

VisualWorks®

MQ-Interface Guide

P46-0148-00

© 2005 Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0148-00

Software Release 7.4

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, the Cincom logo and Cincom Smalltalk logo are
registered trademarks of Cincom Systems, Inc. ParcPlace and VisualWorks are
trademarks of Cincom Systems, Inc., its subsidiaries, or successors and are registered in
the United States and other countries. ObjectLens, ObjectSupport, Cincom Smalltalk,
Database Connect, DLL & C Connect, COM Connect, and StORE are trademarks of
Cincom Systems, Inc., its subsidiaries, or successors. WebSphere and MQSeries are
registered trademarks of IBM. All other products or services mentioned herein are
trademarks of their respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 2005 by Cincom Systems, Inc. All
rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book v

Overview ... v
Audience ... v
Conventions .. v
Getting Help ... vii
Additional Sources of Information .. ix

Chapter 1 Using MQ-Interface

Public Classes ..1-1
Program Flow ...1-3
Queue Mangers ...1-3

Local Queue Manager ...1-4
Remote queue manager ...1-5

Message queues ..1-6
Receiver queue ...1-7
Sender queue ...1-7

Messages ...1-8
Asynchronous message ..1-11
Request ...1-12
Reply ...1-13
Report ...1-14

Chapter 2 Class Reference

QueueManager ..2-1
Super class ...2-1
Class methods ..2-1
Instance methods ..2-2

LocalQueueManager ..2-2
Super class ...2-2

LocalThapiQueueManager ...2-3
Super class ...2-3
MQ Interface Guide iii

Contents
RemoteQueueManager ... 2-3
Super class ... 2-3
Instance methods ... 2-3

RemoteThapiQueueManager .. 2-4
Super class ... 2-4

MessageQueue ... 2-4
Super class ... 2-4
Instance methods ... 2-4

ReceiverQueue .. 2-5
Super class ... 2-5
Class methods .. 2-5
Instance methods ... 2-5

SenderQueue .. 2-7
Super class ... 2-7
Instance methods ... 2-7

MQMessage .. 2-8
Super class ... 2-8
Instance methods ... 2-8

ActionMessage .. 2-9
Super class ... 2-9
Class methods .. 2-9
Instance methods ... 2-9

AsynchronousMessage ... 2-10
Super class ... 2-10

Request ... 2-10
Super class ... 2-10
Instance methods ... 2-10

Reply ... 2-11
Super class ... 2-11

Report .. 2-11
Super class ... 2-11
Instance methods ... 2-11

ActionDecorator ... 2-12
Super class ... 2-12
Instance methods ... 2-12

DefaultActionDecorator .. 2-12
Super class ... 2-12
Instance methods ... 2-12
iv VisualWorks

About This Book

Overview
This document describes the usage of the interface for WebSphere® MQ
using the bshared libraries provided by IBM. WebSphere MQ is a
message base communication system where two or more application can
exchange messages through a queue. It is like electronic mail between
applications.

The MQ-Interface provides an easy-to-use interface for VisualWorks to
connect to the WebSphere MQ shared libraries. It simplifies the tedious
handling of the C-call interface and its parameter. A developer can use
WebSphere MQ through a simple and efficient feature wrapper. This
document describes the feature wrapper, its classes and methods, and
how to use it.

Audience

This guide assumes that you already know VisualWorks and Smalltalk,
as well as a familiarity with WebSphere MQ.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.
MQ Interface Guide v

About This Book
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
vi VisualWorks

Getting Help
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
MQ Interface Guide vii

mailto:supportweb@cincom.com

About This Book
• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to:

supportweb@cincom.com.
Web

In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.

Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:
viii VisualWorks

mailto:supportweb@cincom.com
http://supportweb.cincom.com

Additional Sources of Information
• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu
with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/
• A Wiki (a user-editable web site) for discussing any and all things

VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks
• A variety of tutorials and other materials specifically on VisualWorks

at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincom.com/smalltalk/documentation
is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.

Online Help
VisualWorks includes an online help system.

To display the online documentation browser, open the Help pull-down
menu from the VisualWorks main menu bar and select one of the help
options.
MQ Interface Guide ix

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincom.com/smalltalk/documentation

About This Book
News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://brain.cs.uiuc.edu:8080/VisualWorks.1
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
x VisualWorks

http://brain.cs.uiuc.edu:8080/VisualWorks.1

1
Using MQ-Interface

This chapter discusses the public classes and methods provided in the
MQ-Interface library and ther use in building an application.

Public Classes
The following are the classes in the VisualWorks MQ-Interface that are
intended for use by an application programmer to access the functionality
of WebSphere MQ.

QueueManager
An abstract class that represents a WebSphere MQ queue manager.
It instantiate a concrete class based on parameter an application
provides in the instance creation methods

LocalQueueManager
A concrete queue manager class that connects the VisualWorks
image to a queue manager that is installed on the same machine as
the image. It is using the WebSphere MQ none threaded server
library

LocalThapiQueueManager
A concrete queue manager class that connects the VisualWorks
image to a queue manager that is installed on the same machine as
the image. It is using the WebSphere MQ threaded server library

RemoteQueueManager
A concrete queue manager class that connects the VisualWorks
image to a queue manager that is installed on a different machine
using the WebSphere MQ none threaded client library
MQ Interface Guide 1-1

Using MQ-Interface
RemoteThapiQueueManager
A concrete queue manager class that connects the VisualWorks
image to a queue manager that is installed on a different machine
using the WebSphere MQ threaded client library

MessageQueue
An abstract class that represents the link to a queue in a queue
manager. It links to a queue by opening it. In WebSphere MQ a
queue can only be opened for writing or for reading. It is not possible
to open a queue for both.

ReceiverQueue
A concrete message queue class that is used for reading messages
from a queue.

SenderQueue
A concrete message queue class that is used for writing messages to
a queue.

MQMessage
An abstract class for the four different message types IBM defined for
WebSphere MQ.

ActionMessage
An abstract class for messages that is indented to trigger an action in
the receiver of the message.

Request
A concrete message class for a request. You should use this
message type if the receiver has to create a reply.

AsynchronousMessage
A concrete message class for a message that simply carry some
information to another application. It does not generate a reply.

Reply
A concrete message class for a reply an application has to generate
when receiving a request.

Report
A concrete message class for reports generated by WebSphere MQ
itself or by an application about the state of a message or an error.

ActionDecorator
An abstract class to parameterize the storage of the action selector.

DefaultActionDecorator
A concrete action decorator class that combines the action selector
with the application data.
1-2 VisualWorks

Program Flow
Program Flow
An application should connect to the queue manager when it initializes its
external resources. This is usually when the application is starting. Now
the application is able to use the services provided by WebSphere MQ. It
should disconnect from the queue manager when the application
discards its external resources. This is usually when the application is
terminated.

An application has to open a queue located in a queue manager before it
can send or receive messages. It should close the queue if it does not
need it anymore. An application may send several messages to an open
queue or receive several messages from an open queue. A typical live
cycle in the MQ-Interface can follow the sequence below:

Connect to a queue manager
Open a receiver queue
Open a sender queue

Send messages to the sender queue
Receive messages from the receiver queue

Close the sender queue
Close the receiver queue

Disconnect from the queue manager
You may skip the closing of queues since the queue manager will handle
the live cycle of its queues.

Queue Mangers
A queue manager is a kind of provider for WebSphere MQ services. An
application connects to a queue manager in order to use its services. An
application must be connected to a queue manager before it can utilize its
service. Therefore an application should connect to the queue manager
when it initializes its external resources.

A queue manager can be installed on the same machine as the image
(local queue manager) or on another machine (remote queue manager).
For both setups IBM provide a different shared library (DLL on Windows).
Additionally VisualWorks needs a different syntax for threaded and none
threaded API calls.
MQ Interface Guide 1-3

Using MQ-Interface
Therefore the MQ-Interface contains a four concrete queue manager
classes:

An application connects to a queue manager by using the instance
creation method new: aSymbol threaded: aBoolean of the class QueueManager.
The method is using the parameter to determine the concrete sub class.
The first parameter defines the location of the queue manager: #local for a
local queue manager and #remote for a remote queue manager. The
second parameter defines if we use threaded (true) or none threaded
(false) API.

Additionally a queue manager serves as container for its queues. The
QueueManager instance keeps a list of all queues that are created in its
focus. This allows the queue manager to maintain the live cycle of its
queues. Each queue belongs to one queue manager but an application
may send messages to queues in different queue managers.

Local Queue Manager
An instance of LocalQueueManager or LocalThapiQueueManager represents a
queue manager that is installed on the same machine as the VisualWorks
image. For this setup we only need to know the name of the queue
manager.

| manager |
manager := QueueManager new: #local threaded: false.
manager name: ‘venus.queue.manager’.
manager connect.

The above code fragment connects to a local queue manager using none
threaded API. This queue manager is represented by the class
LocalQueueManager. This will be a bit faster then using the treaded API but
it will bock the whole image when calling a procedure in the library. You
should only use a none threaded manager for a client that requests
services from a server and that will actively waiting for replies.

| manager |
manager := QueueManager new: #local threaded: true.
manager name: ‘venus.queue.manager’.
manager connect.

LocalQueueManager local queue manager none threaded

LocalThapiQueueManager local queue manager threaded

RemoteQueueManager remote queue manager none threaded

RemoteThapiQueueManager remote queue manager threaded
1-4 VisualWorks

Queue Mangers
By simply changing the second parameter of the instance creation
method new:threaded: you can create a local queue manager using
threaded API. This queue manager is represented by the class
LocalThapiQueueManager. Every API call will only block the actual process
and not the whole image. But there is a small overhead for the threaded
calls. They are slower.

If you don’t need to exchange information anymore (i.e. you terminate the
application) you send the message disconnect to the queue manager
instance. It will take care of any open queue. You don’t have to close any
queue individually.

A queue manager has a registry where it keeps track of all its message
queues. When an application requests a message queue the first time it
will create a new message queue instance and register it. When the
application requests an already registered queue it just returns the
registered queue.

Remote queue manager
An instance of RemoteQueueManager or RemoteThapiQueueManager
represents a queue manager that is installed another machine as the
VisualWorks image. The image connects to the queue manager through
a channel. Additionally to the name of the manager we have to know:

• the machine where the queue manager is installed,

• the port of the remote queue manager listener. An application has to
provide this information if there is more then one queue manager
installed on the host. If there is only one queue manager on the host
then this setting can be omitted.

• the name of the channel that connect the machine where the
VisualWorks image is installed to the queue manager

The instance creation is similar to the instance creation of a local queue
manager but you have to provide the connection parameter.

| manager |
manager := QueueManager new: #remote threaded: false.
manager name: ‘venus.queue.manager’.
manager host: ‘Fuji1’.
manager port: 1423.
manager channel: ‘cei.snk99.srvconn’.
manager connect.
MQ Interface Guide 1-5

Using MQ-Interface
The above code fragment connects to a remote queue manager using
none threaded API. This queue manager is represented by the class
RemoteQueueManager. Remember in none threaded libraries every API call
will block the whole image.

| manager |
manager := QueueManager new: # remote threaded: true.
manager name: ‘venus.queue.manager’.
manager host: ‘Fuji1’.
manager port: 1423.
manager channel: ‘cei.snk99.srvconn’.
manager connect.

By simply changing the second parameter of the instance creation
method new:threaded: you can create a remote queue manager using
threaded API. This queue manager is represented by the class
RemoteThapiQueueManager. Every API call will only block the actual
process and not the whole image. But there is a small overhead for the
threaded calls. They are slower.

Message queues
A MessageQueue instance represents a queue that is or will be opened for
either reading information from it or writing information to it. A message
queue is identified by its name. When creating a new MessageQueue object
it will not automatically opens the real queue in the queue manager. The
queue will be opened when the first get or put message is sent to the
MessageQueue instance.

This enables an application developer to initialize all needed queues at
start time without caring of external resources. The developer just has to
create instances for all necessary queues. The instances itself open the
queue if needed.

An application may define a time frame for keeping a queue open. If no
get: or put: message is sent to the queue within this time frame, then the
queue instance will close the queue. The instance is now in the state it
was just after it was created. By default this time frame is infinite.

A queue cannot be opened for both reading and writing information. You
have to define what you want to do with the queue. The functionality for
reading information and for writing information is separated into two
subclasses.

A queue can be closed by sending the message close to it. It will also be
closed if the queue manager that contains the queue is terminated.
1-6 VisualWorks

Message queues
Receiver queue
A receiver queue is used to read messages from a queue. You create a
ReceiverQueue instance by sending the message getReceiverQueue: to a
QueueManager instance.

| receiver |
receiver := queueManager getReceiverQueue: ‘armor.1.reply’.
receiver waitInterval: 60000.

Now you can receive messages from the queue. In the above code
fragment we create a receiver queue with the name “armor.1.reply”. We
set the default wait interval to 60000 milliseconds or 60 seconds. This
default setting is later used for receiving messages. The queue will wait
for 60 seconds after you sent a get message to the receiver queue. If no
message arrives in time the queue raise an exception. An application
may override this setting every time it wants to receive a message.

Normally when retrieving a message the queue will return the first
message in the queue. Using match parameter a developer may select
specific messages from the queue. These are the message parameter
message id, the correlation id, group id, sequence number, offset and
token. The MQ-Interface allows several setups to define match
parameter. Using the class method defaultMatchingParameter: a developer
can define match parameter for all queues. This setting can be
overridden in a queue by defining individual parameter for a queue using
the instance method matchingParameter:.

When issuing a GET a developer can define special match parameter for
a single GET.

Sender queue
A sender queue is used to send messages to a queue and with this to
another application. You create a SenderQueue instance by sending the
message getSenderQueue: to a QueueManager instance.

| sender |
sender:= queueManager getSenderQueue: ‘armor.1.ent.p2p’.
sender setReceiverQueue: receiver.

The above code fragment creates a new SenderQueue instance. This
sender queue can now be used to send messages to another application.

The second statement links a receiver queue to the sender queue. When
sending a request or an asynchronous message, the name of the
receiver queue and the name of its queue manager will be copied to the
message. The receiving application needs this information to send a reply
or report back to the sender application.
MQ Interface Guide 1-7

Using MQ-Interface
An application may use this convenience feature to simplify the message
handling. We don’t force a developer to use so. If you don’t want to use
this feature, you have to provide the queue and queue manager name for
requests and asynchronous messages. If you use this feature you can
override the queue and queue manager name for any message you send
through sender queue.

Messages
Messages represent the information, applications exchange via the
message queues. Messages only carry raw data. An application itself is
responsible for marshalling objects to a byte array and to demarshalling a
byte array to an object. This is not part of the MQ-Interface.

IBM defines four types of messages:

• Datagram - A message where the application does not expect a reply.
In the MQ-interface this message type is name asynchronous
message since datagram normally has a different meaning.

• Request - A message where the application expects a reply.

• Reply - A message that is a reply to a request.

• Report - A status or error message.

The MQ-Interface provides a class for each message type.

A message contains a description that defines how a message has to be
handled by WebSphere MQ and the receiving application.

... application data (a byte array or string)

Re
po

rt
M

es
sa

ge
 ty

pe
Ex

pi
re

...

M
es

sa
ge

 ID
Co

rre
la

tio
n

ID

... ...

Re
pl

yT
oQ

Re
pl

yT
oQ

M
gr

Message descriptor
1-8 VisualWorks

Messages
The MQ-Interface preset the parameter according to the use of the
message and the settings of the queue. A developer may set some of the
parameters to change the default settings and settings copied from the
queue:.

Report
By default this parameter is not set. A developer can request a status
or an error report by defining the type of the report. The MQ-Interface
provides a set of methods to define the reports to be sent back to the
sender queue. This parameter is only valid for requests and for
asynchronous messages.

• reportError - Request an error report if a message cannot be
delivered or if the action triggered by a message failed.

• reportCOA - Request a report when the message is placed into
the destination queue.

• reportCOD - Request a report when the message is read from
the destination queue.

• reportNAN - Request a report when the receiving application
accepts the message.

• reportPAN - Request a report when the receiving application
rejects the message.

• flushReports - Reset the report parameter.

MessageType
Defines the type of a message. Currently this are the four types
defined by Websphere MQ.

Expire
This parameter defines how long a message will be kept in a queue.
If nobody read the message from the queue within this time the
queue manager will remove it from the queue. By default this is set to
unlimited. Somebody else (i.e. Tivoli) has to take care.

Message ID
The message identifier. This is a string that distinguishes one
message from another. By default WebSphere MQ will generate this
parameter.

Correlation ID
This is a string that relates one message to another (i.e. a reply to a
request). By default WebSphere MQ will generate this parameter.
MQ Interface Guide 1-9

Using MQ-Interface
ReplyToQ
This parameter defines the reply queue to which a reply or report
message has to be sent. It is only set for requests and asynchronous
messages. An application retrieving a request has to use this
parameter to identify the queue where to send a reply.

ReplyToQmgr
This parameter defines the queue manager that contains the reply
queue to which a reply or report message has to be sent. It is only
set for requests and asynchronous messages. An application
retrieving a request has to use this parameter to identify the queue
manager where to send a reply.

We may promote additional parameter later. Currently this set of
parameter is sufficient to support the scenarios defined in the design
document.

Messages that trigger an action in the receiver must store a selector for
the action somewhere inside the message itself. The selector can be
coded into the application data itself or it can be stored into an unused
parameter in the message descriptors. The MQ-Interface uses a
decorator for defining the storage of the action selector. The MQ-interface
has a variable that contains a decorator object. An application can set the
decorator individually for each message. For convenience reasons the
class MQMessage contains a class method where an application can
define a decorator that should be used for all messages.

The messages action, action:, data, and data: call the same methods in the
decorator. The methods in the decorator know how to store the action
selector and how to retrieve it. The two methods below show the
messages action and action: for a decorator that stores the action selector
into the parameter applicationName of the message descriptor.

action
“Answer the action selector coded into a parameter
of the message descriptor”

^message applicationName

action: aString
“Answer the action selector coded into a parameter
of the message descriptor”

message applicationName: aString
1-10 VisualWorks

Messages
The messages data and data: implemented in the base class
ActionDecorator just store the application data into the message. They
support decorator that store the selector in the application data. The
concrete subclass DefaultActionDecorator does this.

Asynchronous message
An asynchronous message represents a message that is used by an
application to send information to another application but does not require
a reply. An application may define reports to be sent back. A developer
creates a new asynchronous message by sending the message
newAsynchronousMessage to a sender queue.

| message|
message := sender newAsynchronousMessage.
message action: #tick.
message data: #[84].“Integer value for T”
sender put: message.

The above code fragment send a time tick with a Boolean value (true) to
another application. We are not interested what the other application is
doing with it or even if it is reading it.

If we want to know if the message is delivered or if the other application
accepts the message we have to define reports.

| message report |
message := sender newAsynchronousMessage.
message action: #processOrder.
message data: anOrder asMQData.
message reportCOD.
sender put: message.
report := receiver getReportFor: message.

This code fragment sends an order to another application. We want to
know if the other application read the message from the queue. We are
not interested what exactly the other application is doing with the order.
We just want to know it has it.

The code fragment waits for a report after it has sent the message. The
queue manager creates that report when the receiver application reads
the message from the queue. In this example the default wait interval of
the queue is used. If no report arrives within this time interval the queue
raises an exception. If you want to use a different wait interval you have to
use the message getReportFort:wait:. The second parameter of the
message defines the wait interval.
MQ Interface Guide 1-11

Using MQ-Interface
In the above example we assume that the sender queue is linked to a
receiver queue. The sender queue copies the name of the receiver queue
and the name of the queue manager into the message before it send it. If
the queues are not linked then the developer has to set the queue
parameter manually as shown in the fragment below.

| message report |
message := sender newAsynchronousMessage.
message action: #newOrder.
message data: anOrder asMQData.
message reportCOD.
message replyQueue: receiver.
sender put: message.
report := receiver getReportFor: message.

The queue will create the message and correlation ids. After the
message is sent the parameter can be read from the message
description. The receiver now can associate a report it receives to the
message. If you want to define your own message and correlation id you
can do so by using the messages messageID: and correletionID:.

You may define several reports. Based on the report you define you may
have to read several reports. The reports will arrive in the following order:

An error report may arrive anytime. The queue manager creates an error
report when the message cannot be delivered or an application send an
error report if the action triggered by the message failed.

If you define all report types you have to retrieve three reports: COA,
COD, PAN/NAN. You only break this if you retrieve an error report.

Request
Use should a request if you want to receive a response to a message you
sent to another application. An application that retrieves a request has to
create a reply and send it back to the sender application.

COA Confirmation of arrival the message is place into the
destination queue

COD Confirmation of delivery the message is read from the
destination queue

PAN/NAN Positive or negative action
notification

the retrieving application accepts or
rejects the message. They should
always used together.
1-12 VisualWorks

Messages
| request reply |
request := sender newRequest.
request action: #saveAddress.
request data: anAddress asMQData.
sender put: request.
reply := receiver getReplyFor: request.

The above code fragment creates a request to store an address into a
server. The server will process the request and send a reply back to the
sender. In the example we assume that the sender and receiver queues
are linked – the sender knows the queue where the request will arrive.
The sender copies the name of the queue and the name of the queue’s
queue manager into the message. Since we do not define a message or
correlation id WebSphere is doing it for us.

You can define the same reports for a request as for an asynchronous
message. They will be handled the same as described above. The
following example shows a code fragment where we want to know if the
message is delivered.

| request reply report |
request := sender newRequest.
request action: #saveAddress.
request data: anAddress asMQData.
message reportCOD.
sender put: request.
report := receiver getReportFor: request.
reply := receiver getReplyFor: request.

The queue manager creates the report when the receiver read the
request from the queue. The application process the message – stores
the address – and sends a reply back to the same queue as the queue
manager sent the report. Thus the report will arrive before the reply and
we have to retrieve them in this order.

Reply
If an application retrieves a request it must send a reply back to the
queue defined in the request.
MQ Interface Guide 1-13

Using MQ-Interface
listenForIncommingMessages
“A simple WebSphere MQ listener”

| message reply answer |
[message := listener getIncommingMessage.
sender := self queueManager
getSenderQueue: aMessage replyQueueName.
answer := self

processAction: message action
with: message data.

reply := message createReply.
reply data: answer asMQData.
sender put: reply.
true] whileTrue: [].

This sample method can be use as a simple listener that route any
incoming message to its own class. The class process the action coded
into the request. The listener then creates a reply, copies the response
into the reply and sends it back.

A request has to carry information – the name of the receiver queue and
the name of its queue manager - where to send the reply. The receiving
application uses this information to send the request back to the sending
application. The message createReply will copy all necessary parameter
from the request to the reply.

In this example we assume that we only have one queue manager. Thus
we don’t have to handle the queue manager parameter.

This message can be forked – maybe in an initialize - as a separate
process running in the background. Then it does not block the rest of the
image.

initialize
“Fork a process for a listener”

listener := self queueManager
getReceiverQueue: ’app1.rec.queue’.
process := [self listenForIncommingMessages].
process forkAt: Processor userInterruptPriority.

Report
An application may define reports it want to receive when sending an
asynchronous message or a request to another application. Some of the
reports must be created by the receiving application.
1-14 VisualWorks

Messages
listenForIncommingMessages
“A simple WebSphere MQ listener”

| message reply report answer |
[message := listener getIncommingMessage.
sender := self queueManager
getSenderQueue: aMessage replyQueueName.
(message requiresPANReport and: [self accept: message action])
ifTrue: [sender put: (message createReport: #PAN)].

answer := self
processAction: message action
with: message data.

reply := message createReply.
reply data: answer asMQData.
sender put: reply.
true] whileTrue: [].

The above sample work the same as the example before except it checks
if it has to send a PAN back to the sending application before it process
the action triggered by the message. The sample sends the report
through the same queue as the reply. The sending application first has to
retrieve the report and then it has to retrieve the reply.
MQ Interface Guide 1-15

Using MQ-Interface
The message createReport: creates a new report and copies all necessary
parameter to the report. The parameter defines what report is send back.
Currently we support three report types:

• PAN is sent when the application accepts the message.

• NAN is sent when the application rejects the message.

• Error is sent when the action triggered by the message raised an
error.
1-16 VisualWorks

2
Class Reference

This chapter describes all classes and public methods of the MQ-
interface.

QueueManager
QueueManager is an abstract class that represents a WebSphere MQ
queue manager. It instantiate a concrete class based on parameter in the
instance creation methods. A queue manager keeps two lists of all
queues an application requests. One list for receiver queues and one list
for sender queues. The manager uses this two lists to maintain the life
cycle of its queues.

Super class
Object

Class methods
new: aSymbol threaded: aBoolean

This factory method create a concrete subclass of QueueManager
based on the parameter of the message. WebSphere MQ supports
two different setups for the queue manager. Additionally it provides
libraries for threaded and none threaded API calls. Therefore there
are four subclasses that are defined by the two parameter of the
message.

aSymbol aBoolean

#local true LocalThapiQueueManager

#local false LocalQueueManager
MQ Interface Guide 2-1

Class Reference
Instance methods
name

Return the name of the queue manager

name: aString
Set the name of the queue manager

connect
Connects an instance of a concrete subclass to the WebSphere MQ
queue manager. The application now can use other WebSphere MQ
services.

disconnect
Disconnect the application from the WebSphere MQ queue manager.
The application cannot use WebSphere MQ services anymore.

getReceiverQueue: aString
Request a ReceiverQueue instance for a queue name. If the queue
manager has already a receiver queue registered for this name it just
answer the queue. If it does not have a receiver queue registered for
it, it will create one and register it.

getSenderQueue: aString
Request a SenderQueue instance for a queue name. If the queue
manager has already a sender queue registered for this name it just
answer the queue. If it does not have a sender queue registered for it,
it will create one and register it.

LocalQueueManager
LocalQueueManager is a concrete queue manager class that connects a
VisualWorks image to a queue manager that is installed on the same
machine as the image. It is using the WebSphere MQ none threaded
server library. This class does not has an own public protocol. It just
defines the DLLCC class for the threaded server library.

Super class
QueueManager

#remote true RemoteThapiQueueManager

#remote false RemoteQueueManager

aSymbol aBoolean
2-2 VisualWorks

LocalThapiQueueManager
LocalThapiQueueManager
LocalThapiQueueManager is a concrete queue manager class that connects
a VisualWorks image to a queue manager that is installed on the same
machine as the image. It is using the WebSphere MQ threaded server
library. This class does not has an own public protocol. It just defines the
DLLCC class for the threaded server library.

Super class
LocalQueueManager

RemoteQueueManager
RemoteQueueManager is a concrete queue manager class that connects a
VisualWorks image to a queue manager that is installed on a different
machine using the WebSphere MQ none threaded client library.

Super class
QueueManager

Instance methods
host

Returns the name or the ip-address of the host where the queue
manager is installed.

host: aString
Set the name or the ip-address of the host where the queue manager
is installed. When using the host name to define the host then the
local machine must be able to resolve the ip-address for the host
name.

port
Returns the port of the listener.

port: aNumber
Set the port of the listener. This must only be set if there are more
then one queue manager installed on the remote server.

channel
Return the name of the channel that connects the application to the
remote queue manager.

channel: aString
Set the name of the channel that connects the application to the
remote queue manager.
MQ Interface Guide 2-3

Class Reference
RemoteThapiQueueManager
A concrete queue manager class that connects a VisualWorks image to a
queue manager that is installed on a different machine using the
WebSphere MQ threaded client library. This class does not has an own
public protocol. It just defines the DLLCC class for the threaded client
library.

Super class
RemoteQueueManager

MessageQueue
MessageQueue is an abstract class that represents the link to a queue in a
queue manager. In WebSphere MQ a queue can only be opened for
writing or for reading. It is not possible to open a queue for both.
Therefore the MQ-Interface contains two subclasses of this class that
represent the different behavior for sender and receiver queues.

Initially an instance of a MessageQueue subclass is not linked - by opening
- to its real WebSphere MQ queue. The object opens the queue when the
first get: or put: message is sent to the object. A developer may force a
queue to establish the link by sending the message open to it. A developer
may define a time frame after which a queue will be closed if no get: or
put: message is send to the queue within this time frame.

Super class
Object

Instance methods
name

Answers the name of the queue

open
Opens a WebSphere MQ queue. Now an application can retrieve
messages from it or send messages to it. This method is
automatically called when an application sends the first get: or put:
message to it.

close
Close the WebSphere MQ queue. An application may send this
message manually. It also can leave it to the queue manager that
maintains the live cycle of its queues.
2-4 VisualWorks

ReceiverQueue
timeout: anInteger
Define the time interval for closing the queue resource. If no get: or
put: is issued in this frame the queue is closed but the instance
remains in the same state as being just created

ReceiverQueue
ReceiverQueue is a concrete message queue class that is or will be opened
for reading messages from a queue.

Super class
MessageQueue

Class methods
defaultMatchingParameter: aStringCollection

Define the default parameter that will be used to retrieve selected
messages from the queue. By default there is none. The first
message in the queue is received from the queue

Instance methods
matchingParameter: aStringCollection

Define the parameter that will be used to retrieve selected messages
from the queue. If this message is not send then the default
parameter will be used to read messages from the queue.

getReportFor: aMessage
Try to receive a report from the queue. This method uses the default
wait interval of the queue. If no report arrives in time then the queue
raise an error. If a matching report arrives the method answers this
report.

getReportFor: aMessage match: aStringCollection
Retrieve the first report from the queue that match the parameter
provided by the last parameter. This method overrides previous
match settings in the queue.

getReportFor: aMessage wait: aNumber
Try to receive a report from the queue. This method uses a defined
wait interval. The default value of the queue is ignored. If no report
arrives in time then the queue raise an error. If a matching report
arrives the method answers this report.
MQ Interface Guide 2-5

Class Reference
getReportFor: aMessage wait: anInteger match: aStringCollection
Retrieve the first report from the queue that match the parameter
provided by the last parameter. The report is sent back by another
application to an asynchronous message or request – the parameter
of this method. This method is used to override the timeout and
match setting of the queue.

getReplyFor: aRequest
Try to receive a reply from the queue. This method uses the default
wait interval of the queue. If no reply arrives in time then the queue
raise an error. If a matching reply arrives the method answers this
reply.

getReplyFor: aMessage match: aStringCollection
Retrieve the first reply from the queue that match the parameter
provided by the last parameter. The reply is sent back by another
application to request – the first parameter of this method. This
method overrides previous match settings in the queue.

getReplyFor: aRequest wait: aNumber
Try to receive a reply from the queue. This method uses a defined
wait interval. The default value of the queue is ignored. If no reply
arrives in time then the queue raise an error. If a matching reply
arrives the method answers this reply.

getReportFor: aMessage wait: anInteger match: aStringCollection
Retrieve the first reply from the queue that match the parameter
provided by the last parameter. The reply is sent back by another
application to a request – the first parameter of this method. This
method is used to override the timeout and match setting of the
queue.

getIncommingMessage
Read any message from the queue. This method uses the default
wait interval of the queue. If no message arrives in time then the
queue raise an error. If a matching message arrives the method
answers this message. We recommend to define an infinitive wait
and to use this method in a separate process to avoid the blocking of
the whole image.

The main purpose of this method is in implementing a listener that
handles unexpected incoming messages.

waitInterval: aNumber
Define the default wait interval for an attempt to retrieve a message
from a receiver queue. The parameter defines the wait interval in
milliseconds.
2-6 VisualWorks

SenderQueue
waitForever
Define the default wait interval for an attempt to retrieve a message
from a receiver queue to infinite. A get: message will wait forever.

noWait
Define the default wait interval for an attempt to retrieve a message
from a receiver queue to zero. A #get: message will return
immediately. If there is no message in the queue it will raise an error.

SenderQueue
SenderQueue is a concrete message queue class that is or will be opened
for writing messages to a queue. A sender queue can be linked with a
receiver queue. Asynchronous messages and requests send to another
application through the sender queue carry the name of the linked
receiver queue and the name of its queue manager. Reports and replies
will later arrive in the linked receiver queue.

Super class
MessageQueue

Instance methods
newAsynchronousMessage

Create a new asynchronous message and preset it according to the
queue’s settings. The message should be sent through the queue
that created it.

newRequest
Create a new request and preset it according to the queue’s settings.
The message should be sent through the queue that created it.

receiverQueue: aReceiverQueue
Links a receiver queue to the sender queue. The sender queue will
use this setting to set the queue name and queue manager name in
messages sent through this queue.

put: aMessage
Write a message to the queue.
MQ Interface Guide 2-7

Class Reference
MQMessage
An abstract class for the four different message types IBM defined for
WebSphere MQ. We named it MQMessage to be sure that it does not
collide with the base class Message.

Super class
Object

Instance methods
data

Answer the application data transferred by a message. WebSphere
MQ only transfers raw data. Thus an application has to convert the
byte array into its domain objects.

data: aByteArray
Set the application data transferred by the message. Since
WebSphere MQ only transfers raw data the application has to convert
its domain objects into a byte array

reportCOA
Set the flag for receiving a confirmation of arrival. This report is
generated by the queue manager when the message is placed into
the destination queue

reportCOD
Set the flag for receiving a confirmation of delivery. This report is
generated by the queue manager when the message is read from the
destination queue

flushReports
Reset the report flags. No report is expected.

replyQueue: aQueue
Define the queue where a receiving application has to send replies
and reports. The method will copy the queue name and its queue
manager name to the message
2-8 VisualWorks

ActionMessage
ActionMessage
ActionMessage is an abstract class for messages that are indented to
trigger an action in the receiver of the message. These message types
carry a symbol in one of the parameter of the message descriptor.

Super class
Object

Class methods
defaultDecoratorClass: aClass

Define the class of the default decorator that will be used to store and
retrieve the action selector into the message.

Instance methods
actionDecorator: aDecorator

Set the decorator that codes the action message into the descriptor,
into the application data or both.

action
Answers a string that identify the action an application has to perform
when retrieving an action message.

action: aSymbol
Set the action to be performed when receiving an action message.

reportError
Set a flag for receiving error reports. These reports are created by
the queue manager when a message cannot be delivered or by an
application if the action triggered by a message failed.

reportNAN
Set the flag for receiving a negative action notification. This report is
generated by the receiver application when the message is rejected.

reportPAN
Set the flag for receiving a positive action notification. This report is
generated by the receiver application when the message is accepted.

requiresErrorReport
Answer true if the receiver want to receive error reports, answer false
otherwise.

requiresPANReport
Answer true if the receiver want to receive a positive action
notification, answer false otherwise
MQ Interface Guide 2-9

Class Reference
requiresNANReport
Answer true if the receiver want to receive a negative action
notification, answer false otherwise

replyQueueName
Answer the name of the queue where a receiving application has to
send replies and reports.

replyQueueManagerName
Answer the name of the queue manager that contains the queue
where a receiving application has to send replies and reports.

createReport: anActionMessage
Create an Report instance for an action message. This method
copies all necessary parameter from the action message to the
report.

AsynchronousMessage
An AsynchronousMessage is a concrete message class for a message that
simply carries some information to another application. It does not
generate a reply. This class does not have an own public protocol

Super class
ActionMessage

Request
Request is a concrete action message class for a request message. You
should use this message type if you want to receive a reply to a message.

Super class
ActionRequest

Instance methods
createReply: anActionMessage

Create a Reply instance for an action message. This method copies
all necessary parameter from the action message to the reply. The
application just has to add the data to the reply.
2-10 VisualWorks

Reply
Reply
Reply is a concrete message class for a reply an application has to
generate when receiving a request. This class does not have an own
public protocol

Super class
MQMessage

Report
Report is a concrete message class for reports generated by WebSphere
MQ itself or by an application about the state of a message or an error.

Super class
MQMessage

Instance methods
isError

Answers true if it is an error report. Answers false otherwise

isCOA
Answers true if it is an confirmation of arrival report. Answers false
otherwise

isCOD
Answers true if it is an confirmation of delivery report. Answers false
otherwise

isPAN
Answers true if it is a positive action notification report. Answers false
otherwise

isNAN
Answers true if it is a negative action notification report. Answers false
otherwise
MQ Interface Guide 2-11

Class Reference
ActionDecorator
ActionDecorator is an abstract class that stores the action selector
somewhere in the message. A subclass has to implement the messages
action and action: that implement the concrete storage of the action
selector (i.e. in an unused parameter of the message selector).

Super class
Object

Instance methods
message: aMQMessage

Sets the message where the decorator stores and retrieves the
action selector. This method is called when a decorator is assigned to
a message.

data
Answers the data part of the message.

data: aByteArray
Copy the byte array into the data part of the message

DefaultActionDecorator
DefaultActionDecorator is a concrete class that stores the action selector
together with the application data in the data part of the message. The
selector is just stored before the application data. The first byte of the
data part contains the size of the selector. This makes it easy to split the
selector and the application data when an application receives the
message. The class contains instance variables that cache the selector
and application data. Only id both variables are set, then the decorator
combines them and stores it as data part of the message.

Super class
Object

Instance methods
action

Answers the action selector of the message

action: aString
Sets the action selector of the message. If the data is set, too then
combine them and store them in the data part of the message
2-12 VisualWorks

DefaultActionDecorator
data
Answers the application data of the message

data: aString
Sets the application data of the message. If the action is set, too then
combine them and store them in the data part of the message
MQ Interface Guide 2-13

	Contents
	About This Book
	Overview
	Audience
	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Online Help
	News Groups
	VisualWorks Wiki
	Commercial Publications

	Using MQ-Interface
	Public Classes
	Program Flow
	Queue Mangers
	Local Queue Manager
	Remote queue manager

	Message queues
	Receiver queue
	Sender queue

	Messages
	Asynchronous message
	Request
	Reply
	Report

	Class Reference
	QueueManager
	Super class
	Class methods
	Instance methods

	LocalQueueManager
	Super class

	LocalThapiQueueManager
	Super class

	RemoteQueueManager
	Super class
	Instance methods

	RemoteThapiQueueManager
	Super class

	MessageQueue
	Super class
	Instance methods

	ReceiverQueue
	Super class
	Class methods
	Instance methods

	SenderQueue
	Super class
	Instance methods

	MQMessage
	Super class
	Instance methods

	ActionMessage
	Super class
	Class methods
	Instance methods

	AsynchronousMessage
	Super class

	Request
	Super class
	Instance methods

	Reply
	Super class

	Report
	Super class
	Instance methods

	ActionDecorator
	Super class
	Instance methods

	DefaultActionDecorator
	Super class
	Instance methods

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

