

VisualWorks®

Release Notes 7.3

P46-0106-09

© 1999–2004 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0106-09

Software Release 7.3

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999–2004 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

Chapter 1 Introduction to VisualWorks 7.3 7

Product Support ..7
Support Status ...7
Product Patches ...8

ARs Resolved in this Release ... 8
Items Of Special Note ... 8

Store Database Update ..8
Moving Packages into the Base ... 8
New Platforms ..9

WinCE ... 9
64-bit Linux ..9

Known Limitations ... 9
Store ...9
Initializing Shared Variables ... 9

Sawfish and MultiProcUI ... 10
Limitations listed in other sections ... 10

Chapter 2 VW 7.3 New and Enhanced Features 11

Virtual Machine ...11
New Virtual Machines .. 11

LinuxPPC ..11
MacX X11 ..11
Windows CE ..11
64-bit Linux ..11

VM Sources .. 11
Microsoft Windows CE ...12

Distribution contents .. 12
Prerequisites ...13
Developing an Application for CE ..13
Deploying on a CE Device ... 14
Starting VisualWorks on CE .. 14
Known limitations .. 15
Release Notes 3

Contents
Base system ... 16
Subsystems and Startup/Shutdown .. 16

Tools ... 21
Packages Replacing Categories .. 21
Context Menu Changes ... 21
Probe Dialogs .. 21
Miscellaneous .. 21

AddInstVarAtCompile .. 22
WorkspaceFormatting ... 22
ExtraIcons ... 22

Advanced Tools .. 22
Profiler ... 22

Summaries of Recursive Functions .. 22
Publishing in Store .. 23

Store ... 24
External File Support ... 24
Store for Oracle ... 24

WebService .. 24
WSDL Wizard .. 24

Net Clients .. 25
Cookie Support .. 25
HttpURL ... 25
Merging HTTP and HTTPS .. 25
Autoloading Prerequisites .. 26
ASN.1 .. 26

Security ... 32
Opentalk ... 33

Opentalk Namespace .. 33
System Events ... 33
Request Dispatch .. 34
Scheduling ... 35
Design Changes in Configurations .. 36
New server side error event ... 37
Miscellaneous .. 38

Browser Plugin ... 38
Application Server .. 39

Better handling of encodings ... 39
Form Data and Non-ASCII Characters in Web Toolkit 40
Remove Old Servers ... 40
FastCGI Removed ... 40
Bug Fixes ... 41
Headless Changes .. 41
4 VisualWorks 7.3

Contents
ISAPI Gateway Improvements ... 41
Backward-Compatibility ... 41
ISAPI Gateway Improvements .. 41
Authentication ..41

Installer Framework ...42
Customizing the install.map File .. 42

Dynamic Attributes .. 42
Components ..43
License ..44

Customizing the Code .. 44
Creating Component Archives ... 44
Local Installations ... 45
Remote installations ... 45

Documentation ..46
SmalltalkDoc .. 46
PDF Documents ... 46
TechNotes ..48

Goodies ...48
Dual Monitor Support on Windows ...48

Chapter 3 Deprecated Features 49

Plugin Parcels ... 49
Net Clients ... 49
Security ...49

Chapter 4 Preview Components 50

Base Image for Packaging .. 50
MQInterface ..50
Unicode Support for Windows ...51
Menu UI Compatibility ... 51
New GUI Framework (Pollock), Feature Set 1 ... 52

Background ..53
High Level Goals .. 54
Pollock ..54

Pollock Requirements ..54
The New Metaphor: Panes with frames, agents, and artists 56
Other notes of interest ..57
So, What Now? .. 58

Opentalk ..58
SNMP ...58
Release Notes 5

Contents
Distributed Profiler ... 59
Installing the Opentalk Profiler in a Target Image 59
Installing the Opentalk Profiler in a Client Image 59

Opentalk Remote Debugger .. 59
Opentalk SOAP Header Support ... 60

Server SOAP Header Support .. 60
Client SOAP Header Support ... 61
SOAP Header Demo .. 61

Testing and Remote Testing .. 63
Miscellaneous .. 65

Opentalk SNMP .. 65
Usage .. 66

Initial Configuration ... 66
Broker or Engine Creation and Configuration 66
Engine Use ... 67

Entity Configuration ... 69
MIBs .. 69
Limitations ... 69

Port 161 and the AGENTX MIB .. 69
OpentalkCORBA .. 70

Examples ... 72
Remote Stream Access .. 72
“Locate” API .. 72
Transparent Request Forwarding .. 73
Listing contents of a Java Naming Service 74
List Initial DST Services .. 75

SocratesEXDI and SocratesThapiEXDI .. 75
Installation ... 76

SocratesXML 1.2.0 ... 76
MindSpeed 5.1 .. 76

Data Interchange ... 77
Reference Support .. 78
Object Support ... 78
GLOs ... 78

Virtual Machine ... 79
IEEE floating point ... 79
OE Profiler ... 79
64-bit VM ... 79

GLORP ... 80
SmalltalkDoc ... 81
6 VisualWorks 7.3

1
Introduction to VisualWorks 7.3

These release notes outline the changes made in the version 7.3 release
of VisualWorks. Both Commercial and Non-Commercial releases are
covered. These notes are not intended to be a comprehensive
explanation of new features and functionality nor are they intended to be
used in lieu of the product documentation. Refer to the VisualWorks
documentation set for more information.

Release notes for 7.0 and later releases are included in the doc/
directory (7.2.1 release notes cover 7.2 as well).

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Trouble+Shooter.

Product Support

Support Status
Basic support policies for the current release are described in the
licensing agreement. As a product ages, its support status changes. To
find the support status for any version of VisualWorks and Object Studio,
refer to this web page:

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Cincom+Smalltalk+Platform+Support+Guide
Release Notes 7

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide

Introduction to VisualWorks 7.3
Product Patches
Fixes to known problems may become available for this release, and will
be posted at this web site:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in:
fixed_ars.txt.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.

Items Of Special Note

Store Database Update
The Store schema has been updated, requiring an update to the
database. To update the database, the administrator must evaluate

DbRegistry update73
in a workspace.

After updating, you can still load from and publish to the database from
older images. To take advantage of the added table structure, however,
you must access the database from a 7.3 image.

Moving Packages into the Base
In 7.3 we have begun simplifying the views into the system by reducing
parcel and package views into a single view. This was done by moving
package/bundle functionality into the base. Parcels now exist as simply
an external file representation of packagses, and are represented as
packages in the system browser once loaded. There is no longer a parcel
view.

However, the change is not complete, and there are still a number of
operations on packages and parcels that are different. (Details details).
8 VisualWorks 7.3

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

Known Limitations
New Platforms

WinCE
Devices running two Win CE operating systems (ARM and x86) are now
supported as deployment platforms. In general, these devices are not
suitable for development purposes.

64-bit Linux
This release introduces a beta of native 64-bit VisualWorks on the first
platform, linuxx86_64. Refer to “64-bit VM” for more information.

Known Limitations
While a large number of ARs (Action Requests) have been addressed in
this release, a number remain outstanding.

Known Limitations sections are provided throughout this document,
pertaining to specific product areas.

Store
(AR 46654) If the ChangeList contains a change to a bundle structure
that moves a package from a bundle, replaying the change causes the
package to be unloaded.

Initializing Shared Variables
(AR 44594) In 7.1, a number of inconsistencies were reported in how
classes and shared variables are initialized when loading code from the
several storage options. Most of these are now corrected, reducing the
matrix to the following table, which summarizes cases where loading is
correct () and incorrect ().

Parcel Package Class

Save FileOut Source Binary FileOut FileOut

New class with initialize method

Existing class with new initialize method

Overridden class initializer

Shared variable in class with initializer

Shared variable in namespace with
initializer
Release Notes 9

Introduction to VisualWorks 7.3
This problem is recognized, and will be corrected in the next release.

Sawfish and MultiProcUI
We have seen a problem with a window regaining focus, when running
under the Sawfish window manager on Linux. There is no known work-
around, other than selecting the window.

Limitations listed in other sections
• WinCE devices: Known limitations
10 VisualWorks 7.3

2
VW 7.3 New and Enhanced Features

This section describes the major changes in this release.

Virtual Machine

New Virtual Machines

LinuxPPC
This engine was in preview, but is now released.

MacX X11
This is a version of the MacX engine adapted for using X11 graphics.

Windows CE
VMs are now supported for CE devices running x86 and ARM
processors. More information is provided below.

64-bit Linux
This release introduces a beta of native 64-bit VisualWorks on the first
platform, linuxx86_64. Refer to “64-bit VM” for more information.

VM Sources
Viritual machine source code is provided under license with the
commercial release. Sources are installed in subdirectories of bin/.
Once installed, refer to the README files in various directories for
instructions on how to use the sources to compile a VM.
Release Notes 11

VW 7.3 New and Enhanced Features
Microsoft Windows CE
Virutal machines for Microsoft Windows CE are intended for use on CE
devices as an application deployment environment. Typically, an
application is developed in a standard development environment, and
prepared for deployment on a CE device. The image, VM, and any
supporting files, are then copied to the CE device and executed.

VisualWorks has been successfully tested on the following hardware:

• Simpad SLC with StrongARM-SA-1110, Windows CE .NET Version
4.0

• skeye.pad with StrongARM-SA-1110, Windows CE .NET Version 4.1

• HP iPAQ H2210 with Intel PXA255 XScale, Windows Pocket PC 2003
(Windows Mobile 2003)

• Tatung WebPAD with Geode GXm, Windows CE .NET Version 4.10

There are, however, limitations. Refer to “Known limitations” below for
details.

Distribution contents
There are two directories with virtual machines for the different
processors:

• bin\cearm – for StrongARM and XScale processors,

• bin\cex86 – for Pentium-compatible processors like the Geode.

Each directory contains three executables and a DLL:

• vwntoe.dll – the DLL containing the virtual machine.

• vwnt.exe – the GUI stub exe which is normally used to run GUI
applications. It uses vwntoe.dll.

• vwntconsole.exe – the console stub executable which is normally
used to run console applications. It uses vwntoe.dll.

• visual.exe – the single virtual machine, which is used for single-
file executable packaged applications.

The assert and debug subdirectories contain versions of these
executables with asserts turned on for debugging. The debug engines are
not optimized and so can be used with the Microsoft eMbedded Visual
C++ debugger. Refer to the engine type descriptions in the Application
Developer’s Guide, Appendix C, for further information.
12 VisualWorks 7.3

Virtual Machine
Prerequisites
Windows CE VMs require a few additions to the standard image. These
are provided in the parcel ce.pcl. On the PC, prior to the deployment to
your CE machine, load this parcel into your image.

This parcel contains two major changes:

• A new SystemSupport subclass for CE – This is necessary because
the name of the DLLs differs from other Windows versions and they
contain different versions of the called functions. For example, only
Unicode versions of most functions are provided and some
convenience functions are missing.

• A new filename subclass, CEFilename – CE does not have a "current
working directory" concept, so only absolute paths are supported.
Therefore CEFilename stores the current directory and expands
relative paths into absolute paths.

Developing an Application for CE
In general, developing an application for deployment on a CE device is
the same as for any other application. The notable differences have to do
with screen size, especially on small PDA-type devices, and filename
handling, because CE does not use file volumes or disk drive letters.

Before beginning development, load the CE parcel (ce.pcl) into the
development image. The changes it makes only take effect when the
image is installed on the CE device, so you can develop as usual on your
standard development system.

Filenames

WinCE does not use relative file paths or volume (disk) letters. This is
transparent during development, because the CEFilename class handles
converting all paths to absolute paths when the application is deployed
on a CE device. No special development restrictions need to be
observed.

DLL names

Similar, DLL names are modified appropriately when installed on a CE
device.

Window sizes and options

CE devices come in a variety of screen sizes. For the larger devices, with
a screen size of 640x400, the limitations are not extreme. However, on
the smaller devices, such as a Pocket PC with a screen size or 240x320,
the size greatly affects your GUI and application design.
Release Notes 13

VW 7.3 New and Enhanced Features
As a deployment environment, you generally should have all development
tools, such as browsers closed, and possibly removed from the system,
though this is not required.

However, when testing and debugging it is convenient to have all of these
development resources available, and this can present serious difficulties.

Also, especially for smaller devices, select an appropriate opening
position for the GUI, in the canvas settings. Opening screen center is
generally a safe choice.

Input devices

The input side limitations are also worth mentioning. Typically you only
have a touch sensitive screen and a pen for it. There is no keyboard,
hence no modifier keys. You have no mouse buttons where VisualWorks
prefers to have three. So moving the pen somewhere always implies a
pressed button. You can open the 'soft input panel', i.e. a small window
with a keyboard in it. But it is not really comfortable to enter longer texts
this way and this window needs some of your valuable screen space. So
whenever you expect textual input, you should leave some free room for
the keyboard. (At 240x320, a full screen work space contains 10 lines of
text plus title bar, menu bar, tool bar buttons and the status bar at the
bottom. The Keyboard window covers the lines 8 to 10 and the status
bar.)

The CE parcel adds code which interpretes holding the pen for approx
1.3 seconds as a right button press to open the operate context menu.
This behaviour can be turned on and off in the look and feel section of the
settings window. On pocket PC, but not on the CE web pads, users are
trained to expect this behaviour.

.NET access

While WinCE .NET uses the features of the Microsoft .NET platform, the
DotNETConnect preview does not support their use.

Deploying on a CE Device
Load the CE parcel ($(VISUALWORKS)\bin\winCE\CE.pcl) into your
development image. This provides the features described above (see
“Prerequisites”).

Deployment preparation is, otherwise, the same as usual, though there
may be practical considerations. On many devices

Starting VisualWorks on CE
There are several ways to start VisualWorks on Windows CE:
14 VisualWorks 7.3

Virtual Machine
• In the command shell, execute:

visual [options] visual.im

(Not all CE environments have a command shell interface.)

• Double-click on visual.exe. This starts VisualWorks with the
default image, visual.im..

By default, the vm attempts to open an image with the same name as
the vm and in the same directory. So, you can rename the the vm to
match your image name and execute it in this way.

• Double-click on an image file. This works only if the .im extension is
associated with VisualWorks in the registry of the CE device.

If you are developing on the CE device, you can evaluate this
expression in a workspace:

WinCESystemSupport registerVisualworksExtension
• If you have packaged the vm and image as a single executable file

(e.g. using ResHacker provided in the packaging/win directory),
you can simply run the executable.

• Create a short-cut to read e.g.

"\My Documents\vwnt" "\My Documents\visual.im"
The default CE Windows explorer can be used to create associations
by copying an existng short-cut (e.g., Control panel), renaming it, and
editing its properties. On CE machines that lack the standard
explorer, you can find free tools to edit associations.

Known limitations

Sockets

• Non-blocking calls are not yet supported.

• Conversion of hostnames to IP addresses, service names to ports,
etc., is not implemented. Use addresses instead, e.g., 192.109.54.11
instead of www.cincom.com.

File I/O

• File locking does not exist on CE (prim 667)

• Delete, rename, etc., do not work on open files (prim 1601,1602,..)

• “ '\' asFilename fileSize “ fails with FILE_NOT_FOUND_ERROR.
Release Notes 15

VW 7.3 New and Enhanced Features
Windows and Graphics

• Animation primitives not working properly (prims 935-937)

• Only full circles are supported by the OS; arcs and wedges are
converted to polylines

• No pixmap <-> clipboard primitives

User primitive

• As yet there is no support for user primitives or primitive plugins.

Base system

Subsystems and Startup/Shutdown
VisualWorks 7.3 includes a number of changes in the way image save
and startup processing is handled. In previous versions, these operations
were a very tightly coupled series of operations. The new mechanism
aims to make it simpler to extend these mechanisms, and to allow
programs to add actions at various points in this processing. For most
code, these changes will be backward-compatible, but there will be new
facilities that can be taken advantage of.

In previous versions, the primary mechanism for getting notification of
system events was to register as a dependent of ObjectMemory. This
allowed the object to receive notification of all system events, but had no
control over ordering. More recently, SystemEventInterest and
CommandLineInterest have allowed more declarative registration for events,
but again without ordering.

This version introduces additional pragma methods in SystemEventInterest
and CommandLineInterest that allow control over the order in which events
occur. In addition, it defines a new construct, a Subsystem, which can
serve to group actions together, and which activates or deactivates as a
unit. For example, WindowingSystem, or FinalizationSystem.

Subsystems define four possible actions: activate, deactivate, pause, and
resume. On image startup, the system attempts to activate all the
subsystems present in the image. Subsystems also activate after being
loaded (this is triggered by the postLoad: mechanism), and can also be
activated by sending the #activate message. Similarly, when the image
saved, subsystems are paused while the save is in progress, and then
resumed after the image returns from a snapshot but continues running.
To respond to these events, subsystems can implement the methods
16 VisualWorks 7.3

Base system
setUp, tearDown, pauseAction and resumeAction. The inherited versions of
these methods do nothing, so a new subsystem need only define the
ones it needs.

The order of activation is defined by the prerequisites of a subsystem. A
subsystem must be deactivated or paused before its prerequisites, and
activated or resumed after them. For example, the base image includes
the subsystem WindowingSystem. That has prerequisites DelaySystem
and BasicGraphicsSystem. If we attempt to activate the WindowingSystem, it
will check first to make sure that the DelaySystem and BasicGraphicsSystem
are running, and if either is not, it will attempt to activate them.

Prerequisites are defined either by the prerequisiteSystems method, or by a
method that contains the <prerequisites> pragma. Both return a collection
of Subsystem classes. If you're defining a subsystem, then you would
normally use the prerequisiteSystems method. The pragma can be used to
add prerequisites to an existing system. This is useful because it lets you
add a new subsystem which runs at an arbitrary point during system
setup. For example, if we needed to do something before windowing is
active, we could add an extension method to WindowingSystem that would
make our system be a prerequisite of windowing system.

Subsystems can indicate which system events they want to respond to by
defining the methods activationEvent, deactivationEvent, pauseEvent and
resumeEvent. For most purposes the inherited defaults will work, but it
might, for example, be useful to define activationEvent to use
earlySystemInstallation rather than returnFromSnapshot.

Subsystems also allow command-line options to be defined, using the
<option:> and <option:sequence:> pragmas. For example

headless
<option: '-headless'>
HeadlessImage default isHeadless: true.

loadParcel: aStream
<option: '-pcl'>

(CommandLineInterest argumentsFrom: parcelNameStream)
do: [:each | Parcel loadParcelByName: each].

It's also possible to specify a sequence in command-line options, but note
that this only determines the sequencing among options of the same
subsystem. Other subsystems' command-line options will be processed
when that system prepares to activate, and all command-line options
within a subsystem are processed before the setUp method is called.
Within the same priority level and subsystem, command-line options are
processed left to right.
Release Notes 17

VW 7.3 New and Enhanced Features
In the current system, startup and image save have been broken up into
various small pieces. This included some very long and complex
methods, such as ObjectMemory>>snapshotAs:thenQuit:withLoadPolicy:. In
addition, much of the logic of making an image snapshot has been split
out of ObjectMemory into a Snapshot class. Unless your applications
override or call methods that have been moved, this should be
transparent to existing applications.

The way system events are now signalled is as follows:

1. When the image starts up, there will be an active process at high
priority, running postSnapshotBootstrap. This will mark all
subsystems as inactive (without going through shutdown
procedures). Then it will signal the system event
#earlySystemInstallation. We call this an event, though it is not an
event in the GUI event sense, since it does not have an arbitrary list
of objects registered. Instead, the event is sent directly to the
Subsystem class, which then notifies all of its subclasses, via the
#reactToEvent: method. Each subsystem class knows the set of four
events that it can be interested in, and checks for each of them. If the
event matches, then it will invoke the appropriate class method, for
example, #activate.

2. The #activate class method will tell the singleton instance of the
subsystem to privateActivate. If the subsystem is already active, this
does nothing. Similarly, if the #canActivate flag is false, then it will do
nothing. This allows us to disable certain systems, and can be very
useful. For example, in version 7.3, the greater part of the headless
functionality is implemented by just setting canActivate to false for the
WindowingSystem. This also means that we can make an image
headfull later on by setting that to true and activating
WindowingSystem. The subsystem will then check if all of its
prerequisites are active. If any of them are not, then it will recursively
tell them to activate. If they fail, then the subsystem will not activate.

3. Finally, the subsystem will run its activation actions. The activation
actions are the set of command line options defined for the
subsystem, followed by running the setUp method. At the end of this,
if the canActivate flag is still true (a command-line option may have
set it to false), then the subsystem marks itself active.

There are several subsystems worth noting. These include
ImageConfigurationSystem, UserApplication, and InterestNotificationSystem.
ImageConfigurationSystem defines activities for loading code or other
18 VisualWorks 7.3

Base system
information into the system at startup. It includes a number of command-
line options, some new and some old. These include -pcl, -cnf,
-filein, -settings, -doit, and -evaluate. These act as follows:

UserApplication is intended to serve as a stub for an application. It is a very
simple Subsystem, which depends on WindowingSystem, and whose setUp
action simply calls a main method. This allows you to define an
application class with a main method which will be called automatically on
image startup, and which can be used to define additional actions or
command-line options.

InterestNotificationSystem is what handles notifying the dependents of
ObjectMemory and the SystemEventInterest/CommandLineInterest methods.
When it receives a system event, it calls AbstractSystemEventInterest to
notify all the interests on that event, and then does an ObjectMemory
changed:. However, note that that only handles four of the events, since
that's all that any subsystem knows about. In order to notify of the
earlySystemInstallation event, the CacheFlushingSystem, which is otherwise
responsible for getting rid of any stale handles that the image has from
before it was saved, also notifies AbstractSystemEventInterest and
ObjectMemory dependents.

If we want to define a more complex subsystem, which needs to activate
part way through the system startup procedures, then we need to
determine where it fits into the sequence of startup events. The first
question is whether it needs the windowing system to be running or not.
Systems that run before windowing is active are much harder to debug,
because if there is a problem, we can't get a debugger. For debugging
these the command-line option -o10s, available in the debug virtual
machine, dumps a trace of (almost) every message send. This can be
very helpful. So if we do need the windowing system to run, we can make

-pcl Load the named parcel(s), checking both as a filename and as a
name to be searched in the parcel path

-cnf Treat the argument(s) as configuration files, containing parcels to be
loaded, one per line

-filein Treat the argument(s) as Smalltalk files to be filed in

-settings Treat the argument(s) as XML files containing Smalltalk settings, and
load thm.

-doit Treat the argument(s) as strings to be evaluated

-evaluate Treat the argument (only one) as a string to be evaluated. After
evaluation, put the displayString of the result onto the standard
output and exit the image.
Release Notes 19

VW 7.3 New and Enhanced Features
WindowingSystem a prerequisite in the prerequisiteSystems method, or even
DevelopmentSystem, which ensure that the development environment is
fully set up. If we don't, then we must determine what we need to have
active, and what we want to run before. One way to do this is to trace
through the set of subsystems following the prerequiste relationships.
Alternatively, the following script will list to the transcript all the
subsystems activating in response to a particular event, in the order that
they will activate. For each subsystem it will also list the command-line
options that apply. To list all the subsystems that activate on system
startup you would need to list this twice, once for the event
earlySystemInstallation, and once for returnFromSnapshot.

| tiers event systems systemsWithPrerequisites |
event := #returnFromSnapshot.
tiers := OrderedCollection new.
systemsWithPrerequisites := Dictionary new.
systems := (Subsystem allSubclasses

select: [:each | each activationEvent == event]) asOrderedCollection.
systems do: [:eachSystem |

systemsWithPrerequisites
at: eachSystem
put: eachSystem current allPrerequisiteSystems].

[systems isEmpty]
whileFalse:

[| roots |
roots := systems

reject: [:sub | (systemsWithPrerequisites at: sub)
anySatisfy: [:pre | systems includes: pre]].

tiers add: roots.
systems removeAll: roots].

Transcript cr; cr.
tiers do: [:eachSet |
 eachSet do: [:eachSystem |

Transcript cr; show: eachSystem name , ': '.
eachSystem current commandLineOptions

do: [:each | Transcript show: each option , ', '].
Transcript show: 'setUp']].

Refer to chapter 8, “Application Framework,” of the Application
Developer’s Guide for application level explanations and examples.
20 VisualWorks 7.3

Tools
Tools

Packages Replacing Categories
Bundles and packages have replaced categories as the primary way of
structuring code. In practical terms it means that the "Package" view of
the browser, previously available only after loading Store, is now the
standard.

Loading Store only adds the ability to version packages and store them in
a database. Category-related API is still supported for backward
compatibility, but categories no longer appear in the developement tools.

In images without Store loaded, packages and bundles do not curently
keep track of their modifications.

Context Menu Changes
Context menus in the browser code views have been changed to allow
easier access to more frequently used commands, such as breakpoint
addition/removal, and especially context-sensitive cross-referencing.

The top-level context menu includes commands to browse the item
containing the insertion point, which changes depending on the location
of the insertion point. For example, when the insertion point is inside a
selector, the context menu includes "Browse Senders of Selector" and
"Browse Implementors of Selector" items. When it is inside a class name,
the menu includes the items "Go to Class" and "Browse Class in New
Window".

Context-sensitive cross-referencing support has also been added to the
debugger code views.

Probe Dialogs
Probe modification dialogs in the debugger previously required the user
to separately "Accept" the changes in probe condition and expression
views before closing the dialog. This exlicit "Accept" is no longer
necessary.

Miscellaneous
Functionality from the following packages from the public repository has
been included into the base VisualWorks:
Release Notes 21

VW 7.3 New and Enhanced Features
AddInstVarAtCompile
An option is added to the "undeclared variable" compilation warning
dialog to declare a variable as an instance variable of the current class, or
as a new class.

WorkspaceFormatting
A "Format Selection" command is added to the standard context menu for
code views. Note that this command is different from the "Format"
command in browsers, in that it formats only the selected text rather than
the entire content of the view (since text in a workspace typically consists
of several independent code snippets).

ExtraIcons
(Partially incorporated) Package and bundle icons in the browser now
show whether the package or the bundle comes from the current
repository (tinted icons) or elsewhere (gray icons). In images with Store
loaded, the shape of the icons changes to indicate the
modified/unmodified state. In images without Store loaded, packages and
bundles do not curently keep track of their modifications.

Advanced Tools

Profiler

Summaries of Recursive Functions
The profiler's Spawn menu selection generates a summary of all the
resources consumed by a selected, target method. The very simplest
example of a summary is shown below:

10.4 SomeClass>>parent1:
10.4 SomeClass>>nonRecursive:

10.4 SomeClass>>child1:
The target method, nonRecursive:, consumes 10.4% of the resources. All
of its resources are spent in child1:. It has only one caller in the entire
activation tree, parent1:, and calls from that parent account for 10.4%, or
all, of the resources consumed by it.

The summaries provide:

1. a list of all immediate parents or callers of the target method, with the
percentage of the resources consumed by the target as a result of all
direct calls from the parent,
22 VisualWorks 7.3

Advanced Tools
2. the target method with the percentage of resource consumed by all
calls to it, and

3. a list of all the children or methods immediately called by the target
with the percentage of the resources spent in the child as the result of
all immediate target calls.

All of these three sets of percentages should have the same, or very
nearly the same, total. In the past, these summaries were rarely if ever
correct when the selected method was recursive. Line percentages in
excess of 100% were commonly produced. Now, the summaries are
correct for all classes of directly, mutually, or indirectly recursive methods.

A very simple direct recursion, where the recursive method has distinct
termination and continuation branches, is now summarized in the
following form:

54.5 SomeClass>>directlyRecursive:
12.0 SomeClass>>parent1:

 66.5 SomeClass>>directlyRecursive:
58.2 SomeClass>>continuationBranch:
8.3 SomeClass>>terminationBranch:
0.0 SomeClass>>directlyRecursive:

The method directlyRecursive: consumes 66.5% of the resources. It
consumes 58.2% of them in continuationBranch: and 8.3 % of them in
terminationBranch:. Of the total, 12.0% is attributable to the initial call from
parent1: and the rest, 54.5%, is consumed as the result of directly
recursive calls. Note that in the case of direct recursion, the child entry for
the target method always has a percentage of zero. The parent entry has
the percentage of the initial recursive call.

The implementation of the algorithm now used to generate the
summaries has known inefficiencies, and summaries continue to be
incorrect for low-level target methods that are removed from the
MethodDictionary after the profiling run, because they are wrappers
representing a primitive. Both issues will be addressed in a future
release.

Publishing in Store
If publishing the parser/compiler in Store, it must be published binary;
otherwise it cannot be loaded from the databes.
Release Notes 23

VW 7.3 New and Enhanced Features
Store

External File Support
Store has added the capability of including arbitrary files in a bundle,
allowing non-code to be included in a bundled project. This is useful, for
example, if a release of a project includes documentation, HTML, or
graphics files.

The publish dialog for bundles includes a Files page on which you select
the files in the bundle to publish with the new version.

Adding files to a bundle is currently done by evaluating expressions such
as:

bundle := Store.Registry bundleNamed: 'Foo'.
bundle addFile: 'foo.txt'

When you load a bundle with a file attached, you are prompted whether
to download the file.

Store for Oracle
The Store for Oracle parcel has been renamed to StoreForOracle
(changed from StoreForOracle8), because the same parcel contains
support for Oracle 8, 9, and 10.

Support for Oracle 7 is deprecated, but still available in the obsolete/
directory.

WebService

WSDL Wizard
A new tool, the WSDL Wizard, has been added to assist in generating a
WSDL document from application code, and generating client or server
support classes and stub methods from a WSDL Document. Refer to the
Web Service Developer’s Guide for information about using the tool.
24 VisualWorks 7.3

Net Clients
Net Clients

Cookie Support
HTTPClient now automatically handles cookies, caching incoming cookies
and using cached cookies for outgoing requests. By default, cookie
processing is disabled, but can be enabled on the HTTP Cookie page of
the Settings Tool. Refer to the Internet Client Developer’s Guide for
additional information.

HttpURL
(AR 48015) HttpURL has several enhancements.

• Added decompressContents and decodeContents instance variables and
corresponding accessors. These allow setting options for the
response stream decompression and decoding.

• Added new readByteStreamDo: aBlock method that sends two
parameters to the block: a raw socket stream and a Dictionary in which
the key is the response field name and the value is the response
header field.

• Changed behavior readStreamDo:. The old implementation set the
parameter dictionary values as the response header field values.
This implementation was good for simple headers but headers with
complicated values returned the ValueWithParams object. Getting
specific header field information was too difficult from the
ValueWithParams object. The new implementation returns the header
fields themselves. Existing applications will need to send a value
message to a header field to get the field value.

Merging HTTP and HTTPS
(AR 47101) HttpsClient functionality has been merged with HttpClient. The
HttpsClient class is obsolete now.

HttpClient now supports both types of connection: regular
(HttpStreamHandler) and secure (HttpsStreamHandler). The decision about
which connection to use is based on the URL protocol. If there is no
protocol provided, the default protocol is HTTP, as set by
HttpClient.Protocol.

This change allows creating subclasses of HttpClient for either type of
connection.
Release Notes 25

VW 7.3 New and Enhanced Features
Autoloading Prerequisites
HttpClient can now auto-load parcels that are necessary for secure
connection. The auto-load feature is optional, with the default option set
to ON (VW Setting Tool, URI page). The auto-load feature works the Http
and Ftp parcels as well.

ASN.1
ASN.1 is an abstract syntax notation often used to specify transfer
encodings. It is used in LDAP, SNMP, and X509. Recent VW releases
have contained three different implementation of ASN.1: one in Net
Clients, one in the X509 package, and another in the Opentalk SNMP
preview. All of these implementations had defects, largely a product of the
fact that they were developed to satisfy very focused needs. Each was
the first attempt of a different developer to come up to speed on ASN.1,
which is not a light subject. As a result of such factors, hardly
blameworthy, none of the three implementations is both extensible and
fast. All are incomplete. None support more than one of the several
ASN.1 encoding rules. All of them address many of the following
responsibilities in the same class hierarchy:

• representing the structure and characteristics of a foreign type, for
example, the fact that a given ASN.1 SEQUENCE type has two
elements, with the second optional,

• representing the special semantics of a type, for example, the fact
that SNMPCounters are ASN.1 positive INTEGERs, with an upper
limit, that cannot be decremented but only reset,

• implementing the logic for encoding or decoding a type, which
arguably should be implemented in a marshaler specific to one of the
ASN.1 encoding rules, and not in the class that represents the
structure or semantics of the type,

• recording the bytes from which an instance of the type was decoded,
which is important in some security applications, where critical byte
objects should not be programmatically regenerated for transmission,

• representing the decoded instance of a type, which is possible using
a class that also implements decoding and encoding logic and type-
specific semantics, and represents type structure, if its instances are
also value holders, and

• representing the intended output of an ASN.1 compiler, for the
Smalltalk compilation of an ASN.1 file should generate Smalltalk
representations of the types the file defines, and the previous
26 VisualWorks 7.3

Net Clients
implementations implied, to varying degrees, that an ASN.1 compiler
would extend their hierarchy of ASN.1 type classes.

In addition, none of the former implementations employed the approach
found in the Opentalk marshaling framework. The latter was originally
developed for Smalltalk-to-Smalltalk communication using only native
Smalltalk types, but the architectural and design task of extending it for
use with a foreign type system was and is a necessary one, perhaps
especially with ASN.1, because ASN.1 adds the particular challenge of a
type system with multiple encodings.

The new NetClients ASN.1 parcel contains the ASN.1 implementation we
intend to go forward with. It improves on its predecessors in several ways.

The only ASN.1 type classes present are those used to represent
ASN.1's UNIVERSAL types. This 'Asn1Type' hierarchy is used to
represent the type-specific information that marshalers need to encode
and decode. It does not implement low-level marshaling logic and its
instances are not value holders for decoded objects. Instead, its
instances represent concrete, constrained types. The instances are
stored in a type registry. A separate Asn1Constraint hierarchy represents
the various ASN.1 constraints that are used in constructing new derived
ASN.1 types from its UNIVERSAL base types. The Asn1Type hierarchy
defines the protocol for such construction, and class Asn1Element is used
to represent the elements of ASN.1 compound types. Together these
classes allows one to represent derived type defined in ASN.1. For
example, the code below creates a Smalltalk representation one of the
Extension type of the X509 specification:

"Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }"

Asn1TypeSEQUENCE
register: #Extension
constraint: Asn1ConstraintNull default
elements: (OrderedCollection

with: (Asn1Element
symbol: #extnID
type: (Asn1Type findTypeNamed: #'OBJECT IDENTIFIER'))

with: (Asn1Element
default: false
symbol: #critical
type: (Asn1Type findTypeNamed: #BOOLEAN))

with: (Asn1Element
symbol: #extnValue
type: (Asn1Type findTypeNamed: #'OCTET STRING'))).
Release Notes 27

VW 7.3 New and Enhanced Features
A separate Asn1Stream hierarchy implements the streams used to
marshal ASN.1 types according to one or another of the several ASN.1
encoding schemes. An Asn1Stream is intended to be used with Opentalk
adaptors and request brokers in the same manner as STSTStream. BER
and DER ASN.1 marshaling streams are provided in the new
implementation. The streams take care of the particularities of the
encoding rules they implement. They also extend the protocol Opentalk
users have seen before in STSTStream by supporting “type-in-hand”
encoding and decoding with the top-level API:

marshalObject: anObject withType: anAsn1Type
unmarshalObjectType: anAsn1Type

The marshalers also support “raw” or “default” encoding and decoding,
using the familiar selectors:

marshalObject: anObject
unmarshalObject

The former protocol makes use of the type supplied as an argument. The
latter makes use of default mappings.

When encoding or decoding “type-in-hand,” the marshalers use double-
dispatch to allow the type to appropriately direct marshaling. For
example, “type-in-hand” encoding methods send:

anAsn1Type encode: anObject with: aMarshaler.
And if, for example, the type is an ASN.1 GeneralizedTime, the type
dispatches control back to the marshaler with:

aMarshaler encodeGeneralizedTime: anObject.
The “type-in-hand” decoding methods send:

anAsn1Type decode: aByteCount with: aMarshaler.
Again, if the type is and ASN.1 GeneralizedTime, the type dispatched back
to the marshaler with:

aMarshaler decodeGeneralizedTime: aByteCount
We know that though a byte count is suitable for BER, DER, and some
other ASN.1 encodings, it is unlikely to be suitable for PER, where the
only a bit count would be of potential use. Also, please note that the
exchange between marshalers and types can be more complex than
depicted in the samples above. The marshaling of ASN.1 SEQUENCES,
in particular, must account for optional elements, elements with
untransmitted default values, type extensions know to only one party in
28 VisualWorks 7.3

Net Clients
the communication, the presence of multiple tagging schemes, and
encoding-specific differences in element transmission order. Such factors
may elaborate the interaction.

Under “raw” encoding and decoding, the marshaler does the best it can
using a default mapping between Smalltalk and ASN.1 types when
encoding.

For example, when encoding a Timestamp, the marshaler will send:

anObject encodeASN1With: aMarshaler
The Timestamp will dispatch back with:

aMarshaler encodeGeneralizedTime: self.
Note that the method encodeASN1With: is implemented by native Smalltalk
classes, not classes in the Asn1Type hierarchy. Under “raw” decoding, a
marshaler does the best it can with the type tags it detects. At present,
this decoding mode may fail in the present of a compound type with
implicit or explicit, rather than universal, tagging of elements. It is,
however, of use in debugging, when attempting to find out what is coming
over the wire, when type information is unavailable, or in doubt.

Distinct from the Asn1Type, Asn1Constaint, and Asn11Stream hierarchies,
the Imported hierarchy is a hierarchy of value holders, used to implement,
as Smalltalk extensions, the ASN.1 types that have special semantics.
There are four concrete classes in this hierarchy:

Asn1BitString
provides support for the ASN.1 notion of 'unused bits',

Asn1OID
enforces the uniqueness of its instances and mandatory retention of
encodings,

Asn1Choice
sometimes has a use in Smalltalk application code, and is not,
technically, and ASN.1 type, and

ImportedEnumeration
represents ASN.1 ENUMERATIONs.

These classes appear only as output from decoding or as input to
encoding. They, like other Smalltalk classes, implement the “raw” mode
double-dispatch method encodeASN1With: aMarshaler. They do not
implement the double-dispatch protocol particular to the Asn1Type
hierarchy.
Release Notes 29

VW 7.3 New and Enhanced Features
Marshalers may be configured to retain encodings. In that case, they
wrap decoded objects in an Asn1TypeWrapper which includes the Asn1Type
used in decoding and an instance of Asn1Encoding. The Asn1Encoding has
a pointer to the source bytes and the offsets for the start of the header
(which includes one or more tags and the size of the encoded object, at
least under BER and DER), the start of the body, and the end of the body.
For an example, see class Asn1StreamBERDefiniteEncodings, which
implements a BER marshaler that retains encodings.

Under “type-in-hand” decoding, class Asn1Struct is commonly used to
represent the decoded value of an ASN.1 SEQUENCE or SET. It retains
the names associated with the elements in the type definition. This class
may be reworked in the future, and placed in a separate package,
because it is generally useful and already has analogues in other VW
add-ons.

Class SMINode provides a simple mechanism for obtaining the symbolic
names of Asn1OIDs. It will be significantly extended in the future.

Following is a simple example for experimenting with this code:

| derMarshaler testType testObject resultObject |

"SSN ::= NumericString (SIZE 9)"
Asn1TypeNumericString

register:#SSN
constraint:(Asn1ConstraintSize size: 9).

"TimeOfBirth ::= GeneralizedTime"
Asn1TypeGeneralizedTime

register:#TimeOfBirth.

"Sex ::= ENUMERATED { male(1), female(2) }"
Asn1TypeENUMERATED

register:#Sex
elements:((OrderedCollection new)

add: #male -> 1;
add: #female -> 2;
yourself).

"ST001 ::=SET {
a ::= SSN,
b ::= TimeOfBirth,
c ::= [0] EXPLICIT Sex
}"
30 VisualWorks 7.3

Net Clients
Asn1TypeSET
register: #ST001
constraint: (Asn1ConstraintSize size: 3)
elements: (OrderedCollection new)

add: (Asn1Element symbol: #a type:
(Asn1Type findTypeNamed: #SSN));

add: (Asn1Element symbol: #b type:
(Asn1Type findTypeNamed: #TimeOfBirth));

add: (Asn1Element
symbol: #c
tag: 0
taggingMode: #explicit
type: (Asn1Type findTypeNamed: #Sex));

yourself).

derMarshaler := (Asn1StreamDER on: (ByteArray new: 4096))
maxReadLimit.

testType := Asn1Type findTypeNamed: #ST001.
testObject := (OrderedCollection new)

add: #a -> '193759845';
add: #b -> (Timestamp new fromDate: (Date newDay: 15

monthNumber: 6 year: 1963));
add: #c -> (ImportedEnumeration

type: (Asn1Type findTypeNamed: #Sex)
value: 1);

yourself.
derMarshaler

marshalObject: testObject
withType: testType.

derMarshaler setReadLimit: derMarshaler position.
derMarshaler position: 0.
resultObject := derMarshaler unmarshalObjectType: testType.

We hope you observed that this new implementation does its best to
avoid the conflations of its predecessors, by segregating type information,
encoding-specific marshaling logic, the objects used to retain encodings
or element names, and imported types. It is also extremely fast at
decoding and encoding, at least in comparison with its progenitors. On a
Dell OptiPlex GX110 (598 MHz Pentium III), it decoded certificates at a
rate over 1000 bytes/millisecond. This is a somewhat deceptive statistic
because certificates have parts that are bytes, decoded as bytes, but it
represents a ten-fold improvement.

This said, though this implementation is more complete than its
predecessors, it does not yet support the ASN.1 exception marker or
implement every one of the ASN.1 constraint types. It does not yet
support use of the more arcane ASN.1 UNIVERSAL types, even though it
Release Notes 31

VW 7.3 New and Enhanced Features
does support more types than necessary to implement SNMP or X509.
(ASN.1 has several types that have fallen out of general use.) There are
other lacunae. The X509 parcel now uses this new ASN.1
implementation, though the SNMP preview does not as yet. So, we have
gone from three ASN.1 implementations to two. Though that is an
improvement, and perhaps a large one given the other factors mentioned
above, there is still work to do.

Security
Main task of this release cycle was adoption of the new ASN.1 framework
by our X.509 certificate implementation. While this change is confined to
the internals of the implementation and isn't exposed at the user API level
it enables us to further enhance our X.509 support in the future
(certificate generation, CRL support, etc).

Other notable achievements are HMAC implementation and addition of
password based cryptography support as defined by PKCS#5. Both are
described in the significantly updated Security document, which features
two new chapters, “Hashes and MACs” and “Random Number
Generators.”

We have also implemented a long overdue optimization of RSA signing
and decryption based on "Chinese remainder theorem" (CRT), which
makes these rather expensive operations about 3 times faster. RSA key
generator now allows to control selection of the public parameter e.

We've made some API changes in the DH algorithm. We renamed
#computePublicValue and #computeSharedSecretUsing: to #publicValue and
#sharedSecretUsing:. The deprecated selectors are still available for
backward compatibility. Also, it is no longer necessary to explicitly invoke
#generateP on DHParamaterGenerator. The #p, #q accessors will trigger
generation automatically if necessary.

We have also improved management of secure random generators in
simplified API calls that do not require the user to maintain a generator
instance. This concerns all algorithms that employ random number
generation (DH, DSA, key generators). Previously these calls would
create a new generator each time. This practice has some serious
security drawbacks because it effectively reduces security of these
generators to quality of the auto-generated seeding. We are now caching
these generators for all the algorithms that use them (see implementors
of #defaultRandom) to make better use of unique qualities of these
generators.
32 VisualWorks 7.3

Opentalk
As was mentioned earlier, there is a new chapter in the Security
documentation dedicated to this topic. We highly recommend that
anybody, who is serious about security of an application, gets at least
basic understanding of the issues involved in this important aspect of
cryptography.

Opentalk

Opentalk Namespace
The Opentalk namespace is no longer imported by the Smalltalk
namespace. This is proper for add-on packages, but applications using
Opentalk will need to either employ imports or refer to Opentalk classes
using full dotted names, e.g., Opentalk.RequestBroker. The impact on most
applications should be minimal; however, custom Opentalk extensions
may need to import the whole Opentalk namespace.

This change also entails that Transcript expressions, including the name
of an Opentalk class without a preceding Opentalk, will raise the usual
dialog for an unknown identifier. Please use a workspace rather than the
Transcript for ad hoc experiments with Opentalk code. The workspace is
more flexibly namespace-aware.

System Events
Brokers now receive system events through OpentalkSystem, a subclass of
Subsystem, the new framework for system events. Brokers may now be
explicitly configured to either:
Release Notes 33

VW 7.3 New and Enhanced Features
• always restart after an image snapshot or shutdown,

• restart only if they had been running prior to the snapshot or
shutdown, or

• never restart.

The new restart machinery is implemented in class RestartProtocol, a new,
abstract subclass of GenericProtocol. All of the “outer” Opentalk
components, such as request brokers and adaptors, which regulate the
startup and shutdown of their subcomponents, and usually elect to
subscribe to system events, now inherit from RestartProtocol.

Request Dispatch
Request dispatch is now configurable. An instance of class
RequestDispatcher regulates the number and the priority level of the worker
processes that are forked to handle incoming requests. Three basic
request dispatchers are provided:

standard
A new worker process is forked, at the worker process priority level,
for each incoming request. This is the default dispatch strategy, and it
is the strategy used in all previous releases of Opentalk.

pool
A shared queue of incoming messages and a process pool of
configurable size are used to constrain the number of forked worker
processes. This method of dispatch is critical for the users of
ObjectStudio Opentalk, which spawns native threads on Windows to
handle incoming requests. There, any significant increase in the
number of threads rapidly decreases the duration of the time-slice
allocated to any thread, which very nearly freezes the system.

high-low
The dispatcher forks worker process at one of two configurable
priority levels, using a configurable discrimination block that takes the
incoming remote request as a parameter.

Users may extend the RequestDispatcher hierarchy with dispatchers of their
own design. We would like to hear of particularly useful ones.

As a part of adding support for configurable request dispatch, the
dispatch API was refined, the instance variable requestDispatcher was
added to class BasicObjectAdaptor, and the instance variable workerPriority
was moved from class Transport to class RequestDispatcher. Parallel
changes were made to the configuration classes associated with these
components.
34 VisualWorks 7.3

Opentalk
Scheduling
Imagine a burst of incoming remote requests, that is bi-modal with
respect to execution time. On the server, it will fill the process queue at
the Opentalk worker priority level with a randomly ordered, but nearly
equal, mix of processes that are either long-running (i.e., measured in
minutes) or short-running (i.e., measured in milliseconds). In this case,
under the default VW scheduling policy (and assuming that none of these
processes employ yield, are regulated by semaphores, or the like), short-
running requests will not run until after any long-running requests that
precede them on the queue terminate. The short-running requests will
have a server-side waiting time far in excess of their execution time.
Some feel that this is defective and sub-optimal behavior, even though it
has the positive, and often sought, property of preserving the order of the
incoming requests in the order of the outgoing replies. They feel that
Opentalk should explicitly support time-slicing.

To address this concern, Opentalk now provides a small set of optional,
extensible, priority-level schedulers. A priority-level scheduler is one that
takes over the scheduling of the processes at a single, specified priority
level, e.g., the one at which Opentalk request brokers spawn worker
processes. These schedulers should be used with extreme caution, and a
clear understanding of their dangers and limitations.

This change discharges the limitation about highly bi-modal request
streams noted in Known Limitations in the Load Balancing chapter of the
Opentalk Communication Layber Developer’s Guide.

The schedulers are implemented using a high-priority process that, at a
set interval, rearranges the quiescent processes at a single, target priority
level. They add scheduling overhead to the server-side load. All
schedulers are configured, created, started, or stopped separately from
other Opentalk components. A priority-level scheduler will affect every
request broker, and any other system component, that forks processes at
the priority level it targets.

Two schedulers are provided

LotterySchedulingPolicy
This lottery scheduler assigns each process at the target priority level
some variable number of lottery tickets, then randomly selects a
winning ticket and moves the process with the winning ticket to the
head of the queue. The number of tickets assigned to a process—
and this is what affects its odds of “winning”—is a function of the
Release Notes 35

VW 7.3 New and Enhanced Features
number of times that process has been at the head of the queue in
the past. Users may devise lottery schedulers that assign tickets on
the basis of other properties. It is a flexible scheduling model.

CyclicSchedulingPolicy
This round-robin scheduler always moves the first process on the
designated queue to the back of that queue.

The round-robin scheduler best demonstrates one of the many pitfalls
involved in employing an alternative scheduling policy. In the case of the
bi-modal request stream described above, suppose that the interval at
which the high-priority round-robin scheduling policy is executed is
between the mean execution time of the long-running and the short-
running processes created to service the request burst (e.g., the interval
is measured in seconds rather than either minutes or milliseconds). In
that case, the short-running processes (of millisecond duration) are
nearly guaranteed to complete execution before any of the long-running
ones (of minute duration), but all the long-running processes will tend to
complete after a time that is the sum of all of their individual execution
times. This is far beneath ideal.

Users are free to create priority-level schedulers of their own, and we are
interested in hearing about particularly useful ones. However, please use
or deploy such schedulers with grave caution, and only after careful
experiment with several, sample request streams that typify the actual
service loads experienced by your application.

Design Changes in Configurations
Originally, Opentalk configurations were designed to avoid a configuration
hierarchy that paralleled that of the configured components. That was
achieved by linking configurations to components at the instance level
through the 'componentClass' instance variable. We found that this
approach did not much reduce the number of configuration classes
because of the extent to which configured components had unique
configuration parameters. Moreover, the design was less transparent
and, at times, inconvenient. Therefore, we have switched to the
straightforward approach. The Configuration class hierarchy now parallels
the component hierarchy under GenericProtocol.

The instance creation methods of the root configuration classes, such as
BrokerConfiguration and AdaptorConfiguration, which used to be of the form

TransportConfiguration>>http

^HTTPTransportConfiguration new: HTTPTransport
now simply return the appropriate configuration instance, as in
36 VisualWorks 7.3

Opentalk
TransportConfiguration>>http

^HTTPTransportConfiguration new
All the configuration classes must answer the corresponding component
class in response to the message componentClass, implemented in this
fashion:

HTTPTransportConfiguration>>componentClass

^HTTPTransport
As a result of these changes, the standard configuration creation pattern

(BrokerConfiguration basic
adaptor: (AdaptorConfiguration asymmetricConnectionOriented

transport: (TransportConfiguration http
marshaler: (MarshalerConfiguration soap))))

changes to

(BasicBrokerConfiguration new
adaptor: (AsymmetricAdaptorConfiguration new

transport: (HttpTransportConfiguration new
marshaler: (SoapMarshalerConfiguration new))))

The older configuration style should continue to work without
modification, because we have retained the componentClass instance
variable for backward compatibility. That said, most configuration classes
should no longer need it. Similar observations apply to the configuration
class methods new:, componentTypes, and rootConfigurationMetaclass. Note,
however, that we are moving away from the old design and may stop
supporting it in future releases.

Along with these changes, we are abandoning support for the ability to
restore a configuration instance from a literal array (using
decodeFromLiteralArray), because many new configuration parameters, like
blocks, cannot be effectively captured in a literal array.

New server side error event
We have added a new failure event #sendingReply:in:failedBecause:. This
will cause reply sending errors to show up in this new event rather than in
#evaluatingMessage:in:failedBecause:, allowing us to distinguish true request
evaluation errors and reply sending errors and react appropriately. This
has following benefits:
Release Notes 37

VW 7.3 New and Enhanced Features
First, a communication failure during remote request execution does not
shut down the client connection anymore. Previously these errors would
yield just a “Connection Closed!” error on the client side making it harder
to debug these circumstances.

Second, when there is an error (not a communication failure) during reply
sending, we will generate a different error reply with this error instead.
That way a reply marshaling error can be propagated to the client instead
of having the client just time out.

Miscellaneous
Several minor improvements were made to the Opentalk code.

• The triggering of transport message events has been refactored.

• The names of the marshaling and unmarshaling selectors of
STSTStream have been coordinated more closely.

• Datagram transports no longer shut down in response to protocol
errors.

• RemoteObject now implements ifNil: and its congeners.

Also, several minor changes were made to the code to facilitate the port
of Opentalk to ObjectStudio and potentially other Smalltalk dialects. A full
list of completed tasks can be found in doc/fixed_ars.txt, under
“Opentalk.”

Browser Plugin
The VisualWorks Plugin for VW 7.3 is an ActiveX Control only. Therefore,
the VisualWorks Plugin can only run in Internet Explorer. It has not been
tested with any other browsers, but it is likely to work with another
browser that fully supports ActiveX.

A future release will also include a version of the Plugin that implements
the new Netscape NPAPI and will run in browsers such as Netscape,
Mozilla and Firefox.

In addition, the Plugin parcel for VW 7.3 is not backward compatible with
the old Plugin and PluginBase parcels. The PluginBase parcel is now
obsolete. If you have an existing custom Plugin image you must rebuild
the image with the new parcel. You must also compile and test your
application parcel, even if you are using the generic image. The API
internal to the AppletModel class has changed very little, so it is likely your
38 VisualWorks 7.3

Application Server
application will not need modification except if you make significant use of
GET/POST, especially if you POST directly from a file, which is no longer
supported.

Note also that the Plugin requires Unicode support. The Plugin will not
run in a browser on those platforms which do not provide Unicode
support (Windows 95/Me/98). If your Plugin Applet must support a
browser client on one of these platforms please consult the Microsoft
documentation concerning the Microsoft Layer for Unicode, and the
instructions for including this translation layer in an ActiveX Control.

Instructions for the source code changes required to build a custom
version of the plugin are in PluginActiveXDev.pdf, provided with the
source code, not in VWPluginReadme.txt as stated in the manual.

Application Server

Better handling of encodings
The most significant change in this release is much more robust handling
of non-ascii characters, encoded in various character sets. This has
several aspects. One is that the Locale (which controls things like
formatting of dates, numbers, and so on) is now treated separately from
the character set to be used to encode the request and the response.
Another is that we now attempt to detect the encoding used by an
incoming HTTP request. There is no way to reliably detect this, because
the relevant specs only specify that characters not in the allowable subset
of the ISO-8859-1 character set will be "URL-encoded" as one or more
strings of the form "%HH". Unfortunately it does not specify the encoding
with respect to which these strings are interpreted, and different browsers
have different behaviour. The emerging standard is to interpret these
sequences as UTF-8. However, many browsers will use the encoding of
the page that contained a link, if there is one, and may use an arbitrary
encoding if the link is not part of a page.

In version 7.3, we first check if the string is valid in UTF-8. If it is, then we
check if it is possible to resolve the resulting string. If it is, we proceed. If
not, then we check whether the request has a session cookie, and if it
corresponds to an active session that we control. If so, and that session
has an encoding, we try resolving the string using that encoding. If it fails,
or if there is no session, then we fall back to a default encoding. These
behaviours can be controlled, and may be turned off, via the "Character
Sets and Locales" setting page in the Web settings.
Release Notes 39

VW 7.3 New and Enhanced Features
Form Data and Non-ASCII Characters in Web Toolkit
Form data submitted from web pages has issues with different character
encodings. For ASCII data there is no problem, but if data is outside that
range, it has to be encoded. This uses the URL-encoding scheme, and
out of range characters are represented using %HH notation.
Unfortunately, the particular encoding is not specified, so it is up to the
server to know how to decode these characters. It is highly
recommended, when creating forms, to force the browser to use a known
character set by including an accept-charset parameter in the form
definition.

The server also needs to know which character set is to be used. This is
controlled by the setting Charset for Form Data on the Character Sets and Locales
settings page. See also WebToolkitSettings>>formEncoding. This defaults to
utf-8, which has the advantage of being a universal character set, so all
characters can be represented. However, it's unlikely to be the default
character set of a browser for form data, so it's important that the form
specify a character set. If you know what character set your client
browsers are likely to use, you can switch this setting and avoid needing
to set the accept-charset on the form. Be aware, however, that even
within a particular Locale, different clients may be using different
character sets, and they may differ only in a few characters. For example,
in the US-English locale, the ISO-8859-1 character set (common on Unix)
mostly overlaps with the Microsoft Code Page 1252, but a few characters
are different. The most common cause of problems are the Microsoft
quote characters.

Remove Old Servers
In version 7.2 we introduced Opentalk-based servers to replace the old
TinyHTTP and IPServer. The older servers were, however, left in the image
for backward-compatibility, and in case of problems with the new ones.
The older servers have now been removed.

FastCGI Removed
The FastCGI gateway has been removed. It was not well-maintained, and
for Apache connectivity it was much more difficult to install and configure
than either the CGI or Perl gateways, and did not offer better
performance. In particular, the Perl gateway has proven to perform very
well, making FastCGI unnecessary. Many Apache users have also found
it unnecessary to use a gateway at all, and simply to configure a reverse
proxy to the VisualWorks HTTP server.
40 VisualWorks 7.3

Application Server
Bug Fixes
A number of small bug fixes have been made, notably in JSP handling,
making server restart with the Opentalk servers consistent with the older
behaviour, and in VisualWave rendering.

Headless Changes
The introduction of Subsystems has made significant changes to the
Headless functionality, mostly simplifications. For the most part, these
should be fully backward-compatible. One non-compatible change is that
the old, short, filenames for headless functionality, which have been
deprecated for some time, have been removed. So, for example, you
must now use headless-startup.st as the startup file name, rather
than the old hlstrc.st. Also note the presence of various command-
line options like -filein, which allows loading arbitrary files. In addition, the
becomeHeadfull functionality should be noticeably more robust, although
users are still not encouraged to rely on it.

ISAPI Gateway Improvements

Backward-Compatibility
The current Web Application Server parcels are not compatible with
previous VisualWorks versions, because they rely on some of the new
features in Opentalk, which in turn rely on new base system features.

ISAPI Gateway Improvements
There have been various improvements to the ISAPI gateway. Most
notably it now statically links to the appropriate versions of the Microsoft
DLL's it requires, which makes it much more reliable in different
configurations and operating system versions.

The previous version had problems both on some installations of
Windows XP and on Windows Server 2003. The current version has
passed basic testing on Windows 2000, Windows XP (with and without
Service Pack 2) and Windows Server 2003.

Authentication
We have observed some issues with configuring authentication, where
the steps vary between different versions, and even different locales of
VisualWorks. For example, to have IIS pass Basic Authentication
requests on to VisualWorks, the Basic Authentication setting must be off
in North American Windows, but the same setting must be on in
Japanese Windows.
Release Notes 41

VW 7.3 New and Enhanced Features
Installer Framework
The Installer Framework has moved from goodies to the packaging
directory. This is the framework used to create the VisualWorks installer.
Use instructions for the installer are provided in Install.pdf.

The VWInstallerFramework parcel provides the basic functionality for the
installer, while the VWInstaller parcel serves as an example of
customizing this framework for an individual company and product. The
installer application is a wizard with a set of pages that are displayed in
sequence. Creating a custom installer is largely a matter of changing the
install.map file for that installation. See the install.map files on
either the Commercial or Non-commercial CDs for examples. These can
be hand-edited to suit your particular installation needs.

Customizing the install.map File

Dynamic Attributes
The first item in this file is a dictionary containing version information
about the particular distribution to be installed. Edit this section as
appropriate for your needs. Many attriburtes are self explanatory, but
others may require some explanation.

#defaultTargetTail
The default name of the installation subdirectory, which the user can
change at install time.

#imageSignature
Used for updating VisualWorks.ini file at install time (auto update of
this file is currently a no-op).

#installDirectoryVariableName
The name of the system variable (or registry key) representing the
installed location of the product. For VisualWorks, this is
$VISUALWORKS. This can be changed as necessary.

#mapVersion
This can be used by the installer to identify older or newer install.map
formats.

#requiresKey
Setting this value to true will display the KeyVerifierPage, and will only
proceed with the installation once a proper product key has been
supplied by the user. VisualWorks installations no longer require this,
but the feature remains for those who want it.
42 VisualWorks 7.3

Installer Framework
#sourcePathVariableName
The name of the system variable (or registry key) representing the
location from which the product was installed. For VisualWorks, this
is $SOURCE_PATH. This can be changed as necessary.

#variablePath
The path in the Windows registry to use for setting variables on that
platform (see Win95SystemSupport.CurrentVersion).

There is also a section of dictionary entries with integer keys and string
values of the form “VM *”. The integers represent bytes from the engine
thumbprint of the running installer, and are used to identify to the installer
the name of the default VM component for the platform on which the
installer is run.

Components
Each component is listed in install.map with various attributes. Many
of these are self explanatory, but others require some explanation.

#target: #tgtDir
Although the VisualWorks components are all installed to the main
installation directory, the framework anticipates that a need might
arise for some components to be installed to a different location. The
symbol #tgtDir resolves to the installation directory chosen by the
user. However, one could add other symbols, along with supporting
code, to allow multiple target directories. For example, if the same
installer were to install ObjectStudio and VisualWorks, the symbols
#osTgtDir and #vwTgtDir could be used if methods by these names
were implemented to answer the appropriate directories.

#environmentItems:
These represent system variables (or Windows registry entries) to be
set when the containing component is installed. In the VisualWorks
installation, only the Base VisualWorks component contains these.

#startItems:
These describe the attributes necessary to create a Windows
shortcut, such as in the start menu or on the desktop. On Unix these
attributes are used to create a small script to launch the newly
installed image and VM.

#sizes:
A collection of the uncompressed sizes of all the files in the archive,
for determining disk space requirements at install time.
Release Notes 43

VW 7.3 New and Enhanced Features
License
The presence of the optional license string in install.map determines
whether the LicenseVerifierPage will be displayed. This string is present in
the Non-Commercial installer application, and so the page is displayed,
but not in the Commercial installer.

Customizing the Code
The wizard application is called InstallerMainApplication, and the wizard
pages are subclasses of AbstractWizardPage. These pages are only
displayed when listed in InstallerMainApplication>>subapplicationsForInstall.

Some pages are conditionally displayed, as determined by implementors
of #okToBuild. For example, CheckServerPage is only displayed if the server
has not yet been checked, or if available updates have not yet been
applied. Also, as mentioned earlier LicenseVerifierPage is only displayed if
the install.map to be installed contains a license string.

To change the GUI of either the wizard or its pages, simply subclass and
tailor the window or subcanvas spec to suit your needs. Then reference
your subclass in #subapplicationsForInstall and it will become part of your
installer.

The graphic at the top of the wizard window can be changed by
implementing #defaultBanner in a class method of your subclass of
InstallerMainApplication.

Once your customizations are done, you can strip your install image from
the launcher by selecting Tools Strip Install Image.

Creating Component Archives
The packaging tool (goodies/parc/PackingList.pcl) that
automatically packages our product. However, it is very tailored to our
particular build processes, and is not recommended for general use. It
runs on a linux box, and creates component archives by first staging all
the files in a directory structure and then invoking the following code:

UnixProcess
cshOne: ('tar --create --directory="<1s>" --file="<2s>" --owner=0 --totals

--verify --same-order <3s>'
expandMacrosWith: directoryString
with: fileString
with: contentString)

Note that any Mac files with resource forks must be added to the archive
in MacBinaryIII format (*.bin) to be installed properly later.
44 VisualWorks 7.3

Installer Framework
Local Installations
The scripts and structure of our CDs serve as examples of a working
packaged CD. Any archive could be installed from another part of the CD
if its #path: attribute is adjusted in the install.map file.

Cincom uses and recommends CDEveryWhere
(www.cdeverywhere.com) to create hybrid CDs for distribution that run on
Win, Mac, and Unix/linux.

Remote installations
Your wizard subclass should implement #configFileLocation, which answers
anFtpURL. This XML file should reside on your server and list the current
installer image version, available patches, and available products to
install. An example from our NC download site follows:

<?xml version="1.0"?>

<configuration>
<installerImageVersion>'1.1'</installerImageVersion>
<installerParcelVersions>

'#()'
</installerParcelVersions>
<applicationsToInstall>

'#(#(''VisualWorks 7.1 Non-Commercial'' ''vwnc7.1'')
#(''VisualWorks 7.2 Non-Commercial'' ''vwnc7.2'')
#(''VisualWorks 7.2.1 Non-Commercial'' ''vwnc7.2.1''))'

</applicationsToInstall>
</configuration>

In the above example, the last application listed is 'VisualWorks 7.2.1 Non-
Commercial', which is the string that will appear in the drop down list of
available versions. The string following that, 'vwnc7.2.1', is the
subdirectory on the ftp server which contains the application. This
subdirectory is flat, unlike the CST CD directory structure, and contains
the install.map and archive files. The same install.map file can
work unchanged for CD and remote installations. For remote installations,
only the tail of the component archive file is used, since it is assumed that
the FTP server does not need the deeper directory structure of the CST
CDs.

In addition to the default configuration file location hard coded into your
wizard class, users can also keep a local config file, named
installerConfiguration.xml, which can list alternate local install
sources or remote servers. For example, the following local config file lists
two additional servers from which one could install any products available
there:
Release Notes 45

http://www.cdeverywhere.com

VW 7.3 New and Enhanced Features
<?xml version="1.0"?>

<configuration>
<additionalConfigFiles>

'#(''ftp://anonymous:foo@myServer//remoteInstall/
installerConfiguration.xml''

''ftp://anonymous:foo@theirServer//remoteInstall/
installerConfiguration.xml'')'

</additionalConfigFiles>
</configuration>

This may be useful anywhere frequent installations might be performed,
such as a QA or Tech Support computer lab.

Documentation
This section provides a summary of the main documentation changes.

SmalltalkDoc
SmalltalkDoc is a system for generating reference documents from
package comments and properties. It is introduced in 7.3 as a preview.
See “SmalltalkDoc” for more information.

PDF Documents
Advanced Tools Guide

No changes

Application Developer’s Guide

• Updated for packages/bundles in the base

• Chapter organization was changed, eliminating redundant
coverage of trigger-events in the “Application Framework” and
“Trigger-Event System” chapters.

• New system event section, covering the new Subsystem class
and subclasses, was added to the “Application Framework”
chapter.

• Various smaller updates.

COM Connect Guide
No changes

Database Application Developer’s Guide

No changes
46 VisualWorks 7.3

Documentation
DLL and C Connect Guide

No changes

DotNETConnect User’s Guide
New document

DST Application Developer’s Guide
No changes

GUI Developer’s Guide

Various small changes.

Internationalization Guide

No changes

Internet Client Developer’s Guide

• Added HTTP Cookie support

• Various small corrections/updates

Opentalk Communication Layer Developer's Guide

No changes

Plugin Developer’s Guide
Major revision to cover replaced functionality for IE.

Security Guide

• Added a chapter on Hashes and Messages Digests, including
coverage of HMAC.

• Added a chapter on Random Numbers, covering DSSRandom in
more detail, with better instructions for generating and
maintaining quality seeding.

Source Code Management Guide

No changes

Walk Through
No changes

Web Application Developer’s Guide
Minor changes, rearranged chapters

Web GUI Developer’s Guide
No changes.

Web Server Configuration Guide

• Updates to CGI relay documentation

• Various updates/changes.
Release Notes 47

VW 7.3 New and Enhanced Features
Web Service Developer’s Guide

• Added a description of the WSDL Wizard tool

• Various updates/changes.

TechNotes
The following documents in the TechNotes directory have been updated:

ImplementationLimits7x
This document has been added.

Goodies

Dual Monitor Support on Windows
A goodie parcel distributed with 7.3 helps alleviate the menu and window
placement on Windows with dual monitors. Eventually an OE fix for dual
monitor support is planned. Read its use and limitations in the parcel
comment.
48 VisualWorks 7.3

Release Notes 49

3
Deprecated Features

By deprecating certain features, we remove them from the system. These
are made available for a limited time as parcels in the obsolete/
directory, to provide you the opportunity to port applications away from
using the features before they are removed altogether. This directory is
on the default parcel path.

Plugin Parcels
The Plugin parcel for VisualWorks 7.3 is not backward compatible with
the Plugin and PluginBase parcels from earlier releases. The PluginBase
parcel is obsolete.

Net Clients
HttpsClient is now deprecated. Its functionality has been merged with
HttpClient.

Security
The selectors #computePublicValue and #computeSharedSecretUsing: are
deprecated, but still available for backward compatibility. These are
replaced with to #publicValue and #sharedSecretUsing:, respectively.

4
Preview Components

Several features are included in a preview/ and available on a “beta
test” basis. This is a renaming of the directory from prior releases, and
reflects looser criteria for inclusion, allowing us to provide pre-beta
quality, early access to forthcoming features. Several are described in the
following sections. Browse the directory contents for last minute
inclusions.

Base Image for Packaging
preview/packaging/base.im is a new image file to be used for
deployment. This image does not include any of the standard
VisualWorks programming tools loaded. The image is intended for use as
a starting point into which you load deployment parcels. Then strip the
image with the runtime packager, as usual.

MQInterface
The preview/mqinterface/ directory contains an interface for IBM
WebSphere-MQ (formerly MQ Series). The implementation makes use of
the IBM shared libraries. The subdirectory also includes a developer's
guide, which describes the architecture and the API and includes a class
reference.

The parcel named MQ-XIF takes some time to load, because it must
recompile the external interfaces in the correct order.
50 VisualWorks 7.3

Unicode Support for Windows
Unicode Support for Windows
Extended support for Unicode character sets is provided as a preview, on
Windows 2000 and later platforms. Support is restricted to the character
sets that Windows supports.

The parcels provide support for copying via clipboard (the whole
character set), and for displaying more than 33.000 different characters,
without any special locales.

The workspace included in preview/unicode/unicode.ws is
provided for testing character display, and displays the entire character
set found in Arial Unicode MS.

First, open the workspace; you'll see a lot of black rectangles. Then load
preview/unicode/AllEncodings.pcl and instantly the workspace
will update to display all the unicode characters that you have loaded. You
can copy and paste text, for example from MS Word to VW, without
problems.

If there are still black rectangles, you need to load Windows support for
the character sets. In the Windows control panel, open Regional and
Language Options. (Instructions are for Windows XP; other versions may
differ slightly.) Check the Supplemental language support options you want to
install, and click OK. The additional characters will then be installed.

To write these characters using a Input Method Editor (IME) pad, load the
UnicodeCharacterInput.pcl.

Menu UI Compatibility
(AR47543)

MenuUICompatibility is a preview parcel that addresses incompatibilities
of VW menu bar menus with host OS menu feel requirements. Issues
addressed include:

• On Windows, a mouse drag (i.e., mouse button hold and move) to a
menu item with a submenu should not close the menu or submenu
upon button release.

• On Windows only, menus highlight disabled menu items; other
platforms skip past disabled menu items entirely.

• MacOSX menus do not wrap highlight of menu items for key up/down
navigation.
Release Notes 51

Preview Components
• Mac OS8/9 closes all menus upon any key press.

• Unix platforms do not highlight menu items while moving the mouse
cursor over an item; the mouse button must be down to do this.

• Except on Unix, submenu item menus open after about a 0.5 second
delay when the mouse cursor is over them.

• For the Motif and Windows look, a menu and submenu should remain
open after a mouse click and release on a menu item with a
submenu.

• On Mac platforms, moving the mouse outside a menu to the right
should not close all submenus open.

• On Mac OSX, <Tab> and <Shift><Tab> navigate and open menus
right and left in the menu bar.

• On Mac OSX, a menu and all its submenus should not close
prematurely if the up or down arrow keys are used to navigate to a
menu item with an unopened submenu.

• For MS Windows and Motif menus, a menu item that opens a
submenu cannot become a selection itself and then close; only a
menu item without submenu may be the menu selection.

Regarding the last item, that a menu item cannot become a selection
itself, there are VW users who wish to preserve the ability to assume a
menu item with a submenu as selection. By default this behavior has
been preserved. To assume the MS Windows and Motif standard
behavior, the class variable SubmenuAssumesSelection has been added to
Win95MenuController and MotifMenuController. To change to the standard
behavior, send an submenuAssumesSelection: message to the class with
false as the argument value:

Win95MenuController submenuAssumesSelection: false

New GUI Framework (Pollock), Feature Set 1
Pollock remains in preview in 7.3.

Featureset one includes a full complement of widgets, and so is a major
milestone one the way to a full production release. There is still a lot of
work left to be done, however.
52 VisualWorks 7.3

New GUI Framework (Pollock), Feature Set 1
Background
Over the last several years, we have become increasingly dissatisfied
with both the speed and structure of our GUI frameworks. In that time, it
has become obvious that the current GUI frameworks have reached a
plateau in terms of flexibility. Our list of GUI enhancements is long,
supplemented as it has been by comments from the larger VisualWorks
communities on comp.lang.smalltalk and the VWNC list. There is nothing
we would like more than to be able to provide every enhancement on that
list, and more.

But, the current GUI frameworks aren't up to the job of providing the
enhancements we all want and need, and still remain maintainable. In
fact, we are actually beyond the point of our current GUI frameworks
being reasonably maintainable.

This is not in any way meant to denigrate the outstanding work of those
who created and maintained the current GUI system in the past. Quite
the opposite, we admire the fact that the existing frameworks, now over a
decade old, have been able to show the flexibility and capability that have
allowed us to reach as far as we have.

However, the time has come to move on. As time has passed, and new
capabilities have been added to VisualWorks, the decisions of the past no
longer hold up as well as they once did.

Over the past several decades, our GUI Project Leader, Samuel S.
Shuster, has studied the work of other GUI framework tools including,
VisualWorks, VisualAge Smalltalk, Smalltalk/X, Dolphin, VisualSmalltalk,
Smalltalk MT, PARTS, WindowBuilder, Delphi, OS/2, CUI, Windows,
MFC, X11, MacOS. He has also been lucky enough to have been privy to
the “private” code bases and been able to have discussions with
developers of such projects as WindowBuilder, Jigsaw, Van Gogh and
PARTS.

Even with that background, we have realized that we have nothing new to
say on the subject of GUI frameworks. We have no new ideas. What we
do have is the tremendous body of information that comes from the
successes and failures of those who came before us.

With that background, we intend to build a new GUI framework, which we
call Pollock.
Release Notes 53

Preview Components
High Level Goals
The goals of the new framework are really quite simple: make a GUI
framework that maintains all of the goals of the current VisualWorks GUI,
and is flexible and capable enough to see us forward for at least the next
decade.

To this general goal, we add the following more specific goals:

• The new framework must be more accessible to both novice and
expert developers.

• The new framework must be more modular.

• The new framework must be more adaptable to new looks and feels.

• The new framework must have comprehensive unit tests.

Finally, and most importantly:

• The new framework must be developed out in the open.

Pollock
The name for this new framework has been code named Pollock after the
painter Jackson Pollock. It's not a secret. We came up with the name
during our review of other VisualWorks GUI frameworks, most directly,
Van Gogh. It's just our way of saying we need a new, modern abstraction.

Pollock Requirements
The high level goals lead to a number of design decisions and
requirements. These include:

No Wrappers
The whole structure of the current GUI is complicated by the
wrappers. We have SpecWrappers, and BorderedWrappers, and
WidgetWrappers, and many more. There is no doubt that they all
work, but learning and understanding how they work has always
been difficult. Over the years, the wrappers have had to take on more
and more ugly code in order to support needed enhancements, such
as mouse wheel support. Pollock will instead build the knowledge of
how to deal with all of these right into the widgets.

No UIBuilder at runtime
The UIBuilder has taken on a huge role. Not only does it build your
user interface from the specification you give it, it then hangs around
and acts as a widget inventory. Pollock will break these behaviors in
54 VisualWorks 7.3

New GUI Framework (Pollock), Feature Set 1
two, with two separate mechanisms: a UI Builder for building and a
Widget Inventory for runtime access to widgets and other important
information in your user interface.

New Drag/Drop Framework
The current Drag/Drop is limited and hard to work with. It also doesn't
respect platform mouse feel aspects, nor does it cleanly support
multiple window drag drop. Pollock will redo the Drag/Drop framework
as a state machine. It will also use the trigger event system instead of
the change / update system of the current framework. Finally, it will
be more configurable to follow platform feels, as well as developer
extensions.

The Default/Smalltalk look is dead
We will have at the minimum the following looks and feels: Win95/NT,
Win98/2K, MacOSX and Motif. We will provide a Win2K look soon
after the first production version of Pollock.

Better hotkey mapping
Roel Wuyts has been kind enough to give permission allowing us to
use his MagicKeys hot key mapping tool and adapt it for inclusion in
the base product. Thank you Roel.

XML Specs
We will be providing both traditional, array-based, and XML-based
spec support, but our main format for the specifications will be XML.
We will provide a DTD and tools to translate old array specifications
to and from the new XML format. Additionally, in Pollock, the specs
will be able to be saved to disk, as well as loaded from disk at
runtime.

Conversion Tools
With the release of the first production version of the Pollock UI
framework (currently projected for 7.3), we will also produce tools that
will allow you to convert existing applications to the new framework.
These tools will be in the form of refactorings that can be used in
conjunction with the Refactoring tools that are an integral part of
VisualWorks, as well as other tools and documentation to ease the
developer in transitioning to the new framework.

Unit Tests
Pollock will, and already does, have a large suite of unit tests. These
will help maintain the quality of the Pollock framework as it evolves.
The tests are in the PollockTesting parcel. To load this parcel, you
must have both the Pollock and SUnit parcels loaded.
Release Notes 55

Preview Components
New Metaphor
The Pollock framework is based on a guiding metaphor; “Panes with
Frames, with Agents and Artists.” More on that below.

Automatic look and feel adaptation
In the current UI framework, when you change the look and/or feel,
not all of your windows will update themselves to the new look or feel.
In Pollock, all widgets will know how to automatically adapt
themselves to new looks and feels without special code having to be
supplied by the developer. This comes “free” with the new “Panes
with Frames, with Agents and Artists” metaphor.

The New Metaphor: Panes with frames, agents, and artists
In Pollock, a pane, at its simplest, is akin to the existing VisualComponent.
A pane may have subpanes. Widgets are kinds of panes. There is an
AbstractPane class. A Window is also a kind of pane, but it will remain in it's
own hierarchy so we don't have to reinvent every wheel. Also, the Screen
becomes in effect the outermost pane. Other than those, all panes, and
notably all widgets, will be subclassed in one way or another from the
AbstractPane.

A frame has a couple of pieces, but in general can be thought of as that
which surrounds a pane. One part of a frame is its layout, which is like our
existing layout classes, and defines where it sits in the enclosing pane. It
may also have information about where it resides in relation to sibling
panes and their frames.

A border or scroll bar in the pane may “clip” the view inside the pane. In
this case, the frame also works as the view port into the pane. As such, a
pane may be actually larger than its frame, and the frame then could
provide the scrolling offsets into the view of the pane. The old bounds and
preferred bounds terminology is gone, and replaced by two new, more
consistent terms: visible bounds and displayable bounds. The visible
bounds represents the whole outer bounds of the pane. The displayable
bounds represents that area inside the pane that is allowed to be
displayed on by any subpane. For example, a button typically has a
border. The visible bounds is the whole outer bounds of the pane, while
the displayable bounds represents the area that is not “clipped” by the
border.

Another example is a text editor pane. The pane itself has a border, and
typically has scroll bars. The visible bounds are the outer bounds of the
pane, and the displayable bounds are the inner area of the text editor
pane that the text inside it can be displayed in. The text that is displayed
in a text editor, may have its own calculated visible bounds that is larger
56 VisualWorks 7.3

New GUI Framework (Pollock), Feature Set 1
than the displayable bounds of the text editor pane. In this case, the
Frame of the text editor pane will interact with the scroll bars and the
position of the text inside the pane to show a view of the text.

Artists are objects that do the drawing of pane contents. No longer does
the “view” handle all of the drawing. All of the displayOn: messages simply
get re-routed to the artist for the pane. This allows plugging different
artists into the same pane. For instance, a TextPane could have a separate
artist for drawing word-wrapped and non-word-wrapped text. A
ComposedTextPane could have one artist for viewing the text composed,
and another for XML format. Additionally, the plug-and-play ability of the
artist allows for automatically updating panes when the underlying look
changes. No longer will there be multiple versions of views or controllers,
one for each look or feel. Instead, the artists, together with agents, can be
plugged directly into the pane as needed.

Agents interact with the artists and the panes on behalf of the user. Now,
if this sounds like a replacement of the Controller, you're partially correct.
In the Pollock framework, the controllers will have much less “view”
related behavior. Instead, they will simply be the distributors of events to
the agent via the pane. This means that our controllers, while they'll still
be there, will be much more stupid, and thus be much less complex and
less coupled to the pane. Like the artist, the agent is pluggable. Thus, a
TextPane may have a read-only agent, which doesn't allow modifying the
model.

Other notes of interest
The change/update mechanism will be taking a back seat to the
TriggerEvent mechanism. The ValueModel will remain, and Pollock will be
adding a set of TriggerEvent based subclasses that will have changed, value:
and value events. Internal to the Pollock GUI, there simply will not be a
single place where components will communicate with each other via the
change/update mechanism as they do today. While they will continue to
talk to the model in the usual way, there will be much less chatty
change/update noise going on.

The ApplicationModel in name is gone. It was never really a model, nor did
it typically represent an application. Instead, a new class named
UserInteface replaces it. This new class will know how to do all things
Pollock. Conversion tools will take existing ApplicationModel subclasses
and make UserInterface subclasses.

A new ScheduledWindow class (in the Pollock namespace) with two
subclasses: ApplicationWindow and DialogWindow. The ScheduledWindow
will be a full-fledged handler of all events, not just mouse events like the
Release Notes 57

Preview Components
current ScheduledWindow. The ApplicationWindow will be allowed to have
menus and toolbars, the ScheduledWindow and DialogWindow will not. The
ApplicationWindow and DialogWindow will know how to build and open
UserInterface specifications, the ScheduledWindow will not. Conversely the
UserInterface will only create instances of ApplicationWindow and
DialogWindow.

So, What Now?
The work on Pollock has already started. In the VisualWorks 7
distribution, we provided a very basic beta framework. The goal of the
first beta was very simple: a window that has a label and an icon, and a
button that has a label and an icon. Beta 2 was included in VisualWorks
7.1, and had several of the basic widgets done: InputField, TextEdit,
CheckBox, RadioButton and ListBox.

VisualWorks 7.2 includes Beta 3, which adds DropDownList, Menu, Grid
(Table/Dataset combination), DialogWindow, Toolbar, TreeView and
TabControl.

The first production release will have all of the remaining widgets done
and complete. All of the tools, including a GUI Painter, will be completed.
Additionally, tools and utilities will be provided for converting existing
GUIs to run on Pollock. Pollock will co-reside in the image along side the
existing GUI framework. This is hoped to be included in VisualWorks 7.3.

After that, it's on to migrating our own tools and browsers to Pollock.
Followed in time by the obsoleting of the old GUI framework to a
compatibility parcel.

Opentalk
The Opentalk preview provides extensions to 7.2 and the Opentalk
Communication Layer. It includes a preview implementation of SNMP, a
remote debugger and a distributed profiler. The load balancing
components formerly shipped as preview components in 7.0 is now part
of the Opentalk release.

For installation and usage information, see the readme.txt files and the
parcel comments.

SNMP
SNMP is described in the previous section.
58 VisualWorks 7.3

Opentalk
Distributed Profiler
The profiler has not changed since the last release and works only with
the old AT Profiler, shipped in the obsolete/ directory.

Installing the Opentalk Profiler in a Target Image
If you want to install only the code needed for images, potentially
headless, that are targets of remote profiling, install the following parcel:

• Opentalk-Profiler-Core

Installing the Opentalk Profiler in a Client Image
To create an image that contains the entire Opentalk profiler install the
following parcels in the order shown:

• Opentalk-Profiler-Core

• Opentalk-Profiler-Tool

Opentalk Remote Debugger
This release includes an early preview of the Remote Debugger. Its
functionality is seriously limited when compared to the Base debugger,
however its basic capabilities are good enough to be useful in many
cases. The limitations are mostly related to actions that open other tools.
For those to work, we have yet to make the other tools remotable as well.

The remote debugger is contained in two parcels.

The Opentalk-Debugger-Remote-Monitor parcel loads support for the
image that will run the remote debugger interface. The monitor is started
by sending:

RemoteDebuggerClient startMonitor
Once the monitor is started, other images can “attach” to it. The monitor
will host the debuggers for any unhandled exceptions in the attached
images.

To shutdown a monitor image, all the attached images should be
detached first and then the monitor should be stopped, by sending:

RemoteDebuggerClient stopMonitor
The Opentalk-Debugger-Remote-Target parcel loads support for the
image that is expected to be debugged remotely. To enable remote
debugging this image has to be “attached” to a monitor, i.e., to the image
that runs the remote debugger UI. Attaching is performed with one of the
Release Notes 59

Preview Components
“attach*' messages defined on the class side of RemoteDebuggerService.
Use detachMonitor to stop forwarding of unhandled exceptions to the
remote monitor image.

A packaged (possibly headless) image can be converted into a “target”
during startup by loading the Opentalk-Debugger-Remote-Target parcel
using the -pcl command line option. Additionally it can be immediately
attached to a monitor image using an -attach [host][:port] option
on the same command line. It is assumed that the Base debugger is in
the image (hasn't been stripped out) and that the prerequisite Opentalk
parcels are also available on the parcel path of the image.

Opentalk SOAP Header Support
The Opentalk-SOAP-Headers parcel includes classes that support
invoking web services with SOAP headers. Opentalk-SOAP-
HeadersDemo contains example code.

Server SOAP Header Support
WsdlServiceProvider is the RequestBroker wrapper and holds the request
header repository for the specific Wsdl binding port.

Opentalk-SOAP-HeadersDemo includes the the CustomerServer class,
which implements an Opentalk server with services that are a collection
of instances of WsdlServiceProvider.

WsdlServiceProvider creates an instance of ServerOperationHeaderProcessor
for each request. This object holds request header entry state and will
call the request or response header entry processors.

ProcessingPolicy is responsible for the soap header verification and
unmarshaling. The header entry verification is done as follows:

1. If there are any header entry nodes, check if they are described in the
Wsdl schema for this operation. If the soap message is missing
header entries from the Wsdl schema, a SoapClientFault message is
sent back as the reply.

2. If the header entry targets this soap node and mustUnderstand='1',
but there is no a header processor on this server, the
MustUnderstandFault is sent back as the reply.

3. If mustUnderstand='0' and there is no a header processor, the header
entry is just ignored

4. Header entries that do not target this soap node are ignored
60 VisualWorks 7.3

Opentalk
ServerHeaderEntryProcessor is superclass for the Opentalk server specific
header entry processors. Subclasses must implement actions on header
entries when a request is received or reply is sent.

A specific header entry processor must implement the headerName class
method that returns the header node tag described by namespace and
type.

Subclasses must implement the following messages:

• headerEntryFor:transport:

• processHeaderFrom: transport:

Client SOAP Header Support
WsdlServiceConsumer is the abstract superclass for all user specific client
classes. The class holds a request header repository for the Wsdl
binding.

You should create a client class as subclass of WsdlServiceConsumer and
implement the following methods:

• binding

• port

• serverUrl

Also, the “public api” category must include all methods necessary to
access the web services.

SOAP Header Demo
The header demo can be loaded from the Opentalk-SOAP-
HeadersDemo parcel. In this demo, CustomerClient implements the user
specific client.

ClientHeaderEntryProcessor is superclass for the user specific header entry
processors. The class implements the default action on header entry
when a request is sent or response is received.

A specific header entry processor must implement the headerName class
method that returns the header node tag described by namespace and
type. The header entry processors are optional. The default header entry
processor adds necessary header entries from the WsdlServiceConsumer
repository to the request. If there is no header entry but the Wsdl schema
describes a header entries for the operation, the MissingRequestHeader
exception will be raised. When the response is received the default
Release Notes 61

Preview Components
header entry processor does not perform any action on this header entry.
If the response header is missing some header entries the
MissingResponseHeader exception will be raised.

While sending the request, a specific header entry processor can
override the default behavior by reimplementing the method
processHeaderFrom:transport: in ClientHeaderEntryProcessor.

When the response is received, the specific header entry processor can
add some processing to the header entry in the method
process:reply:transport: in ClientHeaderEntryProcessor.

The header entry can be added to the request in two ways:

• In the client repository:

client := Smalltalk.CustomerClient new.
client start.
(client headerFor: #AuthenticationToken)

value: (AuthenticationToken new
 userID: 'UserID';
 password: 'password';
 yourself).

• In the header entry processor:

processHeaderFrom: aSOAPRequest transport: aTransport
self headerEntry value isNil

ifTrue:
[(aSOAPRequest headerFor: #AuthenticationID)

value: (WebServices.Struct new
id: 'ID#1234';

yourself)]
ifFalse: [super processHeaderFrom: aSOAPRequest

transport: aTransport]
The result of the client service invocation can be set up to return either:

• A value, which is the body value. This is the default.

SOAPMarshaler defaultReplyReturnValue: #value.
Access to response header will available only in client header entry
processors.

• An envelope, which is instance of WebServices.SoapEnvelope:

SOAPMarshaler defaultReplyReturnValue: #envelope
Having the envelope as the result allows to get access to response
header and body.
62 VisualWorks 7.3

Opentalk
WsdlServiceConsumer creates an instance of ClientOperationHeaderProcessor
for each request. This object holds request header entry state and will
call response header entry processors when the response arrives.

Testing and Remote Testing
The preview/opentalk subdirectory contains two new parcels,
included for those users who expressed an interest in the multi-image
extension to the SUnit framework used to demonstrate the Opentalk Load
Balancing Facility:

• Opentalk-Tests-Core contains basic extensions to the SUnit
framework used to test Opentalk. Version number 73 6 is shipped
with this release.

• Opentalk-Remote-Tests-Core contains the central classes of the
remote testing framework and some simple examples. Version
number 73 9 is shipped with this release.

The framework these packages implement is known to have defects and
is evolving. Future versions will differ, substantially.

The central idea behind the framework is that since SUnit resources are
classes, there is no reason why references to remote classes cannot be
substituted for them in a test case.

The are two central classes in the framework.

OpentalkTestCaseWithRemoteResources
This is the superclass of all concrete, multi-image test cases. It
contains an instance variable named 'resources' that is populated
with references to remote resource classes. The references are
constructed from the data returned by the method resourceObjRefs,
which any concrete test case must implement. The class has a
shared variable named CaseBroker that contains the broker in which
the resource references are registered. This request broker is the one
used by all multi-image test cases to communicate with remote
resources.

OpentalkTestRemoteResource
This is the superclass of all concrete remote resources. It has a
shared variable named ResourceBroker that holds the broker through
which test resources communicate with test cases. Concrete
resources register themselves with this broker, using their class
name as an OID, so that test cases may programmatically generate
references to them.
Release Notes 63

Preview Components
Since multi-image tests usually involve resources that start up brokers
and exchange messages of their own, care must be taken in any test to
determine that the communication exchange under test has completed
before any 'assert:'s are evaluated. Also, since the exchange between
resources may be complex, the assert: messages are usually phrased in
terms of the contents of event logs. Much use is made of the Opentalk
event and event logging facilities. Test may create event logs of their own,
or analyze the remote event logs created by a remote resource.

The current scheme assumes that there will be only one resource per
image, but you may construct a resources with arbitrary complexity.

The drill for configuring a multi-image test is now overly complex,
because port numbers are derived from the suffix of the image name,
expected to consist of two decimal digits. Port numbers are also hard-
coded in the method resourceObjRefs. This is the wrong way to do things
that we intend to move to a scheme where the test case image starts its
broker on a well known port, and resource images register with the test
case image on startup.

That said, the current drill goes as follows. The essentials are also
discussed in the class comment of CaseRemoteClientServer.

1 Make sure that the machines you intend to use are not already
listening on the default ports used by the multi-image testing
framework. The CaseBroker, if you follow our recommendations, will
come up on port 1800, and resource brokers will come up in the
range 1900-1999. If your machines are already using these ports,
alter the class-side method basePortNumber in
OpentalkTestCaseWithRemoteResources or
OpentalkTestCaseRemoteResource, as appropriate. The following
directions will assume that you did not need to change an
implementation of basePortNumber.

2 Write your resource class or classes. You may use any of the
concrete classes under ResourceWithConfiguration as models.

3 Write your test case class. You may use any of the concrete classes
under CaseRemoteClientServer as models.

4 Save your image.

5 Remind yourself of how many resources your test case employs. For
example, class CaseRemoteClients1Servers1 requires three images. You
can check this by examining its implementation of resourceObjRefs.
Two references are set up, one for a client and one for a server. The
third image will be the one that runs the test case. So, if your image is
64 VisualWorks 7.3

Opentalk SNMP
named otwrk.im, clone copies of it now, named otwrk00.im,
otwrk01.im and otwrk02.im. All the image names must end in
two digits. The name ending in “00” is conveniently reserved for the
test running image, making its broker come up on port 1800. All the
images derive the port of their broker from their image name. In this
case, the resource images will start their brokers on ports 1901 and
1902.

6 After saving the images, reopen them, and start the relevant brokers.
Remember that in the test case image you only want to start the
CaseBroker. In the resource images, you start their ResourceBroker. The
class-side protocol of OpentalkTestCaseWithRemoteResources and
OpentalkTestCaseRemoteResource both contain start up methods with
useful executable comments, if you like doing things that way. (You
will use only one image, and start both kinds of brokers in it, only
when you intend that everything run in the same image. And that
setup is very useful in debugging.)

7 Run your tests, from the test case image, and run them one at a time.
The framework has known difficulties running a test suite.

If you ever find that your event logs show record of, say, 50 messages,
when your test only sends 30, then the preceding test run—which you
probably thought you had successfully terminated by, say, closing your
debugger—was still going strong. Clean up as necessary and start again.

Miscellaneous
The listeners now bind to specific network interface if an explicit IP
address is specified (as opposed to the default IPSocketAddress>>thisHost).

Opentalk SNMP
SNMP is a widely deployed protocol that is commonly used to monitor,
configure, and manage network devices such as routers and hosts.
SNMP uses ASN.1 BER as its wire encoding and it is specified in several
IETF RFCs.

The Opentalk SNMP preview partially implements two of the three
versions of the SNMP protocol: SNMPv1 and SNMPv2. It does so in the
context of a framework that both derives from the Opentalk
Communication Layer and maintains large-scale fidelity to the
recommended SNMPv3 implementation architecture specified in IETF
RFC 2571.
Release Notes 65

Preview Components
Usage

Initial Configuration
Opentalk SNMP cares about the location of one DTD file and several MIB
XML files. So, before you start to experiment, be sure to modify
'SNMPContext>>mibDirectories' if you have relocated the Opentalk
SNMP directories.

Broker or Engine Creation and Configuration
In SNMPv3 parlance a broker is called an “engine”. An engine has more
components that a typical Opentalk broker. In addition to a single
transport mapping, a single marshaler, and so on, it must have or be able
to have

• several transport mappings,

• a PDU dispatcher,

• several possible security systems,

• several possible access control subsystems,

• a logically distinct marshaler for each SNMP dialect, plus

• an attached MIB module for recording data about its own
performance.

So, under the hood, SNMP engine configuration is more complex than
the usual Opentalk broker configuration. You can create a simple SNMP
engine with

SNMPEngine newUDPAtPort: 161.
But, this is implemented in terms of the more complex method below.
Note that, for the moment, within the code SNMP protocol versions are
distinguished by the integer used to identify them on the wire.
66 VisualWorks 7.3

Opentalk SNMP
newUdpAtPorts: aSet
| oacs |

oacs := aSet collect: [:pn |
AdaptorConfiguration snmpUDP

accessPointPort: pn;
transport: (TransportConfiguration snmpUDP

 marshaler: (SNMPMarshalerConfiguration snmp))].

^((SNMPEngineConfiguration snmp)
accessControl: (SNMPAccessControlSystemConfiguration snmp

accessControlModels: (Set
with: SNMPAccessControlModelConfiguration snmpv0
with: SNMPAccessControlModelConfiguration snmpv1));

instrumentation: (SNMPInstrumentationConfiguration snmp
contexts: (Set with: (

SNMPContextConfiguration snmp
name: SNMP.DefaultContextName;
values: (Set with: 'SNMPv2-MIB'))));

securitySystem: (SNMPSecuritySystemConfiguration snmp
securityModels: (Set

with: SNMPSecurityModelConfiguration snmpv0
with: SNMPSecurityModelConfiguration snmpv1));

adaptors: oacs;
yourself

) new
As you can see, it is a bit more complex, and the creation method makes
several assumptions about just how you want your engine configured,
which, of course, you may change.

Engine Use
Engines are useful in themselves only as lightweight SNMP clients. You
can use an engine to send a message and get a response in two ways.
The Opentalk SNMP Preview now supports an object-reference based
usage style, as well as a lower-level API.

OR-Style Usage

If you play the object reference game, you get back an Association or a
Dictionary of ASN.1 OIDs and the objects associated with them. For
example, the port 3161 broker sets up its request using an object
reference:
Release Notes 67

Preview Components
| broker3161 broker3162 oid ref return |

broker3161 := SNMPEngine newUdpAtPort: 3161.
broker3162 := self snmpv0CommandResponderAt: 3162.
broker3161 start.
broker3162 start.
oid := CanonicalAsn1OID symbol: #'sysDescr.0'.
ref := RemoteObject

newOnOID: oid
hostName: <aHostname>
port: 3162
requestBroker: broker3161.

^return := ref get.
This expression returns:

Asn1OBJECTIDENTIFIER(CanonicalAsn1OID(#'1.3.6.1.2.1.1.1.0'))->
Asn1OCTETSTRING('VisualWorks®, Pre-Release 7 godot
mar02.3 of March 20, 2002')

Object references with ASN.1 OIDs respond to get, set:, and so forth.
These are translated into the corresponding SNMP PDU type, for
example, a GetRequest and a SetRequest PDU in the two cases
mentioned.

Explicit Style Usage

You can do the same thing more explicitly the following way, in which case
you will get back a whole message:

| oid broker1 entity2 msg returnMsg |

oid := CanonicalAsn1OID symbol: #'1.3.6.1.2.1.1.1.0'.
broker1 := SNMPEngine newUdpAtPort: 161.
entity2 := self snmpv1CommandResponderAt: 162.
broker1 start.
entity2 start.
msg := SNMPAbstractMessage getRequest.
msg version: 1.
msg destTransportAddress: (IPSocketAddress hostName: self

localHostName port: 162).
msg pdu addPduBindingKey: (Asn1OBJECTIDENTIFIER value: oid).
returnMsg := broker1 send: msg.

which returns:

SNMPAbstractMessage:GetResponse[1]
Note that in this example, you must explicitly create a request with the
appropriate PDU and explicitly add bindings to the message's binding list.
68 VisualWorks 7.3

Opentalk SNMP
Entity Configuration
In the SNMPv3 architecture, an engine does not amount to much. It must
be connected to several SNMP 'applications' in order to do useful work.
And 'entity' is an engine conjoined with a set of applications. Applications
are things like command generators, command responders, notification
originators, and so on. There are several methods that create the usually
useful kinds of SNMP entities, like

SNMP snmpv0CommandResponderAt: anInteger
Again, this invokes a method of greater complexity, but with a standard
and easily modifiable pattern. There as several examples in the code.

MIBs
Opentalk SNMP comes with a small selection MIBS that define a subtree
for Cincom-specific managed objects. So far, we only provide MIBs for
reading or writing a few ObjectMemory and MemoryPolicy parameters. A
set of standard MIBS is also provided. Note that MIBs are provided in
both text and XML format. The Opentalk SNMP MIB parser required
MIBS in XML format.

If you need to create an XML version of a MIB that is not provided, use
the 'snmpdump' utility. It is a part of the 'libsmi' package produced by the
Institute of Operating Systems and Computer Networks, TU
Braunschweig. The package is available for download through
http://www.ibr.cs.tu-bs.de/projects/libsmi/index.html, and at
http://rpmfind.net.

Limitations
The Opentalk SNMP Preview is raw and has several limitations. Despite
them, the current code allows a user, using the SNMPv2 protocol, to
modify and examine a running VW image with a standard SNMP tool like
ucd-snmp. However, one constraint should be especially noted.

Port 161 and the AGENTX MIB
SNMP is a protocol used for talking to devices, not applications, and by
default SNMP uses a UDP socket at port 161. This means that in the
absence of coordination between co-located SNMP agents, they will
conflict over ownership of port 161. This problem is partially addressed by
the AGENTX MIB, which specifies an SNMP inter-agent protocol.
Opentalk SNMP does not yet support the AGENTX MIB. This means that
an Opentalk SNMP agent for a VisualWorks application (only a virtual
device) must either displace the host level SNMP agent on port 161, or
run on some other port. Opentalk SNMP can run on any port, however
Release Notes 69

Preview Components
many commercial SNMP management applications are hard-wired to
communicate only on port 161. This places limitations on the extent to
which existing SNMP management applications can now be used to
manage VisualWorks images.

OpentalkCORBA
This release includes an early preview of our OpentalkCORBA initiative.
Though our ultimate goal is to replace DST, DST will remain a supported
product until OpentalkCORBA matches all its relevant capabilities and we
provide a reasonable migration path for current DST users. So, we would
very much like to hear from our DST users, about the features and tools
they would like us to carry over into OpentalkCORBA.

For example, we do not intend to port any of the presentation-semantic
split framework, or any of the UIs that essentially depend upon it, unless
there is strong user demand. Please contact Support, and ask them to
forward your concerns and needs to the VW Protocol and Distribution
Team.

This version of OpentalkCORBA combines the standard Opentalk broker
architecture with DST's IDL marshaling infrastructure to provide IIOP
support for Opentalk. OpentalkCORBA has its own clone of the IDL
infrastructure residing in the Opentalk namespace so that changes made
for Opentalk do not destabilize DST. The two frameworks are almost
capable of running side by side in the same image. The standard base
class extensions, however, like 'CORBAName' can only work for one
framework, usually the one that was loaded last. Therefore, if you want to
load both and be sure that DST is unaffected, make sure it is loaded after
OpentalkCORBA, not before.

This version of OpentalkCORBA already offers a few improvements over
DST. In particular, it supports the newer versions of IIOP, though there is
no support for value types yet. A short list of interesting features and
limitations follows:

• supports IIOP 1.0, 1.1, 1.2

• defaults to IIOP 1.2

• does not support value types

• does not support Bi-Directional IIOP

• doesn't support the NEEDS_ADDRESSING_MODE reply status

• system exceptions are currently raised as Opentalk.SystemExceptions
70 VisualWorks 7.3

OpentalkCORBA
• user exceptions are currently raised as Error on the client side

• supports LocateRequest/LocateReply

• does not support CancelRequest

• does not support message fragmenting

• the general IOR infrastructure is fleshed out (IOPTaggedProfiles,
IOPTaggedComponents, IOPServiceContexts) and adding new kinds of
these components amounts to adding new subclasses and writing
correspondingread/write/print methods

• the supported profiles are IIOPProfile and IOPMultipleComponentProfile,
and anything else is treated as an IOPUnknownProfile

• the only supported service context is CodeSet, and anything else is
treated as an IOPUnknownContext

• however it does not support the codeset negotiation algorithm yet;
correct character encoders for both char and wchar types can be set
manually on the CDRStream class

• the supported tagged components are CodeSets, ORBType and
AlternateAddress, and anything else is treated as an
IOPUnknownComponent

IIOP has the following impact on the standard Opentalk architecture and
APIs:

• there is a new IIOPTransport and CDRMarshaler with corresponding
configuration classes

• these transport and marshaler configurations must be included in the
configuration of an IIOP broker in the usual way

• the new broker creation API consists of the following methods

• #newCdrIIOPAt:

• #newCdrIIOPAt:minorVersion:

• #newCdrIIOPAtPort:

• #newCdrIIOPAtPort:minorVersion:

• IIOP proxies are created using Broker>>remoteObjectAt:oid:interfaceId:

• there is an extended object reference class named IIOPObjRef

• the LocateRequest capabilities are accessible via

• Broker>>locate: anIIOPObjRef
Release Notes 71

Preview Components
• RemoteObject>>_locate

• LocateRequests are handled transparently on the server side.

• A location forward is achieved by exporting a remote object on the
server side (see the example below)

Examples

Remote Stream Access
The following example illustrates basic messaging capability by
accessing a stream remotely. The example takes advantage of the IDL
definitions in the SmalltakTypes IDL module:

| broker stream proxy oid |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[oid := 'stream' asByteArray.

stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
 interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

proxy next: 5.
] ensure: [broker stop]

“Locate” API
This example demonstrates the behavior of the “locate” API:
72 VisualWorks 7.3

OpentalkCORBA
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream oid proxy found |

found := OrderedCollection new.

"Try to locate a non-existent remote object"
oid := 'stream' asByteArray.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

result := proxy _locate.
found add: result.

"Now try to locate an existing remote object"
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
result := proxy _locate.
found add: result.
found

] ensure: [broker stop]

Transparent Request Forwarding
This example shows how to set up location forward on the server side
and demonstrates that it is handled transparently by the client.
Release Notes 73

Preview Components
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream proxy oid fproxy foid|

oid := 'stream' asByteArray.
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

foid := 'forwarder' asByteArray.
broker objectAdaptor export: proxy oid: foid.
fproxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: foid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

fproxy next: 5.
] ensure: [broker stop]

Listing contents of a Java Naming Service
This example provides the code for listing the contents of a running Java
JDK 1.4 naming service. It presumes that you have Opentalk-COS-
Naming loaded. To run the Java naming service, just invoke 'orbd -
ORBInitialPort 1050' on a machine with JDK 1.4 installed.

Note that this example also exercises the LOCATION_FORWARD reply
status, the broker transparently forwards the request to the true address
of the Java naming service received in response to the pseudo reference
'NameService'.
74 VisualWorks 7.3

SocratesEXDI and SocratesThapiEXDI
| broker context list iterator |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker passErrors; start.
[context := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 1050)

oid: 'NameService' asByteArray
interfaceId: 'IDL:CosNaming/NamingContextExt:1.0'.

list := nil asCORBAParameter.
iterator := nil asCORBAParameter.
context

listContext: 10
bindingList: list
bindingIterator: iterator.

list value
] ensure: [broker stop]

List Initial DST Services
This is how you can list initial services of a running DST ORB. Note that
we're explicitly setting IIOP version to 1.0.

| broker dst |
broker := Opentalk.BasicRequestBroker

newCdrIiopAtPort: 4242
minorVersion: 0.

broker start.
[dst := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 3460)

oid: #[0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0]
interfaceId: 'IDL:CORBA/ORB:1.0'.

dst listInitialServices
] ensure: [broker stop]

SocratesEXDI and SocratesThapiEXDI
SocratesXML support at the EXDI level is included with this release in the
preview/database/ directory, in the SocratesEXDI and
SocratesThapiEXDI parcels. The code is still under study and
development for full release at a later time.

Currently this code supports:
Release Notes 75

Preview Components
• Supports MindSpeed 5.1 and SocratesXML 1.2.0 across Windows,
Solaris and HPUX platforms.

• The SocratesXML API allows threaded calls, through thread safe
drivers.

• All SocratesXML types (except MONETARY), collections and object
references (OID) supported.

• Both placed and named input parameter binding is supported though
SocratesXML only supports placed input binding.

Installation

SocratesXML 1.2.0
To install under Solaris and HPUX, simply load the SocratesEXDI parcel.

For Windows you must manually install the 1880.016.map file. Do this
by executing the external interface initialization code below and selecting
the 1880.016.map file:

SocratesInterface userInitialize
SocratesThapiInterface userInitialize

The class instance variable build defines the current build of the external
interface classes on Windows platforms and can be ignored for the other
platforms. The default value is set to 1881.016 on parcel loading.

MindSpeed 5.1
To install under Solaris and HPUX, simply load the SocratesEXDI parcel.

For Windows you must manually install the 1690.014.map file. Do this by
executing the external interface initialization code below and selecting the
1690.014.map file when prompted:

SocratesInterface userInitialize
SocratesThapiInterface userInitialize

The class instance variable build defines the current build of the external
interface classes on Windows platforms and can be ignored for the other
platforms. The default value is set to '1881.016' on parcel loading.
76 VisualWorks 7.3

SocratesEXDI and SocratesThapiEXDI
Data Interchange
The Socrates database type to Smalltalk class mapping is given in table 1
below. Table 2 defines the mapping for database collection types.

The Socrates EXDI automatically converts Socrates database types
to/from instances of concrete Smalltalk classes. Database bit types (BIT,
VARBIT) are mapped to a new Smalltalk class BitArray. This class
provides efficient uni-dimensional access to a collection of bits.

Socrates support for heterogeneous collection maps naturally onto
Smalltalk collections and is fully supported within in the limits defined by
the SocratesXML C API.

For this release collections will be fetched and written in their entirety.

Table 1 - Socrates scalar type to Smalltalk class mappings

Socrates Data type Smalltalk Class

BIT, VARBIT BitArray

CHAR, NCHAR, VARCHAR (STRING),
VARNCHAR

String

DATE Date

DOUBLE Double

FLOAT Float

INTEGER, SHORT, SMALLINT Integer

NULL UndefinedObject

NUMERIC FixedPoint, LargeInteger

TIME Time

TIMESTAMP Timestamp

Table 2 - Socrates collection type to Smalltalk class mappings

Socrates Collection Data type Smalltalk Collection Class

LIST, SEQUENCE OrderedCollection

MULTISET Array

SET Set
Release Notes 77

Preview Components
Reference Support
The Socrates EXDI provides transparent support for database object
references, Socrates OIDs (similar to the SQL Ref data type).

A Socrates OID is represented by a lightweight Smalltalk object (class
SocratesOID) that contains sufficient information to uniquely identify the
database object across all accessible database servers. SocratesOID
instances are not related to active database connections and so can exist
outside the normal database server connection scope. SocratesOIDs can
be instantiated back into live database objects (represented by instances
of class SocratesObject) via an appropriate active connection i.e. one
connected to the original database server.

Object Support
The Socrates EXDI provides access to raw Socrates database objects
through instances of class SocratesObject. SocratesObject instances are
intimately connected to the Socrates database server and so their scope
is that of the underlying database connection.

A key feature of SocratesObject is high-level support for server side method
(function) invocation. Simple server methods can be supported directly;
methods with multiple or non-standard return values must be explicitly
coded by the developer using in-build method invocation support
methods. This typically involves defining a Smalltalk class (as a subclass
of SocratesObject) to represent the target server class. This new class will
be the place holder for both class and instance server method wrappers.
All Smalltalk wrapper methods are defined as instance methods
irrespective of whether they represent class or instance methods in the
server. The Smalltalk wrapper methods are coded to extract the returned
value(s) from the original method argument list, free any resources and
returning the extracted value(s). The Smalltalk GLO hierarchy provides
numerous examples of simple and complex wrapper methods.

GLOs
The Socrates EXDI supports LOB as a subset of the capabilities provided
by SocratesXML GLOs. The Socrates EXDI implements the LOB
interface through the SocratesGLO class hierarchy. SocratesGLOs provide a
stream-like access to GLO data. All GLO subclasses have been
modeled, i.e. audio, image and mm_root hierarchies. Each modeled
subclass implements the majority of class and instance server side
methods as Smalltalk methods. The user can easily add/extend this
functionality by modeling any user-defined subclasses and server side
methods.
78 VisualWorks 7.3

Virtual Machine
The initial release of Socrates EXDI supports read-only support for
Socrates GLOs.

Virtual Machine

IEEE floating point
The engine now supports IEEE floating-point primitives. The old system
used IEEE floats, but would fail primitives that would have answered an
IEEE Inf or NaN value. The new engine does likewise but can run in a
mode where the primitives return Infs and NaNs rather than fail.

Again due to time constraints the system has not been changed to use
this new scheme and we intend to move to it in the next release. In the
interim, Image-level support for printing and creating NaNs and Infs has
been kindly contributed by Mark Ballard and is in
preview/parcels/IEEEMath.pcl. To use this facility load the IEEE
Math parcel and start the engine with the -ieeefp command-line option.

OE Profiler
The OEProfiler, an engine-level pc-sampling profiler now supports
profiling native methods in the nmethod zone. The image-level code
(goodies/parc/OEProfiler.pcl) is still only goodie quality but we
hope to integrate properly these facilities with the Advanced Tools
profilers soon.

64-bit VM
This release introduces a beta of native 64-bit VisualWorks on the first
platform, linuxx86_64, which is 64-bit Linux running on the AMD x86-64
architecture. Note that AMD x86-64 is, for these purposes, compatible
with Intel's EMT64 architecture. To use the 64-bit system, you must
transform a 32-bt image into a 64-bit one using the ImageWriter and run it
on a 64-bit engine. The ImageWriter can be found in
$(VISUALWORKS)/preview/64-bit/ImageWriter.pcl. The
x86-64 engines are in bin/preview/linuxx86_64. The ImageWriter
parcel's comment includes instructions for transforming images. You can
find more information in bin/preview/linuxx86_64/readme.txt.

The 64-bit system is changed little from the 32-bit system. The most
significant change is the addition of an immediate double floatng-point
type, SmallDouble, which should reduce the memory footprint and
Release Notes 79

Preview Components
increase the performance of double floating-point intensive applications
(see the class comment). Also, in the 64-bit system SmallIntegers are in
the range -2 raisedTo: 60 to (2 raisedTo: 60) - 1.

In general Smalltalk code should "just run" unchanged. For example,
parcels can be read, written, and freely interchanged between 32-bit and
64-bit systems. But images can only be moved between the two widths
using the ImageWriter.

We expect to move linuxx86_64 to a fully-supported state in 2005 and to
add a number of additional 64-bit platforms. The highest priorities
currently are:

• HP-UX PA-RISC 64-bit

• Solaris SPARC 64-bit

• AIX PowerOC 64-bit

• Windows x86-64/EMT64 64-bit when it emerges from beta

Please contact Cinsom support to voice preferences for any other
potential 64-bit platforms.

GLORP
GLORP (Generic Lightweight Object-Relational Persistence) is an open-
source project for mapping Smalltalk objects to and from relational
databases. While it is still missing many useful properties for such a
mapping, it can already do quite a few useful things.

Warning: This is UNSUPPORTED PREVIEW CODE. While
it should be harmless to use this code for reading, use of this
code to write into a Store database MAY CAUSE LOSS OF
DATA.

GLORP is licensed under the LGPL(S), which is the Lesser GNU Public
License with some additional explanation of how the authors consider
those conditions to apply to Smalltalk. Note that as part of this licensing
the code is unsupported and comes with absolutely no warranty. See the
licensing information accompanying the software for more information.

Cincom currently plans to do a signficant overhaul of the current
database mapping facilities in Lens, using GLORP as one component of
that overhaul. GLORP is included in preview as an illustration of what
these future capabilities might include.
80 VisualWorks 7.3

SmalltalkDoc
Included on the CD is the GLORP library, its test suite, some rudimentary
user-provided documentation, and some supplementary parcels. For
more information, see the $VISUALWORKS/preview/glorp directory. Note
that one of these includes a preliminary mapping to the Store database
schema.

SmalltalkDoc
SmalltalkDoc is a Smalltalk application for creating and presenting
comprehensive XML documentation for VisualWorks Smalltalk. It consists
of a new System Browser tool for creating and editing documentation, a
content management facility (a database) for managing snapshots of
system documentation, and a web application for presenting
documentation. SmalltalkDoc will be used to document VisualWorks
components, and it can be used to document customer applications.

For additional information, refer to the HTML documentation in
preview/SmalltalkDoc/Docs/Overview.html.
Release Notes 81

P46-0106-09

FAX
IT!

WE STRIVE FOR QUALITY

Reader Comment Sheet
Name:

Job title/function:

Company name:

Address:

Telephone number: () - Date: / /

How often do you use this product? # Daily # Weekly # Monthly # Less

How long have you been using this product? # Months # Years

Can you find the information you need? # Yes # No

 Please comment.

Is the information easy to understand? # Yes # No

 Please comment.

Is the information adequate to perform your task? # Yes # No

 Please comment.

General comment:

To respond, please fax to Larry Fasse at (513) 612-2000.

	Introduction to VisualWorks 7.3
	Product Support
	Support Status
	Product Patches

	ARs Resolved in this Release
	Items Of Special Note
	Store Database Update
	Moving Packages into the Base
	New Platforms
	WinCE
	64-bit Linux

	Known Limitations
	Store
	Initializing Shared Variables
	Sawfish and MultiProcUI

	Limitations listed in other sections

	VW 7.3 New and Enhanced Features
	Virtual Machine
	New Virtual Machines
	LinuxPPC
	MacX X11
	Windows CE
	64-bit Linux

	VM Sources
	Microsoft Windows CE
	Distribution contents
	Prerequisites
	Developing an Application for CE
	Deploying on a CE Device
	Starting VisualWorks on CE
	Known limitations

	Base system
	Subsystems and Startup/Shutdown

	Tools
	Packages Replacing Categories
	Context Menu Changes
	Probe Dialogs
	Miscellaneous
	AddInstVarAtCompile
	WorkspaceFormatting
	ExtraIcons

	Advanced Tools
	Profiler
	Summaries of Recursive Functions
	Publishing in Store

	Store
	External File Support
	Store for Oracle

	WebService
	WSDL Wizard

	Net Clients
	Cookie Support
	HttpURL
	Merging HTTP and HTTPS
	Autoloading Prerequisites
	ASN.1

	Security
	Opentalk
	Opentalk Namespace
	System Events
	Request Dispatch
	Scheduling
	Design Changes in Configurations
	New server side error event
	Miscellaneous

	Browser Plugin
	Application Server
	Better handling of encodings
	Form Data and Non-ASCII Characters in Web Toolkit
	Remove Old Servers
	FastCGI Removed
	Bug Fixes
	Headless Changes
	ISAPI Gateway Improvements
	Backward-Compatibility
	ISAPI Gateway Improvements
	Authentication

	Installer Framework
	Customizing the install.map File
	Dynamic Attributes
	Components
	License

	Customizing the Code
	Creating Component Archives
	Local Installations
	Remote installations

	Documentation
	SmalltalkDoc
	PDF Documents
	TechNotes

	Goodies
	Dual Monitor Support on Windows

	Deprecated Features
	Plugin Parcels
	Net Clients
	Security

	Preview Components
	Base Image for Packaging
	MQInterface
	Unicode Support for Windows
	Menu UI Compatibility
	New GUI Framework (Pollock), Feature Set 1
	Background
	High Level Goals
	Pollock
	Pollock Requirements

	The New Metaphor: Panes with frames, agents, and artists
	Other notes of interest
	So, What Now?

	Opentalk
	SNMP
	Distributed Profiler
	Installing the Opentalk Profiler in a Target Image
	Installing the Opentalk Profiler in a Client Image

	Opentalk Remote Debugger
	Opentalk SOAP Header Support
	Server SOAP Header Support
	Client SOAP Header Support
	SOAP Header Demo

	Testing and Remote Testing
	Miscellaneous

	Opentalk SNMP
	Usage
	Initial Configuration
	Broker or Engine Creation and Configuration
	Engine Use

	Entity Configuration
	MIBs
	Limitations
	Port 161 and the AGENTX MIB

	OpentalkCORBA
	Examples
	Remote Stream Access
	“Locate” API
	Transparent Request Forwarding
	Listing contents of a Java Naming Service
	List Initial DST Services

	SocratesEXDI and SocratesThapiEXDI
	Installation
	SocratesXML 1.2.0
	MindSpeed 5.1

	Data Interchange
	Reference Support
	Object Support
	GLOs

	Virtual Machine
	IEEE floating point
	OE Profiler
	64-bit VM

	GLORP
	SmalltalkDoc

