 
Sybase CTLib. Database Connect for Sybase CTLib also extends 
services available to the application to provide features unique to the 
Sybase database system.

The EXDI organizes its services into classes for connections, sessions, 
and answer streams. In addition, classes for column descriptions and 
errors provide specific information that the application may use. The 
public EXDI classes are:

• ExternalDatabaseConnection
• ExternalDatabaseSession
• ExternalDatabaseAnswerStream
• ExternalDatabaseColumnDescription
• ExternalDatabaseError

As a convention, Database Connect for Sybase CTLib classes use CTLib 
in place of ExternalDatabase in the class name  —  for example, 
CTLibConnection and CTLibSession.

When an application is using the EXDI, the connection, session, and 
answer stream objects maintain specific relationships. These 
relationships are important to understand when writing applications. 

The connection and session objects are generally used for multiple 
activities. The answer stream is only used to process a single set of rows 
returned from the server.

These relationships are shown in the following figure:

Relationships 

Connection
Session1

Session2
Answer Stream
3-2  VisualWorks



CTLibConnection
CTLibConnection
ExternalDatabaseConnection defines database connection services. 
CTLibConnection implements these services using the CTLib and is 
responsible for managing the CS_CONNECTION control block. The limit 
for active connections is determined by the system and the database 
resources.

Class Protocols

environment mapping
Applications may define logical names for Sybase CTLib server names to 
be used when connecting. This reduces the impact on application code 
as network resources evolve.

addLogical:environment: 
Adds a new entry in the logical environment map for the Database 
Connect for Sybase CTLib that associates a logical name with a 
connect string. Once this association is defined, the environment for 
a CTLibConnection may be specified using the logical name.

For example:

CTLibConnection addLogical: 'devel' environment: 'DSQUERY'.

Instance Protocols

accessing 
The following public methods are included in the accessing protocol:

environment: aString
When using the Database Connect for Sybase CTLib, the 
environment specifies a server name, which must be a name defined 
in the interfaces file.

On Windows, the [SQLSERVER] section of the win.ini file defines 
the available servers. In addition to the entries in the win.ini file, 
servers accessible via named pipes may be referenced via the 
server’s node name.

Application developers are strongly encouraged to define and use 
logical environment names (see addLogical:environment: above). Thus, 
only system administrators need to know the actual server names.

appName
Answers the value for application name set by the application. 
Answers nil if never set.
Database Application Developer’s Guide  3-3



Using the Database Connect for Sybase CTLib
appName: aString
Specifies the value for application name set by the application. While 
the application name is entirely optional, if provided, it is passed to 
the CTLib ct_con_props function before the connection is sent the 
connect message.

hostName
Answers the value for host name set by the application (or nil if never 
set).

hostName: aString
Specifies the value for host name set by the application. While the 
host name is entirely optional, if provided, it is passed to the CTLib 
ct_con_props function before the connection is sent the connect 
message.

control
The following public methods are included in the control protocol:

setInterfaceFile: aString
Specify the name and location of an interface file to be used when 
connections are established. An argument of nil instructs CTLib to 
use its default interfaces file.

setLoginTimeout: aNumber
Sets the login timeout to the number of seconds given by the 
argument. Setting the timeout to zero disables timeout. CTLib’s 
default timeout is 60 seconds.

CTLibSession
ExternalDatabaseSession defines execution of prepared SQL statements 
and stored procedures. CTLibSession implements these services using the 
CTLib. CTLibSession is where the majority of the features unique to the 
Sybase product become available to the application developer.

A new CTLibSession corresponds to the allocation of a new 
CS_COMMAND structure. There can be more than one session per 
connection, but since the server does not accept a second command 
when there are results pending from the previous command, the same 
limitations would apply to the sessions. For example, it is not possible to 
fetch data in two sessions simultaneously within the same connection. 

CTLibSession provides support for the output of COMPUTE rows and 
returns parameters from stored procedures in the same way as regular 
rows.
3-4  VisualWorks



CTLibSession
Instance Protocols

accessing
The following public methods are included in the accessing protocol:

returnStatus
Answers the return status from the stored procedure just executed. If 
the last result obtained from the CTLib was not from a stored 
procedure, answers nil.

textLimit
Answer the current value for the text limit.

textLimit: aNumber
Set both the CS_TEXTLIMIT property and CS_TEXTSIZE option of 
the CTLib and server. The value must be greater than 0. The default 
size is 32768.

blockFactor
Answers the current number of rows that will be buffered in an 
answer stream associated with this session.

blockFactor: aNumber
Sets the number of rows to buffer internally using the array interface. 
This exchanges memory for reduced overhead in fetching data, but is 
otherwise transparent.

data processing 
The following public methods are included in the data processing protocol:

cancel
The processing initiated by sending the execute message to the 
session may be interrupted by sending cancel. However, the server 
may not stop processing immediately. After cancel completes, the 
session may prepare: and execute a new command batch. (See also 
SybaseAnswerStream>>close).

rowCount
Answers the number of rows affected by the most recently executed 
query.

Using Cursors and Scrollable Cursors
The VisualWorks EXDI for CTLib supports the use of cursors and 
scrollable cursors. Note that only Sybase CTLib verion 15 and later 
support scrollable cursors. Also, with Sybase only, your application must 
Database Application Developer’s Guide  3-5



Using the Database Connect for Sybase CTLib
initialize the connection object before using a cursor, because the Sybase 
sever needs explicit version information in order to prepare the client 
library. To initialize Sybase for use of cursors, evaluate:

aConnection setBehaviorToVersion15
This must be sent before #connect in your application code.

Additionally, if you only want to use forward-only cursors, set the instance 
variable useCursor in the session to be true. E.g.:

aSession useCursor: true.
Scrollable cursors in Sybase are read-only. To use scrollable cursors, set 
the instance variable scrollable in the session to be true. E.g.:

aSession scrollable: true.
The requirements described in this section only apply to the Sybase 
implementation of cursors. For a general discussion of cursors, see: 
“Using Cursors and Scrollable Cursors” on page 2-15.

CTLibColumnDescription
ExternalDatabaseColumnDescription defines information used to describe 
columns of tables or as a result of executing a SELECT statement. The 
CTLibColumnDescription class adds information specific to Sybase.

Instance Protocols

accessing 
As with all variables defined for column descriptions, these may be nil if 
the values are not defined in the context in which the column description 
was created.

CTLibError
ExternalDatabaseError defines information used in reporting errors to the 
application. The CTLibError class adds information specific to Sybase. A 
collection containing instances of CTLibError will be provided as the 
parameter to exceptions raised by Database Connect for Sybase CTLib 
in response to conditions reported by Sybase.

Instance Protocols

accessing 
The following public methods are included in the accessing protocol:
3-6  VisualWorks



CTLibError
dbmsErrorCode
Answers the code value assigned to an error received from the 
ct_callback callback function.

dbmsErrorString
Answers the string describing an error received from the ct_callback 
callback function.

line
Answers the nesting level of the command batch or stored procedure 
that generated the message received from the ct_callback callback 
function.

msgno
Answers the code value assigned to a message received from the 
ct_callback callback function.

msgstate
Answers the message state assigned to a message received from 
the ct_callback callback function. This number may be of help to 
Sybase Technical Support.

msgtext
Answers the string describing a message received from the 
ct_callback callback function.

osErrorCode
Answers the operating system code value corresponding to an error 
received from the ct_callback callback function.

osErrorString
Answers the string describing the operating system error received 
from the ct_callback callback function.

procname
Answers the name of the stored procedure that generated the 
message received from the ct_callback callback function.

severity
Answers the severity level of an error or message received from the 
ct_callback callback functions.

srvname
Answers the name of the server that generated the message 
received from the ct_callback callback function.
Database Application Developer’s Guide  3-7



Using the Database Connect for Sybase CTLib
Data Conversion and Binding
When receiving data from the database, all data returned by the CTLib is 
converted into instances of Smalltalk classes. These conversions are 
summarized in the table below. Abstract classes are used to simplify the 
table, and the object holding the data is always an instance of a concrete 
class.

Conversion of Sybase datatypes to Smalltalk classes

CTLib does not directly support input parameter binding. It is still possible 
to use the bindInput: feature on CtLibSession. However, the input 
parameters are expanded inline in a copy of the query text before the 
query is submitted to CTLib (via the ct_command function).

Query variables can be specified using any of the notations supported by 
the EXDI (i.e., ?, :name, or :position).

To bind a NULL value, use nil.

Exception Handling
Database Connect for Sybase CTLib adds the following exception to the 
set defined in the EXDI.

unableToOpenInterfaceFileSignal
The file named by the argument to setInterfaceFile: could not be 
opened.

Sybase Datatype Smalltalk class

INT, SMALLINT, TINYINT Integer

REAL Float

FLOAT Double

MONEY, SMALLMONEY FixedPoint

CHAR, VARCHAR, TEXT String

BINARY, VARBINARY, IMAGE ByteArray

BIT Boolean

DATETIME, SMALLDATETIME Timestamp

DECIMAL, NUMERIC FixedPoint
3-8  VisualWorks



Calling Sybase Stored Procedures
Calling Sybase Stored Procedures
You can call a Sybase (CTLib) stored procedure. Doing so, you may need 
to assign calling parameters, and you can retrieve return parameters. 

Note:  Sybase stored procedures can be quite intricate and error 
prone. While VisualWorks fully supports invoking stored procedures, 
it includes no specific facilities for trouble-shooting or debugging 
errors resulting from them.

Stored procedures can have more than one statement, and so they can 
return more than one answer stream. To avoid losing data, you need to 
call answer until you get the #noMoreAnswers symbol as the result. For 
example, a non-select query may generate a #noAnswerStream, but be 
followed by a select statement which will have an answer stream. If you 
stop too early you will lose data.

To illustrate, a stored procedure may first be defined by evaluating the 
following expression:

| connection mySession |
connection := CTLibConnection new.
connection username: 'name';

environment: 'env';
password: 'password';
connect.

"create a stored procedure"
mySession := connection prepare:
'create procedure ck_2 @custName VARCHAR(20), @y int, @outVar int
output
as
select @outVar = @y * @y
select @custName
select * from BorrowerExample where name = @custName'.
mySession execute.

[mySession answer == #noMoreAnswers] whileFalse.
Database Application Developer’s Guide  3-9



Using the Database Connect for Sybase CTLib
Next, we can invoke this stored procedure using the following expression:

| connection session answer aList |
connection := CTLibConnection new.
connection

username: 'psmith';
environment: 'OCELOT100';
password: 'psmithpsmith';
connect.

session := connection prepare:
'declare @tmp int
exec ck_2 :1, :2, @outVar = @tmp output'.
session bindInput: #('Susan Chinn' 10).
session bindOutput: nil.
session execute.
aList := OrderedCollection new.
[(answer := session answer) == #noMoreAnswers]

whileFalse:
[answer == #noAnswerStream

ifFalse:
[answer do: [:each | aList addLast: each]]].

session notNil ifTrue: [session disconnect].
connection notNil ifTrue: [connection disconnect].
Transcript show: aList printString; cr.

A stored procedure may have both input fields and output fields. The 
output variable must be declared as a temporary variable, and declared 
as output when you call the stored procedure.

In this example, when we invoke the stored procedure, the return 
parameter is declared by 'declare @tmp int', and then assigned to @outVar, 
which is the name of the output variable in the stored procedure itself. 
The temporary variable tmp can be any name.

The prepare: message argument also specifies the name of the stored 
procedure (ck_2 in the example) and the input variables, which may be 
declared and assigned or bound by an object. Here, the input variables 
are bound using positional binding, and specified via the bindInput: 
message.

Finally, we send answer to the session until the result #noMoreAnswers is 
returned.
3-10  VisualWorks



Sybase Threaded API
Sybase Threaded API
VisualWorks supports a Threaded API (THAPI) for CTLib. This enables 
your application to make calls to the Sybase database without blocking 
the object engine.

The issues surrounding the use of blocking vs. non-blocking APIs may be 
found in the discussion of the “Oracle Threaded API” on page 4-15.

Limitations
Currently, the Sybase threaded client library allows multiple sessions per 
connection, but only one session may run on a connection at any time.

If your application needs multiple sessions, you must either use 
Semaphores to control the order of running the sessions, or multiple 
connections (this is illustrated in the second code sample, below). If your 
application needs to have multiple result sets open at one time, you must 
maintain multiple connections, one per active session.

Developers seeking to write portable applications should be aware that 
this limitation does not exist for Oracle libraries, and that code written for 
an Oracle server that uses multiple concurrent sessions might not be 
portable for use with Sybase clients.

Using CTLibThreadedConnection
For Ad Hoc SQL queries, simply select the SYBASE-CTLib Threaded 
connection type from the Database Connect pull down menu.

To use Sybase with THAPI at EXDI level, replace your existing EXDI code 
as follows:

1 Replace references to CTLibConnection with references to 
CTLibThreadedConnection.

2 Replace references to CTLibSession with references to 
CTLibThreadedSession.

Example
The examples below illustrate the use of CTLibThreadedConnection. The 
first example uses the same BlockClosure to retrieve data from  from three 
different tables. There are multiple sessions, each with a single 
connection.
Database Application Developer’s Guide  3-11



Using the Database Connect for Sybase CTLib
Note that a mutualExclusion semaphore is used for writing to the Transcript. 
This prevents a “forked UI processes” conflict, since the Transcript needs 
to be protected from multi-threaded message overlaps.

When run, three identical processes are created, each ready to work with 
a different table. The priorities are all assigned to level 30, and then they 
are all started, roughly simultaneously.

This example assumes that the three tables systypes, sysusers, and 
sysroles, already exist. Any existing non-empty tables may be used by 
substituting their names.

| aBlock b1 b2 b3 sem |
sem := Semaphore forMutualExclusion.
aBlock := [:tableName :id |

| conn sess ansStrm |
conn := CTLibThreadedConnection new.
conn

username: 'user';
password: 'password';
environment: 'env'.

conn connect.
sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
[ansStrm == #noMoreAnswers]  whileFalse:

[(ansStrm == #noAnswerStream) ifFalse: [
[ansStrm atEnd]

whileFalse: 
[| row |
row := ansStrm next.
sem critical:

[Transcript show: tableName, id, ': '.
 Transcript show: row printString; cr]].

ansStrm := sess answer]].
conn disconnect].

b1 := aBlock newProcessWithArguments: #('systypes' 'Connection 1').
b2 := aBlock newProcessWithArguments: #('sysusers' 'Connection 2').
b3 := aBlock newProcessWithArguments: #('sysroles' 'Connection 3').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.
3-12  VisualWorks



Sybase Threaded API
The second example illustrates the use of one connection with multiple 
sessions, using an access Semaphore to control the order of running 
each session:

| connection accessSemaphore sem bBlock b1 b2 b3 |
connection := CTLibThreadedConnection new.
connection

username: 'user';
password: 'password';
environment: 'env'.

connection connect.

accessSemaphore := Semaphore new.
sem:= Semaphore forMutualExclusion.
bBlock := 

[:tableName :id | 
| sess ansStrm |
sess := connection getSession.
accessSemaphore wait.
sess prepare: 'select * from ' , tableName.
sess execute.
ansStrm := sess answer.
[ansStrm == #noMoreAnswers]  whileFalse:

[(ansStrm == #noAnswerStream) ifFalse: [
[ansStrm atEnd]

whileFalse: 
[| row |
row := ansStrm next.
sem critical:

[Transcript show: tableName, ' ', id, ': '.
 Transcript show: row printString; cr]]].
ansStrm := sess answer].

sess disconnect.
accessSemaphore signal].

b1 := bBlock newProcessWithArguments: #('systypes' 'session 1').
b2 := bBlock newProcessWithArguments: #('sysusers' 'session 2').
b3 := bBlock newProcessWithArguments: #('sysroles' 'session 3').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.

accessSemaphore signal.
Database Application Developer’s Guide  3-13



Using the Database Connect for Sybase CTLib

3-14  VisualWorks



4 
Using the Database Connect for Oracle

This chapter describes the VisualWorks Database Connect for Oracle 
External Database Interface (EXDI) features and implementation, which 
includes the following:

• Database Connect for Oracle Classes

• Data Conversion and Binding

• Using PL/SQL

• Oracle Threaded API

• Calling Oracle Stored Procedures

• CLOB/BLOB support
Database Application Developer’s Guide 4-1



Using the Database Connect for Oracle
Database Connect for Oracle Classes
The EXDI defines application-visible services and is composed of 
abstract classes. Database Connect for Oracle is a set of concrete 
classes that implement EXDI services by making calls to the Oracle Call 
Interfaces (OCI) library. VisualWorks also extends services available to 
the application to provide features unique to the Oracle database system.

The EXDI organizes its services into classes for connections, sessions, 
and answer streams. In addition, classes for column descriptions and 
errors provide specific information that the application may use. The 
public EXDI classes are: 

• ExternalDatabaseConnection

• ExternalDatabaseSession

• ExternalDatabaseAnswerStream

• ExternalDatabaseColumnDescription

• ExternalDatabaseError

As a convention, VisualWorks classes use Oracle in place of 
ExternalDatabase in the class name  —  for example, OracleConnection and 
OracleSession.

When an application is using the EXDI, the connection, session, and 
answer stream objects maintain specific relationships. These 
relationships are important to understand when writing applications. 

The connection and session objects are generally used for multiple 
activities. The answer stream is only used to process a single set of rows 
returned from the server.

These relationships are shown in the following figure:

Relationships 

Connection
Session1

Session2
Answer Stream
4-2  VisualWorks



OracleConnection
OracleConnection
ExternalDatabaseConnection defines database connection services. 
OracleConnection implements these services using the OCI and is 
responsible for managing the OCI logon and host data areas. The limit for 
active connections is determined by the Oracle configuration.

Class Protocols

environment mapping
Applications may define logical names for database connect strings to be 
used when connecting to an Oracle server. This is similar to using 
SQL*Net aliases, and reduces the impact on application code as network 
resources evolve.

The following adds a new entry in the logical environment map for the 
database connect that associates a logical name with a database 
connect string. 

addLogical:environment:
Once this association is defined, the environment for an Oracle 
connection may be specified using the logical name. For example:

OracleConnection addLogical: 'devel' environment: 'ocelot_t'.
where 'ocelot_t' is a SQL*Net alias defined in TNSNAMES.ORA. (See 
SQL*Net Easy Configuration Tool or consult the Oracle documentation.)

Instance Protocols

accessing
The environment method specifies the connect string which identifies 
which Oracle server to connect to. The Oracle SQL*Net documentation 
details how to construct a valid connect string. 

The following requests the use of TCP/IP to talk to a database on the 
ocelot node.

ocelot_t
Application developers are strongly encouraged to define and use logical 
environment names. Thus, only system administrators need to know the 
actual connect strings.
Database Application Developer’s Guide  4-3



Using the Database Connect for Oracle
transactions
Oracle does not support two-phase commit coordination spanning 
multiple connections. As a result, coordinated Oracle connections are 
simulated using a broadcast commit. Applications that use coordinated 
connections are responsible for their own recovery after a failure that 
leaves partially committed transactions.

OracleSession
ExternalDatabaseSession defines execution of prepared SQL statements. 
OracleSession implements these services using the OCI and is responsible 
for managing the OCI cursor. The limit for active sessions per connection 
is determined by the Oracle configuration limit on cursors.

Instance Protocols

accessing
The accessing protocol methods are:

blockFactor 
Answers the current number of rows that are buffered in an answer 
stream associated with this session.

blockFactor: aNumber
Sets the number of rows to buffer internally using the array interface. 
This exchanges memory for reduced overhead in fetching data, but is 
otherwise transparent.

maxLongBytes 
Answers the number of bytes to allocate for receiving LONG or LONG 
RAW data.

maxLongBytes:  aNumber
Sets the maximum number of bytes to fetch for a LONG or LONG RAW 
column. The default is 32767 bytes. The maximum setting is limited 
by available memory. A large setting may use considerable memory, 
especially when using large values for blockFactor.

data processing
The data processing protocol methods are:

cancel 
The processing initiated by sending the execute message to the 
session cannot be interrupted. However, applications may use cancel 
to inform the Oracle server that the application has no further interest 
in results from the current query.
4-4  VisualWorks



OracleSession
rowCount 
Answers an Integer representing the number of rows inserted, 
updated, deleted, or the cumulative number of rows fetched by the 
previous query. Note that setting a #blockFactor: greater than one will 
affect the granularity of the cumulative count, because rows will be 
fetched in blocks.

preparePLSQL: 
bindVariable: 
bindVariable:value: 
bindVariable:value:type:size 

These methods are described in “Using PL/SQL” on page 4-11.

prefetch
The prefecth protocol methods are:

setPrefetchRows:  anInteger
With OCI 8 and later, it is possible to improve the speed of a query by 
specifying a number of rows to prefetch.

For example:

aConnection := OracleConnection new.
aConnection

username:'scott'; password: 'tiger'; environment: 'myDB'.
aConnection connect.
aSession := aConnection getSession.
aSession

blockFactor: 2;
prepare: 'SELECT * FROM EMP WHERE SAL > ?';
bindInput: (Array with: 100);
setPrefetchRows: 2;
execute.

aSession answer upToEnd
do: [:each | Transcript show: each printString; cr].

aSession disconnect.
aConnection disconnect.

The best choice for the number of rows to prefetch depends on 
numerous factors such as network speed and the amount of client-
side memory available. You should try different values to find the 
optimal setting for a specific application.

testing
The testing protocol methods are:
Database Application Developer’s Guide  4-5



Using the Database Connect for Oracle
isReady
The OCI does not provide a mechanism to determine if the execution 
has been completed and the results are ready. Therefore, isReady will 
always return true and then the application will wait until the results 
are ready when sending the answer message.

OracleColumnDescription
ExternalDatabaseColumnDescription defines information used to describe 
columns of tables or as a result of executing a SELECT statement. The 
OracleColumnDescription class adds information specific to Oracle.

Instance Protocols

accessing
As with all variables defined for column descriptions, these may be nil if 
the values are not defined in the context in which the column description 
was created.

The oracleInternalType method answers an Integer representing the Oracle 
internal type code for the column.

OracleError
ExternalDatabaseError defines information used in reporting errors to the 
application. The OracleError class adds information specific to Oracle. A 
collection containing instances of OracleError will be provided as the 
parameter to exceptions raised by the database connection in response 
to conditions reported by Oracle.

Instance Protocols

accessing
The accessing protocol methods are:

dbmsErrorCode
Answers the error code (a SmallInteger) from OCI.

dbmsErrorString
Answers a String describing the error code.

osErrorCode
Answers the operating system code value (a SmallInteger) 
corresponding to an error received.
4-6  VisualWorks



Data Conversion and Binding
osErrorString
Always answers nil. The OCI does not provide this information.

Data Conversion and Binding
When receiving data from the database, all data returned by the OCI is 
converted into instances of Smalltalk classes. These conversions are 
summarized in the following table. Although abstract classes are used to 
simplify the table, the object holding the data is always an instance of a 
concrete class.

When binding values for query variables, only instances of ByteArray, Date, 
Time, Timestamp, Integer, Double, Float, FixedPoint, String, or Text (or their 
subclasses) may be used in the input bind object.

For additional details on the conversion of types when binding numbers, 
see “Binding Numbers and Conversion” on page 4-8.

When binding PL/SQL Values, the Oracle type TABLE OF is mapped to 
Array.

When rebinding variables prior to re-executing a query, the Oracle type of 
the variable must not change. That is, if the variable was first bound with 
a numeric value, rebinding with a string value will cause an error. Binding 
first with an Integer and then rebinding with a FixedPoint value does not 
present a problem, since both are treated as NUMBERs. Binding first when 
nil is an implicit first binding with a String variable.

To bind a NULL value, use nil, which is treated as a NULL value of type 
VARCHAR.

Conversion of Oracle datatypes to Smalltalk classes

Oracle Datatype Smalltalk class

NUMBER FixedPoint, Float, Double, Integer

CHAR, VARCHAR, VARCHAR2, LONG String

ROWID, CLOB String

RAW, LONG RAW, BLOB ByteArray

DATE, TIMESTAMP Timestamp
Database Application Developer’s Guide  4-7



Using the Database Connect for Oracle
Note that the EXDI allows binding a nil first to a variable, then a value, or 
vice versa, but Oracle places a restriction on the binding of NULL in 
queries. Conditional tests for a NULL value must be written as:

SELECT name FROM employee WHERE id IS NULL
Binding a nil (NULL) value to a query variable will not match fields 
containing NULL values.

Binding NULL and Backward Compatibility
When using Oracle servers version 8.1.7 and lower, the following caveat 
applies: when binding a nil as the first bind value, you must use a different 
binding method since older Oracle servers don't allow switching 
datatypes. For example, with servers running Oracle 9 and higher, the 
following code may be used:

session bindVariable: #v1 value: nil.
For compatibility with Oracle 8.1.7 and lower, use the following expanded 
form of the binding method:

session bindVariable: #v1 value: nil type: #Integer32 size: 0.

Binding Numbers and Conversion
When a NUMBER is retrieved from the server, it is converted into a 
Smalltalk type according to the following rules:

• If a precision has been specified in the schema, the value will be 
converted to either a Double or a Float, depending on the precision 
specified in the schema.

• If no precision was specified and the value will fit into 32-bit integer, it 
will be converted to an Integer (or SmallInteger, if the value fits into 29 
bits).

• Otherwise, the value will be converted to a FixedPoint.

To achieve optimal performance, we recommend that the same type of 
Smalltalk numbers (e.g., SmallInteger) be bound to the same query 
variable.  However, in cases where different Smalltalk numbers (e.g., 
Integer and Double) have to be bound to the same query variable, 
VisualWorks can process it appropriately, but performance may be 
slightly impaired since buffer reallocation might be necessary.

The following example illustrates binding numbers:

| connection session typedData arraySize |  
connection := OracleConnection new.  
connection 
4-8  VisualWorks



Data Conversion and Binding
environment: 'env';  
username: 'name';  
connect: 'pwd'.  

session := connection getSession. 
session prepare: 'CREATE TABLE testnumber (Col1 NUMBER(20,4))'. 
session execute. 
session answer. 
session prepare: 'INSERT INTO testnumber values (?)'. 
 
"Binding same kind of numbers." 
typedData := #(0 123 456 789 921). 
arraySize := typedData size. 
1 to: arraySize do: 

[:i | 
session bindInput: (Array with: (typedData at: i)). 
session execute. 
session answer]. 

 
"Binding different kinds of numbers." 
typedData := #(0 16r100000000 12.4 12.5d 12.6s). 
arraySize := typedData size. 
1 to: arraySize do: 

[:i | 
session bindInput: (Array with: (typedData at: i)). 
session execute. 
session answer]. 

 
session prepare: 'SELECT * FROM testnumber'. 
session execute. 
session answer upToEnd inspect. 
 
session prepare: 'DROP TABLE testnumber'.  
session execute. 
session answer. 
 
session disconnect . 
connection disconnect.

Array Binding
When binding arrays of values, the size of the array must match the size 
specified by the INSERT statement. Arrays may be bound either by 
position or by name. To illustrate binding by name, we can used class 
BindTest, an example contained in the Database-Examples parcel.

For example, to bind an Array by position: 
Database Application Developer’s Guide  4-9



Using the Database Connect for Oracle
| aConnection aSession |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'pwd';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE testtb (cid number, cname 

varchar2(50))'.
aSession execute.
aSession answer.
aSession prepare: 'INSERT INTO testtb (cid, cname) values (?, ?)'.
aSession bindInput: #( (301 302 303) ('test301' 'test302' 'test303') ).
aSession execute.
aSession answer.
aConnection commit.

To bind values by name:

| aConnection aSession bindItem |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'insert into testtb values (:cid, :cname)'.
bindItem := BindTest cid: #( 39 40 41) cname: #( 'try39' 'try40' 'try41').
aSession bindInput: bindItem.
aSession execute.
aSession answer.

aSession prepare: 'SELECT * FROM testtb'. 
aSession execute.
aSession answer upToEnd inspect.

aSession prepare: 'DROP TABLE testtb'. 
aSession execute.
aSession answer.

aConnection commit.
When multiple host variables are used in array binding, the sizes of the 
binding arrays for different host variables are not required to be the same, 
but the size of the longest array is used as the execution iteration.
4-10  VisualWorks



Using PL/SQL
Note:  While the sizes of the arrays used with bindInput: are not 
absolutely required to be the same, for performance reasons it is 
recommended that your application binds arrays of the same size 
when using the same prepared SQL statement.

Using PL/SQL
To provide access to PL/SQL, and stored procedures in particular, 
OracleSession provides methods under the data processing protocol. 
These methods, which are explained in greater detail below, are:

preparePLSQL: 
Prepare a query, in the form of an anonymous PL/SQL block. The 
prepare block must be run before a bind block, as per Oracle 
specifications.

bindVariable:value: 
Set a binding for the PL/SQL variable named by the first argument (a 
Symbol). The value must be an instance of a class compatible with 
the legal types listed in the discussion of “Conversion of Oracle 
datatypes to Smalltalk classes” on page 4-7, or can be an Array 
containing such values.

bindVariable:value:type:size: 
Set a binding for a PL/SQL variable, using a specific type and field 
size. The value must be as described above. The type may be one of 
the following symbols: #String, #ByteArray, #Char, #Timestamp, #Float, 
#Double, #Integer32, #Integer, #FixedPoint, #MLSLABEL. The symbol 
#Char gives Oracle blank-padded comparison semantics. The symbol 
#Integer32 gives a 32-bit integer encoding. The symbol #MLSLABEL is 
for use with Trusted Oracle.

bindVariable: 
Answers the current value (or Array of values) bound to the PL/SQL 
variable named by the argument (a Symbol).

For details about PL/SQL, see Oracle’s PL/SQL User’s Guide and 
Reference.

Preparing a PL/SQL Query
To prepare a PL/SQL query, send an OracleSession the message 
#preparePLSQL:, passing the query as a String argument:

session := connection getSession.
session preparePLSQL: 'BEGIN package.proc(:arg) END;'.
Database Application Developer’s Guide  4-11



Using the Database Connect for Oracle
The PL/SQL query must be in the form of an anonymous PL/SQL block. 
That is, it must be bracketed by a BEGIN/END pair, and the END must be 
followed by a semicolon.

The query can span multiple lines. Line breaks in the query are converted 
to white space before the query is prepared, unless the line break is 
within a quoted string.

Bind variables in the query may be either named, as in the code fragment 
above, or positional. See “Binding PL/SQL Variables” on page 4-12 for 
details on query variable binding.

Executing a PL/SQL Query
Once values have been bound for query variables, a prepared PL/SQL 
query is executed just like a standard SQL query. Sending execute to the 
OracleSession begins execution, and sending answer retrieves the result of 
the query.

Unlike SQL SELECT statements, PL/SQL queries do not return answer 
sets, so answer will either respond with #noAnswerStream, if the query 
executed without error, or by raising an exception if an error was 
encountered. Any exception is accompanied by a Collection of instances 
of OracleError.

Binding PL/SQL Variables
In addition to preparing the query, the message preparePLSQL: directs the 
session to use PL/SQL-style binding, which is distinct from the style of 
binding described in the VisualWorks Application Developer’s Guide.

Values bound to PL/SQL queries can be either scalar values or arrays of 
scalar values. The values must be drawn from the set of types described 
under “Data Conversion and Binding” on page 4-7.

To bind a value (or Array of values) to a variable, send an OracleSession the 
message bindVariable:value: with the name and value as arguments. If the 
query uses named variables, the name must be a Symbol. If the query 
uses positional binding, the name must be the SmallInteger that 
corresponds to the variable’s position.

For example, the following code fragment invokes a stored procedure that 
expects a DATE, a TABLE OF VARCHAR, and a NUMBER as arguments.
4-12  VisualWorks



Using PL/SQL
session
preparePLSQL: 'BEGIN pkg.addstuff(:arg1, :arg2, :arg3) END;';
bindVariable: #arg1 value: Timestamp now;
bindVariable: #arg2 value: #( 'One' 'Two' 'Three' nil );
bindVariable: #arg3 value: 4;
execute;
answer.

NULL values are represented by nil.

To retrieve the return values from functions, you must bind a place-holder 
of the correct type, as shown below:

session
bindVariable: 1 value: 0; "place holder for a NUMBER return value"
bindValue: 2 value: argValue;
preparePLSQL: 'BEGIN :1 := pkg.somefunction(:2) END;';
execute;
answer.

 "retrieve the function return value"
returnValue := session bindVariable: #SymbolicParameterName.

The use of #bindVariable: to access return values is explained below.

Variable Type and Size
Binding values requires knowledge of the value’s type and size. When 
using bindVariable:value:, the type and size are inferred. To appreciate what 
this means, it helps to fully understand bindVariable:value:type:size:.

When a value is bound using bindVariable:value:type:size:, the type must be 
one of #String, #ByteArray, #Char, #Timestamp, #Float, #Double, #Integer32, 
#Integer, #FixedPoint, or #MLSLABEL. For compatibility with older 
VisualWorks applications, the type may also be a class name, and may 
be one of String, ByteArray, Integer, Double, Float, or Timestamp.

The value must be a single value or an Array. If it is an Array, all elements 
must be compatible with the specified type.

If the size is nil, a default size will be calculated based on the type and 
value. If the type is #String or #ByteArray, the default size is large enough to 
hold the value (or the longest value in the array). If the type is #String or 
#ByteArray and the length is such that a LONG buffer is required, one will 
be allocated and the size will be rounded up to the next larger multiple of 
4. For types of fixed length, the size is ignored. For #MLSLABEL, the size 
defaults to 255 bytes.
Database Application Developer’s Guide  4-13



Using the Database Connect for Oracle
Note:  If size is not nil, it is the application developer’s responsibility 
to create objects that are big enough to hold the returned values in 
the arguments for bindVariable:value: and bindVariable:value:type:size:.

Because no explicit type and size information are available when using 
bindVariable:value:, type is inferred using the value. If the value is an Array, 
VisualWorks will try to find the most appropriate buffer type to allocate 
based upon the values in the Array, if such a buffer type can't be found, 
an InconsistentDataTypesInArrayBinding exception will be thrown. The value 
used to infer the type must be an instance of (or subclass of) ByteArray, 
Date, Double, FixedPoint, Float, Integer, SmallInteger, String, Text, Time, or 
Timestamp. Given the value and inferred type, the size is inferred as 
described previously.

The following two code fragments are equivalent:

session bindVariable: #notes value: 'Hello, World!'.

session bindVariable: #notes value: 'Hello, World!' type: #String size: 12.
When a parameter of Oracle type INTEGER is required, bind the value by 
specifying a type of Integer and a size of nil (to accept the default size), as 
in:

session bindVariable: #count value: 3 type: #Integer size: nil.
If you know that the integer values will always fit into a 32-bit buffer, you 
can use #Integer32.

Retrieving PL/SQL Variables
After a query has executed, values for function results and OUT (or IN 
OUT) parameters can be retrieved by sending the session the message 
bindVariable: with the name (or integer position) of the variable as an 
argument. bindVariable: will answer with either a single value or an Array of 
values, depending on whether the value is a scalar or a TABLE.
4-14  VisualWorks



Oracle Threaded API
Oracle Threaded API
VisualWorks supports a Threaded API (THAPI) for non-blocking 
(asynchronous) calls to the Oracle database server.

The regular, non-threaded OracleConnection “blocks” the virtual machine 
while it communicates with the Oracle server. When a query is sent from 
VisualWorks, it is actually passed to the Oracle client library. This library 
contains executable code which in turn sends the query on to the Oracle 
server, and then waits for an answer.

This design is problematic in that the virtual machine is blocked as long 
as it has passed control into the client library. Since the virtual machine 
itself is a single process (an OS-level, or so-called heavyweight process), 
100% of computing resources are lost while the entire process waits on 
the call to the library, which in turn waits for results from the server.

With OracleThreadedConnection, the virtual machine provides a native 
thread to call the client library. During the call, the thread waits on the 
Oracle server, while the virtual machine performs its other tasks. When 
the client library call is completed, the thread returns, waiting for some 
other assignment. At this point, the retrieved data is in memory and ready 
for the EXDI session which initiated the query.

Note that there are thread-aware methods at both the EXDI and the Lens 
level. Since the level of complexity is generally increased when using a 
thread, care must be exercised when using THAPI.

Configuring the Threaded API
Use of THAPI requires that the library paths be set on UNIX platforms:

Solaris: The LD_LIBRARY_PATH environment variable must be set to 
point to where the client libraries reside.

HP-UX: The SHLIB_PATH environment variable must be set to point to 
where the client libraries reside.

Using OracleThreadedConnection
For Ad Hoc SQL queries, simply select the OracleThreaded connection type 
from the Database Connect pull down menu. To use Oracle with THAPI at the 
EXDI level, modify your existing EXDI code as follows:

1 Replace references to OracleConnection with references to 
OracleThreadedConnection.
Database Application Developer’s Guide  4-15



Using the Database Connect for Oracle
2 Replace references to OracleSession with references to 
OracleThreadedSession.

Connection Pooling
The Oracle EXDI provides support for connection pooling. This feature is 
beneficial only in multi-threaded mode, and works with the Oracle THAPI, 
described previously.

Connection pooling is available only in Oracle 9.0 and later clients. For 
backward compatibility, the connection pooling functionality is bundled as 
a separate package. To use it, load the OracleThapiCPEXDI package.

The following example illustrates the use of connection pooling in a 
multithreaded environment:

pool := OracleConnectionPool new.
pool username: 'username';

password: 'password';
environment: 'env'.

pool create.

aBlock := [:tableName || conn sess ansStrm |
conn := pool getConnection.
conn username: 'scott'; password: 'tiger'.
conn connect.
sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
ansStrm upToEnd.
sess disconnect. 
conn disconnect].

b1 := aBlock newProcessWithArguments: #('emp').
b2 := aBlock newProcessWithArguments: #('bonus').
b3 := aBlock newProcessWithArguments: #('dept').
b1 priority: 30.
b2 priority: 30.
b3 priority: 30.
b1 resume.
b2 resume.
b3 resume.

" Wait until all of the work is done before the connection pool is destroyed."
(Delay forSeconds: 30) wait.

pool destroy.
4-16  VisualWorks



Oracle Threaded API
In this example, three processes are created, their priorities are assigned 
level 30, and then they are all started, roughly simultaneously.

A Delay is used to wait while the work is done, before the pool object is 
destroyed. Alternatively, a mutex and semaphore may be employed to 
avoid using the Delay. For an illustration, see: OracleConnectionPool 
class>>example1.

By default, the minimum number of connections in the connection pool is 
1, while the maximum number is 5, and the next increment for 
connections to be opened is 1.

To change these defaults, use the following code:

pool := OracleConnectionPool new.
pool connMin: 2;  "minimum number of connections is 2."

connIncr: 2;  "the next increment for connections to be opened is 2."
connMax: 10.  "maximum number is 10."

pool username: 'username';
password: 'password';
environment: 'env'.

pool create.

Using THAPI with the Object Lens
To use Oracle with THAPI in a Lens session, edit the Lens DataModel 
properties, and set the SQL Dialect to OracleThreaded. Use this setting for 
any new Lens DataModel classes too.

The Lens is not thread-safe throughout. As a rule, allow one instance of 
OracleConnection per forked process with the EXDI. For Lens, allow one 
instance of LensSession per forked process.

The following example uses a single BlockClosure to retrieve data from 
three different tables. Multiple sessions are used, each with a single 
connection. When run, three identical processes are created, each ready 
to manipulate a different table.
Database Application Developer’s Guide  4-17



Using the Database Connect for Oracle
sem := Semaphore forMutualExclusion.
aBlock := [:tableName || conn sess ansStrm |
         conn := OracleThreadedConnection new.
         connusername: 'name';

password: 'passw';
environment: 'env'.

         conn connect.
         sess := conn getSession.
         sess prepare: 'select * from ', tableName.
         sess execute.
         ansStrm := sess answer.
         (ansStrm == #noMoreAnswers) ifFalse: [
                 [ansStrm atEnd] whileFalse: [ |row|
                         row := ansStrm next.
                         sem critical:
                                 [Transcript show: tableName,': '.
                                  Transcript show: row printString; cr]]].
         conn disconnect].

 b1 := aBlock newProcessWithArguments: #('foo').
 b2 := aBlock newProcessWithArguments: #('test1').
 b3 := aBlock newProcessWithArguments: #('table3').

 b1 priority: 30.
 b2 priority: 30.
 b3 priority: 30.

 b1 resume.
 b2 resume.
 b3 resume.

In this code example, note that the threaded connection EXDI class 
(OracleThreadedConnection) is used, as well as a mutualExclusion 
semaphore for writing to the Transcript. The semaphore prevents a “forked 
UI processes” disaster from occurring, since the Transcript needs to be 
protected from multi-threaded message overlaps. The three processes 
are created, their priorities are all assigned level 30, and then they are all 
started, roughly simultaneously.

Note that this example presupposes that three tables foo, test1, and table3, 
already exist. Any existing non-empty tables may be used by substituting 
their names.

The next example demonstrates the use of multiple sessions on a single 
connection:
4-18  VisualWorks



Oracle Threaded API
sem := Semaphore forMutualExclusion.
conn := OracleThreadedConnection new.
conn username: 'name';

password: 'passw';
environment: 'env'.

conn connect.
aBlock := [:tableName || sess ansStrm |

sess := conn getSession.
sess prepare: 'select * from ', tableName.
sess execute.
ansStrm := sess answer.
(ansStrm == #noMoreAnswers) ifFalse: [

[ansStrm atEnd] whileFalse: [ |row|
row := ansStrm next.
sem critical:
[Transcript show: tableName,': '.
Transcript show: row printString; cr]]]].

b1 := aBlock newProcessWithArguments: #('foo').
b2 := aBlock newProcessWithArguments: #('test1').
b3 := aBlock newProcessWithArguments: #('table3').

b1 attachToThread.
b2 attachToThread.
b3 attachToThread.

b1 priority: 30.
b2 priority: 30.
b3 priority: 30.

b1 resume.
b2 resume.
b3 resume.

b1 detachFromThread.
b2 detachFromThread.
b3 detachFromThread.

Again, note class OracleThreadedConnection is used, as well as a 
mutualExclusion semaphore for writing to the Transcript. Three processes 
are created, their priorities are all assigned level 30, and then they are all 
started, roughly simultaneously.

The effect of sending #detachFromThread is to release the native thread 
from its attachment to the BlockClosure.
Database Application Developer’s Guide  4-19



Using the Database Connect for Oracle
Calling Oracle Stored Procedures
The EXDI enables you to call Oracle stored procedures. Doing so, you 
may need to assign calling parameters, and you can retrieve return 
parameters. 

Note:  Oracle stored procedures can be quite intricate and error 
prone. While VisualWorks fully supports invoking stored procedures, 
it includes no specific facilities for trouble-shooting or debugging 
errors resulting from them. When creating stored procedures, use a 
tool such as SQL*Plus, which provides error checking feedback. 

After establishing the connection, the query is set up in the argument of a 
preparePLSQL: message. To avoid errors, the query is defined to accept an 
array size argument (ArraySize). This integer value is passed as the first 
argument when the procedure is invoked, and tells the procedure how 
many records to return. Set this value large enough to return the entire 
table.

The other arguments are assigned to bind variables corresponding to 
variables in the stored procedure. Once set up, the procedure is executed 
by sending the execute and answer messages to the session.

The arrays returned by an Oracle stored procedure should be filled 
entirely on return, otherwise an error occurs. For this reason, the second 
loop in the procedure pads any unfilled array elements with blanks.

The example retrieves arrays from the PL/SQL stored procedure.

"Call the stored procedure from VisualWorks"
| aConnection aSession idNo arr2 arr3 arr1 |

ExternalDatabaseConnection 
defaultConnection: #OracleConnection.

ExternalDatabaseConnection traceCollector: Transcript.
ExternalDatabaseConnection traceLevel: 5.
aConnection := ExternalDatabaseConnection new.
aConnection username: 'name';

password: 'pw';
environment: 'env'.

aSession := aConnection connect getSession.
idNo := 1.
arr1 := Array new: 10 withAll: 0.
arr2 := Array new: 10 withAll: (String new: 20).
arr3 := Array new: 10 withAll: (String new: 20).
4-20  VisualWorks



Calling Oracle Stored Procedures
aSession  preparePLSQL: 
'BEGIN multi_pkg.multi_col_select 

( 10, :id, :col1, :col2, :col3); END;'.
aSession bindVariable: #id value: idNo.
aSession bindVariable: #col1 value: arr1.
aSession bindVariable: #col2 value: arr2.
aSession bindVariable: #col3 value: arr3.

aSession execute; answer.

(aSession bindVariable: #col1) inspect.
(aSession bindVariable: #col2) inspect.
(aSession bindVariable: #col3) inspect.

aConnection disconnect.

The example above assumes the existence of a table and stored 
procedure, which can be created using these SQL statements:

/* Create the table here */
CREATE TABLE employee (id INT, ssn VARCHAR(20),

fullname VARCHAR(20));

/* Add some data to the table, add as many rows as desired */
INSERT INTO employee (id, ssn, fullname) 

VALUES (1, '000-00-0001', 'John Jones');

/* Create the package here */ 
CREATE PACKAGE multi_pkg AS

TYPE IdTableType IS TABLE OF employee.id%TYPE 
INDEX BY BINARY_INTEGER;

TYPE SsnTableType IS TABLE OF employee.ssn%TYPE 
INDEX BY BINARY_INTEGER;

TYPE FullnameTableType IS TABLE OF
employee.fullname%TYPE INDEX BY BINARY_INTEGER;

PROCEDURE multi_col_select
( ArraySize INT,

IDValue INT,
IdCol OUT IdTableType,
SsnCol OUT SsnTableType, 
FullnameCol OUT FullnameTableType);

END multi_pkg;
Database Application Developer’s Guide  4-21



Using the Database Connect for Oracle
/* Create the package body here */ 
CREATE OR REPLACE PACKAGE BODY multi_pkg AS

PROCEDURE multi_col_select
(  ArraySize INT, 

IDValue INT,
IdCol OUT IdTableType,
SsnCol OUT SsnTableType,
FullnameCol OUT FullnameTableType)

AS
i INT;
CURSOR col_sel IS
SELECT id, ssn, fullname FROM employee

WHERE id = IDValue;
BEGIN

i := 1;
OPEN col_sel;
LOOP

EXIT WHEN i > ArraySize;
FETCH col_sel INTO IdCol(i), SsnCol(i), FullNameCol(i);
EXIT WHEN col_sel%NOTFOUND;
i := i + 1;

END LOOP;
/* Pad the remainder of the arrays with blanks */
LOOP

EXIT WHEN i > ArraySize;
IdCol(i)       := -1;
SsnCol(i)      := '';
FullNameCol(i) := '';
i := i + 1;

END LOOP;
CLOSE col_sel;

END multi_col_select;
END multi_pkg;
4-22  VisualWorks



CLOB/BLOB support
CLOB/BLOB support
Large Objects (LOBs) demand huge amounts of storage space and 
efficient mechanisms to access them. Video, images, voice-recordings, 
graphics, intelligent documents, and database snapshots are all stored 
as LOBs. Most DBMS have some type of support for LOBs.

LOB (Large Object) support is provided by the Oracle EXDI. Both CLOB 
(Character LOB) and BLOB (Binary LOB) data is supported.

LOB columns are not differentiated from LONGs and others when doing 
binding. Accordingly, any limitations of different Oracle versions on 
binding LOBs apply.

When retrieving LOBs, you can choose whether to get values or LOB 
proxies. The default size when getting values is 4000 bytes (you can 
change this by sending defaultDisplayLobSize: to an instance of 
OracleSession).

Getting proxies returns a LOB proxy, which contains the LOB locator and 
necessary methods to do LOB writes and reads. Using LOB proxies is 
the recommended way to deal with large LOBs.

The following sample demonstrates binding:

| aConnection aSession clob blob clobLength blobLength | 
aConnection := OracleConnection new. 
aConnection username: 'name'; 

password: 'passw'; 
environment: 'env'. 

aConnection connect. 
aSession := aConnection getSession. 
aSession prepare: 'CREATE TABLE TestLob (A CLOB, B BLOB, C 
INTEGER)'. 
aSession execute. 
aSession answer. 
aConnection begin. 
aSession prepare: 'INSERT INTO TestLob (a, b, c) VALUES (?, ?, ?)'. 
clobLength := 1048576. "1M" 
blobLength := 1048576. "1M" 
clob := String new: clobLength withAll: $a. 
blob := ByteArray new: blobLength withAll: 1. 
aSession bindInput: (Array with: clob with: blob with: 1). 
aSession execute. 
aSession answer. 
aConnection commit.

The following sample demonstrates LOB writing:
Database Application Developer’s Guide  4-23



Using the Database Connect for Oracle
| aConnection aSession clobProxy blobProxy clob blob clobLength
blobLength ansStrm res | 

 
aConnection := OracleConnection new. 
aConnection username: 'name'; 

password: 'passw'; 
environment: 'env'. 

aConnection connect. 
aConnection begin. 
aSession := aConnection getSession. 
aSession prepare:  'SELECT a, b FROM TestLob WHERE c = 1  

FOR UPDATE'. 
aSession answerLobAsProxy. 
aSession execute. 
ansStrm := aSession answer. 
res := ansStrm upToEnd. 
clobLength := 1048576. 
blobLength := 1048576. 
clob := String new: clobLength withAll: $e. 
blob := ByteArray new: blobLength withAll: 0. 
clobProxy := (res at: 1) at: 1. 
clobProxy writeFrom: 1 with: clob asByteArray. 
blobProxy := (res at: 1) at: 2. 
blobProxy writeFrom: 1 with: blob. 
aConnection commit.

The following sample extends the above examples specifically for Oracle 
8 users, showing how to avoid restrictions against multiple LONGs on a 
single INSERT, insert empty LOBs, and update values later:

"CREATE TABLE TestLob (A CLOB, B BLOB, C INTEGER)"
| aConnection aSession |
aConnection := OracleConnection new.
aConnection username: 'name';

password: 'passw';
environment: 'env'.

aConnection connect.
aConnection begin.
aSession := aConnection getSession.
aSession prepare: 'INSERT INTO TestLob (a, b, c) 

VALUES ( EMPTY_CLOB(), EMPTY_BLOB(), ?)'.
aSession bindInput: (Array with: 1).
aSession execute.
aSession answer.
aConnection commit.

The following example shows how to retrieve a LOB value:

| aConnection aSession clob blob ansStrm clobLength blobLength clobValue 
4-24  VisualWorks



CLOB/BLOB support
blobValue | 
aConnection := OracleConnection new. 
aConnection username: 'name'; 

password: 'passw'; 
environment: 'env'. 

aConnection connect. 
aSession := aConnection getSession. 
aSession answerLobAsProxy. 
aSession prepare: 'SELECT * FROM TestLob WHERE c=1'. 
aSession execute. 
ansStrm := aSession answer upToEnd. 
 
clob := (ansStrm at: 1) at: 1. 
clobLength := clob getLobLength. 
clobValue := clob readAll. 
 
blob := (ansStrm at: 1) at: 2. 
blobLength := blob getLobLength. 
blobValue := blob readAll.

Note that the method OracleLobProxy>>readAll returns an object whose is 
the smaller of the actual LOB size and the value of defaultDisplayLobSize. 
If you want to get the complete LOB values, you can set 
defaultDisplayLobSize to be bigger than all of the LOB sizes by using 
method OracleSession>>defaultDisplayLobSize:.
Database Application Developer’s Guide  4-25



Using the Database Connect for Oracle
4-26  VisualWorks



5 
Using the ODBC Connect

This chapter describes the ODBC Connect features including:

• ODBC EXDI Classes

• Data Conversion and Binding

• Unicode Support

• Using Stored Procedures

• Large Objects
Database Application Developer’s Guide 5-1



Using the ODBC Connect
ODBC EXDI Classes
The EXDI defines application-visible services and is composed of 
abstract classes. ODBC Connect extends the EXDI by providing a layer 
of concrete ODBC classes. The ODBC Connect classes implement 
ODBC services by making private library calls to an ODBC Driver 
Manager Call Level Interface (CLI).

The public ODBC classes are: 

• ODBCConnection
• ODBCTransaction
• ODBCSession
• ODBCColumnDescription
• ODBCError
• ODBCDataSource
• ODBCDataType

When an application is using the ODBC Connect, the connection, 
session, and answer stream objects maintain specific relationships. 
Understanding these relationships is important when developing 
applications.

The connection and session objects are generally used for multiple 
activities. The answer stream is only used to process a single set of rows 
returned from the server.

These relationships are shown in the following figure:

ODBC AnswerStream

ODBC Session2

ODBC Session1

ODBC Connection
5-2  VisualWorks



ODBCConnection
ODBCConnection
The connection class implements its services using the ODBC Call Level 
Interface (CLI) and is responsible for managing both environment and 
connection handles, and transactions. The limit for active connections is 
driver specific.

Transactions
A transaction reprsents a single unit of work. Applications can explicitly 
control the start and finish of database transactions using the #begin, 
#commit, and #rollback messages. If the application does not use explicit 
control, each statement executed is automatically committed as soon as 
it completes. For a SELECT statement, the implicit commit occurs after 
the last row is fetched. Sending the #cancel message to an ODBC 
Session also ends the transaction.

In some situations on Microsoft Windows, cursors are deleted or closed 
whenever a transaction finishes. This affects all of the ODBC Session 
instances that are executing using the same ODBC Connection. The 
practical consequence of this is that no more rows can be obtained using 
existing answer streams. Each ODBC Session is left in a prepared state 
and the application can send #execute (without first sending #prepare:) to 
re-execute the already prepared SQL statement.

ODBC does not support two-phase commit coordination spanning 
multiple connections. As a result, coordinated ODBC connections are 
simulated using a broadcast commit. Applications that use coordinated 
connections are responsible for their own recovery after a failure that 
leaves partially committed transactions.

Instance Protocols

accessing
The accessing protocol methods are:

environment: aString
Generally, the environment specifies a server name as a String, but 
the ODBC EXDI also allows the use of a DSN (Data Source Name). 

On Windows, System and User DSNs are stored in the registry.

In VisualWorks, if a complete connect string is provided as 
environment, there is no need to create a client DSN, no need to 
provide user name and password either.

For example:
Database Application Developer’s Guide  5-3



Using the ODBC Connect
connection := Database.ODBCConnection new.
connection environment: 'DRIVER={SQL 

Server};Database=dbname;UID=username;PWD=password;SERVER=serve
rname;'.

connection connect.
For additional details, see the discussion of “ODBCDataSource” on 
page 5-8.
5-4  VisualWorks



ODBCSession
ODBCSession
The session class manages the preparing, binding, and executing SQL 
statements using the ODBC CLI. It is responsible for managing the 
statement handles, bind buffers, cursors, and catalog function results. 
The limit for active (connected, prepared, or executing) sessions per 
connection is ODBC driver specific.

In general, once a connection is established, a session object is created 
and used to perform transactions, as follows:

| connection session result answer |
connection := Database.ODBCConnection new.
connection

username: 'myUsername';  password: 'myPassword';
environment: 'myDSN'.

connection connect.
session := connection getSession.
session

prepare: 'CREATE TABLE testtable (cid int, cname varchar(50))';
execute;
answer;
answer.

session prepare: 'INSERT INTO testtable VALUES(:1, :2)'.
#( (1 'Curly' ) (2 'Moe') (3 'Larry') ) do:

[ :item |
session

bindInput: item;
execute;
answer;
answer].

session
prepare: 'SELECT * FROM testtable';
execute.

answer := session answer.
result := OrderedCollection new add: answer upToEnd.
session answer.

session prepare: 'DROP TABLE testtable';
execute;
answer;
answer.

result inspect.
connection disconnect.
Database Application Developer’s Guide  5-5



Using the ODBC Connect
catalog functions
Sending any of the messages in this category is equivalent to preparing 
and executing a query using the receiver. After the message completes, 
the table information is obtained as an answer stream in the normal way 
(e.g., by sending the message answer and then fetching the rows from the 
answer stream). Each row is an Array with one element for each column.

Each message in this category calls a correspondingly named ODBC 
function (if supported on the current platform), the arguments are directly 
passed to the function and take their definitions from the function 
definition. For additional details on the arguments or specific elements in 
the answer set, refer to the ODBC documentation.

The catalog functions are:

getSQLColumns:tableOwner:tableName:columnName:
Calls the ODBC function SQLColumns to obtain a list of names of 
tables stored in the current data source.

The columns of the answer set are defined as: TABLE_QUALIFIER, 
TABLE_OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE, 
TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX, NULLABLE, and 
REMARKS.

getSQLSpecialColumns:tableQualifier:tableOwner:tableName:scope: 
nullable:

Calls the ODBC function SQLSpecialColumns to obtain information 
about the columns that uniquely identify a row and the columns that 
are automatically updated in the table.

The columns of the answer set are as: SCOPE, COLUMN_NAME, 
DATA_TYPE, PRECISION, LENGTH, SCALE, and PSEUDO_COLUMN.

The arguments for tableQualifier:, tableOwner:, and tableName: are 
directly passed to the function and take their definitions from the 
function definition. The argument for getSQLSpecialColumns: must be 
either #SQL_BEST_ROWID or #SQL_ROWVER. The argument for scope: 
must be one of #SQL_SCOPE_CURROW, #SQL_SCOPE_TRANSACTION, or 
#SQL_SCOPE_SESSION. The argument for nullable: must be either 
#SQL_NO_NULLS or #SQL_NULLABLE.

getSQLStatistics:tableOwner:tableName:unique:accuracy:
Calls the ODBC function SQLStatistics to obtain a list of statistics 
about a single table and the indexes associated with the table.

The columns of the answer set are defined as: TABLE_QUALIFIER, 
TABLE_OWNER, TABLE_NAME, NON_UNIQUE, INDEX_QUALIFIER, 
INDEX_NAME, and TYPE.
5-6  VisualWorks



ODBCColumnDescription
The arguments for getSQLStatistics:, tableOwner:, and tableName: are 
directly passed to the function and take their definitions from the 
function definition. The argument for unique: must be either 
#SQL_INDEX_UNIQUE or #SQL_INDEX_ALL. The argument for accuracy: 
must be either #SQL_ENSURE or #SQL_QUICK.

getSQLTables:tableOwner:tableName:tableType:
Calls the ODBC function SQLTables to obtain a list of names of tables 
stored in the current data source. The columns of the answer set are 
defined as: TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, 
TABLE_TYPE, and REMARKS.

data processing
The data processing protocol methods are:

cancel
The processing initiated by sending the execute message to the 
session cannot be interrupted. However, applications may use cancel 
to inform ODBC that the application has no further interest in results 
from the current query.

executeDirect: aString
Execute the prepared SQL statement without a prior external prepare 
step. Note that your application must bind values before sending this 
message, wherever binding is needed.

rowCount
Answers an Integer representing the number of rows inserted, 
updated, or deleted by the previous query.

testing
The ODBC CLI does not provide a mechanism for asynchronous query 
execution. Therefore, isReady will always answer true.

ODBCColumnDescription
The ODBCColumnDescription class defines information used to describe 
columns of tables or as a result of executing a SELECT statement. 

fSqlType
Answers an Integer representing the ODBC CLI internal type code for 
the column. If the value is not known, a nil will be answered. Refer to 
the MS-SQLServer ODBC CLI Programmer’s Manual for a list of the 
values which may return.
Database Application Developer’s Guide  5-7



Using the ODBC Connect
ODBCError
The ODBCError class defines information used in reporting errors to the 
application. The error class adds information specific to ODBCConnect. A 
collection containing instances of ODBCError will be provided as the 
parameter to exceptions raised by ODBCConnect in response to conditions 
reported by the ODBC CLI.

dbmsErrorCode
Answers the error code field (a SmallInteger) returned by the server. If 
the error condition was generated by the ODBC CLI, the value will be 
-99999. Refer to ODBC documentation for more information about 
reported errors.

dbmsErrorString
Answers a String describing the error code.

sqlState
Answers a 5 character string which is the SQLSTATE of the error being 
reported.

osErrorCode
Always answers nil. The ODBC CLI does not provide this information.

osErrorString
Always answers nil. The ODBC CLI does not provide this information.

ODBCDataSource
The ODBCDataSource class defines information used in representing Data 
Source Names (DSN) within VisualWorks. Instances of this class each 
represent a single DSN and store the DSN name and description strings. 
Sending dataSources to an ODBCConnection instance returns a list of 
ODBCDataSource instances. The list contains all DSNs registered with the 
client.

Instance Protocols

accessing
The accessing protocol methods are:

name
Answers the string that represents the name of the receiver.

description
Answers the string that represents the receivers description string.
5-8  VisualWorks



Data Conversion and Binding
Data Conversion and Binding
When receiving data from the database, all data returned by the ODBC 
CLI is converted into instances of Smalltalk classes. These conversions 
are summarized in the following table. Although abstract class names 
may be used to simplify the table, the object holding the data is always an 
instance of a concrete class. The ODBC type names used in the following 
table are representative of the ODBC SQL type mapping.

Conversion of ODBC datatypes to Smalltalk classes

When binding values for query variables, only instances of ByteArray, Date, 
Time, Timestamp, Integer, Double, Float, FixedPoint, String, Boolean, and 
Streams on String or ByteArray may be used as the input bind object.

To bind a NULL value, use nil, which is treated as a NULL value of type 
VARCHAR.

Restrictions on Binding
When rebinding variables prior to re-executing a query, the ODBC type 
and maximum length of the variable must not change. That is, if the 
variable was first bound with an Integer value, rebinding with a String 

ODBC Datatype Smalltalk class

INTEGER, SMALLINT, TINYINT Integer

BIT Boolean

DOUBLE PRECISION, FLOAT Double

REAL, SMALLFLOAT Float

DECIMAL, NUMERIC, MONEY FixedPoint

CHAR, VARCHAR String

BINARY, VARBINARY ByteArray

LONG VARCHAR ReadWriteStream on: String 

LONG VARBINARY ReadWriteStream on: ByteArray

TIME Time

DATE Date

TIMESTAMP Timestamp
Database Application Developer’s Guide  5-9



Using the ODBC Connect
value will cause an error. String and ByteArray bind input values may grow 
or shrink as long as they still fit into the space originally allocated for the 
buffer. To increase the chance that the buffer will be suitable for larger 
values, the allocated size should be twice size of the original value or 
greater. If the initial bind value for a variable is nil, the bind value is 
considered to be a String with external size of one.

ODBC Connect places restrictions on the binding of NULL in queries. 
Conditional tests for a NULL value must be performed.

Unicode Support
The VisualWorks ODBC Connect provides support for Unicode. Your 
entire database can be set to use Unicode columns, or particluar columns 
can hold Unicode. For String data, though, you should generally not 
attempt to mix regular String columns with those in Unicode.

Unicode data may be stored in columns of type NCHAR, NVARCHAR 
and NTEXT on SQL Server, or UNICHAR and UNIVARCHAR on Sybase 
(other vendors may use different names). 

In order to use UTF-8, the national character set for the database must 
be specified as UTF-8 on the database server. You may need to use the 
DBA tools to change this setting. The exact encoding used also varies 
depending upon the database vendor. For example, SQL Server 
represents Unicode columns using UCS-2 encoding (UTF-16), while on 
Oracle, it can be either UTF-16 or UTF-8.

We recommend that you always try to use the latest ODBC drivers from 
the database vendor, since earlier versions sometimes have difficulties 
dealing with Unicode. For example, the ODBC driver for Oracle 9.2 does 
not provide functional Unicode support, while the Oracle 10 version does.

Also, note that some data conversion behavior is vendor-specifc.

Storing and Retrieving Unicode
To make use of Unicode, your application needs to explicitly tell the 
database session that you are binding a Unicode string. When retrieving 
a Unicode value from the database, the EXDI automatically detects any 
Unicode columns and sets the correct encoding.
5-10  VisualWorks



Unicode Support
In practice, the changes to your application code for Unicode support are 
fairly minimal. First, you need to specify the desired encoding (the default 
is #’UCS-2’). This can be done at the connection or session level. Next, 
you need to tell the session object to use Unicode. When inserting a 
String object, the EXDI will handle its conversion into Unicode.

Note that if the session specifies Unicode, all strings are converted to 
their Unicode representation before being inserted into columns. For non-
Unicode columns, ODBC translates the Unicode values back into the 
expected encoding.

On retrieval, “National” column types furnish their strings in Unicode, and 
their data converted to a VisualWorks String, based on the encoding 
format specified by the session. It is best to ensure that the encoding 
used to INSERT matches the encoding used to SELECT. Also, it is 
important that the current Locale object can represent the retrieved 
string, i.e., that it can embrace all the characters retrieved.

To specify Unicode in a database session, use the following code:

aSession unicodeEncoding: #'UCS-2'.
aSession unicode: true.
aSession prepare: 'INSERT ...

Since the default encoding is #’UCS-2’, you may omit the use of 
unicodeEncoding:. This method may be used to specify UTF-8.

Again, you should not attempt to mix regular string columns with those in 
Unicode. After evaluating aSession unicode: true, all binding strings are 
considered Unicode and encoded accordingly.

To retrieve Unicode data from the database, no special code is required 
in your application. Unicode columns are detected automatically and 
encoded appropriately.

The following example demonstrates how to store and retrieve Unicode 
values from a database:

| aConnection aSession answer result |
aConnection := ODBCConnection new.
aConnection

username: 'username';
password: 'password';
environment: 'connectionString'.

aConnection connect. 

aSession := aConnection getSession.
aSession prepare: 'CREATE table test_unicode(id int, nc nchar(100), nvc 
Database Application Developer’s Guide  5-11



Using the ODBC Connect
nvarchar(200), nt ntext)'.
aSession execute.
answer := aSession answer.

aSession := aConnection getSession.
aSession unicode: true.
aSession prepare: 'INSERT into test_unicode values (1, ?, ?, ?)'.
aSession bindInput: # ('String1' 'String2' 'String3').
aSession execute.
answer := aSession answer.

aSession := aConnection getSession.
aSession prepare: 'SELECT * from test_unicode'.
aSession execute.
answer := aSession answer.
result := answer upToEnd.
result inspect.

aSession := aConnection getSession.
aSession prepare: 'DROP table test_unicode'.
aSession execute.
answer := aSession answer.

Using Stored Procedures
To provide access to stored procedures, ODBCSession provides methods 
under the data processing protocol. These methods, which are explained 
in more detail below, are:

preparePROC:  aString
Prepare a query which calls a stored procedure. A stored procedure 
can return multiple row sets and have input, output and return 
parameters.

bindVariableAt: 
Answer the value of a stored procedure variable at the specified 
position.

bindVariable:at: 
Bind a value to a (one-relative) parameter position in the query. 
Reuse an existing buffer only if it is big enough. E.g., an existing 
buffer can be too small if it holds a #String, but the new value is a 
#LargeString.
5-12  VisualWorks



Using Stored Procedures
Preparing a Stored Procedure Query
To prepare a query using a stored procedure, send an ODBCSession the 
message #preparePROC:, passing the query as a String argument:

session := connection getSession.
session preparePROC: '{ ? = call myProc(?, ?)}'.

Bind variables in the query are positional. See “Binding Variables for 
Stored Procedures” on page 5-13 for details on query variable binding.

Executing a Query
Once values have been bound for query variables, a prepared query is 
executed just like a standard SQL query. Sending execute to the 
ODBCSession begins execution, and sending answer retrieves the result of 
the query.

Note that when using stored procedures, the return codes and output 
parameters are sent in the last packet from the server and are not 
available before the result sets are exhausted.

Alternatively, you may use #executeDirect:, as follows:

connection connect.
session := connection getSession.
session executeDirect: ' sp_databases'.
answer := session answer.
result := answer upToEnd.
answer := session answer.
connection disconnect.
result inspect.

Binding Variables for Stored Procedures
In addition to preparing the query, the message preparePROC: directs the 
session to use stored procedure binding, which is distinct from the style 
of binding described in the VisualWorks Application Developer’s Guide.

Values bound to stored procedure queries can be either scalar values or 
arrays of scalar values. The values must be drawn from the set of types 
described under “Data Conversion and Binding” on page 5-9.

To bind a value to a variable, send an ODBCSession the message 
bindVariable:at: with the value and position as arguments. The position is 
the (one-relative) SmallInteger that indicates the variable’s position.
Database Application Developer’s Guide  5-13



Using the ODBC Connect
For example, the following code fragment creates and then invokes a 
stored procedure.

| connection sess |
connection := ODBCConnection new.
connection

username: 'sa';
environment:'jazzbo';
connect: ''.

sess := connection getSession.

sess prepare: 
'CREATE PROCEDURE demo2

@x VARCHAR(30),
@y VARCHAR(30) OUTPUT

AS
   select @y = SUBSTRING( @x, 1, 3)
   return CHARINDEX( ''Z'', @x)'.

sess execute.
[sess answer == #noMoreAnswers] whileFalse.
sess disconnect.

"Now invoke demo2 in a new session"
sess := connection getSession.

sess preparePLSQL: '{ ? = call demo2(?, ?)}'.
sess bindVariable: 0 at: 1.
sess bindValue: 'ABCXYZ' at: 2.
sess bindVariable: '00000000' at: 3.
sess execute.

answer := sess answer.
[answer = #noMoreAnswers] whileFalse:

[(answer isKindOf: ExternalDatabaseAnswerStream)
ifTrue:[Transcript show: (answer upToEnd printString); cr]
ifFalse: [Transcript show: answer printString; cr].

answer := sess answer].

Transcript
show: 'Return Value = ', (sess bindVariableAt: 1) printString; cr.

Transcript 
show: 'OUTPUT param, y = ', (sess bindVariableAt: 3) printString; cr.

sess disconnect.
connection disconnect.
5-14  VisualWorks



Large Objects
When the fragment shown above is evaluated, the following should 
appear in the Transcript:

#noAnswerStream
Return Value = 6
OUTPUT param, y = 'ABC'
--- end Transcript ---

The use of #bindVariableAt: to access return values is explained below.

Retrieving Stored Procedure Variables
After a query has executed, values for function results and OUT (or IN 
OUT) parameters can be retrieved by sending the session the message 
bindVariableAt: with the integer position of the variable as an argument. 
bindVariableAt: will answer with either a single value or an Array of values, 
depending on whether the value is a scalar or a TABLE.

Large Objects
Large Objects (LOBS) demand huge amounts of storage space and 
efficient mechanisms to access them. Video, images, voice-recordings, 
graphics, intelligent documents, and database snapshots are all stored as 
LOBs. Most DBMS have some type of support for LOBs.

Support for Large Objects
ODBC CLI defines two datatypes to support large objects: 
LONG_VARBINARY and LONG_VARCHAR. ODBC Connect maps these 
types as ReadWriteStream on a Smalltalk ByteArray and a ReadWriteStream 
on a String.

Note:  Databases such as MS-SQLServer do not store 
LONG_VARCHAR (TEXT) or LONG_VARBINARY (IMAGE) values in 
the rows of which they are a part. Instead a pointer to a separate 
chain of pages for TEXT/IMAGE data is stored in the row. They are 
allocated in whole disk pages; therefore, short items will effectively 
waste space. See the MS-SQLServer Online Dynamic Server 
Administrator’s Guide or MS ODBC 3.0 SDK for information about 
how to allocate lob space.
Database Application Developer’s Guide  5-15



Using the ODBC Connect
Binding for Input
When binding for input, the Smalltalk conversion type for 
LONG_VARCHAR and LONG_VARBINARY must first be wrapped in a 
ReadWriteStream and then submitted as a normal bind parameter to an 
ODBCSession. The driver will then create an appropriately typed buffer 
for sending data to the server.

For example, once a connection has been established:

"Create the table"
aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE testClob(tx text)'.
aSession execute.
ansStrm := aSession answer.
ansStrm := aSession answer.

rs := ReadWriteStream with: (String new: 909601 withAll: $a). 
list := OrderedCollection with: rs.

"Insert a large object"
aSession prepare: 'insert into testClob values(?)'.
aSession bindInput: list.
aSession execute.
ansStrm := aSession answer.
ansStrm := aSession answer.

"Retrieve the large object"
aSession prepare: 'SELECT * FROM testClob'.
aSession execute.
ansStrm := aSession answer.
result := ansStrm upToEnd.
ansStrm := aSession answer.

"Drop the table"
aSession prepare: 'DROP TABLE testClob'.
aSession execute;

answer;
answer.

result inspect.

Note:  To bind NULL to a database column typed as 
LONG_VARCHAR or LONG_VARBINARY, the application developer 
simply specifies nil as a bind parameter. No parameter wrapping is 
needed.
5-16  VisualWorks



Large Objects
Binding for Output
The ODBC connection automatically creates appropriately typed buffers 
for result columns that are of type LONG_VARCHAR or 
LONG_VARBINARY. The application developer does not need to do 
anything special.

Restrictions on Retrieving Large Objects
ODBC Connect will attempt to read all available data from long result 
columns up to ODBCSession>>defaultMaxLongData. The read size for long 
data is controllable through ODBCSession>>defaultMaxLongData: 
maxReadBytes.

Note:  The maximum read size for long data is platform-specific.
Database Application Developer’s Guide  5-17



Using the ODBC Connect
5-18  VisualWorks



6 
Using the DB2 Connect

The DB2/UDB Connect provides access to IBM UDB databases version 
6.x or later, on MS-Windows and Linux platforms. It includes EXDI layer 
support, including a threaded API, as well as support for the Object Lens 
and Store, the VisualWorks scource code management system.

This database connect makes direct calls to the CLI library, it supports 
block fetching, the use of arrays to input multiple parameter values (block 
insert/update), multiple answer sets, LOB locators and file references. 
Stored procedures are supported, with all types of parameters, including 
answering result sets.

The DB2 connect is available under the ParcPlace Public License, and 
has been tested on Windows NT 4.0 (SP6), Windows 2000 (SP2), and 
DB2 UDB v6.1 for Linux (SP1) on Red Hat Linux 6.1.

For a more general discussion of the VisualWorks EXDI framework, see 
“EXDI Database Interface” on page 2-1.

This chapter describes the DB2 Connect features including:

• DB2 EXDI Classes

• Data Conversion and Binding

• Using Stored Procedures

• Large Objects

• Using Data Links

• Threaded API
Database Application Developer’s Guide 6-1



Using the DB2 Connect
DB2 EXDI Classes
The EXDI defines application-visible services and is composed of 
abstract classes. The DB2 connect extends the EXDI by providing a layer 
of concrete DB2 classes. The DB2 connect classes implement services 
by making private library calls to the DB2 Call Level Interface (CLI).

The public DB2 classes are:

• DB2Connection
• DB2Session
• DB2LOBLocator
• DB2DataLink

When an application is using the DB2 connect, the connection, session, 
and answer stream objects maintain specific relationships. Understanding 
these relationships is important when developing applications.

The connection and session objects are generally used for multiple 
activities. The answer stream is only used to process a single set of rows 
returned from the server.

These relationships are shown in the following figure:

DB2 AnswerStream

DB2 Session2

DB2 Session1

DB2 Connection
6-2  VisualWorks



DB2Connection
DB2Connection
The connection class implements its services using the Call Level 
Interface (CLI) and is responsible for managing both environment and 
connection handles, and transactions. The limit for active connections is 
driver specific.

For a more detailed discussion of the database connection class, see 
“Using Database Connections” on page 2-4.

Instance Protocols

blob functions
The BLOB functions protocol methods are:

getLOBLength: aLocator
Retrieve the length of a LOB value associated with aLocator.

getLOBPosition: aLocator search: aStringOrLocator from: aPosition
Retrieve the position of aStringOrLocator in a LOB value associated 
with aLocator.

getLOBSubString: aLocator from: aPosition length: aLength asLocator: 
aBoolean

Retrieve the substring of a LOB value associated with aLocator.

See the discussion of DB2LOBLocator and DB2LOBFileReference, below, for 
additional LOB functionality.

datalink functions
The datalink functions protocol methods are:

getDLAttribute: attributeName for: aDataLink
Answer the value of an attributeName associated with aDataLink.

See the discussion “Using Data Links” on page 6-15, for additional 
DATALINK functionality.
Database Application Developer’s Guide  6-3



Using the DB2 Connect
DB2Session
The session class manages the preparation, binding, and execution of 
SQL statements using the DB2 CLI. It is responsible for managing the 
statement handles, bind buffers, cursors, and catalog function results. 
The limit for active (connected, prepared, or executing) sessions per 
connection is driver specific.

Transactions
A transaction reprsents a single unit of work. Applications can explicitly 
control the start and finish of database transactions using the #begin, 
#commit, and #rollback messages. If the application does not use explicit 
control, each statement executed is automatically committed as soon as 
it completes. For a SELECT statement, the implicit commit occurs after 
the last row is fetched. Sending the #cancel message to a DB2 session 
also ends the transaction.

DB2 does not support two-phase commit coordination spanning multiple 
connections. Applications that use coordinated connections are 
responsible for their own recovery after a failure that leaves partially 
committed transactions. This limitation may be removed in the future.

Executing Queries
You ask a session object to prepare and execute SQL queries by sending 
the messages prepare:, execute, and answer, in that order. 

To examine the results of the query execution, send an answer message 
to the session. This is important to do even when the query does not 
return an answer set (e.g., an INSERT or UPDATE query). If an error 
occurred during query execution, it is reported to the application at answer 
time.

For an extended discussion of queries, see “Using Sessions” on 
page 2-7.

Instance Protocols

accessing
The accessing protocol methods are:

blockFactor
Answer the current number of rows that are buffered in an answer 
stream associated with this session.
6-4  VisualWorks



DB2Session
blockFactor: aNumber
Set the number of rows that are buffered internally.

Warning:  The DB2 UDB version 7.1 FP1 client contains a bug in the 
retrieval of blocked fetch LOB locators and LOB values. Don‘t set 
blockFactor: to be greater than 1 for queries with LOB fields. To avoid 
these problems, you can use a version 7.1 DB2 server with version 
6.1 client libraries. 
 
Version 7.1 FP2 resolves the problem with blockFactor, but introduces 
another issue: calls to SQLMoreResults() with a parameterized query 
and an array of input parameter values cause a crash. However, 
stored procedure calls are OK. Fixpak 3 (also known as DB2/UDB 
7.2) resolves these issues.

data processing
The data processing protocol methods are:

rowCount 
Answers an Integer representing the number of rows inserted, 
updated, deleted, or the cumulative number of rows fetched by the 
previous query.

cursorName
Answer the cursor name associated with receiver.

answerLOBAsLocators
answerLOBAsValues
answerLOBAsFileRef:

Set the session to answer LOB values be answered: as locators, 
values, or as file references.

bindInputArrayByColumns: anArray
Bind the parameter array with an array of values in the corresponding 
position.

For example, this code fragment inserts three rows into a table:

session 
prepare: ’insert into table2 values(?, ?)’; 
bindInputArrayByColumns: 

#( #(101 102 103) 
#(’Red’ ’red’ ’roses’)); 

execute; 
answer.
Database Application Developer’s Guide  6-5



Using the DB2 Connect
bindInputArray: anArray
Bind the parameter array with an array of values.

For example, the following code fragment inserts 3 rows into a table:

session
prepare: ’insert into table2 values(?, ?)’;
bindInputArray:

#( #(110 ’Velvet’ )
#(111 ’Green’ )
#(112 ’Brick’));

execute;
answer.

Or, with domain objects:

entries := Array
with: (MyObject id: 110 name: ’Velvet’)
with: (MyObject id: 111 name: ’Green’)
with: (MyObject id: 113 name: ’Brick’).

session
prepare: ’insert into table2 values(?, ?)’;
bindInputArray: entries;
execute;
answer.

catalog functions
Sending any of the messages in this category is equivalent to preparing 
and executing a query using the receiver. After the message completes, 
the table information is obtained as an answer stream in the normal way 
(e.g., by sending the message answer and then fetching the rows from the 
answer stream). Each row is an Array with one element for each column.

Each message in this category calls a correspondingly named CLI 
function, the arguments are directly passed to the function and take their 
definitions from the function definition. For additional details on the 
arguments or specific elements in the answer set, refer to the DB2 
reference documentation.

The catalog functions are:

getSQLPrimaryKeys: tableQualifier tableOwner: tableOwner tableName: 
tableName

Calls the DB2 function SQLPrimaryKeys() to obtain a list of column 
names that comprise the primary key for a table.

The columns of the answer set are defined in the DB2 documentation 
as: TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, 
ORDINAL_POSITION, PK_NAME.
6-6  VisualWorks



Data Conversion and Binding
getSQLForeignKeys: tableQualifier tableOwner: tableOwner tableName: 
tableName fkQualifier: fkTableQualifier fkOwner: fkTableOwner 
fkTableName: fkTableName

Calls the DB2 function SQLForeignKeys() to obtain information about 
foreign keys for the specified table.

The columns of the answer set are defined in the DB2 documentation 
as: PKTABLE_CAT, PKTABLE_SCHEM, PKTABLE_NAME, 
PKCOLUMN_NAME, FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, 
FKCOLUMN_NAME, ORDINAL_POSITION, UPDATE_RULE, DELETE_RULE, 
FK_NAME, PK_NAME, DEFERRABILITY.

Data Conversion and Binding
When receiving data from the database, all data returned by the CLI is 
converted into instances of Smalltalk classes. These conversions are 
summarized in the following table. Although abstract class names may be 
used to simplify the table, the object holding the data is always an 
instance of a concrete class. The DB2 type names used in the following 
table are representative of the DB2 SQL type mapping.

Conversion of DB2 datatypes to Smalltalk classes

DB2 Datatype Smalltalk class

INTEGER, SMALLINT Integer

BITINTEGER Boolean

DOUBLE, FLOAT Double

REAL Float

DECIMAL FixedPoint

CHAR, VARCHAR, LONG VARCHAR String

VARCHAR FOR BIT DATA ByteArray

BLOB ByteArray 
ReadWriteStream on: ByteArray 
DB2BLOBLocator 
DB2LOBFileReference

CLOB String 
ReadWriteStream on: String 
DB2CLOBLocator 
DB2LOBFileReference
Database Application Developer’s Guide  6-7



Using the DB2 Connect
When binding values for query variables, only instances of ByteArray, Date, 
Time, Timestamp, Integer, Double, Float, FixedPoint, String, Boolean, 
DB2DataLink, DB2LOBLocator, DB2LOBFileReference and Streams on String or 
ByteArray may be used as the input bind object.

To bind a NULL value, use nil, which is treated as a NULL value of type 
VARCHAR.

When a BLOB or CLOB is retrieved from the server, it is converted into a 
Smalltalk type according to the following rules:

• By default, or if you send answerLOBAsValues to the session object, the 
BLOB/CLOB is returned as a String or ByteArray.

• If you send answerLOBAsLocators to the session object, it is returned 
as an instance of  DB2LOBLocator or one of its subclasses,

• If you send answerLOBAsFileRef: with an instance of 
DB2LOBFileReference to the session object, the LOB value will be 
saved to file (see the description of class DB2LOBFileReference, 
above), and the result is the symbol #FileRef.

Restrictions on Binding
Compared with the ODBC EXDI, the restrictions on binding are more 
relaxed. When re-binding variables prior to re-executing a query, the DB2 
type and maximum length of the variable can change. For example, if the 
variable was first bound with an Integer value, rebinding with a String value 
is acceptable. Instances of String and ByteArray bound as input values 
may grow or shrink as long as they still fit into the column field.

The general limitations of DB2 with respect to datatypes remain.

TIME Time

DATE Date

TIMESTAMP Timestamp

DATALINK DB2DataLink

DB2 Datatype Smalltalk class
6-8  VisualWorks



Using Stored Procedures
The ability to re-bind input values may be illustrated using the following 
code example:

session
prepare: ’create table testRebind (testField varchar(50))’;
execute; answer.

session
prepare: ’insert into testRebind values(?)’;
bindInput: #(’String’);
execute; answer;
bindInput: #(123);
execute; answer;
bindInput: (Array with: Time now);
execute; answer.

Using Stored Procedures
The DB2 EXDI supports positional binding of variables, but when calling 
stored procedures, it uses the variable name to bind values.

To provide access to stored procedures, class DB2Session provides the 
following methods:

prepareCall: aString
Prepare a query using a CALL statement.

bindVariable: aSymbol
Answer the current value bound to the named parameter (a Symbol).

bindVariable: aSymbol value: aValue
Set the value of a named parameter.

bindVariable: aSymbol value: aValue kind: aSymbol
Set the value of a named parameter with parameter type (kind): #in, 
#out, #inout.

deferCursorClosing
Set cursor to defer cursor close while all result sets are being 
retrieved.

immediateCursorClosing
Set default cursor closing behavior.

closeCursor
Close database cursor.
Database Application Developer’s Guide  6-9



Using the DB2 Connect
The following example illustrates the use of a stored procedure:

expression := 'CALL TWO_RESULT_SETS( :inSalary, :outRc)'.
session := connection getSession.

session
prepareCall: expression;
"defer cursor closing for procedures, answering multiple answer sets"
deferCursorClosing;
blockFactor: 30;
"input parameter"
bindVariable: #inSalary value: 14000.0d kind: #in;
"output parameter"
bindVariable: #outRc value: 0 kind: #out;
execute.

"Check errors"
(error := session bindVariable: #outRc) == 0

ifTrue: [Transcript cr;
show: expression, ' completed successfully']

ifFalse: [Transcript cr;
show: expression, ' failed with SQLCODE = ', error printString].

"Get result -- multiple answer sets"
[(a := session answer) == #noMoreAnswers]

whileFalse: [Transcript cr;
show: ’Result set: ’;
show: (a upToEnd) printString].

Large Objects
Large Objects (LOBs) demand huge amounts of storage space and 
efficient mechanisms to access them. Video, images, voice-recordings, 
graphics, intelligent documents, and database snapshots are all stored 
as LOBs. Most DBMS have some type of support for LOBs.

Binding for Input
When binding for input, the Smalltalk conversion type for CLOB and 
BLOB objects must first be wrapped in a ReadWriteStream and then 
submitted as a normal bind parameter to a DB2Session. The database 
connect will then create an appropriately-typed buffer for sending data to 
the server. Also, LOB locators returned from the query can be used as 
parameters.

The following sample demonstrates LOB binding:
6-10  VisualWorks



Large Objects
| connection session clob blob clobLength blobLength |
connection := DB2Connection new environment: 'env';

username: 'username';
password: 'pwd';
connect.

session := connection getSession.
session prepare: 'CREATE TABLE TestLob (a CLOB(32k), b BLOB(32k), c 

INT)'.
session execute.
session answer.
connection begin.
session := connection getSession.
session prepare: 'INSERT INTO TestLob (a, b, c) VALUES ( ?, ?, ?)'.
clobLength := 30720. "30k"
blobLength := 30720. "30k"
clob := String new: clobLength withAll: $a.
blob := ByteArray new: blobLength withAll: 1.
session

bindInput: (Array with: clob readStream with: blob readStream with: 1).
session execute.
session answer.
connection commit.

The following example shows how to retrieve LOB values:
Database Application Developer’s Guide  6-11



Using the DB2 Connect
connection begin.
session := connection getSession.
session answerLOBAsLocators.
session prepare: 'SELECT * from TestLob where c=1'.
session execute.
ans := session answer.
res := ans upToEnd.
clob := (res at: 1) at: 1.
cLength := connection getLOBLength: clob. "Gets length of the LOB."
clobContents := connection

getLOBSubString: clob
from: 1
length: cLength
asLocator: false. "Gets LOB contents."

clob_contents inspect.
blob := (res at: 1) at: 2.
bLength := connection getLOBLength: blob.
blobContents := connection

getLOBSubString: blob
from: 1
length: bLength
asLocator: false.

blobContents inspect.
connection rollback.

DB2LOBLocator
Instances of class DB2LOBLocator represent DB2 LOB locators. Use a 
LOB locator when your application needs to select or manipulate a large 
object, but does not wish to transfer the entire object from the database 
server to VisualWorks.

A DB2LOBLocator object is a compact token that may be used to reference 
a large object stored in the database. When running a query, the DB2 
connect does not place the referenced large object in the result set, but 
merely updates the LOB locator object.

If desired, your application can also request the entire large object 
associated with the locator token.

In fact, a LOB locator is not a value stored in a database column. It is a 
reference that is valid only for the duration of a single transaction. It is the 
application developer’s responsibility to ensure that a locator object is not 
used beyond the duration of a transaction.

The following code sample illustrates the use of a LOB locator:
6-12  VisualWorks



DB2LOBFileReference
connection begin.
answerStream := querySession

prepare: 'select blobField from table';
answerLOBAsLocators; "answer locators instead values"
execute;
answer.

insertSession
prepare: ’insert into table2 values(?)’.

answerStream upToEnd
do: [:row |

insertSession bindInput: (row first);
execute;
answer].

connection commit.
For additional example code illustrating the use of LOB locators, see the 
tests in the DB2EXDITest parcel, located in the extra subdirectory.

DB2LOBFileReference
Instances of class DB2LOBFileReference represent DB2 LOB file 
references. 

For some examples of use, see the tests in the DB2EXDITest parcel, 
located in the extra subdirectory.

instance creation
The instance creation methods are:

for: aFilename
Answer a new instance for the specified filename.

forBLOB: aFilename

forCLOB: aFilename

public protocol
The public protocol methods include:

appendToFile
overwriteFile
createFile

file creation options
The file creation options protocol methods include:
Database Application Developer’s Guide  6-13



Using the DB2 Connect
compute: aBlock
Specify a one-argument block, whose argument is the old file name, 
and whose result is a new file name.

Using LOB File References
The following examples demonstrate the insertion and retrieval of a LOB 
file reference. In these examples, local files are used. These should be 
located in the VisualWorks home directory (e.g., /image).

To insert the contents of a file:

| aConnection aSession lobFileRef file fStream |
aConnection := DB2Connection new environment: 'env';

username: 'username';
password: 'pwd';
connect.

aSession := aConnection getSession.
aSession prepare: 'CREATE TABLE TestLOBFileRef (a CLOB(32k), c INT)'.
aSession execute.
aSession answer.
aConnection begin.
aSession prepare: 'INSERT INTO TestLOBFileRef (a, c) VALUES ( ?, ?)'.
file := 'LOBFileReference.test' asFilename.
fStream := file writeStream.
fStream

nextPutAll: Collection comment;
close.

lobFileRef := DB2LOBFileReference forCLOB: file asString.
aSession bindInput: (Array with: lobFileRef with: 1).
aSession execute.
aSession answer.
aConnection commit.

To retrieve a LOB file reference:

aConnection begin.
fileRef := (DB2LOBFileReference for: 'testLobFileRefOutputFile.test') 
6-14  VisualWorks



Using Data Links
overwriteFile. 
aSession := aConnection getSession.
answer := session prepare: 'select a from TestLOBFileRef where c=1';

 answerLOBAsFileRef: fileRef;
execute;
answer.

answer upToEnd.
aConnection rollback.

Using Data Links
DB2 supports the DATALINK SQL datatype, which is used to reference an 
object stored external to the database. This datatype can be used like 
any other, to define table columns.

Instances of class DB2DataLink represent a DATALINK objects.

accessing
The accessing protocol methods include:

scheme
Answer the scheme of a DATALINK containing an URL.

For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf

The method scheme will return:

http
server

Answer the server name of a DATALINK containing an URL.

For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf

The method server will return:

www.myCompany.com
comment

Answer a string that contains the comment for this DATALINK.

path
Answer the path and file name of a DATALINK containing an URL, 
including a file access token, if allowed.

pathOnly
Answer only the path and file name of a DATALINK containing an 
URL. A file access token is never included.
Database Application Developer’s Guide  6-15



Using the DB2 Connect
For example, in a DATALINK containing:

http://www.myCompany.com/docs/gizmo.pdf

The method server will return:

/docs/gizmo.pdf
complete

Answer the data location attribute of a DATALINK containing an URL.

For more information on the use of DATALINKs, refer to the DB2 
reference documentation.
6-16  VisualWorks



Threaded API
Threaded API
VisualWorks supports a Threaded API (THAPI) for DB2. This enables 
your application to make calls to the database without blocking the object 
engine (i.e., asynchronous calls).

While DB2 provides a thread-safe interface through the CLI, note that its 
internal implementation involves a connection-specific semaphore. Thus, 
at any moment only one thread can invoke a CLI function that takes an 
environment handle as input, and all other functions using the same 
connection will be serialized. Internally, then, the CLI will block any other 
threads using the same connection. One exception is #cancel, which will 
interrupt a statement that is currently running on another thread.

To provide multi-threaded behavior, each thread must be mapped to a 
single connection.

Using the Threaded API
To use DB2 with THAPI at the EXDI level, modify your existing EXDI code 
as follows:

1 Replace references to DB2Connection with references to 
DB2ThreadedConnection.

2 Replace references to OracleSession with references to 
DB2ThreadedSession.

For example code illustrating the use of the threaded API, see the tests in 
the DB2EXDITest parcel, located in the extra subdirectory.

Known Limitations
The following are known limitations in the DB2 database connect, 
specifically in its support for the Object Lens:

Known issues:

• Automatic creation and modification of database tables from the Lens 
is currently not supported. You must first create all the tables in your 
database and then use the Data Modeler to map these tables to  
Smalltalk classes.

• Automatic altering of tables from the Lens is currently not supported.

• Mapping of CLOB and BLOB objects is limited only to LOB locators.
Database Application Developer’s Guide  6-17



Using the DB2 Connect
6-18  VisualWorks



7 
Developing a Database Application

This chapter discusses the architecture of a VisualWorks database 
application, its components, and gives an overview of the various tools 
available for building application components and database modelling:

• VisualWorks Application Structure

• Components of a Database Application

• VisualWorks Database Tools

• Lens Name Space Control
Database Application Developer’s Guide 7-1



Developing a Database Application
Overview
The VisualWorks database application framework provides support for 
external access to a variety of common RDBMS. The framework consists 
of these four elements:

• External database interface classes (EXDI)

• Database-specific (e.g., Oracle and Sybase) connection extensions 
to the EXDI, providing concrete classes

• Lens runtime interface

• Lens data forms and tools

The EXDI provides the lowest level of database access support in 
VisualWorks, giving you the most direct and detailed control of a 
database session. It enables execution of SQL statements in database 
sessions, binding of parameters, and the like.

For a more general discussion of the VisualWorks EXDI framework, see 
“EXDI Database Interface” on page 2-1.

The following sections of this chapter introduce the organization and 
structure of a VisualWorks database application.

The Lens provides higher-level facilities that simplify the task of database 
access. The Lens Data Modeler provides a mechanism for mapping table 
rows and columns to Smalltalk objects, as well as tools for creating and 
managing the mappings. It provides a runtime environment for handling 
object persistence in an object-oriented fashion, largely hiding the 
relational SQL activity underneath.

For a step-by-step guide to the use of the Lens Data Modeler, see 
“Building a Data Model” on page 8-1

The Lens runtime environment supports object containers, object identity, 
database proxies, and a sophisticated query capability. The Lens also 
provides UI designer features that simplify the task of creating a user 
interface to your database-accessing application.
7-2  VisualWorks



VisualWorks Application Structure
VisualWorks Application Structure
A VisualWorks application generally consists of the user interface (UI) 
and the information model. The UI handles input and output, usually in a 
graphical manner employing windows and widgets. The information 
model handles data storage and processing, and is generally divided into 
one or more domain models and application models.

Domain models represent the state and behavior of objects in the 
application’s domain, the aspect of a business that the application is 
designed to automate. 

Application models provide a layer of information and services between 
the user interface and domain models. In effect, the application model 
controls or coordinates the interaction between the UI and the domain 
model.

VisualWorks database applications have this same structure, except that 
at least one of its domain models represents the information in the 
database, external to VisualWorks.

In a database application, domain models represent the data, but they do 
not know how to access the database itself. A separate layer handles the 
details of database access. Separating the domain model from the 
particular database clarifies the application by distinguishing how the 
data is used from the way it is stored. Also, since the data handling is 
generalized, the same data model can be retargeted to different 
databases by simply changing the database access layer.

Applications typically access the database using mechanisms provided 
by the Object Lens. The Object Lens is a set of classes and tools that 
simplify database access and help the developer map tables in the 
relational database to objects in the Smalltalk domain model.
Database Application Developer’s Guide  7-3



Developing a Database Application
Display screen

UI objects

Application 
models

Domain models

ObjectLens 

Database
7-4  VisualWorks



Components of a Database Application
Components of a Database Application
A database application that you create with VisualWorks consists of:

• Many entity classes, which serve as domain models for the 
application. An entity class instance models a row of the database 
table, with instance variables modeling the columns.

• A single database application class, which serves as the database 
application for the application. 

• One or more data form classes, which serve as general-purpose 
application models.

Entity Classes
An entity class is the Smalltalk representation of a database table. Each 
instance of an entity class represents a row in the corresponding 
database table. Columns in a database table are represented by instance 
variables in the corresponding entity class.

For example, a database may represent a customer as having a 
customer number, a name, and a category, maybe indicating the amount 
of business they do. Each row of the table would be represented by an 
instance of class Customer, which has three instance variables: 
custNumber, custName, and custCategory.

Instance
06
Debbie Lee
6000

Instance
05
Linda Taylor
3000

Instance
04
Glenn Smith
5000

Instance
03
Cheryl Wh
3000

Entity Class

Instance
02
Richard Grn
1000

Instance
01
William B
1000

variable
variable
variable

01
02
03
04
05

William Brown
Richard Green
Cheryl White
Glenn Smith
Linda Taylor

1000
1000
3000
5000
3000
Database Application Developer’s Guide  7-5



Developing a Database Application
Entity classes only need to contain instance variables for those columns 
that are of interest to the application that you are building; columns that 
are not of interest do not need to be represented. Entity classes may also 
have instance variables that do not map to columns in a database table.

Foreign key references are expressed as direct object references. That is, 
the instance variables of one entity are defined to be of a “type” that is 
another entity. For example, a foreign key reference from a table of 
employees to a table of job titles is expressed as an instance variable in 
the employees entity that is an instance of a job title entity. 

Any class can serve as an entity class, provided that:

• The class provides an instance variable that acts as a unique 
identifier (primary key) for instances of the class. (While it is not 
generally considered good database modeling practice, primary keys 
composed of concatenated columns are supported.)

• The class contains an accessor and mutator method of the form name 
and name: for each instance variable that is mapped to a column in 
the database. 

Class

Instance
06
Debbie Lee
6000

Instance
05
Linda Taylor
3000

Instance
04
Glenn Smith
5000

Instance
03
Cheryl 
White
3000

Instance
02
Richard 
Green
1000

Instance
01
William 
Brown
1000

Instance
6000
Publica-
tions
Hawaii

Instance
5000
Quality
California

Instance
4000
Support
California

Instance
3000
Engineering
California

Instance
2000
Sales
California

Instance
1000
Marketing
California

Object Reference

variable
variable
variable

Class
variable
variable
variable
7-6  VisualWorks



Components of a Database Application
Database Application Class
The database application class holds resources that are used by all other 
classes in the application. In particular the database application class 
contains: 

• The specification for the application’s main window 

• The specification for the data model, which provides the instructions 
for mapping tables in a specific database to entity classes. 

• A lens session, which provides the connection to the database and 
uses the data model to manage consistency between the information 
in the database and the application.

A database application class is a subclass of LensMainApplication which is 
a subclass of ApplicationModel. You can create a database application 
class when you install a data model, just as you do for an Application 
Model when installing a canvas.

You may also choose Tools  Database  New Database Application ... to 
create it by hand.

Main Window 
The main window (sometimes called the Application Launcher) is the root 
window of the application. The main window begins the chain of 
interaction between windows and dialog boxes of the application.

When you create a database application class, VisualWorks creates an 
initial window specification called windowSpec. This window specification 
contains basic controls for managing database connections and 
transactions. Using simple menu picks under the Database menu, you can 
login and logout from a database, and commit or rollback transactions.

You can enhance this window by adding actions that control your 
application or open other windows. 

Data Model
The data model is the heart of a database application. An application’s 
data model defines the mapping between the object model and the 
database schema. The data model specifies which entity classes are 
Database Application Developer’s Guide  7-7



Developing a Database Application
included in the application and how those entity classes are mapped to 
database tables. It also specifies the relationships between classes and 
thus tables. Relationships may be 1:1 or 1:MANY. MANY:MANY 
relationships may be modeled as two1:MANY relationships with an 
intersection table and object in between.

The data model is not merely a graphical or logical representation of the 
mapping between database tables and entity classes; it completely 
specifies that mapping. Queries to the database are based on information 
stored in the data model. Furthermore, the lens session uses the data 
model at runtime to determine how to map the information in database 
tables into Smalltalk objects. For this reason, if a database schema 
changes, any data models built from that schema must be updated.

A database application uses one data model. In the simplest case, that 
data model is stored as a method called dataModelSpec in the database 
application class that uses it. A database application class, however, 
does not need to contain the data model that it uses. You can set the 
dataModelDesignator of a database application class to use a data model 
that is in another class. For example, you may choose to place all of your 
data models in a single database application class and reference those 
data models from other database application classes. 

Lens Session
At runtime, the mapping between rows of database tables and Smalltalk 
objects is done by the lens session. The lens session is created in the 
context of the application’s data model. It uses the properties in the data 
model to determine which database management system to use and how 
to map tables from that system to Smalltalk objects. In this way, the lens 
session acts as a layer or buffer between the relational database and the 
objects. The objects themselves are not dependent on the database. This 
makes it easy to port a database application to different databases. 

The lens session for a database application class is stored in the session 
variable of the class.

Data Form Classes
Data forms are the basic building blocks of database applications. Data 
forms present information from the database to application users and 
enable that information to be edited. Data forms are specialized 
application models that support viewing and manipulating rows of a 
database table through the lens session. 

A data form class contains:

• One or more window specifications (canvases)
7-8  VisualWorks



Components of a Database Application
• One or more query specifications

• Smalltalk methods to suit the particular set of utilities in a particular 
data model. These methods customize the inherited implementation 
to suit a particular application.

Data form classes focus on displaying and manipulating the instances of 
a single entity class. They are not, however, limited to a single entity. Data 
forms also can manipulate “rows” that are made up of instances of more 
than one entity. For example, they can show the results of a join across 
database tables.

Data forms are subclasses of LensDataManager, which is a subclass of 
ApplicationModel. 

Data Form Canvases
Data form canvases display information from the database. Data form 
canvases usually have controls that allow application users to navigate 
through the rows in a table and to create, view, update, and delete rows.

Data form canvases are similar to other canvases in that they are stored 
as window specification methods and can be edited using VisualWorks’ 
painting tools. Data form canvases differ from other canvases in that the 
widgets on them must include special validation and notification methods 
that ensure proper interaction with the lens session and with other data 
forms.

When you create a data form class, VisualWorks generates an initial 
canvas for it. The canvas is based on the template data form that you 
specify. Templates supplied with VisualWorks provide widgets with the 
validation and notification methods required. They also provide controls 
that enable the application user to:

• Execute a query associated with the data form

• Navigate through a set of objects (rows)

• Create and delete objects and edit the different variables

You can modify the initial canvas to suit your application’s needs. You 
can also create your own templates. For details see “Creating a Custom 
Data Form Template” on page 9-12.

A data form may contain one or more canvases, all of which are intended 
to display objects of the data form’s associated entity class. These 
canvases can display different attributes of the entity or display them in 
different ways.
Database Application Developer’s Guide  7-9



Developing a Database Application
Data form canvases can be linked together or combined to created entire 
application interfaces:

• A linked data form is one which is displayed in a separate window 
when the application user clicks on a button in another data form. 
The linked data form widget is a special-purpose action button with 
additional properties that describe how the data form is to behave.

• An embedded data form is one which is displayed embedded inside 
another data form. An embedded data form widget is a special-
purpose subcanvas with additional properties.

Linked and embedded data forms are arranged in a parent/child 
hierarchy, with the application’s main window being the topmost node. 
During operation, various events are communicated through this 
hierarchy. The events that are communicated include window closing, 
logging in and out of the database, and committing and rolling back 
transactions. This allows for easy development of master/detail drilldown 
applications as well as more complex applications.

Queries
A query specifies the rows of a table that will be loaded for viewing and 
editing in the data form. The query also specifies the order in which the 
rows will be presented within an application data set.

Queries exist in the context of a specific data model. Thus, data forms 
exist in the context of a specific data model. If the data model on which a 
data form is based is changed, then the data form may also need to be 
changed. In particular, the data form will need to be changed if the 
instance variables that it manipulates are changed. 

When you create a data form class, VisualWorks generates a default 
query for it. The default query is stored as a method called ownQuery and 
retrieves all of the rows from the table that is mapped to the data form’s 
entity or entities. It retrieves only the columns for which instance variables 
are mapped in the data model. If the data form manipulates more than 
one entity, the query uses the relationship between those entities when 
retrieving information from the database. 

Queries can be combined to narrow down the data set to the desired 
granularity. For example, the contents of the embedded and linked data 
forms are typically determined by combining the ownQuery of the 
embedded or linked data form with a restricting query that is defined in 
the parent data form. Putting the restricting query in the parent makes the 
child data form more reusable. Different parents can use the child data 
form in different ways, with different restricting queries.
7-10  VisualWorks



VisualWorks Database Tools
VisualWorks Database Tools
VisualWorks includes both tools and tool extensions to help you create 
applications that access relational databases. The database tools are 
introduced briefly here, and their use is explained in more detail as they 
are used in the following chapters.

Data Modeler
The Data Modeler is the central tool for creating and editing data models. 
Using the Data Modeler, you define the entity classes and their instance 
variables, and set data model properties.

The Data Modeler provides access to other database tools.

Mapping Tool
The Mapping Tool enables you to define the associations between the 
entity classes and database tables, and between instance variables and 
columns. From the Mapping Tool you can also create or alter tables in the 
database. (You cannot remove tables using the Mapping Tool. To remove 
a table you would use the Ad Hoc SQL Tool and issue a DROP TABLE 
SQL command.)

Database Tables Viewer
The Database Tables window displays a list of the tables in the database 
and their columns. This tool enables you to select tables in the database, 
and automatically model the tables and their relations in the data model.

Query Editor
The Query Editor is a form-based dialog that helps you create and edit 
the queries that retrieve information from the database. A Query 
Assistant module provides further assistance in selecting query 
elements.

Menu Query Editor
The Menu Query Editor enables you to edit the queries used to retrieve 
information from the database and use that information to define the 
choices on a menu.
Database Application Developer’s Guide  7-11



Developing a Database Application
Ad Hoc SQL Tool
The Ad Hoc SQL tool enables you to write SQL statements and send 
them directly to the database. This tool is accessed from the VisualWorks 
main window, and is useful for testing queries and performing certain 
database operations from VisualWorks.

Canvas Composer
The Canvas Composer sets properties that specify how the initial 
canvases for data forms are generated. 
7-12  VisualWorks



VisualWorks Database Tools
Tool Extensions 
VisualWorks’ painting tools contain several features that are specifically 
designed for database applications. 

To the Palette
The Palette includes two widgets for connecting data forms together as 
part of a larger application:

• Linked Data Form is a special action button that, when users click it, 
displays another data form in a separate window. 

• Embedded Data Form is a special subcanvas that displays another data 
form in the current window.

To the Canvas Tool
The Canvas Tool includes several commands that are especially useful 
when creating database applications:

• Tools  Reusable Data Form Components displays a window with widgets 
that are predefined for use in data forms, including buttons for 
navigating and editing data. These widgets can be copied into your 
data forms.

• Special  Define Menu as Query displays the Menu Query Editor, which 
enables you to define queries that retrieve information from the 
database and use that information as choices on a menu. The Define 
Menu as Query command is available when you have a menu button 
selected on the canvas.

• Special  Create Child Data Form creates another data form to be the 
child of the selected linked or embedded data form widget and 
displays the child’s canvas so that you can edit it.

• Special  Paint Child Data Form displays the canvas for the data form 
that is attached to the selected linked or embedded data form widget.

• Special  Browse Child Data Form displays a class browser with the 
Smalltalk code for the data form that is attached to the selected 
linked or embedded data form widget.
Database Application Developer’s Guide  7-13



Developing a Database Application
Lens Name Space Control
With the release of VisualWorks 5i, the addition of name spaces provides 
new flexibility and with it complexity to Lens modeling tasks.

When new classes are being created or existing classes selected, the 
system must know both the simple name (e.g., Customer) and name 
space (e.g., Lens) of the class. This class could then be referred to by its 
fully qualified name Lens.Customer.

To make using the Lens as simple as possible, the Name Space Control 
Tool was created. You can open the tool using LensNamespaceControl open 
or by menu option in Data Modeling Tool. Two lists are presented, Selected 
and Available, with arrows to move items back and forth between the lists.

The selected list will always contain at least the Smalltalk and Lens name 
spaces. What is in this list will control the behavior of all all Lens tools 
where a menu pick of name spaces is required. The choices are 
controlled and, for user convenience, the menu always defaults to the last 
user selection. Two selection memories are supported; one for modeling 
activity and another separate memory for application creation.

Name Space Options
1 You can do all your modeling in the Smalltalk name space.

Note:  Compatibility with versions prior to 5i is supported (i.e., an old 
Data Model can be loaded); however, once saved, it will be in a new 
form which cannot then be used in previous versions.

2 You can model and develop in the Smalltalk and/or Lens name space.

3 You can add your own name spaces. To use a new name space:

• It must be defined with imports to Smalltalk.*, Database.*, and 
Lens.*.

• The Lens Name Space Control must be used to move the new 
name space to the Selected List.
7-14  VisualWorks



8 
Building a Data Model

The data model is the heart of a database application. A data model 
stores information about the associations between database tables and 
VisualWorks classes. A database application has one data model, but 
may represent data from several tables.

Initially, you create a new, empty data model, and then you populate it 
with entity classes. There are two primary ways of creating entities for the 
data model. You can:

• Generate the entities from existing tables in the database.

• Create new entities and then generate tables from them.

The VisualWorks Object Lens provides a suite of tools that simplify the 
process of building a data model. In this chapter, we’ll introduce the three 
most useful tools: the Database Tables browser, the Data Modeler tool, 
and the Mapping tool.
Database Application Developer’s Guide 8-1



Building a Data Model
An Example Data Model
A Lens data model uses Smalltalk classes as entities, where each entity 
class represents either a database table or the class (type) of an element 
in a table row (the values in a column). Entity class names should follow 
the Smalltalk convention of beginning with an upper-case letter.

Each instance variable in an entity class represents a table column, and 
each should be named following the Smalltalk convention of beginning 
with a lower-case letter.

The discussion of the Lens tools in this chapter shows how to create a 
simple data model that is expressed using three classes: Customer, 
Employee, and Job.

For reference purposes, the example data model is included with the 
VisualWorks distribution in the form of a parcel named Lens-Example2. You 
may load this parcel and browse the completed classes, but do not load it 
if you intend to create the example entity classes from scratch.

In this data model, class Customer is defined as follows:

Smalltalk defineClass: #Customer
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'customerId zipCode areaCode phoneNumber 

creditLimit comments salespersonId'
imports: ''
category: 'Lens-Examples'

The VisualWorks Lens provides a way to associate SQL datatypes with 
the instance variables in an entity class. In this example data model, the 
instance variables of class Customer are typed as follows:

Name Type

customerId SerialNumber

zipCode String

areaCode String

phoneNumber String

creditLimit FixedPoint

comments String

salespersonId Employee
8-2  VisualWorks



An Example Data Model
Class Employee is defined as follows:

Smalltalk defineClass: #Employee
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'employeeId lastName firstName middleInitial 

hireDate salary commission jobId 
managerId'

imports: ''
category: 'Lens-Examples'

These types are associated with the instance variables of Employee:

Finally, class Job is defined as:

Smalltalk defineClass: #Job
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'jobId function'
imports: ''
category: 'Lens-Examples'

These types are associated with the instance variables of Job:

Name Type

employeeId SerialNumber

lastName String

firstName String

middleInitial String

hireDate Date

salary FixedPoint

commission String

jobId Job

managerId Employee

Name Type

jobId SerialNumber

function String
Database Application Developer’s Guide  8-3



Building a Data Model
Create a New Data Model
Before you define the mapping between a database table and the domain 
model, you must create the empty data model. This is true whether you 
are creating a data model from an existing table, or will create the table 
from the data model. 

To create a new, empty data model:

1 Open the Data Modeler, by selecting Tools  Database  Data Modeler 
in the VisualWorks main window.

2 In the Data Modeler, select Model  New... .

3 Enter the data model property information requested, and click OK.

VisualWorks prompts you for information about the database 
associated with the new data model. This information becomes the 
default information whenever the application accesses the database.

The initial values for data model properties come from your database 
settings in your VisualWorks image. To change these settings, 
choose Model  Properties... in the Data Modeler. 

Environment string formats vary between databases, and often use 
mappings. Refer to ““Environment Strings” on page 1-2” for more 
information.
8-4  VisualWorks



Defining Database Entities
Defining Database Entities

Define Entities from an Existing Table
If you are creating an application for an existing database table, 
VisualWorks can define data model entities from the table columns.

1 Open the Database Tables browser by choosing View  Database 
Tables in the Data Modeler.

If prompted, log in to the database.

2 Enter the name of the table to use, or a pattern for matching, and 
click Fetch.

Depending on your configuration, VisualWorks may prompt you to 
establish a database connection.

The Database Tables browser lists all matching database tables. 

3 Select the table you want to model, and click Create.

VisualWorks prompts you to select the name space from a list 
(initially Smalltalk and Lens) in which the named class will exist. You 
can add your own name space to contain your entity classes. The 
rule is that the name space must import both Smalltalk.* and Lens.*. 
(See “Lens Name Space Control” in chapter 2 for more details.)

4 Select the class category in which to create the entities. Enter a 
category name and click OK.
Database Application Developer’s Guide  8-5



Building a Data Model
Depending on how your database is set up, VisualWorks may prompt 
you for the primary key for the selected table. If so, specify a field.

VisualWorks creates an new entity class with instance variables for 
the data model and updates the Data Modeler to graphically show 
that entity.

The graphic is initially collapsed. Click on the arrow next to the class 
name to expand the graph, or choose Entity  Show References.

Instance variables are named to correspond to the columns in the 
database table, using Smalltalk naming conventions.

To view the mappings explicitly, select the entity and choose 
View  Mappings. The mappings are shown, together with additional 
information, in the Mapping tool.

Select an instance variable to view the details (Type) of that variable 
and the column to which it corresponds (shown in the upper part of 
the Mapping Tool).
8-6  VisualWorks



Defining Database Entities
Variables preceded by an equal sign (=) compose the primary key in 
the database. Note that the primary key cannot be nil, so Not Nil and 
Not Null are selected for the variable and column.

5 To add entity classes to the data model for additional tables, repeat 
steps 3 and 4, above.

6 When you are finished creating entity classes, install the data model 
specification, by selecting Model  Install in the Data Modeler tool.

Create Entities for a New Table
If you are creating an application for which there is no existing table, you 
can define your entity classes first and allow VisualWorks to create the 
table for you. Before you start, ensure that you have adequate database 
rights to modify an existing table, or create a new one.

To illustrate, we shall use the Lens Data Modeler and Mapping tools to 
define class Customer from the example data model (for details, see: “An 
Example Data Model” on page 8-2).

To define this entity class and use it to create a table:

1 Open the Data Modeler, and select Model  New... to create a new 
data model.

As necessary, specify the user name, password, and environment, 
and click OK.

2 To create a new entity class, choose Entity  Add..., enter a class 
name (e.g. Customer), select a name space, and click OK.

The new class appears in the Data Modeler, and the Lens may open 
a Mapping tool automatically.

3 To open the Mapping tool yourself, select the class Customer as it 
appears in the Data Modeler tool and choose View  Mappings.

Use the Mapping tool to define instance variables in the entity class 
Customer. Each instance variable represents a table column.

4 To define an entity instance variable, select the table entity class 
containing it (e.g., Customer), choose Variable  Add..., enter an 
instance variable name (e.g., customerId), and click OK.

This adds an instance variable to the table entity class. Note that 
entity instance variable names should follow the Smalltalk convention 
of beginning with a lower-case letter.
Database Application Developer’s Guide  8-7



Building a Data Model
In this example, the instance variable customerId is used to hold a 
primary key, and is thus referred to as a key variable.

Note:  Each Lens entity class must have one key variable.

Use the drop-down menu to select the variable’s Type. For the 
purposes of this example, select SerialNumber as the type, and click 
Not Nil.

5 Repeat the previous step to create all the instance variables you will 
need.

For the example class Customer, add the following instance variables 
(these in addition to customerId, already defined in the previous step):

The example data model uses the variable salespersonId to refer to an 
Employee, but this class has not yet been defined in the VisualWorks 
image. Thus, as a placeholder, you must define it as an Integer. Later, 
we shall change this to an Employee.

Note:  As a rule, when defining variables that reference other classes 
that have not yet been defined in the development image, you should 
use the Integer type.

6 As noted above, the variable customerId is intended for use as the 
table’s primary key. To indicate this in the data model, use the cursor 
to select the customerId inst var, and choose Select Single Column Key 
from the Entity menu.

Name Type

zipCode String

areaCode String

phoneNumber String

creditLimit FixedPoint

comments String

salespersonId Integer
8-8  VisualWorks



Defining Database Entities
The Mapping tool now displays the customerId variable with an = sign 
preceding its name, to indicate that this single column is the table's 
primary key. When finished, click OK.

Alternately, you may specify a primary key using the Key Editor. 
Select Entity  Edit Key... to open the Key Editor dialog, and then use 
the arrow buttons to select at least one variable as a key.

The Key Editor enables you to create a primary key that is composed 
of several columns strung together. If you choose to do this, each 
variable should be a String type so that all can be appended together 
without error. When appended, they must form a unique value, 
suitable for use as a primary key.

Note:  To control complexity, we discourage composite primary keys, 
and recommend using a single instance variable as the  key.
Database Application Developer’s Guide  8-9



Building a Data Model
7 To create the table definition, select the entity class in the Mapping 
tool (e.g., Customer), then select Entity  Specify Table.

The Mapping tool creates a default table and column mapping based 
on the entity classes and variables. The column definitions appear in 
the right side of the Mapping tool window. At this point, any 
VARCHAR fields can be modified to establish their proper length.

To rename a column, choose Variable  Rename Column.

To rename the table, choose Table  Rename.... Also set the column 
type, if necessary.

8 Now, create the table in the database by choosing Check With Database 
from the Table menu of the Mapping tool.

The Mapping tool compares the data model with the database and, 
because the table doesn’t exist, prompts you to confirm that you want 
to create it. Confirm creation. The tool then creates the table and 
reports that the specification and the database match.

9 To continue building the example data model, repeat steps 2 through 
8 for class Employee. For details on the instance variables and their 
assigned types, see: “An Example Data Model” on page 8-2.

10 Repeat steps 2 through 8 for class Job.

11 Once all three entity classes have been defined, they should appear 
in the Data Modeler tool. If not, select View  Update.

The foreign key references won't appear yet because we initially 
defined their columns using Integer types as placeholders. To specify 
8-10  VisualWorks



Defining Database Entities
that these are actually references to other entities (not just integers), 
we must change the types.

12 To specify the correct foreign key for an entity class (e.g., Customer), 
select it in the Data Modeler and choose Mappings from the View 
menu.

13 Select the variable that should be a foreign key, and change its type 
from Integer to the desired entity class.

For example, in in class Customer, select the salespersonId variable 
and change its type to Employee.

14 To propagate this change to the database, select Check With Database 
from the Table menu of the Mapping tool.

15 Repeat steps 12 through 14 for the jobId and managerId variables in 
class Employee. The former should be type Job and the latter type 
Employee.

16 To make all the links visible, select Infer All Foreign Key References from 
the Model menu, in the Data Modeler tool.
Database Application Developer’s Guide  8-11



Building a Data Model
Creating Relations Between Entities
When you first create entity classes in the Data Modeler, there are no 
relationships defined between the classes. The tables in the relational 
database, however, are related, by foreign key references to each other.

In most situations, when you create entity classes from database tables, 
the Data Modeler can read foreign key information from the database and 
set up foreign key references for you. In some cases, however, it cannot, 
and the foreign keys must be created explicitly.

Create Relations Automatically
To read foreign key references from the database:

1 In the Data Modeler, choose Model  Infer All Foreign Key References.

For each foreign key reference between the entities, the Data 
Modeler displays a confirming dialog box:

The dialog provides alternative namings for the foreign key variable, 
and you can edit a name to your own specification. In general, you 
will probably accept the indicated option. You may also Skip the 
reference, and so not define the foreign key.

2 Select or enter the foreign key name, and click Accept Reference to 
accept the relationship.

3 Repeat step 2 for each foreign key reference.
8-12  VisualWorks



Creating Relations Between Entities
4 To view the relations graphically, expand the entities in the data 
model:

Create Relations Manually
If the Data Modeler cannot read foreign key information, or if you have 
other reasons for wanting to specify the relations yourself, you can define 
the foreign keys in the data model manually.

1 In the Data Modeler, select an entity, then select View  Mappings.

2 Select a instance variable to be the foreign key and select the type for 
the key.

For foreign key references, the type should match the name of the 
entity class to which the variable refers. For instance, the managerId 
variable may refer to the Employee entity class, and so is assigned 
Employee as its type.

3 In the Data Modeler, update the display by choosing View  Update.

Expand the entity to graphically represent the relations.

4 Repeat step 2 to set up each foreign key reference.
Database Application Developer’s Guide  8-13



Building a Data Model
Check and Save the Data Model 
When you make any change to the data model, you must make sure that 
it still corresponds to the database and then save it.

1 In the Data Modeler, choose Model  Check With Database.

If the Data Modeler reports any discrepancies, you are presented 
with dialogs to select how to reconcile the differences, by updating 
either the data model or the database table. If you do not, when your 
application attempts to connect to the database for the first time, an 
error will occur.

2 Install the data model specification by choosing Model  Install.

VisualWorks prompts you for the name of the database application 
class and for a name for the data model specification. Provide the 
requested information and click OK.

For a new data model specification, you are also prompted for the 
name space, which can be any name space, and the superclass, 
which must be LensMainApplication.

VisualWorks updates the Data Modeler display to show the 
application class and specification name.

3 Close the Data Modeler.
8-14  VisualWorks



9 
Creating a Data Form

Data Forms are UI elements generated by the Lens toolset. A Data Form 
provides a simple way to create a basic database application, with a form 
as the user interface. You may use the data form as generated, or 
enhance it with additional widgets and design features. 

Even if you create your own GUI without using a generated data form, 
generating the form initially sets up elements for the Object Lens 
database interface that you can access from your application.

This chapter explores the following topics:

• Generating a Data Form

• Connecting a Data Form to an Application

• Testing an Application

• Replacing Input Fields with Other Widgets

• Creating a Custom Data Form Template

• Specifying an Aspect Path
Database Application Developer’s Guide 9-1



Creating a Data Form
Generating a Data Form
The first step in building any data form is to generate an initial framework 
for the data form using the VisualWorks toolset. To generate a data form, 
you create a new data form class, including the base query, and specify 
the initial window specification (or canvas) for the data form.

1 In the VisualWorks Launcher window, choose 
Tools  Database  New Data Form.... 

2 In the New Class dialog, enter the information requested to define the 
new data form class.

The information fields in this dialog are:

Name Space: Select the name space that contains your application.

Name: Enter a name for your data form class. The name must be 
unique in the selected name space. Using the name of an existing 
form, expecting an overwrite, won't work. If you wish to overwrite an 
existing form with the same name, use the System Browser to 
remove or rename the pre-existing class.

Superclass: The data form class must be a subclass of LensDataManager 
or one of its subclasses.
9-2  VisualWorks



Generating a Data Form
Category: Enter an appropriate category name, which may be new or 
already exist. 

Data Model: If the desired data model class and specification are not 
displayed, click the Browse button and locate them.

Entities: Add and select the entity class classes whose instances will 
be used in this data form. The entities specified serve as the domain 
model for this data form.

Tip:  click on the Browse button to select a data model, which 
populates the Add drop down menu.

To illustrate, we can create a data form for class Employee in the Lens-
Examples2 package. To do this, enter EmployeeInfo as the class name, 
cleck on Browse... and select LensExampleApplication as the data model 
class. Then, click on the Add drop down menu and select Employee.

3 Once all input fields have been set as desired, click OK.

VisualWorks generates the data form class and other methods, and 
then displays a dialog box form of the Canvas Composer:

4 In the Generate Canvas dialog, specify the canvas characteristics, then 
click OK.

The information fields you can set are:
Database Application Developer’s Guide  9-3



Creating a Data Form
Canvas: The selector for data form’s resource method. 

Template: Select a predefined canvas template to provide the layout 
for the new canvas. You can create your own templates, as 
described in “Specifying an Aspect Path” on page 9-13. The standard 
templates are:

• Multiple Row Editor enables creating, deleting, and changing 
multiple rows. It also includes controls for navigating among the 
rows in the table.

• Multiple Row Viewer includes navigation controls but does not 
include edit controls.

• Row Editor includes controls for creating, deleting, and changing a 
single row. It does not include controls for navigating among the 
rows in the table.

• Row Viewer includes only a control for retrieving information from 
the database; it does not include edit or navigation controls.

• Tabular Editor generates a data form with a dataset widget which 
enables users to view and edit a set of rows. It includes controls 
for creating, deleting, and changing rows. Navigation is done 
through the dataset.

• Tabular Viewer generates a data form with a dataset widget which 
enables users to view a set of rows from a database table. The 
tabular viewer does not allow editing. Navigation is done through 
the dataset.

Edit Policy determines when application users can edit information in 
the data form. 

• If Touched allows editing at all times. 

• When Told allows editing only after users formally begin editing by 
clicking an Edit button or similar operation.

• Never makes the data form unavailable for editing.

The graph at the bottom of the dialog box enables you to select the 
instance variables to be added to the data form.

For the purposes of this example, select the check box next to 
employee and click OK.
9-4  VisualWorks



Generating a Data Form
When you have competed this dialog and clicked OK, VisualWorks 
displays the generated canvas for the new data form.

5 (Optional) Edit and install the data form canvas.

The generated canvas has already been installed as a resource 
method in the class that represents the data form (in this example, 
class EmployeeInfo), and the supporting Smalltalk code has been 
generated. You may, however, edit the canvas further using the 
standard VisualWorks canvas painting features. If you do so, install 
the canvas again to save your changes.

Note:  If you want to browse your newly created classes, they are 
likely to be found in the package (none) in the browser, since they 
haven't been formally assigned to any particular package yet.

6 Test the data form

To see your data form work, click the Open button in the Canvas Tool, 
or select Open from the Edit menu. VisualWorks launches the 
application.

A Temporary Launcher stands in for a database application class, 
and provides login, commit, rollback, and logout database controls. It 
also provides a lens session, which manages interactions between 
the form and the database. 
Database Application Developer’s Guide  9-5



Creating a Data Form
To retrieve database data, click the Fetch button. 

Depending on the template you used, you can now browse and edit 
the data.

Note:  If you are using a data form with a tabular view, note that 
selecting a column (a DataSet widget) is accomplished by holding the 
<ALT> key while pressing the <Select> button on the mouse. For 
details on working with DataSets, see the GUI Developer’s Guide.

If you make changes, you can save them in the running application by 
clicking Accept. The lens session keeps track of the changes and enter 
them into the database when the transaction is committed. You can 
save your change to the database (and end the transaction) by 
clicking Commit.

When you are done testing the data form, select Database  Exit in the 
launcher. You may also want to close the canvas and painting tools.

Connecting a Data Form to an Application
Once your data form is built, you must connect it to your application. To 
connect data forms to main application windows or to other data forms, 
VisualWorks provides two special widgets:

• A linked data form widget is a special-purpose action button that 
when clicked displays another data form in a separate window. 

• An embedded data form widget is a special-purpose subcanvas that 
displays another data form in the same window as a parent data 
form.

The linked and embedded data form widgets support properties to set up 
methods in the parent data form that control the child data form.

1 Open your application main window spec in the canvas.

You can use the VisualWorks Resource Finder to select your 
application and its main canvas spec (usually windowSpec), and click 
Edit. The canvas opens on the application main window.

2 Add linked or embedded data form widget to your canvas, and open 
the Properties Tool on the widget.

3 On the Basic page of the Properties Tool:

• In the Class field, enter the class name of the data form to open 
9-6  VisualWorks



Testing an Application
when the user clicks this data form button.

• In the Label field, enter the button label.

4 Click Generate Properties.

VisualWorks fills in the rest of the basic properties based on 
information in the data form.

5 Apply the changes.

6 Click Define... to generate instance variables and accessor methods 
for the data form widget.

A dialog prompts you to verify that you want to define the widget’s 
model. Click OK.

7 Install the canvas to save your changes.

Testing an Application
To test your application, click the Open button in the Canvas Tool. Your 
application starts and displays its new main window, with the data form 
button you just defined.

Click the button to open the data form. Verify that the data form still works 
correctly. When you are satisfied that your application works correctly, 
return to the main application window and choose Database  Exit. 

Replacing Input Fields with Other Widgets
The standard data forms use input fields. In some cases, other 
VisualWorks widgets, such as menu buttons, are more useful. 

To replace an input field with another widget:

1 Open the data form specification in the canvas.

2 In the Canvas Tool, choose Tools  Reusable Data Form Components.
Database Application Developer’s Guide  9-7



Creating a Data Form
There are two groups of fields, one for data forms with edit policies 
set to If Touched (above) and one for data forms with edit policies set to 
When Told (below). Use the group that matches the edit policy that you 
set in the New Class dialog box when you first created the data form.

3 In the appropriate group, select the widget to use for data entry and 
display.

4 Close the Reusable Data Form Components window.

5 In the canvas, paste (edit  paste) one widget near each of the input 
fields you are replacing.

6 Open the Properties Tool on one of the input fields you are replacing, 
and another Properties Tool on the widget replacing it.

7 Copy the contents of the input field’s Aspect field to the new widget’s 
Aspect field.

The Aspect field uses a scripting language to specify the aspect path. 
For more information about aspect paths, see “Specifying an Aspect 
Path” on page 9-13. 

8 For a Menu Button widget, enter a method selector that returns the 
menu contents (in the Menu field).

9 Apply your changes. 
9-8  VisualWorks



Replacing Input Fields with Other Widgets
10 Delete the old input field.

11 For a Menu Button, select the new widget and choose 
Special  Define Menu as Query.

Use the Menu Query Editor to write queries that retrieve a set of 
objects that are to be available from a menu. Menu queries also 
specify which of the instance variables to display as labels on the 
menu.

The fields are:

Message Pattern: The selector for the query. Enter the query selector or, 
if the menu for the selector is already defined, VisualWorks generates 
the query message pattern for you. This field, if blank, will be 
generated automatically, in step 12. 

From: The name of the entity class to query for the menu values. 
Enter the entity class name, or click the radio button next to From and 
select the entity class in the graph space below (selecting is the 
recommended technique).

Labels: The instance variables of the entity class (i.e., From) from 
which to obtain the menu labels. Click the Labels radio button, and 
select the variable in the graph space below.

12 Choose Query  Generate Menu Accessor....

When prompted to confirm the accessor name, verify that it matches 
the name you entered for the Menu property of the menu button, and 
click OK.
Database Application Developer’s Guide  9-9



Creating a Data Form
To summarize, the entity type provided by the widget will be that of 
the entity class selected in the From field. Basically, the entity class 
you select via From provides the key, and the item specified via Labels 
is a descriptive text element of that entity. In the entity's database 
table, typical columns might be ID and DESCRIPTION.

VisualWorks generates an accessor method that returns the menu 
for the button. It also generates a message pattern to be used for the 
menu’s query method and inserts it in the Message Pattern field of the 
Menu Query Editor.

Note:  the menu only works correctly after the first data fetch, at 
which point selecting a menu item switches the data form into edit 
mode and the button can show the selected item.

13 Choose Query  Install....

When prompted to confirm that you want to install the query, click OK. 
Close the Menu Query Editor and return to the canvas for EmpInfoDF. 

14 Install... the canvas to save your changes. 

Embedding a Data Form
In some situations it is preferable to include the data form in another 
window rather than to open a new window. To embed a data form:

1 Open the window specification in the canvas, and arrange widgets to 
make room for the data form. 

2 Add an Embedded Data Form widget to the canvas and resize it. 

3 In the Properties tool, specify the data form Class, and click Generate 
Properties. 

Based on the properties of the data form you specify, VisualWorks 
supplies the rest of the basic properties. 

4 Apply your changes and install the canvas.

5 Click Define... to generate the widget’s model. Click OK to confirm 
generating the methods. 

6 If there is a circular foreign key reference in a table, VisualWorks 
prompts you to choose how to define the restricting query for the 
embedded form. Select an option and click OK, or click Cancel to 
create an alternative query.
9-10  VisualWorks



Replacing Input Fields with Other Widgets
If you click Cancel, VisualWorks creates a query that does not restrict 
the query of the child data form. You can edit the query using the 
query editor.

Editing a Query
If the generated queries provided by VisualWorks are not suitable, you 
can edit them using the Query Editor.

1 In the Resource Finder, select your data form definition and the query 
to edit, and click Edit.

Initially the Where clause does not specify any rows, so the query 
returns the full table with no restriction. The Where clause must begin 
with the variable in the child data form that matches the parent data 
form.

2 Expand the graph and select a variable to add it to the Where clause.

You can type the clause directly into the Where field, but because the 
query syntax is neither Smalltalk code nor an SQL statement, it’s 
generally best to use the tools in the Query Editor and Query 
Assistant to create queries.

3 Click the Query Assistant button, and select an operator to insert into 
the Where clause.
Database Application Developer’s Guide  9-11



Creating a Data Form
4 In the graph, find and select the target variable in the parent data 
form, to add it to the query.

The Where clause must end with the variable in the parent data form 
to be checked against the child data form. 

For more information about the Query Editor, see Chapter 11, 
“Writing Queries”.

5 Choose Query  Install.... VisualWorks displays a dialog box 
confirming that you want to install the query as empListViewerDFQuery.

6 Click OK.

Removing the Fetch Button
Because we are going to use this as part of another data form, we don’t 
need the Fetch button. To remove it, select it using the mouse and press 
<Delete>.

Creating a Custom Data Form Template
While the predefined set of templates suffices for many common 
applications, custom templates enable you to control the appearance and 
extend or restrict the behavior of default data forms. 

Template canvases can be stored in either the LensDataManager class or a 
subclass. For any particular subclass of LensDataManager, the Canvas 
Composer lists all templates that are available from that subclass and its 
superclasses.

The actions protocol of LensDataManager supports a variety of common 
data-form activities, such as advancing to the next row of data and 
accepting edits. By creating a custom subclass of LensDataManager, you 
can add to this set of generic actions. Your custom templates can then 
include action buttons for invoking these new actions. Then, when 
creating a new data form, you can name your custom class as the 
superclass rather than LensDataManager.

To create a custom template:

1 Create a canvas that contains the desired input fields, action buttons, 
menu buttons, and so on.

2 For each data widget (usually input fields or dataset columns), set the 
Aspect property to #row * | trigger. 
9-12  VisualWorks



Specifying an Aspect Path
The #row keyword indicates that the value of the field is to be derived 
from the current row of data. The asterisk is a wildcard that is 
replaced by the appropriate variable accessor in the generated form. 
The vertical bar indicates that the edited version of the value is to be 
buffered until it is explicitly accepted. trigger is the name of a variable 
that holds a value model used by the accept method to cause the 
model’s value to be replaced with the buffered value.

3 For each label widget, set the Label property to an asterisk when you 
want the table and column name to appear as the default label.

4 For each widget of any type, include an asterisk in the ID property to 
cause the table name and column name to be placed there in the 
generated ID. 

For example, an input field’s ID in a template is typically #*Field, which 
causes each generated ID to be assembled from the table name, 
column name, and the word Field.

5 To repeat a group of widgets throughout the available space in the 
form (as in the existing multipleRowEditorTemplate), group the widgets 
using the arrange  group command.

The resulting composite must have an ID property of #cellContents. 
The spacing between groups of widgets is controlled by a region 
widget that is placed behind the grouped widgets. This region must 
have an ID property of #cellBounds.

6 Install the completed canvas on the LensDataManager class, or a 
subclass, with the canvas name ending with “Template”.

The portion of the canvas name that precedes the word Template is 
broken into separate words and used to identify the template in the 
Canvas Composer’s Template menu.

Specifying an Aspect Path
When VisualWorks generates a data form, it automatically fills in the 
Aspect property for each widget in the data form with an aspect path. Each 
aspect path identifies a column within the row object being displayed in 
the data form.

The aspect path also causes the interface builder to create an 
appropriate aspect adaptor, to connect the widget to its part of the row. 
The path may also cause the builder to create an input buffer behind the 
widgets, by combining the aspect adaptor with a BufferedValueHolder. 
Database Application Developer’s Guide  9-13



Creating a Data Form
The generated aspect paths are usually sufficient. You only need to enter 
an aspect path if you are adding a widget that was not generated as part 
of the initial canvas or if you are changing the information displayed by a 
widget.

To specify an aspect path:

1 The first symbol in an aspect path is called the head, which is the 
name of the accessor method that returns the value model holding 
the domain object being adapted. The builder uses this value model 
as the subject channel. For widgets on data forms, the head is 
usually #row, which corresponds to a method that returns a value 
model that contains a row object. 

2 For widgets on data forms, follow the head with an at sign (@) and 
the name of an entity in the data form’s row. For example, #row @ 
empinfo specifies the empinfo entity in the row. Usually this name is 
the same as the name of the kind of entity used for that part of the 
row, but it is just an tag. The @ construct must appear in aspect paths 
for data forms even if the row of the data form has only a single 
component.

3 The remaining elements (up to but not including a vertical bar, if one 
exists) are the path. For the path, enter a series of aspects, each of 
which identifies the accessor and mutator messages to be used for 
retrieving and storing information at that step in the path. For 
example, #customer name would cause the #name message to be sent 
to the value of the customer model when the widget needs a value to 
display. If the widget were used to change the value, the message 
#name: would be sent to the value of the customer model, along with 
the new name. 

4 If you include a number in an aspect path, the messages #at: and 
#at:put: are used, and the number that was in the path is used as the 
index argument. For example, a path of #descriptors 2 causes the 
second element of the value of the descriptors model to be adapted. 
The value of descriptors might be, for example, an Array. Using a 
numeric element in an aspect path of course assumes that the value 
of the model is stable in the sense that the targeted information is 
always at a constant offset into the collection.

A path may be arbitrarily long, with each aspect being used to access 
or edit the result of the preceding step. 

5 The final aspect in the path determines the kind of aspect adaptor 
created by the builder:
9-14  VisualWorks



Specifying an Aspect Path
• If the aspect is a symbol, an instance of AspectAdaptor is created.

• If the aspect is a number, an instance of IndexedAdaptor is 
created. 

6 To store the edited information being displayed in a buffer until an 
explicit action inserts the information into the domain model, add a 
vertical bar and an additional name after the path. 

The final name is the message to be sent to the application model to 
retrieve the value model to be used as the trigger channel controlling 
the BufferedValueHolder that will be created by the builder. 
Automatically generated data forms all use a single trigger channel 
named #trigger.
Database Application Developer’s Guide  9-15



Creating a Data Form

9-16  VisualWorks



10 
Lens Programmatic API

The Lens API enables you to use Lens facilities to access a database 
independently of data forms. These techniques make use of the session 
object that is available from the Object Lens.

Connecting to a Database
Connecting to a database using the Lens involves establishing a session, 
initializing it with a username and password, and then asking the session 
to connect to the database. 

A generated database application   automatically prompts for the 
username and password and then connects a lens session, the first time 
database access is required by the application. 

When you want to provide a custom dialog for getting the login 
parameters, or to avoid presenting a dialog altogether, redefine the 
#databaseLogin method that is inherited from LensApplicationModel.

Using a Lens Session Connection from an Application
Sometimes the user interface for a generated database application is not 
needed, but the automatic connection facilities are still useful. For 
example, an application may need to perform one of the queries defined 
for the generated application, but doesn’t need the entire interface. In this 
situation, you can use the application’s default session-connecting 
mechanism without having to open the application. 
Database Application Developer’s Guide 10-1



Lens Programmatic API
1 Get or create an instance of the application.

2 To get a lens session from the application, send a session message to 
the application instance. 

The application prompts for the username and password, as usual, 
and returns a connected lens session.

3 When you are finished using the lens session, you can disconnect it 
by sending a #disconnect message to the session. Do not disconnect 
if you obtained the session from a running application, since that 
would disconnect the application as well.

| app session query rows |
"Create the application and get a connected session."
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].

"Use the session to perform a query."
query := app bookLoanMgr overdueBooksQuery.
query session: session.
rows := query values.

"Disconnect the session, if appropriate."
session disconnect.
^rows

Getting an Unconnected Session from a Data Model
You can obtain an unconnected lens session from a data model. This is 
useful, for example, if you need to initialize the session’s username and 
password someway other than with the default mechanism, and then 
connect it. 

If you do not set the username and password explicitly, a connection will 
be attempted using the defaults from the data model. Only after the 
defaults fail will the user be prompted for a username and password. This 
causes a delay while the default connection is attempted. To prevent the 
delay, detect the need for the username and password in the application. 

1 Get the default data model, by sending a dataModel message to the 
application class. 

To get a different data model, send dataModelAt: with the data model 
specification’s name as the argument.

2 Send getSession to the data model to get an unconnected lens 
session.
10-2  VisualWorks



Connecting to a Database
3 Set the lens session’s username and password to the desired values.

4 Connect the lens session to the database, by sending a connect 
message or to the session.

If the password is not stored with the session, send connect: with the 
password string instead.

If the username or password is not recognized, the user will be 
prompted for new login information.

5 When you are finished with the lens session, disconnect it if 
appropriate.

| dataModel session query rows usr pwd |

"Get the data model and an unconnected session."
dataModel := Database1Example dataModel.
session := dataModel getSession.
session isNil ifTrue: [^nil].

"Set the username and password."
usr := Dialog request: 'Enter username'.
pwd := Dialog request: 'Enter password'.
session username: usr.
session password: pwd.

"Connect to the database and test for success."
session connect.
session isDisconnected ifTrue: [^nil].

"Here, we use the session to perform a query."
query := BookLoanMgrExample new overdueBooksQuery.
query session: session.
rows := query values.

"Disconnect the session."
session disconnect.
^rows
Database Application Developer’s Guide  10-3



Lens Programmatic API
Performing a Query
A base query (called ownQuery) is designed implicitly for a data form when 
the data form is created. This query is performed when rows are fetched 
into the data form. In many applications, creating a data form is the only 
technique required for designing and performing a query.

Frequently, a custom query or special control is required, as described in 
the following sections.

Sending a Query to a Lens Session
When a data form is not needed, when a non-generated interface is being 
used, or when a customized query is needed, a query can be explicitly 
created and stored using the Query Editor. In the example, which involves 
selected columns from two tables, the row objects are arrays containing 
the selected values.

1 Create an instance of the application that supplies the data model.

2 Send a session message to the application to get a lens session.

3 Get the query by creating an instance of the child data form 
(bookLoanMgr) in which the query was installed and sending it the 
query message (overdueBooksQuery).

4 Give the lens session to the query (via session:).

5 Perform the query (via values), getting a collection of arrays (in this 
case) or other row objects.

6 Disconnect the lens session, if appropriate.

| app session query rows |

"Create the application and get its session."
app := Database1Example new.
session := app session.

"Get the query and give the session to it."
query := app bookLoanMgr overdueBooksQuery.
query session: session.
"Get a collection of row objects from the query."
rows := query values.

"Disconnect the session, if appropriate."
session disconnect.

^rows
10-4  VisualWorks



Performing a Query
Limiting the Number of Rows Fetched
By default, SQL queries fetch all rows satisfying the query. If the query 
returns a larger number of rows, you may need to restrict the number of 
rows fetched. There are several options.

For applications using the Lens, you can check the Fetch On Demand option 
for the query in the Query Editor. This causes rows to be fetched six at a 
time. The next six rows are fetched only when accessed.

You can also create a Create(*) query, that returns the number of rows that 
would be fetched by the query. If the number is too big, your application 
can prompt the user whether to fetch all the rows or to refine the query.

To fetch and examine rows one at a time, use an answer stream, as 
described in the next section, “Processing on Individual Rows from a 
Lens Session”.

Another approach is write the query with the proper qualifications. Since 
this is not supported by the Query Editor, you have to create the query 
manually. Refer to “Alternate SQL” on page 11-7 for more information.

Processing on Individual Rows from a Lens Session
The values message retrieves all rows satisfying the query, creating an 
entity instance for each row. For some purposes, it is better to process 
records in sequence, using a data stream. To do this, send an answer 
message to the session instead. You can then cycle through the rows by 
sending a next message to the stream. 

The example shows how to access each row of data separately, and how 
to process the returned rows when the query does not provide full 
objects. The example is a method within the Database1Example application, 
so it uses the lens session that is already available from the application, 
which is assumed to be open.

1 Send an answer message to a query to get a QueryStream.

2 Create a loop to process the stream, incrementing through the 
stream by sending a next message to the stream. 

The next row object (in this case, an array of selected column values) 
is returned.

3 After all desired rows have been processed, close the answer stream 
by sending a close message to it.
Database Application Developer’s Guide  10-5



Lens Programmatic API
reportOverdueBooks
"Create and display a report of all overdue books.

This method demonstrates how to execute a query
and process the returned rows one by one."

| query answerStream report nextRow name address title 
datedue penaltyPerDay daysOverdue fine fineString |

"Initialize the report stream."
report := '' writeStream.
report nextPutAll: 'Overdue books as of ', Date today printString.
report cr; cr.

"Get the query."
query := self overdueBooksQuery.

"Give the query the current session."
query session: self session.

"Execute the query and get the answer stream."
answerStream := query answer.

"Process each row of the answer stream."
[answerStream atEnd] whileFalse: [

nextRow := answerStream next.

"Unload the row array into temporary variables."
name := nextRow at: 1.
address := nextRow at: 2.
title := nextRow at: 3.
datedue := nextRow at: 4.

"Compute the overdue penalty based on the due date."
penaltyPerDay := 0.10s.
daysOverdue := Date today subtractDate: datedue asDate.
fine := daysOverdue * penaltyPerDay.
10-6  VisualWorks



Beginning and Ending Transactions
"Format the penalty amount as US dollars."
fineString := PrintConverter

print: fine
formattedBy: '$###.##'.

"Add an item to the report stream."
report nextPutAll: title; cr;

tab; nextPutAll: name; cr;
tab; nextPutAll: address; cr;
tab; print: daysOverdue; nextPutAll: ' days overdue, ';
nextPutAll: fineString; nextPutAll: ' penalty'; cr; cr].

"Close the answer stream."
answerStream close.

"Display the report."
report close.
Dialog warn: report contents

for: Dialog defaultParentWindow.

Beginning and Ending Transactions
When you are using an interface that was generated by VisualWorks’ 
database tools, database operations are accumulated in a single 
transaction until the Commit command is used. When you add, remove, or 
update objects programmatically, each such operation is a separate 
transaction by default. However, that policy is subject to change, so it’s a 
good idea to begin and end transactions explicitly.

The most important reason for beginning and ending transactions 
explicitly is when one database operation must be reversed if a related 
operation fails. In that situation, both operations must occur inside the 
same transaction. After all of the operations in a transaction have 
succeeded, the database changes are finalized by sending a commit 
message to the lens session. If any of the operations fails, the entire 
transaction can be reversed by sending rollback to the session.

• To begin a transaction, send begin to the lens session.

• To end a transaction by making its effects permanent in the database, 
send commit to the lens session.

• To end a transaction by removing its effects from the database, send 
rollback to the lens session.
Database Application Developer’s Guide  10-7



Lens Programmatic API
Adding Objects to the Database
For most applications, a data form can be used to add rows to a table. 
When a direct, programmatic means of adding a row is needed, the lens 
session can be asked to add an object.

To add an object, send an add: message to the lens session. The 
argument is the object to be added. It’s wise to perform this step inside an 
error-trapping block (handle:do:).

The object that is added can be any type of object that exists in the data 
model of the application that provides the lens session . The data model is 
consulted to identify the table in which the object belongs. 

Objects that are held by reference variables in the object are also added, 
called a “cascading add.” When a referenced object holds the original 
object, the cascade is interrupted, so circular references are broken 
automatically.

Applications that access a lens session directly in this way can intercept 
database errors that obstruct the transaction. In the example, the most 
general of database signals is used, to catch any type of database-
related error. The ExternalDatabaseConnection class also provides several 
specialized signals.

In a similar way, a collection of objects can be added by sending addAll: to 
the lens session instead of add:, with the collection as the argument.
10-8  VisualWorks



Removing an Object from the Database
| app session newBook |
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].

"Create the object to be added."
newBook := Bookexample new.
newBook

bookid: '2-3456-789-0';
title: 'Moby Dick';
author: 'Herman Melville'.

"Begin a transaction."
session begin.

"Add the object and detect any database error."
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [ :ex | 
session rollback.
^Dialog warn: '

The book could not be added.
This usually happens because the
book was added previously.
'

for: Dialog defaultParentWindow.]
do: [

session add: newBook.
session commit].

session disconnect.

Removing an Object from the Database
For most applications, a data form can be used to remove rows from a 
table. When a direct, programmatic means of removing a row is needed, 
a lens session can be asked to remove an object, as shown in the basic 
steps. The object that is removed can be any type of object that exists in 
the data model of the application that provides the lens session — the 
data model will be consulted to identify the table in which the object is to 
be found.

To remove an object, send a remove:ifAbsent: message to a connected 
lens session. The first argument is the object to be removed , which   must 
be obtained from the database (creating an object with the same primary 
key values is not sufficient). The second argument is a zero-argument 
Database Application Developer’s Guide  10-9



Lens Programmatic API
block that contains the actions to be performed when the object is not 
found. It's wise to perform this step inside an error-trapping block 
(handle:do:).

Applications that access a lens session directly in this way can intercept 
database errors that obstruct the transaction. In the example, the most 
general of database signals is used, to catch any type of database-
related error. The ExternalDatabaseConnection class also provides several 
specialized signals. The most common error, caused when the object is 
not in the table, can be handled via the block that is the second argument 
of the remove:ifAbsent: message. Often, this block is left empty, indicating 
that no special action is needed when the object is not found.

When the object to be removed is referenced by another object that has 
not yet been removed from the database, the removal fails. The 
rowIsReferencedErrorSignal supplied by the ExternalDatabaseConnection class 
can be used to detect that condition and react appropriately.

| app session query rows book |
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].

"Fetch a sample object to be removed."
query := app bookMgr ownQuery.
query session: session.
rows := query values.
rows isEmpty ifTrue: [^Dialog 

warn: 'There are no books.
Please use a Database1Example
to add one, then try removing again.'

for: Dialog defaultParentWindow].
book := rows first.
10-10  VisualWorks



Updating Objects in a Database
"Remove the object and detect any database error."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [ :ex | 
session rollback.
^Dialog warn: '

The book could not be removed.
This usually happens because the
table could not be accessed.
']

do: [
session 

remove: book
ifAbsent: [Dialog warn: 'The book does not exist.'].

session commit].

session disconnect.

Updating Objects in a Database
When an object in a database is modified, it is marked as being dirty. 
Updating the corresponding row in the database is known as posting the 
changes. In a generated interface, changes are posted to the database 
when the Accept button is clicked and are made permanent when the 
Commit command is used.

To update a row programmatically, modify the entity and send a 
postUpdates message to it. It’s wise to perform this step inside an error-
trapping block (handle:do:).

Updating the primary key of a row in a database is equivalent to removing 
and then re-adding the row, so references from other objects in the 
database can disrupt the update. See the preceding sections relating to 
adding and removing objects from the database for further discussion of 
this point.
Database Application Developer’s Guide  10-11



Lens Programmatic API
| app session book |
app := Database1Example new.
session := app session.
session isNil ifTrue: [^nil].

"Create the object to be added."
book := Bookexample new.
book

bookid: '4-5678-901-2';
title: 'Grapes of Wrath';
author: 'John Steinbeck'.

"Add the object, to ensure it exists for the update stage."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [ :ex | 
session rollback.
^Dialog 

warn: '
The book could not be added,
and not because it already exists.
This usually happens because the
table could not be accessed.'

for: Dialog defaultParentWindow]
do: [

"If the row already exists, ignore the error."
LensSession objectNotUniquelyIdentifiedSignal

handle: [ :ex | ex return]
do: [

session add: book.
session commit]].

"Modify the object (not the key field)."
book title: 'East of Eden'.
10-12  VisualWorks



Generating Sequence Numbers
"Update the object and detect any database error."
session begin.
ExternalDatabaseConnection externalDatabaseErrorSignal

handle: [ :ex | 
session rollback.
^Dialog warn: '

The book could not be updated.
This usually happens because the
table could not be accessed.
']

do: [
book postUpdates.
session commit].

session disconnect.

Posting Changes for Multiple Objects
When a lens session is committed, or when a query is executed, changes 
are posted for any dirtied object that is held by that session. Thus, 
sending commit to a session is a way of posting changes for more than 
one object at a time and avoids having to send postUpdates to each 
individual object. 

In the previous example, instead of sending postUpdates to the dirtied 
object, just send a commit message to the lens session.

Generating Sequence Numbers
A database application frequently relies on sequential numbers, for 
customer account numbers, product serial numbers, and other situations 
requiring a unique identifier. 

Some databases provide a sequence-number service and will 
automatically supply the next number in the sequence on demand. 
Others do not, but you can generate sequence numbers in a lens 
session.

Using Database Generated Sequence Numbers
Oracle provides a service for generating sequence numbers. To use this 
feature in your application:

1 In the Data Modeler’s Mapping Tool, assign a datatype of SerialNumber 
to the variable for the sequence number. Ensure the associated 
column in the table is numeric. 
Database Application Developer’s Guide  10-13



Lens Programmatic API
2 Choose Table Check With Database to verify consistency and to notify 
the database manager that sequence numbers need to be generated 
for the column.

3 In any data form that displays the serial number, set the field or 
column to Read Only, on the Details page of the Properties Tool.

4 (Optional) In the data manager class for any data form that creates 
the serial number, create a private method named endCreating.

This method must invoke the inherited endCreating method, then get 
the dataset widget and refresh the cell containing the serial number. 

endCreating
"In addition to the inherited actions, refresh
the cell in the DatasetView that contains the
newly generated (but not yet displayed) serial number."

| datasetView rowNum colNum |

"Be sure to invoke the inherited implementation first."
super endCreating.

"Get the dataset widget."
datasetView := (self builder componentAt: #rows) widget.

"Get the row and column of the new serial number.
In this case, the serial number is the second column,
because the first column is used for the row marker."
colNum := 2.
rowNum := self rows selectionIndex.

"Refresh the cell in the widget."
datasetView invalidateCellIndex: colNum @ rowNum.

"Give the newly created borrower to the parent window."
self parent borrower: self row value.

If you omit this step, the new serial number is not displayed until the 
data form is refreshed or the row is refetched. To refresh all of the 
displayed information displayed, send the message self refreshDisplay. 
To refetch the currently selected row and update the display, send the 
message self refreshRow. 
10-14  VisualWorks



Generating Sequence Numbers
Generating Sequence Numbers in Lens
Sybase databases do not have a service for generating sequence 
numbers. To generate a sequence in a Lens session: 

1 Create a table that includes a column for the sequence number.

The same table can include multiple sequences if, as in the example, 
each row in the table is keyed on the name of the table for which the 
sequence number is intended.

2 Use the Query Editor to generate a query for finding the admin object 
for the desired table. 

By using the table name as a parameter in the query, the same query 
can be used to look up the sequence number for any table.

3 In the database application class, redefine the databaseLogin method, 
which initializes the lens session. 

This method should invoke the inherited implementation. Then it gets 
the lens session, and installs the sequence number by sending a 
serialNumberGeneratorBlock: message to the session. The block takes 
one argument, an array containing the database application class 
name (a symbol), the variable name (string), the qualified table name 
(string) and the column name (string). The block is responsible for 
reading the sequence number from the admin table, incrementing the 
value in the table, and returning the original value. 

Ideally, to prevent locking the admin table longer than necessary, a 
second lens session or even a separate data model would be used to 
manage the admin table. In the example, for simplicity, we update the 
admin table in the main lens session.

databaseLogin
"In addition to the inherited action, equip the
session with a block for generating serial numbers
for the library card identifier."

"Be sure to invoke the inherited method first."
super databaseLogin.

"Test to make sure the session was initialized successfully."
session isNil ifTrue: [^session].
Database Application Developer’s Guide  10-15



Lens Programmatic API
"Set the session's block for generating serial numbers."
session 

serialNumberGeneratorBlock: [ :argsArray |
| table adminQuery nextNum answerStream admin |

"Get the tablename -- other args are not needed here."
table := argsArray at: 3.

"Get the query for finding the appropriate admin object."
adminQuery := self adminForTable: table.

"Perform the query and get the answer stream, if any."
adminQuery session: session.
answerStream := adminQuery answer.

answerStream atEnd

"Get the next number, then increment the table's copy."
ifFalse: [

admin := answerStream next.
answerStream close.
nextNum := admin nextnumber.
admin nextnumber: nextNum + 1.
admin postUpdates]

"If no rows were returned, advise the user."
ifTrue: [

nextNum := 0.
Dialog warn: '

A sequence number for this
borrower's library card could not be generated.
The Adminexample table needs a row with
tablename = ' , table

for: Dialog defaultParentWindow].

"The block returns the number to be assigned."
nextNum].

^session
10-16  VisualWorks



Reusing an Interface with a Different DBMS
Reusing an Interface with a Different DBMS
After you have generated an application for use with one database 
manager (such as Oracle7), you can reuse the same interface with a 
different database manager (such as Oracle6 or Sybase). 

1 Create similar data models and underlying tables for each of the 
target database managers. 

2 In the database application class, redefine the inherited dataModelAt: 
aDesignator method. 

Begin by invoking the inherited implementation. The method must 
return a two-element array containing the name of the class on which 
the desired data model is stored and the name of the desired data 
model’s specification method.

The example prompts the user to choose the database when the 
application is started, which determines which data model specification to 
use. A similar approach could be used to choose the database silently, 
based on an environment variable or similar setting.

The interface need not be modified, except where you have customized it 
to rely on DBMS-specific features such as sequence-number generation.

dataModelAt: aDesignator
"Give the user a choice between Oracle7 or Sybase."

| selector dsg |
selector := Dialog

choose: 'Which database?'
labels: (Array with: 'Oracle7' with: 'Sybase')
values: #(#dataModelSpec #sybaseDMSpec)
default: #dataModelSpec.

dsg := Array
with: #Database1Example
with: selector.

^super dataModelAt: dsg
Database Application Developer’s Guide  10-17



Lens Programmatic API
Basing a Data Form or Query on Multiple Tables
There are two ways to assemble data from multiple tables for a data form 
or a query: by navigating objects within the data model, and using a 
database join. 

Using object navigation, when creating a data form or a query, you add 
only one entity, relying on its data-model connections to the other tables. 
In the second approach, you add each entity separately and arrange for 
the join to occur in the database by setting the where clause of the query.

In general, the object-navigation approach is preferable when the set of 
referenced objects is much smaller than the number of rows that will be 
retrieved; otherwise, the database-join approach is more economical. 

Using Object Navigation
In the Canvas Composer (for a data form) or the Query Editor (for a 
query), add only the entity that has the other entities in its variables. In 
the example of employees and departments, add only the employees 
entity.

Using a Database Join
1 In the Canvas Composer or Query Editor, add each entity separately. 

In the example of employees and workstations, add both the 
employees entity and the workstations entity.

2 Use the Default Join supplied by the Query Assistant to create a Where 
clause that joins the entities via the references in the data model.

Responding to Transaction Events
Sometimes an application needs to intervene before a database 
transaction is begun, committed, or rolled back. The lens session 
provides for such intervention, by sending an update:with:from: message to 
its dependents before and after each type of transaction event. 

The first argument to the update:with:from message is one of the following:

#preBegin
#postBegin
#preCommit
#postCommit
#preRollback
#postRollback
10-18  VisualWorks



Responding to Transaction Events
The application can redefine update:with:from: to test for one or more of 
those symbols and respond appropriately. 

An application that is a subclass of LensMainApplication automatically 
enrolls itself as a dependent of its lens session . Applications based on 
other classes will need to create this dependency explicitly. 

There is an additional event mechanism that is used to inform the data 
forms within an application of certain important events, including logging 
in to or out of the database, closing one of the application’s windows, and 
committing or rolling back a transaction. These events are distributed by 
sending messages directly to the application and its data forms according 
to the parent-child hierarchy of the application, rather than by distributing 
update notifications to dependents. These events include:

#requestForCommit
#requestForRollback
#localRequestForWindowClose
#requestForLogout
#noticeOfLogin
#noticeOfCommit
#noticeOfRollback
#noticeOfLogout
#noticeOfWindowClose
#confirmationOfLogin
#confirmationOfCommit
#confirmationOfRollback
#confirmationOfLogout

For the request events, each recipient is expected to return either true or 
false. The aggregate value of the broadcast request will be true if all of the 
recipients return true, and false otherwise. The event for window close is 
named localRequestForWindowClose because 
ApplicationStandardSystemControllers already send the message 
requestForWindowClose to their models. The notice events are sent before 
the fact of the actual event; the confirmation events are sent afterwards. 
Except for the window close events, which are limited to the application 
and/or data forms inside the window being closed, the events are 
distributed to all nodes of the hierarchy, including the application itself.

These events already play important roles in the functioning of 
LensMainApplication and LensDataManager, so subclasses of these classes 
should be careful about overriding the definitions of these methods. 
Unless you intend to completely replace the current event service, be 
sure that your method sends the event message to super.
Database Application Developer’s Guide  10-19



Lens Programmatic API
Accepting Edits Automatically at Commit Time
In a generated application, when a persistent object has been added, 
removed, or changed by your lens session, other users of the database 
are prevented from changing that data. This is known as locking the data. 
However, during the period while a persistent object is still being edited 
(before the edits are accepted), you can choose to lock the data or not. 
This locking policy (Lock on Accept or Lock on Edit) is set when you create the 
database application class and can be overridden for an embedded or 
linked data form using the Connection properties.

To maintain data integrity, a Lock on Edit policy is preferred because it 
keeps one user from undoing another user’s changes unknowingly. 
However, when it is more important to minimize the chances of a user 
locking the data during a protracted edit (or while going out to lunch), a 
Lock on Accept policy is preferable. This choice is complicated by the fact 
that some database managers lock not only the affected rows in the 
database, but entire pages of unaffected neighboring data. When that is 
the case, a Lock on Accept policy is even more attractive.

A lock can only be released when the enclosing transaction is ended, 
either via commit or rollback. There is no way to selectively unlock an 
object once it has been locked.

An object can be explicitly locked by sending a lock message to it.

If some of the edits have not yet been accepted when the ObjectLens is 
committed, the user is warned via a dialog that offers the choice of 
discarding the edits or cancelling the commit. This prevents long-lived 
locks from occurring accidentally as a result of the user neglecting to 
accept one or more edits. This also helps to guarantee that related 
changes are made at the same time. Your application can intervene to 
automatically accept any unaccepted edits at commit time. 

Verifying Before Committing
A generated data form can redefine the noticeOfCommit method to prompt 
the user for permission to accept the edits. A noticeOfCommit message is 
sent to each data form by a generated application before the Commit 
command is executed, for just this purpose. 

1 In the class on which you installed the data form that is to accept-on-
commit, create a noticeOfCommit method.

2 In the method, test whether an edit is in progress by sending an 
isEditing message to the data form (self).
10-20  VisualWorks



Disconnecting and Reconnecting
3 (Optional) If an edit is in progress, prompt the user for permission to 
accept the edits. 

4 If permission is granted, accept the edits by sending accept to the 
data form (self).

noticeOfCommit
"This message is sent when the session's transaction
is about to be committed. Here, we use it as an opportunity
to prompt the user for permission to accept any pending
edits so they will be included in the commit."

| confirmed |
self isEditing

ifTrue: [
confirmed := Dialog

confirm: 'Book-loan edits are in progress -- OK to Accept?'
initialAnswer: true.

confirmed ifTrue: [self accept]].

Disconnecting and Reconnecting
When a VisualWorks image is saved, every lens session must end any 
active transactions. The lens session gives its dependent application an 
opportunity to make the decision whether to commit or rollback the 
transaction. It does so by sending an update:with:from: message to its 
dependents (by default, the database application is the only dependent), 
with #terminateTransaction as the first argument.

An application that is not a subclass of LensMainApplication should arrange 
to receive the update:with:from: message by making itself a dependent of 
the lens session, by sending addDependent:.

When a VisualWorks image is restarted, an update:with:from: message 
with #install as its first argument is sent to dependents of the session. The 
application typically resumes the lens session (via resume or resume:, 
depending on whether the password is stored in the session).
Database Application Developer’s Guide  10-21



Lens Programmatic API
Maintaining Collections
In many situations, a one-to-many relationship exists, such as one 
customer having many orders. It is often convenient to store the 
customer’s orders as a collection held by the customer object. There are 
two ways to accomplish this.

Creating a Child Set Via Foreign-Key References
The first method relies on a preliminary implementation of lens 
automation that takes advantage of foreign-key references in the 
database. These foreign-key references are reflected as a collection 
automatically. 

The customer-orders example arranges for the lens to maintain a 
collection of orders in an unmapped instance variable of the customer, 
using what is called a child set. If the customer key of an order object is 
changed, the order is removed from the old customer’s child set of orders 
and added to the new customer’s child set automatically.

It is important to note that because the collection of orders is a simple 
IdentitySet, sending messages to it directly to add or remove items has no 
effect on the lens or the state of your data. Also, while the collection does 
not map to a single row in the database, it is a persistent object and can 
be converted to a proxy by the ObjectLens, as when a transaction is 
rolled back. For that reason, your application should be careful when 
making direct references to the child set, because an active ObjectLens 
session is needed to refetch its contents.

1 Evaluate the following in a workspace to add a check box to the 
Mapping Tool for specifying that the selected variable is to hold a 
collection:

LensEditor enableChildSets
If any of your data models use this feature, be sure to file evaluate 
this expression in any image in which you will be working with those 
data models.

2 In the Data Modeler, select the entity that represents an element in 
the collection (in the example discussed above, the Order entity). 

3 In the Mapping Tool, set the type of the foreign-key variable 
(customer) to be the containing entity (Customer).

4 In the Data Modeler, select the containing entity (Customer).
10-22  VisualWorks



Maintaining Collections
5 In the Mapping Tool, add a variable for holding the collection (orders) 
and set its type to the contained entity (Order).

6 Turn on the Collection check box for the orders variable.

Maintaining a Collection With a Query
The second method uses a query to fetch the customer’s orders. This 
approach places more responsibility on the application, because 
additions and removals are not made automatically. This approach has 
the advantage of flexibility. For example, the query could be constructed 
such that only orders after a given date are collected from the database, 
and the orders could be sorted by the query.

1 Use the Query Editor to create a query that retrieves the contained 
objects (orders). The query can use parameters for customizing it 
dynamically. Store the query on the containing class (Customer).

2 In the containing class (Customer), create an accessing method for 
the collection (orders). This method is responsible for performing the 
query and, if desired, storing the result in an instance variable as a 
cache.

orders

"If the cache is empty, retrieve the collection from the database."
orders isNil

ifTrue: [orders := 
self ordersQuery session: self session) values].

^orders
Database Application Developer’s Guide  10-23



Lens Programmatic API

10-24  VisualWorks



11 
Writing Queries

Queries for use by the Object Lens are created and edited using the 
Query Editor. The editor simplifies the task of writing queries by 
presenting the syntactical elements in a dialog.

Editing a Query
To open the Query Editor, choose View  Query Editor in the Data Modeler.

You edit a query by selecting options and completing fields, as described 
in “Query Syntax” on page 11-3.
Database Application Developer’s Guide 11-1



Writing Queries
As an additional help in completing the fields, the Query Editor includes 
the Query Assistant. To open the assistant, click the Query Assistant button.

The Query Assistant’s buttons and menu items are activated and 
deactivated according to which field is currently selected in the Query 
Editor. Only legitimate entries for that field are enabled. When you select 
an item, it is inserted at the current cursor position in the editor.

While the assistant only shows legitimate entries for a field, you are still 
responsible for selecting items to form a legitimate query. The assistant 
does not guarantee a correct query.
11-2  VisualWorks



Query Syntax
Query Syntax
The Query Editor enables you to specify the query in terms of the 
following parts:

• From specifies the objects from which the result set is taken. This is 
usually one entity, but it may be more.

• Select specifies the results expected from the query: full objects, 
single columns, or combinations of them.

• Where specifies which objects (rows in the database) are selected.

• Order By specifies the ordering criteria by which the results are sorted.

• Group By specifies the way the results are grouped for computing 
functions, provided Select contains aggregate functions.

• Distinct specifies whether or not the result should contain duplicate 
results.

• Lock Result specifies whether or not the objects fetched by the query 
should be locked. Locking is performed by using the underlying 
database mechanisms.

• Unique specifies that only one row is expected to return.

• Fetch On Demand instructs the resulting collection to lazily fetch 
accessed rows from the database.

The following sections provide detailed explanations for the From, Select, 
Where, Order By, and Group By fields of the Query Editor.

“From” Clause
The From field is not directly editable. To add entities, select from the list 
that appears in the lower right-hand side of the editor. This list appears 
only when the radio button on the left side of the From field is selected. To 
remove entities, click the eraser button in the upper right-hand side of the 
Query Editor. Clicking the eraser button removes all entities.

An entity can appear in the list more than once. In this case, they will be 
numbered consecutively. This is useful when performing queries that join 
a table with itself.

A data form’s ownQuery and any restricting queries have the From field 
disabled. VisualWorks database application framework requires the 
queries to remain consistent with the definitions of the data forms. This 
consistency is enforced by the Query Editor.
Database Application Developer’s Guide  11-3



Writing Queries
“Select” Clause
The result from a query is a collection of objects. Each object in the 
collection may be one of three types:

• A mapped object

• A value from an instance variable of a mapped object, or a result of 
applied functions

• An array containing elements from the above two types

If the Full Objects field is checked, then the result collection is formed from 
objects that are instances of the entities found in the From expression. If 
only one entity is found in the From field, then the result is a collection of 
objects from that entity. If more than one entity is found, then the result 
will be a collection of arrays. Each array contains mapped objects of the 
given entities in the same order as the entities are found in the From field.

If Full Objects is not checked, then an expression can be entered. The 
examples included in this section describe the expressions that can be 
used.

Example 1
The result from the following Select value is a collection of objects from the 
Tm2order entity:

Select: tm2order

Example 2
The result from the following Select value is a collection of arrays. Each 
array is composed of two objects: Tm2order and Tm2customer. Note that it 
is up to the Where clause to determine how the pairs are constructed. In 
this example, if an empty Where clause was used the result would be all 
the possible pairs between the tm2orders and tm2customers (the cartesian 
product), which is probably not the desired result.

Select: tm2order, tm2customer

Example 3
The result of the following Select value is a collection of arrays. Each array 
is composed of three values: two strings and a number. The strings are 
the first and last name of a customer, while the number is the total from 
an order. Again, the Where clause is responsible for making sure that the 
total corresponds to an order. The order belongs to the customer that 
appears in the same array in the result collection.

Select: tm2customer first, tm2customer last, tm2order total
11-4  VisualWorks



Query Syntax
Example 4
The result of the following Select value is a collection of the order totals to 
the power of 2.

Select: tm2order total power: 2

Example 5
The result of the following Select value is a collection with the sum of the 
group order totals. The grouping is determined by the Group By expression.

Select: tm2order total Sum

“Where” Clause
Where is the most important of the expressions in the Query Editor. 
Expressions must be valid Smalltalk syntax expressions that result in true, 
false, or a Boolean expression involving mapped entities.

The expressions are evaluated in the context of the class and method 
where they are installed. Therefore, instance variables of the class can be 
used as well as parameters to the method itself. To specify parameters to 
the method, edit the Message Pattern field to include them.

Example 1
The following example has the same effect as leaving the Where clause 
empty. All the objects specified by the From and Select clauses will be 
returned.

Where: true

Example 2
The following example results in an empty collection.

Where: false

Example 3
In the following example, the result is all the orders whose total is larger 
than 100.

Where: tm2order total > 100

Example 4
For this example, a message pattern is used as follows: 

ordersHigherThan: limit. 
The result includes all the orders with a total higher than the given limit. If 
the limit is nil, then all the orders are returned.
Database Application Developer’s Guide  11-5



Writing Queries
Where: limit isNil 
ifTrue: [true]
ifFalse: [tm2order total > limit]

Example 5
In the following example, customerTemplate is an instance variable of the 
class where the query is installed and is used as a template. The query 
returns all the objects that match the template. A template for an entity is 
a non-persistent instance of the corresponding class. This object will be 
compared, field by field, with the objects in the database. Only those 
matching the fields will be retrieved. To indicate fields that are not 
interesting for the comparison, the value in the template should be: Object 
new. Numeric, Timestamp, and similar fields are compared using exact 
matching. String fields may contain wildcards.

Where: tm2customer isLike: customerTemplate
For example, the following template extracts all the customers whose 
name start with ‘A’:

| dontCare |
dontCare := Object new.
customerTemplate := Tm2customer new.
customerTemplate first: dontCare;

id: dontCare;
address: dontCare;
"etc"
last: 'A*'.

Example 6
If you wanted to extract all of the customers that live in a certain area 
code, use the following:

customerTemplate zip: 94086.

Example 7
Assuming From: tm2order tm2customer, the following expression fetches all 
the pairs of tm2order and tm2customer where the order belongs to the 
customer.

Where: tm2order customer = tm2customer
11-6  VisualWorks



Alternate SQL
Example 8
In the following expression, assume myCustomer is an instance variable of 
the class where the query is installed. When the query is performed, the 
value of myCustomer must be an instance of tm2customer that is mapped 
to the database. The query will return all the orders for a given customer.

Where: tm2order customer = myCustomer

“Order By” Clause
Order By is built in a similar way as the Answer part is. More than one 
sorting criterion can be used.

Order By: tm2order customer cid, tm2order total descending
The above example results in a collection sorted by the customer id. 
Each customer will be ordered by the descending value of totals.

“Group By” Clause
Group By is built similarly to the Order By expressions.

Alternate SQL
In some situations it is necessary to override the SQL code that is 
generated by the ObjectLens. These situations include performance 
tuning and complex queries. 

You can explicitly provide the SQL for a lens query to execute, by either 
editing the method defining the query operation or by setting the query 
object's alternateSQL property programmatically. 

Editing Generated SQL
1 Define a query that selects the desired table columns and install it. 

The lens mechanism will map the answer set returned by the 
alternate SQL statement to the same number and type of columns as 
the lens query is constructed to expect. 

For example, if an Order entity contains four variables corresponding 
to four columns in the database, and the Order entity is selected in 
the lens query for mapping to full objects, then the alternate SQL 
statement must also return four columns of the same type and in the 
same sequence.
Database Application Developer’s Guide  11-7



Writing Queries
2 Manually edit the lens query method.

Editing should be delayed until the final phase of application delivery, 
because it will be overwritten any time it is edited and installed using 
the query editor.

Programmatically Modifying SQL
Programmatic modification must occur after an instance of the lens query 
is created but before its execution by methods such as performQuery or 
performQueryWithParent. This applies to cases where bindVariables are to 
be replaced with constants before the SQL string is sent to the database 
server.

The custom SQL code must comply with the following conventions when 
mapping objects defined in the data modeler:

• It must return column values for all variables mapped in the data 
modeler for this entity or table.

• The columns must be returned in the order these variables appear in 
the data model. Any variation from this order will generate severe 
errors.

One way of avoiding errors in this process is to enable database tracing 
and copy the generated column names from the transcript to the method 
editor. To enable tracing, send the message toggleTracing to the 
ExternalDatabaseConnection class.

Custom SQL code may be either a valid SQL SELECT statement or the 
name of a Sybase (CTLib) stored SQL procedure. Oracle stored 
procedures are not supported by the ObjectLens, but may be invoked 
using the Oracle EXDI. 

Following is an example of an ownQuery that has been edited manually. 
The alternateSQL: statement defines the alternate SQL code. This line 
must be inserted exactly as shown, with custom code defined in the 
string.
11-8  VisualWorks



Alternate SQL
ownQuery
"This method was generated by UIDefiner. Any edits made
here will be lost if the class is regenerated anew."

"QueryEditor new openOnClass: self andSelector: #ownQuery"

<resource: #query>
| _qo |
_qo := LensQuery new.
_qo description: 'ownQuery'.
_qo arrayContainerNames: #((#order #Order) ).
_qo mode: #own.
_qo alternateSQL: 'Select Order.Number, Order.Amount, 

Order.Date, Order.Product from Order where 
Order.Amount > 1000'.

^_qo
The next example shows how a lens query can be changed 
programmatically when it is being created. It provides two methods for 
dataform classes:

• buildSQL, which is used to generate the SQL string

• an altered version of the above ownQuery, which now uses buildSQL 
while generating the query operation.

Notice how the contents of the aspect likeVar, which is assumed to have 
been entered into the user interface and is of type string, is put into 
another string with the help of the printString message.
Database Application Developer’s Guide  11-9



Writing Queries
buildSQL
"Generate the desired SQL string based on values in
some of the variables."

^'Select table.column1, table.column2, table.column3
from user.table where table.column1 like ' ,
self likeVar value printString

 ownQuery
"This method was generated by UIDefiner. Any edits made
here will be lost if the class is regenerated anew."

"QueryEditor new openOnClass: self andSelector: #ownQuery"

<resource: #query>
| _qo |
_qo := LensQuery new.
_qo description: 'ownQuery'.
_qo arrayContainerNames: #((#order #Order) ).
_qo mode: #own.
_qo alternateSQL: self buildSQL.

 ^_qo

Constants in the Object Lens
Queries in the ObjectLens always assume bind variables when they 
encounter constants. This architecture allows for the reuse of queries 
once they have been prepared for execution. 

Unfortunately, queries prepared this way do not take advantage of the 
Oracle optimizer, and there may be significant differences in terms of the 
code path that Oracle servers execute. For this reason, you may want to 
generate SQL strings that contain constants.

Performance gains per query execution may be on the order of several 
minutes for larger databases.
11-10  VisualWorks



Index
A
action buttons, removing 9-12
Ad Hoc SQL tool 1-4, 7-12
adding

objects to database 10-8
Adminexample 1-7
answer set 2-10

cancelling 2-21
describing 2-14
handling multiple 2-12
using an output template 2-18

answer stream 2-15
application models 7-3
ApplicationModel 7-7, 7-9
aspect paths 9-8, 9-13

B
base query (of data forms) 10-4
begin transaction 10-7
Bookexample 1-7
Bookloanexample 1-7
Borrowerexample 1-7
Browse Child Data Form (Canvas Tool 

command) 7-13
buffers and adaptors 2-14

C
Canvas Composer tool 7-12, 9-3
Canvas Tool 9-5, 9-7

commands
Browse Child Data Form 7-13
Create Child Data Form 7-13
Define Menu as Query 7-13
Paint Child Data Form 7-13
Reusable Data Form Components 

7-13
canvases 7-8, 9-3

predefined
tabular viewer 9-4

cellBounds 9-13
cellContents 9-13
changing

data models 8-14
child data forms 7-10

class
mapping to relational datatype 2-3

close (message) 10-5
collections 10-22
commit (message) 10-13
commit transaction 10-7
confirmationOfCommit 10-19
confirmationOfLogin 10-19
confirmationOfLogout 10-19
confirmationOfRollback 10-19
connect string 2-4
connecting

data forms to applications 9-6
to a database 10-1

connection coordinator 2-22
Create Child Data Form (Canvas Tool 

command) 7-13
creating

canvases 9-3

D
data

for database example 1-7
from multiple tables 10-18
storage and processing 7-3

Data Form, defined 9-1
data forms

base query 10-4
canvases 7-9
classes 7-5, 7-8
connecting to applications 9-6
embedded 7-10
linked 7-10
parents and children 7-10
using data from multiple tables 10-18
widgets for 9-6

data integrity 10-20
Data Modeler tool 7-11, 8-5, 8-12, 8-14
data models 7-7

changing 8-14
choosing at runtime 10-17
installing 8-14
saving 8-14

database
accessing 2-1
Database Application Developer’s Guide Index-1



connecting to 2-2, 2-4
controlling transactions 2-21–2-22
default connection 2-6
disconnecting from 2-7
interaction with Smalltalk 2-3
mapping datatype to Smalltalk class 2-3
reconnecting a restarted image 2-28
relational datatypes 2-3
saving connected image 2-27
types of errors 2-25
See also transaction

database application classes 7-5
database applications 7-3

data form connections 9-6
reusing with a different DBMS 10-17
starting 9-7

database extensions to VisualWorks 7-13
database joins 7-9, 10-18
database login defaults, setting 1-2
database profiles, setting 1-2
Database Tables tool 7-11
database transactions 10-7

responding to 10-18
databases

adding objects 10-8
connecting to 10-1
locking 10-20
removing objects 10-9
sequential numbers 10-13

dataModelDesignator 7-8, 10-17
dataModelSpec 7-8
DataSet widgets, using 9-6
defaults, setting database login 1-2
Define Menu as Query (Canvas Tool 

command) 7-13
direct object references 7-6
dirty objects 10-11
domain models 7-3
DSN (Data Source Name), using 5-3

E
Embedded Data Form (Palette action button) 

7-13
embedded data form widget 7-10, 9-6, 9-10
embedded data forms 7-10
endCreating 10-14
entity classes 7-5
environment string 2-4
environment, setting default 2-5
error handling, database signals for 10-8
events in database transactions 10-18

exception
handling 2-25–2-27

execution
error 2-25
tracing the flow 2-23

External Database Interface
classes, defined 2-2

ExternalDatabaseAnswerStream 10-5
ExternalDatabaseFramework 10-8

F
foreign key references 7-6, 8-12

G
generating sequential numbers 10-13

H
handle:do: 10-8

I
I/O 7-3
image

restarting and reconnecting to database 
2-28

saving when connected to database 
2-27

information models 7-3
inserting rows in database 10-8
install aspect 10-21
installing data models 8-14
instance variables 7-5
integrity of data 10-20
interfaces, reusing with different DBMS 

10-17
isEditing 10-20

J
joined query or data form 10-18
joins 7-9

K
key references, foreign 7-6

L
lens sessions 7-7, 7-8

disconnecting from and reconnecting to 
10-21

LensDataManager 7-9
LensMainApplication 7-7
Linked Data Form (Palette action button) 

7-13
linked data form widget 7-10, 9-6
localRequestForWindowClose 10-19
Lock on Accept 10-20
Index-2  VisualWorks



Lock on Edit 10-20
lock, database 10-20
login defaults, database 1-2

M
main windows 7-7
Mapping Tool 7-11
Menu Query Editor tool 7-11
models

application 7-3
domain 7-3

N
name (accessor method) 7-6
name: (mutator method) 7-6
named input binding 2-9
next (message) 10-5
noticeOfCommit 10-19, 10-20
noticeOfLogin 10-19
noticeOfLogout 10-19
noticeOfRollback 10-19
noticeOfWindowClose 10-19
numbers, sequential 10-13

O
object references, direct 7-6
ObjectLens 7-3
output template 2-18

defined 2-18
reusing 2-20
skipping a variable 2-18

overdueBooksQuery 10-4
ownQuery method 7-10

P
Paint Child Data Form (Canvas Tool 

commands) 7-13
parameter 2-8

binding NULL 2-9
binding to a name 2-9
defined 2-8

parent data forms 7-10
password, database 10-1
password, securing 2-4
paths, in aspect properties 9-13
performance tuning 2-20
performing a query 10-4
placeholder. See parameter
postBegin 10-18
postCommit 10-18
postRollback 10-18
preBegin 10-18
preCommit 10-18

preRollback 10-18

Q
queries 7-10

performing 10-4
restricting 7-10

query
allocating adaptors 2-14
allocating buffers 2-14
asynchronous execution 2-13
cancelling answer set 2-21
checking execution status 2-13
describing an answer set 2-14
executing 2-8
getting an answer 2-10, 2-12
handling multiple answer sets 2-12
parameters 2-8
processing an answer stream 2-15
raising an exception 2-10
testing row count 2-13
using an output template 2-18
viewing results 2-7

Query Editor tool 7-11, 10-4
query variable. See parameter

R
removing

action buttons 9-12
objects from database 10-9

requestForCommit 10-19
requestForLogout 10-19
requestForRollback 10-19
Resource Finder tool 9-11
resource, releasing 2-22
resources 7-7
restricting queries 7-10
resume 10-21
Reusable Data Form Components (Canvas 

Tool command) 7-13
reusing your interfaces 10-17
rollback transaction 10-7
root windows 7-7

S
sample data for database example 1-7
saving data models 8-14
sequential numbers, generating 10-13
Serial number datatype 10-13
session

defined 2-7
disconnecting 2-21, 2-22
reconnecting 2-22
See also query
Database Application Developer’s Guide  Index-3



session (variable) 7-8
setting database login defaults 1-2
signals for database errors 10-8
specifications

data model 7-7
main window 7-7
query 7-9
window 7-8

SQL
Ad Hoc SQL tool 1-4, 7-12
executing 2-2, 2-7, 2-21
stored procedures 3-9

starting
database applications 9-7

state error 2-25

T
tabular viewer (template) 9-4
templates 7-9
Temporary Launcher 9-5
terminateTransaction 10-21
TNSNAMES.ORA 1-2
tools 7-11

Ad Hoc SQL 1-4, 7-12
Canvas Composer 7-12, 9-3
Canvas Tool 9-5, 9-7
Data Modeler 7-11, 8-5, 8-12, 8-14
Database Tables 7-11
Mapping Tool 7-11
Menu Query Editor 7-11
Query Editor 7-11, 10-4
Resource Finder 9-11

tracing 2-23
adding information 2-24
defined 2-23
disabling 2-24
setting trace level 2-23
specifying output location 2-23

tracing protocol 2-24
transaction

controlling 2-21–2-22
coordinated 2-22

transaction events 10-18
transactions, database 10-7
tutorial application

setting up
setting database login defaults 1-2

testing 9-7

U
update:with:from: 10-19
user interfaces 7-3

user-interface objects 7-3
username, database 10-1

V
values 10-4
variables, instance 7-5

W
widgets

embedded data form 9-6, 9-10
linked data form 9-6

window specifications
initial 7-7

windows
main 7-7
root 7-7

windowSpec 7-7
Index-4  VisualWorks


	Contents
	About This Book
	Audience
	Overview
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	News Groups
	VisualWorks Wiki
	Commercial Publications


	Configuring Database Support
	Loading Database Support
	Preparing a Database Connection
	Environment Strings
	Oracle Library Access on UNIX Platforms
	Setting the Database Login Defaults
	Setting the Object Lens Login Defaults
	Testing the Database Connection
	Troubleshooting Oracle Access

	Installing Examples and Data
	Loading the EXDI Workbook
	Setting Up the Example Lens Application


	EXDI Database Interface
	EXDI Framework
	Data Interchange
	Using Database Connections
	Securing Passwords
	Getting the Details Right
	Setting a Default Environment
	Default Connections
	External Authentication
	On the Importance of Disconnecting

	Using Sessions
	Variables in Queries
	Named Input Binding
	Binding NULL


	Getting Answers
	Handling Multiple Answer Sets
	Sending an Answer Message
	Waiting for the Server
	Did the Query Succeed?
	How Many Rows were Affected?
	Describing the Answer Set
	Buffers and Adaptors
	Processing an Answer Stream
	Using Cursors and Scrollable Cursors

	Using an Output Template
	Skipping Slots in an Output Template
	Using Column Names to Bind for Output
	Reusing the Output Template

	Setting a Block Factor to Improve Performance
	Cancelling an Answer Set
	Disconnecting the Session

	Controlling Transactions
	Coordinated Transactions

	Releasing Resources
	Tracing the Flow of Execution
	Directing Trace Output
	Setting the Trace Level
	Disabling Tracing
	Adding Your Own Trace Information

	Error Handling
	Exceptions and Error Information
	Exception Handling
	Choosing an Exception to Handle
	Exceptions and Stored Procedures

	Image Save and Restart Considerations
	Reconnecting When an Image is Restarted


	Using the Database Connect for Sybase CTLib
	CTLib EXDI Classes
	CTLibConnection
	Class Protocols
	environment mapping

	Instance Protocols
	accessing
	control


	CTLibSession
	Instance Protocols
	accessing
	data processing

	Using Cursors and Scrollable Cursors

	CTLibColumnDescription
	Instance Protocols
	accessing


	CTLibError
	Instance Protocols
	accessing


	Data Conversion and Binding
	Exception Handling
	Calling Sybase Stored Procedures
	Sybase Threaded API
	Limitations
	Using CTLibThreadedConnection
	Example


	Using the Database Connect for Oracle
	Database Connect for Oracle Classes
	OracleConnection
	Class Protocols
	environment mapping

	Instance Protocols
	accessing
	transactions


	OracleSession
	Instance Protocols
	accessing
	data processing
	prefetch
	testing


	OracleColumnDescription
	Instance Protocols
	accessing


	OracleError
	Instance Protocols
	accessing


	Data Conversion and Binding
	Binding NULL and Backward Compatibility
	Binding Numbers and Conversion
	Array Binding

	Using PL/SQL
	Preparing a PL/SQL Query
	Executing a PL/SQL Query
	Binding PL/SQL Variables
	Variable Type and Size
	Retrieving PL/SQL Variables

	Oracle Threaded API
	Configuring the Threaded API
	Using OracleThreadedConnection
	Connection Pooling
	Using THAPI with the Object Lens

	Calling Oracle Stored Procedures
	CLOB/BLOB support

	Using the ODBC Connect
	ODBC EXDI Classes
	ODBCConnection
	Transactions
	Instance Protocols
	accessing


	ODBCSession
	catalog functions
	data processing
	testing

	ODBCColumnDescription
	ODBCError
	ODBCDataSource
	Instance Protocols
	accessing


	Data Conversion and Binding
	Restrictions on Binding

	Unicode Support
	Storing and Retrieving Unicode

	Using Stored Procedures
	Preparing a Stored Procedure Query
	Executing a Query
	Binding Variables for Stored Procedures
	Retrieving Stored Procedure Variables

	Large Objects
	Support for Large Objects
	Binding for Input
	Binding for Output
	Restrictions on Retrieving Large Objects


	Using the DB2 Connect
	DB2 EXDI Classes
	DB2Connection
	Instance Protocols
	blob functions
	datalink functions


	DB2Session
	Transactions
	Executing Queries
	Instance Protocols
	accessing
	data processing
	catalog functions


	Data Conversion and Binding
	Restrictions on Binding

	Using Stored Procedures
	Large Objects
	Binding for Input

	DB2LOBLocator
	DB2LOBFileReference
	instance creation
	public protocol
	file creation options
	Using LOB File References

	Using Data Links
	accessing

	Threaded API
	Using the Threaded API

	Known Limitations

	Developing a Database Application
	Overview
	VisualWorks Application Structure
	Components of a Database Application
	Entity Classes
	Database Application Class
	Main Window
	Data Model
	Lens Session

	Data Form Classes
	Data Form Canvases
	Queries


	VisualWorks Database Tools
	Data Modeler
	Mapping Tool
	Database Tables Viewer
	Query Editor
	Menu Query Editor
	Ad Hoc SQL Tool
	Canvas Composer
	Tool Extensions
	To the Palette
	To the Canvas Tool


	Lens Name Space Control
	Name Space Options


	Building a Data Model
	An Example Data Model
	Create a New Data Model
	Defining Database Entities
	Define Entities from an Existing Table
	Create Entities for a New Table

	Creating Relations Between Entities
	Create Relations Automatically
	Create Relations Manually

	Check and Save the Data Model

	Creating a Data Form
	Generating a Data Form
	Connecting a Data Form to an Application
	Testing an Application
	Replacing Input Fields with Other Widgets
	Embedding a Data Form
	Editing a Query
	Removing the Fetch Button

	Creating a Custom Data Form Template
	Specifying an Aspect Path

	Lens Programmatic API
	Connecting to a Database
	Using a Lens Session Connection from an Application
	Getting an Unconnected Session from a Data Model

	Performing a Query
	Sending a Query to a Lens Session
	Limiting the Number of Rows Fetched
	Processing on Individual Rows from a Lens Session

	Beginning and Ending Transactions
	Adding Objects to the Database
	Removing an Object from the Database
	Updating Objects in a Database
	Posting Changes for Multiple Objects

	Generating Sequence Numbers
	Using Database Generated Sequence Numbers
	Generating Sequence Numbers in Lens

	Reusing an Interface with a Different DBMS
	Basing a Data Form or Query on Multiple Tables
	Using Object Navigation
	Using a Database Join

	Responding to Transaction Events
	Accepting Edits Automatically at Commit Time
	Verifying Before Committing

	Disconnecting and Reconnecting
	Maintaining Collections
	Creating a Child Set Via Foreign-Key References
	Maintaining a Collection With a Query


	Writing Queries
	Editing a Query
	Query Syntax
	“From” Clause
	“Select” Clause
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	“Where” Clause
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	“Order By” Clause
	“Group By” Clause

	Alternate SQL
	Editing Generated SQL
	Programmatically Modifying SQL
	Constants in the Object Lens


	Index

