
Taming Name Spaces

Copyright © 2000, 2001 by Cincom Systems, Inc.
All rights reserved.
Send comments to: bboyer@cincom.com

Introductory background
VisualWorks 5i introduced a much needed language feature, called a
name space. By adding name spaces to VisualWorks, the system has
become greatly more flexible in how it handles add-in components for a
multiplicity of vendors.

However, the addition has also caused a significant amount of confusion.
It was something new to a community, not all of whom have experienced
the need. Further language modifications that were introduced
(reasonably) at the same time, together with an awkwardness (to be kind)
of the tools, and largely undocumented procedures for porting pre-5i
code, unfortunately increased confusion and frustration.

In fact and practice, however, name spaces are not that big a deal, nor
are they difficult to work with. This short document is an attempt to set the
record straight, and provide some of the usage details that are missing
from the Application Developer’s Guide.

Before name spaces
Actually, the addition in 5i was more of a multiplication.

Smalltalk has always had name spaces, though there was only one: the
monolithic Smalltalk pool. All globals (class names, global variable
names, pool names) were resolved (their referents were determined)
within that single context, the Smalltalk environment. Accordingly, each
global name had to be unique to be identified from all others.

This worked fine as long as Smalltalk remained an environment of small,
individual developers creating applications for their own use or in isolation
from other applications. Each application developer or team knew exactly
what globals would be in the system, and could provide the unique
names required.
Taming Name Spaces 1

mailto:bboyer@cincom.com

Introductory background
As Smalltalk went to the “enterprise,” and as component development
and deployment became increasingly common, the luxury of isolation and
control was lost. For example, a system integrator might want assemble a
supply management system out of modules from multiple vendors. Each
component may well have need to access records storing customer data,
which each would quite reasonably represent as instances of a Customer
class. In a single-vendor environment that class definition can be
controlled and made consistent. In a multiple-vendor environment,
however, that is much more difficult or impossible. The vendor, attempting
to integrate the components from these vendors has a major problem.
There are a variety of solutions available, none of them pretty.

A very real clash happened within the VisualWorks development team’s
work. There was a desire to integrate SmallWalker, a web browser
implemented in Smalltalk, into VisualWave, a VisualWorks add-in. But,
both quite reasonably implemented an HTML class, and did so in
incompatible ways. There were solutions, but they were very intrusive.

As long as all global names were resolved within the single Smalltalk
name space, such naming collisions were inevitable, and increasingly
frequent. This calls for a systemic solution rather than ad hoc work-
arounds.

Enter: multiple name spaces
The general solution was not difficult, and had precedent in other
programming environments. It was simply to restrict the global name
resolution space, so that global names didn’t need to be unique in the
whole Smalltalk environment, but only within a much smaller “name
space.”

By restricting name resolution, references to vendor 1’s Customer class
can cohabit the Smalltalk system with vendor 2’s Customer class, as long
as they are in different name spaces. Each Customer class can be
referred to unambiguously by identifying the containing name space.

There is a little more work in some cases, when both classes need to be
referenced by the same application, or when an object in one name
space needs to reference an object in another name space. References
still need to be unambiguous. But, disambiguation is a relatively simple
matter of specifying a name space, rather than changing all references to
comply with a name change.

To accomplish this, VisualWorks 5i extended the system to support
additional name spaces, providing for contexts more specific than just
Smalltalk within which names are resolved. The universal Smalltalk name
Taming Name Spaces 2

Introductory background
space is retained as a “super name space.” Smalltalk is then divided into
several other name spaces, each providing its own name resolution
context. Additional name spaces can be defined within Smalltalk or within
any of its sub-name spaces, to provide an appropriate separation of
contexts.

Related changes
Items that had formerly be defined globally, by putting an object directly
into the monolithic Smalltalk pool, had to be moved out of there and into
name spaces. Specifically, these definitions are classes, global variables,
and pools (pool dictionaries).

Class definitions needed to change rather little. A class is now defined by
a message sent to a name space rather than to its superclass, and its
superclass is specified as part of the definition.

Global variables are a bigger problem. They were created by explicitly
adding an entry in the Smalltalk pool, usually by evaluating some object
creation code in a workspace and entering that into the pool with a key.
Accordingly, they had no explicit definition. And being global, they were
assumed to be accessible to all objects in the system.

Pools contained shared variables, and the pool itself was defined globally.
However, to access the contained variables, the pool had to be explicitly
“imported” into a class in its definition.

Finally, class variables provided values shared by a class, its instances,
its subclasses, and its subclasses’ instances. As such it was like a global
variable except that references to it were restricted to those classes and
instances. (A class variable could be accessed using a dotted-name
notation, but this breaks encapsulation, so is a bad practice.)

Global variables, pool variables, and class variables have this in common:
they are all shared by various objects in the system. It made sense to
unify them in a single type of entity, called Shared Variables.

A brief terminological history and rationale
I should comment that we are now, starting with VW 5i.3, referring to
these as “shared variables.” In fact, from 5i to 5i.2 we have called them
“statics.” It wasn’t such a bad choice, but was disliked by many, including
many VisualWorks developers.

The term “static” has history in C and Java, at least, where there is some
affinity with what we called “statics” or “static variables” or “static
bindings.” Essentially, their values are set independently of any runtime
instance. So, that part made sense.
Taming Name Spaces 3

A quick and naive start
Regarding how to distinguish “constant” from “variable” instances of
these things, we took the somewhat objectionable tack of generating a
substantive term from an adjective, and made it plural. Hence, “statics.”

The choice of terms has generated controversy and dissatisfaction. Prior
to every release there has been some discussion of changing the term.
Only recently, during work on the 5i.3 release, has a truly viable
alternative arisen, and something approaching consensus has formed
around the term “shared variable.” Why this didn’t occur to us sooner is
utterly unclear. Of course, there are objections to “shared” as well, but
they seem relatively minor.

“Shared” suggests their referential scope; they can be referenced by any
object in the name space in which they are defined or in a name space
that imports that name space. And, they are variables, even though some
may have rigid value assignments (be constant in a sense) and others
flaccid assignments is acknowledged. (You may see occasional reference
to “shareds,” but not often.)

We will refer to “shared variables” in this document, though we will follow
5i.2 when describing the UI, which refers to “statics”.

A quick and naive start
If you’re new to 5i, and especially if you’re new to VisualWorks in general,
you really don’t want to be bothered with the intricacies of name spaces
and their ilk. You’re wondering if there is a way to ignore all this stuff until
you see a reason to bother with it (which you suspect won’t be until
sometime after the next collapse and rebound of the universe).

The good news is that you can. At least to a point. As stated above,
Smalltalk has always had one name space, namely Smalltalk. This
approach will emulate that environment as much as possible, by creating
everything in the Smalltalk name space.

I will give only quick descriptions of the process here, with minimal
explanation at this time, since all you want to do is get some work done.
When you’re curious, follow the links to get to the fuller explanation.

We’ll cover these issues:

• Defining a class category

• Defining a class

• Defining a class variable

• Defining a pool (pool dictionary)
Taming Name Spaces 4

A quick and naive start
Defining a class category
If you use class categories, you will need to define one:

1 Open a simple Class Browser, by selecting Browse ! All classes or
clicking the equivalent tool bar button.

This browser is the pre-5i category browser, and so will keep name
spaces pretty much out of our view, though not entirely.

2 Select Category ! Add..., to open category name prompter. Sorry, but
you have to face name spaces, but just a little:

3 Enter a name for your category in the text field, and select Smalltalk in
the name space list.

4 Click OK.

That’s all. The category is added to the list.

Defining a class
As mentioned, at this point you will create all of your classes in the
Smalltalk name space. This is precisely what happens in previous
versions of VisualWorks, and in other Smalltalks in general, since class
names are global variables in the system.
Taming Name Spaces 5

A quick and naive start
To create a class:

1 Open a simple Class Browser, by selecting Browse ! All classes or
clicking the equivalent tool bar button.

2 Select your class category, or select Class ! New class and a class
type (see Defining a class below for type descriptions).

In either case, the class definition template is displayed in the code
pane:

Smalltalk defineClass: #NameOfClass
superclass: #{NameOfSuperclass}
indexedType: #none
private: false
instanceVariableNames: 'instVarName1 instVarName2'
classInstanceVariableNames: ''
imports: ''
category: 'My-Work'

The first word, Smalltalk, is the name space. If it’s not, change it,
because you want your class in the Smalltalk name space.

3 In the template:

• Replace #NameOfClass with a symbol naming your class, such as
#MyClass.

• Replace NameOfSuperclass in #{NameOfSuperclass} with the name
of your class’s superclass. For example, if the superclass is
Object, then make this expression #{Object}. (See “Referencing
objects in name spaces” for this notation.)

• Enter any instance variable or class instance variable names in
the appropriate fields. (Note that class variables are not specified
here anymore, because they are not part of the class definition.)

• In the imports: field, enter private Smalltalk.* between the single-
quotation marks. (See “Importing bindings” for more information.)

At this point your definition looks like:

Smalltalk defineClass: #MyClass
superclass: #{Object}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ' private Smalltalk.* '
category: 'My-Work'
Taming Name Spaces 6

A quick and naive start
4 Choose Edit ! Accept to save the definition.

The definition undergoes a little formatting change and becomes:

Smalltalk defineClass: #MyClass
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: '

private Smalltalk.*
'

category: 'My-Work'
The class is now defined and added to the class list in the specified
category, or in As yet unclassified if none was selected or specified.

Defining a class variable
Class variables are not defined in the class definition any longer, but are
now objects with their own definitions, though those definitions are in the
scope of a class. To define a class variable:

1 In a Class Browser, select your class (work class category and
class).

2 Select the Statics radio button.

3 Create a shared variable category (protocol) using Protocol ! Add..., if
one doesn’t already exist.

This is new in 5i, allowing you to categorize class variables as you do
methods.

4 Select the category for the class variable.

The shared variable template is displayed in the code pane:

Smalltalk.MyClass defineStatic: #NameOfBinding
private: false
constant: false
category: 'class vars'
initializer: 'Array new: 5'.

5 In the template:

• Replace #NameOfBinding with a symbol naming your class
variable, such as #MyClassVar.

• Replace the initializer: String with a String containing a Smalltalk
expression that returns a value for the variable, or with nil. Set it
Taming Name Spaces 7

A quick and naive start
to nil if you want to set its value in a class method, as in pre-5i
versions of VisualWorks.

6 Choose Edit ! Accept to save the definition.

7 If you specified an initialization expression in step 5, select the
variable in the browser and pick Method ! Initialize static.

8 If you specified nil in step 5, define a class initialization method to set
the variable’s value, and send that message to the class.

The class variable is now defined and initialized. For more initialization
options, see “Initializing shared variables” below.

Defining a pool (pool dictionary)
Pre-5i, a pool was defined as a global variable containing a dictionary. It
was accessed by a class by being imported into the class, by including it
on the poolDictionaries: line of the class definition. In this regard, little has
changed, except that instead of a global you now use a name space as
the pool, and shared variables as the pool variables.

To define a pool:

1 Open a Namespace Browser with a name space view (Browse ! All
Namespaces in the Visual Launcher).

Sorry, but you really do have to face name spaces for a moment here.

2 In the top-left pane, select the Smalltalk name space.

3 Select Namespace ! Add ! Namespace in the browser menu.

The name space definition template is displayed in the code pane:

Smalltalk defineNameSpace: #NameOfPool
private: false
imports: '

OtherNameSpace.*
private Smalltalk.*
'

category: 'As yet unclassified'
4 In the template:

• Replace #NameOfPool with a symbol specifying the pool name,
e.g., #MyPool

• Remove OtherNameSpace.*

• Replace the category: string, so specify a meaningful category.
Taming Name Spaces 8

A quick and naive start
5 Choose Edit ! Accept to save the definition.

The definition is saved, and the name space list is updated, with your
new pool name space selected.

6 Construct a class method in an appropriate class that sends a series
of at:put: messages to the new name space. For example:

initializePool
Smalltalk.MyPool

at: #first put: ‘first’;
at: #second put: ‘second’.

7 Send the defined message to the class to define the shared
variables. Refresh the browser to see the definitions.

The pool and pool variables are now all defined and initialized.

To use the pool, go to the class definition of a class that will use it, and
add it to the imports: line of the class definition. For example, in the class
defined in Defining a class above, edit the definition to:

Smalltalk defineClass: #MyClass
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: '

private MyPool.*
private Smalltalk.*
'

category: 'My-Work'
Save the class definition, and you are done.
Taming Name Spaces 9

Name spaces and their contents
Name spaces and their contents
In general terms, a name space is a context within which the referent of a
term is determined.

For example, within the context of a gathering of my wife’s family, the
name “Bob,” used without qualification, picks out one unique individual,
while among my own family it picks out a different, though still unique
individual. There is no confusion as long as these contexts are kept apart;
our respective families serve as adequate name-resolution spaces, or
name spaces.

Put our two families together, however, and the name “Bob” becomes
ambiguous, and it’s entirely possible for embarrassing confusions to
occur. However, it is generally quite simple and straight-forward to avoid
such confusions, and the resultant embarrassment, by explaining the
scope more precisely. Including the family name is generally sufficient
and not overly difficult.

In Smalltalk a name space works in the same way. Given a name of a
variable, the object referred to by that name is identified within some
naming scope. Traditionally, the name scope has been the either whole
Smalltalk image in the case of global variables, an individual instance in
the case of instance variables, or a class, its subclasses, and their
instances in the case of class variables. To avoid confusion over the
globals (class names, pools, and general globals), names were required
to be unique within the system; you were only allowed to have one Bob.

With VisualWorks 5i, you are now allowed to have as many Bobs as you
want, as long as each of them can be uniquely identified. Unique
identification is possible by making sure that each Bob is defined and
resolved in a single name space, and avoiding name space collisions.

Name space contents
A name space is a named object that represents the name resolution
scope of a collection of shared variables. A name space is itself the value
of a shared variable defined in another name space. A particular
namespace, called Root, is the parent of all other name spaces, forming a
name space hierarchy.

The Root name space initially contains two shared variables: Root, the
value of which is the name space itself, and Smalltalk, the value of which
is the Smalltalk name space.
Taming Name Spaces 10

Name spaces and their contents
To explore the structure of a name space, do an inspect on it. For
example, evaluate this expression with doIt:

Root inspect
This opens a name space inspector (actually a PoolDictionaryInspector),
showing the contents of the name space. Diving down through the
Smalltalk entry, you observe additional shared variables whose values are
the “top level” name spaces defined immediately in Smalltalk. Initially, the
values of these are the name spaces that contain system code. As you
create your own “top level” name spaces, shared variables for them are
added to Smalltalk.

Continue the descent and you find definitions of name spaces, classes,
and general shared variables.

To explore more deeply, seeing the structure of the entries, evaluate:

Root basicInspect
Doing this you see the representation of name spaces as a collection of
bindings.

Shared variables
A shared variable is a variable that can be shared, or referenced, by
multiple objects. In previous releases of VisualWorks, shared variables
included class variables, pool variables, and global variables. In 5i, these
various variable types were unified as a single type, currently called
simply a “shared variable.”

A shared variable’s value is logically independent of any single instance
of an object. Unlike instance variables, in which each object holds its
individual state, and class instance variables, in which each class holds
its state, shared variables can be shared among multiple objects.

Shared variables are implemented as bindings, which are instances of
either class VariableBinding or its subclass InitializedVariableBinding.
Accordingly, we sometimes refer to “a binding,” and mean specifically an
instance of one of these classes, rather than in the more general sense of
a value assignment.

The value of a shared variable, or of the binding it refers to, is either a
name space, a class, or an arbitrary object. In the third case, they serve
the roles formerly served by globals, pools, and class variables
Taming Name Spaces 11

Name spaces and their contents
As class variables
A shared variable can be defined relative to a class, with the class
serving as its name space. In this sense, shared variables replace the
class variables of pre-5i releases.

For example, the class Date has a shared variable called MonthNames,
which stores an array containing names for the 12 months. It would be
wasteful to store the array in every instance that is cloned from it because
the names are the same for all instances. Instead, the array is defined
once in the shared variable. It is then accessible by instances of the class
Date and its subclasses, and by instances of any other class that imports
it.

Pre-5i, MonthNames was a class variable, and so shared by all instances
of Date and its subclasses. Now it is defined as a shared variable under
the Date class. Classes behave very much like name spaces, and in this
capacity can include shared variable definitions.

Class variables are still inherited, and so are accessible to a class, its
subclasses, and their instances. This is true even if the classes are in
different name spaces and not imported.

As pool variables
Shared variables can also be defined directly in name spaces (non-class
name spaces). For example, in the Graphics name space are defined a lot
of classes, and two further name spaces: SymbolicPaintConstants and
TextConstants. These name spaces exist solely as the name scopes for
collections of shared variables.

Each shared variable is defined directly in the name space. Initialization
values for the variables are provided either on the definition’s initializer:
line, as is done for most of the TextConstant variables, or in an appropriate
class initialization method, as is done for the SymbolicPaintConstants
variables.

For these variables to be accessed within a name space other than its
defining name space, the variable must be imported, usually by a general
import of its name space. (Refer to Importing bindings.)

As global variables
Globals are seldom used in VisualWorks, having been largely replaced
by pool variables. Only a few “system globals” have remained in the
system, such as Transcript and Processor, even before 5i. In general, they
are a bad practice in object-oriented programming, because they break
encapsulation, and so are to be avoided.
Taming Name Spaces 12

Name spaces and their contents
Instead of globals, these remaining system objects are defined as shared
variables in a namespace that is almost certainly accessible to all name
spaces. Transcript, for example, is defined as a shared variable in the
Smalltalk.Core name space. To browse these definitions, select the
Smalltalk name space in the Namespace Browser, and then select Core in
the class/name space list, and browse the shared variables. You can do a
search using Protocol ! Find method... (a menu pick that is now badly
named), and search for Transcript.

The resulting shared variables aren’t truly “global” to the system, since it
is easy to define a name space that doesn’t import Core. It may not be
clear why one would make such a name space, but it can be done, in
which case Transcript, and similarly-defined shared variables, would not
be visible to that name space.

As class and name spaces names
In pre-5i releases, class names were stored as global variables. In 5i,
both class and name space names refer to shared variables whose
values are classes and name spaces, respectively.

The template for defining classes is different in 5i as well, as is described
below (see “Defining a class” below).

The name space hierarchy
VisualWorks name spaces are organized in a hierarchy. At the top of the
hierarchy is a single name space, named Root.

Initially, it has a single sub-namespace, Smalltalk. For most practical
purposes, the hierarchy starts with the Smalltalk name space, as the
super-name space of all name spaces containing Smalltalk definitions. A
fragment of the base VisualWorks name space tree, with a couple extra-
base components added, looks like this:

Root
Smalltalk

Core
OS

IOConstants
Graphics

SymbolicPaintConstants
TextConstants

VisualWave
XProgramming

SUnit
In general, new name spaces should be contained within Smalltalk, either
directly or indirectly, rather than directly in Root.
Taming Name Spaces 13

Name spaces and their contents
New “top-level” name spaces, those defined directly in Smalltalk, must be
unique within the Smalltalk name space (there can only be one
Smalltalk.Bob). The VisualWorks team and various vendors have reserved
a number of top-level names. We maintain a Wiki site to allow you and
others to reserve top-level name space names, and to see what names
have been reserved, to help avoid name collisions at this level. (Go to
Reserved Top-Level name spaces for VisualWorks 5i for the list).

The exception to keeping name spaces under Smalltalk would be a
product that supports development and execution of another language,
such as Java, within a Smalltalk image. Such a product might create a
name space in Root, perhaps called JavaWorld, as well as various name
spaces nested within it. The resulting name space hierarchy might look
something like this:

Root
Smalltalk
JavaWorld

java
lang
awt

COM
sun
microsoft

If the Frost project were ever to be completed, it would probably take this
approach.

What’s with Smalltalk.Root.Smalltalk anyway?
In the Root name space there are two shared variables defined: Root and
Smalltalk. (To verify this, evaluate Root inspect.) Root refers to the name
space itself, and Smalltalk refers to the Smalltalk name space.

It is sometimes convenient to be able to refer to the Root name space
from Smalltalk, and so there is a shared variable defined in Smalltalk that
refers to Root. This leads to a circularity that can be confusing, but need
not.

When working in Smalltalk, references to named objects are assumed to
start with Smalltalk, rather than Root. For most practical purposes, Root
can be ignored.

If for any reason you do need to refer to Root, the circularity allows you to
follow the same convention of starting with Smalltalk. So, to refer to the
Root name space from within Smalltalk, the full path would be
Root.Smalltalk.Root. But, because of the assumption of the Root.Smalltalk
initial segment, you can refer to it simply as Root.
Taming Name Spaces 14

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/VW+NameSpace+Reservations

Working with name spaces
Working with name spaces
The biggest apparent change in 5i has been in the procedures for
accessing the objects in Smalltalk: other name spaces, classes, and
shared variables. These issues are covered in the following sections.

Browsing name spaces
The addition of name spaces and shared variables necessitated changes
to the browsers. (In doing so, the browser architecture changed as well,
but that’s a subject for another time and place.)

The new System Browser introduced a selectable view in the top left
pane. The current view is selected by clicking on an appropriate button to
select, for example, a name space view, a parcel view, or the traditional
category view. The three browser buttons on the default Visual Launcher
(also available as menu picks on the Browse menu) open browsers that
include more or fewer of these view options.

For working with name spaces, you want to open either the System
Browser (aka the Namespace Browser), which has category and name
space view options, or the Parcel Browser, which includes a parcel view
as well. The Parcel Browser with the name space view is shown below.
Both are available on the Browse menu of the Visual Launcher, and as
buttons on the tool bar.

In all honesty, the browsers are not finished, and the current design
makes them a little difficult to work with. Accordingly, the comments
offered below are subject to change, as improvements are made, as they
certainly will be.
Taming Name Spaces 15

Working with name spaces
Using the name space view
The first pane in this view shows the hierarchy of name spaces in an
expandable tree view. The second pane is the traditional class list view,
mostly. The difference is that it also shows name spaces, which are
indicated by a folder icon.

When a name space is selected in the name space hierarchy view, the
next pane shows only the name spaces and classes defined in that name
space. Possibly shared variable definitions should be listed as well, but
they are not, at least not now.

When a name space is selected in the class/name space view, the statics
radio button is selected, and is the only button that is selectable. That’s
because name spaces only contain shared variable definitions. The next
pane, the traditional method category, or protocol, view, lists the (class)
categories of earlier versions, except that the categories now may contain
name space and shared variable definitions as well.

When a class is selected in the class/name space view, the browser
behaves more like the earlier browsers. You now can select the instance or
class radio buttons, as well as the statics button. The method categories
are the familiar things, containing method definitions as before. If any
shared variables are defined in the class, selecting the statics radio button
will show any categories, and selecting one of those shows its shared
variables.
Taming Name Spaces 16

Working with name spaces
Using the category view
The category view interacts with the name space view, providing various
filtering operations. These filterings can be useful for focusing on just
certain parts of the system as you work.

If no name space is selected in the name space view, the category view
works pretty much as it always has, except that name spaces are
included in what had been only the class list (now a class/name space
list). All categories are shown in the category list, and all classes and
name spaces in a selected category are shown in the class/name space
list. If no category is selected, then all classes and name spaces are
shown.

If a name space is selected in the name space view, only those
categories that are represented in the selected name space are shown in
the category view. So, this filters the category view by the name space.

Conversely, if a category is selected in the category view, only those
classes and name spaces defined in that category are shown in the
class/name space list in the name space view.

To see all definitions in either view, make sure no name space is selected
in the tree list in the name space view, and no category is selected in the
category view.

Using the parcel view
The parcel view works independently of the other views, and very
similarly to the Parcel Browser of previous releases.

That it functions independently means that selections in other views have
no effect on the display in parcel view mode. Selecting a name space or
category, for example, does not filter the display in the parcel view, and
selecting a parcel does not filter the display in the other views.

In parcel view mode, all classes and name spaces are displayed in the
class/name space list pane. Various text formats are used, however, to
indicate various states of code with respect to parcels. These are
described in the Application Developer’s Guide, and so are not repeated
here.
Taming Name Spaces 17

Working with name spaces
Creating name spaces
Creating a name space is quite simple:

1 In a Namespace Browser, in the name space tree list, select the
name space in which to create the new one. The selected name
space’s definition is shown in the code pane.

2 Select Namespace ! Add ! Namespace, to display a new name space
definition template. Notice that the selected name space is named at
the start of the template, and will be the super name space.

3 Replace #NameOfPool with a symbol giving the name for the new
name space, such as #MyCompany.

4 Remove OtherNameSpace.* from the imports: line, but leave
private Smalltalk.*. (See “Importing bindings” for more information.)

5 Change the category: string to something more descriptive.

6 Select File ! Accept to save the definition and create the name space.

Your new name space is added to the list.

Naming a name space
There’s no particular mystery to naming your name space(s). Most of
your code will be application or add-ins, rather than extensions to the
base system. So, your name space:
Taming Name Spaces 18

Working with name spaces
• needs to see a lot of the standard VisualWorks library

• does not need to be seen by the standard VisualWorks library

• needs to avoid name clashes with the VisualWorks and other 3rd
party products.

The first of these is handled by imports, but is good to remember. The
second point means that there is no reason, in general, for your code to
be in an existing VisualWorks name space. The third suggests that you
want a name space that will be clearly your own, separate from all others.

To deal with these points, we recommend that you create your own “top
level” name space, immediately in the Smalltalk name space. To help
keep it clear that this is yours, it is a good idea to use some form of your
company name or similar designation, as suggested by the example in
“Creating name spaces” above.

To help ensure that these top-level name space names are unique, we
maintain a Reserved Top-Level NameSpaces wiki page. Instructions for
reserving your top-level name are provided on that page. You reserve a
name by adding it to the list. Make sure it hasn’t been taken by someone
else, first, of course.

As long as your top-level name is unique, subsequent names you select
for name spaces, classes, and shared variables under that top-level
name are protected from clashes with those outside of that name space.
So, you can name additional name spaces under your top-level name
space in any way that makes sense to you.

When to create a new name space
You should always have at least one top-level name space for your own
work. Beyond that, whether you need sub-name spaces depends on the
name-access requirements of your products.

You may well have use for separate name spaces for each of your several
products. Or, maybe not, depending on how tightly they interact.

In deciding, remember that all name spaces and classes created within a
name space have access to all shared values defined in it. Consider that:
Taming Name Spaces 19

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/VW+NameSpace+Reservations

Working with name spaces
• If all of your classes need to see all of your other classes, then they
all can reasonably be defined in a single name space.

• When you create classes that do not need access to some of your
other classes, then it is time to consider creating further name
spaces.

• If you create classes in one name space that need to access objects
in another, you can import that other name space.

It’s a judgement call that will become clear in practice.

Packaging/Parcelling a name space
Name space definitions can be saved out to archive files like other
objects, using the usual procedures. They do not require special handling
as pre-load actions or anything of that sort.

If you’re using StORE and add a name space, you are prompted to select
a package to place it in. Select the target package in the list and click OK.
Presumably you’ve already created the package, but if not you can leave
it unpackaged for the time being, by either selecting (none) as the
package, or clicking Cancel.

If you do not use StORE, but instead need to save the name space in a
parcel, you have a few options:

• To create a new parcel and add the name space, open a Namespace
Browser. In a name space view, select the super-name space, then
select the name space itself in the class/name space list. Next select
Class ! Move to... ! New parcel... . A prompt will ask for a name for the
new parcel.

• To move the name space to an existing parcel, open a Parcel
Browser. Find and select the name space in the class/name space
list (second pane), and select Class ! Parcel ! Move to..., and select
the target parcel.

There are variations on both of these themes, and the precise procedures
are subject to change as the tools develop.
Taming Name Spaces 20

Working with classes
Rearranging name spaces
Almost certainly you will need to move classes and name spaces around
to other name spaces in the course of development. This is quite simple,
using the Namespace Browser (that is, the name space view in the
System Browser):

1 In the name space list, either select the containing name space of the
object to be moved, or clear all selections.

2 In the class/name space list, find the class or name space to move.

3 Click and hold on the item, drag it to the target name space in the
name space list, and drop it.

The class or name space is then moved, and the lists are updated to
show the change.

To move a name space, you can also select it in the name space list, and
select Namespace ! Move to... . Select the target name space in the dialog
that opens, and click OK.

Working with classes
Very little is changed with respect to classes except for the definition
template, and the fact that class variables are now handled by shared
variables.

Defining a class
To define a class:

1 In any system browser, select Class ! Add class, and pick the class
type:

• Fixed Size (typical) for named instance variables

• Variable for indexed instance variables holding objects

• Bytes for indexed instance variables holding byte objects

For more information on these instance variable types, refer to the
VisualWorks Application Developer’s Guide. These indexing types
correspond to the older class definition method keywords subclass:,
variableSubclass:, and variableByteSubclass:, respectively.
Taming Name Spaces 21

Working with classes
2 Complete the template that is displayed:

Smalltalk defineClass: #NameOfClass
superclass: #{NameOfSuperclass}
indexedType: #none
private: false
instanceVariableNames: ‘ instVarName1 instVarName2 '
classInstanceVariableNames: ''
imports: ''
category: ' NameOfCategory '

3 Accept the definition (Edit ! Accept)

The template is a message sent to a name space, Smalltalk by default. If
you invoke the Add class command from a Namespace Browser with a
name space selected, it is presented as the receiver, instead of Smalltalk.
You can replace this with any name space name, to create the class in
that name space, such as Smalltalk.MyNameSpace.

Provide the name for your class as a symbol following defineClass:. The
name must begin with an upper-case letter.

Identify the superclass in the superclass: field using the literal binding
reference notation shown. (This notation is described below, under
“Binding references” below.)

The indexedType: field is filled based on the class type you selected: Fixes
size = #none; Variable = #objects; Bytes = #bytes. You may change it here if
you selected the wrong option.

Set private: to true to make the class unavailable for import by another
class or namespace. (Refer to “Public and private shared variables”.)

In the imports: field list any bindings you want to import, or make freely
available to this class. (Refer to “Importing bindings”.)

The instanceVariableNames:, classInstanceVariableNames: and category: fields are
the same as in previous versions. Notice that there is no field for class
variables, which are now represented as shared variables.

Classes as name spaces
We’ve already mentioned that in some situations classes can serve as
name spaces. In fact, classes and name spaces are very similar, and
efforts have been made to eliminate differences where possible.

The main difference between name spaces and classes is that classes
are restricted as to the kinds of shared variables they can contain; they
can contain only what we’ve called “general shared variables,” which are
its class variables. Classes cannot contain shared variables that have
Taming Name Spaces 22

Working with shared variables
name spaces or other classes as their primary reference. Note, however,
that there is nothing to prevent a class or name space from being the
value of one of its class variables.

What had formerly been a classes shared pools are now its imports, with
all the same properties as the imports to a name space. An extension
here is that a class can now import a single shared variable, by using a
specific import, as well as being able to import the whole pool. Refer to
“Importing bindings” for more information about general and specific
imports.

A class's superclass is implicitly an import of the class that can never be
declared private. This means that if A is a superclass of B, and B is a
superclass of C, anything that A does not declare to be private will be
visible to C, regardless of what B may declare private. This preserves
from previous versions the rule that all class variables (assuming that
they have not been declared private) are visible to all subclasses.

Working with shared variables
Name spaces are pools of shared variables, the primary reference of
which are bindings. Each has a key and a value. In some cases the
binding is a name space, in others a class, in yet others some arbitrary
object. In this section we’ll be primarily concerned with the latter case,
since name spaces and classes have special importance, special
definitions, and so on.

Defining shared variables
There are variations on this theme that you can find by experimenting
with the browsers. Here are three standard procedures for adding shared
variables that serve roles formerly played by global, class, and pool
variables.

Defining a “global” shared variable
Shared variables defined in a name space do the service formerly
provided by global variables and pool variables, except that the name
scope is narrower. In VisualWorks, there are no longer any globals in the
former sense; all variables are referenced within a specified scope.
Taming Name Spaces 23

Working with shared variables
To define a shared variable:

1 In the Namespace Browser, select a name space in the name space
list to be the super-name space.

For the widest availability, select the Smalltalk name space, though
this is seldom recommended. Smalltalk.Core is usually as general as is
needed, since it is imported by Smalltalk, and is the name space
home for VisualWorks “globals.” Select the most local name space
that makes sense for the breadth of availability appropriate for this
shared variable.

2 Select Namespace ! Add ! Static in the browser menu. The shared
variable definition template is displayed in the code pane:

Smalltalk defineStatic: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

3 Replace #NameOfBinding with a symbol specifying the shared variable
name, such as #MySharedObject.

4 If the value is not to be exported for referencing from other name
spaces, change the private: field to true; otherwise, leave it as false.
(Refer to Public and private shared variables below.)

5 If the value of this variable should not be allowed to be changed by
the application, change constant: to true; otherwise, leave it as false.
(Refer to Constant and variable bindings below.)

6 Provide an appropriate category: string.

7 Enter an initialization expression, as a String, in the initializer: field, or
enter nil. (Refer to Initializing shared variables below.)

8 Select Edit ! Accept in the browser menu to save the definition and
create the shared variable.

To see your new shared variable, open a Namespace Browser, select the
statics radio button, select the variable’s super-name space in the name
space list, select its name space in the class/name space list, and select
its category. You can also browse it in a Categories Browser.
Taming Name Spaces 24

Working with shared variables
Defining a “pool” and “pool variables”
Pools are collections of shared variables, and have existed in Smalltalk
from the beginning. In most dialects, pools were implemented as
instances of Dictionary, hence their commonly being referred to as “pool
dictionaries.”

In VisualWorks 5i, name spaces are, pools in this sense. An entity
equivalent to a pre-5i pool, then, is a name space containing a set of
shared variables.

For example, the pool TextConstants, which was implemented as a pool
dictionary before 5i, is now implemented as a name space,
TextConstants, containing a collection of shared variables. If you browse
these definitions, as you can now do in a standard browser (you don’t
need to inspect the global TextConstants), the definitions can be further
categorized. Whereas the pool dictionary contained a mix of character,
emphasis, justification, and other constants, these are now separated
within the TextConstants name space into categories.

You can define a pool by creating a name space, which is the pool, and
then adding shared variables to it, which are the pool variables, as
described above.

Alternatively, you can send at:put: messages to the pool name space, as
was done with dictionaries in pre-5i release (refer to the SymbolicPaint
class method initializeConstantPool for an example). To create a pool using
this method:

1 In the Namespace Browser name space list, select the name space
that will contain the pool.

Select the most local name space that makes sense for the breadth
of availability appropriate for this shared variable. While you can
specify the Smalltalk name space, and so most approximate the
“globalness” of pools in pre-5i releases, this is not generally
recommended. A more restricted scope is usually better.

2 Select Namespace ! Add ! Namespace in the browser menu. The name
space definition template is displayed in the code pane.

3 Complete the template, specifying the name of your pool as the name
space name. (Refer to Creating name spaces for completing this
template.)
Taming Name Spaces 25

Working with shared variables
4 Construct a class method in an appropriate class that sends a series
of at:put: messages to the new name space. For example:

initializePool
Smalltalk.MyNameSpace

at: #first put: ‘first’;
at: #second put: ‘second’.

You can do this is a workspace, too, but then you won’t have an easy
way of reconstructing the pool.

5 Send the defined message to the class to define the shared
variables. Refresh the browser to see the definitions.

At this point the pool variables are all defined and initialized. You may
which to edit the definitions, however:

6 If any of the values are not to be exported for referencing from other
name spaces, change their private: field to true; otherwise, leave it as
false. Pool variables are usually intended for export. (Refer to Public
and private shared variables below.)

7 If the values of any variables should be constant, not to be changed
by the application, change constant: to true; otherwise, leave it as false.
(Refer to Constant and variable bindings below.)

8 Provide an appropriate category: string.

9 Since you’ve already provided an initial value, leave the initializer: field
set to nil. (Refer to Initializing shared variables below.)

10 Select Edit ! Accept in the browser menu to save the definition and
create the shared variable.

To see your new shared variables, open a Namespace Browser, select
the statics radio button, select the pool’s super-name space in the name
space list, select the pool name space in the class/name space list, and
select a category. You can also browse the pool in a Categories Browser.

Defining a “class variable”
Class variables in pre-5i releases stored values shared by a class, its
subclasses, and all of their instances. In 5i, these are naturally replaced
by shared variables whose name space is co-extensive with a class. In
fact, classes can serve as name spaces in 5i, and so the replacement is
quite exact.

To define a “class scoped” shared variable:

1 In any system browser, select the class that will serve as the name
space for the variable, and select the statics radio button.
Taming Name Spaces 26

Working with shared variables
2 Select, or add and select, a category for the new shared variable, in
the methods/shared variables list pane. The shared variable definition
template is displayed in the code pane:

Smalltalk.MyNameSpace.MyClass defineStatic: #NameOfBinding
private: false
constant: false
category: 'category description'
initializer: 'Array new: 5'

3 Replace #NameOfBinding with a symbol specifying the shared variable
name, such as #MySharedObject.

4 If the value is not to be exported for referencing from other name
spaces, change the private: field to true; otherwise, leave it as false.
(Refer to Public and private shared variables below.)

5 If the value of this variable should be allowed to be changed by the
application, change constant: to true; otherwise, leave it as false. (Refer
to Constant and variable bindings below.)

6 Enter an initialization expression, as a String, in the initializer: field, or
enter nil. (Refer to Initializing shared variables below.)

7 Select Edit ! Accept in the browser menu to save the definition and
create the shared variable.

Your new shared variable is added to the list. It can be viewed in any
class browser by selecting the statics radio button and its category

Constant and variable bindings
Sometimes it is desirable to set the value of a shared value and have it be
immutable, or constant. The constant: field in the shared variable definition
provides this option.

When set to false, the variable can be set and initialized by the usual
means by any object in the system. (Refer to Initializing shared
variables). When set to true, however, the value cannot be changed by the
usual means.

For constant shared variables (which sounds odd, but they are still
variables), changing the value requires rerunning the initializer, and so
the variable is essentially protected from a runtime value change. The
value is, for all intents and purposes, constant. Even a class initialization
method that sets the variable will fail.
Taming Name Spaces 27

Working with shared variables
Note that you can change a shared variable’s definition, and so change it
from being variable to being constant. If you do so, be aware that
methods that set the variable will now fail.

Public and private shared variables
Smalltalk has long lacked an enforceable distinction between public and
private classes and methods. Variables have been either private
(instance, class, and class instance variables) or public (global and pool
variables), depending on the kind of variable. Name spaces and shared
variables provide a way to fill some of this lack, by allowing you to control
imports at two levels: definition and import.

At either its creation or when imported, a shared variable can be declared
to be either public or private.

• If a binding is public, it is available for import by a name space or
class.

• If a binding is private, it is not available for import by a name space or
class.

Refer to “Importing bindings” for more information on importing.

Defining a binding as private or public
At one level, in its definition, each individual class, name space, and
shared variable is declared as either public or private by setting the
Boolean argument to the private: field. When set to false the binding is
public, and so can be imported. When set to true the binding is private,
and cannot be imported. At this level, privacy or publicity is set for the
object itself, and so is absolute.

So, for example, a shared variable that is defined in MyNameSpace and
declared as private is accessible only in the scope of MyNameSpace, and
cannot be imported by any name space or class. It is hidden from
anything that imports MyNameSpace.

Name spaces and classes are usually defined as public, since they
should be imported by name spaces that need to access them. Pool
variables also should be defined as public, since they also are meant to
be imported. Class variables, shared variables that are defined within the
scope of a class, are also usually defined as public, so they can be
accessed by the class’s subclasses, and their instances.

Defining a name space, class, or general shared variable as private is the
exception, but an option if appropriate.
Taming Name Spaces 28

Working with shared variables
Importing a binding as public or private
At another level, when a binding is imported by a name space or class, it
can be imported for either public or private access. In either case, the
importing object has access to all public bindings in the imported object.

If the object is imported as “private,” the imported bindings are not
exported by the importing object, and so are not further imported by an
object that imports it. On the other hand if a binding is imported as
“public,” then it is also imported into any object that imports that importing
object.

A private import is indicated by putting the private keyword before the
name space name:

Smalltalk defineNameSpace: #External
private: false
imports: '

private Smalltalk.*
'

category: 'System-Name Spaces'
In most cases, a name space should import the contents of other name
spaces as private. If another name space needs access to those
imported bindings, it should gain access by importing their native name
space, and not derivatively. This is not a hard rule, though, and your
application structure may dictate other practices.

Don’t even think about it!
You will never have to do this. Doing so violates object-oriented design
and is very dangerous. If a binding is defined or imported as private, it is
meant not to be accessible by another importing name space. Those
intentions should be respected.

However, it’s possible that rare circumstances in a development
environment will really require that you get into a private name space. In
this case you can prefix the name space name with drillDown, and commit
all the horrors just warned about. This overrides the privacy specified
either in a definition or import, giving free access to the imported binding.

The drillDown keyword implies private, so the bindings so imported are
not re-exported.
Taming Name Spaces 29

Working with shared variables
Initializing shared variables
There are a variety of ways to initialize a shared variable.

By initialization string
In the shared variable definition you can specify an initialization string,
which is any Smalltalk expression that returns an object. That object
becomes the initial value when the variable is initialized.

To actually initialize the variable to the specified object, either:

• select the variable in a browser, and then select Initialize static in the
<Operate> menu (or in the Method browser menu), or

• send the initialize method to a binding reference (see “Referencing
objects in name spaces”) of the variable, for example:

#{Smalltalk.MyNameSpace.MyBinding} initialize
These initialization methods work whether the variable is declared
constant or not (whether the constant: field is true or false).

As part of class initialization
Especially in the case of class variables, initializing shared variables
makes sense as part of class initialization. In this case, the value is set in
the class initialize method, or in a method called by initialize.

For example, the Dummy class initialize method may simply set a value to
a shared variable (DummyShared) defined in the class, like this:

initialize
"Dummy initialize"
DummyShared := String fromString: ' a b c d e'.

Note that to initialize a shared variable in this way, it must not be set as
constant; the constant: field must be set to false.

By at:put: messages
We already noted that you can define a shared variable by sending an
at:put: message to its containing name space, defining the variable as if it
were an entry in a dictionary (see Defining a “pool” and “pool variables”).
This method defines the variable and initializes its value at the same time.

Note that shared variables that are defined as constant cannot be set this
way.
Taming Name Spaces 30

Working with shared variables
By lazy initialization
As long as the shared variable is not defined as constant, you can also
allow its value to be set by “lazy initialization,” postponing initialization
until the first access of the variable. This approach assumes that all
accesses of the variable are via accessor methods, so that the variable is
never directly referenced by, for example, its defining class or an instance
of that class.

To use lazy initialization, set the initializer: field in the variable definition to
nil. Then define accessor methods for the variable. You should define
both set and get accessors, but the get accessors are where the
variable’s default value is set, if it doesn’t already have a value.

For example, a get method for shared variable MyShared might be:

getMyShared

^MyShared isNil
ifTrue:

[MyShared := String new]
ifFalse:

[MyShared]
The initialization value, of course, will be whatever is appropriate for the
application.

Since shared variables are accessible to both classes and their
instances, such accessors probably will need to be defined for both the
class and for instances (on the class and the instance side).

Note that shared variables that are defined as constant cannot be set this
way.
Taming Name Spaces 31

Referencing objects in name spaces
Referencing objects in name spaces
Within the native naming scope of a binding, whether for a name space, a
class, or a shared variable, the object can be referenced to by unqualified
name. However, most objects will also have to reference objects that are
not native to the same name space.

For example, within the VisualWorks system, virtually any object needs to
reference objects in the Core name space, even though it is native to
another name space. Your application objects, which will be native to your
own name space(s), have to reference a wide range of objects in
VisualWorks name spaces, and possibly objects from other vendors.

There are a variety of ways to reference these named objects, as
described in the following sections.

Dotted names and name space paths
Binding names (names of name spaces, classes, and shared variables)
use a dotted notation that describes the path through the name space
hierarchy to the desired binding. While you seldom reference a binding
using its full dotted name (except when specifying imports), in order to
understand the other referencing methods you need to know about dotted
names.

The full path a dotted name begins with the Root name space, continuing
through the hierarchy to the target binding. For example, the full reference
to the ButtonHilite constant (in its native name space) is:

Root.Smalltalk.Graphics.SymbolicPaintConstants.ButtonHilite

However, the VisualWorks system, when parsing a compound dotted-
name, assumes the Root.Smalltalk initial segment. So, in practice, the
above reference is shortened to:

Graphics.SymbolicPaintConstants.ButtonHilite
This is the form of reference used in import statements, providing the
path starting immediately after Smalltalk.

If a binding is imported, the dotted name can specify the importing name
space path, instead of the native name space path. So, for example, if
Smalltalk.MyNameSpace imports ButtonHilite, the dotted name
MyNameSpace.ButtonHilite would also be a legitimate dotted name, and
would reach the variable.
Taming Name Spaces 32

Referencing objects in name spaces
Using dotted names in code to reference variables that are neither
defined in nor imported into the current name space, is permitted but
discouraged, because this use breaks encapsulation. There are,
however, occasions when they are needed. In source code, it is
sometimes necessary to refer to a variable that is not visible from the
current name space. For example, if a developer is adding a method to a
class that he does not own, and he may not have the freedom to add a
new import to the class's environment. In future releases we intend to
provide a better mechanism for extending classes, allowing extensions to
use variables not normally visible to the class, but they are not currently
available.

They have also been needed in a workspaces before 5i.3, to evaluate an
expression that includes a variable from an arbitrary name space. In 5i.3,
however, workspaces import name spaces, so this is no longer an issue.

Binding references
In an environment with name spaces, we need a way to reference a
shared variable that makes no assumptions about which name space
contains its definition. A binding reference provides this facility.

A binding reference is a named object that holds a starting point and a list
of names. It can identify an arbitrary shared variable relative to an
arbitrary name space, by identifying a navigation path from the name
space to the shared variable.

Most of the protocol for binding references is defined in the class
GenericBindingReference, with more specific protocol defined in
BindingReference and LiteralBindingReference. The common protocol
includes useful questions such as:

isDefined
Does the variable exist in the system?

binding
Answer the VariableBinding for the shared variable, or raise an error if it
doesn't exist.

bindingOrNil
Answer the VariableBinding for the shared variable, or nil if it doesn't
exist.

value
Answer the value of the shared variable, or raise an error if it doesn't
exist.
Taming Name Spaces 33

Referencing objects in name spaces
valueOrDo: aBlock
Answer the value of the shared variable, or the value of aBlock if it
doesn't exist.

A binding reference, when asked for its binding, iterates through its list of
names. For each name, it asks the current name space for the variable of
that name. If the name is the last in the list, it answers the shared
variable. If the name is not last, it uses the value of the variable as the
new current name space, and repeats the process with the next name in
the list.

There are two forms of binding reference, distinguished by how their
environment information is stored, corresponding to classes
BindingReference and LiteralBindingReference. The environment is the name
space scope within which the binding reference is evaluated.

Instances of BindingReference store their environment in their environment
instance variable. Accordingly, each instance knows its compilation
scope. Instances of LiteralBindingReference, on the other hand, store the
method that created them in a method instance variable, and their
environment is then determined from the compilation scope of the
method.

A simple way of creating a BindingReference is by sending
asQualifiedReference to a String, for example:

‘MyBinding’ asQualifiedReference
The syntax #{MyBinding} creates a LiteralBindingReference.

Inspect the results of each expression to compare their object structure.
Be aware that although the printing representation of both is the same,
they are not equal, being different classes of objects. (This inequality may
change at some later time.)

Both of these allow referencing the shared variable without the
programmer having to know or specify the path to the variable. The name
resolution environment determines the object referenced. Consequently,
it is not necessary to know whether the variable’s environment is an
import or native.

Note that the referenced binding does not need to exist when the binding
reference is created. It’s just a reference object, and is resolved at
compile-time.

In both cases, name space path information can be included as well,
using the dotted-name notation. Remember that compound dotted-
names always go back to Smalltalk, so the entire path from that point must
be given. For example:
Taming Name Spaces 34

Referencing objects in name spaces
‘MyNameSpace.MyBinding’ asQualifiedReference
or

#{MyNameSpace.MyBinding}
Other instance creation methods are available (browse class
BindingReference and GenericBindingReference). For example:

BindingReference path: #(Core Object)
which creates a BindingReference to Core.Object. Providing the path is often
necessary when specifying imports in name space and class definitions.

Note: Class QualifiedName in VW 3.0 has been replaced by class
BindingReference in 5i, so be aware of this if you referenced that class
in your code.

Binding reference resolution
Binding reference are resolved in this order:

1. If a bindings is defined in the name space, the binding reference
takes it.

2. Next, bindings imported by a specific import are selected.

3. Finally, bindings imported by a general import are used.

See Binding rules and errors below for restrictions on imports.

When to use BindingReference or LiteralBindingReference
The differences between BindingReference and LiteralBindingReference make
these objects not fully interchangeable.

The #{...} syntax is appropriate for asking questions of binding references,
such as isDefined, where the reference is short lived.

If a short-lived method (such as a DoIt) is used to create a reference for
long-term storage (such as in a Dictionary), use asQualifiedReference or
fullyQualifiedReference methods to create a BindingReference. Because a
LiteralBindingReference holds a reference to the method that created it,
putting this reference in long-term storage would prevent the creating
method from being garbage collected.

If the reference will be stored in a long-term data structure, but the
method which creates the reference is presumed to be equally long-lived,
the choice is yours, but using asQualifiedReference, may be the better
choice.
Taming Name Spaces 35

Referencing objects in name spaces
If the exact path of the binding reference is not known at compile time, but
is partially or fully computed at runtime, then you will have to use a
BindingReference, since #{} syntax is not an option.

Importing bindings
While it would be possible to require that you reference each object by
explicitly describing the name space path from Root to the target object,
that would be inconvenient, and would violate the object-orientation
principle of encapsulation. Instead, it is preferred to import the bindings
into the local object’s name space so they can be referenced by
unqualified name.

Name space and class definitions provide for importing bindings, by
including the bindings in the imports list. The binding name is specified
using the dotted-name notation, usually starting with the first name space
in the path under Smalltalk (Smalltalk is assumed, see Dotted names and
name space paths). For example, the XML name space imports its sub-
name space like this:

Smalltalk defineNameSpace: #XML
private: false
imports: '

private Smalltalk.*
XML.SAX.*
'

category: 'XMLParsing'
This is a general import, using the asterisk (*) pattern matcher to import
all bindings defined in the indicated name space. In this example, all
bindings in the Smalltalk and in the Smalltalk.XML.SAX name spaces are
imported. In particular, these lines import all name spaces defined under
Smalltalk (it would import classes, too, if there were any), and all classes
defined in the SAX name space are imported into the XML name space.

Note also that SAX is imported as public. Doing this has XML also export
those imported bindings, so that they are also imported by any class or
name space that imports XML. In this case this is the right thing to do
since there’s no reason for an application to have to import SAX
separately from XML; if it needs XML, it will need SAX, too.

As explained in Public and private shared variables, including the private
keyword in front of the Smalltalk.* import prevents XML from exporting
those bindings. They can be reasonably expected to be imported by each
name space. For this reason, private Smalltalk.* is included in the name
space definition template.
Taming Name Spaces 36

Referencing objects in name spaces
On occasion a name space or class may need to import only a single
binding from another name space. This is done using a specific import.
For example, the TextConstants pool only needs access to one class in the
Core name space, so it uses a specific import:

Smalltalk.Graphics defineNameSpace: #TextConstants
private: false
imports: '

private Core.Character
'

category: 'As yet unclassified'
Once properly imported, the imported name can be used directly, without
further path qualification.

Given this general explanation, the following specific cases may be
helpful.

Importing classes and name spaces
When we mention “importing a name space,” we usually really mean
importing the contents of the name space, rather than only the name
space itself. The contents of a name space may include:

• class definitions

• other name space definitions

• general shared variable definitions

When defining a name space, you almost certainly want to import the
VisualWorks system classes. To do this, include:

private Smalltalk.*
in the imports list. Smalltalk itself imports all of its sub-name spaces’
bindings publicly, so this one line, a general import, brings in all of the
system classes, pools, and system variables (such as Transcript).

Importing class variables
It is seldom necessary to import a class variable explicitly. They are
implicitly imported into the class in which they are defined, and inherited
by its subclasses. Since they are used to store class state information,
that is sufficient. If you do need to import a class variable, import it like a
pool variable, with the class as its pool.

Importing pool variables
Pool variables are general shared variables defined in a common name
space, which is their pool. Depending on circumstances, you will either
want to import all of the pool variables, or only one or a few.
Taming Name Spaces 37

Referencing objects in name spaces
To import all pool variables in a pool, use a general import. So, for
example, to import all of the TextConstants, use this general import in
your class or name space definition:

imports: '
private Graphics.TextConstants.*
'

(See the definition of class TextAttributes.) This permits you to reference
each text constant by unqualified name.

To import a single pool variable, use a specific import. For example, to
import only the text constant Bold, use:

imports: '
private Graphics.TextConstants.Bold
'

This permits you to reference this one variable by unqualified name.

What about those “circular” system imports?
It may look funny that the Smalltalk name space definition imports all of
the system name spaces:

Smalltalk.Root defineNameSpace: #Smalltalk
private: false
imports: '

Core.*
Kernel.*
OS.*
External.*
Graphics.*
UI.*
Tools.*
Database.*
Lens.*
'

category: 'As yet unclassified'
while each of those name spaces’ definitions imports Smalltalk, e.g.:

Smalltalk defineNameSpace: #Kernel
private: false
imports: '

private Smalltalk.*
'

category: 'System-Name Spaces'
Taming Name Spaces 38

Referencing objects in name spaces
What’s happening is this? Smalltalk imports each of its sub-name spaces
imports as public (for further export), so all of those bindings are
accessible directly from Smalltalk. Each sub-name space in turn imports,
privately, all of the bindings from Smalltalk, which includes all the bindings
Smalltalk imported from their siblings.

Now, for example, an instance of External.CComposite can reference
Core.Array by its unqualified name, Array. All of the base VisualWorks
classes, pools, and such, are accessible directly from Smalltalk, as before.

For the most part, this also simplifies migrating to VisualWorks 5i from
prior releases, by making sure all the system classes are available. When
code is imported, it is loaded directly into the Smalltalk name space,
where it has access to the essential system classes, and so mostly works
without modification.

Binding rules and errors
Each imported binding name must be unique in the collection of names
defined in and imported into the name space. Accordingly:

• If two specific imports refer to shared variables of the same name,
the name space's definition is in error.

• If a specific import refers to a shared variable whose name is the
same as a shared variable defined locally in the name space, this is
an error.

• If two general imports bind the same name to different shared
variables, and a local definition or specific import of that name does
not exist, it is an error for a method to use that variable name.
However, the name space may define a specific import that clarifies
which of the two shared variables is desired.

• Local definitions of a shared variable and specific imports are
searched before general imports when binding a name to a shared
variable.
Taming Name Spaces 39

So, what’s so hard about name spaces?
So, what’s so hard about name spaces?
After this many pages it may be foolish to answer, “Nothing!” Still, I think
that’s essentially the case, even though they do, in practice, add a level of
complexity to Smalltalk.

Hopefully, having this additional information about their rationale,
structure, and use, much of the confusion surrounding name spaces and
VisualWorks 5i will be alleviated, and their value recognized.
Taming Name Spaces 40

	Taming Name Spaces
	Introductory background
	Before name spaces
	Enter: multiple name spaces
	Related changes
	A brief terminological history and rationale

	A quick and naive start
	Defining a class category
	Defining a class
	Defining a class variable
	Defining a pool (pool dictionary)

	Name spaces and their contents
	Name space contents
	Shared variables
	As class variables
	As pool variables
	As global variables
	As class and name spaces names

	The name space hierarchy
	What’s with Smalltalk.Root.Smalltalk anyway?

	Working with name spaces
	Browsing name spaces
	Using the name space view
	Using the category view
	Using the parcel view

	Creating name spaces
	Naming a name space
	When to create a new name space

	Packaging/Parcelling a name space
	Rearranging name spaces

	Working with classes
	Defining a class
	Classes as name spaces

	Working with shared variables
	Defining shared variables
	Defining a “global” shared variable
	Defining a “pool” and “pool variables”
	Defining a “class variable”

	Constant and variable bindings
	Public and private shared variables
	Defining a binding as private or public
	Importing a binding as public or private
	Don’t even think about it!

	Initializing shared variables
	By initialization string
	As part of class initialization
	By at:put: messages
	By lazy initialization

	Referencing objects in name spaces
	Dotted names and name space paths
	Binding references
	Binding reference resolution
	When to use BindingReference or LiteralBindingReference

	Importing bindings
	Importing classes and name spaces
	Importing class variables
	Importing pool variables
	What about those “circular” system imports?

	Binding rules and errors

	So, what’s so hard about name spaces?

