
Cincom Smalltalk™

Application Developer's Guide
P46-0101-13

S I M P L I F I C A T I O N T H R O U G H I N N O V A T I O N ®

InstallGuide Cover 0107 1/17/07 10:19 AM Page 1

Copyright © 1993–2008 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0101-13

Software Release 7.6

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, and COM Connect are trademarks of Cincom Systems, Inc., its subsidiaries, or
successors. ENVY is a registered trademark of Object Technology International, Inc. All
other products or services mentioned herein are trademarks of their respective
companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation copyright © 1993–2008 by Cincom
Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior
written consent from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

About This Book xxi

Overview ... xxi
Audience ... xxii

Conventions ... xxii
Typographic Conventions .. xxii
Special Symbols... xxiii
Mouse Buttons and Menus .. xxiv

Getting Help .. xxiv
Commercial Licensees.. xxv
Non-Commercial Licensees ... xxvi

Additional Sources of Information ... xxvi
Smalltalk Tutorial ... xxvii
Online Help ... xxvii
VisualWorks FAQ .. xxvii
News Groups .. xxvii
VisualWorks Wiki .. xxvii
Commercial Publications... xxvii
Examples ... xxviii

Chapter 1 The VisualWorks Environment

Overview ..1-1
Running VisualWorks ...1-1

VisualWorks Startup Commands ..1-2
VisualWorks Command Line Options ..1-3

Image Level Switches ..1-3
Running Multiple Versions Under Windows ..1-4

Saving Your Work ...1-5
Saving the Image ..1-5
Restoring the Original Image ..1-6
Sources and Changes ...1-6

Exiting VisualWorks ...1-7
Closing on Windows Shutdown ...1-7
Emergency Exit ...1-7
Application Developer’s Guide iii

Contents
Chapter 2 Programming in VisualWorks

Overview .. 2-1
VisualWorks Launcher ... 2-2
Mouse (Pointer) Operations ... 2-2
Text Entry and Formatting .. 2-3

Character Formatting .. 2-3
Short-cut Controls ... 2-4
Enclosing an Expression .. 2-6

Evaluating Smalltalk Code in a Workspace ... 2-7
Evaluating Commands .. 2-8
Workspace Variables .. 2-9
Name Spaces in Workspaces ... 2-9
Saving Workspace Contents .. 2-10

Loading Code Libraries ... 2-10
Using the Parcel Manager .. 2-11
Loading Parcels Programmatically ... 2-12
Setting the Parcel Path ... 2-12

Browsing and Editing Smalltalk Code .. 2-13
Browsing the System .. 2-15
Browser Navigator .. 2-16

Package View .. 2-16
Parcel View .. 2-16
Hierarchy View ... 2-17
Class / Name Space View ... 2-17
Instance, Class, and Variable Views .. 2-17
Icons in the Navigator .. 2-17

Working with the Browser ... 2-18
Editing Source Code .. 2-18
Missing Source Code ... 2-19
Searching .. 2-19
Drag and Drop ... 2-19
Controlling Visibility of Methods ... 2-19
Using Multiple Views .. 2-20
Source Code Formatting .. 2-20

Browsing Files ... 2-21
Exploring Objects .. 2-22

Inspecting an Object ... 2-22
Inspecting Collections ... 2-23
Modifying Objects ... 2-24
Evaluating Expressions .. 2-24
Browsing and Editing Behavior ... 2-25

Painting a GUI ... 2-26
iv VisualWorks

Contents
System Settings ...2-27
VisualWorks Home ..2-27
Settings ...2-27
Saving and Loading System Settings ..2-28

Chapter 3 Object Orientation

Overview ..3-1
Procedures vs. Objects ..3-1
Objects and Methods ...3-2
Composite Objects ...3-4
Variables and Methods ...3-5

Method Names ..3-5
Method Categories ..3-6

Classes and Instances ...3-6
Class Variables ...3-7
Class Methods vs. Instance Methods ..3-7

Class Inheritance ...3-8
Looking up a Method ...3-9
Overriding an Inherited Method ...3-10
Abstract Classes ...3-11
Choosing a Superclass ...3-12

Chapter 4 Syntax

Overview ..4-1
Literals ..4-1

Numbers ..4-1
Integers ..4-2
Floating Point Numbers ..4-2
Fixed-Point Numbers ..4-2
Nondecimal Numbers ...4-2
Numbers in Scientific Notation ...4-2

Characters ...4-3
Strings ...4-3
Symbols ..4-3
Byte Arrays ..4-3
Arrays ..4-4
Booleans ...4-4
nil ...4-4

Variables ..4-5
Variable Types ...4-5
Variable Names and Conventions ...4-5
Private Variables ...4-6
Application Developer’s Guide v

Contents
Temporary Variables .. 4-6
Argument Variables ... 4-7
Instance Variables ... 4-8
Class Instance Variables ... 4-10

Shared Variables .. 4-10
Class Variables .. 4-11
Pool Variables .. 4-12
As Global Variables ... 4-14
Class and Name Spaces Names ... 4-15
Constant and Variable Bindings ... 4-15
Public and Private Shared Variables .. 4-16
Defining a Binding as Private or Public .. 4-16
Initializing Shared Variables ... 4-17

Assigning a Value to a Variable .. 4-17
Special Variables .. 4-18
Undeclared Variables .. 4-20

Message Expressions ... 4-20
Unary Messages ... 4-21
Binary Messages .. 4-21
Keyword Messages ... 4-22
Messages in Sequence .. 4-23
Cascading Messages ... 4-23
Parsing Order for Messages ... 4-23

Block Expressions ... 4-25
Pragmas .. 4-26

Declaring Pragmas ... 4-26
Including a Pragma in a Method ... 4-27
Processing Pragmas ... 4-28

Collecting Pragmas .. 4-28
Performing Operations with Pragmas .. 4-29
Accessing Pragma Components ... 4-29

Formatting Conventions ... 4-30

Chapter 5 Classes and Instances

Overview .. 5-1
Defining a Class .. 5-1

Creating a Class using the New Class Dialog .. 5-1
Editing a Class Definition .. 5-3
Class Types .. 5-5

Locating a Class by Name ... 5-6
Working with Instances .. 5-7

Creating an Instance .. 5-7
vi VisualWorks

Contents
Destroying an Instance ..5-7
Garbage Collecting ..5-7
Finalization ...5-7
Lingering Instances ..5-7

Immutable objects ...5-8
Object Comparison ...5-9

Methods ...5-10
Creating a Method ...5-11
Fixing Common Errors at Compile Time ...5-11

Undeclared temporary variables ..5-11
Undeclared class and instance variables5-12
Missing period ..5-12
Missing delimiters ...5-12

Returning from a Method ..5-12
Returning From an Enclosed Block ..5-12
Returning the Result of a Message ..5-12
Returning a Conditional Value ..5-13

Chapter 6 Name Spaces

Overview ..6-1
Multiple Name Spaces ...6-2
Getting Started ...6-2
Name Spaces and Their Contents ...6-3

Name Space Contents ..6-3
The Name Space Hierarchy ..6-4

Smalltalk.Root.Smalltalk ..6-5
Working with Name Spaces ...6-6

Browsing Name Spaces ..6-6
Creating Name Spaces ...6-7
Naming a Name Space ...6-8
When to Create a New Name Space ..6-9
Rearranging Name Spaces ...6-9
Classes as Name Spaces ...6-9

Referencing Objects in Name Spaces ...6-10
Dotted Names and Name Space Paths ..6-10
Binding References ...6-12

Binding Reference Resolution ..6-14
When to Use BindingReference or LiteralBindingReference6-14

Importing Bindings ..6-14
Importing Classes and Name Spaces ..6-16
Importing Class Variables ..6-16
Application Developer’s Guide vii

Contents
Importing Pool Variables .. 6-16
Circular System Imports .. 6-17

Binding Rules and Errors .. 6-18

Chapter 7 Control Structures

Overview .. 7-1
Branching .. 7-1

Boolean Values ... 7-1
Conditional Tests .. 7-2
Compound Conditions .. 7-3

Looping .. 7-4
Conditional Looping .. 7-4

whileTrue: and whileFalse: ... 7-4
repeat .. 7-5

Number Iteration ... 7-5
timesRepeat: .. 7-5
to:by:do: ... 7-5
to:do: .. 7-6

Collection Iteration .. 7-6
do: .. 7-6
select: .. 7-6
reject: ... 7-7
detect: .. 7-7
collect: ... 7-7
inject:into: .. 7-7

Chapter 8 Managing Smalltalk Source Code

Overview .. 8-1
Organizing Smalltalk Code .. 8-2

Package and Bundle Contents ... 8-2
Browsing Packages and Bundles ... 8-3
Loading Code into Packages and Bundles ... 8-4

Loading from Parcels ... 8-4
Loading from a File-in Files ... 8-5
Loading from a Store Repository ... 8-5

Controlling Load and Unload Behavior ... 8-5
Saving .. 8-5
Loading .. 8-6
Unloading .. 8-6

Managing Packages ... 8-7
Creating a Package ... 8-7
viii VisualWorks

Contents
Adding Definitions to a Package ...8-7
Removing a Package ...8-8

Managing Bundles ..8-8
Creating and Arranging Bundles ..8-8
Editing a Bundle Specification ..8-9
Removing a Bundle ..8-9

Designing a Package Structure ...8-10
Package and Bundle Properties ..8-10

Prerequisites ..8-11
Warning Suppression Action ..8-11
Prerequisite Version Selection Action ..8-11
Load and Unload Actions ...8-11
Other Properties ...8-12

Specifying Prerequisites ..8-12
Specifying Deployment Prerequisites ...8-13
Specifying Development Prerequisites ...8-13
Specifying a Prerequisite Version ...8-14

References Between Packages ..8-15
Code Overrides ...8-16

Creating an Override ..8-17
Reviewing Overrides ..8-17
Resolving Overrides ...8-19
Publishing Parcels and Packages with Overrides8-19

Publishing Packages ...8-20
Publishing as Parcels ...8-20

Source Code Files ..8-22
Archiving Source Files ..8-23

Managing Changes ..8-23
Recovering Changes ...8-24
Compressing Changes ..8-24
Using Change Sets ...8-24

Change Set Manager ...8-25
Selecting a Current Change Set ...8-25
Creating a New Change Set ...8-26
Saving Changes ...8-26

File-Out Files ..8-26
Filing Out Code ...8-27
Filing In Code ..8-27

Parcels ...8-28
Loading and Unloading Parcels ..8-28

Parcel Files ...8-29
Loading Parcels Programmatically ...8-29
Application Developer’s Guide ix

Contents
Loading Parcels with Command Line Options 8-29
Parcel Search Path .. 8-31

Managing Parcels ... 8-32
Parcel Condition Indicators .. 8-33
Creating a New Parcel ... 8-33
Adding and Removing Definitions .. 8-33
Saving a Parcel .. 8-34
Finding Unparcelled Methods .. 8-34

Guidelines for Clean Loading and Unloading ... 8-35
Limitations and Restrictions .. 8-36

Restrictions on Parcel Contents .. 8-36
Partial Loading ... 8-37
Shape Change Tolerance .. 8-38

Chapter 9 Application Framework

Overview .. 9-1
Separating the Domain and the User Interface ... 9-1

Application Model Acts as Mediator .. 9-2
Value Model Links Widget to Attribute .. 9-3
Builder Assembles User Interface ... 9-4

Dependencies Between Objects ... 9-5
The Update/Change System .. 9-5
Notifications From Value Model to Application Model 9-6
Notifications From Any Object to Any Object .. 9-7

DependencyTransformer ... 9-7
Direct Dependency .. 9-8
Removing Dependents .. 9-9
Circular Dependencies .. 9-9

Application Startup and Shutdown .. 9-10
Selecting an Interface ... 9-10
Prebuild Intervention ... 9-11
Postbuild Intervention ... 9-11
Postopen Intervention ... 9-11
Application Cleanup .. 9-11

User Settings Framework .. 9-12
Settings ... 9-13
Browsing the Definition for a Setting ... 9-14
Defining a Setting ... 9-14
Additional Setting Parameters .. 9-15
Controlling the Vertical Position of a Setting ... 9-15
Settings Pages .. 9-16
Defining a Page of Settings .. 9-17
x VisualWorks

Contents
Setting Types ...9-18
Creating a Setting Model ...9-20
Backward Compatibility with VisualWorks UISettings9-20
Using Drop-Down List and Radio Button Settings9-21
Defining a Settings Domain ...9-22
Saving and Loading Settings ...9-23

Responding to System Events ...9-24
Defining System Event Actions ...9-24
Command Line Processing in a Subsystem ..9-26
Activating a Subsystem ...9-28
Dependency Ordering of Subsystems ..9-29

Chapter 10 Trigger-Event System

Overview ..10-1
Triggering Events ...10-2

Event Triggering Messages ...10-2
Registering an Event Handler ..10-3

Handling an Event with Arguments ...10-4
Handler Registration Messages ..10-4

Removing Event Handlers ..10-6
RemoveAction messages ..10-7

Defining Event Sets ..10-7
Specifying event strictness ..10-7
Specifying events to trigger ...10-8
Event classes ..10-8

How Handlers are Registered ..10-8
Trigger Event System Support Methods ...10-9

Trigger Event Support Methods Available to All Objects10-9
Trigger Event Support Methods In ApplicationModel10-10

Chapter 11 Announcements

Overview ..11-1
Subscribing to Announcements ...11-1

Unsubscribing ...11-4
Announcing an Event ...11-6
Accepting Subscriptions ...11-7
Handling an Announcement ...11-8

Processing an Announcement ..11-8
Vetoing an Event ...11-9

Advanced Announcement Management ..11-9
How Subscriptions are Managed ..11-9
Selecting Subscriptions ...11-10
Application Developer’s Guide xi

Contents
Suspending a Subscription ... 11-12
Batching Missed Announcements .. 11-15
Substituting a Handler .. 11-16
Making Subscriptions Weak ... 11-18

Chapter 12 Working With Graphics and Colors

Overview .. 12-1
A Note about the Examples .. 12-1

The VisualWorks Graphics Environment ... 12-2
Pixels .. 12-3
Coordinate System ... 12-3
Points .. 12-4
Rectangles .. 12-5
Graphical Objects ... 12-6

Text Objects ... 12-6
Geometric Objects ... 12-6
Bitmap Image Objects ... 12-7
VisualPart .. 12-7

Colors and Patterns .. 12-8
Graphics Media and Display Surfaces .. 12-8

Windows .. 12-9
Pixmaps ... 12-9
Masks .. 12-9

Graphics Context .. 12-10
Graphics Device ... 12-10

Displaying a Graphic .. 12-10
Getting a GraphicsContext ... 12-11
Displaying a Graphical Object on a GraphicsContext 12-11
Drawing a Transient Shape ... 12-12
Displaying a Bitmap Image ... 12-12
Shifting (Translating) the Display Position ... 12-13
Displaying a Restricted Area .. 12-14
Copying from a Display ... 12-14

Working with Unmappable Display Surfaces ... 12-16
Creating a Display Surface from an Image ... 12-17
Creating a New Display Surface ... 12-17
Composing on a Pixmap ... 12-18
Displaying a Display Surface .. 12-18
Copying from a Display Surface ... 12-18

GraphicsContext Attributes .. 12-19
Line Properties ... 12-20

Line Width .. 12-20
xii VisualWorks

Contents
Line Cap Style ...12-21
Line Join Style ..12-22

Font Properties ..12-22
Paint Properties ...12-23
Clipping Properties ..12-24
X and Y Offsets ...12-24
Scaling ..12-24

Animating Graphics ..12-25
Moving a Static Object ..12-25
Animating a Changing Object ...12-27

Using Graphics in an Application ...12-29
Cursors ..12-29
Icons ..12-31
As a Component in an Application Window ..12-32

Graphics as Labels and Decoration ...12-32
As a Custom View ..12-32

Chapter 13 Files

File Names ...13-1
Creating a Filename ..13-2
Constructing a Portable Filename ...13-2

Creating a File or Directory ..13-3
Creating an Empty File ..13-3
Creating a New Disk Directory ..13-4

Getting File Information ..13-4
Testing for Existence ...13-4
Getting the Size of a File ...13-4
Getting and Setting the Working Directory ..13-5
Getting the Parent Directory ..13-5
Getting the Parts of a Pathname ...13-6
Distinguishing a File from a Directory ...13-6
Getting the Access and Modification Times ..13-6

Getting File or Directory Contents ..13-7
Getting the Contents of a File ...13-7
Getting the Contents of a Directory ...13-7

System Variables ...13-8
Storing Text in a File ...13-8

Writing a Stream to a File ..13-8
Appending Text to a File ..13-9

Deleting a File or Directory ...13-9
Copying or Moving a File ..13-10

Copying a File ...13-10
Application Developer’s Guide xiii

Contents
Moving a File .. 13-10
Renaming a File .. 13-11

Comparing Two Files or Directories ... 13-11
Comparing Two Filenames or Two Files ... 13-12
Comparing Two Filenames or Two Directories 13-12

Printing a File ... 13-13
Print a Text File ... 13-13
Printing a File Directly ... 13-13
Writing Fields to a Data File .. 13-13
Reading Fields from a Data File ... 13-14

Setting File Permissions .. 13-15
Unix Volume List .. 13-16

Chapter 14 Binary Object Files (BOSS)

Storing Objects in a BOSS File ... 14-1
Storing a Collection of Objects ... 14-2
Appending an Object to a File .. 14-2

Getting Objects from a BOSS File ... 14-3
Retrieving All Objects ... 14-3
Searching Sequentially for an Object ... 14-4
Getting an Object at a Specific Position .. 14-5

Storing and Getting a Class ... 14-6
Storing a Collection of Classes ... 14-7
Loading a Collection of Classes ... 14-7

Converting Data After Changing a Class ... 14-8
Customizing the Storage Representation .. 14-9

Chapter 15 Exception and Error Handling

Overview .. 15-1
ANSI Exception Handling .. 15-1

Adapting Signal-based Code .. 15-2
Reinitializing Signal Creators and Initializers 15-2
Name Signals .. 15-2
Do Not Depend on Signal noHandlerSignal 15-2

Exception Classes ... 15-3
Handling Exceptions .. 15-4

Exception Sets .. 15-6
Signaling Exceptions ... 15-6
Exception Environment .. 15-7
Exiting Handlers Explicitly ... 15-9
Resumable and Nonresumable Exceptions ... 15-11
Translating Exceptions ... 15-13
xiv VisualWorks

Contents
Unwind Protection ..15-13
Using a Signal to Handle an Error ..15-14

Choosing or Creating a Signal ..15-14
Proceedability ..15-15
Creating an Exception ...15-15
Setting Parameters ..15-16
Passing Control From the Handler Block ..15-16
Using Nested Signals ..15-17

Chapter 16 Debugging Techniques

Overview ..16-1
Software Probes ...16-2

Breakpoint ...16-2
Watchpoint ..16-3

Setting Probes ..16-4
Setting a breakpoint ..16-4
Setting a variable watchpoint ..16-4
Setting an expression watchpoint ..16-5
Removing probes ..16-7
Making a probe conditional ...16-7
Select a watch window ..16-10
Modifying a probe ..16-10
Probe location ...16-11
Recompiling a Probed Method ..16-11
Limitations ...16-12

Probe highlights ...16-12
Inserting probes at returns ...16-12

Class Probes ..16-13
Adding class probes ..16-13

On Instance Variable Access... ..16-13
On Message Receipt... ...16-15

Remove class probes ..16-17
Browse probed methods ...16-17

Debugger ...16-18
Walkback Notifier ..16-18
Debugger Window ...16-18
Reading the Execution Stack ..16-20
Editing a Method Definition ...16-22
Inspecting and Changing Variables ...16-22
Inspecting the Stack ..16-23
Tracing the Flow of Messages ...16-23

Stack menu ..16-24
Application Developer’s Guide xv

Contents
Method menu ... 16-24
Execute menu .. 16-25
Correct menu ... 16-26

Inserting Probes in the Debugger .. 16-26
Temporary Probes .. 16-26
Probe context management .. 16-27

Debugging Tips .. 16-28
Inserting probes into blocks .. 16-28
Iteration debugging ... 16-28
Interrupting a Program ... 16-29

Global Probe Management .. 16-30
Probe library ... 16-30
Expression libraries .. 16-31
Storing CompiledMethods Externally ... 16-31

Debugging Within the Virtual Machine .. 16-32

Chapter 17 Process Control

Overview .. 17-1
UI Processes ... 17-1
Creating a Process .. 17-1
Scheduling a Process .. 17-2
Setting the Priority Level .. 17-3
Synchronizing Processes .. 17-4

Semaphore ... 17-4
Sharing Data Between Processes ... 17-6
Using a Delay .. 17-6

Delay and Time Change Interaction ... 17-6

Chapter 18 Refactoring

Overview .. 18-1
Refactoring for Abstraction .. 18-4

Creating an Abstract Class ... 18-4
Moving Instance Variables to a Superclass 18-5
Consolidating Common Code .. 18-6

Inlining Methods ... 18-7
Individual Refactorings .. 18-9

Refactoring Classes .. 18-9
Creating a Subclass ... 18-9
Renaming a Class and Its References .. 18-9
Safely Removing a Class ... 18-9
Changing a Class to a Sibling .. 18-9
Adding a Variable ... 18-10
xvi VisualWorks

Contents
Renaming a Variable and its References18-10
Removing a Variable ..18-10
Moving a Variable from or to a Subclass18-10
Creating Variable Accessors ..18-11
Abstracting a Variable ..18-11
Making a Variable Concrete ...18-11

Refactoring Methods ...18-11
Moving a Definition to Another Component18-11
Renaming a Method and its References18-11
Safely Removing a Method ..18-12
Adding a Parameter to a Method ..18-12
Inlining all Sends to Self ...18-12
Moving a Method to or from a Superclass18-12

Refactoring Portions of a Method ..18-12
Extracting a Method ...18-12
Inlining a Temporary Variable ...18-13
Converting a Temporary into an Instance Variable18-13
Removing a Parameter ...18-13
Inlining a Parameter ...18-13
Renaming a Temporary ..18-13
Moving a Temporary to an Inner Scope18-13
Extracting to a Temporary ..18-13
Inlining a Message ...18-14

Chapter 19 Weak Reference and Finalization

Overview ..19-1
Weak Arrays ...19-2
Finalization ...19-2
WeakDictionary ..19-5

HandleRegistry ...19-5
Finalization Example ..19-5
Ephemerons ...19-7

Chapter 20 Creating an Application without a GUI

Overview ..20-1
Key Concepts ...20-1
Setting Up a Headless Image ..20-2
Running an Application in Headless Mode ..20-3

Starting on Unix/Linux ...20-3
Starting on Windows ...20-3
When an Image Starts ..20-4
If an Application Attempts to Access a Display ...20-4
Application Developer’s Guide xvii

Contents
Debugging a Suspended Process ... 20-5
Creating a Headful Copy of a Headless Image ... 20-5
Tips for Programming a Headless Application ... 20-5

Techniques for Starting a Headless Application 20-6
Techniques for Communicating with a Headless Application 20-6
Terminating a Headless Application ... 20-6
Sending Output to the System Console .. 20-6
Preventing Access to the Display ... 20-7

Delivering a Headless Application ... 20-8

Chapter 21 Application Delivery

Overview .. 21-1
Choosing a Delivery Strategy .. 21-2

Single Image File .. 21-2
Parcels .. 21-2
Combined Deployment ... 21-2

Packaging for Distribution .. 21-3
Deploying as a Single File .. 21-3
VisualWorks Installer .. 21-3

Running a Deployed Image ... 21-4
Loading Parcels At Start Up ... 21-4
Opening a Runtime Application .. 21-4
Exiting a Deployed Image ... 21-5
Installing as a Service on Windows .. 21-5

Preparing an Image for Deployment .. 21-6
Loading Application Code ... 21-6

Code Developed in the Image ... 21-6
Code Saved in File-outs ... 21-7
Code Saved in Parcels .. 21-7
Code in a Store Database ... 21-7

Removing Source Files ... 21-8
The Transcript ... 21-8
Handling Errors ... 21-8
Registering an Interest in System Events ... 21-8

Pragma-based Event Dependency .. 21-9
Message-based Event Dependency .. 21-9

Shutdown When the Last Window Closes .. 21-10
Handling Command Line Options ... 21-11

Pragma-based Option Processing ... 21-12
Message-based Option Processing ... 21-13

Unload Tools Parcels .. 21-14
Removing Undeclared Variables .. 21-14
xviii VisualWorks

Contents
Garbage Collecting Lingering Instances ...21-15
Splashscreen and Sound ..21-15

Replacing the Splashscreen and Sound21-15
Suppressing the Splashscreen and Sound21-15
Controlling Splashscreen Duration ...21-16

Creating the Deployment Image ...21-16
Running Runtime Packager ..21-17
A Short-cut Procedure ..21-18
Examples ..21-18

Building a Stand-alone Image ..21-18
Building an Image Using Parcels ...21-19

Runtime Packager Process Details ..21-21
Saving Runtime Packager Parameters ..21-21
Clean Up Image ..21-21
Set Common Options ..21-22

Details Page ...21-23
Platforms Page ...21-24
Exceptions Page ..21-24
Parcels Page ..21-25
Parcel operations ...21-26
Stripping Page ..21-26

Specify Items to Keep and Delete ...21-28
Pop-up Menus ..21-29

Scan for Unreferenced Items ..21-31
Review Kept Items ...21-32

Pop-up Menus ..21-33
Save Loadable Parcels ..21-33
Test the Application ...21-34
Set Runtime Memory Parameters ...21-37

Space sizes ..21-37
Policy Values ..21-37
Notes ..21-37

Strip and Save Image ..21-38
Debugging a Deployed Image ..21-40

Customizing the Emergency Notifier ...21-40
Customizing Detected References ...21-41
Customizing Image Stripping ...21-43
Trouble Shooting ..21-43

Workspace or Browser is Opened with the Application21-43
Parcel File not Readable ...21-43
Application Cannot Find a Parcel Source File ...21-43
Application Exits Immediately ...21-44
An Identifier has no Binding ..21-44
Application Developer’s Guide xix

Contents
Appendix A VisualWorks Smalltalk Syntax Description A-1
Overview ..A-1
Lexical Primitives ...A-1

Character Classes ..A-2
Numbers ...A-2
Other Lexical Constructs ..A-2

Atomic Terms ...A-3
Expressions and Statements ...A-4
Methods ...A-5

Appendix B Special Characters B-1
Overview ..B-1
Composed Characters ...B-2
Diacritical Marks ..B-5

Appendix C Virtual Machines C-1
Overview ..C-1
VisualWorks Virtual Machines ...C-1

Production Engines ..C-1
Debug Engines ...C-2
Assert Engines ...C-2
Headless and Headful Engines ..C-2
Linkable Object Engines ...C-3
Console Object Engines ...C-3

Virtual Machine Command Line Options ...C-3
All platforms ..C-3
Windows platforms ...C-4
Unix/Linux platforms ...C-4

System Colors on X11 ...C-5

Index Index-1

Method Index Method Index-1
xx VisualWorks

About This Book

Overview
VisualWorks documentation is designed to help both new and
experienced developers create application programs effectively using the
VisualWorks® application frameworks, tools, and libraries.

This document, the Application Developer’s Guide, focuses on the basics,
such as:

• Smalltalk syntax

• VisualWorks development tools

• Data structures (classes, methods, namespaces, etc.)

• Program control structures

• Application and graphics frameworks

• Error handling and debugging

Other documents in the VisualWorks documentation set present

• using basic and add-in libraries that provide features useful for
specific application tasks,

• detailed information about VisualWorks tools, and

• tutorial introductions.

The documentation typically does not say everything there is to say about
a particular feature, nor does it cover the features in complete detail.
VisualWorks, like Smalltalk systems in general, is designed for
exploration and experimentation. In this sense, the documentation is
more like a map, identifying major features and how to get there, but the
level of detail is often variable and leaves lots of room for discovery. Read
the documentation as pointing out what is available in VisualWorks, and
then explore beyond what is described, becoming increasingly “at home”
with your environment.
Application Developer’s Guide xxi

About This Book
One strength of Smalltalk that makes this exploration and discovery
approach possible is that all of the source code available for browsing. Of
course, that also means there is more code there than you need to
understand, so you will need to figure out what to focus on and what to
ignore. Class and method comments, and special documentation
methods, can help here, and often provide details missing from the formal
documentation.

Read the documentation to orient yourself to the language, tools, and
libraries and their general use. It will help you to become successful
quickly, and providing a foundation for your further exploration and
mastery of the system.

Audience

The Application Developer’s Guide makes very few assumptions about
your level of knowledge about object-oriented programming, but does
assume you have a basic knowledge of computer programming in some
environment. The description of VisualWorks begins at an elementary
level, with an overview of the system tools and facilities, and a description
of Smalltalk syntax, but does not attempt to be a tutorial. For readers with
a good understanding of object-oriented programming principles and
practice, the document serves as an orientation to specific terminology
used in Smalltalk and the specific environment provided by VisualWorks.

For additional help, a large number of books and tutorials are available
from commercial book sellers and on the world-wide web. In addition,
Cincom and some of its partners provide VisualWorks training classes.
See “Additional Sources of Information” on page xxvi below for a listing of
some of these resources.

Conventions

We have followed a variety of conventions, which are standard in the
VisualWorks documentation.

Typographic Conventions
The following fonts are used to indicate special terms:

Example Description

template Indicates new terms where they are defined,
emphasized words, book titles, and words as words.
xxii VisualWorks

Conventions
Special Symbols
This book uses the following symbols to designate certain items or
relationships:

cover.doc Indicates filenames, pathnames, commands, and
other constructs to be entered outside VisualWorks
(for example, at a command line).

filename.xwd Indicates a variable element for which you must
substitute a value.

windowSpec Indicates Smalltalk constructs; it also indicates any
other information that you enter through the
VisualWorks graphical user interface.

Edit menu Indicates VisualWorks user-interface labels for menu
names, dialog-box fields, and buttons; it also
indicates emphasis in Smalltalk code samples.

Examples Description

File New Indicates the name of an item (New) on a menu
(File).

<Return> key

<Select> button

<Operate> menu

Indicates the name of a keyboard key or mouse
button; it also indicates the pop-up menu that is
displayed by pressing the mouse button of the
same name.

<Control>-<g> Indicates two keys that must be pressed
simultaneously.

<Escape> <c> Indicates two keys that must be pressed
sequentially.

Integer>>asCharacter Indicates an instance method defined in a class.

Float class>>pi Indicates a class method defined in a class.

Example Description
Application Developer’s Guide xxiii

About This Book
Mouse Buttons and Menus
VisualWorks supports a one-, two-, or three-button mouse common on
various platforms. Smalltalk traditionally expects a three-button mouse,
where the buttons are denoted by the logical names <Select>,
<Operate>, and <Window>:

These buttons correspond to the following mouse buttons or
combinations:

Note: This is a different arrangement from how VisualWorks used
the middle and right buttons prior to 5i.2.
If you want the old arrangement, toggle the Swap Middle and Right Button
checkbox on the UI Feel page of the Settings Tool.

Getting Help
There are many sources of technical help available to users of
VisualWorks. Cincom technical support options are available to users
who have purchased a commercial license. Public support options are
available to both commercial and non-commercial license holders.

<Select> button Select (or choose) a window location or a menu
item, position the text cursor, or highlight text.

<Operate> button Bring up a menu of operations that are
appropriate for the current view or selection. The
menu that is displayed is referred to as the
<Operate> menu.

<Window> button Bring up the menu of actions that can be
performed on any VisualWorks window (except
dialogs), such as move and close. The menu that is
displayed is referred to as the <Window> menu.

3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
xxiv VisualWorks

Getting Help
Commercial Licensees
If, after reading the documentation, you find that you need additional help,
you can contact Cincom Technical Support. Cincom provides all
customers with help on product installation. For other problems there are
several service plans available. For more information, send email to
supportweb@cincom.com.

Before Contacting Technical Support
When you need to contact a technical support representative, please be
prepared to provide the following information:

• The version id, which indicates the version of the product you are
using. Choose Help About VisualWorks in the VisualWorks main
window. The version number can be found in the resulting dialog
under Version Id:.

• Any modifications (patch files) distributed by Cincom that you have
imported into the standard image. Choose Help About VisualWorks in
the VisualWorks main window. All installed patches can be found in
the resulting dialog under Patches:.

• The complete error message and stack trace, if an error notifier is the
symptom of the problem. To do so, select copy stack in the error notifier
window (or in the stack view of the spawned Debugger). Then paste
the text into a file that you can send to technical support.

Contacting Technical Support
Cincom Technical Support provides assistance by:

Electronic Mail
To get technical assistance on VisualWorks products, send email to
supportweb@cincom.com.

Web
In addition to product and company information, technical support
information is available on the Cincom website:

http://supportweb.cincom.com
Telephone

Within North America, you can call Cincom Technical Support at
(800) 727-3525. Operating hours are Monday through Friday from
8:30 a.m. to 5:00 p.m., Eastern time.

Outside North America, you must contact the local authorized
reseller of Cincom products to find out the telephone numbers and
hours for technical support.
Application Developer’s Guide xxv

mailto:supportweb@cincom.com
mailto:supportweb@cincom.com
http://supportweb.cincom.com

About This Book
Non-Commercial Licensees
VisualWorks Non-Commercial is provided “as is,” without any technical
support from Cincom. There are, however, on-line sources of help
available on VisualWorks and its add-on components. Be assured, you
are not alone. Many of these resources are valuable to commercial
licensees as well.

The University of Illinois at Urbana-Champaign very kindly provides
several resources on VisualWorks and Smalltalk:

• A mailing list for users of VisualWorks Non-Commercial, which
serves a growing community of VisualWorks Non-Commercial users.
To subscribe or unsubscribe, send a message to:

vwnc-request@cs.uiuc.edu

with the SUBJECT of "subscribe" or "unsubscribe".

• An excellent Smalltalk archive is maintained by faculty and students
at UIUC, who are long-time Smalltalk users and leading lights in the
Smalltalk community, at:

http://st-www.cs.uiuc.edu/

• A Wiki (a user-editable web site) for discussing any and all things
VisualWorks related at:

http://wiki.cs.uiuc.edu/VisualWorks

• A variety of tutorials and other materials specifically on VisualWorks
at:

http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses

The Usenet Smalltalk news group, comp.lang.smalltalk, carries on active
discussions about Smalltalk and VisualWorks, and is a good source for
advice.

Additional Sources of Information
This is but one manual in the VisualWorks library. The Cincom Smalltalk
publications website:

http://www.cincomsmalltalk.com/documentation/

is a resource for the most up to date versions of VisualWorks manuals
and additional information pertaining to Cincom Smalltalk.
xxvi VisualWorks

mailto:vwnc-request@cs.uiuc.edu
http://st-www.cs.uiuc.edu/
http://wiki.cs.uiuc.edu/VisualWorks
http://wiki.cs.uiuc.edu/VisualWorks/Tutorials+and+courses
news:comp.lang.smalltalk
http://www.cincomsmalltalk.com/documentation/

Additional Sources of Information
Smalltalk Tutorial
A new VisualWorks Smalltalk tutorial is available online at:

http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

The tutorial information is growing, so revisit this site.

Online Help
VisualWorks includes an online help system. To display the online
documentation browser, open the Help pull-down menu from the
VisualWorks main menu bar and select one of the help options.

VisualWorks FAQ
An accumulating set of answers to frequently asked questions about
VisualWorks is being compiled in the VisualWorks FAQ, which
accompanies this release and is available from the Cincom Smalltalk
documentation site.

News Groups
The Smalltalk community is actively present on the internet, and willing to
offer helpful advice. A common meeting place is the comp.lang.smalltalk
news group. Discussion of VisualWorks and solutions to programming
issues are common.

VisualWorks Wiki
A wiki server for VisualWorks is running and can be accessed at:

http://wiki.cs.uiuc.edu:8080/VisualWorks
This is becoming an active place for exchanges of information about
VisualWorks. You can ask questions and, in most cases, get a reply in a
couple of days.

Commercial Publications
Smalltalk in general, and VisualWorks in particular, is supported by a
large library of documents published by major publishing houses. Check
your favorite technical bookstore or online book seller.
Application Developer’s Guide xxvii

http://wiki.cs.uiuc.edu:8080/VisualWorks.1
http://smalltalk.cincom.com/tutorial/index.ssp?content=tutorials

About This Book
Examples
There are a number of examples in file-in format in the examples
subdirectory, under the VisualWorks install directory. In addition, several
example listings in the document, especially those in Chapter 12,
“Working With Graphics and Colors,” invoke an Examples Browser. This
browser is provided in a parcel, also in the examples directory.
xxviii VisualWorks

1
The VisualWorks Environment

Overview
VisualWorks is a complete Smalltalk development environment, including

• an implementation of the Smalltalk language,

• a virtual machine (also called the object engine) for executing
Smalltalk code,

• an extensive class library, and

• a wide assortment of development tools.

This document, the Application Developer’s Guide, provides an
introduction to the primary features of the VisualWorks environment with
a focus on developing and deploying VisualWorks applications.

In this chapter, we describe how to start up VisualWorks, including
several startup options, how to save your work as you develop in
VisualWorks, and how to exit VisualWorks.

Running VisualWorks
The VisualWorks executable runs the virtual machine, which processes
the data in a Smalltalk image file. The virtual machine interprets and
executes the Smalltalk byte-codes stored in the image. Because it is an
executable file, there is a separate virtual machine for each operating
system platform supported by VisualWorks. The image file, however, is
portable across all supported platforms.

As you work in VisualWorks, the usual way of saving your work is by
saving the image, either periodically while working or when exiting
VisualWorks. In normal practice, Smalltalkers accumulate several
Application Developer’s Guide 1-1

The VisualWorks Environment
images, at least one for each project. To start a specific image, simply
specify that image in the startup command, as described in the next
section.

When starting a development image, the VisualWorks Launcher window
opens, serving as the command center for development operations. For a
description of the Launcher and other tools, refer to Chapter 2,
“Programming in VisualWorks.”

VisualWorks Startup Commands
To start VisualWorks, you run the virtual machine with the image file
passed as the argument:

virtual_machine image_file options

There are several engines provided for each platform.

• For development work, we recommend using the engines named
vw<plat>, for example, vwnt.exe for Microsoft Windows systems
or vwlinux86 for Linux systems. These engines include debug
symbols which can be helpful in diagnosing engine crashes.

• For application deployment, the preferred virtual machines are
visual.exe on Windows systems and visual on Unix and MacOS
systems. These are stripped versions of the object engines, and so
are smaller.

There are additional virtual machines for special purposes, particularly for
debugging. See Appendix C, “Virtual Machines,” for more information
about all of the engines.

By default, the virtual machine is installed in the bin/<platform>/
subdirectory of the root VisualWorks installation directory.

If no image file is specified, the virtual machine looks for an image with
the same name as the engine. For example, if you execute visual (or
visual.exe) without an image name, it will look for visual.im,.

Typically, you will start by changing to the image subdirectory, and
execute the object engine with the image as argument. For example:

> cd c:\visual\image
> ..\bin\win\visual.exe visual.im

If you use a file manager to start VisualWorks, you may need to specify
full paths for both the object engine and the image.

If both the virtual machine and the image file are in the same directory, no
path information is required at all.
1-2 VisualWorks

Running VisualWorks
VisualWorks Command Line Options
There are three types of command line options that you can use when
starting VisualWorks: object engine switches, image level switches, and
user-defined switches.

The generic command line syntax is:

<oe name> [oe switches] <image-name>
[image switches] [user-switches]

For a complete description of the various object engine switches, see
“Virtual Machine Command Line Options” on page C-3.

For additional information on providing your own splash screen and
startup sound, refer to “Splashscreen and Sound” on page 21-15.

Image Level Switches
The following image level switches are available to specify actions to
perform when the image starts up.

-pcl parcelFile
Load the parcelFile into the image on startup, checking both as a
filename and as a name to be searched in the parcel path. Parcels
are external file representations of packages (refer to Chapter 8,
“Managing Smalltalk Source Code”).

-cnf configurationFiles
Load all of the parcel files named in configurationFiles (one or more)
on image startup.

-psp dir1 dir2 ...
Sets the parcel search path to include the specified directories.

-err errorFile
Set the path and file name for the error log file.

-notifier notifierClass
Set class for unhandled exceptions to notifierClass.

-filein fileNames
Treat the argument(s) as Smalltalk files to be filed in

-settings fileNames
Treat the argument(s) as XML files containing Smalltalk settings, and
load them.

-doit stringArguments
Treat the argument(s) as strings to be evaluated
Application Developer’s Guide 1-3

The VisualWorks Environment
-evaluate stringArgument
Treat the argument (only one) as a string to be evaluated. After
evaluation, put the displayString of the result onto the standard output
and exit the image.

Application-specific switches may be defined in the image. For a
description of the mechanisms used to define command line options,
refer to “Responding to System Events” on page 9-24.

Running Multiple Versions Under Windows
On Microsoft Windows systems, you can launch VisualWorks by double-
clicking on an image file, as long as the .im extension is associated with
the virtual machine. However, if you have multiple versions of
VisualWorks installed, Windows only associates one engine with the
extension. In this case, associate the small executable,
VisualWorks.exe with the .im extension, and edit VisualWorks.ini
to identify the location of the engine for each applicable version.

Both VisualWorks.exe and VisualWorks.ini are installed, by
default, in the bin\win\ directory. Copy these to a different directory
that you will maintain independently of any specific installation of
VisualWorks, such as c:\visualworks.

Associate the .im extension in Windows with this executable by creating
an “open” action for the extension, and specify in the “Application used to
perform action” field:

C:\visualworks\VisualWorks.exe "%1"

When you double-click on an image file, VisualWorks.exe is launched
with the image clicked as argument.

Each release of VisualWorks includes a new VisualWorks.ini that
contains a line with a default listing for the current release. Copy the line
from this file into your own copy of the file, and edit the vm path name for
your installation. After accumulating for several releases, you may have a
file that looks like:

72 00 c:\vw7.2\bin\win\vwnt.exe
71 00 c:\vw7.1\bin\win\vwnt.exe
70 00 c:\vw7\bin\win\vwnt.exe
54 00 c:\vw5i.4\bin\win\visual.exe
53 00 c:\vw5i.3\bin\win\vwnt.exe
53 78 c:\vw5i.3\bin\win\visual.exe
52 00 c:\vw5i.2\bin\win\vwnt.exe
52 78 c:\vw5i.2nc\bin\win\visualnc.exe
1-4 VisualWorks

Saving Your Work
The first two digits indicate the VisualWorks release number, and the
second two are either 00 or 78, indicating commercial and
noncommercial releases, respectively. VisualWorks.exe matches
these numbers with a version identifier in the image file to invoke the
appropriate virtual machine. These numbers are the fifth and sixth bytes
of the array returned by:

ObjectMemory versionId
which is also shown by selecting Help About VisualWorks... in the
Launcher.

Saving Your Work
In most programming environments you write code by editing a source
code file, and your work is saved in that editable file. This is the file that
you then compile to create the executable version of your program.

In VisualWorks, the primary location of your work is in the virtual image,
or simply image. The image is a “snap-shot” of the VisualWorks
environment, including all the code that makes up the development
environment, class libraries, tools, and your application. Tools and other
windows that are open when the image is saved are opened again when
you launch the image again. Saving the image is the traditional Smalltalk
way of saving changes to the system as you develop an application.

When you save an image, all this information is written to a binary image
file. The original image file distributed with VisualWorks is called
visual.im (visualnc.im in non-commercial distributions).

For more about source code files, including additional source code
archiving mechanisms, see below and Chapter 8, “Managing Smalltalk
Source Code.”

Saving the Image
To save the current state of the image, select File Save Image in the
VisualWorks Launcher. The current image file is then overwritten with the
current image.

To save the image to a new name, select File Save Image As... A dialog
prompts you for the name of the image, with the current image name as
the default. To save the image to a different file, keeping the previously
saved image safe, enter a new name, without the .im extension.
Application Developer’s Guide 1-5

The VisualWorks Environment
Restoring the Original Image
It is recommended that you keep a known good backup image, either a
copy of the image as originally supplied with VisualWorks, or a copy of
the basic image with optional tools and add-ins installed.

A clean copy of the original visual.im (or visualnc.im) image file is
included in the image/ directory, in the file visual.zip (or
visualnc.zip). If you accidentally overwrite the original image file or
otherwise need to restore it, unzip this file into the image/ directory.

Caution: Be aware that unzipping this file will overwrite the
visual.im in that directory, destroying any changes it might
contain.

Sources and Changes
When you save the VisualWorks image, three files updated: the image
file, the sources file, and the changes file. These three files are
synchronized, and so must be backed up together in order to have a
complete record of the system.

The image file has already been described at the beginning of this
chapter.

The sources file holds source code for the original VisualWorks system
image before you made changes. By default it is named visual.sou
which is the original image name with a .sou extension.

The changes file, which typically has the same name as the image file but
with .cha as its extension, contains source code for changes you have
made to the system, specifically for any application code you have
created. Changes are recorded to this file every time you accept an edit,
whether or not you save the image, so you always have a history of work.
The changes file can become very large, and so should occasionally be
condensed using Changes Condense Changes from the Launcher’s System
menu. This removes all but the latest version of each system change.

You can change the name of the sources file and of the changes file on
the Source Files page of the Settings Tool (to open this tool, select System

 Settings in the Launcher window).
1-6 VisualWorks

Exiting VisualWorks
Exiting VisualWorks
To end a VisualWorks development session, select File Exit VisualWorks
in the Launcher. A dialog prompts you to save the image before exiting. If
you choose to save the image, you may provide a new filename.

Selecting Cancel continues your session in the VisualWorks development
environment.

Note that closing the Launcher window, for example by clicking the
window’s close icon, allows you to either exit VisualWorks, or simply
close the Launcher window itself.

Closing on Windows Shutdown
When you shut down a Microsoft Windows system with VisualWorks
running, the image closes ending the VisualWorks session. The exit may
ungracefully close resources, possibly resulting in data loss. This is
important, for example, in database applications that might have an open
session.

Windows shutdown events are delivered to the VisualWorks image as a
QuitSystem event. There are a couple of ways to handle this.

• You can put a dependent on ObjectMemory and have an update
method that watches for #aboutToQuit (which would also be triggered
every time the image is quit).

• You can modify InputState>>#send:eventQuitSystem: to provide some
special hook only invoked on an exit event.

• Instead of modifying #send:eventQuitSystem:, you can add your own
quit method to InputState, such as #send:myEventQuitSystem:, and then
at system startup, you can go to InputState.EventDispatchTable and put
your own message at position 19.

Alternatively, you can block VisualWorks from exiting, though this is not
the best solution. By default, the InputState class method
setDispatchTableForPlatform registers true with the acceptQuitEvents object.
To prevent VisualWorks from being prematurely shut down, set this to
false instead.

Emergency Exit
If VisualWorks stops responding to inputs such as mouse movements,
there are a few options.
Application Developer’s Guide 1-7

The VisualWorks Environment
You can press <Control>-\ to open the Process Monitor, which lists all
running VisualWorks processes. All UI processes are paused, as can be
seen by examining the listings. You can select a process and debug it to
find the problem.

Pressing <Control>-Y opens a debugger directly on the current process, by-
passing the Process Monitor.

If that doesn’t work, you can use the Emergency Evaluator. To open an
Emergency Evaluator, type <Shift>-<Control>-Y. An Emergency Evaluator
window will appear, with instructions to type a Smalltalk expression
terminated by <Escape>. Enter:

ObjectMemory quit
in the window, then press <Escape>. The system will shut down, after which
you can restart it.

To save the image before quitting, send:

ObjectMemory saveAs: 'filename' thenQuit: true
Then press <Escape>.
1-8 VisualWorks

2
Programming in VisualWorks

Overview
One of the major differences between Smalltalk environments and most
other development environments is the dynamic way the system is
modified. Rather than writing code to a source file, compiling the code,
then running the executable, in Smalltalk you program by directly
modifying a running system. The environment incrementally becomes
your application.

The VisualWorks tools, accordingly, are far more than text editors and
compilers. Instead, they provide a variety of views into the system as well
as mechanisms for interacting with it and changing its state.

This section introduces several of the tools in the context of doing
development in VisualWorks. For detailed information about individual
tools, refer to the VisualWorks Tools Guide.
Application Developer’s Guide 2-1

Programming in VisualWorks
VisualWorks Launcher
When you start a VisualWorks development image, the Visual Launcher
(or “Launcher”) is the first, and possibly only, window displayed. This is
the VisualWorks “command center,” from which you perform system-wide
operations and open other tools.

The Launcher primarily provides a way to launch the main VisualWorks
tools, either by selecting menu items or by clicking one of the buttons on
the button bar. Individual items are described throughout the VisualWorks
documentation. Menus, menu options, and toolbar buttons are often
added to the Laucher when their supporting components are installed.

Attached to the Launcher is the system Transcript. This is a text pane that
shows a running list of informational messages generated by
VisualWorks or your code. You can evaluate code in the transcript, but it
does not have the features of a workspace, and so is not as convenient.
More often you will use it as a place to write system messages. The
Transcript is an instance of class TextCollector, and so displays string data.
This will be illustrated several times in this document, for example in
“Evaluating Smalltalk Code in a Workspace” on page 2-7.

For descriptions of individual menu items, press F1 to open the
VisualWorks Help browser and display the Launcher help.

Mouse (Pointer) Operations
While working in VisualWorks, you will need to perform a variety of
operations, such as opening tools and evaluating (executing) Smalltalk
expressions. The menus and buttons in the Launcher and other tools
provide some number of these operations. Others are available in pop-up
menus throughout the system.
2-2 VisualWorks

Text Entry and Formatting
VisualWorks, like all Smalltalk systems, requires a mouse as a pointing
device. There are 1-, 2-, and 3-button mouses in common use now, and
VisualWorks supports each of these. The method for invoking common
operations varies, however.

There are three primary operations performed using the mouse:

• <Select> selects objects and text.

• <Operate> opens the <Operate> menu, which contains commands
appropriate to the current view. This context-sensitive menu changes
based on the current window and selection.

• <Window> opens the <Window> menu, which contains commands
that operate on the current window.

To invoke each of these operations, there are different methods for
invoking operations on the different systems and mouse configurations.

The <Operate> menu is the most important in VisualWorks. Many of the
operations and procedures described throughout this document involve
picking a command from the <Operate> menu. Commands on the
<Operate> menu are explained as needed throughout this manual. As
usual, the most effective way of learning about the many options is to
experiment with them.

Text Entry and Formatting
For writing code and test expressions, you type into various text panes.
While this is obvious, there are some non-obvious options available within
VisualWorks.

Character Formatting
The basic text used for text entered in VisualWorks is specified in the
settings tool (System Settings in the Launcher) on the Tools page. The
options are minimal, allowing you to select a small, medium or large sans

Operation 3-Button 2-Button 1-Button

<Select> Left button Left button Button

<Operate> Right button Right button <Option>+<Select>

<Window> Middle button <Ctrl> + <Select> <Command>+<Select>
Application Developer’s Guide 2-3

Programming in VisualWorks
serif character typeface, or a fixed spacing (fixed-width, serif typeface).
There are other possibilities (see Chapter 7, “Working with Text”) but
these are the usual options for text editing in the VisualWorks tools.

Occasionally there is reason to give text a little different formatting, as we
do in the introductory workspace pages in the noncommercial version.
Several such formatting changes are supported:

For example, to apply a bolding to some text in a workspace or code
editor, select the text in the editor. Then press <ESC> followed by the
key. To remove the bolding, select the text and then press <ESC>
followed by (<shift>+).

Similarly, to set the formatting for text you will be typing, place the cursor
at the text entry point, careful not to select any text. Press the ESC
sequence, then type. The text you type will take on the specified format.
To turn off the formatting, press the remove sequence.

A text editor that provides various text formatting commands as menu
selections is available, in the ComposedTextEditor parcel. Use the Parcel
Manager and browse the directory contributed/Heeg.

Short-cut Controls
Short-cut key sequences are provided for several common operations in
text and/or code editing pains.

Format Effect Add (Esc + char) Remove (Esc + char)

Bold b B

Serif s S

Underline u U

Italic i I

Increase size + -

Remove all formatting x

Text Editing

Ctrl+A Select all text

Ctrl+C Copy

Ctrl+D Insert date (non-code view)

Ctrl+Shift+D Insert date (all views)

Ctrl+K Compose characters
2-4 VisualWorks

Text Entry and Formatting
Ctrl+S Save/Accept

Ctrl+V Paste

Ctrl+Shift+V Paste from list

Ctrl+W Delete word back

Ctrl+X Cut

Ctrl+Z Undo

Find and Replace

Ctrl+F Find (non-code views)

Ctrl+G Find again (non-code views)

F3 Find again

Ctrl+L Find (all views)

Ctrl+Shift+L Find again (all views)

Ctrl+R Replace

Ctrl+Shift+R Replace again

Coding Shortcuts

Ctrl+F ifFalse:

Ctrl+G :=

Ctrl+T ifTrue:

Ctrl+B Debug It

Ctrl+D Do It

Ctrl+E Explain

Ctrl+P Print It

Ctrl+Q Inspect It

Ctrl+S Save/Accept

Ctrl+Y User interrupt

Ctrl+\ Process interrupt

Text Editing
Application Developer’s Guide 2-5

Programming in VisualWorks
Enclosing an Expression
When writing code or comments, is it common to need to enclose a
section of text in parentheses, brackets, or quotation marks. You can
enter the left and write enclosure individually, of course, but VisualWorks
provides a shortcut for enclosing an expression in pairs of any of these
enclosure characters: (), [], < >, { }, " ", and ' '.

To enclose an expression, select the text in the text editor (generally a
code editor or workspace). Then press <ESC> followed by the left
enclosure character.

For example, when entering code it is common to realize that
parentheses are required around part of an expression you have already
typed, such as:

Rectangle origin: 10@20 extent: 50@50 translatedBy: 4
Parentheses are required because there is no such message as
origin:extent:translatedBy: for class Rectangle. What is intended is to send
the translatedBy: message to the result of the rectangle created by the
origin:extent: message. To fix this, we can select that part of the
expression, press <ESC> followed by <(>, and the parentheses are
added to enclose the selection.

The same technique can be used to enclose an expression in the other
characters shown above.

To select just the expression within such enclosures, double-click just to
the inside of one of the enclosing characters. The enclosed expression is
selected, even if it is separated on several lines.

To remove the enclosures, select the enclosed expression, then use the
ESC sequence again. Since the expression is already enclosed, the
enclosing characters are removed.
2-6 VisualWorks

Evaluating Smalltalk Code in a Workspace
Evaluating Smalltalk Code in a Workspace
A Workspace is a window in which you can evaluate Smalltalk code. This
is useful for launching applications and for testing code samples.

A workspace is open when you open a new VisualWorks image. Most
developers keep a workspace open while they work. Open workspaces,
like the rest of the tools, are saved with the image, and so are opened
when you launch any image that was saved while opened.

To open a new workspace, choose Tools Workspace or click on the
Workspace icon in the VisualWorks Launcher.

While developing in VisualWorks, there several ways to use a workspace.
Often it is useful to see the return value of an expression. For example,
type a simple arithmetic expression on an empty line of the workspace.
Then place the cursor somewhere on the line, or select the expression,
and either press <Ctrl>-<P>, click on the Print it toolbar button, or select
Smalltalk Print it. The result is printed following the expression.
Unsurprisingly, it is the number 7.

Similarly, type the String expression:

'Hello World'
and invoke Print it. Slightly more interesting, though, is to see the result of
sending a conversion message to the String, such as:

'Hello World' asArray
and again invoke Print it. The results this time a less obvious, and can be
instructive if you are interested in the kind of object is returned by an
expression.
Application Developer’s Guide 2-7

Programming in VisualWorks
You can evaluate expressions for to perform other operations as well,
such as launching the application you are developing within the system.
For example, type the following expression in the workspace:

Transcript cr; show: 'Hello World'
but this time invoke Do it. Either press <Ctrl>-<D>, click on the Do it toolbar
button, or select Smalltalk Do it. This time nothing shows in the
workspace, but look in the Transcript attached to the Visual Launcher.

When you develop an application with a GUI, one way will open it is by
evaluating (usually with Do it) a message like:

ParcelManager open
The Inspect it and Debug it evaluation messages can also be invoked.
These are described later.

The workspace is a multi-page tool, each page containing independent
contents. One page, labeled Variables, displays the current workspace
variables and their values. Each workspace page can be saved into its
own file. The multipage structure allows you to have several workspaces
open at a time, sharing workspace variables. You can also “tear off” a
workspace page to have it in its own single-page workspace.

The following sections summarize additional features of the workspace.

Evaluating Commands
The workspace is a test bed for Smalltalk code. When you enter a
Smalltalk expression into a workspace, or any other code pane for that
matter, there are four evaluation methods to use. To invoke any of these,
either select the expression to evaluate or, to evaluate a whole line simply
position the cursor somewhere on the line. Then, using either the
<Operate> menu, the Smalltalk menu, or the button, select the operation:

Do it
Silently evaluates the selected expression. Any output is the
responsibility of the expression being evaluated.

Print it
Evaluates the selected expression and prints the return value in the
workspace.

Inspect it
Evaluates the selected expression and opens an inspector on the
return value.
2-8 VisualWorks

Evaluating Smalltalk Code in a Workspace
Debug it
Evaluates the expression and opens a debugger on the first
message-send. This is similar to placing a self halt in the code and
evaluating. You can then use Step into and Step commands to explore
the code’s operation. See Chapter 16, “Debugging Techniques,” for
suggestions.

Workspace Variables
Temporary variables used in a workspace have the workspace as their
scope, and exist as long as the workspace does, or until they are
explicitly cleared. These variables, called workspace variables, are
created when first assigned a value. That assignment then persists and
can be referenced by subsequently evaluated expressions in that
workspace. The variable and its assignment are saved with the image,
and so are available when reloading the saved image.

For example, you can define a variable to hold an array simply by
evaluating an assignment operation:

fred := Array with: 5
The variable fred persists now, and so is available for further operations,
such as:

fred at: 1 put: ‘this is a test’
To inspect, remove, or otherwise edit workspace variables, click on the
the Variables tab. This toggles the display of an inspector on the current
variables for this workspace. Select a variable and use the commands on
its <Operate> menu to perform operations on the variable.

Name Spaces in Workspaces
Workspaces can import name spaces, enabling them to better simulate
the name scopes of running code. Without imports, the default name
space is Smalltalk, so you would have to reference shared variables, such
as your application class names, using a long dotted name.

By default, and for convenience, a workspace imports all name spaces in
the system. This allows you to refer to all shared variables by their
unqualified names. For better simulations of naming scopes, you can
specify just which name spaces to import.

To set the name space selection, select the Smalltalk Namespaces...
menu. In the selection dialog, select either All or Some. If you select Some,
also select which name spaces to import. Imported name spaces are
then indicated by a check mark.
Application Developer’s Guide 2-9

Programming in VisualWorks
Saving Workspace Contents
You can save the contents of your workspace as a text file for later
opening. This is useful, for example, for saving collections of test
expressions. Note that workspace variables are not saved with the file,
and so must be recreated when the file is opened back into a workspace.

To save the contents as a file, select Page Save or Page Save As... in
the workspace menu. If the workspace has not already been saved, you
are prompted for a name, with the .ws extension supplied.

To load a saved workspace, open a new workspace, then select
Page Open, and enter the workspace name.

Loading Code Libraries
The initial visual.im image contains fairly minimal development
facilities, including basic class libraries and tools. VisualWorks includes
additional tools and libraries that you will also want to use while
developing. Most of these are provided, either with VisualWorks or by
third-party vendors, as parcel files. There are other options as well, but in
this section we only deal with parcels. See Chapter 8, “Managing
Smalltalk Source Code,” for descriptions of these options.

For most non-Smalltalk development environments, code libraries are
imported during a compile operation, as specified by an “include”
command. For Smalltalk systems, these libraries need to be loaded into
the running system, and become part of the environment. This provides a
uniform approach for loading additional support code, such as internet
support services, and tools that enhance the development environment.

For example, the UI Painter is a standard tool for developing the GUI in a
VisualWorks application. It is provided as a standard tool with
VisualWorks, but is optionally loadable. By loading the tool’s parcel, it
becomes immediately available for use.

When a parcel is loaded into the system it is organized as a package or
as a bundle of packages. When browsing the code that is loaded from a
parcel, locate the bundle or package with the same name, and explore
that. Browsing code is explained in “Browsing and Editing Smalltalk
Code” on page 2-13.
2-10 VisualWorks

Loading Code Libraries
Using the Parcel Manager
The Parcel Manager provides an easy-to-use way to manage the parcels
that are loaded in the system. The Parcel Manager provides a variety
views listing the available parcels and their descriptions, and support to
load and unload a selected parcel.

To open a Parcel Manager, choose System Parcel Manager or click on the
Open a Parcel Manager icon in the Launcher.

The Parcel Manager displays all parcels that are on the parcel path
associated with the image, which is a list of directories in which
VisualWorks will look for parcels. Three organizational views are provided
by the tab control over the left list pane: Suggestions, Directories, and Loaded.

Select the Suggestions tab to see a pre-defined set of recommended
parcels. Each category under Suggestions contains parcels that have been
identified as key add-in features for VisualWorks. By selecting a particular
category, you may view a list of recommended parcels (shown in the
upper-right view). For example, the UI Painter, located under Essentials, is
the main VisualWorks tool for GUI development.
Application Developer’s Guide 2-11

Programming in VisualWorks
The Directories tab gives a directory-tree view of the parcel path. Use this
view to find parcels that are not included in one of the Suggestions
categories, or to find a parcel by its component, which is often installed in
a separate directory.

The Loaded tab lists all parcels that are currently loaded into the image.

To load a parcel, select it from the parcel list (upper-right corner of the
tool), and choose Load from the <Operate> menu. You may also use the
toolbar button, or simply double-click on the name of the parcel.

To browse those parcels that have already been loaded in the image,
select Browse from the <Operate> menu.

The Parcel Manager uses several special icons to distinguish product
parcels from others (the “shopping sack” icon):

Use the tab controls on the parcel list view to view parcels sorted in
alphabetical order, or a hierarchical presentation ordered by parcel
prerequisites. The parcel details view (lower-right corner) shows
comments and properties associated with the selected parcel.

Loading Parcels Programmatically
In addition to using the Parcel Manager to load parcels, you can load
parcels programmatically. This allows you to include the ability to load
and unload parcels as an operation performed by your application.

Refer to “Loading and Unloading Parcels” on page 8-28 for details about
this process.

Setting the Parcel Path
By choosing the Directories tab, you may view the parcel paths as a
directory tree. Selecting a particular directory displays all the parcels
contained within it.

To change, add or remove items from the parcel path, use the Parcel Path
page in the Settings Tool (select System Settings in the Launcher
window). For more information about parcels, see “Parcels” on
page 8-28.

Icon Description

Supported VisualWorks product parcels

Goodies or add-in components from other vendors
2-12 VisualWorks

Browsing and Editing Smalltalk Code
Browsing and Editing Smalltalk Code
In most traditional programming environments, including those for object-
oriented languages, you directly edit a plain text source code file. That file
contains a large number of definitions of functions, classes, and methods.
The typical source editor presents this file as a single text document,
though often with search facilities to assist the programmer in finding the
definition to be viewed and edited.

In VisualWorks the view is considerably different. Source code definitions
are presented as individual classes and their method definitions. You
browse classes either in the overall class hierarchy or as they are
organized into packages. Method definitions are browsed as they are
defined in a given class. (Shared variable and name space definitions are
similar to class definitions, but will be discussed elsewhere.)

The principal VisualWorks tool for browsing and editing these definitions
is the System Browser. In this section we introduce the principle features
of the System Browser and its use in performing common programming
tasks. For additional information, refer to the Tools Guide.
Application Developer’s Guide 2-13

Programming in VisualWorks
To open a browser, choose Browse System or click on the Browser icon
in the VisualWorks Launcher.

The System Browser has several list panes and several code views. The
list panes allow you to navigate to the definition you want to view or edit,
as well as to select the location in the class hierarchy of new class and
method definitions. The code view provides several tab-selectable tools
for viewing properties and relations of the definitions, as well as to edit
them.

Package / Bundle
List

Class / Namespace
List

Protocol
List

Method / Variable
List

Code View

Navigator
2-14 VisualWorks

Browsing and Editing Smalltalk Code
Browsing the System
Browsing the system consists of navigating through the library of classes
that are in the system, observing their relations to other classes and the
methods that are defined in those classes. It will take some experience to
become comfortable with the browser, but the following comments will
guide your learning.

Using the tabs above the top left list pane, select either the Package (the
default) or Hierarchy view of the system. The Package view organizes
classes into related groups, according to component. Packages in this
way serve as categories. The Hierarchy view shows all classes in the class
hierarchy of the class that is selected, or the entire Object hierarchy if no
class is selected, when the tab is clicked. This view allows you to browse
the inheritance relations of classes.

For some special purposes, there is also a Parcel view, available from the
Browser menu. Some operations on parcels, the external file
representation of a package or bundle, this view is necessary. Refer to
“Parcels” on page 8-28 for information about parcels and operations on
them.

The VisualWorks system is organized as a class library. Classes are
defined in an inheritance hierarchy, which you can browse by selecting
the navigator’s Hierarchy tab.

Navigator

Code Tool
Application Developer’s Guide 2-15

Programming in VisualWorks
For organizational purposes, classes are grouped into packages, and
packages can be grouped into bundles. Packages and bundles can be
saved, or “published,” as parcels, which are the external, file-based
representation of packages and bundle. This organization is described
more fully in Chapter 8, “Managing Smalltalk Source Code.”

You use the navigator to traverse the VisualWorks class library, viewing
definitions for classes, namespaces, methods, and variables.

The Package, Parcel, and Hierarchy views each has its own <Operate>
menu, offering commands that are appropriate to its contents. Many of
the commands are obvious. Specific commands are explained throughout
this document as the operation is discussed. For details on individual
menu functions, view the online help available from the browser’s Help
menu.

Browser Navigator
The different parts of the browser’s navigator provide different views of
the system. Here is a brief summary of their function and use:

Package View
The VisualWorks library is organized into packages and bundles.
Packages and bundles provide an organizational view on the class library,
allowing you to categorize code according to related functionality. In this
respect, packages and bundles serve as did class categories in earlier
versions of VisualWorks and other Smalltalk systems.

Each code definition is contained in a package, and can be viewed by
selecting the package. Packages can also be grouped into bundles and
the contained definitions browsed. The browser displays packages and
bundles when Package tab is selected in the Browser.

When Store support is loaded, packages and bundles are extended to
support code revisioning features and repository publishing to assist in
source code management. For information about working with packages
and bundles in a Store environment, refer to the VisualWorks Source
Code Management Guide.

Parcel View
Parcels are primarily a deployment mechanism, providing an external file
container for the code defined in packages and bundles. Currently is
useful to be able to browse parcel and the code they contain, to perform
operations that packages do not yet support. To switch to the Parcel view,
select Browser Parcel in the system browser.
2-16 VisualWorks

Browsing and Editing Smalltalk Code
Hierarchy View
Occasionally it is useful to explore a class in terms of the other classes
from which it inherits behavior, or that inherit behavior from it. The
navigator allows you to do this by displaying the hierarchy of the selected
class.

To view the entire class hierarchy, start by selecting class Object. You can
then find and browse a class by navigating through the hierarchy to it.
Although this is seldom very useful, it can be instructive.

Class / Name Space View
Classes and name spaces are defined in packages, so the contents of
the Class / Name space view depend upon the selected Package.

In addition to having a superclass, each class is defined in a name space,
which identifies the s. A name space is a name resolution scope for name
space, class, and shared variable names. Typically, you create your own
name space and then create your applications within that name space.
(Refer to “Working with Name Spaces” in Chapter 6 for more
information.)

When the class hierarchy view is selected, this view shows the containing
package for the selected item.

Instance, Class, and Variable Views
The Instance, Class, Shared Variable and Instance Variable tabs toggle the
contents of the method category and method/variable views, selecting
whether the categories and definitions of instance methods, class
methods, shared or instance variables are shown. In some situations,
such as when a namespace is selected that has only shared variables
defined in it, only one of the buttons, in this case Shared Variables, is shown.
Usually, any of the buttons can be selected, even though there may be no
entries for that view.

Icons in the Navigator
The browser’s navigator uses a number of special icons to distinguish
code components, special system classes, as well as the condition of
individual methods. The following table offers a brief summary:

Icon Description

Package

Bundle
Application Developer’s Guide 2-17

Programming in VisualWorks
Working with the Browser
The System Browser separates code tools from the navigator so that a
variety of code tools may be used with each navigator. Generally, you use
the Source tool to examine class, namespace and variable definitions, and
to browse and edit source code.

The browser includes a feature-set for automated code refactoring (refer
to Chapter 18, “Refactoring,” for details). For advanced development, the
browser also provides special tools for code checking, rewriting, and unit
testing (refer to the VisualWorks Tool Guide).

To encourage learning and experimentation, each operation in the
browser can be reversed with the Undo function (on the Browser menu).

Editing Source Code
The Source code tool in a System Browser is where you do most writing
and editing of your application’s class and method definitions. Common
editing operations, such as cut, paste, find and replace, are available on
the <Operate> menu for this pane.

When you select a package but no class, a package description
(comment) is displayed. Similarly, when you select a class or name
space, a comment is displayed. If you select a class or name space and a
protocol, but no method, a method definition template is displayed. To
create a new package, class, or name space, use the menu options, or
edit an existing definition. To create a new method, edit the template, or
an existing method, with the appropriate definition. When you have edited
a definition, you need to save, or accept, your changes. Select Accept from
the code pane <Operate> menu.

Name space

Subclass of Model

Subclass of ApplicationModel

Subclass of Collection

Subclass of Exception

Method redefined by at least one superclass.

Method redefined by at least one subclass.

Icon Description
2-18 VisualWorks

Browsing and Editing Smalltalk Code
Missing Source Code
Your Smalltalk image is associated with a sources file, as described in
“Sources and Changes” on page 1-6. If the sources file is not correctly
identified in the Settings Tool, or your VisualWorks home directory is not
correctly set, or if the sources simply are not available, you may see code
in the browser with a comment explaining that it is decompiled code. If
you see this comment, set the home directory and/or edit the Source Files
page of the Settings Tool, making sure the .sou file name agrees with
the image name. (To open the Settings Tool, choose System Settings in
the Launcher window.)

Searching
The navigator tool bar includes an entry field to do a quick search by
name for classes, variables, or methods:

To find a class, simply enter its name and select Accept from the
<Operate> menu, or press the <Return> key. To find a method, enter its
name, preceded by the # (pound) character. Wildcard searches are
possible using the * (asterisk) character.

Drag and Drop
To reorganize code, you can drag and drop methods on classes or
protocols; protocols on other classes or on protocols; classes on other
categories; and categories on other categories.

Controlling Visibility of Methods
By default, the browser’s method list only displays those methods
belonging to the currently selected class and protocol. Several options
are provided for controlling and expanding the visibility of methods.

When a class is selected, the browser may optionally be set to show all
methods in the class when no protocol is selected. To enable this option,
select Show all Methods when No Protocols Selected on the Browser page of the
Settings Tool.

Just as it is often useful to see class inheritance using the Hierarchy view,
so too it is often useful to see inherited methods. To expand the visibility
of the Method List to include inherited methods located in a superclass,
select the name of the superclass from the Method Visibility menu. This
setting remains active until you navigate to another class.
Application Developer’s Guide 2-19

Programming in VisualWorks
To fix the initial visibility setting so that it remains active while viewing
different classes, select Show All Inherited or Show All Inherited Except for Object.
To disable the expanded visibility, choose Show No Inherited.

Using Multiple Views
The System Browser can have with multiple active “views” on a method.
For example, while editing one method, you can switch to a new view to
look up some value in another method, and then return back to your
edited method without opening a new browser.

To create a new view, use View New View or corresponding icon in the
browser’s tool bar. Select the entries on the View menu to toggle rapidly
between the different views you’ve created. Use
View Remove Current View to delete a view.

Source Code Formatting
To format a method using the browser’s integrated code formatter, select
Format from the source code tool’s <Operate> menu or in the Edit menu.

Many of the browser’s refactoring commands also invoke the code
formatter, so you should expect a formatting change any time you refactor
a method.

The formatting rules are user-accessible and may be changed. The rules
are located in class RBConfigurableFormatter, and they may be changed
using a special tool. To set the browser to use the configurable formatter
by default, evaluate:

RBProgramNode formatterClass: RBConfigurableFormatter
To open configuration the tool, evaluate:

FormatterConfigurationTool open
The Configuration Tool presents about 20 separate rules. When changing
a rule, you must Accept the changed value using the <Operate> menu in
the value’s input field. To examine the effects of the rules on a test
method, click on the tool’s embedded Format button. To save any changes
you make to the rules, click on the OK button.

Method source in the browsers may also be color coded. To enable color
coding, load the ColorEditing parcel (it can be found in the Parcel
Manager’s Environment Enhancements category).
2-20 VisualWorks

Browsing Files
Browsing Files
The File Browser allows you to navigate the local file system, listing and
selecting directories and files. It is commonly used to find Smalltalk
source files to file-in (.st files), and for editing simple text files.

To open a File Browser, choose File File Browser or click on the
corresponding icon in the Launcher window.

Volumes and directories are shown on the right, files and their contents
on the left. When a file is selected in the upper-right view, its contents are
displayed in the lower-right view.

Special structured viewers are included for displaying VisualWorks
source files (.st), parcels, parcel source files, and XML source files. Use
the tab controls on lower-right view to select the desired view.

See the VisualWorks Tools topic in the online Help for more information
about the File Browser (select Help Topics).
Application Developer’s Guide 2-21

Programming in VisualWorks
Exploring Objects
An inspector allows you to examine objects by exploring their constituent
objects, the values of the object’s instance variables. The VisualWorks
inspector incorporates a number of additional editing tools that greatly
enhance the control you have over live objects.

The inspector has a variety of options, and you can use it to perform a
number of operations that otherwise might require several tools. We
describe a few features here, but you should explore and experiment
further.

Inspecting an Object
At the core of the inspector are two views, with the object’s variables
listed in the left-hand view. When you select a variable, its value appears
in the right-hand view.

For example, to inspect a point, enter this expression in a Workspace,
select it, and then select Inspect it from the <Operate> or Smalltalk menu:

50@30
Alternatively, evaluate this expression using Do it:

(50@30) inspect
The resulting Point has two variables, x and y.

To view the value of a variable, select it. The value is shown in the right-
hand view. You can also do a multi-select of values, to see the values of
the selected variables all at the same time.
2-22 VisualWorks

Exploring Objects
You can inspect the component objects also, by selecting the object in the
left view and selecting dive in the inspector’s <Operate> menu, which then
shows the selected object in the current inspector. To back out of a diving
inspector, select Back in its <Operate> menu. To open a new inspector on
the object, select Inspect from the Object menu.

For some objects, the Basic view may include extra parts which are not its
instance variables. -self, for example, is a part that is always there even
though it is not an instance variable (these aspects of the object are
distinguished with a leading hyphen “-” character). For a further example,
have a look at a compiled method. Evaluate:

(Object compiledMethodAt: #printString) inspect
The basic view includes -bytecode and -source. These are not really parts of
the receiver, as instance variables are, but they are included in the basic
view as “virtual” attributes, just like -self, the object itself. For more
examples, inspect an Integer or a Character.

Drag-and-drop operations can be performed on the elements. If you
select a variable and drag it on top of another, its value will be assigned to
the target variable.

Inspecting Collections
Specialized inspectors for dictionaries and other collections provide
extended inspecting capabilities. For example, evaluate:

(OrderedCollection with: 1 with: 2 with: 3 with: 4) inspect
The resulting special inspector opens on the elements of the collection.

Notice that there is an additional tab, labeled Elements. This gives a
higher-level view of the object, showing only the elements of the
collection. The Basic tab, which is in all of the inspectors, is the general
inspector, equivalent to evaluating with basicInspect.
Application Developer’s Guide 2-23

Programming in VisualWorks
In addition to using drag-and-drop for value assignment, you can use it to
reorder the elements of a collection. Select an element, drag it between
two other elements, and drop it.

Modifying Objects
The right-hand view is a code view, in which you can type and execute
Smalltalk expressions. In this respect, it is like a workspace. Variables are
resolved within the scope of the code view.

Occasionally it is useful to set the value of a variable. You can do this by
entering an expression in the code view, and then selecting Accept in the
view’s <Operate> menu. This evaluates the expression and assigns the
return value to the variable under inspection.

For example, in the OrderedCollection inspector shown above, select the
first element. It’s current value is 1. In the code view, enter:

1 + 1
Select it and pick Accept in the view’s <Operate> menu. The expression is
evaluated to 2, which is then assigned to the variable.

Evaluating Expressions
While you can evaluate an expression in a code view, you lose that
expression as soon as you select another variable. A convenience feature
is a code evaluator view that can preserve expressions entered in it.

To open the evaluator, select Options Evaluation Pane. The pane is
opened at the bottom of the inspector.
2-24 VisualWorks

Exploring Objects
The pane works much like the workspace. However, the evaluation
context is the object under inspection. Accordingly, you can use self to
refer to the object itself, and can perform operations on the object.

You can also “save” the contents of the evaluation pane, making the
same contents available to all inspectors. The contents are stored in the
inspector’s class variable, and so is shared by all instances. To write the
contents to the variable, select Accept on the pane’s <Operate> menu.

Browsing and Editing Behavior
The Methods tab displays a class browser on the object’s class. This
makes it convenient to modify the object’s behavior without opening a
separate browser.

The features are the usual ones, with one notable addition. The Inheritance
menu lists the class and its superclasses, and allows you to select the
depth of the inheritance for the methods is displays. This makes is easy
to browse and edit the object’s methods no matter where they are
defined.
Application Developer’s Guide 2-25

Programming in VisualWorks
Painting a GUI
The “Visual” in VisualWorks emphasizes the graphical approach to
Graphical User Interface (GUI) design and development. This is provided
by the UI Painter.

The UIPainter is initially unloaded from the commercial base image (it is
loaded in the non-commercial version). To load it, open the Parcel
Manager, locate the UI Painter in the Essentials category, and select the
Load command.

The Painter tool is in three parts:

• Canvas (lower right) - represents a single window, on which you
place widgets, the graphical components of the GUI.

• Palette (top right) - presents a collection of widgets that are
commonly used in a GUI, and some widget arrangement buttons.

• GUI Painter Tool (left) - provides a collection of menu commands and
buttons for performing formatting and other operations on the canvas,
a hierarchical view of the widgets on the current canvas, and the
properties of the selected widget.
2-26 VisualWorks

System Settings
The Palette has one button for each type of widget. To add a component,
for example an input field, to your canvas, you simply click on the Input
Field icon in the Palette to select it, and then click in the canvas to place
the widget.

For a fuller description of this and related GUI building tools, as well as a
detailed description of GUI building in VisualWorks, refer to the GUI
Developer’s Guide.

System Settings

VisualWorks Home
A number of system resources and directories are selected relative to the
VisualWorks home directory. This directory is set by the installer, so
normally you do not need to set it yourself. Occasionally, however, it is
necessary to reset the variable, if, for example, you move the
VisualWorks environment to another directory location.

To set the home directory, select File Set VisualWorks Home... in the
Launcher window, which opens the Settings manager to the System page.
Specify the root VisualWorks installation directory, typically the parent
directory for bin and image, by either typing its pathname or clicking the
Browse button and selecting it in the directory tree. Then click OK to save
the change and close the Settings manager, or Apply to save the change
without closing the manager window.

On Windows systems, the home directory is recorded in the system
registry. On Unix and Linux systems, you can set the variable in a startup
script or in your user profile.

Settings
VisualWorks includes a Settings tool that allows you to control a variety of
global parameters, such as the appearance of windows (Look and Feel),
source file name (Source), default font for text (Text), and so on. Groups of
customizable features are organized as a tree on the left hand side of the
Settings manager. Select a group in the tree to see and change its
settings in the right hand side of the window

To open the Settings Manager, choose System Settings in the
VisualWorks Launcher window, or click the corresponding button.
Application Developer’s Guide 2-27

Programming in VisualWorks
The Settings tool consists of three parts: a tree of settings pages on the
left, the currently selected page on the right, and a row of buttons at the
bottom:

Settings are organized into pages. Settings on the same page are usually
related and affect the same area of application functionality. Each page
has a context-sensitive Help button that displays additional information to
guide you in the proper setting of each parameter.

Press the OK button to apply all unapplied changes on all pages and close
the window. It is not necessary to apply changes made to a page before
switching to another page. Use the Apply button to apply all changes,
leaving the window open.

Saving and Loading System Settings
The <Operate> menu of the settings tree includes allows you to
manipulate and modify settings. To save all settings on all pages in a file,
select Save... and specify the name of the file. Use Load... to read all
settings from a previously saved settings file. The values are accepted
immediately. To immediately restore the values of all settings to default,
select Reset to Default.
2-28 VisualWorks

System Settings
To load, save, or restore the settings of the current page, select Load
Page..., Save Page..., or Restore Page to Default. The values that are loaded or
restored are displayed, but not applied until either the OK or Apply button is
pressed.

You can also load settings files using the -settings command line
option when launching VisualWorks.
Application Developer’s Guide 2-29

Programming in VisualWorks
2-30 VisualWorks

3
Object Orientation

Overview
Much of the literature on object-oriented programming (OOP) tends to
emphasize how it differs from procedural programming. And it is different,
in many important respects. Working with objects involves ways of
thinking very different from that required for procedural programming.

Unfortunately, too often the strangeness of it all is overemphasized. Also,
as object-oriented programming has become increasingly common, most
frequently in the guise of C++ and Java, considerably less defense and
explanation is required now than when Smalltalk was first introduced.

This chapter presents an overview of object-oriented terms and concepts,
reflecting a definite Smalltalk terminological bias, using your
programming expertise as a bridge to the world of object-oriented
programming.

Procedures vs. Objects
In a conventional programming language, a procedure typically performs
multiple operations and handles several items of data. For example, when
a user inputs a customer record in an accounts receivable system and
then executes a “save” command, a procedure might be invoked to
validate the dozen or more fields of information in the customer record.

What happens when the five-digit field for a postal code in an application
has to be changed to accommodate the six-character Canadian format?
Three sources of inefficiency become apparent immediately.
Application Developer’s Guide 3-1

Object Orientation
First, what amounts to a single conceptual change (modify postal code)
has to be programmed in two locations (database structure and
procedure code, as shown in part A of the illustration). Wouldn’t it be nice
if the data were somehow bound more tightly to the code, so that only
one system element had to be changed?

Second, there are likely to be multiple procedures that handle postal
codes—besides customer data maintenance, there may be supplier
maintenance, distributor maintenance, and so on (part B). In each such
procedure, the postal code validation routine has to be modified. In an
ideal system, such a change would affect all pertinent procedures
simultaneously.

Third, although only the portion of a procedure’s code pertaining to postal
codes is affected by the change, the entire procedure has to be scanned
by the programmer and recompiled (part C).

Modifying zip code in procedural programs

Objects and Methods
There has to be a way to isolate the changes more intelligently. In an
ideal programming language, each field in the database would be a
separate entity for the purpose of changing its attributes. Each atomic
routine in a program would be a separate entity for the purpose of
maintaining the code. So we would have a set of atomic data elements
and a set of atomic procedures.

Expand postal code

Database

Procedure

Expand postal code

Customer

Supplier

Distributor

Recompile

I.D. No.

Name

Address

(Etc.)

validation routines

AA ACAB
3-2 VisualWorks

Objects and Methods
It turns out that the procedures cluster very naturally around the data.
The procedure for validating a postal code is something that only the
postal code object needs to know. Likewise, only the address object
needs to know what its valid inputs are. So if we can make each data
object smart enough to perform the useful operations on itself, we no
longer need separate procedures at all.

Modifying postal code in Smalltalk

This simple strategy of making data smart is at the core of Smalltalk. An
application is no longer a collection of procedures that act on a database,
but a collection of data objects that interact with one another via built-in
routines called methods. The language is object-oriented rather than
procedure-oriented.

In fact, because Smalltalk variables are not statically bound to specific
data types, no change is required for client programs to be able to store a
string rather than an integer in a postal code.

To expand the definition of a postal code in Smalltalk, all you need to do
is broaden the postal code object’s validation routine. When another
object, such as the customer or supplier object, needs to know whether a
postal code is valid, it passes the proposed value to a postal code object,
which uses its built-in mechanisms to do the testing.

Expand postal code

Postal code

Recompile

CCAA

object

AB
Application Developer’s Guide 3-3

Object Orientation
Composite Objects
Most objects are composite objects, being composed of several other
objects. For example, a customer object would contain identifying objects
such as customer number, name, address, city, state, postal code, and
telephone number. Why have a customer object at all? Because some
procedures have to be performed for a customer rather than a postal
code or a telephone number.

Hierarchy of Objects

The create command, for example, is best centralized up at the customer
level of abstraction, because it is an operation that affects all of the data
objects that make up a customer. What does that create operation consist
of? In our example, the customer object simply fires off the same
message to each member of its collection: “Here’s your input— validate it
and store it. Let me know if there’s a problem.”

Theoretically, the customer object would provide the customer-
identification part of an “account” object that handles requests related to
a customer’s account status. A collection of account objects would make
up the accounts-receivable system, itself an object that knows how to
answer questions about its collection of accounts. And the accounts-
receivable object joins an accounts-payable application and a general-
ledger application as parts of a financial-management package. Hence,
programming an application in Smalltalk consists of building a hierarchy
of objects. Another way of looking at it is that you’re creating a single
object (the application) that contains component objects, each of which
may contain smaller components, and so on. The figure above illustrates
a portion of such a hierarchy.

Financial Management System object

Accounts Receivable Application object

Account object

Customer object

Postal Code object
3-4 VisualWorks

Variables and Methods
Variables and Methods
An object typically is made up of one or more private variables (the data)
combined with a set of methods for manipulating that data. Each method
is a specialized subroutine.

Variables and methods of an object

The two parts of an object are also known as state and behavior. The
values held by an object’s variables define its state. Its methods—what it
knows how to do—define behavior.

For example, a postal code object might have a variable called zip to hold
the postal code string. It needs at least two methods to be a civilized
object, as listed in the following table.

As you can see, each variable typically generates two accessing
methods, one for inquiry and one for update. Even a simple postal code
object will often have other methods. For example, it might have a method
called isValid, which checks to make sure the string conforms to a
recognized postal code format.

Method Names
The method name is used by other objects to select the operation defined
in a method. The method name is used when sending a message to
specify the requested operation. Accordingly, it is also called method
selector, a message selector, or simply a selector.

Method name Description

getZip Return a string containing the postal code

setZipTo: Replace the contents of the zip code variable with
the string that follows the colon

Methods
getZip
setZipTo:
isValid

Variables
zip

Zip Code Object

An object containing
variables and methods
Application Developer’s Guide 3-5

Object Orientation
A message is sent by specifying a selector plus any argument values. We
frequently refer to, for example, “a getZip message,” meaning a message
selector plus arguments, if any.

The fundamental unit of any Smalltalk expression is an object reference
followed by a message, as in postalCode getZip. This expression asks the
postalCode object to return the value stored in its zip code variable.

Method names may contain letters, numbers, and underscores, but may
not begin with a number. When two or more words are combined to form
a name, as in this case, second and later initials are capitalized to
improve readability. This convention applies to all names in the system:
objects, variables and methods. All method names begin with a lower-
case letter.

Method Categories
It is not uncommon for an object to have dozens of methods. From class
to class, methods tend to cluster in recurring groups—for example,
objects that have data also have a set of methods for accessing the data.
Collectively, such methods are known as accessing methods. You may
encounter the phrase “accessing protocol,” which refers to the set of
methods for accessing data within an object.

A message category is a convenient grouping of related methods, much
as a file folder holds related documents. The method editing tools, such
as the Package Browser and Class Hierarchy Browser, use categories to
help you search the code library.

Classes and Instances
The question arises: How can there possibly be only one postal code
object that serves both a customer and a supplier when the real-world
customer and supplier might reside in different zip zones? For that matter,
each new customer might have a different postal code.

postal code object

Methods
getZip
setZipTo:
isValid

Variables
zip

accessing protocol

testing protocol
3-6 VisualWorks

Classes and Instances
Obviously, there is a separate postal code object in each instance
because the values stored in the variables are different. On the other
hand, it would be silly to duplicate the postal code object’s methods for
each instance, so there must be one postal code object that is unique in
that it knows how a postal code ought to behave. The data-only object is
known as an instance; the method-holding object is called a class.

Class names may contain letters, numbers, and underscores, but may not
begin with a number. The first letter of a class name is capitalized, as are
all global variable names.

A class can be thought of as the object behavior affixed to a data
template. An instance is created by cloning the template so a new set of
variables can be stored. The ZipCode class has a template specifying that
each instance of ZipCode will have one variable named zip. Any given
instance of that class consists of a value for that variable.

Class Variables
A class can also have its own state values, which serve as system
constants. These states are stored in shared variables. For example, the
class Date has a shared variable called MonthNames, which stores an Array
containing names for the 12 months. Our ZipCode class might have a
shared variable called Formats, to store a collection of known formats. In
either of these examples, it would be wasteful to store a new copy of the
variable in every instance that is cloned from it because the value is
constant for all instances.

Like class names, shared variable names begin with a capital letter.

Class Methods vs. Instance Methods
If an instance doesn’t have its own copy of the methods on board, how
can it respond to messages? In a manner that is transparent to the
programmer, the system looks for the appropriate method in the class
from which the instance was spawned.

The expression zipCode getZip is equivalent to “ask the ZipCode class to
execute its instance method called getZip using the variables in the
instance called zipCode.” Thus, though each instance does not use up
unnecessary memory space by creating a copy of the instance methods,
the effect is the same.

A message can also be sent to a class, which is also an object. Each
class has two different sets of methods, one for itself and one for its
instances. When a class receives a message directly, it looks for the
corresponding method among its class methods.
Application Developer’s Guide 3-7

Object Orientation
Thus, the expression zipCode getZip executes an instance method that
returns the value of the instance variable. On the other hand, the
expression ZipCode formats causes a class method to be performed and
the value of a class variable (i.e., a constant) to be returned.

The parts of a class and an instance, and their interconnections

To summarize, the Smalltalk language consists of thousands of
subroutines called methods that are organized as a library of class
objects. The typical class object consists of class variables, class
methods, instance methods, and a template for instance variables.

Class Inheritance
The class library is organized in a hierarchy of specialization, very much
like the taxonomy applied to the animal kingdom. At the root of the tree is
class Object. One kind of Object is a class called Magnitude. If you dig down
through a few more levels of specialization within the Magnitude
subhierarchy, you come to a class called SmallInteger. An instance of class
SmallInteger is an integer such as 3.

aZipCode (instance)

Instance
variables

zip

ZipCode (class)

Class
methods

formats

Class
variables

Formats

Template
for
instance
variables

zip

Instance

getZip
setZipTo:
isUSZip
isCanadianZip

methods
3-8 VisualWorks

Class Inheritance
If you execute the expression 3 raisedTo: 4, the correct result (81) will be
returned. A raisedTo: message with an argument of 4 is being sent to 3,
which is an instance of SmallInteger. From the prior discussion about
instance methods, one would assume that the class SmallInteger has an
instance method called raisedTo:, but that is not the case.

Inheritance hierarchy for the SmallInteger class

Looking up a Method
Smalltalk provides a method-lookup mechanism that starts its search for
a given method in the obvious place—the class of the object to which the
message was sent. If no such method exists there, the method finder
climbs up through the hierarchy, stopping at each level to look for the
method. In our example, the method finder has to go up two levels, past
the Integer class to its parent, Number. There it finds the raisedTo: method.

SmallInteger is a subclass of Number, because it provides specialized
variables and/or methods. Number is a superclass of SmallInteger, as is the
class that sits between them in the hierarchy, Integer. Class Object is the
top-level superclass of all other objects.

The method finder has two ladders at its disposal, one for finding class
methods and the other for locating instance methods. As it climbs upward
through the superclasses, it uses only one ladder or the other, but not
both. Its choice of ladder is determined by the message recipient. If the
message is sent to an instance (3, in our example), only instance
methods are searched. A message sent to a class such as SmallInteger
would push the method finder onto the class-method ladder. The
expression SmallInteger raisedTo: 4 would cause a fruitless search resulting
in an error.

Object
Magnitude
ArithmeticValue
Number
Integer
SmallInteger
Application Developer’s Guide 3-9

Object Orientation
The upward search path of the object hierarchy

Overriding an Inherited Method
An instance of any subclass of Number can respond to a raisedTo:
message, but that doesn’t mean they all use Number’s version of it. The
subclass Float, for floating point numbers such as 3847.029, has its own
instance method called raisedTo: because floating-point numbers require
a specialized algorithm for exponentiation. When the method finder goes
to work on the expression 3847.029 raisedTo: 4, it stops at class Float and
never gets as high as Number.

Inheritance also applies to variables. Thus, each class inherits all of the
methods and variables of its superclasses.

For example, the ApplicationModel class provides variables and methods
that support a mechanism for notifying dependent objects of a change in
state. This mechanism is inherited by all subclasses of ApplicationModel.
The Customer class that we mentioned earlier might well be created as a
subclass of ApplicationModel. Then, if we create a View that displays the
values in the Customer object, the Customer inherits methods for keeping
that View in sync with the data changes. We don’t have to write any code
for such dependency coordination.

Object

Magnitude

ArithmeticValue

Number

Integer

SmallInteger

instance class

raisedTo:
3-10 VisualWorks

Class Inheritance
Abstract Classes
Some classes are designed only to provide inheritable features, and are
never meant to be instantiated. For example, the class Object, the ultimate
superclass of all other classes, has an empty template for instance
variables. This may seem odd considering that instance variables hold
the actual data. What would an instance of class Object hold as its nugget
of data? The answer is that Object is not intended to have instances. Its
behavior is inherited and used by its subclasses and their instances.

When a class is not intended to be used to create concrete instances, it is
called an abstract class. An abstract class is frequently useful as a
repository for variables and methods that are useful to two or more
classes, none of which is a logical subclass of the other. Another way of
looking at it is that the similarities shared by a group of objects are
squeezed up from their separate locations into a common superclass.

The postal code can serve as an example once again. Until now, we have
been trying to make a single ZipCode class handle two very different
postal code formats. Presumably, as the customer base expands, more
methods would have to be added to handle other postal systems.
Eventually, a plain old United States numeric zip code would have to be
stored in a class that had more irrelevant methods than relevant ones—
and that’s the sort of awkwardness this object-oriented technology is
supposed to avoid.

Let’s make ZipCode an abstract superclass, with two new subclasses:
USZip and CanadianZip. They can both inherit the zip variable and the
accessing methods (getZip and setZipTo:) as well as any class variables
and class methods. The isValid method must be re-implemented in each
of the subclasses, to handle their specific formats. The ZipCode class’s
version of isValid can then hand off the validation request to the
appropriate subclass. To Customer, Supplier and any other objects that
interact with ZipCode, the mechanism for finding out whether a zip code is
valid has not changed.

A subclass of an abstract class can be abstract itself. One might make
USZip abstract, for example, and create one subclass representing the
five-digit format (OldUSZip) and another for the hyphenated-nine-digit
format (SlowToBeAdoptedUSZip).
Application Developer’s Guide 3-11

Object Orientation
Choosing a Superclass
When you create a new class, choosing its superclass is an important
design decision. The choice is made easier when you employ an
architecture that has been proven in many diverse applications.

The containment hierarchy of the class library

The key to this architecture is to divide your application into two parts.
First develop the data structure and the attendant processing, then invent
the user interface. The user interface is further subdivided into input and
output modules. The data-and-processing module is referred to as the
model. The output module usually consists of the screen displaying
mechanisms—it’s called the view. The input module is called the
controller because it enables the user to control the sequence of events
by entering data and commands.

Not surprisingly, Smalltalk provides an abstract class as the intended
starting point for each of these three modules: Model, View and Controller.
Thus, the architecture is known as model-view-controller, or MVC,
programming. For detailed information about MVC design, see Chapter 9,
“Application Framework.”

We use the term “application” broadly here—an object as lowly as a
postal code can be regarded as a self-contained model that can have an
associated view (a box on the screen in which the postal code is
displayed) and controller (for accepting keyboard input to the model in the
form of data entry). This implies that an MVC application can be a

Data & processing Display

Copy
Cut
Paste
Save

Menu

Object

Model View Controller
3-12 VisualWorks

Class Inheritance
component of a larger MVC application, and so on. That is indeed the
case, furthering the cause of reusability by segmenting any given
program into easily separated components. In this sense, a model-view-
controller triad is the fundamental unit of design just as an object is the
fundamental unit of implementation.

When you choose a superclass for a new class, you are selecting an
inheritance hierarchy—positioning the method finder’s ladder in the class
library, so to speak. Model, View, and Controller head three major
subhierarchies within the library. Your choice of superclass typically
resolves to a class within one of those subhierarchies, and often to the
head classes themselves.

Many of the user-interface components that have been layered on top of
Smalltalk to form VisualWorks are subclassed from Model, View or
Controller. The remaining classes are typically subclassed from Object,
because as linguistic elements they stand apart from the MVC
machinery.
Application Developer’s Guide 3-13

Object Orientation
3-14 VisualWorks

4
Syntax

Overview
Smalltalk has a very simple syntax, consisting of literals, variables,
messages, and block expressions. This simplicity makes Smalltalk syntax
easy to learn.

VisualWorks Smalltalk complies with ANSI standards for Smalltalk
syntax, but employs some extensions.

For an abstract description of the VisualWorks Smalltalk syntax in BNF,
refer to Appendix A, “VisualWorks Smalltalk Syntax Description.”

Literals
A literal is a Smalltalk expression that always refers to the same object.
This reference cannot change.

There are several kinds of literals in VisualWorks, including numbers,
characters, strings, symbols, arrays, byte array literals, and three special
literals: nil, true and false.

Note that literals are strongly typed, meaning that each is a full-blooded
object, an instance of a class, and so respond to the full protocol of their
class.

Numbers
Numbers are represented in the usual way, using a preceding minus sign
and embedded decimal point as required.
Application Developer’s Guide 4-1

Syntax
Integers
Integers are expressed as numeric literals such as 101, or as the result of
arithmetic operations involving one or more integers such as 55 + 46.

Floating Point Numbers
Floating point numbers must have at least one digit to the left of the
decimal point, so the compiler can distinguish a decimal point from a
period used as an expression delimiter. Thus, 0.005 is legal, but .005 is
not. In scientific notation, the e is replaced by a d in a Double and a q for
quad-precision.

Fixed-Point Numbers
A fixed-point number is useful for business applications in which a fixed
number of decimal places is required. Fixed-point numbers are
expressed by placing the letter s after a literal integer or a floating-point
number. The number of decimal places preceding the s implicitly specifies
scale of the number (the number of decimal places to be preserved).
Note that an explicit scale takes precedence over an implicit one, so that
99.95s4 is the same as 99.9500s, while 99.9500s2 is an error.

Nondecimal Numbers
Number literals can also be expressed in a nondecimal base by prefixing
the number with the base and the letter r (for radix). For example:

When the base is greater than ten, the capital letters starting with “A” are
used for digits greater than nine. For example, the hexadecimal
equivalent of the decimal number 255 is 16rFF.

Numbers in Scientific Notation
Numbers can also be expressed in scientific notation by including a suffix
composed of e (for exponent) or d (for double-precision) plus the
exponent in decimal. Note that you can also use the letter q instead of d.
The q (quad-precision) is available for portability to other Smalltalk
systems, but in VisualWorks, q has the same effect as d.

Octal Decimal

8r377 255

8r34.1 28.125

8r-37 -31
4-2 VisualWorks

Literals
The base is raised to the power specified by the exponent and then
multiplied by the number. For example:

Characters
A character literal is always prefixed by a dollar sign. For example:

$a
$M
$-
$$
$1

Strings
A string literal is enclosed in single quotes (double quotes are used to
delimit a comment). Any character can be included in a literal string. If a
single quote is to be included, it must be preceded by a single quote, as
in:

'I won''t fail'

Symbols
A symbol is a label that conveys the name of a unique object such as a
class name. There is only one instance of each symbol in the system. A
symbol literal is preceded by a number sign, and optionally enclosed in
single quotes. For example, #Float and #'5%' are legal symbols. If a
symbol is enclosed in an array, it must still be preceded by a number sign.

Byte Arrays
A literal byte array is enclosed in square brackets and preceded by a
number sign. Elements of the array must be integers between 0 and 255.
They are separated by one or more spaces. The result, as in the following
example, is an instance of class ByteArray:

#[255 0 0 7]

Scientific Notation Decimal

1.586d5 158600.0

1586e-3 0.001586

8r3e2 192

2r11e6 192
Application Developer’s Guide 4-3

Syntax
Arrays
An array literal is enclosed in parentheses and preceded by a number
sign. Elements of the array are separated by one or more spaces (extra
spaces are ignored). An array literal embedded in another array must still
be preceded by a number sign. The following example contains a
number, a character, a string, a symbol and another array (of three
characters):

#(1586.01 $a 'sales tax' #January #($x $y $z))

Note: When you change an element in a nonatomic literal constant
(a String, an Array, or a ByteArray), the change is reflected globally. For
that reason, experienced Smalltalk programmers rarely pass a
mutable literal constant from one method to another, but pass a copy
instead.

Booleans
The boolean constant true is the sole instance of class True, and the
constant false is the sole instance of class False, both of which are
subclasses of Boolean. Unlike most instances, the values of true and false
are hard-wired in the compiler, which qualifies them as constants.

Even though they are constants, their behavior is defined in the instance
methods of the classes True and False, which implement boolean tests
and operations, such as ifTrue:, ifFales:, and:, or:, and not.

A Boolean value is seldom used directly, but is the return value of
comparison operations, and then used in branching control structures.
Refer to “Branching” on page 7-1 for more information.

nil
The nil object is the sole instance of class UndefinedObject. As the class
name implies, nil is the null value given to variable slots that have not yet
been assigned a more interesting value. Like the booleans, nil is hard-
wired in the compiler. Its behavior is defined in UndefinedObject—for
example, it overrides the isNil method implemented by Object (answering
true instead of false).

It is expected that there is only one instance of nil in the system. Do not
create additional instances, even though this is possible using basicNew,
because this will cause VisualWorks to crash.
4-4 VisualWorks

Variables
Variables
Objects are referred to by their names. Except in the case of literals,
objects are named by being assigned to a variable.

Variables are of two types, depending on their reference scope. Private
variables can be referenced only by a single object; they are private to
that object. Shared variables are accessible by multiple objects.

Variable Types
Unlike some other object-oriented environments, Smalltalk variables are
untyped, meaning that any variable can hold an object of any type.

Another way to say this, and perhaps better, is that Smalltalk variables
are dynamically typed. What makes this a better way to think of it is that
Smalltalk itself is strongly typed; everything in Smalltalk is a full-blooded
object, an instance of a class. There are no “primitive” types

Variable Names and Conventions
Variable names are made up of letters and digits, and may include the
underscore (_) character. A name must begin with either a letter or the
underscore.

Object names tend to be lengthy in Smalltalk, in comparison with most
other languages, to make the code more readable. For descriptive
purposes, a name is frequently made up of two or more words.
Convention dictates that the first letter of each embedded word is
capitalized. This convention is not enforced by the language or by any of
the development tools, but it does improve readability.

The following table provides conventions that apply to the first letter of a
variable names. In general, the initial capitalization indicates the
variable’s scope: upper-case for shared variables, and lower-case for
private variables.

Capitalization Conventions

Type of variable Initial capital Example

Argument variable No aString

Class instance variable No wordCollection

Class name Yes Date

Class variable Yes Location
Application Developer’s Guide 4-5

Syntax
In conformance with the ANSI standard, VisualWorks does not allow the
use of periods in identifiers. VisualWorks does, however, employ a
notational extension for referencing bindings (the primary referents of
shared variable, class, and name space names) that does use periods.
This notation provides a way for referencing a binding in terms of the
name space and/or class and/or shared variable in which it is defined.
Refer to “Binding References” on page 6-12 for more information.

Private Variables
A variables is an association between a name and a changeable value.
The variable’s name is used to reference its value within the variable’s
name resolution scope. VisualWorks Smalltalk has several kinds of
variables for various naming scopes. The following variables are “private,”
in the sense that they are accessible only to specific objects. Shared
variables are discussed later (see “Shared Variables” on page 4-10).

Temporary Variables
A temporary variable is most often encountered in a method, where it
provides temporary storage for an argument or a calculated value. Its
lifetime begins when it is declaration is evaluated, within the method or a
block expression within the method, and ends when the block or method
finishes processing and returns control to the calling object. The naming
scope of the variable is the method or block in which it is declared, and is
inaccessible outside of that scope.

A temporary variable is declared by enclosing its name between vertical
bars. The declaration must follow the message definition, and usually
follows a comment explaining the method, but is otherwise the first part of
the method definition.

Instance variable No year

Name space Yes Smalltalk

Shared variable Yes MaximumUsers

Temporary variable No aDate

Capitalization Conventions (Continued)

Type of variable Initial capital Example
4-6 VisualWorks

Variables
For example, the occurrencesOf: method for Dictionary is:

occurrencesOf: anObject
"Answer how many of the receiver's elements are equal to anObject."
| count |
count := 0.
self do: [:each | anObject = each ifTrue: [count := count + 1]].
^count

The third line declares the variable count, which is used as a counter. The
third line assigns its initial value, using the := assignment operator.
Temporary variables are free to change their values through the life of the
method, as is shown in the fourth line, which increments count.

Multiple temporary variables can be declared in the same declaration
expression, by including them between the vertical bars, with one or more
white-space characters (space, tab, etc.) separating each variable name.
For example:

| var1 var2 var3 |
would declare three temporary variables.

Argument Variables
An argument variable is a special kind of temporary variable, declared in
the signature of a binary or key-word method definition. The variables
take their values from the arguments passed with the message send.

For example, the class Time provides an instance method called
hours:minutes:seconds:, defined as:

hours: hourInteger minutes: minInteger seconds: secInteger
"Initialize all the instance variables."
hours := hourInteger.
minutes := minInteger.
seconds := secInteger

This method declares three temporary variables in its method signature,
italicized in the first line above, and names them hourInteger, minInteger
and secInteger.

When a client object sends this message to an instance of Time, which it
might refer to as aTime, appropriate integers are provided. For example:

aTime hours: 11 minutes: 42 seconds: 15
When the method is invoked, the supplied values are assigned to their
respective variables, so hourInteger is set to 11, minInteger to 42, and
secInteger to 15. Argument variables, unlike other temporaries, do not
accept new values by assignment, so these assignments do not change
during the life of the variables.
Application Developer’s Guide 4-7

Syntax
As a convention, an argument temporary is named to indicate the object
type it is intended to hold (e.g., aSet, aString, anInteger). However, no
typing is enforced, and any object can be stored in any variable. Errors
might occur at runtime, if the method can’t handle the object provided.

Instance Variables
Instance variables hold data that is specific to an individual instance of a
class. The variable’s value describes a state or attribute of the instance.
An instance variable is created when the instance is generated, and
exists as long as the instance does. The name scope is the instance
itself, which is the only object that can reference the variable itself.

There are two kinds of instance variables, named and indexed. The type
of instance variable is specified for the class in the class definition (refer
to Chapter 5, “Classes and Instances,” for more information).

Named instance variables are the most commonly used. The variables
are declared by naming them in the class definition, in a String argument
to the instanceVariableNames: keyword. Accordingly, every instance of the
class will have an instance variable with that name. For example, a
Customer class may define an instance variable firstName as follows:

ABCorp.Billing defineClass: #Customer
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ' firstName '
classInstanceVariableNames: ''
imports: ''
category: 'Customer-Records'

Named instance variables are accessed by name in instance methods,
which either assign or retrieve a value from the variable. For example, in
Customer, an instance method would assign it a value using the usual
assignment syntax:

firstName := ‘Bruce’
and another method would retrieve its value simply by referencing its
name:

^firstName
Indexed instance variables are not named, but are accessed by an
integer index. All indexed instance variables for an object hold the same
kind of value, which are either arbitrary objects or byte values. The type
of value is specified in the class definition, which specifies the index type
as:
4-8 VisualWorks

Variables
• #object, for arbitrary objects

• #byte, restricting values to byte values

• #weak, making the class a weak container class, like WeakArray

• #immediate, restricting values to immediate objects such as instances
of Character, SmallInteger, and Symbol

• #ephemeron, restricting values to instances of Ephemeron

If the class does not use indexed instance variables, the index type is
specified as #none. See “Class Types” on page 5-5 for details.

Individual instances of a class may have different numbers of indexed
instance variables. Collections, for example, vary in size, and so use one
indexed instance variable for each member.

Indexed instance variables set up an association between an index
location and a value, and so are accessed using at: and at:put: messages.
For example, if names is an instance of Array, the first element in the array
is retrieved by sending the message:

names at: 1
To add a name at the fourth position, send the message:

names at: 4 put: ‘Bruce’
which stores the string ‘Bruce’ as the value of the fourth indexed instance
variable.

A class can define its instances as having both named and indexed
instance variables. For example, the class Set defines its instances as
having both indexed instance variables, which hold object values, and a
single named instance variable, as show in the class definition:

Smalltalk.Core defineClass: #Set
superclass: #{Core.Collection}
indexedType: #objects
private: false
instanceVariableNames: 'tally '
classInstanceVariableNames: ''
imports: ''
category: 'Collections-Unordered'

The tally variable is used to record the number of elements in the set, and
the indexed variables hold the individual elements.
Application Developer’s Guide 4-9

Syntax
Instance variables are inherited, so an instance has its own copy of the
instance variables declared by all of its superclasses. For example, the
class SystemDictionary is a subclass of Set, so it does not need to declare
its own tally variable because it can use the tally that is declared in its
superclass.

Class Instance Variables
A class instance variable stores data that varies with each subclass in a
hierarchy. It is declared as part of the class definition, and can only be
accessed by a class method.

For example, suppose you have an abstract LanguageDictionary class that
has methods for looking up words to verify spelling, etc. You give
LanguageDictionary a class instance variable named wordCollection. Now
you create a series of subclasses corresponding to the English language,
the Polish language, and so on. The EnglishLanguage class can initialize
wordCollection to hold English words. The other subclasses can initialize it
differently. Then when an instance of any subclass asks for wordCollection,
it gets the appropriate language-specific version.

Class instance variable

The advantages of this approach are that you still only have to initialize
the wordCollection once for each subclass (unlike instance variables) and
all subclasses can reuse methods that employ a common variable name
(unlike class variables).

Shared Variables
A shared variable is a variable that can be shared, or referenced, by
multiple objects. In previous releases of VisualWorks, shared variables
included class variables, pool variables, and global variables. These
various variable types are unified as a single type, called simply a “shared
variable.”

LanguageDictionary class

wordCollection ()

EnglishDictionary class

wordCollection (‘aardvark’ ...)

PolishDictionary class

wordCollection (‘abak’ ...)
4-10 VisualWorks

Variables
A shared variable’s value is logically independent of any single instance
of an object. Unlike instance variables, in which each object holds its
individual state, and class instance variables, in which each class holds
its state, shared variables can be shared among multiple objects.

Shared variables are implemented as bindings, which are instances of
either class VariableBinding or its subclass InitializedVariableBinding.
Accordingly, we sometimes refer to “a binding,” and mean specifically an
instance of one of these classes, rather than in the more general sense of
a value assignment.

The value of a shared variable, or of the binding it refers to, is either a
name space, a class, or an arbitrary object. In the third case, they serve
the roles formerly served by globals, pools, and class variables.

When defining a shared variable, give careful consideration to where you
create it, based on the referential scope expected for the variable. For
example, if only a single class needs to reference the variable, define it in
a class, as a class variable. But if it is to be referenced by all objects in a
name space it is probably more appropriate to define it in the name space
itself, as a pool or “global” variable.

To define a shared variable, create a new category (protocol), and use
either the definition template, as described in the following sections, or
the New Shared Variable dialog, Class New Shared Variable....

Class Variables
A shared variable, when defined relative to a class, implements a class
variable.

Class variables are inherited by, and accessible to, the class itself, its
instances, its subclasses, and their instances. This is true even if the
classes are in different name spaces; explicit importing is not necessary.

For example, the class Date has a shared variable called MonthNames,
which stores an array containing names for the 12 months. It would be
wasteful to store the array in every instance that is cloned from it because
the names are the same for all instances. Instead, the array is defined
once in the shared variable. It is then accessible by instances of the class
Date and its subclasses, and by instances of any other class that imports
it.

To define a class variable:

1 In any system browser, select the class that will serve as the name
space for the variable, and select the Shared Variables tab.
Application Developer’s Guide 4-11

Syntax
2 Select, or add and select, a category for the new shared variable, in
the methods/shared variables list pane. The shared variable definition
template is displayed in the code pane:

Smalltalk.MyNameSpace.MyClass defineShared: #NameOfBinding
private: false
constant: false
category: 'category description'
initializer: 'Array new: 5'

3 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

• Enter an initialization expression, as a String, in the initializer: field,
or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

4 Select Accept from the browser’s <Operate> menu to save the
definition and create the shared variable.

Your new shared variable is added to the list. It can be viewed in any
class browser by selecting the Shared Variables tab and its category.

Pool Variables
Shared variables can also be defined directly in name spaces (non-class
name spaces). For example, in the Graphics name space are defined a lot
of classes, and two further name spaces: SymbolicPaintConstants and
TextConstants. These name spaces exist solely as the name scopes for
collections of shared variables.

Each shared variable is defined directly in the name space. Initialization
values for the variables are provided either on the definition’s initializer:
line, as is done for most of the TextConstant variables, or in an appropriate
class initialization method, as is done for the SymbolicPaintConstants
variables.
4-12 VisualWorks

Variables
For these variables to be accessed within a name space other than its
defining name space, the variable must be imported, usually by a general
import of its name space. (Refer to “Importing Bindings” on page 6-14 for
more information.)

You can define a pool by creating a name space, which is the pool, and
then adding shared variables to it using a series of at:put: messages.
Browse SymbolicPaint class method initializeConstantPool for an example.

A better approach is to define the pool name space, and then add shared
variables to it:

1 In the System Browser class/name space list, select the name space
that will contain the pool.

Select the most local name space that makes sense for the breadth
of availability appropriate for this shared variable.

2 Select Add Name space from the browser’s Class menu. The name
space definition template is displayed in the code pane.

3 Complete the template, specifying the name of your pool as the name
space name. (Refer to “Creating Name Spaces” on page 6-7 for
completing this template.)

4 Select the pool name space, then pick Add Shared Variable from the
browser’s Class menu. The shared variable definition template is
displayed in the code pane:

Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

5 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
(pool) variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

• Provide an appropriate category: string.

• Enter an initialization expression, as a String, in the initializer:
Application Developer’s Guide 4-13

Syntax
field, or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

6 Select Edit Accept in the browser to save the definition and create
the shared variable.

At this point the pool variables are all defined and initialized. You may
which to edit the definitions, however, to make the variables private or
constant, or to change.

To see your new shared variables, open a System Browser, select the
Shared Variables tab, select the pool’s super-name space in the name
space list, select the pool name space in the class/name space list, and
select a category.

As Global Variables
Globals are seldom used in VisualWorks, having been largely replaced
by pool variables. Even before VisualWorks 5i, only a few “system
globals” such as Transcript and Processor have remained in the system. In
general, they are a bad practice in object-oriented programming, because
they break encapsulation, and so are to be avoided.

Instead of globals, these remaining system objects are defined as shared
variables in a name space that is almost certainly accessible to all name
spaces. Transcript, for example, is defined as a shared variable in the
Smalltalk.Core name space.

To browse these definitions, examine the Core name space in the System
Browser (select the Base VisualWorks bundle then find Core in the
class/name space list), and browse the shared variables. You can do a
search for Transcript using the browser’s built-in search mechanism
(upper-right corner of the tool).

The resulting shared variables aren’t truly “global” to the system, since it
is easy to define a name space that doesn’t import Core.

To define a shared variable:

1 In the System Browser, select a name space in the class/name space
list to be the super-name space.

Select the most local name space that makes sense for the breadth
of availability appropriate for this shared variable. For the widest
availability, select the Smalltalk name space.

2 Select Add Shared Variable from the browser’s Class menu. The
shared variable definition template is displayed in the code pane:
4-14 VisualWorks

Variables
Smalltalk defineSharedVariable: #NameOfBinding
private: false
constant: false
category: 'As yet unclassified'
initializer: 'Array new: 5'

3 In the template:

• Replace #NameOfBinding with a symbol specifying the shared
variable name, such as #MySharedObject.

• Set the private: field to true to make the variable private; otherwise,
leave it as false. (Refer to “Public and Private Shared Variables”
on page 4-16.)

• Set the constant: field to true if the variable’s value should not be
changed; otherwise, leave it as false. (Refer to “Constant and
Variable Bindings” on page 4-15.)

• Provide an appropriate category: string.

• Enter an initialization expression, as a String, in the initializer:
field, or enter nil. (Refer to “Initializing Shared Variables” on
page 4-17.)

4 Select Edit Accept in the browser to save the definition and create
the shared variable.

To see your new shared variable, open a System Browser, select the
Shared Variables tab, select the variable’s super-name space in the name
space list, select its name space in the class/name space list, and select
its category.

Class and Name Spaces Names
In VisualWorks, both class and name space names refer to shared
variables whose values are classes and name spaces, respectively.
Because of their special roles in the system, these are covered
separately in later chapters.

Constant and Variable Bindings
Sometimes it is desirable to set the value of a shared value and have it be
immutable, or constant. The constant: field in the shared variable definition
provides this option.

When set to false, the variable can be set and initialized by the usual
means by any object in the system. (Refer to “Initializing Shared
Variables” on page 4-17.) When set to true, however, the value cannot be
changed by the usual means.
Application Developer’s Guide 4-15

Syntax
For constant shared variables (which sounds odd, but they are still
variables), changing the value requires rerunning the initializer, and so
the variable is essentially protected from a runtime value change. The
value is, for all intents and purposes, constant. Even a class initialization
method that sets the variable will fail.

Note that you can change a shared variable’s definition, and so change it
from being variable to being constant. If you do so, be aware that
methods that set the variable will now fail.

Public and Private Shared Variables
Most Smalltalk dialects lack an enforceable distinction between public
and private classes and methods. Variables have traditionally been either
private (instance, class, and class instance variables) or public (global
and pool variables), depending on the kind of variable.

VisualWorks uses name spaces and shared variables provide a way to fill
some of this lack, by allowing you to control imports at two levels:
definition and import.

At either its creation or when imported, a shared variable can be declared
to be either public or private.

• If a binding is public, it is available for import by a name space or
class.

• If a binding is private, it is not available for import by a name space or
class.

Refer to “Importing Bindings” on page 6-14 for more information on
importing.

Defining a Binding as Private or Public
At one level, in its definition, each individual class, name space, and
shared variable is declared as either public or private by setting the
Boolean argument to the private: field. When set to false the binding is
public, and so can be imported. When set to true the binding is private,
and cannot be imported. At this level, privacy or publicity is set for the
object itself, and so is absolute.

So, for example, a shared variable that is defined in MyNameSpace and
declared as private is accessible only in the scope of MyNameSpace, and
cannot be imported by any name space or class. It is hidden from
anything that imports MyNameSpace.

Name spaces and classes are usually defined as public, since they
should be imported by name spaces that need to access them. Pool
variables also should be defined as public, since they also are meant to
4-16 VisualWorks

Variables
be imported. Class variables, shared variables that are defined within the
scope of a class, are also usually defined as public, so they can be
accessed by the class’s subclasses, and their instances.

Defining a name space, class, or general shared variable as private is the
exception, but an option if appropriate.

Initializing Shared Variables
There are a variety of ways to initialize a shared variable.

If you specify an initialization string in the shared variable’s definition, to
initialize the variable either:

• select the variable in a browser, and then select Shared Variable
Initialize in the <Operate> menu (or in the Method browser menu), or

• send the initialize method to a binding reference of the variable, for
example:

#{Smalltalk.MyNameSpace.MyBinding} initialize
These initialization methods work whether the variable is declared
constant or not (whether the constant: field is true or false).

In the case of class variables and pool variables, initializing shared
variables is frequently done as part of class initialization. In this case, the
value is set in the class initialize method, or in a method called by initialize.

For example, the Dummy class initialize method may simply set a value to
a shared variable (DummyShared) defined in the class, like this:

initialize
"Dummy initialize"
DummyShared := String fromString: ' a b c d e'.

Note that to initialize a shared variable in a method, the variable must not
be set as constant; the constant: field must be set to false.

Assigning a Value to a Variable
The default value for any variable is the nil object. To assign a new value
to a variable, use the assignment operator := (a colon followed by an
equal sign), as in the expression:

prompt := 'Enter your name'
The expression on the right-hand side of the assignment can be any legal
Smalltalk expression. The following examples are all valid assignment
expressions. They have the effect of creating an array of ice cream flavors
and selecting one of those flavors at random:
Application Developer’s Guide 4-17

Syntax
flavors := #('chocolate' 'vanilla' 'mint chip').
index := (Random new next)* 3.
flavorChoice := flavors at: index truncated + 1

Assignments can be chained when two or more variables are to store the
same value, as in:

majorLoopCounter := minorLoopCounter := 1
Chained assignments should only be used with literal or read-only
values—otherwise, updating one variable has the side effect of changing
the value of the other variable similarly.

Special Variables
For three special variables, the value changes according to the execution
context but cannot be changed by assignment: self, super, and thisContext.

The most prevalent of these special variables is self, which holds a
reference to the object that is executing the current message.

In the simplest case, self merely allows the programmer to direct a new
message to the specific instance that is executing the current method. In
effect, an object can execute another of its own methods. A hypothetical
doSomething method could use a computeX method to calculate a number,
for example, with the expression self computeX.

A more complicated case arises when inheritance is involved. Suppose
the doSomething method is located in the superclass of the object that
received the doSomething message. But computeX is implemented by the
subclass. How do we send the method finder back to the bottom of the
ladder to search for computeX, rather than just starting from its superclass
location?

The special variable self is a pointer to the object (in this case, anObject)
that received the message being executed (doSomething)

aSuperclass

anObject

anObject doSomething

doSomething method

self computeX

computeX method
4-18 VisualWorks

Variables
The surprising but pleasing answer is that the expression self computeX
still works. The new message (computeX) is directed at self, which refers to
the object that received the previous message (doSomething).

It’s important to remember that self does not necessarily point to an
instance of the class whose method is being executed. In our example,
self is used in the parent’s method but it refers to the child. Thus, using
self in a method automatically provides for downward growth in the
hierarchy.

The super variable is very similar to self, except super tells the method
finder to begin its search one level above the executing method in the
class hierarchy. The receiver is the same as for self, namely the sending
object. This is useful when a subclass wants to add operations to its
parent’s method without having to duplicate the parent’s code. Note that
super is in the nature of a qualifier applied to the method finder, so it
cannot be assigned to a variable (as self can).

Special variable super

The third special variable, thisContext, is a reference to the stack context
of the current process. While self and super are commonly used by
Smalltalk programmers, thisContext is rarely needed by application
developers. It is used by the system’s exception handler and debugger.

Note: In some of the literature on Smalltalk, self and super are
referred to as pseudovariables. However, other objects have also
been called pseudovariables, so the term is ambiguous—we call
them special variables instead.

aSuperclass

anObject

anObject getX

computeX method

getX method

super computeX
Application Developer’s Guide 4-19

Syntax
Undeclared Variables
When a variable is deleted while references to it still exist, or a reference
to a variable is loaded (by a parcel or package) but never declared, its
name is entered in the Undeclared name space. This name space is
maintained by the system and need not concern you under normal
circumstances— but it can provide useful clues to certain kinds of
program errors.

To inspect the contents of Undeclared, select in the Launcher Browse
Global, and enter undeclared in the prompter. This opens a Namespace
Inspector on the name space.

Message Expressions
A message expression is the fundamental unit of programming in
Smalltalk. It has three kinds of components: a receiver, a method name,
and zero or more arguments. In 9 raisedTo: 2, the receiver is 9, the method
name is raisedTo:, and the argument is 2. The term message technically
refers to the method selector and arguments, while a message
expression includes the receiver.

Every message returns an object to the message sender. In the example
just given, the raisedTo: method returns an instance of SmallInteger—
specifically, 81. There are three ways to denote the object to be returned
from a method:

• By default, the message receiver (self) is returned to the sender.

• A return operator (^, entered as <Shift-6> on most keyboards)
preceding a variable name causes that object to be returned. For
example, the expression ^anObject causes anObject to be returned.

• A return operator preceding a message expression returns the value
of that expression. For example, the expression ^3 + 4 causes the
object 7 to be returned.

A period is used to separate message expressions. No period is
necessary after the final expression in a series.

There are three types of message: unary, binary, and keyword
expressions. In addition, two or more messages can be joined in
sequence. Each of these constructs is described below.
4-20 VisualWorks

Message Expressions
Unary Messages
A unary expression has a receiver and a method name but no argument.
The following are all unary expressions:

1.0 sin. "Returns the sine of 1.0."
Random new."Returns a random number generator."
Date today. "Returns today's date."

Binary Messages
A binary expression uses a special character, such as a plus sign ($+), as
its method name and takes one argument. Some binary selectors are
combinations of two special characters, such as the comparison selector
>= (greater than or equal to). The characters that allowed in a binary
selector and the construction rules for a binary selector are specified
precisely in Appendix A, “VisualWorks Smalltalk Syntax Description.”

The most common binary messages have to do with arithmetic
operations, comparisons, and string concatenation. The table below
describes many of the commonly used binary selectors. One or more
white-space characters before and after the selector are optional.

Common Binary Method Selectors

Selector Example Description

+ counter + 1 Add

- 100 - 50 Subtract

* index * 3 Multiply

/ 1 / 4 Divide

** 4 ** 3 Raised to

// 13 // -2 Integer divide (round the quotient to the
next lower integer; in the example, -7). An
instance of Point can also be rounded via
this operator.

\\ 13 \\ -2 Modulo (return the remainder after division;
in the example, -1).

< counter < 10 Less than

<= index <= 10 Less than or equal

> clients > 5000 Greater than

>= files >= 2000 Greater than or equal

= counter = 5 Values are equal
Application Developer’s Guide 4-21

Syntax
The second character of a two-character selector cannot be a minus sign
($-). The other permitted characters are: $+, $/, $\, $*, $~, $<, $>, $=, $@,
$%, $|, $&, $?, $!, and $,.

Note that the assignment expression (:=) is not a method selector. Also,
the linking symbol (>>), as used in the debugger and browsers to refer to
a method and its implementing class (for example, Set>>size to refer to the
Set instance method size), is not a binary selector.

Keyword Messages
A keyword expression has a receiver, one or more argument descriptors
(keywords), and one argument for each keyword. Each keyword ends in a
colon. The following are valid keyword expressions:

aDate addDays: 5 "Add five days to aDate."
anArray copyFrom: startIndex to: stopIndex

"Return a copy of that portion of anArray
that begins at startIndex and ends at stopIndex."

~= length ~= 5 Values are not equal

== x == y Same object (identity; receiver and
argument are the same object or point to
the same object)

~~ x ~~ y Not the same object

& (x>0) & (y>1) Logical AND (return true if both receiver
and argument are true, otherwise false).

| (x>0) | (y<0) Logical OR (return true if either receiver or
argument is false).

, 'abc','def' Concatenate two collections.

@ 200 @ 300 Return an instance of Point whose x
coordinate is the receiver and whose y
coordinate is the argument.

-> #Three -> 3 Return an instance of Association whose
key is the receiver and whose value is the
argument.

<< #All << #labels Create a UserMessage

>> #All << #labels >> 'All' Assign a catalog ID to a UserMessage

Common Binary Method Selectors (Continued)

Selector Example Description
4-22 VisualWorks

Message Expressions
When there is more than one keyword, the method name is formed by
concatenating the keywords. In the second example above, the method
name is copyFrom:to: (formally pronounced “copyFrom colon to colon”).
There is no limit on the number of keywords in a method name.

Messages in Sequence
Frequently, the receiver of a message is the object returned by the
previous message expression. To avoid creating a temporary variable to
store the returned object, you can create a sequence of messages. For
example, the first and second expressions below can be compressed into
the form of the third expression:

interest := principal * interestRate.
principal := principal + interest.

principal := principal + (principal * interestRate).
This technique reduces the wordiness of the code, though sometimes at
the expense of readability. Parentheses can be inserted, as shown in the
example, to improve the readability and to assure that the intended
parsing order is followed.

Cascading Messages
When two or more messages are to be sent to the same object, a
semicolon can be used to cascade the messages. This avoids having to
repeat the name of the receiver, though frequently at the expense of
readability. For example, the first set of expressions below has the same
effect as the final expression, in which the messages are cascaded:

Transcript show: 'This is line one.'.
Transcript cr. "Carriage return."
Transcript show: 'This is line two.'.
Transcript cr.

Transcript show: 'This is line one.'; cr;
show: 'This is line two.'; cr

Parsing Order for Messages
When two messages have the same parsing precedence, parentheses
are sometimes required. For example, 3 + 4 * 5 is very different from
3 + (4 * 5) because binary selectors are all evaluated from left to right.
Application Developer’s Guide 4-23

Syntax
Parentheses are also necessary when a keyword expression is in the
argument expression for another keyword expression. For example, the
first expression below is valid but in the second version the method
selector is interpreted by the compiler as readFrom:on:, which does not
exist.

Time readFrom: (ReadStream on: '10:00:00 pm').
Time readFrom: ReadStream on: '10:00:00 pm'. "WRONG"

The following rules summarize the parsing order:

1. Parse parenthesized expressions before nonparenthesized
expressions.

2. Parse multiple unary expressions left to right.

3. Parse multiple binary expressions left to right.

4. Parse unary expressions before binary expressions.

5. Parse binary expressions before keyword expressions.

The result of the following code fragment is that a number is printed in the
System Transcript—can you trace the logic using the rules above?

| aSet nbr |
nbr := 207.
Transcript show: (aSet := Set new add: nbr + 3 * 5 sin) printString

In the first line, two temporary variables are declared. In the second line,
one of the variables is assigned the number 207. In the third line, the
following sequence of events takes place:

1. Set new Create an instance of Set.

2. 5 sin Calculate the sine of 5 (-0.958924).

3. nbr + 3 Add 3 to nbr (210).

4. ... * Multiply 210 by -0.958924 (-201.374).

5. .. add: ... Add -210.374 as an element in the Set created in
Step 1.

6. aSet := Assign the Set to the variable aSet.

7. ... printString Convert the Set to a printable string.

8. Transcript show: Output the printable string to the Transcript.
4-24 VisualWorks

Block Expressions
Block Expressions
A block expression represents a deferred sequence of operations. Blocks
are used in several contexts, including control structures, exception
handling, and finalization. The syntactic characteristics of block
expressions are described here.

A block expression is enclosed in square brackets, as in:

[index := index + 1.
anArray at: index put: 0]

The messages inside the block are not sent until the block object receives
the unary message value. The following expressions have the same
effect:

index := index + 1.
[index := index + 1] value.

Up to 255 separate arguments can be passed to a block. Argument
names must be listed just inside the opening bracket. Each argument
name must be preceded by a colon. The final argument name must be
followed by a vertical bar. For example:

[:counter | counter := counter + 1]
The argument variables are private to the block. The values of the
arguments are passed by using variants of the value message. There are
four variants, to be used depending on the number of arguments:

value: anObject
value: anObject value: anObject
value: anObject value: anObject value: anObject
valueWithArguments: anArray

Passing an argument to the example above would be arranged thus:

[:counter | counter := counter + 1] value: 3
Temporary variables can also be declared within a block. They must be
enclosed in vertical bars and placed after the vertical bar that separates
argument variables. They are local to the block.

The full syntax for a block is as follows:

[:arg1 :arg2 |
| temp1 temp2 |
statement1.
statement2.

...]
Application Developer’s Guide 4-25

Syntax
Pragmas
Pragmas are a special method expression used to annotate a method. By
themselves, pragmas do nothing. During compilation, methods with
pragmas are rendered as instances of AnnotatedMethod rather than
CompiledMethod. The class Pragma provides methods for finding and
processing methods that contain pragmas.

Pragmas are specified with a syntax that resembles either a keyword or
unary message expression enclosed in angles. So,

< keyword1: arg1 ... keywordN: argN>
for keyword pragmas or

< unaryword >
for unary pragmas. The method also includes standard Smalltalk code
that returns a value.

Pragmas are used in various parts of the system. For example,
windowSpec methods created by the UIPainter include the pragma:

<resource: #canvas>
a keyword pragma identifying the method as a resource method defining
a canvas. Other resource pragmas identify methods as defining menus or
graphic images.

While the form of a pragma resembles a message, and in some cases a
class might define a message with the same selector, there is no direct
relation between those; the form of the pragma is simply used to locating
the method that includes it. It is up to the application to determine
whether and how to use the pragmas.

Declaring Pragmas
Before using a pragma to annotate a method, it must be declared in a
class method. The method must be defined in the class of the method
that uses it, or some superclass of the class.

The method name is not important, but by convention includes “Pragmas”
in its name, such as resourceMethodPragmas defined in Object. The method
itself contains one or two pragmas, with keyword pragmas: and argument
either #instance or #class, or both, determining whether the pragmas can
used in class methods, instance methods, or both. The return value is a
collection of pragma selector symbols. For example, again,
resourceMethodPragmas declares the resource pragma:
4-26 VisualWorks

Pragmas
resourceMethodPragmas
<pragmas: #instance>
<pragmas: #class>

^#(#resource:)
This method declares a single keyword pragma selector that can be
invoked in either instance or class methods. This Subsystem method
declares a few pragmas, but only for use in instance methods:

dependencyPragmas
<pragmas: #instance>

^#(#prerequisites #option:sequence: #option:)
This declaration declares both a unary pragma, a pragma with two
keywords, and a pragma with one keyword.

Including a Pragma in a Method
You can include one or more pragmas in any method. If included,
pragmas must be the first expressions in the method following the
selector, except for a comment. Keyword pragmas must have a literal
value argument for each keyword.

Following the pragmas is any normal Smalltalk code. This expression is
evaluated whenever the method is invoked, as usual, but can additionally
be invoked when the pragma is processed.

Suppose we have declared three pragma selectors: #doStuff, #doStuffWith:
and #doStuffWith:and:. A method might include only one of them, for
example:

doSomething

<doStuff>
Transcript cr; show: 'Stuff done'

In this case, only a single pragma is used. It is a unary selector pragma,
so no arguments are supplied. Similarly, a method might use multiple
pragmas.

methodWithPragmas

<doStuff>
<doStuffWith: #this>
<doStuffWith: #this and: #that>

Transcript cr; show: 'I''m here'
The arguments are literals and will be passed to the pragma processor.
Application Developer’s Guide 4-27

Syntax
Processing Pragmas
Pragmas can be used for wide variety of actions. In the case of resource
methods, they are used to select the editor when “Edit” is selected in the
Resource Finder. Some tools, such as the Visual Launcher, use the set of
menuItem:... pragmas to dynamically modify menus when the containing
method is edited or loaded. Pragmas can be similarly used to run tests
automatically upon updating a method. The options are unlimited.

The Pragma class provides facilities to assist in locating and processing
pragmas. Pragma instances hold information about the method containing
the pragma, its class, the pragma’s name and its arguments.

Collecting Pragmas
To create a collection of Pragma instances, send one of the allNamed:...
location messages to Pragma. There are several forms, the simplest being
allNamed:in: which takes a pragma name and a class as arguments. For
example, suppose the above doSomething and methodWithPragmas
methods are defined in a class, MyPragmaExample. To collect all doStuff
pragmas, send:

Pragmas allNamed: #doStuff in: MyPragmaExample
which will return a collection with two pragma instances, one for the
doStuff pragma in each of the messages. Similarly,

Pragmas allNamed: #doStuffWith:and: in: MyPragmaExample
returns a collection with only a single Pragma instance. In this case, the
pragmas are in instance methods. If they were in class methods, the
class argument would be: MyPragmaExample class.

This method searches for pragmas in only one class. Several of the other
location methods search a branch of the class hierarchy, taking a start
and end class for the search. For example, by sending an
allNamed:from:to: message, you can collect all resource: pragmas in class
methods between ApplicationModel and UIPainterTool (or whatever
hierarchical sequence of classes you need to search):

Pragma allNamed: #resource:
from: UIPainterTool class
to: ApplicationModel class

Browse the Pragma class methods for the full set of locating methods
(“finding” category). Additional methods provide various sorting options
on the collection of Pragma instances.
4-28 VisualWorks

Pragmas
Performing Operations with Pragmas
There are two ways to use pragmas methods. One is to evaluate the
Smalltalk code in the message; the other is to evaluate some other
expression based on the arguments provided in the pragma. Both of
these can be used together.

Unary pragmas have no arguments, so their only use is as a means to
locate and evaluate the message containing them. For example, the
doStuff pragma is only useful for sending the message containing it, as in:

(Pragma allNamed: #doStuff in: PragmaExampleClass) do:
[:pragma | PragmaExampleClass new perform: pragma selector]

Rather than naming the method class explicitly, we can get it from the
pragma itself by sending it a methodClass message.

Most pragmas are keyword pragmas, and are useful because of the
arguments they carry. For example, in resource: pragmas the argument
indicates what editor to open: a UI Painter for a #canvas argument; a
Menu Editor for a #menu argument; a Bitmap Editor for an #image
argument.

To use the arguments, send a withArgumentsDo: message to the pragma.
The argument is a block with the same number of block arguments as
keywords. For example:

(Pragma allNamed: #doStuffWith:and: in: PragmaExampleClass) do:
[:pragma |

pragma withArgumentsDo:
[:first :second |

Transcript cr; tab; show: first printString;
cr; tab; show: second printString]]

Accessing Pragma Components
A few accessors for parts of a Pragma instance have already been
mentioned and illustrated. There are accessors both for the pragma itself
and its containing method.

Messages for accessing the method containing a pragma are:

method
Returns the compiled method containing the pragma.

methodClass
Returns the class of the method.

selector
Returns the selector of the method containing the pragma.

Messages for accessing the parts of the pragma itself are:
Application Developer’s Guide 4-29

Syntax
argumentAt: anInteger
Returns the argument at anInteger from the collection of arguments
to the pragma keywords.

arguments
Returns the collection of arguments to the pragma.

keyword
Returns the keyword (selector) for the pragma.

message
Returns a Message formed from the pragma keyword and arguments.

numArgs
Returns the number of arguments.

Formatting Conventions
The compiler ignores tabs, carriage returns, and extra spaces. Formatting
conventions vary but readability favors the following guidelines:

1. Start the message definition at the left margin and indent all other
contents of the method by one level.

2. Leave a blank line beneath the method comment and as a separator
between sections of a long method.

3. Follow each period that ends an expression by a carriage return.

4. Indent as needed to visually identify each subordinate section of
code.

The code browser provided with VisualWorks Smalltalk provides a format
command for automatically applying these rules.
4-30 VisualWorks

5
Classes and Instances

Overview
Every object in VisualWorks is an instance of some class (including
classes themselves). Instances have a message interface, which
describes the messages, or operations, that an object will perform. The
class defines the behavior for that message, or how the operation is
performed. The set of messages understood by an object is referred to as
the object’s protocol or message category.

In this chapter we describe how to define a class and its methods,
including how to generate an instance of a class.

Defining a Class
A class is defined in a name space, as the value of a shared variable in
that name space. The variable is defined as “constant,” so the name of
the class cannot easily be changed.

Creating a Class using the New Class Dialog
The New Class dialog provides an easy to understand interface for
creating a class. Select New Class in a system browser’s Class menu, to
open the New Class dialog:
Application Developer’s Guide 5-1

Classes and Instances
The class definition properties are on two pages: Basic and Advanced. A
“Caution” icon (yellow triangle with an exclamation point) is displayed next
to any required field that lacks legal value.

The Basic properties are:

Package
The name of the package in which to create the class. The package
must already exist in the system. To define the class unpackaged,
select (none).

Name Space
The name space in which to create the class. The name space
determines the referential scope of the class name.

Name
The name for the class being created. There is no default. The name
must be new and unique in the specified name space, and must
begin with an uppercase letter.

Superclass
The name of the superclass, in literal binding reference (dotted
name) notation, as shown (see “Binding References” on page 6-12).

Instance Variables
A space separated list of instance variable names.
5-2 VisualWorks

Defining a Class
Create Methods
Three check boxes specify which, if any, stub methods are created in
the class automatically when the class is created. The methods
generally need to be edited to provide the desired behavior.

Accessors, if checked, creates get and set accessor methods for each
instance variable specified.

Initializer, if checked, creates an initializer method with lines setting the
initial values of each instance variable specified.

Subclass responsibilities, if checked and if any of the superclasses define
methods marked as #subclassResponsibility, creates stub methods in
the new class for all of those methods. Initially, the stubs will signal an
error when evaluated, so you need to replace their bodies with
appropriate implementations.

The Advanced properties are:

Private
If checked, makes the class unavailable for import by another class or
namespace (see “Public and Private Shared Variables” on
page 4-16).

Indexed Type
This field specifies the class type, and particularly the type of value
that can be held by its indexed variables. See “Class Types” on
page 5-5 for descriptions of the types.

Class Instance Variables
A space separated list of instance variable names (see “Class
Instance Variables” on page 4-10).

Imports
A list bindings to import (see “Importing Bindings” on page 6-14).

When the dialog values are set, click OK to define the class and any
specified methods.

Note that class variables are not declared in the class definition, but are
created as shared variables in the class name space. Refer to “Class
Variables” on page 4-11 for more information.

Editing a Class Definition
When a class is created, its definition is represented as a message send
to a name space. The definition is displayed in the source code view of
the system browser when the class is selected, but no method categories
or methods are selected. The definition looks like this:
Application Developer’s Guide 5-3

Classes and Instances
Smalltalk defineClass: #MyClass
superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: 'oneVar twoVar threeVar more '
classInstanceVariableNames: ''
imports: ''
package: 'MyStuff'

To modify a class definition, you can edit the values in the code view and
save the definition. Typically, you would only change the definition by
adding or removing variable names or imports, but any of the lines can be
changed. The keyword arguments are as follows:

• The message receiver is the name space in which the class will be
created. Changing the name space name and saving the definition
will create a new class in the specified name space. To move a class,
use the appropriate Class Move menu command.

• The name of the class is a symbol literal (see “Symbols” on page 4-3)
following defineClass:. The name must begin with an upper-case letter.
Changing the name will create a new class.

• The superclass is specified in the superclass: field using the literal
binding reference notation shown (see “Binding References” on
page 6-12).

• The indexedType: field is filled based on the class type you selected
(see “Class Types” on page 5-5).

• Set private: to true to make the class unavailable for import by another
class or namespace (see “Public and Private Shared Variables” on
page 4-16).

• Instance variable names are listed in a space-delimited String
following the instanceVariableNames: keyword (see “Instance Variables”
on page 4-8).

• Class instance variable names are listed in a space-delimited String
following the classInstanceVariableNames: keyword (see “Class Instance
Variables” on page 4-10).

• Following imports: list, in a white-space delimited String, any bindings
you want to import, or make freely available to this class (see
“Importing Bindings” on page 6-14).

• The containing package is shown in the category: fields.
5-4 VisualWorks

Defining a Class
If you make changes and save the defintion, the class is recompiled. This
is common, for example, to add and remove instance variables during
development.

Do not attempt to rename a class or move it to another name space or
package by editing the class definition. Instead, use the appropriate
menu command; either Class Rename or Class Move.

Class Types
Classes are of different types, determined by the value of the Indexed
Type in the definition. The permissible types are as follow:

#none
A class with zero or more named instance variables (possibly
inherited) and no indexed variables (e.g., True, Point). Can have any
kind of subclass.

#objects
A class of indexable object with zero or more named instance
variables and whose indexed variables hold arbitrary objects (e.g.,
Array, OrderedCollection). Subclasses can be either #objects or #weak),
since subclasses must also be object-indexable.

#bytes
A class of byte indexable object with no named instance variables
and whose indexed variables hold only byte objects (e.g., ByteString).
Indexed variable contents are defined by the at: and at:put: primitive
methods defined in the class defines, providing one and two-byte
character strings, byte and word arrays, etc. A #bytes class cannot
inherit named or indexed instance variables, because the instances
contain only raw binary data. Consequently a #bytes class can only
inherit from a chain of #none classes with no named instance
variables. Subclasses must also be #bytes classes, because they
must also be byte-indexable.

#immediate
A class of immediate object, an object whose class and value are
encoded directly in the pointer to that object, (e.g., SmallInteger,
Character). An immediate class cannot inherit named or indexed
instance variables, because the instances do not have room for
instance variables. Consequently, immediate classes can only inherit
from a chain of #none classes with no named instance variables. Also,
immediate classes cannot have subclasses, because there is no way
to differentiate instances of the subclass in the immediate
representation.
Application Developer’s Guide 5-5

Classes and Instances
#ephemeron
A class with one or more named instance variables (possibly
inherited) and no indexed variables (e.g., Ephemeron). The first
instance variable is treated specially by the garbage collector.
Consequently, an #ephemeron class must inherit from a chain of #none
classes. Subclasses can only be type #ephemeron.

#weak
A class of object-indexable objects with zero or more named instance
variables and weak indexed variables containing objects (e.g.,
WeakArray). The indexed variables are weak, so do not prevent their
referents from being garbage collected. Consequently, a #weak class
must inherit only from a chain of #none or #objects classes.
Subclasses can only be weak-object indexable (#weak), because
subclasses must also be weak-object indexable.

Locating a Class by Name
Because name spaces allow for multiple classes with the same name, it
is rarely appropriate to ask for a class’s name using the name message,
particularly if that name is being used as a unique identifier. It is also not
appropriate to ask for a class using Smalltalk at: aSymbol, as had been
common in earlier releases.

Instead, use one of the following:

fullName
Returns a fully qualified name.

printString
Returns a String representing the class name.

fullyQualifiedReference
When sent to a class or name space, returns a fully qualified name
computed compute from a binding reference (see “Binding
References” on page 6-12).

asQualifiedReference
When sent to a String or Symbol, returns a binding reference.

For example:

| bindingReference |
bindingReference := stringOrSymbol asQualifiedReference.
bindingReference

ifDefinedDo: [:theClass| theClass ...statements...]
elseDo: [self error: 'no class named ' , stringOrSymbol].
5-6 VisualWorks

Working with Instances
And, instead of:

Smalltalk at: stringOrSymbol
use:

stringOrSymbol asQualifiedReference value

Working with Instances

Creating an Instance
Smalltalk objects, or instances, are typically generated by sending the
message new to the class, possibly in conjunction with other messages:

MyClass new
If the class has indexed instance variables, the number of variables is set
by sending the new: message with an integer argument for the number of
indexed variables:

MyClass new: 5
These messages, new and new:, are defined in Behavior, and are inherited
by all classes.

Destroying an Instance

Garbage Collecting
In general, there is no reason to explicitly destroy an instance, because
Smalltalk employs garbage collection. When an object no longer has any
other object pointing to it (e.g., holding it in a variable), the system detects
that it is no longer needed, and automatically destroys the instance,
reclaiming the memory and resources.

Finalization
In some cases, such as if an object uses external resources, garbage
collection is not sufficient. In these cases, use the VisualWorks
finalization features (refer to Chapter 19, “Weak Reference and
Finalization”).

Lingering Instances
It is also possible to have “memory leaks,” caused by an instance that is
not fully released, and so cannot be garbage collected. To find these, look
for unusual memory usage on a per-class basis. Load the AT System
Analysis Parcel, and open the Class Reporter by selecting Tools
Advanced Class reports in the Launcher. On the Space page, select the
suspect class, click the Instance size radio button, and click Run. Run this
Application Developer’s Guide 5-7

Classes and Instances
both against your image and a clean image to identify classes with
possible garbage. Then, send allInstances to the class and inspect them.
Use the Inspector's Utils Reference path command to trace back to a root
holding onto the object. Potential roots are:

• Object classPool at: #DependentsFields

• Object classPool at: #EventHandlers

• ObjectMemory dependents

• sysOopRegistry

Immutable objects
Several objects are “immutable,” meaning that their internal state cannot
be changed. Instances of SmallInteger, Character, and Symbol have always
been immutable in Smalltalk.

VisualWorks, beginning with version 7, extends the notion of immutability.
In addition to the objects listed above, all literals and general instances of
Number are now immutable. Also, facilities have been added to make
individual objects immutable. Except for instances of SmallInteger,
Character, and Symbol, objects which are immutable may be made
mutable.

This change provides several advantages:

• additional language safety by making literals immutable

• debugging aid, by catching where an object is assigned-to

• for persistence, where attempts to modify are caught, retried and the
updated objects written to persistent storage

Attempts to modify an immutable object, such as by sending become:,
changing a character in a Symbol or String literal, or changing the class of
immutable objects will raise a NoModificationError exception.

The repercussions of this change can be quite extensive. However,
updating old code to deal with the new restrictions is straight-forward. In
many cases, such as String or Array literals, copy returns a mutable copy
of the object. For example,

Failure:

'' writeStream nextPutAll: 'abc'
Success:

'' copy writeStream nextPutAll: 'abc'
5-8 VisualWorks

Working with Instances
Success:

String new writeStream nextPutAll: ‘abc’
This does not work for Booleans, general instances of Number, or
immediate objects.

You can test for and control the mutability of objects using the following
protocol:

asImmutableLiteral
Returns the receiver as an immutable literal if it can be represented
as a literal.

beImmutable
Makes the receiver immutable.

beMutable
Makes the receiver mutable, except in the case of immediate objects
such as Character, SmallInteger, and Symbol.

isImmutable
Answers true if the receiver is immutable; false otherwise.

isImmutable: aBoolean
Makes the receiver immutable if aBoolean is true, or mutable if
aBoolean is false. Does not apply to immediate objects.

isImmutableLiteral
Answers true if the receiver is an immutable literal; false otherwise.

Object Comparison
It is common to test objects, to see if they are the same object or an
equivalent object, or not. The most common comparisons are equality (=)
and identity (==). Identity tests whether two expressions represent or
return the very same object. Equality tests whether two expressions
represent or return equivalent objects, where the equivalence of objects
is determined by the receiver’s implementation of =.

By default, as defined in class Object, objects are equal (=) if they are
identical (==). Frequently, a class that introduces instance variables also
redefines = to specify which instance variables enter into determining
equality of instances of that class. For example, ColorValue defines = in
terms of the red, green and blue values. There are other reasons to
redefine = as well, as does String which defines = in terms of equal string
length and equality of each character in the strings.
Application Developer’s Guide 5-9

Classes and Instances
The message hash plays a special role in comparing objects. Any two
objects that are equal must have the same hash, which is an integer
value. Unequal objects may have the same or different hash values. This
integer is used by several classes, such as Set and Dictionary objects, as a
lookup into an indexed collection. Because these collections may include
any object, it is important that this property of equal objects having equal
hash value be maintained. Accordingly, whenever a class reimplements
=, it may also need to reimplement hash to maintain this property.

Instance comparison protocol includes these binary messages:

= anObject
Answers true if anObject is equal to the receiver, as defined in the
receiver’s class, and false otherwise.

== anObject
Answers true if anObject is identical to the receiver, and false
otherwise.

~= anObject
Answers true if anObject is not equal to the receiver, and false
otherwise.

~~ anObject
Answers true if anObject is not identical to the receiver, and false
otherwise.

Other useful comparison messages are the following. Similar comparison
messages are defined throughout the libraries.

isNil
Answer whether the receiver is nil.

notNil
Answer whether the receiver is not nil.

isInteger
Answer whether the receiver is an integer.

Methods
Methods define the behavior of classes and their instances. This is where
the real “programming” takes place in Smalltalk. Methods are the same
as what are often called “functions” in other environments, such as Java
and C++.

You create methods using the System Browser, and completing the
method definition template. You can also use an existing method as your
template.
5-10 VisualWorks

Methods
There are two kinds of methods: instance methods and class methods.
Instance methods specify behavior for messages sent to instances, and
class methods specify behavior for messages sent to the class itself.
Class methods are most often used for creating an instance of the class
and for initializing and accessing class variables.

To promote reusability, keep Smalltalk methods short. For example, you
can usually break a long method into smaller methods to isolate
individual services that other clients may want to use. Similarly, when a
subset of the code is repeated in a large method with only minor
variations, you can usually make that subset into a separate method.

Method names may contain letters, numbers, and underscores, but may
not begin with a number. The first letter should be lowercase.

Creating a Method
1 In a System Browser, select either the instance or class tab.

2 Select the class for this method.

3 Select the message category or add a new one.

4 Fill in the method template.

You must provide a method name, which is the message selector and
argument names, in the first line of the definition. Next, you should
include a comment briefly describing what the method returns. Then,
enter a sequence of Smalltalk expressions (see “Message
Expressions” on page 4-20) specifying the processing behavior of the
method.

5 Select Accept command in the code view <Operate> menu to save the
method. The method is then compiled.

Fixing Common Errors at Compile Time
A few simple errors can occur when you save a method definition:

Undeclared temporary variables
This is an “error” that you can commit on purpose, because the system
will prompt you with a menu of variable types with which you can quickly
and easily declare each of the temporary variables.
Application Developer’s Guide 5-11

Classes and Instances
Undeclared class and instance variables
When you are prompted to declare an instance or class variable, it’s best
to select Abort in the menu and declare the variables before continuing. To
save your uncompiled method while you use the System Browser to
redefine the class, select Spawn in the code view. This opens a new
browser on the uncompiled code.

Missing period
When you have omitted a period, the system treats what should be two
statements as though they were a single message expression. As a
result, the error description is usually “Nothing more expected.”

Missing delimiters
When you have omitted a parenthesis or bracket, the error description is
“Right parenthesis expected” or “Period or right bracket expected.”

Returning from a Method
Every method returns a single object, which can be a collection of other
objects. By default, a method returns self, the object that received the
message. This returned object may be ignored by clients that are
interested only in the effect of the method, or stored in a variable it the
object needs to be referred to again.

To return an object other than the receiver, you can specify that object by
using a caret symbol (^) preceding an expression that returns the object.
For example, in an accessor method, place the name of the return object
after a caret.

accountID
^accountID

This returns the current value of the variable accountID.

Returning From an Enclosed Block
When a return character is enclosed within a block (see “Block
Expressions” on page 4-25), it forces a return from the entire method. It
does not act only as a return from the block back to the containing
method.

Returning the Result of a Message
A return character that is followed by a message causes the result of that
message to be returned. This approach often circumvents the need to
create a temporary variable for the message result.

Place a caret in front of the message receiver.
5-12 VisualWorks

Methods
displayString

^accountID printString, '--', name

Returning a Conditional Value
Frequently, a method performs a test and returns one value if the test
result is true and a second value if the test result is false. Relying on the
fact that a return character that is followed by a message returns the
result of the message, you can use a single return caret to serve both
forks of the branch, rather than placing a caret inside each block.

This approach has the advantage of combining two exit points into a
single exit point, which is better programming style. It also makes the
ifTrue: and ifFalse: blocks clean blocks—that is, blocks that do not
contain a hard return character.

Place a caret in front of the conditional expression.

accountPrefix
"Answer the first four characters of the accountID,
or an empty string if the accountID is empty."

| id |
id := self accountID.

^id isEmpty
ifTrue: [String new]
ifFalse: [id

copyFrom: 1
to: 4].
Application Developer’s Guide 5-13

Classes and Instances
5-14 VisualWorks

6
Name Spaces

Overview
VisualWorks implements name spaces as a language feature. Name
spaces allow VisualWorks to be very flexible in how it handles add-in
components from a multiplicity of vendors.

Initially, Smalltalk had a single name space, the monolithic Smalltalk pool.
All globals (class names, global variable names, pool names) were
resolved (their referents were determined) within that single context, the
Smalltalk environment. Accordingly, each global name had to be unique
to be identified from all others.

This worked fine as long as Smalltalk remained an environment of small,
individual developers creating applications for their own use or in isolation
from other applications. As Smalltalk went to the “enterprise,” and as
component development and deployment became increasingly common,
the luxury of isolation and control was lost.

For example, a system integrator might want to assemble a supply
management system out of modules from multiple vendors. Each
component may need to access records storing customer data, which
each would quite reasonably represent as instances of a Customer class.
In a single-vendor environment that class definition can be controlled and
made consistent. In a multiple-vendor environment, however, that is much
more difficult or impossible. The vendor, attempting to integrate the
components from these vendors has a major problem with name
conflicts.

As long as all global names were resolved within the single Smalltalk
name space, such naming collisions were inevitable, and increasingly
frequent. This calls for a systemic solution rather than ad hoc work-
arounds.
Application Developer’s Guide 6-1

Name Spaces
Multiple Name Spaces
The general solution was not difficult, and had precedent in other
programming environments. It was simply to restrict the global name
resolution space, so that names didn’t need to be unique in the whole
Smalltalk environment, but only within a much smaller “name space.” In
effect, a name in one resolution space could be hidden from other
resolution spaces, unless it was explicitly exposed.

By restricting name resolution, references to vendor 1’s Customer class
can cohabit the Smalltalk system with vendor 2’s Customer class, as long
as they are in different name spaces. Each Customer class can be
referred to unambiguously by identifying the containing name space.

There is a little more work in some cases, when both classes need to be
referenced by the same application, or when an object in one name
space needs to reference an object in another name space. References
still need to be unambiguous. But, disambiguation is a relatively simple
matter of specifying a name space, rather than changing all references to
comply with a name change.

To accomplish this, VisualWorks was extended to support additional
name spaces, providing for contexts more specific than just Smalltalk
within which names are resolved. The universal Smalltalk name space is
retained as a “super-name space.” Smalltalk is then divided into several
other name spaces, each providing its own name resolution context.
Additional name spaces can be defined within Smalltalk or within any of
its sub-name spaces, to provide an appropriate separation of contexts.

Getting Started
You can gain experience with name spaces in stages, increasing the
extent of use as you become more comfortable with them. It is possible,
for instance, to define all of your classes in the Smalltalk name space,
and proceed largely as if multiple name spaces don’t exist. For
instructions on how to do this, see to “Taming Name Spaces,” in the
doc/TechNotes directory and from the Cincom Smalltalk
Documentation web page:

http://www.cincom.com/smalltalk/documentation.
6-2 VisualWorks

http://www.cincom.com/smalltalk/documentation

Name Spaces and Their Contents
Name Spaces and Their Contents
In general terms, a name space is a context within which the referent of a
term is determined.

For example, within the context of a gathering of my wife’s family, the
name “Bob,” used without qualification, picks out one unique individual,
while among my own family it picks out a different, though still unique
individual. There is no confusion as long as these contexts are kept apart;
our respective families serve as adequate name-resolution spaces, or
name spaces.

Put our two families together, however, and the name “Bob” becomes
ambiguous, and it’s entirely possible for embarrassing confusions to
occur. However, it is generally quite simple and straight-forward to avoid
such confusions, and the resultant embarrassment, by explaining the
scope more precisely. Including the family name is generally sufficient
and not overly difficult.

In Smalltalk a name space works in the same way. Given a name of a
variable, the object referred to by that name is identified within some
naming scope. Traditionally, the name scope has been the either whole
Smalltalk image in the case of global variables, an individual instance in
the case of instance variables, or a class, its subclasses, and their
instances in the case of class variables. To avoid confusion over the
globals (class names, pools, and general globals), names were required
to be unique within the system; you were only allowed to have one Bob.

In VisualWorks, you are allowed to have as many Bobs as you want, as
long as each of them can be uniquely identified. Unique identification is
possible by making sure that each Bob is defined and resolved in a single
name space, and avoiding name space collisions.

Name Space Contents
A name space is a named object that represents the name resolution
scope of a collection, or pool, of shared variables (see “Shared Variables”
on page 4-10). A name space is itself the value of a shared variable
defined in another name space. A particular name space, called Root, is
the parent of all other name spaces, forming a name space hierarchy.

The Root name space initially contains two shared variables: Root, the
value of which is the name space itself, and Smalltalk, the value of which
is the Smalltalk name space.
Application Developer’s Guide 6-3

Name Spaces
To explore the structure of a name space, do an inspect on it. For
example, evaluate this expression with doIt:

Root inspect
This opens a Namespace Inspector showing the contents of the name
space. Diving down through the Smalltalk entry, you observe additional
shared variables whose values are the “top level” name spaces defined
immediately in Smalltalk. Initially, the values of these are the name spaces
that contain system code. As you create your own “top level” name
spaces, shared variables for them are added to Smalltalk.

Continue the descent and you find definitions of name spaces, classes,
and general shared variables.

To explore more deeply, seeing the structure of the entries, evaluate:

Root basicInspect
Doing this you see the representation of name spaces as a collection of
bindings.

The Name Space Hierarchy
VisualWorks name spaces are organized in a hierarchy. At the top of the
hierarchy is a single name space, named Root.

Initially, it has a single sub-namespace, Smalltalk. For most practical
purposes, the hierarchy starts with the Smalltalk name space, as the
super-name space of all name spaces containing Smalltalk definitions. A
fragment of the base VisualWorks name space tree, with a couple extra-
base components added, looks like this:

Root
Smalltalk

Core
OS

IOConstants
Graphics

SymbolicPaintConstants
TextConstants

VisualWave
XProgramming

SUnit
In general, new name spaces should be contained within Smalltalk, either
directly or indirectly, rather than directly in Root.
6-4 VisualWorks

Name Spaces and Their Contents
New “top-level” name spaces, those defined directly in Smalltalk, must be
unique within the Smalltalk name space (there can only be one
Smalltalk.Bob). The VisualWorks team and various vendors have reserved
a number of top-level names. We maintain a Wiki site to allow you and
others to reserve top-level name space names, and to see what names
have been reserved, to help avoid name collisions at this level (for the list,
go to Reserved Top-Level name spaces for VisualWorks).

The exception to keeping name spaces under Smalltalk would be a
product that supports development and execution of another language,
such as Java, within a Smalltalk image. Such a product might create a
name space in Root, perhaps called JavaWorld, as well as various name
spaces nested within it. The resulting name space hierarchy might look
something like this:

Root
Smalltalk
JavaWorld

java
lang
awt

COM
sun
microsoft

If the Frost project were ever to be completed, it would probably take this
approach.

Smalltalk.Root.Smalltalk
In the Root name space there are two shared variables defined: Root and
Smalltalk. (To verify this, evaluate Root inspect.) Root refers to the name
space itself, and Smalltalk refers to the Smalltalk name space.

It is sometimes convenient to be able to refer to the Root name space
from Smalltalk, and so there is a shared variable defined in Smalltalk that
refers to Root. This leads to a circularity that can be confusing, but need
not be.

When working in Smalltalk, references to named objects are assumed to
start with Smalltalk, rather than Root. For most practical purposes, Root
can be ignored.

If for any reason you do need to refer to Root, the circularity allows you to
follow the same convention of starting with Smalltalk. So, to refer to the
Root name space from within Smalltalk, the full path would be
Root.Smalltalk.Root. But, because of the assumption of the Root.Smalltalk
initial segment, you can refer to it simply as Root.
Application Developer’s Guide 6-5

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/VW+NameSpace+Reservations

Name Spaces
Working with Name Spaces
In VisualWorks 7, the support for name spaces in the toolset has been
considerably changed. As a component model based upon packages is
being gradually introduced into the base system, the use of name spaces
as a mechanism for structuring components has been discouraged.

The biggest apparent change has been in the presentation of name
spaces in the system browser. These changes are covered in the
following sections.

Browsing Name Spaces
For working with name spaces, open the System Browser (select
Browse System in the Launcher window).

In the leftmost pane, with the Package tab selected, the navigator shows
the bundles and packages in the system. The second pane lists classes
and name spaces, with the name spaces distinguished by a special icon.

For example, in the screen above, the Core name space has been
selected in the class/name space view, and its definition appears in the
code tool (below).
6-6 VisualWorks

Working with Name Spaces
When a name space is selected in the class/name space view, the
Shared Variables tab appears, and is the only tab that is selectable. That’s
because name spaces only contain shared variable definitions. The next
pane, the traditional method category, or protocol, view, lists the
categories of any shared variable definitions in the name space.

Selecting a shared variable displays a special code tool for inspecting an
existing variable, or defining a new one.

When a class is selected in the class/name space view, the browser
behaves more like the traditional Smalltalk class browser. You now can
select the Instance or Class tabs, as well as the Shared Variables button. If any
shared variables are defined in the class, selecting the Shared Variables tab
will show any categories, and selecting one of those shows its shared
variables.

Creating Name Spaces
To create, select a package, and optionally the name space in which to
create the new one. Then select Class New Name Space... to open the
New Name Space dialog:

The fields are:

Package
The name of the package in which to include this name space
definition.

Name Space
The name of the parent name space for the new name space.

Name
The name for the new name space, such as MyCompany.
Application Developer’s Guide 6-7

Name Spaces
Private
Check if this name space is to be private, i.e., not available for import.

Imports
A list of imports, either specific or general, separated by whitespace,
and including “private” if appropriate. For example, enter:

private Smalltalk.*
XML.*

See “Importing Bindings” on page 6-14 for more information.

Then, click OK to define the name space.

Naming a Name Space
There is no particular mystery to naming your name space(s). Most of
your code will be application or add-ins, rather than extensions to the
base system. So, your name space:

• needs to see a lot of the standard VisualWorks library

• does not need to be seen by the standard VisualWorks library

• needs to avoid name clashes with the VisualWorks and other 3rd
party products.

The first of these is handled by imports, but is good to remember. The
second point means that there is no reason, in general, for your code to
be in an existing VisualWorks name space. The third suggests that you
want a name space that will be clearly your own, separate from all others.

To deal with these points, we recommend that you create your own “top
level” name space, immediately in the Smalltalk.* name space. To help
keep it clear that this is yours, it is a good idea to use some form of your
company name or similar designation, as suggested by the example in
“Creating Name Spaces” on page 6-7.

To help ensure that these top-level name space names are unique, we
maintain a Reserved Top-Level Name Spaces Wiki page. Instructions for
reserving your top-level name are provided on that page. You reserve a
name by adding it to the list. Make sure it hasn’t been taken by someone
else, first, of course.

As long as your top-level name is unique, subsequent names you select
for name spaces, classes, and shared variables under that top-level
name are protected from clashes with those outside of that name space.
So, you can name additional name spaces under your top-level name
space in any way that makes sense to you.
6-8 VisualWorks

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/VW+NameSpace+Reservations

Working with Name Spaces
When to Create a New Name Space
You should always have at least one top-level name space for your own
work. Beyond that, whether you need sub-name spaces depends on the
name-access requirements of your products.

You may well have use for separate name spaces for each of your several
products. Or, maybe not, depending on how tightly they interact.

In deciding, remember that all name spaces and classes created within a
name space have access to all shared values defined in it. Consider that:

• If all of your classes need to see all of your other classes, then they
all can reasonably be defined in a single name space.

• When you create classes that do not need access to some of your
other classes, then it is time to consider creating further name
spaces.

• If you create classes in one name space that need to access objects
in another, you can import that other name space.

It’s a judgement call that will become clear in practice.

Rearranging Name Spaces
Almost certainly you will need to move classes and name spaces around
to other name spaces in the course of development. This is quite simple,
using the System Browser:

1 In the class/name space list, find the class or name space to move.

2 Click and hold on the item, drag it to the target name space in the
name space list, and drop it.

The class or name space is then moved, and the lists are updated to
show the change.

To move a name space, you can also select it in the class/name space
list, and select Move to Name space... from the Class menu. Select the
target name space in the dialog that opens, and click OK.

Classes as Name Spaces
In some situations classes can serve as name spaces. In fact, classes
and name spaces are very similar, the main difference being that classes
are restricted as to the kinds of shared variables they can contain; they
can contain only general shared variables, which are its class variables.
Classes cannot contain shared variables that have name spaces or other
classes as their primary reference.
Application Developer’s Guide 6-9

Name Spaces
What had formerly been a class’s shared pools are now its imports, with
all the same properties as the imports to a name space. An extension
here is that a class can now import a single shared variable, by using a
specific import, as well as being able to import the whole pool. Refer to
“Importing Bindings” on page 6-14 for more information about general
and specific imports.

A class's superclass is implicitly an import of the class that can never be
declared private. This means that if A is a superclass of B, and B is a
superclass of C, anything that A does not declare to be private will be
visible to C, regardless of what B may declare private. This preserves
from previous versions the rule that all class variables (assuming that
they have not been declared private) are visible to all subclasses.

Referencing Objects in Name Spaces
Within the native naming scope of a binding, whether for a name space, a
class, or a shared variable, the object can be referenced to by unqualified
name. However, most objects will also have to reference objects that are
not native to the same name space.

For example, within the VisualWorks system, virtually any object needs to
reference objects in the Core name space, even though it is native to
another name space. Your application objects, which will be native to your
own name space(s), have to reference a wide range of objects in
VisualWorks name spaces, and possibly objects from other vendors.

There are a variety of ways to reference these named objects, as
described in the following sections.

Dotted Names and Name Space Paths
Binding names (names of name spaces, classes, and shared variables)
use a dotted notation that describes the path through the name space
hierarchy to the desired binding. While you seldom reference a binding
using its full dotted name (except when specifying imports), in order to
understand the other referencing methods you need to know about dotted
names.

The full path a dotted name begins with the Root name space, continuing
through the hierarchy to the target binding. For example, the full reference
to the ButtonHilite constant (in its native name space) is:

Root.Smalltalk.Graphics.SymbolicPaintConstants.ButtonHilite
6-10 VisualWorks

Referencing Objects in Name Spaces
However, the VisualWorks system, when parsing a compound dotted-
name, assumes the Root.Smalltalk initial segment. So, in practice, the
above reference is shortened to:

Graphics.SymbolicPaintConstants.ButtonHilite
This is the form of reference used in import statements, providing the
path starting immediately after Smalltalk.

If a binding is imported, the dotted name can specify the importing name
space path, instead of its native name space path. So, for example, if
Smalltalk.MyNameSpace imports ButtonHilite, the dotted name
MyNameSpace.ButtonHilite would also be a legitimate dotted name, and
would reach the variable; it is not necessary to reference ButtonHilite
through its native name space, SymbolicPaintConstants.

Because a dotted name introduces a path starting immediately after
Smalltalk, dotted names do not follow the relative path rules familiar from
file systems. You can, however, reference a binding relative to the current
name space context by beginning the path expression with “_.”
(underscore, dot). Using this notation, if a name space (MyNamespace1)
imports another name space (MyNamespace2), and MyNamespace2 has a
class (Foo) with a class variable (Bar), an instance of any object defined in
MyNamespace1 can reference Bar with:

_.Foo.Bar
Using dotted names in code to reference variables that are neither
defined in nor imported into the current name space, is permitted but
discouraged, because this use breaks encapsulation. There are,
however, occasions when they are needed. In source code, it is
sometimes necessary to refer to a variable that is not visible from the
current name space. For example, if a developer is adding a method to a
class that he does not own, and he may not have the freedom to add a
new import to the class's environment. In future releases we intend to
provide a better mechanism for extending classes, allowing extensions to
use variables not normally visible to the class, but they are not currently
available.

They were also needed in a workspaces before 5i.3, to evaluate an
expression that includes a variable from an arbitrary name space. In 5i.3
and later releases, however, workspaces import name spaces, so this is
no longer an issue.
Application Developer’s Guide 6-11

Name Spaces
Binding References
In an environment with name spaces, we need a way to reference a
shared variable that makes no assumptions about which name space
contains its definition. A binding reference provides this facility.

A binding reference is a named object that holds a starting point and a list
of names. It can identify an arbitrary shared variable relative to an
arbitrary name space, by identifying a navigation path from the name
space to the shared variable.

Most of the protocol for binding references is defined in the class
GenericBindingReference, with more specific protocol defined in
BindingReference and LiteralBindingReference. The common protocol
includes useful questions such as:

isDefined
Does the variable exist in the system?

binding
Answer the VariableBinding for the shared variable, or raise an error if it
doesn't exist.

bindingOrNil
Answer the VariableBinding for the shared variable, or nil if it doesn't
exist.

value
Answer the value of the shared variable, or raise an error if it doesn't
exist.

valueOrDo: aBlock
Answer the value of the shared variable, or the value of aBlock if it
doesn't exist.

A binding reference, when asked for its binding, iterates through its list of
names. For each name, it asks the current name space for the variable of
that name. If the name is the last in the list, it answers the shared
variable. If the name is not last, it uses the value of the variable as the
new current name space, and repeats the process with the next name in
the list.

There are two forms of binding reference, distinguished by how their
environment information is stored, corresponding to classes
BindingReference and LiteralBindingReference. The environment is the name
space scope within which the binding reference is evaluated.

Instances of BindingReference store their environment in their environment
instance variable. Accordingly, each instance knows its compilation
scope. Instances of LiteralBindingReference, on the other hand, store the
6-12 VisualWorks

Referencing Objects in Name Spaces
method that created them in a method instance variable, and their
environment is then determined from the compilation scope of the
method.

A simple way of creating a BindingReference is by sending
asQualifiedReference to a String, for example:

‘MyBinding’ asQualifiedReference
The syntax #{MyBinding} creates a LiteralBindingReference.

Inspect the results of each expression to compare their object structure.
Be aware that although the printing representation of both is the same,
they are not equal, being different classes of objects. (This inequality may
change at some later time.)

Both of these allow referencing the shared variable without the
programmer having to know or specify the path to the variable. The name
resolution environment determines the object referenced. Consequently,
it is not necessary to know whether the variable’s environment is an
import or native.

Note that the referenced binding does not need to exist when the binding
reference is created. It’s just a reference object, and is resolved at
compile-time.

In both cases, name space path information can be included as well,
using the dotted-name notation. Remember that compound dotted-
names always go back to Smalltalk, so the entire path from that point must
be given. For example:

‘MyNameSpace.MyBinding’ asQualifiedReference
or

#{MyNameSpace.MyBinding}
Other instance creation methods are available (browse class
BindingReference and GenericBindingReference). For example:

BindingReference path: #(Core Object)
which creates a BindingReference to Core.Object. Providing the path is often
necessary when specifying imports in name space and class definitions.

Note: Class QualifiedName in VisualWorks 3.0 was replaced by class
BindingReference in 5i and later, so be aware of this if you referenced
that class in your code.
Application Developer’s Guide 6-13

Name Spaces
Binding Reference Resolution
Binding reference are resolved in this order:

1. If a bindings is defined in the name space, the binding reference
takes it.

2. Next, bindings imported by a specific import are selected.

3. Finally, bindings imported by a general import are used.

See “Binding Rules and Errors” on page 6-18 for restrictions on imports.

When to Use BindingReference or LiteralBindingReference
The differences between BindingReference and LiteralBindingReference make
these objects not fully interchangeable.

The #{...} syntax is appropriate for asking questions of binding references,
such as isDefined, where the reference is short lived.

If a short-lived method (such as a DoIt) is used to create a reference for
long-term storage (such as in a Dictionary), use asQualifiedReference or
fullyQualifiedReference methods to create a BindingReference. Because a
LiteralBindingReference holds a reference to the method that created it,
putting this reference in long-term storage would prevent the creating
method from being garbage collected.

If the reference will be stored in a long-term data structure, but the
method which creates the reference is presumed to be equally long-lived,
the choice is yours, but using asQualifiedReference, may be the better
choice.

If the exact path of the binding reference is not known at compile time, but
is partially or fully computed at runtime, then you will have to use a
BindingReference, since #{...} syntax is not an option.

Importing Bindings
While it would be possible to require that you reference each object by
explicitly describing the name space path from Root to the target object,
that would be inconvenient, and would violate the object-orientation
principle of encapsulation. Instead, it is preferred to import the bindings
into the local object’s name space so they can be referenced by
unqualified name.

Name space and class definitions provide for importing bindings, by
including the bindings in the imports list. The binding name is specified
using the dotted-name notation, usually starting with the first name space
6-14 VisualWorks

Referencing Objects in Name Spaces
in the path under Smalltalk (Smalltalk is assumed, see “Dotted Names and
Name Space Paths” on page 6-10). For example, the XML name space
imports its sub-name space like this:

Smalltalk defineNameSpace: #XML
private: false
imports: '

private Smalltalk.*
XML.SAX.*
'

category: 'XMLParsing'
This is a general import, using the asterisk (*) pattern matcher to import
all bindings defined in the indicated name space. In this example, all
bindings in the Smalltalk and in the Smalltalk.XML.SAX name spaces are
imported. In particular, these lines import all name spaces defined under
Smalltalk (it would import classes, too, if there were any), and all classes
defined in the SAX name space are imported into the XML name space.

Note also that SAX is imported as public. Doing this has XML also export
those imported bindings, so that they are also imported by any class or
name space that imports XML. In this case this is the right thing to do
since there’s no reason for an application to have to import SAX
separately from XML; if it needs XML, it will need SAX, too.

As explained in “Public and Private Shared Variables” on page 4-16,
including the private keyword in front of the Smalltalk.* import prevents XML
from exporting those bindings. They can be reasonably expected to be
imported by each name space. For this reason, private Smalltalk.* is
included in the name space definition template.

On occasion a name space or class may need to import only a single
binding from another name space. This is done using a specific import.
For example, the TextConstants pool only needs access to one class in the
Core name space, so it uses a specific import:

Smalltalk.Graphics defineNameSpace: #TextConstants
private: false
imports: '

private Core.Character
'

category: 'Graphics-Constants'
Once properly imported, the imported name can be used directly, without
further path qualification.

Given this general explanation, the following specific cases may be
helpful.
Application Developer’s Guide 6-15

Name Spaces
Importing Classes and Name Spaces
When we mention “importing a name space,” we usually really mean
importing the contents of the name space, rather than only the name
space itself. The contents of a name space may include:

• class definitions

• other name space definitions

• general shared variable definitions

When defining a name space, you almost certainly want to import the
VisualWorks system classes. To do this, include:

private Smalltalk.*
in the imports list. Smalltalk itself imports several of its base sub-name
space bindings publicly (see “Circular System Imports” on page 6-17 for
an explanation), so this one line, a general import, brings in all of the
system classes, pools, and system variables (such as Transcript). Add-in
components, such as the Net name space used by Net Client support, are
not imported to Smalltalk, and so must be imported by your own name
spaces and/or classes.

In your name space definitions, you will probably import Smalltalk.* as
shown above. You do not need to import all of the individual base
Smalltalk name spaces, since these are already imported to Smalltalk. You
also should not (in general) add your class to the list of name spaces
imported to Smalltalk; there is rarely a need for an application class to be
that generally available to the entire system.

Importing Class Variables
It is seldom necessary to import a class variable explicitly. They are
visible to the class in which they are defined, and inherited by its
subclasses. Since they are used to store class state information, that is
sufficient. If you do need to import a class variable, import it like a pool
variable, with the class as its pool.

Note that importing a class does not import the class variables defined in
it; these variables must either be imported or referenced by an
appropriate path.

Importing Pool Variables
Pool variables are general shared variables defined in a common name
space, which is their pool. Depending on circumstances, you will either
want to import all of the pool variables, or only one or a few.
6-16 VisualWorks

Referencing Objects in Name Spaces
To import all pool variables in a pool, use a general import. So, for
example, to import all of the TextConstants, use this general import in
your class or name space definition:

imports: '
private Graphics.TextConstants.*
'

(See the definition of class TextAttributes.) This permits you to reference
each text constant by unqualified name.

To import a single pool variable, use a specific import. For example, to
import only the text constant Bold, use:

imports: '
private Graphics.TextConstants.Bold
'

This permits you to reference this one variable by unqualified name.

Circular System Imports
You may have noticed that the Smalltalk name space definition imports all
of the system name spaces:

Smalltalk.Root defineNameSpace: #Smalltalk
private: false
imports: '

Core.*
Kernel.*
OS.*
External.*
Graphics.*
UI.*
Tools.*
Database.*
Lens.*
'

category: 'System-Name Spaces'
while each of those name spaces’ definitions imports Smalltalk, e.g.:

Smalltalk defineNameSpace: #Kernel
private: false
imports: '

private Smalltalk.*
'

category: 'System-Name Spaces'
Application Developer’s Guide 6-17

Name Spaces
What’s happening is that Smalltalk imports each of its sub-name spaces
imports as public (for further export), so all of those bindings are
accessible directly from Smalltalk. Each sub-name space in turn imports,
privately, all of the bindings from Smalltalk, which includes all the bindings
Smalltalk imported from their siblings.

Now, for example, an instance of External.CComposite can reference
Core.Array by its unqualified name, Array. All of the base VisualWorks
classes, pools, and such, are accessible directly from Smalltalk, as before.

For the most part, this also simplifies migrating from pre-5i releases to
later releases, by making sure all the system classes are available. When
code is imported, it is loaded directly into the Smalltalk name space,
where it has access to the essential system classes, and so mostly works
without modification.

Binding Rules and Errors
Each imported binding name must be unique in the collection of names
defined in and imported into the name space. Accordingly:

• If two specific imports refer to shared variables of the same name,
the name space's definition is in error.

• If a specific import refers to a shared variable whose name is the
same as a shared variable defined locally in the name space, this is
an error.

• If two general imports bind the same name to different shared
variables, and a local definition or specific import of that name does
not exist, it is an error for a method to use that variable name.
However, the name space may define a specific import that clarifies
which of the two shared variables is desired.

• Local definitions of a shared variable and specific imports are
searched before general imports when binding a name to a shared
variable.
6-18 VisualWorks

7
Control Structures

Overview
Control structures in Smalltalk are invoked by sending messages to
various objects. The boolean objects true and false provide the if-then-else
machinery, while numbers, collections and blocks provide the looping
methods. These two types of control structure—branching and looping—
are described in this chapter.

The BlockClosure class provides the machinery with which these control
structures are implemented. You can use the same machinery to create
new control structures. Block syntax is described in “Block Expressions”
on page 4-25.

Branching
The Boolean classes True and False implement methods for performing
conditional selection (if statements).

Boolean Values
Many classes implement methods that test an object for a condition or
compare an object with another, and return a Boolean value—either true or
false.

The most basic tests, implemented in Object, are equality (=) and identity
(==), return true if two objects are equal or identical, respectively, and
return false otherwise.
Application Developer’s Guide 7-1

Control Structures
9 = 9 “returns true”
9 == 9 “returns true”
9 = 'nine' “returns false”
9 == (5 + 4) “returns true, the same SmallInteger”
'this is a test' = 'this is a test' “returns true”
‘this is a test’ == ‘this is a test “returns false; equal but different”
Array new = Array new “returns true”
Array new == Array new “returns false”

Similarly, numbers, strings, and a few other objects return a Boolean to >,
<, >=, and <= messages according to how the objects compare in size or
order.

There are also methods defined throughout the system, often named in
the form “isSomething”, where “Something” is the name of a kind of
object or a property, for testing whether an object is that kind, and
returning a Boolean response. For example, isString returns true if the
receiver is a String object, isNil returns true if the receiver has the value
nil, and isReadOnly returns true if the receiver has its “read only” property
set, and otherwise they return false.

anObject isString.
Using testing messages like these are useful in defining specific handling
of objects, based on condition of passing (true) or failing (false) the test, as
described in the next section.

Conditional Tests
Given an expression that evaluates to a Boolean, you can branch the
processing based on that value. The conditional test messages are

ifTrue: aBlock
Evaluates aBlock if the receiver is true.

ifFalse: aBlock
Evaluates aBlock if the receiver is false.

ifTrue: aBlock ifFalse: anotherBlock
Evaluates aBlock if the receiver is true, or anotherBlock if the receiver
is false.

ifFalse: aBlock ifTrue: anotherBlock
Evaluates aBlock if the receiver is false, or anotherBlock if the receiver
is true.

All of these messages must be sent to a Boolean, so of the last two, one of
the blocks in guaranteed to be evaluated.
7-2 VisualWorks

Branching
ifTrue:ifFalse: is the Smalltalk version of common if-then-else construct. In
the following example, a prompt string is selected depending on whether
the application user is a managerial employee:

(userType == #Manager)
ifTrue: [prompt := 'Enter your password']
ifFalse: [prompt := 'Access denied—sorry']

The blocks can be left empty when no action is required. This is so often
the case that ifTrue: and ifFalse: are provided as separate methods. In the
example above, if no password were required, the ifTrue: portion of the
expression could be dropped entirely.

Unless the block does a return (^), which exits the block and its
containing method, processing continues with the next expression.

Note that Smalltalk has no equivalent of the case statement provided in
many languages, because case statements tend not to be object-
oriented.

Compound Conditions
Compound conditions are formed by “and,” “or,” and “not” operations,
producing a Boolean value from one or more other Boolean values. The
following messages are available for performing these operations

and: aBlock
Returns true if the receiver is true and aBlock evaluates to true;
otherwise returns false. aBlock is evaluated only if the receiver is true.

& aBoolean
Returns true if the receiver and aBoolean are both true; otherwise
returns false.

or: aBlock
Returns true if either the receiver is true or aBlock evaluates to true, or
both; otherwise returns false. aBlock is evaluated only if the receiver is
false.

| aBoolean
Returns true if either the receiver or aBoolean is true, or both;
otherwise returns false.

not
Returns false if the receiver is true, or true if the receiver is false.

As suggested in the descriptions above, the alternate forms for the “and”
and “or” operations provide for different processing control. The & and |
binary messages always evaluate both the receiver and aBoolean
expressions when evaluating the value of the compound statement. The
Application Developer’s Guide 7-3

Control Structures
and: and or: keyword messages, on the other hand, only evaluate aBlock
if the value of the compound cannot be determined from the receiver
alone. If the receiver of and: is false, then the value of the compound must
be false regardless of the value of aBlock. Similarly, if the value of the
receiver of or: is true, the value of the compound must be true regardless
of the value of aBlock.

For example, in this example using the | binary message, both conditions
are evaluated, and an unhandled exception (subscript out of range)
occurs:

| aCollection |
aCollection := #('one' 'two' 'three').
aCollection notNil | ((aCollection at: 5) = 'five')

ifTrue: [Transcript cr; show: 'true'].
However, since the first condition is true, the complex condition should
evaluate to true. Using the and: keyword message instead defers
evaluating the block until it is needed, which it is not in this case, and the
message goes through as intended.

| aCollection |
aCollection := #('one' 'two' 'three').
(aCollection notNil or: [(aCollection at: 5) = 'five'])

ifTrue: [Transcript cr; show: 'true'].
This difference can be valuable in writing efficient methods.

Looping
Three types of iterative operation are available: conditional, number, and
collection looping. This section discusses the three types of looping.

Conditional Looping
Conditional looping involves a conditional test that determines whether to
repeat the loop.

whileTrue: and whileFalse:
In the previous example, the expression (userType == #Manager) is
evaluated just once. By contrast, the condition that drives a while loop
has to be evaluated multiple times. In Smalltalk, it is enclosed in the
square brackets that identify it as a block (an instance of class
BlockClosure). The whileTrue: message causes that block to receive a value
message, which triggers execution of the block’s contents. If the
7-4 VisualWorks

Looping
expressions in the receiver block return a true, the argument block is
executed. Then value is again sent to the receiver block to see if it is still
true, repeating the cycle.

The following example might be used in a game that ends when there is
only one player (the winner) left in the game:

[players > 1] whileTrue:
[nextPlayer takeTurn.
(nextPlayer outOfGame) ifTrue: [players := players - 1]]

To reverse the logic of the test, use whileFalse:. For example, to process a
stream of objects until the endpoint is encountered:

[self atEnd] whileFalse: [aBlock value: (self next)]
For situations in which no argument block is needed, the unary messages
whileTrue and whileFalse are available.

repeat
When a block of statements contains its own (reliable!) test for returning
from the loop, the simple message repeat can be sent to the block.

Number Iteration
Number looping corresponds to the traditional for loop, and is
implemented via messages to numbers.

timesRepeat:
To repeat a block of expressions a specific number of times, send a
timesRepeat: message to a number and provide the repeatable block as an
argument. For example, to send the string ‘Testing!’ to the Transcript
anInteger times:

anInteger timesRepeat: [Transcript show: 'Testing!']

to:by:do:
A more elaborate sort of for loop comes in the form of the to:by:do:
method, which lets you specify a starting integer, a stopping integer, the
step increment, and the block to be repeated. For example, to print
something like a word processor’s tab-setting ruler on the Transcript:

10 to: 65 by: 5 do: [:marker |
Transcript show: marker printString.
Transcript show: '---'].
Application Developer’s Guide 7-5

Control Structures
Here’s a translation: Count by fives from 10 to 65. Pass each such value
to the block, which converts it to a string and outputs it to the Transcript,
followed by three hyphens. The output looks like this:

10---15---20---25---30---35---40---45---50---55---60---65---
Notice that, unlike timesRepeat:, the to:by:do: method automatically passes
the value of the counter to the block (picked up by the argument named
marker in this case). The block must declare an argument variable to
catch the passed value.

to:do:
When the counting increment is 1, you can use the simpler to:do:. The
following example prints the ASCII equivalents of the numbers 65 through
122 in the Transcript.

65 to: 122 do: [:asciiNbr |
Transcript show: asciiNbr asCharacter printString]

Collection Iteration
Collection looping supports scanning, counting, and other operations
involving one repetition for each member of a collection. It is frequently
useful to repeat a series of operations for each element in a collection of
objects (collections are discussed further in the “Collections” chapter in
the Basic Libraries Guide). The integer iteration discussed above is a
special case, dealing exclusively with numeric intervals—i.e., collections
of integers. The iteration methods discussed in this section apply to other
kinds of collections as well. All are implemented by the Collection class,
which is the superclass of dictionaries, arrays, sets, strings, etc.

do:
The simplest method, do:, evaluates the block for each member of the
collection. For example, to capture the contents of an array during
program execution, we might want to convert each member to a printable
string and output it to the Transcript:

anArray do: [:anElement |
Transcript show: (anElement printString); cr]

select:
To filter a collection and wind up with a desired subset, use select:. Each
member of the collection that satisfies the conditions in the block is stored
in a new collection of the same type, which is returned by the method.
7-6 VisualWorks

Looping
The following example counts the number of question marks in a string by
gathering the question marks into a new collection and then finding the
size of that collection:

(aString select: [:eachChar | eachChar == $?]) size

reject:
The reject: method is the opposite of select:. It gathers the members of the
original collection that fail the test rather than those that pass it.
Substituted for select: in the example above, it would create a collection of
non-question-marks, which would then be sized.

detect:
The detect: method, like select:, tests each element of the collection. But
instead of returning a subcollection of those elements that pass the test,
it returns the first such instance (and stops testing at that point). The
following example locates the first instance of the integer 8 in anArray:

anArray detect: [:each | each == 8]

collect:
The collect: method performs a transformation on each element of the
collection and returns a new collection containing the transformed
objects. For example, to get an uppercase version of aString:

aString collect: [:each | each asUppercase]

inject:into:
The inject:into: method enables you to pass an explicit argument to the
block in addition to the collection’s elements. This explicit argument (the
inject: part of inject:into:) is used to initialize a counter for a cumulative
operation such as summing. For example, to add the numbers in aSet:

aSet inject: 0 into: [:subtotal :nextNbr | subtotal + nextNbr]
The following table summarizes the branching and looping methods
discussed in this chapter.

Control Structure Methods

Method name Description

ifTrue: If the prior expression is true, execute the
argument block.

ifFalse: If the prior expression returns false, execute the
argument block.

ifTrue:ifFalse: If the prior expression is true, execute the first
block; otherwise do the second block.
Application Developer’s Guide 7-7

Control Structures
ifFalse:ifTrue: Checks for a false condition first.

whileTrue: Repeat the argument block until the receiver
block is no longer true.

whileFalse: Repeat the argument block until the receiver
block is no longer false.

whileTrue Repeat the receiver block until it no longer
returns true.

whileFalse Repeat the receiver block until it no longer
returns false.

repeat Repeat the receiver block until it executes a
return or otherwise breaks the loop.

timesRepeat: Repeat the argument block, using the receiving
integer as a counter.

to:by:do Repeat for a specified interval, incrementing the
counter by a specified value. Use the repetition
counter as a block argument.

to:do: Same as to:by:do:, using 1 as the increment.

do: Repeat a block for each element in the receiver
collection.

select: Collect all elements that pass a test.

reject: Collect all elements that fail a test.

detect: Return the first element that passes a test.

collect: Transform each element and return the
transformed version of the collection.

inject: into: Perform a cumulative operation such as summing
the elements.

Control Structure Methods (Continued)

Method name Description
7-8 VisualWorks

8
Managing Smalltalk Source Code

Overview
In VisualWorks you write and edit Smalltalk code either in a system
browser or by using a tool like the UI Painter to create classes and
generate resource methods.

As you write code, you organize it in packages and bundles. You do this
all while working within the development environment, saving your code
in the image, without needing to manage external source files. For most
purposes, this internal view of the system is adequate.

However, it is also necessary to save code in external formats as well.
The system maintains several files that represent the current state of the
system. There are also the following options:

• “File-out” files are text-based files, similar to the source files of other
languages. Refer to “File-Out Files” on page 8-26 for more
information.

• Parcel files are an external representation of the packages and
bundles that organize your code, and provide an efficient code
deployment mechanism. Refer to “Parcels” on page 8-28 for more
information.

• For full team development, Store supports a database repository for
packages and bundles, and supports a wide variety of team
development activities (refer to the Source Code Management Guide
for more information on Store).

Parcels are particularly important, because they provide the component
technology for VisualWorks. Packages and bundles, while providing an
organizational structure for code, also model the contents of parcels,
Application Developer’s Guide 8-1

Managing Smalltalk Source Code
which are created by publishing packages/bundles as parcels. Because
of this close relation, we often refer to “components,” meaning parcels,
packages, and bundles when all three can be considered together.

This chapter describes both how to use packages and bundles to
organize source code organizational, and the external files that store that
code.

Organizing Smalltalk Code
A package is the primary organizational structure for code within the
VisualWorks environment. Minimally, using packages allow you to keep
your code organized separately from the code in the VisualWorks base,
add-ins, and third-party components. Within your own code, you can use
packages to separate individual projects, or components within a project.

Bundles provide for higher level organization of packages. Using bundles
you can organize your code into quite small packages containing only the
code for a specific feature, and then group related packages into larger
bundles representing larger units of functionality or an entire application.

The default view in a System Browser is the Packages view, which shows
the organization of the system into bundles and packages. This
organization forms a hierarchy of categories that is useful for locating and
browsing functionally related classes and their methods.

For example, in the base system there is a very large bundle called “Base
VisualWorks.” Bundles are identified by the bundle icon, and are
expandable in this view to show the packages and other bundles they
contain. Expanding the Base VisualWorks bundle shows that it consists
of additional sub-bundles and packages each containing some core
component of the system. For example, the Kernel bundle contains
packages that define core functionality of Smalltalk, such as how classes
are built and behave. The VisualWorks tools are separated from this core
functionality into their own bundle, sub-bundles, and packages.

Package and Bundle Contents
A package is a collection of code definitions, including class, method,
namespace, and shared variable definitions. Each definition in the
VisualWorks image is associated with a package (or with the special
(none) package).

A bundle is a higher-level organizing unit, representing a collection of
packages and/or other bundles. Bundles provide a way to group
packages into larger units, specifying relationships between packages.
8-2 VisualWorks

Organizing Smalltalk Code
Together, packages and bundles provide a powerful and flexible
mechanism for decomposing bodies of code into small, easily understood
units, and for assembling those small units into larger components.

A package may contain as much as an entire application or as little as a
single definition. Usually, however, neither of these extremes is optimal.
Instead, it is often preferable to decompose an application into modules
that support more specific features. At a large-grained level, most
application code bases can be decomposed into at least GUI and model
components. Complex GUIs can be further decomposed, possibly into
loadable modules. Complex models can similarly be decomposed,
separating, for example, client and server functions. Once these various
decompositions are achieved, which will often itself be an iterative
process, the overall application can be represented as a bundle, or
hierarchy of bundles, or smaller package modules.

For additional guidelines, refer to “Designing a Package Structure” on
page 8-10.

Browsing Packages and Bundles
When the Package tab is selected in a System Browser, the top left list
pane shows a tree view of the packages and bundles that are currently
loaded into the image. Bundles can be expanded to show the packages
and bundles they contain.

Select a package and the classes, name spaces, and shared variables
that are defined in it are listed in the class/name space pane. Note that a
class might not be itself defined in a package, but have a method defined
in the selected package while the class itself is defined in another.
Definitions of name spaces, shared variables and classes that are
themselves defined in the package are listed in bold type. Classes that
only have one or more methods defined in the package are listed in
regular font (unbolded).

When you select a bundle, the class/name space pane lists all of the
objects defined in any of the packages contained in the bundle. As you
expand the bundle tree and select a contained (smaller) bundle or
package, only the definitions in it are listed.

Next to a package or bundle name may be one of these condition
indicators:
Application Developer’s Guide 8-3

Managing Smalltalk Source Code
See “Code Overrides” on page 8-16 for information on code overrides.

When Store is loaded, the icons also change to indicate the
package/bundle condition, as described in the Source Code Management
Guide.

Loading Code into Packages and Bundles
You load code into VisualWorks from external files, either parcels or file-
out files, or from a Store database. In either case, the code is loaded into
packages, and so is entered into the VisualWorks organizational
structure. Depending on the source of the code, it might be further
organized into bundles.

Details of loading code from each type of source is covered in
appropriate sections of the documentation. Here we will summarize the
options and how the code is organized.

Loading from Parcels
Parcels are the standard external file representation of packaged code,
and are typically written by using the “Publish as Parcel” command for a
package or bundle. How the parcel code is organized when it is loaded is
determined by how it was created.

• If the parcel was written by publishing a package, it is loaded into the
same package.

• If the parcel was written by publishing a bundle with the Include bundle
structure option, then the bundle structure is reproduced when it is
loaded.

• If the parcel was written by publishing a bundle without the Include
bundle structure option, then the code is loaded into a single package,
and the former bundle structure is lost.

For specific instructions for loading parcels, refer to “Loading and
Unloading Parcels” on page 8-28.

* The package has been modified (only with Store
loaded).

+ The package extends classes in other packages,
possibly overriding some definitions.

- The package has definitions that are overridden by
another package.
8-4 VisualWorks

Organizing Smalltalk Code
Loading from a File-in Files
When loading code from a file-in, the packaging behavior varies
depending on the origination of the file.

• If filed out from either a pre-7.3 version of VisualWorks or a non-
VisualWorks Smalltalk environment, the code defaults to filing in to
the (none) package, and must be explicitly moved to an appropriate
package. This is because there is no package information in the file.

• If filed out from a 7.3 or later version of VisualWorks, the code
defaults to filing in to a package with the name of the original
package, typically the same as the file name.

To file in the code to a specific package, select the package (typically a
newly created package) in a System Browser, and select Package File
into For additional information about file-in files, refer to “Filing In
Code” on page 8-27.

Loading from a Store Repository
When packages and bundles are loaded from a Store repository, the
code is loaded with the same bundle structure as that with which it was
published. Refer to the Source Code Management Guide for details about
working with a Store repository.

Controlling Load and Unload Behavior
Packages can define preload, postload, presave, and preunload actions,
to provide special processing during these system actions.

Saving
Two mechanisms are provided for performing pre-save actions. These
actions are performed before actually publishing either as a parcel or to a
Store repository.

• Before saving, all classes defined in the package are sent a preSave:
message, with the package as argument. To specify a save action for
a single class, reimplement this class method in the class.

• You can define a pre-save block for the entire package, which can
perform any action. By default there is no pre-save block for a
package.

To create a package pre-save block:

1 Choose the package and click the Properties tab.
Application Developer’s Guide 8-5

Managing Smalltalk Source Code
2 Select Pre-save Action, and edit the pre-save block definition.

3 Select Accept to save the new block definition.

Loading
The load sequence for a package is as follows:

1. Any prerequisite components are loaded.

2. The package’s pre-load action is performed, if defined.

3. The objects in the package are installed into the system.

4. Every class defined in the parcel is sent the postLoad: message with
the package as an argument.

5. The package’s post-load action, if defined, is executed.

A pre-load action is typically used to initialize any undeclared variables
used by the code prior to its initialization. Class variables are handled as
shared variables, so can be added to a package normally, and do not
need to be defined in the post-load action.

To create a pre-load action, select the package in a System Browser, click
the Properties tab, then select the Pre-load Action property. Then edit the pre-
load block definition. Select Accept to save the new block definition.

The default behavior of postLoad: is to run the class’s initialize method, if it
has one, but subclasses can override postLoad: to perform any action. A
typical override is to retrieve objects saved in the parcel’s named objects
set by the class’s corresponding preSave: method.

Once all code has been installed and initialized, the package’s post-load
action, if defined, is run taking the package as an argument. This method
can be on an arbitrary class and have an arbitrary selector. We strongly
recommend that it be on a class defined by the parcel.

To define a post-load action, select the package in a system Browser,
click the Properties tab, then select the Post-load Action property. The edit the
post-load block definition. Select Accept to save the new block definition.

The post-load block can perform any action, but is typically used to open
initial applications, display installation banners, declare class variables,
and import objects saved by the parcel’s presave block.

Unloading
Before a package is unloaded, its pre-unload action, if defined, is run.
This action can be in an arbitrary class and have an arbitrary selector. We
strongly recommend that it be in a class defined by the parcel. This
8-6 VisualWorks

Organizing Smalltalk Code
method can take whatever action is required, but is typically used to
remove any class variables added by the package’s post-load action and
to close any applications defined by the parcel.

Removing a package that defined an open application is likely to break
the system, because the open application is obsolete, is unlikely to
function correctly, and may be impossible to close. ApplicationModel will
ask the user if it is OK to close any open applications defined by the
parcel. Most of the VisualWorks parcels provide examples.

To define a pre-unload action, select the package in a System browser,
click the Properties tab, and select the Pre-unload Action property. Edit the
pre-unload block definition. Select Accept to save the new block definition.

Managing Packages

Creating a Package
To create a new package choose Package New... in a System Browser,
and specify a name for the new package.

The new package is added to the Packages list in the browser. The new
package is represented in the image, and so is saved with the image. It is
also recorded in the Change List.

Adding Definitions to a Package
In general, all new definitions should be assigned to a package. You can,
however, for temporary code, assign it to (none) rather than to a named
package.

When you create a new class, name space, or shared variable, either by
selecting the package in the creation dialog, or by selecting the package
when you accept an edited creation template.

If you have unpackaged code, such as code that you initially assigned to
(none), you can assign it to a package at a later time. Select the item and
then choose Move in the <Operate> menu. Depending on the item
selected, you have several submenu selection. For classes and name
spaces, you can move:

Definition to Package...
Prompt for a target package, and move the currently selected class
into it.

Selection to Package...
Prompt for a target package, and move the currently selected class
into it. Only the parts of the class that are within the current package
are moved. If multiple packages are selected, all parts of the class
Application Developer’s Guide 8-7

Managing Smalltalk Source Code
within all selected packages are moved to the package. If the
navigator is set to view categories, the complete class (methods and
shared variables) are moved.

All to Package...
Prompt for a target package, and move the currently selected class
into it. The complete definition, including shared variables, is moved.

For protocols, methods, and shared variables, select Move to Package...,
and select the package. All definitions in the selection are moved to the
target package.

You can reassign items to a different package using the same menu
commands.

Removing a Package
To remove a package, you unload it from the system. Simply select the
package in a System Browser and pick Package Remove (Unload).

Managing Bundles
Bundles are used to collect and organize packages and other bundles.
Bundles are used to make loading packages more convenient, allowing
for flexible configurations, and also for assembling the contents of
deployment parcels out of smaller packages.

Creating and Arranging Bundles
A bundle provides a convenient way for you and your team to publish,
load, and merge the project packages as a set.

To create a bundle:

1 In the System Browser package list, select Local Image for a top-level
bundle. For a new sub-bundle, select the parent bundle.

2 Select Package New Bundle... to open the Bundle Specification
Editor.

3 In the editor, enter the name for the new bundle.

4 Select packages and/or bundles to include in the new bundle, and
click the Add to bundle contents button.

5 Arrange the load order of packages.

Load order only applies when Store is loaded and packages are
published to a repository. Refer to the Source Code Management
Guide for more information.
8-8 VisualWorks

Organizing Smalltalk Code
The Specification Editor lists bundles and packages in their load
order. If any definition in one package refers to a definition in another
package, then the referring package should be listed first.

To change the load order for an item, select it and move it using the
up and down buttons.

6 Click the Validate button to verify that the specified order will load.

Validating creates a list of packages that the bundle will load, and
verifies that, in the resulting load order, that each namespace and
class required by each package is either:

• loaded by the package or a package earlier in the ordering, or

• not loaded by any package later in the ordering.

If so, then the package is valid. It makes no attempt to validate
definitions that are not loaded by any of the packages, since they are
outside of the bundle’s control.

Make further adjustments as necessary.

7 When the bundle is complete, click Accept.

This creates the bundle in your image. It will be created in the database
when you publish it.

Editing a Bundle Specification
To modify the contents of a bundle, use the Bundle Specification Editor,
just as you did for creating the bundle. To open the editor:

1 Select the bundle in the System Browser package list

2 Select Package Edit Bundle Specifications...

3 Move packages and bundles into or out of the Bundle contents list.

4 Arrange the load order of by selecting a package or bundle and
clicking the up or down button.

5 Click the Validate button to verify that the specified order will load, to
check for conflicts.

6 When the bundle is complete, click Accept.

Removing a Bundle
To remove a bundle from the image, you unload it from the system.
Simply select the bundle in a System Browser and pick Package Remove
(Unload).
Application Developer’s Guide 8-9

Managing Smalltalk Source Code
Designing a Package Structure
When organizing an application into packages and bundles, think about
how you want to load the application into your deployment image or
running application. Because an application is frequently deployed as a
set of parcels (rather than simply loaded into an image, see “Publishing
as Parcels” on page 8-20), preparing ahead for what will be deployed in
individual parcels can save effort at the end of development. Ask
questions such as:

• Are there parts that must always be present?

• Are there parts that should start up together?

• Are there some features that might be used infrequently and could be
loaded only when needed?

Keep in mind dependencies between parts of your code. Be conscious of:

• Subcanvases

• Embedded and linked data forms

• Inherited behavior

• Resources such as bitmaps that are used from a central location

• Class variables that are used by other classes. For example, if one of
your classes keeps the name of the application’s working directory in
a class variable, it should be loaded first.

Because both packages and bundles can be published as parcels, it is
reasonable to partition code into more packages, and then group those
into larger bundles, which can then be published as parcels. Moving
packages between bundles, by editing the bundle specifications, is easier
than moving code between packages, and so reorganization is simplified
by using small packages.

When Store is loaded, and packages and bundles are published to a
repository for revisioning during development, this organization has other
benefits as well. Refer to the Source Code Management Guide for more
suggestions.

Package and Bundle Properties
Packages and bundles have several properties that provide either
information about them or control various behaviors related to loading
and unloading them. When published as a parcel, these features become
the parcel’s properties as well, with certain limitations.
8-10 VisualWorks

Organizing Smalltalk Code
Prerequisites
Prerequisites for a package, bundle, or parcel are other components that
must be loaded into the system before loading the component.

For specifying a particular version of a component, see “Prerequisite
Version Selection Action” on page 8-11.

For more information on specifying prerequisites, see “Specifying
Prerequisites” on page 8-12.

Warning Suppression Action
A package’s or bundle’s warning suppression action is a one-argument
block, where the argument is the name of a prerequisite. The block
suppresses the absent class warnings, that is, warnings about an attempt
to add code to a non-existent class. It does so on a per prerequisite
basis, so you can suppress warnings for selected prerequisites.

The block must return true for any prerequisite for which warnings should
be suppressed. For example, to suppress only warnings for MyPrereq, you
could enter:

[:prerequisiteName |
prerequisiteName = ‘MyPrereq’ ifTrue: [true]]

To suppress warnings for additional prerequisites, simply add them to the
test.

The warning suppression block is run before any of the package code is
loaded. Consequently it should not mention any code in the package.

The mechanism is limited. For example, if a prerequisite loads another
prerequisite that raises warnings, the block will not suppress those.

Prerequisite Version Selection Action
A prerequisite version string can be specified in the prerequisite property,
and is adequate if a specific version number is required. For more
general version control, such as to allow a range of versions, specify a
Prerequisite Version Selection Action.

Load and Unload Actions
Action blocks can be set to be evaluated at several stages of loading and
unloading parcels or packages by the bundle: preread, preload, postload,
preunload, postload, and presave. These are all listed as properties of
the bundle. View the help for each action for more information, and
browse the Store bundles for examples.
Application Developer’s Guide 8-11

Managing Smalltalk Source Code
Other Properties
The Other Properties page allows you to add additional properties to
packages and bundles. You can add whatever properties, with String
values, that you have use for. Browse various packages to see examples.

A few additional properties are used in the system, however.

• A comment property provides the text displayed in the Parcel Manager
as a description of a parcel published from this package or bundle. It
is also displayed as the comment in the Store Published Items
browser if published to a Store repository.

• A version property provides a version string displayed for a parcel
published from this package or bundle.

• A parcelName property provides a name for a parcel other than the
default, which is the package name.

• A packageName property provides a name for the package into which to
load code from a parcel published from this package or bundle,
instead of the default which is the original package name.

Specifying Prerequisites
Packages and bundles, and the parcels published from them, can have
prerequisites—other components that must be loaded first. You select
prerequisites because they contain code that is needed by the specifying
component.

This is usually because the prerequisite component defines a name
space or class that is extended or referenced by the component being
loaded. Before loading, a package or bundle verifies that its prerequisites
are loaded and, if not, loads them.

There are both deployment and development prerequisites. Deployment
prerequisites are used when loading a parcel. Development prerequisites
are used when loading a package or bundle from a Store database.
Accordingly, development prerequisites are relevant only if Store is
loaded and you are working with a Store repository.Prerequisites are
defined separately for deployment and development environments.
Development prerequisites are usually a superset of deployment
prerequisites.

Care should be taken when defining prerequisites. See “Guidelines for
Clean Loading and Unloading” on page 8-35 for the main considerations,
especially for deployment.
8-12 VisualWorks

Organizing Smalltalk Code
Each parcel can also define a prerequisite version block which it can use
to select appropriate versions of prerequisite parcels (see “Prerequisite
Version Selection Action” on page 8-11).

Specifying Deployment Prerequisites
Deployment prerequisites for a package or bundle are parcels that must
be loaded before loading the parcel created from the package or bundle.
To specify the prerequisite parcels:

1 Load any parcels that will be required as prerequisites.

You can specify parcels that have not been created or loaded yet
(see below), but it is much easier if they already exist and are loaded.

2 Select the package or bundle in a System Browser and click the
Properties tab. Then select Development Prerequisites property.

3 Select the packages, bundles, and parcels you wish to include as
prerequisites from the Available Parcels/Packages list, and click on the >>
button (you can select several components to add at once by holding
down the Control key).

You can add or remove components from the list using the >> and <<
buttons.

To include a component that is not shown on the list (that is not
loaded or might not yet exist), enter its name in the input field below
the Available Parcels/Packages list, and click on the Add button. Also
select the Type for the component, in this case.

4 (Optional) Specify a Version string that must match the component
version.

The Version is a string, and by default it is empty. To accept a range of
versions, use the Prerequisite Version Selection Action property.

5 Click on Apply to save the prerequisite definitions.

If you click the Compute Prereqs button, the system tries to figure out what
parcels are required, and adds those to the list. Do not rely on the
selections, but it gives a list to edit.

Specifying Development Prerequisites
Development prerequisites for a package or bundle are the packages,
bundles, or parcels that must be loaded before loading the specifying
package or bundle. To specify the prerequisite parcels:
Application Developer’s Guide 8-13

Managing Smalltalk Source Code
1 Load any components that will be required as prerequisites.

You can specify components that have not been loaded or created
yet (see below), but it is much easier if they are already loaded.

2 Select the package or bundle in a System Browser and click the
Properties tab. Then select Deployment Prerequisites property.

3 Select the parcels you wish to include as prerequisites from the
Available Parcels list, and click on the >> button (you can select several
parcels to add at once by holding down the Control key).

You can add or remove parcels from the list using the >> and <<
buttons.

To include a parcel that is not shown on the list (that is not loaded or
might not yet exist), enter its name in the input field below the
Available Parcels list, and click on the Add button.

4 (Optional) Specify a Version string that must match the parcel version.

The Version is a string, and by default it is empty. To accept a range of
versions, use the Prerequisite Version Selection Action property.

5 Click on Apply to save the prerequisite definitions.

If you click the Copy Deployment button, any deployment prerequisites are
copied to the Development Prerequisite list. This provides an initial list to
edit.

Specifying a Prerequisite Version
As noted in the procedures above, you can specify the version string to
match for each prerequisite component, by entering that string in the
Version field for the prerequisite. This is fine if a single, specific version is
required.

If more complex version requirements need to be set, specify those
conditions in the Prerequisite Version Selection Action property. The value of
the property is a three-argument block in the form:

[:parcelName :versionString :requiredVersionString |
booleanExpression]

The block arguments are the name of a prerequisite parcel being loaded,
its version string, and the version string specified in the prerequisite
property.
8-14 VisualWorks

Organizing Smalltalk Code
The block should answer true if the version is acceptable, and loading
continues. Otherwise the loader will continue to search for another parcel
of the same name with a different version. For example, this will load
versions greater than the required version:

[:parcelName :versionString :requiredVersionString |
versionString >= requiredVersionString]

References Between Packages
While developing an application, it is not unusual to define classes and
methods in one package that either refer to or are referred to by objects
that are defined in a different package. For instance, a package might
define a method for a class that is defined in another package; these are
referred to as “extension methods.” Similarly, a package might define a
subclass of a class that is defined in another package. The definitions
refer to definitions that may be unpackaged, or defined in other packages
that may be either load or unloaded in the system.

Finding such references can be important for maintaining the coherence
of packages, and the parcels generated from them. A few commands are
provided to help you locate such definitions. Then you can decide
whether the organization is acceptable, or whether some definitions
should be moved to more appropriate packages.

Currently, these commands are available only in the Parcel view of the
System Browser, on the Parcel menu.

To browse such references, select the parcel corresponding to the
package (they are usually named similarly) and pick one of the following
menu commands from the Parcel Browse menu:

Extension Methods
Opens a method browser on methods defined in the current parcel
that extend class definitions in other parcels.

Extensions of Defined Classes
Opens a method browser on methods defined in other parcels that
extend class definitions in the current parcel.

References to Defined Classes
Opens a browser on definitions in other parcels that refer to classes
defined in the current parcel.

Subclasses of Defined Classes
Opens a class browser on class definitions in other parcels that
subclass definitions in the current parcel.
Application Developer’s Guide 8-15

Managing Smalltalk Source Code
Using the browser, you can view the definitions and, if desired, use menu
commands to move them to more appropriate packages.

Code Overrides
A code override occurs when code in one package defines an item,
usually a method, that is already in the image but defined in another
package. Overrides provide a powerful and important capability for
component technology, but add complexity to managing the source code.

For example, your application might need to enhance the behavior
provided by a method in the base (enhancing printOn: is fairly common).
Or, your application may be layered in such a way that some standard
behavior needs to be modified when a special module is handled (maybe
the billing routines).

Only one definition of, for example, a method in a given class can be
active in the system at one time. When multiple components define the
same item, a decision must be made as to which is the active definition.
The rule is that the last loaded definition takes precedence, or overrides,
the former.

Additional consideration must be given to the consequences of unloading
components with overriding or overridden code. It is generally
recommended that last loaded be the first unloaded. In this case, the
system can restore the prior definition, and the system remains stable. If
the first loaded component is unloaded first, results are sometimes
unexpected. If the second is then unloaded, the system might even
become unstable because there is no obvious way to restore a prior
definition, if needed.

Most frequently, overrides happen accidentally, for example if two parcels
(or packages in a Store database) both define a method with the same
name, such as a Customer class and related methods. In most such
cases, the override can be eliminated by refactoring the application, using
name spaces, or being careful not to load conflicting applications. When
that is not practical, overrides are useful, but you need to be careful of
their interaction.

The main management issues for overrides pertain to loading and
unloading a module, usually from a parcel, when it defines something
already resident in the system in another module. If you are designing
such a dynamic environment, you must pay attention to how the modules
interact. Currently, the behavior is different between how packages are
loaded from parcels and how they are loaded from a Store database.
8-16 VisualWorks

Organizing Smalltalk Code
Creating an Override
As noted above, overrides are often created accidentally when loading
parcels, or packages from a Store database, that each have a definition
for an item. These often can be eliminated by refactoring the code.

When an override is intended, it should be explicitly created. The System
Browser includes menu commands for creating overrides of classes,
name spaces, methods, and shared variables.

To create an override, select the definition to be overridden in the System
Browser. Then in the item’s <Operate> menu (or the appropriate menubar
menu), select Override in Package... . Then select the package to contain
the override from the selection dialog, and click OK. The new definition is
added to the target package with the same definition as the original. Edit
the definition and Accept. (The option to add the override to a parcel is
available as well, but is mostly redundant and subject to removal in the
future.)

Reviewing Overrides
The System Browser indicates overriding and overridden definitions by
highlighting the name in red. For example, select the Base VisualWorks
bundle, browse the Object class and find its inspect method. The method
name is highlighted in red. In another System Browser, select the Tools-IDE
bundle, and again browse the Object class and find its inspect method. It
also is highlighted in red.

Notice that both definitions in the code pane are the same; there’s no
indication what the difference might be, or which definition overrides the
other. So, while the System Browser indicates when and where there are
overrides in the system, it is not very helpful otherwise.

The Override List tool provides a better view for identifying overrides and
command options for managing them. To compare the overridden and
overriding definitions, select the package to check in a browser and
select:

• Package Browse Overrides of others, to browse method definitions
that have been overridden, or

• Package Browse Overridden by others, to browse any methods
defined in the parcel/package that have been overridden by another
parcel or package.
Application Developer’s Guide 8-17

Managing Smalltalk Source Code
Initially a list of overriding or overridden definitions is shown. Select an
item to view the definition.

To compare the overriding and overridden version, select Show Show
Conflicts. The Show Conflicts menu command provides options for how
the conflicts are displayed. The pane on the left shows the overridden
definition, and the pane on the right, labeled System version, is the
overriding, the overriding definition.

To open the an Override List showing all of the overridden definitions in
the image, System Changes Browse System Overrides in the Launcher.
Browse System Overrides opens a list of all overrides currently in the system.
You can also select System Changes Open Override List to open an
empty list to which you can selectively add parcels and/or packages
containing overridden definitions.
8-18 VisualWorks

Organizing Smalltalk Code
In the following sections, we will describe how to perform the main
operations on overrides. For a full description of the Override Tool, refer
to the VisualWorks Tool Guide.

Resolving Overrides
Once you have identified an override, you can either retain it, if it is
intended and needed for your application structure, or you can resolve
the conflicting definitions. To resolve a conflict, you either remove an
overridden definition or make it prevail.

To make an overridden definition prevail, select that definition in the list
and select Replay Selection. Once replayed, the (formerly) overridden
“owns” the current definition, and competing definitions are removed from
all (formerly) overriding components. The parcels can now be saved
without conflicts blocking the operation.

To remove an overridden definition, first select it and select Remove
Selection to mark the definition for removal. You can mark several
definitions this way. Then select Forget Purge Marked. The overriding
definition now owns the definition, and the components can be saved.
Note that if the overriding parcel/package is unloaded, the overridden
definition will not be restored.

Publishing Parcels and Packages with Overrides
Parcels and Store databases differ in how they publish code with
overrides.

• If a package contains an overridden definition, an attempt to publish it
as a parcel will fail, and a notifier is displayed. When publishing a
parcel, only the code currently active in the system can be published.
You must resolve an override before publishing.

• If a package contains an overridden definition, publishing to a Store
repository will succeed, unless you are publishing binary; publishing
binary has the same restriction as publishing to a parcel.

• If a bundle contains a package with an overridden definition, an
attempt to publish it, either as a parcel or to a Store repository, will
fail; bundles do not support overrides at this time.

When publishing as a parcel or as binary in a repository, the result would
be to publish the overriding code, and the overridden code would be lost.
Rather than publish under these conditions, the operation is cancelled. To
publish, you must remove the override condition.
Application Developer’s Guide 8-19

Managing Smalltalk Source Code
When publishing to a repository, the change list mechanism allows
keeping the overridden and the overriding code separate, so the package
can be published while retaining its overridden code.

Publishing Packages
For deployment purposes, either packages or bundles can be “published”
as parcels, which are the file-based, deployed version of those
components. To describe the dependencies between parcels, packages
and bundles specify a variety of dependencies, or prerequisites, between
themselves, other components, and the VisualWorks environment. When
published as parcels, these dependencies are represented in the parcels,
ensuring a properly functioning application.

For more on parcels, see “Parcels” on page 8-28.

When Store is loaded into the image, package and bundle functionality is
extended with source-code revision management and database
repository features. During development, a bundle can be used to load a
set of packages, as a convenience mechanism. Refer to the Source Code
Management Guide for information about these features.

Publishing as Parcels
Packages and bundles are the structures used for organizing code within
VisualWorks. For deployment purposes, however, you typically want to
save your code to deployable files. In VisualWorks, parcels provide this
functionality. To create parcels from the code in your image, you publish
packages and/or bundles as parcels.

To publish a package or bundle, select it in a System Browser, then select
Package Publish as Parcel. The publishing dialog opens.
8-20 VisualWorks

Organizing Smalltalk Code
Some of the options provided in the dialog only apply when Store is
loaded into the system. These are greyed out if Store is not loaded.

When publishing a bundle, you have the option of saving the bundle
structure in the parcel. Check the Include bundle structure checkbox in the
publishing dialog. This option is greyed out if you selected a package
rather than a bundle.

Also note that, when publishing a bundle, properties attached to the
contained packages and sub-bundles, such as load and unload options,
are not included in the published parcel; only the properties belonging to
the selected bundle are preserved and written as parcel properties. You
will need to consider this when preparing your bundles and packages for
publishing.

In the Source options section, you have these options:

• Save source file to write the source code into the parcel source file
(.pst)

• Hide source on load hides the source code in the code browsers.
Application Developer’s Guide 8-21

Managing Smalltalk Source Code
• Pad source is needed only for huge parcel files, for efficiency of the
storage mechanism.

In the Miscellaneous options section, you have these options:

• Republish effectively reloads the parcel after publishing, to ensure that
the image and source files are kept synchronized.

• Backup makes a backup copy of an existing parcel, if it is going to be
overwritten

• Overwrite existing files if the parcel files already exist and are being
updated.

When the options are all set, click Publish. The parcel will be created and
saved in the current working directory.

Caution: If more than one image is saved with a parcel
loaded, saving the parcel will make sources out of sync with
the other image(s). In this situation, do not save the images
with the parcel loaded.

Source Code Files
An image file contains a snapshot of the current state of the VisualWorks
system, consisting of the objects in the system and their state. The initial
visual.im is such a snapshot of a basic development environment. As
you develop your application, you add objects (mostly classes and
methods) to the image, which you occasionally save as a new image file.
The image is the result of successive changes made to the system:
defining classes, methods, name spaces, and shared variables, creating
class instances, and modifying any of these. The image file is a binary
file, containing the byte codes for the objects is holds.

The originally shipped image file, visual.im, is accompanied by a
source code file, visual.sou, which contains the definitions for the
objects in the system, prior to any changes to it. When you browse any
unchanged item in the base image, the source for that item is found in
this file and displayed. The visual.sou file remains unchanged through
subsequent changes to the system. The sources file is an XML file-out
format file, as described below (see “File-Out Files” on page 8-26).

Note that the name of the original sources file does not change if you
save the image file to a new name (as you should), but remains
visual.sou. You can change the sources file name in the Settings Tool,
8-22 VisualWorks

Managing Changes
on the Source Files page, but this is seldom necessary or advisable. In
general, the same sources file represents the source code for all images
based on the initial image file.

As you make changes to the system state, whether by creating or
modifying class and method definitions, or just the state of objects in the
system by evaluating an expression with Do It, those changes are
recorded in the “changes file.” The changes file records a history of all
changes made to the initial image. You can browse the history of changes
using the Change List tool, as described in the VisualWorks Tool Guide.

As initially distributed, there is no changes file, because all of the source
code for visual.im is already in the sources file. As soon as you make
a change to the system, however, a visual.cha file is created
containing that change, and continues to grow as you work with the
system. The changes file has the same name as the image file. When
you save the image to a new name, such as “myApp,” both the image and
the changes are copied to the files myApp.im and myApp.cha,
respectively.

Archiving Source Files
These three files, the image, sources, and changes files, are all
synchronized, and operate together for the development tools to give a
reliable representation of the source code for an image. If the sources or
changes file is missing or not in the correct directory, the tools attempt to
represent the source code by decompiling the byte codes in the image.

Consequently, if you copy an image from one location to another, make
sure you also copy both its associated changes file and the original
sources file.

Managing Changes
As described in the previous section, a the state of a Smalltalk
environment is determined by the collection of changes (additions,
deletions, edits, and evaluations) performed on the original image. The
changes file tracks these changes. There are several ways in which you
can use this change history to maintain the system, as described in the
following sections.
Application Developer’s Guide 8-23

Managing Smalltalk Source Code
Recovering Changes
Because all changes are recorded in the sources files, it is possible to
recover or replay changes you have made to the system. This ability is
helpful in the case of a system crash or simply for recovering changes
that you made but might not have saved in the image or an external code
file.

To work with the changes, use the Change List Tool. This tool is fully
described in the VisualWorks Tool Guide.

Compressing Changes
The changes file gets very large over time, because it records each
change you make. It also accumulates out-of-date code, for example
when you define a class or method and then modify or delete it. Only the
latest definition is relevant to the system for browsing purposes, unless
you want to revert to an earlier version of a definition.

When the changes file gets too large, make sure the current definitions
are those you want to keep, and compress the changes file, using the
System Changes Compress Changes menu command in the Visual
Launcher. This cleans out old definitions and actions from the changes
file, leaving only those representing the current state.

Using Change Sets
Developers frequently have several projects going at one time. To ensure
independence between these projects, avoiding undesired interactions
between code changes, it is common to maintain several images, one for
each project. However, when independence is not critical, projects can
also be maintained in the same image by keeping them in separate
package/bundle sets.

Another mechanism for collecting changes on a per-project basis, is to
use, named change sets (also simply called change sets). By using
multiple change sets, you can keep the changes made for different
applications or subsystems separate, while maintaining a single
development environment. This is particularly useful if you work on
multiple small projects as the same time, and do not want to maintain
separate images for each.

Change set entries represent either new or changed class definitions and
their methods, or individual methods that you create or change without
modifying the class itself. These define a set of definitions that you can
then file out as a group.
8-24 VisualWorks

Managing Changes
Change Set Manager
You manage change sets by using the Change Sets Manager. In this tool,
you set the current change set and access operations on change sets,
using the menu options. This section briefly introduces the manager. For
complete information, refer to the VisualWorks Tool Guide.

To open the Manager, select System Changes Change Sets in the
VisualWorks Launcher.

The tool lists:

• The names of currently available change sets. There is always a
Default change set, which is selected until you create your own and
make it current.

• The Classes column lists the number of classes in each change set
that have changes to the class definition itself; filing out will include all
methods.

• The Methods column indicates the number of loose methods that will
be included when filing out (methods changed without changes to
their classes).

Selecting a Current Change Set
The Change Set Manager always has the Default change set, plus any
change sets that are defined in the image. If no change set is selected, or
if Default is selected, all changes go to the default change set. Otherwise,
they go to the selected change set.

To make a change set active or current, double-click on the name in the
change set list, or select it and pick Set Make Current. All changes you
make to the system will then be saved in that change set.

You can also change the current change set by clicking on the change set
icon on the status bar of the Launcher.
Application Developer’s Guide 8-25

Managing Smalltalk Source Code
Creating a New Change Set
To add a new change set, select Set New, or select New in the change
set list <Operate> menu. Enter a name for the change set in the
prompter, and click OK.

To make this the current change set, double-click on its name.

Alternatively, click on the change set icon on the status bar of the
Laucher, and select New Change Set.

Saving Changes
Change sets are typically used to identify sets of changes that can then
be distributed as file-out format files. Change sets are saved in source
code format, and so can be browsed in the Changes List.

To write out all the changes in a change set, select the change set and
select File File Out... . You will be prompted for a file name.

As a shortcut, to file out all save sets, select File File out All... . You will
be prompted for a directory name. The directory will be created, if
necessary, and a separate file-out file for each change set is written to it.

You can file out a single method by selecting it in the Change Set Editor
(ChangeSet Edit), then selecting File out as... in the <Operate> menu.

Note that, when filing out a change set that includes defining a class, all
subsequent changes made to methods in that class are also (implicitly)
assigned to the change set. This is true even if a different change set is
“current” when those method changes are made. A file-out the first
change set will include the method definitions.

File-Out Files
VisualWorks supports filing-out source code in two formats: the traditional
“chunk” format, and an XML format.

The traditional source code format for Smalltalk code is chunk format.
The format is also called file-out format, because it is also used for
writing, or “filing out,” Smalltalk source code for arbitrary individual or sets
of definitions. These file-out files can then be read into, or filed-in to, any
compatible Smalltalk image (usually a compatible version of the same
Smalltalk dialect).

With the development of XML and its promise for data interchange,
VisualWorks also can save source code into an XML format. This
provides various internal system advantages as well, allowing the system
to take advantage of XML structuring.
8-26 VisualWorks

File-Out Files
XML format is the default file-out format in VisualWorks, and is used to
write out changes and file-out files. To change to traditional chunk format,
use the VisualWorks Settings Tool (System Settings in the Launcher
window), and change the default on the Source page.

Chunk format is only needed if you are porting your code to another
dialect or to a version of VisualWorks prior to 5i. For file-outs to be ported
to a pre-name space version of VisualWorks or another Smalltalk dialect,
load the FileOut30 parcel (FileOut30.pcl) goodie, which adds this
additional format option to the Source page in the Settings tool.

Filing Out Code
File-out commands are available in many menus throughout the
VisualWorks system. Depending on the menu, the command will file out
different collections of definitions. You are prompted for a file name, to
which is appended a .st filename extension. There is no indication in the
file name whether the file is in XML or chunk format.

For example, in the System Browser, the File Out As... menu selection will
file out either all definitions in a name space, in a class, in a protocol
(method category), or a single method, depending on what is selected
and which menu is invoked. The Category, Class, Protocol, and Method
menus, and the <Operate> menus for each pane, each have a file out
command, and do the appropriate action.

Additional file out commands are available in special browsers,
debuggers, the change list and change set tools, and so on, allowing you
to file out exactly the definitions you want to save. For example, to collect
specific changes for transporting to another image, create a change set
so your changes are recorded in it. When you are ready to save all of the
changes in the change set, use the Change Set tool’s File out as
command.

Filing In Code
Filing in source code from a file-out file is most commonly done using the
File Browser tool (File File Browser, or the corresponding icon in the
Launcher window). Enter the name of the file, or select it in the list pane
after displaying its directory. With the file selected, select File In... from the
<Operate> menu.

Note that if you file in a file from a pre-5i version of VisualWorks, the code
is loaded into the Smalltalk.* name space.
Application Developer’s Guide 8-27

Managing Smalltalk Source Code
Parcels
Parcels are the component deployment technology for VisualWorks,
providing a fast object loading mechanism especially suited to deploying
Smalltalk code. All standard VisualWorks add-in components are
provided as parcels.

Parcels provide the following features:

Partial loading
Some definitions in a parcel might not be loadable, such as a method
if its class hasn’t been loaded. Partial loading allows the parcel to
load without such definitions, and then loads them later if the required
definitions are loaded. See “Partial Loading” on page 8-37.

Override unload support
Parcels remember any methods and classes they replace on load,
and restore these methods on unload. See “Code Overrides” on
page 8-16 for more information about overrides.

Save, load, and unload actions
Parcels can have pre-load, post-load, pre-save and pre-unload
actions. These are initially defined for packages and bundles and are
then assigned to the parcel when it is published. See “Package and
Bundle Properties” on page 8-10 and “Guidelines for Clean Loading
and Unloading” on page 8-35.

Prerequisites and autoloading
Parcels can include the names of prerequisite parcels, which are
automatically loaded when the requiring parcel is loaded. See
“Specifying Prerequisites” on page 8-12.

Shape-change tolerance
Parcels containing both code and objects whose class definitions
differ from the current system versions. See “Shape Change
Tolerance” on page 8-38.

Loading and Unloading Parcels
Typically, you load parcels into your development environment using the
Parcel Manager, as described in “Loading Code Libraries” on page 2-10.
There is also a Load option in the Parcel view of the System Browser
(Parcel Load...). And, there is a Load option in the Visual Launcher
(System Load Parcel Named...). Each of these also has unload options.

For deployed applications that need to load parcels, you can either load
the parcels programmatically or load at startup using command line
options.
8-28 VisualWorks

Parcels
Note that loading a class definition from a parcel does not overwrite a
class definition already in the image. To change a class definition, use a
pre-load action.

Parcel Files
Parcels are saved in two files. Parcel files containing compiled code in a
binary format have a .pcl extension, and files containing the
corresponding source code have a .pst extension.

Despite the superficial resemblance between .pst source files and .st
file-out format files, .pst files do not file-in properly. They are strictly
source files for their corresponding.pcl binaries. They can, however, be
browsed in the Change List for comparison with a loaded parcel by
viewing differences between the system and an opened file.

Loading Parcels Programmatically
An application may load parcels dynamically as needed. For example,
when a user starts a new tool or opens a new window within the
application, the application may load the parcel containing that tool or
window.

The following line of code loads a parcel from the file UIPainter.pcl:

Parcel loadParcelFrom: '..\parcels\UIPainter.pcl'
Similarly, when the parcel is no longer needed you may unload it:

Parcel unloadParcelNamed: 'UIPainter'
Note, however, the difference between these two messages. To load the
parcel you specify its filename; to unload the parcel you specify its parcel
name. The two may be very different.

When deciding whether to use these and similar messages (browse
Parcel for the full API), consider the following:

• how to handle a load request if the parcel is already loaded; whether
to use the already-loaded parcel or reload the parcel from the file.

• how easily and regularly you need to replace your application’s
parcels with new, up-to-date parcels. Frequent updates may argue in
favor of dynamic loading.

• how quickly your application should respond. There is time overhead
incurred by dynamic loading and unloading.

Loading Parcels with Command Line Options
The following command line options work with either a development or a
deployment image (see class ImageConfigurationSystem).
Application Developer’s Guide 8-29

Managing Smalltalk Source Code
-pcl parcelFile1 parcelFile2 ...
Load the files into the image on startup. The parcel file name may be
either an explicit file name or a parcel name on the parcel path.

-cnf configFile1 configFile2 ...
Load all of the parcel files named in configuration files (one or more)
on image startup.

-psp dir1 dir2 ...
Sets the parcel search path to include the specified directories.

For example, to load a single parcel, say the UI Painter parcel, on startup,
execute the command (MS Windows form, from the image\ directory):

..\bin\win\vwnt.exe visual.im -pcl UIPainter
If you have several parcels to load, use an image configuration file listing
the files. The file is a plain text file listing the filenames, separated by any
whitespace character (typically a space or carriage return). If the file
names include whitespace characters, enclose them in quotation marks.
For example, to load the HotDraw goodie parcels, you can create a
HotDraw.txt file containing:

"..\goodies\other\HotDraw\HotDraw Framework.pcl"
"..\goodies\other\HotDraw\HotDraw Animation Framework.pcl"
"..\goodies\other\HotDraw\HotDraw Drawing Inspector.pcl"
"..\goodies\other\HotDraw\HotDraw HotPaint.pcl"
"..\goodies\other\HotDraw\HotDraw Animated Examples.pcl"

Then, to invoke the file, assuming it is in the image\ directory, you would
execute:

..\bin\win\vwnt.exe visual.im -cnf HotDraw.txt
Setting the parcel search path with the -psp option would allow you to
simplify the configuration file to list only the file names, without the path
information:

..\bin\win\vwnt.exe viauls.im -psp ..\goodies\other\HotDraw -cnf HotDraw.txt
8-30 VisualWorks

Parcels
Parcel Search Path
The parcel loader searches for parcel names (not explicit file names) on
the parcel search path. You can view and change this path using the
Settings Tool (System Settings on the Launcher menu), on the Parcel path
page.

To add a path to the list, enter it in the space provided and click Add. The
$(VISUALWORKS) prefix matches the VisualWorks home directory. You
can also specify a full directory path.

To change the search order, select an entry and drag it up or down in the
list. Directories are searched from top to bottom.

To delete a directory from the search path, select it and click Delete. To
edit an entry, select it, edit it in the entry field, and click Change.

When you are finished making changes to the parcel path list, click Accept.

The parcel path is saved with the image. You can also export the path
setting to a file, either with the entire collection of VisualWorks settings or
separately saving only the path settings. In the Settings Tool, open the
<Operate> menu on Parcel Path. Then select:

• Save to save all settings

• Save Page to save only the parcel path
Application Developer’s Guide 8-31

Managing Smalltalk Source Code
In either case, specify a name and directory for the settings file and click
Save. You can then load the settings into another image using the Load or
Load Page commands.

Managing Parcels
In general, parcels do not require any specific management. Instead, you
define their content by organizing your code into packages and bundles.
Then, to create a parcel, you publish a package or bundle as a parcel, as
described in “Publishing as Parcels” on page 8-20. Loading and
unloading parcels is generally done using the Parcel Manager,
programmatically, or on the command line, as described under “Loading
and Unloading Parcels” on page 8-28.

For a few special purposes you may need to view parcel contents
explicitly, which you can do using the Parcel view in the System Browser.
For example, to make final adjustments for deployment it might make
sense to work directly on the parcels. There are also a few operations
currently only supported in the Parcel view, as described in this section.

To view the loaded parcels within the Browser, select Browser Parcel.
The browser’s menus change to activate parcel maintenance activities.
8-32 VisualWorks

Parcels
The browser’s navigator can be used to show only the definitions that are
in the current parcel. Use the <Operate> menu in the parcels list.

Parcel Condition Indicators
Text formats are used in the Browser to indicate various states of code
with respect to parcels.

In the parcel list, parcels have characters following their name indicating
the parcel’s state:

Creating a New Parcel
You do not usually need to create a parcel explicitly, because they are
created from packages and bundles when those are published. There
may be occasions, however, when you do need to explicitly creates a
parcel.

To create a new parcel, select Parcel New... in a System Browser set to
Parcel view. Enter a name for the new parcel in the prompter dialog, and
click OK.

The parcel name may be any string, except that leading and trailing blank
spaces are stripped, and any embedded series of blank spaces is
reduced to a single space. Parcel names must be unique within the
image.

Adding and Removing Definitions
When you create new classes or methods while a parcel is selected in
the browser’s parcels list, they are added to that parcel. Definitions that
do not belong to any parcel may be viewed by selecting Unparceled in the
parcels list.

Bold Marks any class or method that contains something
defined in the selected parcel.

Red Red text identifies items defined in more than one
parcel, as a warning about potential conflicts.

* the parcel is “dirty”; it has been modified in some way

< the parcel has been loaded

! the parcel has unloaded code (see PartialLoading)

+ the parcel has overridden previously loaded definitions
upon loading

- the parcel contains definitions that have been
overridden by other loaded code
Application Developer’s Guide 8-33

Managing Smalltalk Source Code
To add an existing definition to a parcel, move the definition to the parcel.
There are several move commands, varying with the type of definition.
Select the definition to move to the parcel, then pick the appropriate
action on the Move menu for that item type, or its <Operate> menu.

For example, to move a method definition, select the method in the
browser and pick Method Move to Parcel... . If you move a protocol, all
of its members are added to the parcel.

For a class you have a choice of Definition to Parcel..., which moves only
the class definition but not methods; Selection to Parcel..., which moves the
class and methods defined in the current parcel; and All to parcel..., which
moves the class, all methods, and shared variable definitions, whether
defined in the selected parcel or some other.

Name spaces must be moved separately, even if defined relative to a
class. If your code is defined in your own name space, make sure to
parcel the name space as well. Select the name space, then choose
Move to Parcel... .

Saving a Parcel
Saving a parcel in the Parcel view of a System Browser is just like
publishing a package or bundle in the Package view. Refer to “Publishing
Packages” on page 8-20.

Finding Unparcelled Methods
You may well create methods outside of parcels altogether that should be
included in one of your parcels. Two utilities are provided to help you
locate such methods: Browse Unparcelled methods used exclusively and
Browse Unparcelled methods defined in classes.

Since most of the methods in the system are not defined in parcels (such
as base system methods), a list of all unparcelled methods would not be
helpful. These lists filter the collection of unparcelled methods to just
those probably of interest to your parcels.

It is possible that your parcel is the only user of some unparcelled method
that is defined in the base system or saved in the image, so don’t
automatically add any reported method to your parcel. The utilities
display any candidate methods in a method browser. Examine the
methods carefully before deciding to add them to your parcels.
8-34 VisualWorks

Parcels
Guidelines for Clean Loading and Unloading
For parcels to load and unload cleanly, observe the following guidelines.

Organize parcels in a tree and do not cross-reference
Unloading parcels with cross-references will create undeclared
references, and cause problems for clean unloading. To avoid cross-
references, arrange the core parcel of your package so that it refers
only to classes in the base or other standard parcels, and to the
classes it defines. Within the core parcel, do not refer to classes
defined in parcels that require the core parcel as a prerequisite.

Cleanly loading parcels with cross-references is not a problem.

Parcels support extension methods, so you don’t have to put an
entire class in a single parcel but can decompose it across a number
of parcels. The UIPainter is an example; all the painter-related
functionality for Specs is separated out from the builder related
functionality, allowing the painter to unload cleanly.

Order prerequisites carefully
Classes must be ordered correctly if they are to initialize without
error. When a class is initialized, all of the classes that it depends on
for its initialization must be themselves initialized. VisualWorks orders
classes automatically given information defined in the class’s
prerequisitesForLoading method. See ClassDescription>>
#prerequisitesForLoading and Class>>#prerequisitesForLoading for the
defaults. These include a class’s superclasses and the defining
classes of any objects used by a class. But this may not be sufficient.

For example, in the Lens there are a number of classes that require
other unrelated classes to be initialized before they can be.
LensGraphView requires both LDMRelationship and LDMPerspective to be
initialized first. Hence LensGraphView class’s prerequisitesForLoading
includes these classes in its default set of prerequisites.

If a class is not properly loaded, you will get a walkback when you try
to load the parcel. If this happens, use the debugger to trace back the
chain to CodeReader>>installInSystem, where it is sending postLoad: to
the classes in the parcel in the order defined by their prerequisites.
Run the required class initializers by hand until you can proceed
successfully, noting which class caused the error and the class it was
trying to use in its initialize. Once the parcel has loaded, you can add
or extend the offending class’s prerequisitesForLoading method and try
again. Soon you’ll get your parcel to load smoothly.
Application Developer’s Guide 8-35

Managing Smalltalk Source Code
Unfortunately, due to the way the system sorts classes, a parcel that
loaded cleanly once may fail to load in a different configuration. Again
the solution is to augment relevant prerequisitesForLoading methods.

Order classes carefully
To unload, classes must be ordered and have no references to
themselves or their instances. Unload order is the reverse of the load
order, as defined by prerequisitesForLoading.

When classes are removed from the system, they are sent the
obsolete message. The default behavior is to remove the class from its
superclass and nil all its instances fields. This may be insufficient to
cause the classes to be garbage collected. For example, the class
may be referred to in some collection or have been added as a
dependent of some class (usually ObjectMemory, which is used to get
notification of image load/save/exit). The obsolete method should
remove references such as these made during initialization.

You can use SystemAnalyzer>>#obsoleteClasses in the Advanced Tools
System Analysis parcel to track down problems. The parcel also
contains ReferencePathCollector, which can be used to find the path of
references from global variables to any object and to obsolete
classes and their instances.

Check Undeclared
Take care to check Undeclared when you define, load, or unload a
parcel you’re developing. Eliminate references to declared variables
by restructuring your program.

Limitations and Restrictions

Restrictions on Parcel Contents
Several restrictions apply to a parcel’s contents:

• A class’s instance and class side definitions must be contained in the
same parcel; they cannot be broken apart.

• Named objects cannot be instances of the following classes:
8-36 VisualWorks

Parcels
• Named objects cannot be block closures that have associated stack
contexts.

Partial Loading
Parcels support partially installing definitions from a parcel. If a parcel
contains a class that requires a superclass which is not present in the
system, or a method that requires a class which is not present in the
system, the class or method is not installed. Instead, these classes and
methods are added to either the uninstalledClasses or uninstallededMethods
set for the parcel.

Whenever a parcel is loaded, parcels with uninstalled code check
whether the required absent classes have now been loaded. If so, the
parcel installs the class and method definitions.

Classes that are installed in this way are sent postLoad: to initialize them
when they are installed. They can distinguish being installed after partial
loading because the parcel argument to postLoad: will answer true to
isLoaded. (See “Guidelines for Clean Loading and Unloading” on
page 8-35.)

You can browse a parcel’s unloaded code by opening the Change List
and selecting File Display Parcel... . The names of unloaded classes and
methods are also listed in a Parcel’s summary.

Currently the uninstalled code mechanism works only for loading, not
unloading. If parcel A is extended by parcel B, then unloading A does not
cause B’s extensions to A to revert to unloaded code. Hence a
subsequent reload of A will not see B’s extensions.

Saving a parcel with uninstalled code would lose the uninstalled code. A
dialog notifies you of the condition, and the save is canceled, so you do
not lose code silently.

CDatum Context Controller

Exception ExternalInterface GraphicsContext

GraphicsDevice GraphicsHandle GraphicsMedium

LensContainer LensGlobalDescriptor LensSession

OSHandle Process Semaphore

Signal VisualPart WeakArray
Application Developer’s Guide 8-37

Managing Smalltalk Source Code
To correct the condition, you should load any prerequisite parcels until all
uninstalled code has been installed. Typically, loading a parcel's
development prerequisites will load the necessary code. See “Specifying
Prerequisites” on page 8-12 for more information.

Shape Change Tolerance
Shape change refers to the redefinition of classes that add or remove
instance variables, or make the class indexable on bytes or objects. This
causes the objects defined by the class to acquire or lose fields, or
“change shape.”

Parcels have a shape-change facility for instances and methods that tries
to adjust objects so they can still be loaded. If a parcel loads an object
whose number of instance variables has changed, it assigns the values of
variables with the same name, discards the values of missing variable
names, and leaves new variables nil. If a parcel loads a class that has
changed shape, for example, because its superclass has changed since
the parcel was defined, then the class’s methods will have their instance
variable offsets adjusted to reflect their correct positions.

A parcel can include a class definition alone, for purposes of changing
class shape. To do this, create the definition and simply add it to the
parcel. The Parcel Browser adds all method definitions, too, so you need
to remove these from the parcel, if there were any.

There is currently no mechanism for the user to provide arbitrary shape-
changing code for loaded instances, as was the case for BOSS. This
limitation will be lifted in subsequent releases.

The system cannot cope with shape changes other than the addition or
removal of named instance variables. Changing a byte object into a
pointer object or vice versa will always break the system. This restriction
will not be lifted.

If two class definitions both change a class’s shape, the last definition
loaded will win. Definitions are overwritten, not merged, so, for example,
instance variables from two definitions are not both added.
8-38 VisualWorks

9
Application Framework

Overview
The VisualWorks application framework greatly simplifies the task of
building an application. The basic framework separates UI objects, such
as windows and the widgets and menus they contain, from the domain
objects, which represent the elements and processes that the application
is modeling. The UI and domain are connected by an application model
which creates the UI from specifications, connects the UI to the domain,
and manages communication between the UI and domain during the
application run.

As with any object-oriented construct, the application framework consists
of objects that provide services to collaborating objects. This chapter
gives an overview of the main mechanisms in the application framework.
While this is useful information and will help make sense of how the
VisualWorks tools operate within the framework, you can skip this
discussion. The following chapters address building an application using
the framework.

Separating the Domain and the User Interface
The first and most fundamental aim of the application framework is this:
Keep the domain model separate from the user interface.

An application has one or more domain models, which define the
structure and processing of data in the domain of the application. For
example, in a sketching application, the domain model is responsible for
storing the lines that make up the sketch, and for adding and removing
lines upon request.
Application Developer’s Guide 9-1

Application Framework
The user interface (UI) is the part of the application that presents data
and application status to the user, and accepts input from the user by
mouse and keyboard actions. The UI display is generally graphical (so
called a GUI), consisting of one or more window containing widgets,
graphical controls such as buttons, input fields and lists.

Separating the domain model from the UI makes the application easier to
maintain, and also promotes reusability of the application components. If
the domain model provides generic services rather than services that rely
on special knowledge about a particular UI, it is easier to substitute a
different interface later as UI technology and user needs evolve.

Separation also makes it easier to provide multiple UIs for a single
domain model, perhaps one for a novice user and another for an expert
user.

Application Model Acts as Mediator
Obviously, the user interface and the domain model need to work
together. To avoid either the model or the UI having to support a lot of
code that really has nothing to do with its proper function, the
VisualWorks framework employs a mediating object, the application
model.

The application model handles the logic of how a window and its widgets,
which know nothing of a particular domain model, collaborates with a
domain model, which knows nothing of the UI, to form a unified
application. The application model is the glue that holds the application
together.

A VisualWorks application is defined as a subclass of ApplicationModel to
act as mediator. This subclass can be created manually, or automatically
generated from the canvas when the user-interface is “installed.”
Windows, menus, some graphics, and other “resources” are defined
within the application model.
9-2 VisualWorks

Separating the Domain and the User Interface
Value Model Links Widget to Attribute
An application model coordinates communication between domain
objects and UI objects by defining a relationship between them. Each UI
widget is related to an attribute or operation of domain objects.

A user action on a widget, such as clicking a button or entering data in an
entry field, either modifies an attribute of a domain object or starts an
operation defined in the domain model. For example, for an attribute-
setting widget, such as an entry field, the application model translates the
value received by the widget and sends the appropriate value-setting
message to the domain model. Similarly, if a value changes in the domain
model that affects the UI, the application model picks up that change and
sends it to the UI.

The mechanism that the application model uses is called an adaptor. An
adaptor stands between the specific interfaces of the UI and domain
objects, adapting messages and values so they “fit.” The adaptor is also
referred to as a value model, because it defines the relation between an
attribute’s value and widgets that depend on that value.

There are different kinds of value models for different kinds of attribute
values. For example, a ValueHolder is used when the attribute value is a
simple data value such as a string of characters. An AspectAdaptor is used
when the data value is embedded in a composite attribute or in a domain
model separate from the application model.

Value models are created from the UI by the Define operation in the UI
Painter. The result is generally a “stub” method that requires additional
coding to complete the adaptor operation.

User interface

Domain model

Application model
Application Developer’s Guide 9-3

Application Framework
Builder Assembles User Interface
When a VisualWorks application is started, the application model
delegates the process of building the actual interface to an instance of
UIBuilder. The builder uses the specifications for the user interface,
including the widgets and properties for each widget, defined in the UI
Painter. This builder object is an important part of the application
framework. For example, you can programmatically access a specific
widget by asking for it by name from the builder.

User interface

Domain model

Application model

widgets

value

attributes

 models

Application model

Builder

User interface
9-4 VisualWorks

Dependencies Between Objects
Dependencies Between Objects
When Object B is affected by a change in Object A, Object B is said to be
a dependent of Object A. Dependencies of this nature occur commonly in
applications, and the application model collaborates with value models to
notify dependents of relevant changes.

VisualWorks uses three dependency mechanisms: the original
change/update mechanism, the trigger-event mechanism, and a new
Announcement system. The change/update mechanism is described in
this chapter. The trigger-event system is described in Chapter 10,
“Trigger-Event System.” The Announcement system is described in
Chapter 11, “Announcements.”

The Update/Change System
The update/change system is the original dependency mechanism in
VisualWorks. This mechanism is at the core of the GUI system, but is
also generally useful in application development. When an object using
this system changes in some way it sends a “changed” message to itself.
That message then results in sending an “updated” message to all of the
object’s dependents.

For example, in the sketching application, selecting a sketch in the list
widget causes the set of lines for that sketch to be displayed in a
sketching widget. The sketching widget is a dependent because it needs
to know when the selection is changed in the list of sketches.

Value Model
(selection index)

Dependent
(SketchView)
Application Developer’s Guide 9-5

Application Framework
Note that the sketching widget is not a dependent of the list widget.
Rather, it is a dependent of the value model that holds the list of
sketches. The list widget is the primary dependent of the value model,
and receives notifications much as its sibling widget does.

VisualWorks provides three layers of support for dependent notification:

• Notifications from a value model to an application model. Many
applications rely on this partially automated layer exclusively because
it is the easiest to implement and handles the common cases.

• Notifications from any object to any object. This is the foundation
layer upon which the first layer is built, and which provides broader
functionality for situations involving arbitrary types of objects.

• Event-based notifications for objects of any type. This is actually an
alternative to the second-layer architecture, provided for compatibility
with VisualWorks Smalltalk.

Notifications From Value Model to Application Model
An application model provides a value model to keep a widget in sync
with its data value in the domain model. When a secondary widget also
needs to be kept in sync with that data value, the application model
employs a DependencyTransformer.

A DependencyTransformer is like a single-minded robot that is told, in effect:
“Keep your eye on this value model—whenever its value is changed,
notify me.”

This robot is told what message to send to the application model. By
convention, the message begins or ends with the word “changed,” as in
valueChanged or changedSelection.

The Notification page of the Property Tool enables you to specify this
message, in effect setting up a DependencyTransformer to monitor the
primary widget’s value model.

The application model is expected to implement the corresponding
instance method, in a change messages protocol. That method updates the
value model for the secondary widget, which in turn causes the
secondary widget to update its display, completing the cycle of
dependency.

Using the sketching application as an example, here is how the sequence
of events occurs:
9-6 VisualWorks

Dependencies Between Objects
1 The user clicks on the name of a sketch in the list widget, causing the
selectionIndexHolder value model to change its value.

2 A DependencyTransformer notices the change and notifies the
application model by sending a changedSketch message to it.

3 The application model, in its changedSketch method, gets the newly
selected sketch and installs it in the sketch widget’s value model.

4 The sketch widget displays the sketch.

Notifications From Any Object to Any Object
While the Notification page of a widget’s property sheet enables you to
arrange for a notification to an application model, you can use a
DependencyTransformer to arrange for a notification from any object to any
object. Going even further into the dependency mechanism, you can
arrange for a direct notification without the use of a robotic third party.

DependencyTransformer
When a value model changes its value, it sends a changed: #value
message to itself. The changed: method is inherited from Object, and
sends an update: #value message to all dependents of the value model.

Value Model
(selection index)

Value Model
(SketchView’s model)

Dependency transformer

Application Model
Application Developer’s Guide 9-7

Application Framework
A DependencyTransformer, when it receives an update: #value message,
sends a specified message to a specified receiver. In the usual situation,
as discussed above, it sends a specified message to an application
model. But as a general technique, it can be used to send any message
to any receiver.

In addition, when the robot is monitoring an object other than a value
model, it can be made to react to a changed: #selection message, for
example, or any other aspect symbol indicating the nature of the change.
The aspect symbol is used by contract between the object being
monitored and the transformer.

For example, a BankAccount might send changed: #balance to itself, and the
DependencyTransformer might be configured to pay attention to the
corresponding update: #balance message, while ignoring other update:
messages.

Setting up a notification in this way involves creating a
DependencyTransformer with the appropriate aspect symbol, message
selector, and message receiver, and then adding that transformer as a
dependent of the target object (using addDependent:). If the target object is
not a subclass of ValueModel, you must also arrange for it to send changed:
#aspectSymbol to itself in the method that effects that change. Subclasses
of ValueModel take care of that detail, because they are the most common
targets.

Subclasses of ValueModel are capable of setting up a transformer for you.
Just send onChangeSend: #selector to: receiver to the value model.

Any object can set up a transformer in response to expressInterestIn:
#aspectSymbol for: receiver sendBack: selector.

Direct Dependency
You can dispense with the transformer by implementing an update:
method for the dependent object. Then add that object as a dependent of
the target object (using addDependent:). As a result, when the target object
sends changed: #aspectSymbol to itself, the dependent object will receive
update: #aspectSymbol.

Again, the aspect symbol must be agreed upon.
9-8 VisualWorks

Dependencies Between Objects
Variants of the changed/update: messages are available for situations
requiring a parameter in addition to the aspect symbol (update:with:) and
the target object (update:with:from:).

Removing Dependents
The Object class provides a central dictionary for keeping track of any
object’s dependents. An application that adds a dependent is also
responsible for removing it (using removeDependent:), to avoid having the
dictionary hold onto obsolete dependents and waste increasing amounts
of memory.

The Model class provides an instance variable for storing dependents
locally, avoiding the use of the central dictionary. Thus, instances of
subclasses of Model (including the value model hierarchy) automatically
release their dependents when they expire. Because value models are
the targets of the vast majority of dependencies, this takes care of most
situations.

Circular Dependencies
Because dependencies involve indirect communications, the hazard of
circular message-passing becomes more likely. The most common
situation in which circularity arises involves two mutually dependent
widgets.

For example, in a document display window, the “page number” display
field and “table of contents” treeview widget may be mutually dependent.
That is, changing the page number updates the selection in the treeview,
and changing the selection in the treeview updates the page number.

Any object

Dependents

self changed: #aspectSymbol

update: #aspectSymbol
Application Developer’s Guide 9-9

Application Framework
You can temporarily remove a transformer in such a situation, by sending
retractInterestIn: aspect for: dependent to the target object just before you
change its value. After changing the value, you must reestablish the
transformer (using onChangeSend:to:).

You can temporarily remove a direct dependent by sending
removeDependent: dependent to the target object, and then adding it (using
addDependent:) after changing the value.

Application Startup and Shutdown
The first step in starting an application involves deciding which interface
to open. The process of assembling and opening the chosen interface
proceeds by stages. After each stage, your application model can
intervene in the process to configure the raw interface as needed. The
stages are:

• Create an instance of UIBuilder

• Pass the UI specs to the builder and ask it to construct the UI objects

• Open the fully assembled interface window

By default, when an application model class is sent an open or
openInterface: message, all three stages are performed. You can send
allButOpenInterface: to an instance to perform stages one and two, then
separately send finallyOpen to perform stage three.

Selecting an Interface
An application is typically started by sending an open message to the
appropriate subclass of ApplicationModel. This assumes that the primary
canvas was saved with the default name, windowSpec.

If the primary canvas has a different name, or if you want to open a
different canvas, you can send openWithSpec: to the class, with the spec
name as the argument.

The application model class creates a new instance of itself to run the
interface. If you want to use an existing application model instance, you
can send open or openInterface: to that instance. This is useful when you
want to reuse an instance rather than create a new one, or when you
want to initialize the application specially.
9-10 VisualWorks

Application Startup and Shutdown
Prebuild Intervention
After an instance of UIBuilder has been created, but before it has been
given a set of specs with which to construct a UI, the application model is
sent a preBuildWith: message. The argument is the newly created
UIBuilder.

Most applications do not need to intervene at this stage. Those that do,
typically take the opportunity to load the builder with custom bindings that
can only be derived at runtime.

Postbuild Intervention
The application model creates a hierarchy of spec objects from the spec
method, and hands the root spec to the builder. The builder then creates
a window and populates it with the appropriate widgets. The builder does
not yet open the window, however.

At this stage, the application model receives a postBuildWith: message,
with the builder as argument. The application model can use the builder
to access the window and any named widgets within the window—that is,
widgets that were given an ID property.

Applications commonly use postBuildWith: to hide or disable widgets as
needed by the runtime conditions.

Postopen Intervention
The builder opens the fully-assembled interface. At this stage, the
application model is sent a postOpenWith: message, again with the builder
as argument. As with postBuildWith:, the application can use the builder to
access the window and its widgets. This time, however, those objects
have been mapped to the screen, which makes a difference for some
kinds of configuration.

For example, the FileBrowser model that drives the File List interface uses
postOpenWith: to insert the default path in the window’s title bar—
something it could not do until after the window had been opened.

Application Cleanup
An application model often needs to take certain actions when the
application is closed. For example, a word-processing application might
need to ask the user whether edits that have been made to the currently
displayed text should be saved or discarded.
Application Developer’s Guide 9-11

Application Framework
Another common cleanup action is to break circular dependencies that
would otherwise prevent the application from being garbage collected.
For example, if application A holds application B, and vice versa, for the
purpose of interapplication communications, neither would be removed
from memory even after both of their windows were closed.

If the application user exits from the application by using a menu or other
widget in the interface, the application model performs the exit procedure
and can insert any required safeguards. But if the user exits by closing
the main window, a special mechanism is needed to notify the application
model.

The application model is held by the application window. When the
window is about to be closed, its controller asks for permission from the
application model, by sending a requestForWindowClose. The application
model can redefine this method to perform any cleanup actions and then
return true to grant permission or false to prevent the window from closing.

Additional cleanup can be performed using the finalization mechanism
described in Chapter 19, “Weak Reference and Finalization.”

User Settings Framework
VisualWorks provides a settings framework to simplify the creation and
management of application settings (often referred to as “preferences” or
“options”). The framework includes an interactive tool — the Settings
Manager — that enables users to view and change pages of individual
settings defined by the application developer. Settings can be saved to a
file, and later restored, possibly in a different VisualWorks image.

For a general description of using the Settings Manager, see “System
Settings” on page 2-27. This describes how to add settings to existing
pages in the Settings Manager and how to define new pages.

The settings framework consists of two parts: the settings themselves
and the user interface. The UI presents settings grouped into pages, with
each individual setting element identified by a setting model and a setting
type. The setting value itself is not stored in the settings framework, but
by the application’s domain model.
9-12 VisualWorks

User Settings Framework
Settings
Each individual setting on a page that appears in the Settings Manager is
defined as a method belonging to the class side of VisualWorksSettings.
The Settings Manager dynamically generates the user interface and the
page layout, so there are no window specifications or subcanvases for
the developer to worry about.

The settings framework requires only a method for each setting that
appears on a page, plus one method defining the page itself (for details
on the latter, see “Settings Pages” on page 9-16).

Each method used to define an individual setting has two parts: a pragma
expression, which marks it as a setting definition, and the method body
that answers a setting model. For example:

toolsTranscriptLimit
 <setting: #(tools transcriptLimit)>
 ^(IntegerSetting on: Transcript aspect: #characterLimit)
 label: 'Transcript limit'

The pragma expression indicates both that the method is a setting, and
defines its ID. The ID is an array of symbols — in the example above,
#(tools transcriptLimit) — which must be unique to each particular setting.

The ID declares that a particular setting belongs to a specific page. For
example, all settings on the Tools page have IDs of the form #(tools
<aSymbol>) — in other words, their IDs all begin with the same
subsequence of symbols and only differ in the last symbol. Think of a
prefix as a “directory name”, identifying the group a setting belongs to,
while the last element of an ID is a “file name” within the group.

The body of the method should return a setting model: an object that
knows how to get and set the value of the setting. In the example above,
an IntegerSetting on the characterLimit aspect of Transcript, i.e., that the
value of the setting will be obtained by sending characterLimit to the
Transcript, and set by sending the message characterLimit:.

Declaring the setting an IntegerSetting affects how it’s presented in the
settings tool: e.g., the setting is shown as an input field into which the
user can type an integer value. Typing anything else is not allowed, and
the settings framework performs simple input validation.

Finally, the label: message sent to the setting model defines its label. This
is a short string used to label the widget displaying this setting. The user
interface for the setting is dynamically generated using the information
provided in this method.
Application Developer’s Guide 9-13

Application Framework
Browsing the Definition for a Setting
The <Operate> menu for the Settings Manager page tree (left-hand view)
includes two menu items: Browse Page and Browse. Select Browse Page to
examine the methods that define the settings for the current page, and
Browse for definitions of all the pages in the tree. Note: these two menu
items — Browse Page and Browse — do not appear in deployment images.

By browsing the methods that define a setting, you can see selectors that
define each setting on the page, as well as the method that defines the
page itself (for details, refer to “Settings Pages” on page 9-16).

Defining a Setting
During application development, new settings and settings pages may be
defined simply by adding methods to class VisualWorksSettings.

As an example, we might want to add a setting to specify the number of
characters that can be written to the System Transcript before it starts
discarding the old output.

The following steps illustrate how to define a setting that manipulates the
Transcript object:

1 Open a browser on VisualWorksSettings, and examine its class-side
protocol.

For this example, we add a method in the protocol settings-tools.

2 Add a new method with the following body to the class side of
VisualWorksSettings:

toolsTranscriptLimit
 <setting: #(tools transcriptLimit)>
 ^(IntegerSetting on: Transcript aspect: #characterLimit)
 label: 'Transcript limit'

To see the new setting, open the Settings Manager and select the
Tools page.

The Transcript is an instance of class TextCollector, which includes two
methods — characterLimit and characterLimit: (in the private protocol) — for
controlling how many characters can be written to the Transcript. These
are used by the setting model (an instance of IntegerSetting) to manipulate
the Transcript object.

Note that the setting model also performs some minimal input validation.
In this case, the IntegerSetting only allows integers, as we would expect.
9-14 VisualWorks

User Settings Framework
Additional Setting Parameters
The setting model can also perform simple input validation. For instance,
an IntegerSetting only accepts integer values, as we would expect. Often,
though, the full range of integers would not be appropriate. In the
example of the Transcript limit setting, shown above, it would not make
sense to specify a negative number.

For an IntegerSetting, the values considered valid by the setting model
may be restricted using the messages min:, max: and min:max:.

Using these messages, we can modify the example shown above to
restrict the length of the Transcript. The following code creates a setting
model that only accepts values between 1000 and 50000:

((IntegerSetting min: 1000 max: 50000)
on: Transcript aspect: #characterLimit)

label: 'Transcript limit'
Another setting parameter may be used to provide on-line help. Clicking
on the Help button in the Settings Manager opens a page of help for all
settings on the current page.

To specify help text for a particular setting, send the message helpText: to
the setting model. E.g.:

((IntegerSetting min: 1000 max: 50000)
on: Transcript aspect: #characterLimit)

label: 'Transcript limit';
helpText:

'The maximum number of characters allowable in the Transcript.'

Controlling the Vertical Position of a Setting
The settings framework dynamically generates the user interface shown
on each page, arranging all settings that belong to the page in a single
column. The ordering of the settings on the page may be changed via
one of two strategies.

The first method involves the selectors for the defining methods. By
default, the settings on one page are sorted using the selectors of the
corresponding definition methods. Thus, the order in which the defining
methods appear in the browser is the order in which they appear in the
Settings Manager.

For example, the protocol settings-tools of class VisualWorksSettings
contains the following definition methods:
Application Developer’s Guide 9-15

Application Framework
tools10iconLabelLength
tools20textSize
tools30showUIForGlobalization
tools40DebugSettingsErrors

By convention, the selector begins with the name of the page (‘tools’), and
is followed by two digits used to indicate the vertical position of the
widget. This scheme has proven very convenient for organizing the layout
of the Settings UI.

As an alternative, the pragma in the setting definition method may include
an additional parameter, position:. For example:

<setting: #(tools transcriptLimit) position: 2>
Setting definitions that do not include the position: parameter are assigned
the default position value of 0. As a rule, when settings are collected as a
settings page, they are first sorted by position. Then, settings with the
same position values are sorted by selector as described above.

You may use either approach to organize groups of settings. It is also
possible to mix the two approaches.

When adding a setting to a group of already existing settings, it is strongly
recommended that you follow the ordering approach used by that group.

Settings Pages
Each page of settings in the Settings Manager is defined in a manner
analogous to the individual settings on that page: using a single method
belonging to the class side of VisualWorksSettings.

Just as in the setting definition methods described previously, the method
that defines a settings page has a pragma expression and a method body
that answers a model for the settings page. For example:

transcriptPage
<settingsPage: #(tools transcript)>

^ModularSettingsPage new
label: 'Transcript';
icon: (ListIconLibrary visualFor: #tools);
settings: (self settingsWithPrefix: #(tools transcript))

The pragma is marked with the selector settingsPage:, which takes an
array argument to specify the page ID. This ID is used to define the
hierarchical relation between the various pages.
9-16 VisualWorks

User Settings Framework
This may be illustrated with an example. Assuming that an application
defines four different methods with the following IDs:

toolsPage #(tools)
browserPage #(tools browser)
workspacePage #(tools workspace)
transcriptPage #(tools foo transcript)

The settings manager would arrange the pages like this:

toolsPage
browserPage
workspacePage
transcriptPage

In other words, if an ID of one page is the prefix of an ID of another page,
the page with the shorter ID is made the parent of the other one. Thus,
toolsPage is made the parent of the other three pages.

The body of the settings page definition method should create and return
the settings page model; in this case, an instance of ModularSettingsPage.

Use the label: and icon: messages to specify the label and icon displayed
in the page tree.

Use the settings: message to specify the collection of settings displayed
on the page. In the example shown above, all settings whose ID is #(tools
transcript) are included, i.e., any setting with an ID that has the form
#(tools transcript <anySymbol>) is included in the page.

Defining a Page of Settings
During application development, settings pages may be defined simply by
adding methods to class VisualWorksSettings.

For example, we might want to place the Transcript limit setting (refer to
“Defining a Setting” on page 9-14) on its own page. The following steps
illustrate how to define a new settings page and add a setting to it:

1 Open a browser on VisualWorksSettings, and examine its class-side
protocol.

2 Create a new method protocol named settings-transcript.
Application Developer’s Guide 9-17

Application Framework
3 Select the new protocol, and add a new method with the following
body to VisualWorksSettings:

transcriptPage
<settingsPage: #(tools transcript)>

^ModularSettingsPage new
label: 'Transcript';
icon: (ListIconLibrary visualFor: #tools);
settings: (self settingsWithPrefix: #(tools transcript))

4 Add the following method to the settings-transcript protocol:

toolsTranscriptLimit
<setting: #(tools transcript characterLimit)>

^((IntegerSetting min: 1000 max: 50000)
on: Transcript aspect: #characterLimit)
label: 'Transcript limit'

To see the new setting page, open the Settings Manager and select
the Transcript page.

Setting Types
As noted above, a setting model does not actually contain the value of
the setting. The actual value is stored in the domain model, which the
setting model knows how to access.

Since the setting model is only a passive, transitive object, it is created by
using a setting type. For example, the following code:

IntegerSetting on: Transcript aspect: #characterLimit
returns a setting model that knows how to access the Transcript. Here,
class IntegerSetting specifies the type of setting that is instantiated.

In addition to class IntegerSetting, the settings framework supports a
number of different setting types.

The currently supported types are:

BooleanSetting
The setting value should be a true or false object. In the Settings
Manager, this type of setting is displayed as a checkbox.

ColorValueSetting
The value is an instance of ColorValue. In the Settings Manager, it is
displayed as a color swatch with a button that opens a color picker
dialog to pick a different color.
9-18 VisualWorks

User Settings Framework
EnumerationSetting
The value is one of a list of arbitrary objects. In the most general
case, the setting is initialized with three “parallel” sequences: a list of
objects that can be the value of the setting, a list of keys (Symbols)
that are used to represent the objects when the setting is saved in a
file, and a list of labels used to identify the choices in the Settings
Manager. This setting is displayed by default as a drop-down list of
choices, but can also be displayed as a group of radio buttons.

FilenameSetting
The value is a Filename identifying a file. The setting is represented as
an input field with the name of the file. The name can be changed
using the field, or (on Windows) by using the Browse button to pick a
file using the standard file selection dialog.

DirectorySetting
The value is a Filename identifying a directory. Unlike the
FilenameSetting, the Browse button is available on all platforms and
opens a directory selection dialog.

NumberSetting
The value is a Number. An upper and lower bound can be provided.
The setting is represented as an input field displaying the number.

IntegerSetting
Similar to the NumberSetting, but the value is required to be an Integer.

StringSetting
The value is a String. It is represented as an input field. Additionally,
an instance can be created as StringSetting forNameOfFile or
StringSetting forNameOfDirectory. Such StringSettings are represented
just as FilenameSetting and DirectorySetting, but the value of such a
setting is still a String rather than a Filename.

SequenceSetting
Its value is a sequenceable collection of values. The type of the
values is defined when the SequenceSetting type is created (it is
created using the of: message, with the type of the element passed
as the argument). The element type can be any of the types listed
above. These settings cannot be displayed by ModularSettingsPages,
each requiring a page of their own (a SequenceSettingPage).

It should be noted that a setting type and a setting model are not the
same. The setting model is responsible for data access: it knows how to
get and set the value of the setting, and also things like the label and the
help text. The setting type knows what values a setting can take.
Application Developer’s Guide 9-19

Application Framework
Creating a Setting Model
A setting model is created by first sending a message to the class of the
appropriate setting type, generally using the on:aspect: method.

For example:

StringSetting on: userProfile aspect: userName
This setting model gets and sets a value held by userProfile, sending it the
messages userName and userName:.

Several other creation messages are available. For example, to create a
setting on a ValueHolder, use the on: method:

aSettingType on: aValueModel
The setting’s value is obtained by sending value and value: to aValueModel.
In fact, the argument can be any object understanding value and value: (for
example, a LiteralBindingReference may be used to access the value stored
in a shared variable).

It is also possible to use dictionaries, sets, or arrays as domain models,
via the following creation message:

aSettingType on: anObject key: keyObject
A setting created using this expression gets its value by sending the
message at: to anObject with keyObject as the argument, and sets it by
sending the message at:put: with keyObject as the first argument and the
new value as the second one.

Backward Compatibility with VisualWorks UISettings
Prior to VisualWorks 7.1, user settings were stored as elements in a
dictionary called UserPreferences (a shared variable belonging to class
UISettings). Application developers could install and remove preferences
using the methods UISettings class>>addPreterenceSection: and
removePreterenceSection:.

For VisualWorks 7.1 and later, application developers are encouraged to
re-write their settings code using the new framework. However, to simplify
porting applications to the latest versions of VisualWorks, backward
compatibility with the older UISettings facility is also available. Applications
can preserve the existing user preference models, and display them as-is
using the new settings framework.

For example, to create a setting on an existing preference model, use the
onUISetting: creation message. E.g.:

BooleanSetting onUISetting: #showWorkspaceToolbar
9-20 VisualWorks

User Settings Framework
This example returns a setting model for the old preference model named
#showWorkspaceToolbar that is stored in the dictionary of preference
models in class UI.UISettings.

Using Drop-Down List and Radio Button Settings
Settings that appear as drop-down lists or as groups of radio buttons are
both defined using class EnumerationSetting. When building a settings
page using these types of settings, a slightly different approach is
required.

In the setting definition method, an EnumerationSetting is used to create a
setting model. For example:

EnumerationSetting
keys: #(small default large fixed)
choices: #(small default large fixed)
labels: #('Small' 'Medium' 'Large' 'Fixed')

The argument keys specifies the name of each key (used when saving the
setting in a file); the argument choices specifies the actual values used,
while labels takes the strings (or UserMessage instances) that are shown in
the UI of the Settings Manager. This is all as we would expect.

In fact, the code for specifying whether the setting is displayed as a drop-
down list or as a set of radio buttons is located in the method that defines
the settings page. The page definition method is essentially the same,
with the exception of the code for adding the settings to page.

Recall that the page definition returns an instance of ModularSettingsPage
that has its settings initialized using the settings: method. To use drop-
down lists or radio-buttons, you must send addAllSettings:except: instead.

For example:
Application Developer’s Guide 9-21

Application Framework
lookAndFeelPage

<settingsPage: #(lookAndFeel) position: -30>

^ModularSettingsPage new
label: #LookAndFeel << #labels >> 'Look and Feel';
icon: (ListIconLibrary visualFor: #window);
addAllSettings:

(self settingsWithPrefix: #(lookAndFeel)
except: #(windowPlacement mouseButtonOrder));

useRadioButtonsForEnumerations;
addSetting:

(self settingWithId: #(lookAndFeel windowPlacement));
addSetting:

(self settingWithId: #(lookAndFeel mouseButtonOrder))
In this method, we use addAllSettings:except: to indicate that the setting
definition methods for window placement and mouse button order are
given different treatment. Note that these two settings are identified by
the last symbol in their respective IDs (each being an array of symbols).

By default, an EnumerationSetting is displayed as a drop-down list. In the
example code shown above, the message useRadioButtonsForEnumerations
is sent to indicate that these two settings should be shown as radio
buttons. Subsequently, any settings added to the page are displayed
using radio buttons. The remainder of the method adds the two settings
that were previous excluded from the page.

Defining a Settings Domain
So far we have been adding pages and settings to the standard
VisualWorks Settings Manager. These pages are all defined in methods
in the class VisualWorksSettings, which is a subclass of SettingsDomain.
Adding pages and settings in this class has the effect of extending the
Settings Manager. This is appropriate for adding settings to the
development environment.

To implement a settings manager for your application, however, it is more
appropriate to create a separate settings domain. This creates a new
group of settings and setting pages which are shown together in the
same tree in a separate settings manager. Settings grouped in this way
can also be saved into a file and loaded together.
9-22 VisualWorks

User Settings Framework
For an application whose settings are to be managed separately from
those of other applications and the development system, we recommend
defining its own settings domain (a subclass of SettingsDomain) to manage
its settings. For example, create MyAppSettings as a subclass of
SettingsDomain.

Add pages to the new settings domain class as described above, to
provide the settings options required by your application.

To open the settings manager, send an openManager message to the
settings domain class. For example:

MyAppSettings openManager
There must be at least one page defined for the domain in order for the
manager to open. You can create a menu item in your application to open
the settings manager, which is typically named “Options,” “Preferences,”
or “Settings.”

Saving and Loading Settings
Setting pages, items and their values can be written out to a text file on a
domain-by-domain basis. This allows you to write the settings for your
application out to a “configuration” file, and then reload them at another
time, such as at application startup.

To write the settings file, send a writeToFile: message to the settings
domain, with a Filename as argument:

MyAppSettings writeToFile: 'settings.ini' asFilename.
To read the settings back in, send a readFromFile: message to the settings
domain:

MyAppSettings writeToFile: 'settings.ini' asFilename.
Note that this does not define the settings domain class or pages, which
must be defined by your application.

You can specify a settings file to load at startup on the command line
when launching VisualWorks from a console. The -settings (among
others) image level option is defined in ImageConfigurationSystem for
loading settings files. To load settings this way, include the option followed
by the settings file name, following the image name on the command line.
For example:

> visual ../image/MyApp.im -settings 'settings.ini’

The option reads the domain from the file and installs the settings
accordingly.
Application Developer’s Guide 9-23

Application Framework
Responding to System Events
It is frequently necessary to take special actions when certain system
events occur, notably when the system starts up, shuts down, and
immediately before and after an image save. The order in which such
actions occur, relative to other parts of the system, can be critical. For
example, a GUI application probably needs to perform and window
startup routines only after the windowing system itself has been
initialized.

Traditionally, startup events have been handled by registering
dependencies on ObjectMemory. More recently, SystemEventInterest
instances have been supported by the system. Both of these
mechanisms left it difficult to manage the order in which actions were
taken.

Class Subsystem provides VisualWorks a simple way to specify
dependencies on system events as well as a modular approach to
controlling their order of execution. Several subsystems are defined for
handling VisualWorks startup procedures.

Two subclasses in particular are of interest to the application developer:
UserApplication and ImageConfigurationSystem. If an application has actions
to perform upon one of the four system events, a subclass of
UserApplication is a convenient place to specify those actions.
ImageConfigurationSystem is useful for applications that process command
line options.

Defining System Event Actions
Subsystem defines four system event messages to which subsystems can
respond: activate, deactivate, pause, and resume. By default, these general
events are invoked as follows:

• activate is invoked by #returnFromSnapshot, which occurs when an
image is launched.

• deactivate is invoked by #aboutToQuit, which occurs just before the
image exits

• pause is invoked by #aboutToSnapshot, which occurs just prior to
writing an image file

• resume is invoked by #finishedSnapshot, which occurs just after the
image file has been written
9-24 VisualWorks

Responding to System Events
Some subsystems invoke activate upon #earlySystemInstallation, but these
are usually system level subsystems. For applications,
#returnFromSnapshot is the appropriate system event.

A subsystem does not respond to these system event messages directly.
Instead, these messages invoke further messages in which a subsystem
configures its response to the system events. The corresponding
messages that a subsystem will implement as needed are:

setUp
Defines actions to perform upon the activate event message, and
activates the subsystem.

tearDown
Defines actions to perform upon the deactivate event message, and
deactivates the subsystem.

pauseAction
Defines actions to perform upon the pause event message.

resumeAction
Defines actions to perform upon the resume event message.

An application seldom needs to perform actions before or after a
snapshot, which is generally a development time activity, so do not
generally have to provide implementations for pauseAction or resumeAction.
An action does, however, frequently have actions to perform upon
launching the image, such as setting up its runtime environment, and
these are specified by an implementation of setUp. Less frequently, but
not uncommonly, an application will also need to perform actions prior to
shutdown, which can be implemented in the tearDown method.

The UserApplication subsystem, which is intended to be the superclass for
application subsystems, implements one additional stub method:

main
This method can be implemented by a subsystem to launch the
application, as well as to perform other application set up tasks.

This method simplifies starting an application upon image launch,
eliminating the need to either save the image with the application open, or
of using Runtime Packager to specify the application to run, or any of the
other methods that have been used.

As an example of using setUp and tearDown methods, consider the task of
saving a random number seed upon shutdown and then reading that
seed to restart a random number generator upon startup. (This is a useful
technique to use for security minded applications, as discussed in the
Security Guide.) DSSRandom, in the Security component, maintains a
Application Developer’s Guide 9-25

Application Framework
default generator, but it is most useful if it is well seeded, and the seed is
updated between image startups. To manage this we can define a
UserApplication subclass, DefaultRandomSystem, and implement two
methods.

setUp
DSSRandom resetDefaultFrom: 'seed' asFilename readStream binary

tearDown
'seed' asFilename writeStream binary;

nextPutAll: (DSSRandom default next changeClassTo: ByteArray);
close

The tearDown method records a seed value by writing it to a file just
before the system shuts down. The setUp method then reads that value
upon system start up, and reseeds the default generator with it. In this
case there is no application to launch.

As another example, we can implement main to launch an application,
such as RandomNumberPicker from the VisualWorks Walk Through. To do
this, we define a subclass of UserApplication, such as RandomPickerSystem,
and implement a main method. Minimally, it might be:

main
WalkThru.RandomNumberPicker open

(By importing the WalkThru namespace into RandomPickerSystem, the
expression above can be simplified, and is the preferred practice.)

This example also indicates the reason for the main method, which is not
really needed (everything could be done in setUp). Programmers coming
from other development environments often look for the method that
starts an application, and particularly for a method named “main.” This
provides that method.

Command Line Processing in a Subsystem
ImageConfigurationSystem defines several standard image level command
line options and their handling. You can extend this system’s options, or
define additional command line options.

Command line processing options can be set using System Loading in
the Settings Tool, or on the class side of ImageConfigurationSystem.
9-26 VisualWorks

Responding to System Events
To define a new command line option, implement a subsystem instance
method defining the handling of the option. The method consists of two
parts: an “option” pragma and the option handling code. For example,
consider the method in ImageConfigurationSystem for handling the
-settings option:

loadSettings: fileNameStream
"This handles loading settings from the command line."

<option: '-settings'>

| settingNames |
self class allowSettings ifFalse: [^self].
settingNames := CommandLineInterest argumentsFrom: fileNameStream.
settingNames do: [:each |

self loadSettingsFrom: each asFilename].
The option: pragma keyword identifies this as defining a command line
option, and the String argument identifies the particular option being
defined. The method selector takes an argument, fileNameStream, which
causes the next item on the command line to be handed to the method as
that argument. If the option does not require an argument value, the
method selector would be unary.

The rest of the method defines the processing of the argument. The
whole command line stream is handed into the method in the argument,
fileNameStream. The interesting expression is:

CommandLineInterest argumentsFrom: fileNameStream
which extracts just the argument relevant to the setting being defined; in
this case, the argument following “-setting” on the command line.

To define a new command line option relevant only to your application,
you can define it in your application’s subsystem class. For example, we
have already shown how to launch an application using its subsystem.
Perhaps you want to include an option to prevent launching the
application. Here is one way to do that, modifying the RandomPickerSystem
defined earlier.

First, in the class definition for RandomPickerSystem add an instance
variable, such as launchApp, which will hold a flag:
Application Developer’s Guide 9-27

Application Framework
Smalltalk.Core defineClass: #RandomPickerSystem
superclass: #{Core.UserApplication}
indexedType: #none
private: false
instanceVariableNames: 'launchApp '
classInstanceVariableNames: ''
imports: ''
category: 'System-Subsystems'

Then, implement a method to define the option and its handling:

noLaunchOption

<option: '-nolaunch'>
launchApp := 'nolaunch'.

The handling here is simple, simply setting the flag in the variable, which
we then use to decide whether or not to launch the application. Modifying
the main method to use the value, we might have:

main

launchApp = 'nolaunch' ifFalse:
[WalkThru.RandomNumberPicker open]

Now we can launch the image but suppress opening the application:

> visual ../image/MyApp.im -nolaunch

This option is specific to this application, so has no effect on any other,
unless configured to be processed.

Activating a Subsystem
Once a subsystem has been defined, as described in the preceding
section, it needs to be activated.

Normally a subsystem is activated upon system startup, by successfully
executing its setUp method. So, to activate a new subsystem you can save
the image, then shut down and relaunch the image. This is also a good
test of the set up operation.

To activate a new system without shutting down and relaunching, set an
activate message to the subsystem. For example:

RandomPickerSystem activate
As long as the setUp method completes successfully, the subsystem is
activated. In this example, the application will also launch.
9-28 VisualWorks

Responding to System Events
Dependency Ordering of Subsystems
The Subsystem framework provides a way to control the activation order of
various subsystems. For many of the system level subsystems, activation
order is important. For example, the WindowingSystem is dependent upon
both BasicGraphicsSystem and InputProcessingSystem, which must be
activated before WindowingSystem.

For application purposes, you do not generally need to be concerned with
this, because UserApplication and its subclasses are the last of the
systems to be activated and the first to be deactivated, ensuring that all
system level subsystems upon which the application depends are already
activated. It is possible, however, that in a complex application consisting
of several subsystems, it will be necessary to control their activation
order.

Subsystem activation order is determined by the subsystem prerequisites
specified for each subsystem. These are specified in a prerequisiteSystems
instance method defined in the subsystem class. For example, the
WindowingSystem defines its prerequisites as:

prerequisiteSystems
^Array with: BasicGraphicsSystem with: InputProcessingSystem.

The method is expected to return a collection, typically an Array, of
subsystems. The subsystem implementing the method will then not be
activated until its prerequisite systems have been activated.
Application Developer’s Guide 9-29

Application Framework
9-30 VisualWorks

10
Trigger-Event System

Overview
The trigger-event system is an event-based mechanism for indirect
communication with dependent objects, allowing for a loose coupling of
objects. While the trigger-event system is used primarily in the GUI
environment and some tools, it is a general mechanism that can be used
to communicate between any objects.

Using the trigger-event mechanism, an object can trigger any event. The
object can also define certain events that it promises to trigger under
appropriate conditions. A dependent object can register a handler for an
event in which it is interested. This chapter describes how to define,
trigger, and handle these events.

In the traditional dependency system, an object that was interested in
changes in another object was registered in that object’s dependency list,
and thus added to that object’s state (tightly coupled). In the trigger-event
system, an interest is added instead as a request to send a message to
the interested object when an interesting event occurs. So, the interested
object is not itself held in the target object’s state, and so is “loosely
coupled.” The dependency is only a functional dependency.

Note that the trigger-event system described in this chapter is separate
from the event system used to capture input (mouse and keyboard)
events. While the input-event system responds to events coming in to
VisualWorks from the operating system, the trigger-event system is
completely defined by classes and methods in Smalltalk. There is no
dependency on underlying operating system events, so the mechanism is
completely portable.
Application Developer’s Guide 10-1

Trigger-Event System
Triggering Events
Any object can trigger any event. Accordingly, there is generally no need
to specify the events an object will trigger, though for some purposes this
can be defined in a constructEventsTriggered message (refer to “Defining
Event Sets” on page 10-7).

To trigger an event, an object simply sends a variant of triggerEvent: to
itself, with the event name as the argument:

self triggerEvent: #foo
Variants are described below.

Event Triggering Messages
The following are the variants of the triggerEvent: message:

triggerEvent: anEventNameSymbol
Trigger the event named anEventNameSymbol. Answer the value
returned by the most recently defined event handler action.

triggerEvent: anEventNameSymbol ifNotHandled: exceptionBlock
Trigger the event named anEventNameSymbol. If the event is not
handled, answer the value of exceptionBlock (a zero-argument
block); otherwise answer the value returned by the most recently
defined event handler action.

triggerEvent: anEventNameSymbol with: anArgumentObject
Trigger the event anEventNameSymbol using the given
anArgumentObject as the argument. Answers the value returned by
the most recently defined event handler action.

triggerEvent: anEventNameSymbol with: firstArgumentObject
with: secondArgument
Trigger the event anEventNameSymbol using the
firstArgumentObject and secondArgumentObject as the arguments.
Answers the value returned by the most recently defined event
handler action.

triggerEvent: anEventNameSymbol withArguments: anArgumentCollection
Trigger the event anEventNameSymbol using the elements of the
anArgumentCollection as the arguments. Answers the value returned
by the most recently defined event handler action.
10-2 VisualWorks

Registering an Event Handler
triggerEvent: anEventNameSymbol withArguments: anArgumentCollection
ifNotHandled: exceptionBlock
Trigger the event anEventNameSymbol using the elements of the
anArgumentCollection as the arguments. If the event is not handled,
answers the value of exceptionBlock (a zero-argument block);
otherwise answers the value returned by the most recently defined
event handler action.

Registering an Event Handler
A dependent object can arrange for an action to occur each time the
triggering object triggers a specific event. This is known as registering an
event handler, or registering an interest in the event.

The dependent sends a variant of when:send:to: to the (potentially)
triggering object. The first argument is the event name as a Symbol, the
second argument is a message name as a Symbol, and the third
argument is the handler message receiver, which is frequently self.

Suppose we have two objects, eventTripper and eventResponder, and the
responder wants to register a handler for any time eventTripper triggers
event #foo. eventResponder would register that interest by sending:

eventTripper when: #foo send: #bar to: self
Now, whenever eventTripper triggers #foo, a bar message will be sent to
eventResponder.

The dependent object might not do the registering itself. For example, an
ApplicationModel might use when:send:to: to arrange for a domain model to
send a message to a dependent object, so that dependent object is
notified of the event.

Note that if the triggering object is “strict,” an object that specifies the
events it might trigger in its constructEventsTriggered method, you can only
register handlers with that object for the events it declares. Refer to
“Defining Event Sets” on page 10-7 for more information.

A registering object can verify that a particular event can be triggered by
an object, by sending canTriggerEvent:, either to the triggering object or to
its class. A non-strict class will always answer true, while a strict class will
answer true only if the event is included in its eventsTriggered set.
Application Developer’s Guide 10-3

Trigger-Event System
Handling an Event with Arguments
When an event is triggered with arguments, as by triggerEvent:with:,
triggerEvent:with:with:, or triggerEvent:withArguments:, it sends the event
notification along with an Array containing the arguments. To make use of
the arguments, handle them using a block that takes the appropriate
number of arguments, by registering using a when:do: message.

For example, suppose a class EventTripper triggers an event with two
arguments:

tripEvent
self triggerEvent: #foo with: #bar1 with: #bar2

A class, EventConsumer, might register a handler to use the arguments as
follows:

initialize
tripper := EventTripper new.
tripper when: #foo do: [:arg1 :arg2 | arg1 inspect. arg2 inspect.]

Ensure that the block handles the correct number of arguments.

Handler Registration Messages
Below are descriptions of all event configuring methods:

when: anEventNameSymbol do: aBlock
Append aBlock to the list of actions to evaluate when the receiver
triggers the event named anEventNameSymbol.

when: anEventNameSymbol evaluate: anAction
Append anAction to the list of actions to evaluate when the receiver
triggers the event named anEventNameSymbol. anAction is either a
block or a message.

when: anEventNameSymbol send: aSelectorSymbol to: anObject
Form an action with anObject as the receiver and a aSelectorSymbol
as the message selector and append it to the actions list for the event
named anEventNameSymbol.

when: anEventNameSymbol send: aSelectorSymbol to: anObject
with: anArgumentObject
Form an action with anObject as the receiver, a aSelectorSymbol as
the message selector, and anArgumentObject as the argument and
append it to the actions list for the event named
anEventNameSymbol.
10-4 VisualWorks

Registering an Event Handler
when: anEventNameSymbol send: aSelectorSymbol to: anObject
with: firstArgumentObject with: secondArgumentObject
Form an action with anObject as the receiver, a aSelectorSymbol as
the message selector, and the firstArgumentObject and
secondArgumentObject as the arguments and append it to the
actions list for the event named anEventNameSymbol.

when: anEventNameSymbol send: aSelectorSymbol to: anObject
withArguments: anArgumentCollection
Form an action with anObject as the receiver, a aSelectorSymbol as
the message selector, and the elements of the anArgumentCollection
as the arguments and append it to the actions list for the event
named anEventNameSymbol.

whenAny: aCollectionOfEventNames do: aBlock
Append aBlock to the list of actions to evaluate when the receiver
triggers any of the events named in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames evaluate: anAction
Append anAction to the list of actions to evaluate when the receiver
triggers any of the events the event named in
aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol to: anObject
Form an action with anObject as the receiver and a aSelectorSymbol
as the message selector and append it to the actions list for all the
event named in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol to: anObject
with: anArgument
Form an action with anObject as the receiver and a aSelectorSymbol
as the message selector and append it to the actions list for the all
the event names in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol to: anObject
with: firstArgumentObject with: secondArgumentObject
Form an action with anObject as the receiver, a aSelectorSymbol as
the message selector, and the firstArgumentObject and
secondArgumentObject as the arguments and append it to the
actions list for all the event names in aCollectionOfEventNames.

whenAny: aCollectionOfEventNames send: aSelectorSymbol to: anObject
withArguments: anArgumentCollection
Form an action with anObject as the receiver, a aSelectorSymbol as
the message selector, and the elements of the anArgumentCollection
as the arguments and append it to the actions list for all the event
names in aCollectionOfEventNames.
Application Developer’s Guide 10-5

Trigger-Event System
Removing Event Handlers
When an event handler is registered, it is either stored in a class variable
named EventHandlers, which is defined in Object, or in its private event
handler instance variable. When an object does not have it’s own event
handler instance variable, the application is responsible for removing
each handler from the EventHandlers event table when the handler is no
longer needed.

To remove an event handler from EventHandlers, send a removeAction
message (see “RemoveAction messages” on page 10-7 for messages) to
the triggering object. For example, if eventResponder had registered an
interest in event #foo triggered by eventTripper, it would unregister that
interest by sending:

eventTripper removeActionsWithReceiver: self forEvent: #foo
This will remove all action registered by eventResponder for #foo with
eventTripper.

You can remove a single action, but you need to have the action. To get
an action from the triggering object, send an actionForEvent: message, with
the event name as argument:

anAction := eventTripper actionForEvent: #foo.
If only one action is registered for this receiver and event, a MessageSend
is returned. If multiple actions are registered, then an ActionSequence is
returned, and you need to select the action you want to remove. Given
the action, you can remove it by sending:

eventTripper removeAction: anAction forEvent: #foo
This removes the first instance of anAction registered for the receiver for
event #foo. For uniform processing, you can use

(eventTripper actionForEvent: #foo) asActionSequence
so the result is always an ActionSequence.

The triggering object can remove all handlers that have been registered
with it by sending a release message to itself. The more specific message,
releaseEventTable, can be sent to any event-triggering object to remove all
of its registered events without regard to the life cycle stage of the object.

You can remove event handlers from the instance variable using the
same methods, but it is not as important since the registration expires
with the instance.
10-6 VisualWorks

Defining Event Sets
RemoveAction messages
removeAction: anAction forEvent: anEventNameSymbol

Remove the first occurrence of anAction from the list of actions for
the event named anEventNameSymbol.

removeActionsForEvent: anEventNameSymbol
Remove all actions for the event named anEventNameSymbol.

removeActionsSatisfying: aBlock forEvent: anEventNameSymbol
Remove all actions for the event anEventNameSymbol that satisfy
aBlock.

removeActionsWithReceiver: anObject forEvent: anEventNameSymbol
Remove all actions for the event named anEventNameSymbol in the
receiver's event table which have anObject as their receiver.

removeAllActionsWithReceiver: anObject
Remove all actions for all events in the receiver's event table that
have anObject as their receiver.

Defining Event Sets
Because an object can trigger any event and, in most cases, an object
can register an interest in any event with any object, there is, in general,
no reason to define or declare events. The only exception is in the case of
“strict” objects, which accept registering an interest for specifically
identified events only.

Specifying event strictness
A class can either be strict about which events it allows a dependent to
register an interest, or it can be ambivalent. A class that is strict does not
allow a dependent to register an interest in any event that it does not
know that it triggers. A class that is ambivalent allows a dependent to
register any event at any time, without regard to whether the class ever
triggers it. In the latter case, it is possible to register an interest in an
event that is never triggered.

By default all subclasses of Object are ambivalent. In the GUI system, only
subclasses of DisplaySurface and VisualComponent are strict.

To make a class and its subclasses strict, implement the class method
ambivalentEventChecking to return false. This overrides the definition in
Object, where it is defined to answer true.

ambivalentEventChecking
^false.
Application Developer’s Guide 10-7

Trigger-Event System
Specifying events to trigger
A class that is strict is responsible for declaring which events it will trigger,
and so in which it will accept a registered interest. To declare events,
implement the inherited class method constructEventsTriggered in each
class that needs to define a set of valid events. The method creates a Set
of event names, specified as Symbols, and returns the set. It can, of
course, invoke super constructEventsTriggered to fetch the parent class’s
events, and then add to that set before returning it. For example,
VisualPart implements constructEventsTriggered as:

constructEventsTriggered
^super constructEventsTriggered

add: #changing ;
add: #changed ;
yourself

Event names, like message selectors, can be unary or keyword names. A
unary event has no parameter, while a keyword event has as many
parameters as it has colons. For example, the code above defines a
#changing event, because the dependent object needs no further
information. MenuBar, on the other hand, defines a #menuItemSelected:
event, because the dependent needs to know which menu item was
selected, and takes the ID of the menu item as the message argument.

Event classes
Several special event classes are defined, as subclasses of Event. In
general, there is no need create such classes, as explained above. These
classes exist as interfaces for operating system events coming in through
the virtual machine.

How Handlers are Registered
By default, all subclasses of Object share a common event handler holder
in the class variable (a shared variable) EventHanders, which is defined in
Object. EventHandlers holds an EphemeronDictionary that is populated when
an object sends a variant of the when:send:to: message to configure an
event handler. The receiver of the message is the key in EventHandlers,
and the value is another IdentityDictionary of all events registered to that
object, where each item is the name of the triggered event, and the value
is the action to perform on receiving the event.

Subclasses of ApplicationModel, VisualPart, EventManager and Window
override this default, and do not use the default EventHandlers. Instead, the
classes each have an instance variable that holds any events registered
10-8 VisualWorks

Trigger Event System Support Methods
to their instances. In the case of ApplicationModel, VisualPart and Window,
that instance variable is named eventHandlers, and in the case of
EventManager it is named events. Classes that have their event handlers
defined in an instance variable have an advantage in that these objects
do not need special code for removing their trigger event dependencies
when the object is no longer in use; the handlers are removed with the
object during garbage collection.

You can create your own classes to use the instance variable approach,
in which case you have two options. The first, and simplest, is simply to
make your classes subclasses of EventManger. Then your object’s event
handlers are simply held in the events instance variable, as mentioned
above.

The second option is a little more complicated. First, you must add an
instance variable to the class you wish to hold the local event handlers.
We suggest that this be named eventHandlers, but that is not required.
Then you need to add two accessor methods to your class: myEventTable
and myEventTable:. These simply need the following form:

myEventTable: anEventTable
eventHandlers := anEventTable

and

myEventTable
^eventHandlers

With these two methods, the trigger-event system will automatically put
any events registered to your class into this instance variable instead of
into the EventHandlers class variable.

Trigger Event System Support Methods
In addition to the methods already described for triggering events,
registering event handlers, and removing event handlers, the following
event support methods are useful.

Trigger Event Support Methods Available to All Objects
actionForEvent: anEventNameSymbol

Answers the action or action sequence to evaluate when the event
named anEventNameSymbol is triggered by the receiver. The action
may be a block or a message.
Application Developer’s Guide 10-9

Trigger-Event System
actionListForEvent: anEventNameSymbol
Answers an editable list of actions that are evaluated when the event
named anEventNameSymbol is triggered. The actions may be blocks
or messages.

canTriggerEvent: anEventNameSymbol
Answer a Boolean indicating whether the receiver can trigger an event
named anEventNameSymbol.

eventsHandled
Answers a collection of the events name symbols for which there are
actions registered in the receiver's event table.

hasActionForEvent: anEventNameSymbol
Answer a Boolean with regard to if the receiver has an action
registered for the event named anEventNameSymbol.

Trigger Event Support Methods In ApplicationModel
The following methods have been added to ApplicationModel to more
easily support configuring of triggered events for widgets. These methods
are the suggested way of configuring a widget’s triggered events. These
methods require that the widgets being configured have their ID assigned
when they were created with the UIPainter tool. The UIPainter has a
special Name All Unnamed Widgets menu option with which older window
specifications can be upgraded.

The following are shortcut methods that find the widget named
aWidgetIDSymbol, and then apply the appropriate when:send:to: message to
the widget.
10-10 VisualWorks

Trigger Event System Support Methods
widget: aWidgetIDSymbol when: anEventSymbol do: aBlock

widget: aWidgetIDSymbol when: anEventSymbol evaluate: anAction

widget: aWidgetIDSymbol when: anEventSymbol send: anAction to:
anObject

widget: aWidgetIDSymbol when: anEventSymbol send: anAction to:
anObject
with: anArgument

widget: aWidgetIDSymbol when: anEventSymbol send: anAction to:
anObject
with: firstArgument with: secondArgument

widget: aWidgetIDSymbol when: anEventSymbol send: anAction to:
anObject
withArguments: aCollection

The following methods allow easy lookup of widgets and widget
components without having to go through the application’s builder object.
We suggest using these message instead of the self builder messages
commonly used in VisualWorks applications.

wrapperAt: aSymbol
Answer the value of the named component at aSymbol. Typically gets
a SpecWrapper or nil. In the case of a toolbar, it gets the actual ToolBar
instance.

controllerAt: aSymbol
Answers the controller for the component associated with aSymbol.
The answer may be nil or a Controller. In the case of a toolbar, it will
be nil.

widgetAt: aSymbol
Answer the widget associated with aSymbol. Typically answers a kind
of VisualPart, which may be nil.

mainWindow
Answer the main window associated with this ApplicationModel
instances. Typically answers a ApplicationWindow. May be nil if the
window is not created yet.

windowMenuBar
Answers the instance of MenuBar associated with the main window.
May be nil if the window is not mapped and opened, or if there is no
menu bar associated with the main window.
Application Developer’s Guide 10-11

Trigger-Event System
10-12 VisualWorks

11
Announcements

Overview
The Announcement system is another event system that is beginning to
replace the aging trigger-event system in VisualWorks.

Announcements provide a truly object-oriented event notification system.
Each announcement type is implemented as a class, with Announcement
class as the abstract superclass. When an object wants to announce an
event, such as a button click or an attribute change, the announcement is
defined as a subclass of Announcement. The subclass can have instance
variables for additional information to pass along, such as a timestamp,
mouse coordinates at the time of the event, or the old value of the
parameter that has changed.

To signal the actual occurrence of an event, the “announcer” creates and
configures an instance of an appropriate announcement, then broadcasts
that instance. Objects that are subscribed to receive such broadcasts
from the announcer receive a broadcast notification together with the
instance. They can talk to the instance to find out any additional
information about the event that has occurred.

The Announcement system is currently loaded standard image.

This section describes how to define, configure, broadcast, and interpret
announcements.

Subscribing to Announcements
A few objects in VisualWorks make announcements. You can create
additional objects that do so as well.
Application Developer’s Guide 11-1

Announcements
Because of the simplicity of announcements, there are only three
subscription methods:

when: anAnnouncement send: aSelector to: anObject
Subscribes to receive anAnnouncement (or any subclass) from the
receiver, and sends aSelector to anObject when the announcement is
received. aSelector can be a 0, 1, or 2 argument selector.

when: anAnnouncement do: aBlock
Subscribes to receive anAnnouncement (or any subclass) from the
receiver, and performs aBlock when the announcement is received.
aBlock can be a 0, 1, or 2 argument block.

when: anAnnouncement do: aBlock for: anObject
Subscribes to receive anAnnouncement (or any subclass) from the
receiver, and performs aBlock when the announcement is received.

When an object broadcasts announcements in which your object is
interested, sending one of these messages to that object subscribes to its
broadcasts. The when:do:for: method is mostly of interest only if you need
to selectively unsubscribe a block subscription (see “Unsubscribing” on
page 11-4):

In all three of these, the first argument, anAnnouncement, is the
announcement class that is being listened for. Class hierarchy is
honored, so if you subscribe to a superclass the subscription includes all
of its subclasses. For example, if you were to implement an
announcements hierarchy:

Announcement
ValueChangeAnnouncement

ValueAboutToChange
ValueChanged
ValueChanging

the method:

aValue
when: ValueChangeAnnouncement
do: [...]

traces all three value change announcements (the subclasses) broadcast
by aValue.

As with Exception classes, you can subscribe to multiple announcements
simply by listing them all in the when: argument. For example, to receive
AboutToChangeValue and ChangingValue but not ChangedValue:
11-2 VisualWorks

Subscribing to Announcements
aValue
when: ValueAboutToChange, ChangingValue
do: [...]

The handler method (aSelector) or block can have either 0, 1, or 2
arguments, with the following interpretation:

• If the handler has no arguments, it is simply invoked. For example:

aValue
when: ChangedValue
do: [Transcript cr; show: 'changed']

Obviously, you would use this in cases when you either know in
advance what announcement you receive and from what object, or
don't care.

• If the handler has one argument, the Announcement instance is
passed as the argument:

aValue when: ChangedValue do:
[:change |
Transcript

cr; show: 'changed to ';
print: change newValue]

• If the handler has two arguments, the Announcement instance is
passed as the first one and the announcing object (the one with
which you subscribed) as the second:

aValue when: ChangedValue do:
[:change :announcer |
Transcript

cr; print: announcer;
show: ' changed to ';
print: change newValue]

Message-based versions of those subscriptions would be:

aValue when: ChangedValue send: #changed to: self
aValue when: ChangedValue send: #changed: to: self
aValue when: ChangedValue send: #changed:from: to: self

In the message-based subscription examples, the “owner” of the
subscription, the object to which the message is sent, has been self, the
subscribing object. This is not necessarily the case, though it commonly
is. One object can submit a subscription for another simply by referencing
that object as the to: argument. Similarly, to submit a block-based
subscription on behalf of another object, use the when:do:for: form.
Application Developer’s Guide 11-3

Announcements
Unsubscribing
Unsubscribing from an announcement terminates receipt of the
subscribed event by the subscriber. Accordingly, the registered message
is no longer sent or the registered block is not longer processed. This is a
permanent change; to reactivate the subscription, the object must
resubscribe.

For a temporary suspension of a subscription, refer to “Suspending a
Subscription” on page 11-12.

To unsubscribe from an announcement, send one of these two
messages:

unsubscribe: anObject
Unsubscribe anObject from all announcements from the receiver.

unsubscribe: anObject from: announcementClassOrClasses
Unsubscribe anObject from the announcement(s) in
announcementClassOrClasses.

For example, if we have these subscriptions:

nameHolder when: ChangingValue send: #changingName: to: self.
nameHolder when: ChangedValue send: #changedName: to: self.

we can stop receiving changingName: when ChangingValue is announced by
executing

nameHolder unsubscribe: self from: ChangingValue
To unsubscribe from more than one announcement class at a time, we
can use a list of announcement classes, just like when subscribing:

nameHolder unsubscribe: self from: ChangingValue, ChangedValue
We can also request nameHolder to unsubscribe us from everything we
are currently subscribed to with a single

nameHolder unsubscribe: self
This covers most cases. There are, however, two points worth clarifying.

The first is, precisely what is the subscriber (what should we pass as the
unsubscribe: argument). With message-based subscriptions it is clear—it
is the receiver of the notification message (self in our examples).

Things get more interesting with block-based subscriptions (subscribed
by when:do:). The only thing we can consider a subscriber in this case is
the block itself, because nothing else is known to the announcer when we
establish a block-based subscription in this way. So, in order to
unsubscribe a block, we would need to hold onto the block and pass it to
the unsubscribe: request:
11-4 VisualWorks

Subscribing to Announcements
spy := [:announcement | Transcript cr; print: announcement].
nameHolder when: Announcement do: spy.
...
nameHolder unsubscribe: spy

This is reasonable in this particular case. However, it does not work well
with one very common pattern of block-based subscriptions. Blocks are
often used as simple intermediaries to invoke a method with some
additional information. For example, in an initialization method of our
application we could have something like:

authorization := self getAuthorization.
nameHolder when: ChangingValue do:

[self prepareNameChangeWith: authorization].
nameHolder when: ChangedValue do:

[self processNameChangeWith: authorization].
To unsubscribe these blocks we would need to break this clean and tight
code to store the two blocks in instance variables set up just for that
purpose, and then unsubscribe the blocks individually when we want to
break the dependency on nameHolder.

Instead, we can use the when:do:for: subscription message, which
accepts a third argument specifying the object on whose behalf the block
is subscribed. For such subscriptions, that object rather than the block is
considered to be the subscriber. So if we rewrite our example as:

authorization := self getAuthorization.
nameHolder

when: ChangingValue
do: [self prepareNameChangeWith: authorization]
for: self.

nameHolder
when: ChangedValue
do: [self processNameChangeWith: authorization]
for: self.

We can later remove those two subscriptions with a single

nameHolder unsubscribe: self
To sum up, the framework considers the following to be the subscriber:

• For subscriptions established using when:send:to: it is the to:
argument.

• For subscriptions established using when:do: it's the do: argument.

• For subscriptions established using when:do:for: it is the for: argument.
Application Developer’s Guide 11-5

Announcements
The second point is the exact interpretation of the announcement class
passed as the second argument of unsubscribe:from:. Suppose we have a
subscription (two, in fact) established as

aValue when: ChangingValue, ChangedValue send: #foo to: self
if later we send

aValue unsubscribe: self from: Announcement
what should happen? While there are design options, the framework
requires that an unsubscribe request exactly match the subscription
request. The first statement in the above example is treated as if it
establishes two subscriptions, one for ChangingValue, the other for
ChangedValue. In order to remove them, we need to unsubscribe from
those two exact classes. We can do that either as two separate requests:

aValue
unsubscribe: self from: ChangingValue;
unsubscribe: self from: ChangedValue;

or as a single request, but still explicitly listing both classes:

aValue unsubscribe: self from: ChangingValue, ChangedValue
Note that if we send only

aValue unsubscribe: self from: ChangingValue
this will remove a subscription for that class, but subscription for
ChangedValue will remain, even though both were established with one
when:send:to: message.

Announcing an Event
Any object can announce any event. Announcements, however, are no-
ops unless some other object has subscribed to receive them. To be able
to accept subscriptions, refer to “Accepting Subscriptions” on page 11-7

To broadcast an announcement, there is a single message, announce:.
The argument can be either an Announcement subclass, or an instance of
an Announcement subclass. If a class, a new instance of the class is
created.

self announce: SomethingHappened
To provide more information in the announcement than simply the class
and announcer, create an instance and configure it. Details are
determined by the announcement class.

self announce: (SomethingHappened new explanation: 'foo')
11-6 VisualWorks

Accepting Subscriptions
The Announcement instance can have as much structure as you need.

Accepting Subscriptions
Any class can make announcements, but doing so is pointless unless
objects can subscribe to them. (Unlike trigger-events, there is no default
ability for an arbitrary object to remember subscriptions.)

In order to be able to accept subscriptions, an object should either inherit
from Announcer or implement the protocol locally. The implementation is
simple, so the cost of local implementation is low. Required are:

• A subscriptionRegistry: method to store the argument, a
SubscriptionRegistry, in its instance variable (typically named
subscriptionRegistry).

• A subscriptionRegistryOrNil method to return the registry, or nil if it does
not exist.

Optional, but typical, is:

• A postCopy method to nil out the registry in a copy.

The implementations are straight-forward. In Announcer they are
implemented as follows:

subscriptionRegistry: aSubscriptionRegistry

subscriptionRegistry := aSubscriptionRegistry

subscriptionRegistryOrNil

^subscriptionRegistry

postCopy

subscriptionRegistry := nil
Application Developer’s Guide 11-7

Announcements
Handling an Announcement

Processing an Announcement
How an Announcement is handled is determined when it is registered,
either by a block or by a message-send, as described in “Subscribing to
Announcements” on page 11-1.

The handler method or block can have either 0, 1, or 2 arguments, with
the following interpretation:

• If the handler has no arguments, it is simply invoked. For example:

aValue
when: ChangedValue
do: [Transcript cr; show: 'changed']

Obviously, you would use this in cases when you either know in
advance what announcement you receive and from what object, or
don't care.

• If the handler has one argument, the Announcement instance is
passed as the argument:

aValue when: ChangedValue do:
[:change |
Transcript

cr; show: 'changed to ';
print: change newValue]

• If the handler has two arguments, the Announcement instance is
passed as the first one and the announcing object (the one with
which you subscribed) as the second:

aValue when: ChangedValue do:
[:change :announcer |
Transcript

cr; print: announcer;
show: ' changed to ';
print: change newValue]

Message-based versions of those subscriptions would be:

aValue when: ChangedValue send: #changed to: self
aValue when: ChangedValue send: #changed: to: self
aValue when: ChangedValue send: #changed:from: to: self
11-8 VisualWorks

Advanced Announcement Management
Vetoing an Event
Vetoing an event is supported as a usage pattern, rather with specific
methods and mechanisms. When using some announcing pattern like the
3-phase change pattern, announcing AboutToChange, Changing, and
Changed, it is easy to implement. Most announcements are in fact not
veto-able, so relying on a usage pattern is appropriate.

All an Announcement class needs in order to support vetoing are three
simple things:

1. An instance variable for the veto flag (e.g., vetoed).

2. A method (e.g., veto) that sets the variable to a non-nil value, used by
subscribers to veto.

3. A method (e.g., isVetoed) that does ^vetoed notNil.

The announcer would do this to announce and respond to a veto request:

| announcement |
announcement := AboutToChange new.
self announce: announcement.
announcement isVetoed ifTrue: [^self]
...

Even simpler, using the fact that the announce: message answers the
announcement instance that has just been announced:

(self announce: AboutToChange) isVetoed ifTrue: [^self]
...

Implementing this mechanism only in announcements that are vetoable,
rather any in Announcement, keeps the implementation simple and clear.

Advanced Announcement Management

How Subscriptions are Managed
Subscriptions to announcements are managed by instances of two
classes, SubscriptionRegistry and AnnouncementSubscription. A
SubscriptionRegistry is associated with an announcer object, one registry
per announcer. A registry uses instances of AnnouncementSubscription to
record individual subscriptions for the announcements of that object.
Application Developer’s Guide 11-9

Announcements
A registry for an object is accessible by sending the subscriptionRegistry
message to the object. This always answers a SubscriptionRegistry,
creating and associating one with the object if it does not exist yet. A
variant of that message, subscriptionRegistryOrNil, answers a registry only
if one is already set up, or nil if it is not.

The primary reason SubscriptionRegistry is publicly accessible like this,
even though it works entirely behind the scenes in basic announcements-
related tasks, is that it provides second-tier subscription management
protocol. The following sections describe such management techniques.

Any object can be an announcer, but must be configured to accept
subscriptions. Refer to “Accepting Subscriptions” on page 11-7 for
instructions.

Selecting Subscriptions
The registry is the gateway to the advanced (that is, less frequently used)
announcement API.

A registry for an object is accessible by sending the subscriptionRegistry
message to the object. This always answers a SubscriptionRegistry,
creating and associating one with the object if it does not exist yet. A
variant of that message, subscriptionRegistryOrNil, answers a registry only
if one is already set up, or nil if it is not.

Suppose we want to do some advanced management of a registry. For
example, to start with the simplest thing, you can send messages isEmpty
and notEmpty to it to find out if it has any subscriptions—in case you want
to do something differently based on whether it is or is not empty.

Most important in the grand scheme of things are the four selection
messages that select the currently existing subscriptions:

allSubscriptions
Answer all the subscriptions currently in the registry.

subscriptionsFor: announcementClassOrSet
Answer the subscriptions for the exact class or classes. Exact means
that a subscription for Announcement will not be selected if the
argument is a subclass, even though that subscription would receive
an announcement of that class.

subscriptionsOf: anObject
Answer the subscriptions with anObject as the subscriber.
11-10 VisualWorks

Advanced Announcement Management
subscriptionsOf: anObject for: announcementClassOrSet
Answer the subscriptions with anObject as the subscriber and the
announcement class either the same as the second argument if it's
an individual class, or listed in the second argument if it is an
announcement set.

Once we have the subscriptions we are interested in, we can do a
number of things with them. For example, we can unsubscribe from them
with:

anObject unsubscribe: self
or

anObject unsubscribe: self from: Foo
The implementations actually do

registry removeSubscriptions:
(registry subscriptionsOf: self)

and

registry removeSubscriptions:
(registry subscriptionsOf: self for: Foo)

The registry API provides unsubscribing options that affect multiple
subscribers at once. For example:

registry removeSubscriptions: registry allSubscriptions
removes all subscriptions from the registry, no matter who subscribed
and for what announcements.

To remove all subscriptions for the announcement class Foo, no matter
the subscriber, use:

registry removeSubscriptions:
(registry subscriptionsFor: Foo)

Elevating subscription selection to the level of public API (and making
subscriptions real objects in the first place) gives us tremendous
flexibility, without having to provide special API.

For example, in the trigger event system we had to provide a
hasActionForEvent method in Object to test for event registrations. In
Announcement system, we can find this out as simple as

(registry subscriptionsFor: Foo) isEmpty
Or just as easily we can do

(registry subscriptionsOf: anObject) isEmpty
Application Developer’s Guide 11-11

Announcements
to check whether a particular object is a subscriber—something trigger
event does not do.

Or, to find out what announcement classes are in demand at the moment:

(registry allSubscriptions
collect: [:each | each announcementClass]) asSet

Similarly, to get a collection of all the current subscribers:

(registry allSubscriptions
collect: [:each | each subscriber]) asSet

We can also remove all subscriptions whose subscribers we do not want
for whatever reason (criteria provided by implementing a dislikes:
message):

registry removeSubscriptions:
(registry allSubscriptions select:

[:each | self dislikes: each subscriber])
or like this:

registry allSubscriptions do:
[:each |
(self dislikes: each subscriber) ifTrue:

[registry removeSubscription: each]]
All subscription selection messages of SubscriptionRegistry answer
instances of AnnouncementSubscriptionCollection, a subclass of
OrderedCollection. In this way, the framework elevates the concept of a
group of subscriptions to first-class status. Some of the operations we
want to do—suspending subscriptions is one of those—are the easiest to
think of as operations on groups of subscriptions, and we do just that. We
represent groups of subscriptions as collections with extra behavior
appropriate for subscription collections.

Suspending a Subscription
Sometimes it is useful to be able to turn off a subscription temporarily, to
let a piece of code run without the usual reaction the announcements it
broadcasts would trigger. What subscriptions exactly should be turned off
depends on the circumstances. You may want to turn off all subscriptions
for announcements of an object, or only for a particular kind of
announcements. Or a subscriber might want to stop receiving
announcements from a particular announcer, or only a subset of those
announcements.
11-12 VisualWorks

Advanced Announcement Management
The Announcement framework provides for all of these with a single
method. The method suspends a group of announcements previously
selected using the selection messages discussed in “Selecting
Subscriptions” on page 11-10. By combining those methods with the
single suspendWhile: message, we have a wide choice of what gets
suspended without the need for multiple versions of the suspend method.

To temporarily disable all the current subscriptions to and object’s
announcements, it can do:

self subscriptionRegistry allSubscriptions
suspendWhile: [...]

To suspend only particular kinds of announcement:

(self subscriptionRegistry subscriptionsFor: Foo, Bar)
suspendWhile: [...]

If an object wants to temporarily stop receiving particular announcements
from a particular announcer:

(anObject subscriptionRegistry subscriptionsOf: self for: Foo, Bar)
suspendWhile: [...]

There is always the general option to get allSubscriptions, filter the
collection with select: or reject: using an arbitrary condition based on the
subscriber and announcementClass, and then send suspendWhile: to the
filtered result.

Note that suspendWhile: is sent directly to the result of the selection
messages, which is an AnnouncementSubscriptionCollection.

The following points are worth noting about suspending subscriptions.

• What you disable is always a collection of specific subscriptions,
rather than the ability of an object to broadcast announcements. For
example,

anObject subscriptionRegistry allSubscriptions suspendWhile: [...]
disables all currently existing subscriptions of an object. However, if
new subscriptions are added to the object while the block is running,
those new subscriptions are active and will deliver announcements
broadcast inside the block.

• The previous feature fits the overall subscription-centric spirit of the
framework. As described, subclass relationship is considered only
when delivering announcements—a subscription for Foo will also
deliver any subclass of Foo—but to remove a subscription for Foo you
need to specify Foo exactly.
Application Developer’s Guide 11-13

Announcements
• The same principle applies to subscription selection.

subscriptionsFor: Foo
will not select subscriptions for superclasses of Foo, even though
those subscriptions would deliver instances of Foo when asked. This
means that if you have this arrangement of announcement classes

ValueChangeAnnouncement (abstract)
ValueAboutToChange
ValueChanging
ValueChanged

and you want to suspend all three concrete classes, simply saying

(self subscriptionRegistry subscriptionsFor:
ValueChangeAnnouncement)

supendWhile: [...]
will not work, because this will not match any of the concrete
subclasses. In the context of suspending, even considering that we
can list classes using an announcement set as

"subscriptionsFor: ValueAboutToChange, ValueChanging,
ValueChanged"

this code is fragile and would break if we added a new
ValueChangeAnnouncement subclass.

This is a good use case for another way of creating announcement
sets. The right solution is this:

(self subscriptionRegistry subscriptionsFor:
ValueChangeAnnouncement andSubclasses)

suspendWhile: [...]
The andSubclasses message sent to an announcement class creates
an announcement set with that class and all its subclasses, avoiding
both the tedium and the need to keep the code synchronized with the
class structure.

Of course, andSubclasses can be used in any context where
announcement sets are allowed. For example, you can unsubscribe
an object from all ValueChangeAnnouncement subclasses it previously
subscribed to at once by saying:

announcer unsubscribe: self from:
ValueChangeAnnouncement andSubclasses

• Potentially, you could even use andSubclasses when subscribing:

announcer when: Foo andSubsclasses do: [...]
11-14 VisualWorks

Advanced Announcement Management
though in this case it is not only pointless, but the result is likely
unwanted, too. It is pointless because a subscription for Foo alone will
deliver any subclass of Foo. It is unwanted because given this class
structure:

Foo
Bar

Zork
the code will create three subscriptions, one for each class. When the
announcer later announces Zork, that same announcement will be
delivered three times, once by each subscription.

• Suspend requests can be nested. If sets of suspended subscriptions
of such nested requests overlap, the framework does the following:
when you suspend a subscription for the duration of a block, and
then inside that block suspend the same subscription again for the
duration of an inner block, the subscription will not be reactivated
after the inner block ends and will stay suspended until the end of the
outer block.

Batching Missed Announcements
Another suspension option is suspendWhile:ifAnyMissed:. It takes a second
argument which should always be a zero-argument block. It works just
like suspendWith: in that the subscriptions you send this to are suspended
and do not deliver anything to their recipients while the block runs. In
addition, this message keeps track of whether there have been any
“missed calls.” After the While: block finishes, the second block is
evaluated once, if there have been any undelivered announcements
while the first block ran.

This provides a way to batch potentially multiple updates. For example,
the following code suppresses Foo announcements, but then ensures one
of those gets announced as a summary if needed:

(anObject subscriptionRegistry subscriptionsFor: Foo)
suspendWhle: [...do stuff...]
ifAnyMissed: [anObject announce: Foo]

On the recipient side, to suspend response to updates from a certain
object but then catch up with a single update, you can also do something
like:
Application Developer’s Guide 11-15

Announcements
(anObject subscriptionRegistry subscriptionsOf: self)
suspendWhile: [...]
ifAnyMissed: [self update]

Again, overlap between subscriptions suspended by nested blocks is
handled correctly, in the sense that nested suspend requests don't affect
the outer ones and vice versa.

Substituting a Handler
Another suspension option allows for a block of code to run in lieu of
each delivery that would have happened. For example, the following
code will count how many actual announcement deliveries would have
occurred:

count := 0.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [count := count + 1]
while: [anObject announce: Foo].

^count
Interceptor block can take arguments, with the same interpretation as in
handler blocks established by when:do:. These open up quite a lot of
options of what can be done by the interceptor.

For example, the above code counts deliveries. If there are five
subscribers for Foo, and Foo has been announced twice, the count will be
10 for the ten deliveries that would have occurred. If we want to count
how many actual announcements were broadcast, regardless of how
many objects would have received them, we can do this:

announcements := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [:ann | announcements add: ann]
while: [anObject announce: Foo].

^announcements size
If the interceptor block has two arguments, it receives the announcement
and the announcer, again just like in a regular handler. In the context of
an interceptor block this probably isn't as useful. Since in order to get the
subscriptions to intercept we start with the announcer and its registry, we
typically know who the announcer is anyway.

The interceptor block can also take three arguments. In that case, the
third argument is the subscription that has just been intercepted. Given
that, the interceptor can find out the subscriber of the intercepted
delivery. Coming back to our example, to count how many subscribers
would have received the announcements we intercepted, we would do
this:
11-16 VisualWorks

Advanced Announcement Management
subscribers := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith: [:a :o :s | subscribers add: s subscriber]
while: [anObject announce: Foo].

^subscribers size
Another important option the access to subscription gives us is writing
transparent interceptors, those that do not prevent announcements from
reaching their subscribers. The following code will silently count how
many announcements have been announced, but other than that it will be
business as usual and all announcements will safely make it to all of their
subscribers:

announcements := IdentitySet new.
(anObject subscriptionRegistry subscriptionsFor: Foo)

interceptWith:
[:announcement :announcer :subscription |
announcements add: announcement.
subscription deliver: announcement from: announcer]

while: [anObject announce: Foo].
^announcements size

The final

subscription deliver: announcement from: announcer
is what you can use in interceptors to pass the announcement on to the
intended recipient, conditionally or unconditionally at the end of the
interceptor block.

It was mentioned that an interceptor block can take the same arguments
a handler block or a handler method can. Indeed, ordinary handler blocks
and methods can also take the subscription as their third argument.
However, in a regular handler, knowing the subscription that delivers the
announcement is not quite as useful. Asking it about its subscriber is
pointless when you are the subscriber, just as telling it to deliver the
announcement when it is already in the process of being delivered.

One final note about interceptors is their behavior in case of nesting.
Interceptors are additive. If you set up an interceptor on a subscription
and then set one up in a nested block, both will run when the subscription
attempts to deliver an announcement. This is in line with the overall
philosophy that nested suspend and intercept requests are independent
and do not affect each other's behavior. One notable consequence of this
is if both interceptor blocks do

subscription deliver: announcement from: announcer
the subscriber will get the same announcement twice, once from each of
the interceptors.
Application Developer’s Guide 11-17

Announcements
Making Subscriptions Weak
By default, subscriptions create a strong reference between the
announcer and subscriber. Even if all other references to the subscriber
are gone, the subscriber will stay alive as long as the announcer it is
subscribed to is alive. This is actually what allows the following to work:

anObject when: Announcement do: [Transcript cr; show: 'gotcha']
despite the fact that no references to the block closure are saved
anywhere.

There are two points of view on this subject as to whether this is the right
behavior. One is that the right thing is to require subscribers to
unsubscribe themselves explicitly, as their duty in maintaining the overall
solid object structure. The other is that it is good when things just work,
without explicit responsibilities. The first view is represented by the
default behavior.

The Announcement framework also support the second view, providing
weak references as an option.

To weaken some subscriptions we do something like

(anObject subscriptionRegistry subscriptionsOf: self) makeWeak
From now on, when there are no strong references to self, the object will
get garbage collected and its subscriptions with anObject will disappear on
their own.

It is possible to weaken subscriptions right when you create them, using a
feature of subscription messages we have not yet mentioned. The
feature is that all subscription messages (when:send:to:, when:do:,
when:do:for:) answer the subscriptions they have just set up. So instead of
a separate protocol for setting up weak subscriptions, all we need is send
makeWeak to the result:

(anObject when: Foo send: #fooHappened: to: self) makeWeak.
This covers one side of announcer-subscriber relationship, where the
subscriber wants to create subscriptions that will not keep it alive. On the
other side of the relationship, it is possible to configure the announcer so
that all subscriptions created to it are weak by default. The announcer's
subscription registry is the factory that actually creates subscriptions, and
the class it instantiates to do that is a parameter. The default strong
subscriptions are instances of AnnouncementSubscription. Weak
subscriptions are instances of its ephemeral subclass
11-18 VisualWorks

Advanced Announcement Management
WeakAnnouncementSubscription. So, in order to configure an object to
always use weak subscriptions for its announcements, all we need to do
is this:

anObject subscriptionRegistry subscriptionClass:
WeakAnnouncementSubscription

All new subscriptions set up with that object are then created as weak.
This does not affect already existing subscriptions.

This preference for weak subscriptions can be turned into the default for
a particular announcer class, by hooking into the framework in a different
place. A subscription registry for an object is originally created by the
method createSubscriptionRegistry. Instances of a class reimplementing
that method as

createSubscriptionRegistry

^SubscriptionRegistry new subscriptionClass:
WeakAnnouncementSubscription

will always default to weak subscriptions, without the need to explicitly
reset the subscription class in each.

Just like you can individually weaken some subscriptions created by
classes that default to strong, a subscriber can individually strengthen its
subscriptions with classes that default to weak, by sending:

(anObject subscriptionRegistry subscriptionsOf: self) makeStrong
or

 (anObject when: Foo send: #fooHappened: to: self) makeStrong
Application Developer’s Guide 11-19

Announcements
11-20 VisualWorks

12
Working With Graphics and Colors

Overview
Graphics are used in an application for a variety of purposes. They are
the foundation of the Graphical User Interface (GUI), by which the user
directs the application, providing necessary input and initiating
operations, and receives feedback from the application. Graphics also
make the user interface visually appealing. Both static images and
animations can be incorporated into your VisualWorks application.

VisualWorks GUI development is supported by an extensive framework,
including tools and widgets, as described in the GUI Developer’s Guide.
Refer also to the Basic Libraries Guide for extended discussion of the
usage of graphics classes. In this chapter we address the more
fundamental aspects of graphical support, including the basic graphics
classes, and how to create and display graphical objects in VisualWorks.

Following an overview of the major components of the graphics
framework, we will describe various techniques for presenting graphics.
In this chapter, the emphasis is on displaying graphics on a screen, in a
window, though much of what is discussed is applicable to printing as
well.

Also, graphical objects such as Geometrics and Image, and Colors and
Patterns are described in more detail in subsequent chapters. This
chapter focus on the environment and techniques for using them in a
display.

A Note about the Examples
Many examples in this chapter use the Examples Browser, which
provides a scratch window in which to display graphics. This simplifies
the examples, removing the redundant code for creating the window.
Application Developer’s Guide 12-1

Working With Graphics and Colors
The Examples Browser is loaded with the help system. It can also be
loaded separately by loading the ExamplesBrowser parcel in the
examples/ directory.

Once loaded, open the window by evaluating:

Examples.ExamplesBrowser prepareScratchWindow
Generally, as explained later in this chapter, graphics are displayed to a
graphics context. Accordingly, the window is opened and its graphics
context held in a variable:

gc := (Examples.ExamplesBrowser prepareScratchWindow) graphicsContext
This is all explained further in the following sections.

The VisualWorks Graphics Environment
The VisualWorks graphics environment consists of several objects
representing

• graphical objects themselves (geometric shapes and images),

• physical graphics device (screens and printers),

• logical graphics medium (windows, pixmaps and masks), and

• graphics context, which knows how to render the graphical objects on
the devices and surfaces.

Graphics are typically composite objects consisting of geometric shapes,
images, and colors that interact with a display object. Control over the
appearance of a graphic is often shared by the graphic itself and its
display surface.

The following paragraphs provide an overview of the elements of the
graphics environment. The remainder of the chapter gives explanations
and examples of how to perform useful graphical operations.
12-2 VisualWorks

The VisualWorks Graphics Environment
Pixels
Much like a printed photograph, a computer image is made up of tiny dots
of color. Each dot makes one element of the picture, so it is known as a
picture element—or pixel, for short.

Monochrome Pixels and Bitmap

On a black on white (monochrome) screen, each pixel is either on (black)
or off (white). Its current state is represented in memory as either one
(on) or zero (off). Thus, each bit in memory controls a single pixel, and
the entire screen is represented as a two-dimensional array of bits. The
array provides a map of the screen, so it’s called a bitmap.

When the screen is capable of displaying more than two colors, a single
bit is not sufficient to embody the range of choices. It takes two bits to
represent three to four colors, three bits for five to eight colors, and so on.
Though the “bitmap” is no longer a one-to-one mapping from bits in
memory to pixels on the screen, it is still referred to as a bitmap.

Coordinate System
Each pixel represents one unit of width on the x-axis and one unit of
height on the y-axis.

Graphics in VisualWorks are represented in terms of points in a two-
dimensional rectangular coordinate system, with x coordinates increasing
from left to right on the graphic plane and y coordinates increasing from
top to bottom. Numbering starts from zero, so that 0@0 is the top left
point.

bitmap pixels

1 0 1

0 0 0

1 0 1
Application Developer’s Guide 12-3

Working With Graphics and Colors
Coordinate system

All graphic operations accept nonintegral coordinates, but such
coordinates are rounded to the nearest integer.

The origin is relative to graphics medium, such as a window, rather than
the origin of the screen. If the window has subviews, each subview
maintains its own origin, and graphic operations use that origin. As a
result, you rarely need to be concerned with translating coordinates when
a window is moved or resized.

Some windowing systems (such as the Macintosh’s) place pixels
between grid points, as shown in the above figure, while other window
systems (X and MS-Windows) place pixels on grid points. VisualWorks
conforms to the host platform. This difference rarely matters, but it can
cause a one-pixel misalignment in some circumstances, and a “difference
of opinion” about whether the border of an object such as a polygon is to
be repainted when that object is filled.

Coordinate values must be in the range from -32768 through 32767.
Violation of this restriction may result in a primitive failure. For some
operations, such as displayRectangle:, no primitive failure occurs, but the
operation may fail silently, or succeed, depending on the platform. These
limits apply after translation, if any, has been applied to the graphics
context (see “Shifting (Translating) the Display Position” on page 12-13).

Points
An x-y coordinate pair is represented as an instance of Point. The
@ message creates a Point, as in this example which creates a point with
an x-value of 100 and a y-value of 250. The spaces before and after the
binary selector (@) are optional:

100 @ 250

0 1 2 3

1

2

y

x4

3

12-4 VisualWorks

The VisualWorks Graphics Environment
You can also create a point by specifying polar coordinates. The following
example creates a Point whose coordinates lie on a circle of radius 100 at
45 degrees:

Point r: 100 theta: 45 degreesToRadians
Two constants are available: Point zero returns 0@0, and Point unity returns
1@1.

A Point can perform comparison and arithmetic functions. So, you can
test for equality, and for less than and greater than relations. You can add
two points, and add or subtract a scalar value to a Point, to increase or
decrease both x and y by scalar amount. For other operations, browse
the Point class.

Rectangles
Rectangles are used in a variety of graphic operations, from setting the
size of a window to specifying the bounding box of a graphical object, as
well as simply to create a rectangular graphic object.

There are several ways to create a rectangle, accommodating a variety of
contexts. The most common methods are to send an extent: or corner:
message to an origin (top left) point. Both of the following expressions
create a rectangle 100 pixels wide, 250 pixels high, with its origin at
50@50:

50@50 extent: 100@250
50@50 corner: 150@300

The extent: message specifies the rectangle by its size, setting the x and y
distance from the starting point. The corner: message, on the other hand,
specifies the absolute corner position.

50@50

150@300

250

100
Application Developer’s Guide 12-5

Working With Graphics and Colors
When it is inconvenient to assemble the coordinates into Points, you can
also create a Rectangle from the component x- and y-values:

Rectangle left: 50 right: 300 top: 50 bottom: 150
Rectangles will be used frequently in examples in this chapter. Refer to
these examples and to the “Geometrical Objects” chapter in the Basic
Libraries Guide.

Graphical Objects
Graphical objects are drawn and positioned by specifying points in the
coordinate system. VisualWorks provides support for displaying several
types of geometric shape, bitmap images, and text.

Text Objects
Texts, which are represented as instances of Text and ComposedText, are
treated as graphical objects in many contexts. Text processing, including
displaying and setting text properties, are described in detail in the
“Working with Text” chapter in the Basic Libraries Guide.

Geometric Objects
VisualWorks implements several types of geometric objects, in
subclasses of Geometric.

• A LineSegment connects two points, named start and end.

• A Polyline connects three or more points (its collection of vertices) as
a series of line segments, and is closed between the start and end
points. A polygon is a Polyline that is filled rather than stroked.

• A Rectangle represents a rectangular region whose axes are aligned
with the x and y axes. Rectangles are frequently used to describe
areas of a screen, but can also be used as a geometric shape.

• An ElipticalArc is a curved line defined by three parameters:

• The smallest rectangle that can contain the ellipse of which the
arc is a segment (adjusted for line width).

• The angle at which the arc begins, measured in degrees
clockwise from the 3 o’clock position (or counterclockwise for
negative values).

• The angle traversed by the arc, known as the sweep angle. The
sweep angle is measured from the starting angle and proceeds
clockwise for positive values and counterclockwise for negative
values.
12-6 VisualWorks

The VisualWorks Graphics Environment
• A Bezier is a curve between two endpoints, with a control point for
each endpoint determining the angle of the curve at that endpoint.

• A Circle is a circle, specified by a center and radius.

• A Spline is a curve interpolated through a series of points

See “Geometrical Objects” in the Basic Libraries Guide for more
information.

Bitmap Image Objects
An Image is a graphic object composed of a rectangular array of pixels.
Image employs a bitmap to represent its pixel colors or coverages. An
Image can be either color-based or coverage-based, depending on its
palette.

A very simple Image can be constructed by manipulating the bits in the
map directly, but this is unwieldy for complicated pictures. More typically,
a scanner or a drawing tool is used to create the desired arrangement of
pixels. An Image is then captured from the on-screen representation or
read from a file.

An Image is stored in Smalltalk memory, so it is saved with the Smalltalk
image.

Images have a variety of uses in applications, from cursors and icons, to
backgrounds, decorations, and animations.

See the “Graphical Images” in the Basic Libraries Guide for additional
information. We will make extensive use of graphical images in this
chapter.

VisualPart
VisualPart is an abstract class that provides its subclasses with the
fundamental ability to communicate with their containing object. This
provides the foundations for the GUI framework’s widget, menu, and
toolbar display capabilities, but can be useful in other applications as well.

Most of VisualPart's methods are background machinery that is never
used directly by an application, though some methods may need to be
redefined when you create a new subclass. The displaying protocol is the
main exception, since it enables an application to influence the timing of a
redisplay of a visual part. In addition, the displaying protocol enables a
visual part to be flashed, as a trouble indicator.
Application Developer’s Guide 12-7

Working With Graphics and Colors
The direct subclasses of VisualPart include four important abstract
classes, each of which has several subclasses:

• SimpleComponent represents labels and other passive widgets.

• DependentPart represents the wide variety of views, including widget
views.

• Wrapper represents a visual part that holds a component whose
environment it influences, for example as a BorderedWrapper adds a
border to its component.

• CompositePart represents a hierarchical collection of visual parts.

Colors and Patterns
Graphical objects are presented in color. VisualWorks implements a rich
color model, providing a variety of ways of specifying colors and color
effects. In addition to smooth, solid colors, you can specify gradations
along several scales. Further, you can use a pattern as a color in many
contexts.

We will make use of colors and patterns in this chapter, but not discuss
them in detail. For additional information, refer to the “Colors and
Patterns” chapter in the Basic Libraries Guide.

Graphics Media and Display Surfaces
Graphic operations in Smalltalk are performed on two-dimensional
graphics media, which are implemented as subclasses of
GraphicsMedium. Subclasses provide a logical representation of the media
for video display and for printing.

All current video display media are subclasses of the abstract class
DisplaySurface. There are three types of display surface: Window, Pixmap,
and Mask. While a Window is used to display graphic objects on-screen,
Pixmaps and Masks are used for manipulating graphics. These represent
host graphic media related to video display screens, and so rely on
operating system resources and cannot be saved with the Smalltalk
image.

All graphics media employ a GraphicsContext as an intermediary between
the surface and the objects to be displayed, as described below.
12-8 VisualWorks

The VisualWorks Graphics Environment
Windows
A VisualWorks Window corresponds to the window supplied by the host
platform’s window manager. It is a Macintosh window on the Macintosh,
an X window on machines running X, and so on. For that reason, a
Window’s border decorations and label bar take on the host window
manager’s look and feel.

ScheduledWindow, a subclass of Window, has a controller that permits the
user to move, resize and close the window. ScheduledWindow and its
subclass, ApplicationWindow, are the usual classes instantiated to create a
window. To create and open a ScheduledWindow on the screen, evaluate:

ScheduledWindow new open.
A ScheduledWindow handles the details of window resizing, raising and
lowering, etc. By itself, however, a ScheduledWindow is not very useful. Try
opening one and typing characters into it—as you will see, it does not
provide application capabilities such as text editing. (To close the window,
select close in its <Window> menu.) To provide such capabilities, it holds
onto a VisualComponent, which is frequently a View. The view itself may
contain subviews, and so on. Thus, ScheduledWindow is commonly
described as being at the top of the view hierarchy. For more about
building windows, refer to the GUI Developer’s Guide.

Pixmaps
A Pixmap is the off-screen equivalent of a window. It is a rectangular
surface, capable of storing an encoded color at each pixel location just as
a window does. Unlike a window, a Pixmap retains its contents until they
are explicitly overwritten. For this reason, a Pixmap is said to be a retained
medium.

Masks
A Mask is used to trim unwanted parts of a picture. The mask can take
any shape, such as a circle, a rectangle, or an irregular polygon.
Advanced graphic effects can be created by merging images using
masks.

For example, Cursor employs a mask to trim away “white” portions of the
rectangular image, leaving only the desired shape (such as an arrow, or
cross-hairs). Without a mask, the cursor would obscure a rectangular
region of the display no matter what shape the cursor image was.
Application Developer’s Guide 12-9

Working With Graphics and Colors
Graphics Context
Every graphics medium and visual part uses an instance of
GraphicsContext to manage graphic parameters such as line width, tiling
phase, and default font. Displaying operations are performed not by the
display surface directly, but by its GraphicsContext.

Similarly, messages for modifying graphic parameters such as line width
must be addressed to the appropriate GraphicsContext. That object applies
the relevant parameters and then displays the object on the surface.

A graphics medium does not store a graphics context, so it cannot be
accessed by an accessor. Instead, you need to get a graphics medium’s
graphic context any time a change is made. To get the graphics context,
send the message graphicsContext to the graphics medium. This is done
repeatedly in the examples.

Since many unrelated graphic operations can modify a graphics
medium’s graphic context, each graphic operation is responsible for
setting up its own graphic context. For this reason, you should never store
a GraphicsContext in an instance variable or a class variable, or if you must
assign it to a variable, use a temporary variable so the changes remain
local within a method.

Graphics Device
Subclasses of GraphicsDevice represent physical graphics rendering
devices, such as the display screen and printers. GraphicsMedium
subclasses represent the object that is rendered on a graphics device.
GraphicsDevice classes provide color and font defaults rendering on those
devices.

Applications typically interact with a graphics medium and its graphics
context rather than with the underlying device. However, the Screen
graphics device provides a few useful utilities, such as ringing the bell and
returning the window at a screen coordinate point.

Displaying a Graphic
Graphics display operations are performed on a graphics context.
Graphics media, including printers and the various display surfaces, and
visual parts all have a graphics context, and so are recipients of display
operations.
12-10 VisualWorks

Displaying a Graphic
The graphics context holds many parameters that condition how a display
surface renders a graphical object. Refer to “GraphicsContext Attributes”
on page 12-19 for specific attributes.

Getting a GraphicsContext
The usual way of getting a graphics context is to send the message
graphicsContext to the object on which a graphical object is to be rendered.
For example, to get the graphics context of an ExamplesBrowser, create the
instance and request its graphics context:

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
We will reuse this code fragment repeatedly in this chapter. This creates
and opens an ExamplesBrowser, which is a window (specifically, an
ApplicationWindow instance) and gets its GraphicsContext.

The graphicsContext message retrieves the graphics context of other
rendering objects as well, such as Pixmaps and VisualParts, as will be
illustrated throughout this chapter.

Displaying a Graphical Object on a GraphicsContext
The usual method for displaying a graphical object on a graphics context
is displayOn:. For example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.

'This is a test' displayOn: gc.
This creates and opens an ExamplesBrowser and gets its GraphicsContext.
Then, the String of characters is displayed on the graphics context.

Several displayable objects also implement a displayOn:at: message,
allowing you to position the object in the graphics context. For example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.

'This is a test'
displayOn: gc
at: 50@50.

Other mechanisms for positioning the display are discussed later in this
chapter.
Application Developer’s Guide 12-11

Working With Graphics and Colors
Geometric objects can be displayed either “stroked” (as a line drawing) or
filled, and so implement the more specific display messages
displayStrokedOn: and displayFilledOn: instead. For example,

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.

(Circle center: 125@125 radius: 100) displayStrokedOn: gc.
(Circle center: 275@275 radius: 100) displayFilledOn: gc.

For that reason, a variant of the displaying messages allows you to
specify the point at which the object’s origin is to be positioned.

Drawing a Transient Shape
The displayOn: message is used to display graphical objects, but requires
that the object be created first, even if only as temporarily as shown in the
previous section.

To draw a shape only once, without the overhead of creating a real object,
GraphicsContext supports a variety of messages that draw the shape only.
For instance, to draw a line, you can send the displayLineFrom:to: message
to a graphics context.

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.

5 to: 400 by: 5 do: [:i |
gc displayLineFrom: 0@i to: i@400].

Similar messages are available for other shapes, such as arcs, polygons,
and rectangles. Browse the GraphicsContext class displaying protocol
instance methods to see the complete set.

No geometric object is actually created by these messages, so no
transformations or other operations can be performed.

There are also version of these messages that allow you to specify the
point at which the geometric is displayed. The position is determined
relative to any translation.

Displaying a Bitmap Image
As with other visual objects, an image can display itself on a graphics
context. The image’s palette must match that of the graphics context:
coverage-based to display a Mask, and color-based to display on a
Window or Pixmap.
12-12 VisualWorks

Displaying a Graphic
To display an image positioned at the origin (0@0), send a displayOn:
message to the image with the graphics context as argument. To specify
a display position other than the default 0@0, send a displayOn:at:
message to the image with a Point as the second argument:

| gc logo |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
logo := LogoExample logo.
logo convertForGraphicsDevice: Screen default.

logo displayOn: gc.
logo displayOn: gc at: 50@50.

Send a convertForGraphicsDevice: message to the image to ensure that the
color depth and bits per pixel are correct, which is necessary for the
image to display correctly. While it is not always required, it is strongly
recommended, especially for images that are read from files.

Shifting (Translating) the Display Position
Instead of positioning each object individually, it can be convenient to
shift, or translate, the top left corner of the graphics context. Translation
sets the X and Y coordinate offsets for the graphics context.

To set the translation, use the most appropriate of these messages:

translateBy: aPoint
Shifts the offset coordinates of the graphics context by aPoint,
relative to its current translation.

translation: aPoint
Shifts the offset coordinates of the graphics context to aPoint.

The default translation is 0@0, that is, no translation.

To get the current translation, send a translation message to the graphics
context.

For example, this code displays a balloon at the 0@0 point of the
graphics context six times, once with the default translation, then five
times shifting the translation each time relative to the prior translation,
then sets the translation once as an absolute translation relative to the
default and displays another balloon:
Application Developer’s Guide 12-13

Working With Graphics and Colors
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
balloon := FloatingBalloon new.
balloon displayOn: gc.
1 to: 5 do: [:x |

gc translateBy: 20@20.
balloon displayOn: gc].

gc translation: 50@10.
balloon displayOn: gc.

To reset the translation to the default, simply send:

gc translation: 0@0.

Displaying a Restricted Area
It is not always necessary to display the entire contents of a window, and
may be inefficient to do so, if only a portion of the display has changed. A
graphics context maintains a clipping region that causes only that area to
be updated; any graphic outside that area is not drawn. This is more
efficient, and can be a great advantage in certain contexts, such as
animations.

By default, the clipping region is the entire graphics contents bounds, so
the whole context is updated, as in the previous examples. The clipping
area of the graphics context is specified as a rectangle, by sending a
clippingRectangle: message to the graphics context with a Rectangle as
argument.

In this example, an Image (captured from user selection of a portion of
the screen) is displayed on the ExampleBrowser graphics context, but
only the clipping region of the graphics context is updated.

| image gc |
image := Image fromUser.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
gc clippingRectangle: (Rectangle origin: 20@20 extent: 100@100).
image displayOn: gc.

To remove the restrictions on the clipping region, set the rectangle to nil.

gc clippingRectangle: nil.
To get the current clipping rectangle, send either a clippingBounds or a
clippingRectangleOrNill message to the graphics context.

Copying from a Display
Occasionally it is useful to be able to copy an area of a display. The area
might be used to restore the display area or to be used as the
background for another display.
12-14 VisualWorks

Displaying a Graphic
To do this, you copy from the graphics context of the display. There are
several copy messages provided by GraphicsContext. The following is a
sampling; browse the GraphicsContext class, displaying message category,
for related forms of these messages.

copyArea: aShape from: aGraphicsContext sourceOffset: srcOffsetPoint
destinationOffset: destOffsetPoint
Copy an area of aGraphicsContext's display medium to the receiver’s
display medium. The source area is described by aShape translated
by srcOffsetPoint in aGraphicsContext's coordinate system. The
destination area is described by aShape translated by
destOffsetPoint in the receiver’s coordinate system.

Returns an array (possibly empty) of rectangles that are damaged
because they correspond to portions of the source medium that could
not be copied.

copyArea: aShape fromImage: anImage sourceOffset: srcOffsetPoint
destinationOffset: destOffsetPoint
Copy an area of anImage to the receiver’s display medium. The
source area is described by aShape translated by srcOffsetPoint; the
destination area is described by aShape translated by
destOffsetPoint in my coordinate system.

copyCompleteArea: aShape from: aGraphicsContext sourceOffset:
srcOffsetPoint destinationOffset: destOffsetPoint
Same as copyArea:from:sourceOffset:destinationOffset: except that it
raises an exception if some part of the source could not be copied.

copyImage: anImage to: aPoint
Copy the contents of anImage to the receiver’s display medium at
aPoint.

copyMaskedArea: aMaskOrImage fromPixelArray: anImageOrPixmap
sourceOffset: srcOffsetPoint destinationOffset: destOffsetPoint
Copy an area of anImageOrPixmap to the receiver’s display medium.
The source area is described by aMaskOrImage translated by
srcOffsetPoint; the destination area is described by aMaskOrImage
translated by destOffsetPoint in the receiver’s coordinate system.

In these messages, when a source graphics context (aGraphicsContext)
is used, it only specifies the medium and coordinate system (translation);
no other parameters of the source graphics context affect the copy
operation.

The message you select will be determined on that graphical information
is most easily available.
Application Developer’s Guide 12-15

Working With Graphics and Colors
For an example, first set up a target graphics context (load the Graphics-
Example parcel for the referenced class):

window := (ApplicationWindow
openNewIn: (Rectangle origin: 0@0 extent: 200@219))
background: (Graphics.Pattern from: FloatingBalloon sky).

gc := window graphicsContext.
Then, a graphic can be copied onto it:

sourceGC := FloatingBalloon basicBalloon asRetainedMedium
graphicsContext.

mask := FloatingBalloon basicBalloonMask.
gc copyArea: mask

from: sourceGC
sourceOffset: 0@0
destinationOffset: 50@50

Working with Unmappable Display Surfaces
DisplaySurface is a subclass of GraphicsMedium that specifically supports
displaying graphics on the screen. Window and its subclasses are display
surfaces that actually map, or display, graphics. An ExamplesBrowser is an
instance of a subclass of Window, specifically an ApplicationWindow.
Displaying graphics to this surface has been illustrated repeatedly.

Two other important display surfaces, Mask and Pixmap, are not mappable,
and so do not actually display a graphic, but are used for preparing
graphics off screen for later display. This section describes the basic use
of these surfaces.

Pixmaps and masks are held in operating system resources rather than
in object memory, and so are sometimes referred to as a retained
medium. This makes them very fast to display. However, they are not
saved with the image, and are lost when the image exits. Since they do
not persist, you cannot rely on holding a pixmap in this situation. Instead,
store a CachedImage, which holds both an image and a pixmap (or mask).

Since a Mask is used specifically to mask an image, the rest of this
section will given only in terms of Pixmap, but applies to Mask as well.
12-16 VisualWorks

Working with Unmappable Display Surfaces
Creating a Display Surface from an Image
Frequently you already have an image from which to create a Pixmap (or
Mask). In this case, send an asRetainedMedium message to the image,
which returns a Pixmap if the image has a color based palette, and a Mask
if the image has a coverage based palette (load the Graphics-Example
parcel for the example class):

| image pixmap |
image := FloatingBalloon basicBalloon.

pixmap := image asRetainedMedium.
^pixmap

Creating a New Display Surface
For building a display off screen, you typically create a Pixmap at a given
size, such as the size of the target window. To do this, send an extent:
message to the Pixmap class with the size as a point, specifying the
extent of the lower-right corner from its top-left corner. The extent is often
taken from the window on which the Pixmap will be displayed, as in this
example.

| win pixmap |
win := Examples.ExamplesBrowser prepareScratchWindow.
^pixmap := Pixmap extent: win extent.

By default the pixmap is created for a screen graphics context, and
initializes it to the default background color. The forms extent:on: and
extent:on:initialize: give more control, as described in their method
comments.

You can also send retainedMediumWithExtent: to either the ColorValue or
CoverageValue class, to create a Pixmap or Mask, respectively. This
message is typically used when the type of display surface is determined
by some other display surface, to be determined by context. For example,
given a graphics context, you can get its paint basis, either a ColorValue or
CoverageValue, by sending it a paintBasis message, and then create a
display surface from that:

gc paintBasis retainedMediumWithExtent: 20@20
The resulting display surface will be of the proper type for, for example,
copy operations between the two display surfaces.
Application Developer’s Guide 12-17

Working With Graphics and Colors
Composing on a Pixmap
Given a Pixmap, you can compose a display on it by displaying on its
graphics context as if it were a window. The difference, of course, is that it
is not displayed until you display the Pixmap.

This example composes a field of balloons, all the same, on a Pixmap in
preparation for displaying it quickly (load the Graphics-Example parcel for
the example class).

| win pixmap gc balloon |
win := Examples.ExamplesBrowser prepareScratchWindow.
pixmap := Pixmap extent: win extent on: Screen default initialize: false.
gc := pixmap graphicsContext.
balloon := FloatingBalloon new.
balloon displayOn: gc;

displayOn: gc at: 200@120;
displayOn: gc at: 40@320;
displayOn: gc at: 350@300;
displayOn: gc at: 90@190;
displayOn: gc at: 175@370.

Note that this does not actually display the balloons, which you do by
copying from the pixmap to the window.

Displaying a Display Surface
You display a Pixmap (or a Mask, though that is unusual) just like any other
graphical object, by sending displayOn: or displayOn:at: message to the
Pixmap. The argument is, as usual, a graphics context, plus a point
location in the second form.

To display the pixmap created in the preceding section, include at the
end:

pixmap displayOn: win graphicsContext.

Copying from a Display Surface
Occasionally it is useful to be able to copy an area of a display surface.
The area might be used to restore the display area or to be used as the
background for another display. Or you might copy an area from a Pixmap
to the current window. To do this, you copy from one graphics context to
another.

There are several copy messages provided by GraphicsContext that
provide for copying from a source graphics context to the receiver, also a
graphics context. For example, copyArea:from:sourceOffset:destinationOffset:
12-18 VisualWorks

GraphicsContext Attributes
copies the contents of graphics context to the window, masking the image
with a shape. In this example, the source graphics context is the graphics
context of a Pixmap, and the shape is a Mask.

| gc imagegc mask |
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.
imagegc := FloatingBalloon basicBalloon asRetainedMedium graphicsContext.
mask := FloatingBalloon basicBalloonMask

gc copyArea: mask
from: imagegc
sourceOffset: 0@0
destinationOffset: 50@50

In this case, the same effect can be achieved by sending a displayOn:at:
message to an OpaqueImage built from the image and mask.

A more complicated, and realistic, example might consist of capturing the
contents of a window in a graphics context, adding content, and then
redisplaying the area, as follows:

| gc scratchgc balloon |
balloon := FloatingBalloon new.
gc := Window currentWindow graphicsContext.
scratchgc := (gc paintBasis retainedMediumWithExtent: 100@100)

graphicsContext.
scratchgc copyArea: (Rectangle origin: 0@0 extent: 100@100)

from:gc
sourceOffset: 20@0
destinationOffset: 0@0.

balloon displayOn: scratchgc;
displayOn: scratchgc at: 50@65.

gc copyArea: (Rectangle origin: 0@0 extent: 100@100)
from: scratchgc
sourceOffset: 0@0
destinationOffset: 20@0.

Browse the displaying method category of GraphicsContext for the copy
messages; the method comments describe their individual behavior.

GraphicsContext Attributes
As mentioned earlier, the GraphicsContext holds a variety of graphical
attributes controlling how graphical objects are displayed. This section
describes the attributes.

Specifying these properties in the graphics context sets the default
properties for the context.
Application Developer’s Guide 12-19

Working With Graphics and Colors
There are also ways of associating some of these properties with
geometric objects themselves, using wrapper objects as described in
“Geometrical Objects” in the Basic Libraries Guide.

Line Properties
Line properties include the line thickness, endcaps, and join type.

Line Width

By default, lines, arcs, and polygons are drawn with a one-pixel line width.
You can increase the thickness of a line by setting the thickness in pixels.
Extra thickness is spread evenly on both sides of the actual line, so a
horizontal line that is 20 pixels thick has 10 pixels above the line and 10
pixels below.

To set the line width, send a lineWidth: message to the graphics context of
the display surface. The argument is an integer indicating the number of
pixels of thickness.

| gc rect |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
rect := 10@10 extent: 30@30.

2 to: 20 by: 2 do: [:width |
gc lineWidth: width.
rect moveBy: 30@30.
rect asStroker displayOn: gc].

As illustrated by this example, when you change the line width property, it
affects only lines drawn up to the next width change, and not all currently
displayed lines.
12-20 VisualWorks

GraphicsContext Attributes
Line Cap Style

By default, lines and arcs are drawn with butt ends, which means each
end stops abruptly at the specified endpoint. When two thick lines share
an endpoint, butt ends produce a notched joint. Changing the cap style to
projecting fixes this by extending each end of the line by half of its
thickness. Another solution is to use round ends, which extend the ends
in a semicircle.

To change the endcap, send a capStyle: message to the graphics context.
The argument is derived by sending a capButt, capProjecting, or capRound
message to the GraphicsContext class.

| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 20.

"Butt line caps -- the default"
gc capStyle: GraphicsContext capButt.
gc displayLineFrom: 100@100 to: 300@100.
gc displayLineFrom: 300@100 to: 300@300.

"Projecting line caps"
gc capStyle: GraphicsContext capProjecting.
gc displayLineFrom: 100@150 to: 250@150.
gc displayLineFrom: 250@150 to: 250@300.

"Round line caps"
gc capStyle: GraphicsContext capRound.
gc displayLineFrom: 100@200 to: 200@200.
gc displayLineFrom: 200@200 to: 200@300.

capButt

capProjecting

capRound
Application Developer’s Guide 12-21

Working With Graphics and Colors
Line Join Style

By default, a polyline or polygon is drawn with mitered joints. In some
situations, a beveled or rounded joint is preferable. To change the line join
style, send a joinStyle: message to the graphics context of the display
surface. The argument is derived by sending a joinMiter, joinBevel, or
joinRound message to the GraphicsContext class.

| gc |
gc := (Examples.ExamplesBrowser

prepareScratchWindow) graphicsContext.
gc lineWidth: 30.

"Miter joins -- the default"
gc joinStyle: GraphicsContext joinMiter.
gc displayPolyline: (Array with: 100@200 with: 200@50 with: 300@200).

"Bevel joins"
gc joinStyle: GraphicsContext joinBevel.
gc displayPolyline: (Array with: 100@300 with: 200@150 with: 300@300).

"Round joins"
gc joinStyle: GraphicsContext joinRound.
gc displayPolyline: (Array with: 100@400 with: 200@250 with: 300@400).

Font Properties
The graphics context holds the font, for rendering text strings, and the
font policy for selecting matching fonts. For more information on fonts and
font policies, refer to “Working with Text” in the Basic Libraries Guide.

To change the current font, send a font: message to the graphics context
with a font specified. In this example, the font is picked out using a
FontDescription sent to the graphic context’s FontPolicy. The text is
displayed using the default font and three alternate fonts.

joinMiter

joinBevel

joinRound
12-22 VisualWorks

GraphicsContext Attributes
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

'This is a test' displayOn: gc at: 10@20.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'helvetica';

pixelSize: 14;yourself)).
'This is a test' displayOn: gc at: 10@40.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'times';

pixelSize: 14;yourself)).
'This is a test' displayOn: gc at: 10@60.
gc font: (gc fontPolicy findFont: (FontDescription new family: 'courier';

pixelSize: 14;yourself)).
'This is a test' displayOn: gc at: 10@80.

You can also install an alternate FontPolicy by sending a fontPolicy:
message to the graphics context, with the new FontPolicy as argument.
Refer to “Working with Text” in the Basic Libraries Guide for information
on defining a FontPolicy.

Paint Properties
The graphics context holds:

• the paint that is used for uncolored objects;

• the paint policy, which determines how to render paints that don’t
exactly match the host paints;

• the paint preferences, which determines items such as the border
color, foreground and background colors, and selection colors.

The default paint color is black. To change the paint, send a paint:
message to the graphics context with a Paint or Pattern as argument. For
example:

| gc |
gc := (Examples.ExamplesBrowser

 prepareScratchWindow) graphicsContext.
gc paint: ColorValue red.
(Circle center: 125@125 radius: 100) displayStrokedOn: gc.
gc paint: (Graphics.Pattern from: FloatingBalloon sky).
(Circle center: 275@275 radius: 100) displayFilledOn: gc.

For more information on paints and paint policies, see the “Colors and
Patterns” chapter in the Basic Libraries Guide. Paint preferences typically
follow the look policies for the different platforms. To set these, send a
paintPolicy: or paintPreferences:, respectively, message to the graphics
context.
Application Developer’s Guide 12-23

Working With Graphics and Colors
When the paint is a pattern, you may need to set the repetition phase, or
tile phase. To set the phase, send a tilePhase: message to the graphics
context:

tilePhase: aPoint
Set the phase for tiling, in GC coordinates. The phase is a point
aligned with the origin of a tile defining the tiling pattern.

Clipping Properties
When updating a display, it is not always necessary to update the entire
display area, because only a relatively small area has changed. A
graphics context maintains a clipping region that causes only that area to
be updated; any graphic outside that area is not drawn.

How to draw a display restricted to the clipping area is described in
“Displaying a Restricted Area” on page 12-14. Here we simply summarize
the clipping protocol.

clippingRectangle: aRectangleOrNil
Set the clipping region to aRectangleOrNil. If aRectangleOrNil is nil,
no clipping occurs other than clipping to the bounds of the display
medium.

clippingBounds
Create and answer the clipping rectangle, or the bounds of the
display medium if not clipping.

clippingRectangleOrNil
Create and answer the clipping rectangle, or nil if not clipping.

X and Y Offsets
The offset properties are managed by the translation of the graphics
context, as described under “Shifting (Translating) the Display Position”
on page 12-13.

Scaling
Scaling is not supported for display surface graphics contexts, but is
supported for printing graphics contexts. The scale is specified by
sending a scale: message to the graphics context, a point value giving the
scaling for the x and y dimensions. For example, this example prints the
text string to a postscript file twice, with the dimensions and font size
doubled for the second:
12-24 VisualWorks

Animating Graphics
| ps gc |
ps := PostScriptFile named: 'c:\temp\testPS.ps'.
gc := ps graphicsContext.
gc paint: ColorValue red.
'This is a test' displayOn: gc at: 20@20.
gc scale: 2@2.
'This is a test' displayOn: psgc at: 20@50.
ps close.

Animating Graphics
Animation is an illusion created by drawing a graphic object in successive
locations and erasing it in the abandoned locations, perhaps modifying it
slightly at the same time.

A direct approach to animating a graphic would be to:

1. Store the background to be obscured.

2. Draw the object.

3. Restore the background.

4. Repeat.

This approach works in some limited circumstances but generally results
in a side effect known as flashing. Flashing is caused by the fact that the
object is not visible during the time between its erasure at the old location
and its display at the new location. It looks like a light flashing on and off.

Eliminating flashing requires a more sophisticated technique for erasing,
one that erases only the pixels that are not needed to depict the object in
its new location. VisualWorks provides a few mechanisms for eliminating
flashing.

Moving a Static Object
A common animation technique involves moving a single image around
on the screen. This kind of animation is supported by two methods in
VisualWorks, both defined in VisualComponent for all of its subclasses—
Image, ComposedText, etc.

follow: locationBlock while: durationBlock on: aGraphicsContext
This method moves an image around on display surface. It restores
the background continuously without causing flashing. LocationBlock
supplies each new location, and durationBlock supplies true to
continue, and then false to stop.
Application Developer’s Guide 12-25

Working With Graphics and Colors
moveTo: newLoc on: aGraphicsContext restoring: backGC
This method moves an image to a new location on a display surface,
restoring the background without causing flashing. backGC must be
a GraphicsContext on the retained display medium containing the bits
to be restored at the previous location. The contents of backGC is
updated after the move with the new background.

To illustrate these two methods, we’ll use a more attractive
ExamplesBrowser, which we set up with:

ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 298@219)

graphicsContext.
gc medium background: (FloatingBalloon sky asPattern).
gc medium display.

Also, the image to animate is provided by:

image := FloatingBalloon new image.
The image message returns an OpaqueImage, which is a masked image.

The follow:while:on: message takes care of saving and restoring the
window background. What it requires is two blocks, one describing the
motion, and the other determining whether to continue or end the
animation.

i := j := 0.
[image follow: [i := j := i + 1.

(Delay forMilliseconds: 30) wait. i@j .]
while: [i+32<298 and: [j+32<219]]
on: gc.] fork

We forked this process to allow other processing to continue, as would
normally be necessary in an animation application.

The moveTo:on:restoring: message requires more set up. While the
method updates the background to restore after each move, it needs an
initial background graphics context, and updates that. One approach is to
define a graphics context the same size as the image to be displayed,
and copy the background to it. For example:

backGC := (gc paintBasis
retainedMediumWithExtent: balloon image bounds extent)
graphicsContext.

backGC copyArea:
(Rectangle origin: 0@0 extent: balloon image bounds extent)

from: gc
sourceOffset: 0@0
destinationOffset: 0@0.
12-26 VisualWorks

Animating Graphics
The messages used in this have all been described previously in this
chapter. With the initial background defined, the animation is simply:

[1 to: 150 do:
[:i | image moveTo: (i@i) on: gc restoring: backGC.
(Delay forMilliseconds: 30) wait]

] fork.
Here we used a simple iteration. In most cases, a more interesting control
structure will be needed.

Animating a Changing Object
More complicated effects involving changes in the graphic object, such as
a walking robot, or multiple objects all moving at the same time, require a
technique beyond those of the previous section. For these situations, it is
generally better to employ a technique known as double buffering.

Double buffering involves drawing the next scene, typically on a Pixmap,
while the current scene is in the window. The Pixmap is then displayed on
the window, an operation that is instantaneous in comparison with
separately displaying the objects required to assemble a scene. The
Pixmap acts as a graphics buffer that stands in for the window’s frame
buffer—hence the term “double buffering.”

For example, the Walker example class (load the Animation-Example
parcel) provides four images of a simple, four-legged creature, depicting
four stages of a walking sequence. Class methods return OpaqueImages
for each stage:

first := Walker first.
second := Walker second.
third := Walker third.
fourth := Walker fourth.

As usual, we use an ExamplesBrowser for the window:

ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindow) graphicsContext.

Next, we set up a scratch Pixmap and its graphics context for operating on
the off screen buffer:

scratch := (Pixmap extent: gc medium extent) .
scratchGC := scratch graphicsContext .
scratchGC medium background: (gc medium background).

The last line is to ensure that the background color is correct, matching
the window. If the window has a pattern, as it did for FloatingBalloon, that
would be the background.
Application Developer’s Guide 12-27

Working With Graphics and Colors
The frequency of refresh affects the animation; you don’t want it to be
either too fast or too slow. For this animation, delaying by 100
milliseconds is about right:

delay := Delay forMilliseconds: 100.
Finally, the animation itself is performed by creating one frame, displaying
it, creating the next frame, displaying it, and so on. A loop on this
sequence walks the creature across the window.

[0 to: 30 do: [:x |
scratchGC clear.
first displayOn: scratchGC at: x*12 @ 20.
delay wait.
scratch displayOn: gc.

scratchGC clear.
second displayOn: scratchGC at: x*12+2 @ 20.
delay wait.
scratch displayOn: gc.

scratchGC clear.
third displayOn: scratchGC at: x*12+4 @ 20 .
delay wait.
scratch displayOn: gc.

scratchGC clear.
fourth displayOn: scratchGC at: x*12+6 @ 20.
delay wait.
scratch displayOn: gc.

scratchGC clear.
third displayOn: scratchGC at: x*12+8 @ 20.
delay wait.
scratch displayOn: gc.

scratchGC clear.
second displayOn: scratchGC at: x*12+10 @ 20.
delay wait.
scratch displayOn: gc]

] fork.
In this example, we are preparing and displaying a Pixmap the size of the
entire window, and updating the whole window at each pass. This can
involve a lot more scene creation than is necessary. As an alternative,
you can specify a clipping rectangle for the window graphics context,
12-28 VisualWorks

Using Graphics in an Application
prepare only the relevant part of the off screen Pixmap, then display the
resulting image. Only the area in the clipping rectangle will be updated,
leaving the rest of the scene unchanged.

Using Graphics in an Application
Displaying graphic objects directly onto a window, as is done in most of
the examples in this chapter, allows the image to be damaged if you
move another window over the graphic window. In a live application you
need the window to redraw itself when this kind of damage occurs.

The VisualWorks graphics framework includes a damage repair
mechanism that sends a displayOn: message to a view whenever its
containing window perceives that the view’s display has been damaged.
Using this mechanism in an application is quite simple.

Cursors
An image and a mask are used to define a cursor, as an instance of
Cursor. Several cursors are provided by VisualWorks, but you can also
create your own as well. For standard cursors, browse Cursor class
constants method category.

Cursors can be bitmaps up to 32x32 bits (except of Mac OS 9.x which is
restricted to 16x16). The usual size is 16x16 bits. The image must be a
depth 1 bitmap (two colors) with a monochrome palette. The colors only
determine the foreground and background; colored cursors are not
supported at this time. The mask must be a depth 1 bitmap with a
coverage palette.

For example, the example class CursorExample defines images to create a
town crier cursor. To create the cursor, evaluate:

townCrier := Cursor image: CursorExample townCrierForCursor
mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

The image: and mask: arguments are as described above. The hotSpot:
argument is a point indicating the point in the cursor that counts as the
cursor’s location, or where it is pointing. The name: is typically a String,
and is only used to print the cursor’s name; it can be assigned nil.
Application Developer’s Guide 12-29

Working With Graphics and Colors
To display the cursor, the most usual method is to send a showWhile:
message to the cursor within a method. The argument is a block. The
cursor is displayed while the block is being processed, and then the
original cursor is restored. In CursorExample, this is demonstrated by the
showCursor method:

showCursor
| townCrier |
townCrier := Cursor image: CursorExample townCrierForCursor

mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

townCrier showWhile:
[(Delay forSeconds: 5) wait]

An alternative is to use the show message. In a method, this causes the
cursor to be displayed until the method concludes, and then restores the
original cursor. This form look like:

showCursor
| townCrier |
townCrier := Cursor image: CursorExample townCrierForCursor

mask: CursorExample townCrierMask
hotSpot: 1@1
name: 'myCursor'.

townCrier show.
(Delay forSeconds: 5) wait

To exercise more control, you might need to store the current cursor, then
display your cursor, and restore the original cursor at the appropriate
time. To get the current cursor and store it for later, send a currentCursor
message to Cursor. To set the cursor, send currentCursor: with the new
cursor as argument. Then restore the original cursor when the process is
finished. For example:

original := Cursor currentCursor.
Cursor currentCursor: townCrier.
(Delay forSeconds: 5) wait.
Cursor currentCursor: original

On Windows platforms, the VM substitutes platform cursors for the origin,
top left, bottom right, corner, execute, and wait cursors if not others, even
if your application cursors are more appropriate. You can turn off this
substitution by evaluating:

Cursor useHostCursors: false.
To restore substitution of host cursors, set this to true.
12-30 VisualWorks

Using Graphics in an Application
Icons
Graphics are also used for window icons, the image displayed in the top
corner of a window, and on the minimized (collapsed) window. The icon is
created as an instance of Icon and assigned to the window in its icon
property.

An Icon can be defined either with a figure (image) and a shape (mask)
as has been shown before, or as a figure and a specified transparent
color. For example, the figure:transparentAtPoint: message allows
specifying the transparent color as the color at a point.

| gc |
ExamplesBrowser initialize.
gc := (ExamplesBrowser prepareScratchWindowOfSize: 300@150)

graphicsContext.
gc medium icon:

(Icon figure: FloatingBalloon balloon24Icon
transparentAtPoint: 1@1)

Icons are typically 24x24 bits. In this example, the top left corner is an
appropriate reference color for transparency. The resulting window shows
the icon as expected.

For other creation methods, browse the Icon class methods. For more
about using icons in applications, refer to the GUI Developer’s Guide.
Application Developer’s Guide 12-31

Working With Graphics and Colors
As a Component in an Application Window

Graphics as Labels and Decoration
The GUI Painter allows you to use graphics as labels in the canvas you
design. For example, a graphic can be used as the label of a button or
other widget that takes a label. It can also be displayed in a Label widget
as a stand-alone decoration.

Add the widget to the canvas as usual. In the GUI Painter Tool for the
widget, check the Label is Image checkbox. In the message field, enter the
selector for the class message that returns the image.

For full instructions, refer to the GUI Developer’s Guide.

As a Custom View
For dynamic graphics that change when the model changes, you
represent the graphic is a custom view, which is included in the
application GUI in a ViewHolder widget.

The application model triggers the displaying method whenever
necessary. A view gets display requests from two sources: the window-
repair mechanism and the application. Requests of the first kind happen
automatically. You arrange for the second in your application.

Constructing an application model, view, and possibly a controller, for
presentation in a ViewHolder is beyond the scope of this section. Please
refer to the GUI Developer’s Guide, for instructions. A detailed description
and example are provided in chapter 8, “Custom Views.”
12-32 VisualWorks

13
Files

This chapter describes how VisualWorks operates on files and directories
(also referred to as “folders”).

Most VisualWorks file and directory operations are unified in the abstract
class Filename, with platform specific operations handed down to its
subclasses. By programming to the Filename protocol for these operations,
VisualWorks can support these operations and remain a platform-
portable environment.

As an environment for creating cross-platform portable applications,
VisualWorks provides mechanisms for constructing file names and
performing file operations in a platform-neutral manner. The actual file
name and operation is determined by the platform the VisualWorks
application is running on.

File input and output operations are performed by reading from and
writing to streams (subclasses of Stream) that are opened on a file.

File Names
The Filename class supports operations involving disk files and directories.
Filename is an abstract class, and directs the creation message to the
appropriate subclass. This keeps your file-creating code general enough
to run on any of the supported platforms.

Filenames themselves are a platform problem, due largely to platform
specific separator characters in path names and disk volume specifiers.
LogicalFilename and its subclass PortableFilename provide mechanisms for
storing absolute and relative pathnames in a platform neutral form.
Application Developer’s Guide 13-1

Files
Creating a Filename
To create a simple file or directory name object, send asFilename to a
string identifying the desired file or directory:

| name filename |
name := 'test.tmp'.
filename := name asFilename.
^filename

In this case the filename includes no directory information, and so the
named file is relative to whatever the current directory is. You can specify
path information in the string as well, for example:

‘mydirectory\test.tmp’ asFilename
‘c:\mydirectory\test.tmp’ asFilename
‘/usr/tmp/test.tmp’ asFilename

The disk file or directory is not affected by the mere creation of a Filename
object. No link exists to the disk file or directory, so you do not need to
release an external resource at this point.

Constructing a Portable Filename
While the different operating systems supported by VisualWorks all use
directory paths for file names, they differ in significant ways. Unix/Linux
systems use the forward slash (/), Windows systems use a backward
slash (\), and Macintosh systems use a colon (:). Further, Unix/Linux
systems unify all directory structures under a single hierarchy, while
Windows systems use drive letters and machine names, and Macintosh
systems allow naming each disk drive. A portable application must be
able to use work with file names independently of these differences. The
method described in the previous section, if applied to a full path name, is
not portable.

To create a portable file name from a Filename, send the
asLogicalFileSpecification message to it, for example:

| name filename |
name := 'mydirectory\test.tmp'.
filename := name asFilename asLogicalFileSpecification.
^filename

The path name can be absolute or relative, and may include path, disk,
and machine names, and may begin with a system variable specifying a
path.

System variables are specified with the syntax:

$(variablename)
13-2 VisualWorks

Creating a File or Directory
For example, VisualWorks assumes that its home directory is set in the
VISUALWORKS system variable. In the Settings Tool there are several
references to directories using this variable, for example in specifying
parcel paths, such as $(VISUALWORKS)/parcels. Depending on the path,
the result is either an instance of LogicalFilename or PortableFilename:

• If the path is absolute, starting with root, or with a machine or disk
specification, the system renders it as a LogicalFilename. The result is
not generally portable.

• If the path is relative, or begins with a system variable, the system
renders it as a PortableFilename. The result is generally portable.

To maximize portability, use only constructs that produce a
PortableFilename. Use system variables to ensure a portable root path
segment.

Creating a File or Directory
When the disk file does not already exist, it is created when a write
stream is opened on it, or when the first character is written to it. A
directory must be explicitly created.

The technique shown in the basic step works well for creating a file in the
working directory. You can also use that approach with a full pathname
that includes directory separators, but the separator character differs
across platforms, so you would be compromising the portability of your
application.

Creating an Empty File
VisualWorks creates an empty file as soon as a write stream
(WriteStream) is opened on the file name. A simple way to create an
empty file is to open the write stream, and then close it again:

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream close.
^stream

Normally, you would write to the stream before closing, writing data to the
file.
Application Developer’s Guide 13-3

Files
Creating a New Disk Directory
To create a directory, send a makeDirectory message to the Filename
representing the desired directory. The last path component is created as
a subdirectory of the directory specified by the prefixed path.

| directory |
directory := 'test' asFilename. "Directory relative to current directory"
directory makeDirectory.
directory := 'c:\temp\test' asFilename. "Absolute directory path"
dirctory makeDirectory.
^directory exists

If the disk directory already exists, or if the parent directory does not
exist, an error results.

Getting File Information
Often you need to collect information about a file; whether it exists, its
size, directory, and so on. VisualWorks provides messages for retrieving
this kind of information.

Testing for Existence
The exists message checks for the existence of a Filename on disk. If the
disk file or directory exists, true is returned.

| unlikelyFile |
unlikelyFile := 'qqqqzzzz' asFilename.
^unlikelyFile exists

Getting the Size of a File
Send a fileSize message to the Filename. If the file exists, the number of
characters it contains is returned. If the file does not exist, an error
results. If the Filename represents a disk directory rather than a disk file,
zero is returned.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

^newFile fileSize.
13-4 VisualWorks

Getting File Information
Getting and Setting the Working Directory
The default directory for file operations is held in the shared variable
DefaultDirectoryString, which is initially set to the OS current directory upon
starting VisualWorks. To get this directory, send a defaultDirectory
message to the Filename class. A Filename representing the working
directory is returned.

| workingDir |
workingDir := Filename defaultDirectory.
^workingDir

To change the current directory, send beCurrentDirectory to a Filename
specifying a directory. For example:

(Filename named: '\vw7.2\bin') beCurrentDirectory.
This both changes the OS current directory for the VisualWorks session
and updates DefaultDirectoryString.

Note, however, especially for multi-threaded operations (multi-process
UI), that the OS current directory can change underneath the current
process without DefaultDirectoryString being updated. If this occurs, a file
access operation running in one process and relying on a relative file
name might produce incorrect results (attempt to access a file in the
wrong location) if another process changes only the underlying OS
current directory.

This happens in Windows environments, for example, if the native file
dialog is used to navigate the file system, because the dialog changes
the OS current directory during navigation without updating
DefaultDirectoryString. The correct directory is restored, however, once the
dialog is closed.

Accordingly, it is risky to rely on relative path names for file operations in
a multi-process application, and file access should be protected by
constructing an absolute path from a relative path, and using that for file
access.

To get the OS current directory, send:

Filename findDefaultDirectory.

Getting the Parent Directory
Send a directory message to the Filename. A Filename representing the
parent directory is returned.
Application Developer’s Guide 13-5

Files
| dir parentDir |
dir := Filename defaultDirectory.

parentDir := dir directory.
^parentDir

Getting the Parts of a Pathname
A Filename has a head and a tail. The head is the directory part of the
pathname, and the tail is the final file or directory name. The head and tail
messages return their respective parts as strings:

| filename pathString dirString fileString |
filename := Filename defaultDirectory.

pathString := filename asString.
dirString := filename head.
fileString := filename tail.

^'
PATH: ', pathString, '
DIRECTORY: ', dirString, '
FILE: ', fileString

Distinguishing a File from a Directory
You can test whether a Filename is a file or a directory by sending the
isDirectory message to it. The message returns true if the filename is a
directory, and false otherwise. If neither a file nor a directory exists with
the matching name, an error results.

| dir |
dir := Filename defaultDirectory.
^dir isDirectory

Getting the Access and Modification Times
Depending on the operating system, you can retrieve specific access
information for a file.

To get the access information, send a dates message to the Filename. This
returns a dictionary. Send an at: message to the dictionary, with one of
these arguments:

#accessed
The time the file’s contents were last accessed.

#modified
The time the file was last modified.
13-6 VisualWorks

Getting File or Directory Contents
#statusChanged
The time of the most recent change in external attributes of the file,
such as ownership and permissions.

If the operating system does not support the requested type of
information, nil is returned; otherwise, an array containing a date and a
time is returned.

| newFile stream datesDict modifyDates modifyDate modifyTime |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
datesDict := newFile dates.
modifyDates := datesDict at: #modified.
modifyDates isNil

ifFalse: [
modifyDate := modifyDates first.
modifyTime := modifyDates last].

^'
MODIFIED: ', modifyDate printString, ' at ', modifyTime printString

Getting File or Directory Contents
The contents of a disk file can be accessed in the form of a string. The
contents of a directory can be accessed in the form of an array of strings
naming files and subdirectories.

Getting the Contents of a File
Send a contentsOfEntireFile message to a Filename representing a disk file.
A string is returned.

| newFile stream contents |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

contents := newFile contentsOfEntireFile.
^contents

Getting the Contents of a Directory
Send a directoryContents message to a Filename representing a disk
directory. An array of file and subdirectory names is returned.
Application Developer’s Guide 13-7

Files
| workingDir contents |
workingDir := Filename defaultDirectory.

contents := workingDir directoryContents.
^contents

System Variables
Operating systems use system variables for a variety of purposes,
typically related to the directory path locations of required resources.
VisualWorks relies on one system variable, $(VISUALWORKS), as the
directory whose subdirectories contain its resources. A common system
variable is PATH, which holds a list of directory paths to executable
programs.

Within VisualWorks, system variables are written as above, with the
variable name enclosed in parentheses, and preceded by $.

System variables are generally used to specify a directory path relative to
the value held in the variable. To create a Filename instance from a String
containing a system variable, send an expandEnvrionmentIn: message to
Filename:

Filename expandEnvironmentIn: '$(VISUALWORKS)\bin'
This returns a ByteString. To get a Filename instance, send asFilename to the
ByteString:

(Filename expandEnvironmentIn: '$(VISUALWORKS)\bin') asFilename

Storing Text in a File
Putting data into a disk file involves using a stream to funnel the
characters to the file. A stream holds onto an external resource, which
must be released by closing the stream.

When your intention is to create a new disk file, it’s a good idea to test the
Filename to make sure a file with the same name does not already exist.
When your application will be deployed on a UNIX system, it’s also
advisable to make sure the user has the appropriate file permissions.

Writing a Stream to a File
The basic way of writing a stream to a file overwrites any existing
contents in the file. In many cases, this is acceptable, but it is the
responsibility of your application to do the right thing.
13-8 VisualWorks

Deleting a File or Directory
To write to a file, create a write stream on the file by sending a writeStream
message to the Filename. Then write to the stream by sending a nextPutAll:
message to the stream, with a string as argument. The write operation
can be repeated for a series of strings, and each successive string is
appended to the file until the file is closed.

Close the stream by sending a close message to it. This closes the file
and releases the resource.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

^newFile contentsOfEntireFile

Appending Text to a File
Often you want to append data to a file rather than write the whole file
over again. To open a file for appending data, send an appendStream
message to the Filename:

| filename stream |
filename := 'testFile' asFilename.

"Creating the file."
stream := filename writeStream.
stream nextPutAll: 'FIRST STRING'.
stream close.

"Appending"
stream := filename appendStream.
stream nextPutAll: ' -- SECOND STRING'.
stream close.

Deleting a File or Directory
For file maintenance operations, your application may need to delete
directories or files.

To delete either a file or a directory, send a delete message to the Filename.
If necessary, confirm that the disk file or directory to be deleted exists by
sending an exists message to the Filename.
Application Developer’s Guide 13-9

Files
| newFile stream pretest posttest |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.
pretest := newFile exists.

newFile delete.
posttest := newFile exists.

^'
EXISTS BEFORE DELETION: ', pretest printString, '
EXISTS AFTER DELETION: ', posttest printString.

On operating systems such as UNIX that support multiple pathnames for
the same physical disk file or directory, deleting as shown here removes
the reference that is identified by the pathname, but it does not delete the
physical file or directory if another reference exists.

Copying or Moving a File

Copying a File
To make a copy of a file, send a copyTo: message to the Filename. The
argument is a string containing the pathname of the copy. If the Filename
represents a directory or a nonexistent disk file, an error results.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile copyTo: 'testFile.tmp'.

^'testFile.tmp' asFilename exists.

Moving a File
To move a file to another directory, send a moveTo: message to the
Filename. The argument is a string containing the new pathname, which
can include a different directory. If the Filename represents a directory or a
nonexistent disk file, an error results.
13-10 VisualWorks

Comparing Two Files or Directories
| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile moveTo: 'testFile.tmp'.

^'testFile.tmp' asFilename exists.

Renaming a File
To rename a file send a renameTo: message to the Filename. The argument
is a string containing the new pathname, which can include a different
directory. If the Filename represents a directory or a nonexistent disk file,
an error results.

Renaming a file is more efficient than moving the file.

| newFile stream |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile renameTo: 'testFile2.tmp'.

^'testFile2.tmp' asFilename exists.

Comparing Two Files or Directories
It is often necessary to compare the contents of files or directories. You
do this essentially by string comparisons on the contents of the files or
directories, as shown in the following sections.

When comparing two files or directories, remember the difference
between a Filename and the disk object that it represents.

Two Filenames are equal when they have the same pathname. To compare
two filenames, send an = message to one Filename. The argument is the
second Filename. If they have the same pathname (that is, they point to
the same physical disk file), true is returned.
Application Developer’s Guide 13-11

Files
Comparing Two Filenames or Two Files
To compare the contents of two disk files, get the contents of each file by
sending contentsOfEntireFile messages to the Filenames. Then send an =
message to one of the resulting strings, with the other string as the
argument.

| file1 file2 stream pathsAreEqual contentsAreEqual |
file1 := 'fileOne' asFilename.
file2 := 'fileTwo' asFilename.
stream := file1 writeStream.
stream nextPutAll: Object comment.
stream close.
file1 copyTo: file2 asString.

pathsAreEqual := (
file1 = file2).

contentsAreEqual := (
file1 contentsOfEntireFile = file2 contentsOfEntireFile).

^'
PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.

Comparing Two Filenames or Two Directories
To compare the contents of two disk directories, get the contents of each
directory by sending directoryContents messages to the Filenames. Then
send an = message to one of the resulting arrays, with the other array as
the argument.

| dir1 dir2 pathsAreEqual contentsAreEqual |
dir1 := Filename defaultDirectory.
dir2 := dir1 directory.

pathsAreEqual := (
dir1 = dir2).

contentsAreEqual := (
dir1 directoryContents = dir2 directoryContents).

^'
PATHS ARE EQUAL: ', pathsAreEqual printString, '
CONTENTS ARE EQUAL: ', contentsAreEqual printString.
13-12 VisualWorks

Printing a File
Printing a File
Some operating systems support printing a text file directly, and others
require that it first be converted to PostScript or another printer-specific
format. VisualWorks supports several approaches for printing files. Only
basic text printing is covered here.

Print a Text File
The hardcopy message provides a basic print command for text files that
works regardless of the operating system.

Get the contents of the text file by sending a contentsOfEntireFile message
to the Filename. Convert the resulting string to a ComposedText by sending
an asComposedText message to it. Then, print the composed text by
sending a hardcopy message to it.

| newFile stream contents composedText |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

contents := newFile contentsOfEntireFile.
composedText := contents asComposedText.
composedText hardcopy.

Printing a File Directly
Some operating system environments support printing a text file directly.
This avoids the overhead of converting the text to a ComposedText.

Send a printTextFile message to the Filename. If text file printing is not
supported by the operating system, an error results.

| newFile stream |
newFile := 'testFile' asFilename printTextFile.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile printTextFile

Writing Fields to a Data File
By using a designated character, such as a comma or a colon, to
separate fields of textual data, you can use a text file as a basic form of
database.
Application Developer’s Guide 13-13

Files
This example shows how to create and edit a data file that contains
comma-delimited fields.

To build the records and fields, create a block in which, for each field of
data, a nextPutAll: message is sent to the stream with the data string as
argument, followed by a nextPut: message with the separator character as
argument.

Send a valueNowOrOnUnwindDo: message to the data-writing block. The
argument is another block that closes the stream by sending a close
message to it.

| dataFile stream separator writingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"

stream := dataFile writeStream.
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color.
stream nextPut: separator]].

writingBlock valueNowOrOnUnwindDo: [stream close].

Reading Fields from a Data File
Files created as above can also be read back. Often, database programs
also have an export capability for writing comma delimited files, or files
using some other character delimiter. You can use a stream to read these
files as well.

Create a block in which the next field of data is fetched by sending an
upTo: message to the stream, with the separator character as the
argument. This is repeated by placing it within an inner block that is
repeated until the end of the stream is encountered.

Send a valueNowOrOnUnwindDo: message to the data-reading block. The
argument is another block that closes the stream by sending a close
message to it.
13-14 VisualWorks

Setting File Permissions
| dataFile stream separator writingBlock colorNames readingBlock |
dataFile := 'dataFile' asFilename.
separator := $,."comma"

"Write data"
stream := dataFile writeStream.
writingBlock := [

ColorValue constantNames do: [:color |
stream nextPutAll: color.
stream nextPut: separator]].

writingBlock valueNowOrOnUnwindDo: [stream close].

"Read data"
stream := dataFile readStream.
colorNames := OrderedCollection new.
readingBlock := [

[stream atEnd] whileFalse: [
colorNames add: (stream upTo: separator)]].

readingBlock valueNowOrOnUnwindDo: [stream close].

^colorNames

Setting File Permissions
On operating systems such as UNIX that support file and directory
permissions, the permission to change a file can be added or removed.
The most general permission is affected—when possible, the permission
change applies to everyone else in addition to the current user.

You can also ask a Filename whether the associated disk file or directory
can be written to, which is a portable operation that can be used on any
operating system.

• To remove the permission to change the contents of a file or
directory, send a makeUnwritable message to the Filename.

• To restore the writing permission, send a makeWritable message.

• To find out whether the writing permission is enabled, send a
canBeWritten message. If the file or directory does not exist, a
response of true indicates that the parent directory is writable. The
canBeWritten test works on all operating systems.
Application Developer’s Guide 13-15

Files
"Print it"
| newFile stream removed restored |
newFile := 'testFile' asFilename.
stream := newFile writeStream.
stream nextPutAll: Object comment.
stream close.

newFile makeUnwritable.
removed := newFile canBeWritten.

newFile makeWritable.
restored := newFile canBeWritten.

^'
PERMISSION REMOVED: ', removed printString, '
PERMISSION RESTORED: ', restored printString.

Unix Volume List
On UNIX and Linux systems, you can create a customized set of volumes
to search for filenames. This can reduce the time spent searching for files
in a large filesystem.

To specify volumes, create a text file named .stvolumes in your
$HOME directory (~/.stvolumes). Each line is a pattern of a volume to
include in a search. For example:

/bigfs/vw/distr
/src
/bigfs/myWork
13-16 VisualWorks

14
Binary Object Files (BOSS)

The VisualWorks Binary Object Streaming Service (BOSS) allows you to
store objects in a compact, binary format in an external file. Typically,
BOSS is used to store object instances, rather than classes, but there are
cases for storing classes as well.

For many of the uses to which BOSS has been employed in the past,
parcels provide a more efficient mechanism. However, parcels do not yet
support an object streaming interface, and so BOSS remains the only
supported method for this.

BOSS is intended for storing data objects, not interface objects.
Accordingly, avoid using BOSS for storing objects that are tied to the
windowing system or the execution machinery, such as Window, Context,
and BlockClosure. Also, avoid circular references, such as an application
model that holds onto a window that holds onto the application model,
and so on.

To begin using BOSS, you must first load the BOSS support parcel.

Using the Parcel Manager (select Tools Parcel Manager... in the Launcher
window), open the “Suggestions” category for Application Development, and
click on BOSS; then select Load... from the <Operate> menu.

Storing Objects in a BOSS File
You store objects to a BOSS file by creating a write stream, and then
writing binary data onto the stream, as follows:

1 Create a data stream, typically a writeStream on a Filename.

2 Create a BinaryObjectStorage by sending an onNew: message to that
class, with the data stream as argument.
Application Developer’s Guide 14-1

Binary Object Files (BOSS)
3 Store each data object by sending a nextPut: message to the
BinaryObjectStorage, with the data object as argument.

This operation should be enclosed in a block, and with a ensure:
message sent to that block. The argument is another block in which
the stream is closed. This guards against leaving the file open when
an error or interrupt occurs.

| dataObject dataStream bos |
dataObject := PointExample x: 3 y: 4 z: 5.

dataStream := 'points.b' asFilename writeStream.
bos := BinaryObjectStorage onNew: dataStream.

[bos nextPut: dataObject]
ensure: [bos close].

Storing a Collection of Objects
Send a nextPutAll: message to the BinaryObjectStorage, instead of nextPut:,
with a collection of objects as argument. Each element in the collection is
stored separately, enabling you to access them separately later.

| dataCollection bos |
dataCollection := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.

[bos nextPutAll: dataCollection]
ensure: [bos close].

Appending an Object to a File
1 Create a read-append data stream, by sending a readAppendStream

message to the Filename.

2 Create a BinaryObjectStorage by sending an onOld: message to that
class, with the data stream as the argument.

3 Set the writing position to the end of the file by sending a setToEnd
message to the BinaryObjectStorage.

4 For each object to be appended, send a nextPut: message to the
BinaryObjectStorage, the data object as argument.
14-2 VisualWorks

Getting Objects from a BOSS File
| colorNames newColor bos |

"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

ensure: [bos close].

"Then append a new color name."
newColor := #mudBrown.
bos := BinaryObjectStorage

onOld: 'colors.b' asFilename readAppendStream.
bos setToEnd.
[bos nextPut: newColor]

ensure: [bos close].

Getting Objects from a BOSS File
You can retrieve either the entire contents of a BOSS file, or selectively
retrieve individual objects stored in it.

Retrieving All Objects
To retrieve the entire contents of a BOSS file:

1 Create a data stream, typically by sending a readStream message to a
Filename that represents the data file.

2 Create a BinaryObjectStorage by sending an onOld: message to that
class, with the data stream as argument. (When you do not intend to
write new objects onto the file, send an onOldNoScan: message
instead; this is faster because it does not scan the data file as it must
before writing more data.)

3 Get the objects in the file by sending a contents message to the
BinaryObjectStorage. An array containing the stored objects will be
returned.

4 Close the BinaryObjectStorage (which also closes the data stream).
Application Developer’s Guide 14-3

Binary Object Files (BOSS)
| colorNames bos array |

"First create a file containing color names."
colorNames := ColorValue constantNames.
bos := BinaryObjectStorage

onNew: 'colors.b' asFilename writeStream.
[bos nextPutAll: colorNames]

ensure: [bos close].

"Read the file contents"
bos := BinaryObjectStorage

onOldNoScan: 'colors.b' asFilename readStream.
[array := bos contents]
ensure: [bos close].

^array

Searching Sequentially for an Object
For selective access to the objects in the data stream, you can read them
sequentially until you find the desired object.

1 Create a block in which you test whether the end of the data stream
has been reached by sending an atEnd message to the
BinaryObjectStorage.

2 Send a whileFalse: message to the block. The argument is another
block, in which you get the next object in the data stream by sending
a next message to the BinaryObjectStorage. Test the object to find out
whether it is the desired object; if so, send a setToEnd message to the
BinaryObjectStorage to break out of the loop.

3 Close the BinaryObjectStorage.

| points bos foundObject nextObject |

"First create a file containing points."
points := OrderedCollection new.
1 to: 100 do: [:coord |

points add: (PointExample x: coord y: coord z: coord)].
bos := BinaryObjectStorage

onNew: 'points.b' asFilename writeStream.
[bos nextPutAll: points]

ensure: [bos close].
14-4 VisualWorks

Getting Objects from a BOSS File
"Search sequentially."
foundObject := nil.
bos := BinaryObjectStorage

onOldNoScan: 'points.b' asFilename readStream.
[[bos atEnd]

whileFalse: [
nextObject := bos next.
(nextObject z > 45)

ifTrue: [
foundObject := nextObject.
bos setToEnd]]]

ensure: [bos close].

^foundObject

Getting an Object at a Specific Position
Another selective approach is to position the stream at the beginning of
the desired object. This technique, although swifter than reading each
object sequentially, assumes that your application keeps a position index
for each object in the file when the objects are stored.

1 Create a dictionary to be used as a lookup table. Each entry in the
dictionary will associate an object’s identifier with that object’s
position in the BOSS file.

2 Before each object-writing operation, record the binary stream’s
position in the lookup table.

3 After each object-writing operation, send a forgetInterval: message to
the binary stream. The argument is an Interval beginning with the
binary stream’s index before the write operation and ending with the
next index. This assures that the BinaryObjectStorage will not make use
of back-references to the object just stored when storing future
objects; such back-references thwart random access to stored
objects.

4 When reading the desired object, first send a position: message to the
binary stream. The argument is the object’s position, as recorded in
the lookup table.

5 To get the object at that position, send a next message to the binary
stream.
Application Developer’s Guide 14-5

Binary Object Files (BOSS)
| bos foundObject positions prevIndex |
positions := Dictionary new.
bos := BinaryObjectStorage onNew: 'colors.b' asFilename writeStream.
prevIndex := bos nextIndex.

"First create a file containing colors."
[ColorValue constantNames do: [:name |

positions at: name put: bos position.
bos nextPut: (ColorValue perform: name).
bos forgetInterval: (prevIndex to: bos nextIndex).
prevIndex := bos nextIndex]]
ensure: [bos close].

"Get the object at a certain location."
bos := BinaryObjectStorage onOld: 'colors.b' asFilename readStream.
[bos position: (positions at: #chartreuse).
foundObject := bos next]

ensure: [bos close].

^foundObject

Storing and Getting a Class
A BinaryObjectStorage is most often used to store instances rather than
classes, relying on the virtual image to contain the class definitions.
When the virtual image that is to read a BOSS file does not contain the
necessary classes, you can use BOSS, parcels, or file-ins to add the
necessary class definitions.

Unlike the file-in procedure, the BOSS technique does not normally
require the presence of any compilers in the receiving image. Thus, you
can use BOSS to introduce a new or redefined class into a deployment
image, perhaps as a means of delivering a patch that fixes a bug.

Note, however, that BOSSing in a class does require the Smalltalk
compiler to be present when any superclass of that class varies in
structure between the receiving image and the original image. In
particular, if any superclass varies between these two images with
respect to the number or order of its instance variables, BOSS will
attempt to invoke the Smalltalk compiler to recompile the class’s
methods.
14-6 VisualWorks

Storing and Getting a Class
When a collection of classes is stored using BOSS, they are
automatically sorted into superclass order. BOSS writes the same
information that fileOut does: the class definition, method definitions, and
an expression that initializes the class if a class initialize method is
present.

By default, BOSS stores the source code for methods, the class
comment, and the protocols. To control whether source code is stored
with a class, send a sourceMode: message to the binary stream before
storing the classes. The argument is either #discard, to omit source code,
or #keep, to include source code.

Storing a Collection of Classes
To store a collection of classes in a BOSS file, send a nextPutClasses:
message to a binary stream. The argument is a collection containing the
desired classes.

Loading a Collection of Classes
To load a collection of classes from a BOSS file, send a nextClasses
message to a binary stream on the file. (In the example, loading the Date
class has no effect because the image already contains the same
definition of that class.)

| file bos |
file := 'date.b' asFilename.
bos := BinaryObjectStorage onNew: file writeStream.

"Write the Date class to a file."
[bos nextPutClasses: (Array with: Date)]

ensure: [bos close].

"Read the file contents"
bos := BinaryObjectStorage onOldNoScan: file readStream.
[bos nextClasses]

ensure: [bos close].

^file fileSize
Application Developer’s Guide 14-7

Binary Object Files (BOSS)
Converting Data After Changing a Class
When you store instances of an object in a BOSS file and then add an
instance variable or otherwise change the definition of that object’s class,
BOSS detects the incompatibility when it tries to read the old data file.

For example, suppose the PointExample class began its life representing a
two-dimensional point, and later you extend it to represent three-
dimensional points by adding a z instance variable. The following
procedure show how to arrange for old files containing two-dimensional
instances of PointExample to be read without error.

1 In the class whose definition has been changed, create a class
method named binaryRepresentationVersion. This method is
responsible for returning a version identifier, commonly a sequential
number or a descriptive string. (The method must be rewritten each
time the class definition is changed, assuming BOSS files relying on
the prior version of the class definition will need to be read.)

2 Create a class method named binaryReaderBlockForVersion:format:.
This method must return a block that converts the old object to a new
instance. The block takes one argument, an array of the instance
variables (for pointer-type objects) or a ByteString (for byte-type
objects). The block typically assigns the data values from the old
instance variables and then sends a become: message to the old
object; the argument is the new instance. The first method argument
(oldVersion) identifies the version (nil, by default, and later defined by
the method you created in the preceding step) and enables you to
distinguish between old data and current data. The second method
argument (oldFormat) is typically ignored except for internal system
purposes.

binaryRepresentationVersion
"First version (nil) had x and y coordinates.
Second version (2) added a z coordinate."

^2
14-8 VisualWorks

Customizing the Storage Representation
binaryReaderBlockForVersion: oldVersion format: oldFormat
| newPoint |
oldVersion isNil ifTrue: [

^[:oldPoint |
newPoint := PointExample new.

"Each oldPoint obtained from the BOSS file is an Array
that contains the state of an old instance of PointExample.
The array elements are the values of the old instance’s
variables, in the order in which the old version of
PointExample defined them."

newPoint x: (oldPoint at: 1).
newPoint y: (oldPoint at: 2).
newPoint z: 0.

oldPoint become: newPoint]].

Customizing the Storage Representation
By default, BOSS stores the entire contents of an object, including its
dependents and the dependents of its variables. Although this default is
appropriate for most data objects, it results in a BOSS error when an
interface object is a dependent of a data object that is being BOSSed out.
This kind of dependency is often encountered in the case of an instance
variable that holds onto a collection when the collection is displayed in a
list widget. BOSSing a copy of the collection is one way to remove the
dependency.

The example shows a technique for controlling which parts of an object
are BOSSed out. This technique is also useful when an instance variable
holds an object that points back to the original object.

The basic approach is to create an instance method named
representBinaryOn: in the class whose BOSS representation you want to
customize. The method typically returns a MessageSend, which is created
by sending a receiver:selector:arguments: message to that class. The
receiver argument identifies the class that is to create an instance,
typically the object’s class. The selector argument is the name of the
instance-creation method that is to be used when the data is read by
BOSS. The arguments argument is a collection of data values, typically the
values of the object’s instance variables.
Application Developer’s Guide 14-9

Binary Object Files (BOSS)
representBinaryOn: bos
"Represent a PointExample by its x, y and z coordinates
plus the message and receiver for creating an instance from
those coordinates."

^MessageSend
receiver: self class
selector: #x:y:z:
arguments: (Array with: x with: y with: z).
14-10 VisualWorks

15
Exception and Error Handling

Overview
Exceptions are unusual or undesired events that can occur during the
execution of a VisualWorks application. While not all exceptions are
errors, errors are among the most important exceptions that your
application needs to handle.

When an exception occurs, an application might need to take some
special action. For example, if an application is reading data from a file
and unexpectedly encounters an end-of-file, it might stop processing and
display an error message. Using the exception handling features in
VisualWorks, the application can trap the exception and invoke the
special processing.

ANSI Exception Handling
VisualWorks implements an ANSI compliant, class-based exception
handling mechanism. All new applications should use the mechanism
described in this section. For most purposes, and in most parts of the
system, this class-based mechanism has replaced the earlier Signal
based mechanism.

The most conspicuous difference from earlier exception handling
mechanisms is that ANSI style exceptions and errors are represented as
classes in the Exception hierarchy, rather than as instances of Signal.
Support for the Signal mechanism is retained in the system, and is still
used by parts of the system. There may be cases that the Signal
mechanism is preferred. In general, however, we recommend that you
use the class-based system, because it is ANSI Smalltalk compliant.
Application Developer’s Guide 15-1

Exception and Error Handling
Adapting Signal-based Code
There are a few things you must do to old code to continue using the
Signal mechanism.

One change you do not need to make is the use of the signal message.
Rather than change the meaning of signal so that it raises an exception,
as we would in order to be in accord with the X3J20 specification, we
have left signal unchanged and introduced the message raiseSignal. This
eliminates the need to change your code.

Reinitializing Signal Creators and Initializers
The Signal creation code has changed, so you need to reinitialize all of
your signals to register them with the new Exception hierarchy.

Name Signals
Because of the possibility of duplicate instances, signal identity cannot be
used. Each signal creation message invokes nameClass:message:.

The standard signal creation looks something like:

Object errorSignal newSignal
notifierString: 'problem';
nameClass: self message: #problem.

Do Not Depend on Signal noHandlerSignal
Exceptions are not guaranteed to signal an UnhandledException as the old
system did. For example, Notifications do not because they are considered
ignorable.

However, you can handle noHandlerSignal to ensure that there are no
walkbacks, or to give all other handlers the priority. To use Signal
noHandlerSignal, for example to capture notifications, you should change
the method. For example, if you have a method such as:

^Signal noHandlerSignal
handle: [:ex |

ex parameter getSignal = self class someSignal
ifFalse: [ex reject].
^true]

do: [self class someSignal raiseRequest]
"ask outerscope caller"

replace it with the equivalent:

^[self class someSignal raiseRequest]
on: self class someSignal
do: [:exp | exp isNested ifTrue: [exp pass] ifFalse: [true]] .
15-2 VisualWorks

Exception Classes
If someSignal #defaultAction is to answer true, then this is equivalent to:

^self class someSignal raiseRequest.

Exception Classes
Exceptions are represented as instances of classes, with Exception at the
top of the class hierarchy. It has several direct subclasses, two of the
most important being Error and Notification. Subclasses of all these define
more specific kinds of exceptions which can be trapped by your
application. Your application can define its own Exception subclasses for
special exceptions and errors.

Each exception class either defines or inherits a defaultAction message,
which is invoked when that exception occurs unless a handler is defined
for it. The table below lists some common exception classes with the
exceptional event represented by the class and the default action it
performs.

All instances of Exception and its subclasses respond to the message
description by returning a string that describes the actual exception.

Exception Classes and Their Default Actions

Exception Class Exceptional Event Default Action

ArithmeticError Any error evaluating an
arithmetic operator

Inherited from Error

Error Any program error Open a notifier

MessageNotUnderstood A message was sent to
an object that did not
define a corresponding
method

Inherited from Error

Notification Any unusual event that
does not impair
continued execution of
the program

Do nothing,
continuing executing

Warning An unusual event that
the user should be
informed about

Display a Yes/No
question dialog and
return a Boolean
value to the signaler

ZeroDivide An attempt to divide by
zero

Inherited from
ArithmeticError
Application Developer’s Guide 15-3

Exception and Error Handling
Your application can have its own exception conditions, which are distinct
from those provided with VisualWorks. To identify the exception, create a
subclass of Exception or Error, as appropriate. If special handling is
required for the exception, you must define a handler for it, as explained
in the following sections.

The occurrence of an exception normally causes VisualWorks to discard
the work in progress. Sometimes a method does something that requires
a subsequent action, regardless of whether or not an exception occurs. In
that case, use the unwind mechanism described at the end of this
chapter.

Handling Exceptions
The default action for most exceptions is to display a notifier. For
development this is useful, allowing the developer to seek out the cause
and repair it. However, for an application, a notifier is not appropriate, and
the exception needs to be handled by the application itself. To handle
exceptions in an application you define an exception handler.

An exception handler has two parts: the class of exception for which it
watches, and the block of code (the handler block) to be executed when
such an exception occurs. The handler block must be a one-argument
block.

Exception handlers are defined using the on:do: message. For example,
the following expression defines an exception handler for an attempt to
divide by zero, and specifies that a message be printed in the Transcript:

| x y |
x := 7.
y := 0.
[x / y]

on: ZeroDivide
do: [:ex | Transcript show: 'zero divide detected'; cr.]

If a zero divide error occurs while evaluating [x / y], the handler block (the
argument to do:) is evaluated, causing the message to be written to the
transcript.

When creating exception handlers for your application, be as specific as
makes sense in naming the exception to which the handler responds. For
example, it might be reasonable in some contexts to trap any error,
without being any more specific than calling it an Error. In this case, an
expression like the following makes sense:
15-4 VisualWorks

Handling Exceptions
[... some work ...]
on: Error
do: [:ex | Transcript show: 'An error occurred'; cr.]

The information returned is minimal, but might be enough. However, you
probably do not want to handle every exception that occurs, so do not use
an expression like this:

[... some work ...]
on: Exception
do: [:ex | Transcript show: 'An exception occurred'; cr.]

Exception is too general a category, and so your application would
respond to anything, including signals to Notification that have no effect on
your application.

An exception handler normally completes by returning the value of the
handler block in place of the value of the receiver block. The above
example, therefore, would return the Transcript, which might not be
terribly useful.

Suppose you want to return the value 0 when a division by zero occurred.
You could then rewrite the expression as:

[x / y] on: ZeroDivide do: [0]
This could be used in some such code as the following:

fudgeFactor := [x / y] on: ZeroDivide do: [0].
If, instead of returning a value, you want to exit the current method, you
can place an explicit return within the handler block:

fudgeFactor := [x / y]
on: Error
do: [:ex | ^'uncomputable'].

This example specifies Error as the exception to be handled instead of
ZeroDivide. When you specify an exception class, the exception handler
handles exceptions of the specified class as well as exceptions that are
instances of subclasses of the specified class. ZeroDivide is a subclass of
DomainError, a subclass of ArithmeticError, a subclass of Error. Therefore,
an attempt to divide by zero or any other error that occurs while
evaluating x / y causes the enclosing method to return the string
'uncomputable'.

Sometimes an exception handler needs to obtain information about the
specific exception that it is dealing with. This can be accomplished by
using a single argument block as the exception handler:
Application Developer’s Guide 15-5

Exception and Error Handling
[x / y]
on: Exception
do: [:theException |

Transcript show: theException description.
^'uncomputable'].

The instance of the class of exception that occurred is passed as the
argument to the handler block. In the above example, the exception
object could be an instance of ZeroDivide, ArithmeticError, or Exception.

Exception Sets
Occasionally it is necessary to establish an exception handler to handle
several exceptions that are not necessarily related in a hierarchy. This
can be accomplished by using an ExceptionSet. If any exception in the set
occurs, or any subclass of a listed exception, the handler block is
activated.

You can implicitly create an exception set by specifying a list of
exceptions in a handler. For example:

[do some work]
on: ZeroDivide, Warning
do: [:theException | whatever]

Sending the , (comma) message to an exception class with another
exception creates an instance of ExceptionSet.

If you need to reuse the same set of exceptions, you can also create an
exception set explicitly and assign it to a variable:

specialExceptions := ExceptionSet with: ZeroDivide with: Warning
The exception set can then be used as the argument to on: in an
exception handler.

Signaling Exceptions
Most of the exceptions that your application needs to handle are detected
by code within the standard VisualWorks class library. Occasionally,
however, you may need to write a new method to signal the occurrence of
an exception, particularly if you have also created a new class of
exceptions.

An exception is signaled by sending the message raiseSignal or raiseSignal:
to the class that defines the exception. For example:

Error raiseSignal
15-6 VisualWorks

Exception Environment
creates an error exception. If a specific handler has been defined to deal
with the Error exception, it is executed. Otherwise, the default handler is
executed.

It is often useful to provide a textual description of the problem when
signaling an exception. You can do this using the message raiseSignal:.

Warning raiseSignal: 'the disk is almost full'
The argument string to raiseSignal: is incorporated into the value returned
when the message description is sent to the resulting exception object.

It is also useful to raise an exception with a specific parameter, rather
than the default, which is the error itself. In this case you can send
signalWith:, with the object to be returned as the argument. For example, it
is occasionally more useful to raise the exception passing the object itself
as the parameter, rather than the exception:

Exception signalWith: self
If you define new Exception classes, it is most reasonable to create them
as subclasses of either Error, for non-resumable conditions, or Notifier, for
resumable conditions.

Exception Environment
Each VisualWorks process has a distinct exception environment, which is
an ordered list of active handlers. When a new process begins, the list is
empty. When the receiver block of an on:do: statement is executed, its
exception handler is added to the beginning of the list, and its entry is the
on:do: statement. If another exception handler is defined within the
receiver block, it is added to the beginning of the exception environment
list for the process.

[block 1 stuff
[block 2 stuff

[block 3 stuff
[block 4 stuff]

on: ColorError
do: [handler code for 4]]

on: Warning
do: [handler code for 3]]

on: Error
do: [handler code for 2]]

on: ZeroDivide
do: [handler code for 1]
Application Developer’s Guide 15-7

Exception and Error Handling
The following figure illustrates a hypothetical exception environment.

If an exception is signaled within an exception environment, the exception
handling system sends a message to the first entry in the list, the most
recently added, to determine if it handles the specific exception
generated. The first exception handler encountered that can handle the
signaled exception does so.

Suppose the code in this exception environment is executing, and a
ZeroDivide error is signaled. The first active exception handler handles a
ColorError, so it is not executed. The next handles a Warning, so it is not
executed either. The third handles an Error, which is a superclass of
ZeroDivide. It therefore can handle the ZeroDivide exception, and does so.

The Error exception handler executes its do: block, thereby creating a new
exception environment of its own. In this case, the new exception
environment has only a ZeroDivide handler in it, because that was the only
handler created before the Error handler.

When a handler block is executed, the exception environment is
“trimmed” to include only those active handlers created before the
handler that is executing. These older handlers constitute the active
handler’s exception environment. The active handler’s exception
environment is the exception environment as it was at the time that the
on:do: message was sent.

If the exception handler resumes, the original exception environment is
restored; otherwise, it is discarded.

ColorError

Warning

Error

ZeroDivide

oldest or
outmost

newest or
innermost

direction of search
15-8 VisualWorks

Exiting Handlers Explicitly
If no handler is found for an exception by searching the exception
environment, the defaultAction method for the exception is executed. When
a default action method is executed, the exception environment is the
same as it existed when the exception was signaled.

Exiting Handlers Explicitly
Occasionally you may need to manage the flow of control among multiple
exception handlers. The following messages can be sent to the argument
of a handler block to conclude processing of the handler block before it
reaches its final statement, or to interrupt its processing and return to it
later:

The messages exit:, resume:, and return: return their argument as the
return value, instead of the value of the final statement of the handler
block.

The message exit is provided by VisualWorks for conditionally exiting a
complex handler block. For resumable exceptions, it sends a resume
message, which restores the environment in which the exception
occurred and continues processing. For nonresumable exceptions, it
sends a return message, which trims the exception environment to the
active handler’s exception environment.

For example:

exit or exit: Resumes on resumable exceptions; returns on
nonresumable exceptions. (Note that this is a
VisualWorks extension to the ANSI specification.)

resume or resume: Attempts to continue processing the protected
block, immediately following the message that
triggered the exception.

return or return: Ends processing of the protected block that
triggered the exception.

retry Re-evaluates the protected block.

retryUsing: Evaluates a new block in place of the protected
block.

resignalAs: (See “Translating Exceptions” on page 15-13.)

pass Exits the current handler and passes to the next
outer handler; control does not return to the
passer.

outer Similar to pass, except it regains control if the
outer handler resumes.
Application Developer’s Guide 15-9

Exception and Error Handling
[Error raiseSignal]
on: Error
do: [:exception |

exception isResumable
ifTrue: [exception exit: 5].

Dialog warn: 'Nonresumable exception']
Because Error is a nonresumable exception, the warning dialog is
displayed. Replacing the protected block with [Notification raiseSignal] and
testing for Notification instead will exit (resume) with a return value of 5.

If the argument of a handler block is a resumable exception, the message
resume can be used instead of exit, which behaves in exactly the same
manner as exit for resumable exceptions. Attempting to resume a non-
resumable exception causes an “attempt to proceed” error.

To terminate and return from the block that triggered the exception, send
a return message. When sent to a resumable exception, return forces
control to return from the protected block instead of returning to the
message that triggered the exception. Thus, return can simulate the effect
of a nonresumable exception when an exception is in fact resumable. The
message return trims the exception environment to the active handler’s
exception environment.

Another way to exit a handler block is with the retry message. This
message terminates the handler block and tries again to evaluate the
receiver of the on:do: block. Any cleanup blocks created using the unwind
mechanism are executed before retrying, whether they were created by
the original evaluation of the receiver block or by the handler block.

For example, the following method tries again after a division-by-zero
error:

[^ x / y]
on: ZeroDivide
do:

[:exception|
"make the divisor very small but > 0"
y := 0.00000001.
exception retry]

The message retry therefore trims the exception environment to the active
handler’s exception environment when it retries execution.

The message retryUsing: does a retry, but evaluating the block passed as
argument instead. For example:
15-10 VisualWorks

Resumable and Nonresumable Exceptions
[self doTaskQuickly]
on: LowMemory
do: [:exception|

exception retryUsing: [self doTaskEfficiently]]
The message retryUsing: also trims the exception environment to the
active handler’s exception environment when it retries execution.

The message pass can be used inside a handler block to terminate the
handler block and execute any enclosing handler blocks for the current
exception. For example:

[n / m]
on: ZeroDivide
do:

[:exception|
"0/0 = 1; otherwise raiseSignal a ZeroDivide exception"

exception dividend ~= 0
ifTrue: [exception pass]
ifFalse: [exception return: 1]

The message pass sets the exception environment to the environment of
the handler to which it passes control.

In this example, the programmer decided to handle the case of 0 / 0
specially. If the dividend is anything other than zero, however, control
passes to the ZeroDivide exception. Control never returns to the sender of
a pass message.

Resumable and Nonresumable Exceptions
A handler block normally completes by executing the final statement of
the block. The value of the final statement is then used as the value
returned by the exception handler. Exactly where control should be
returned with that value, however, depends upon whether an exception is
resumable or not. A nonresumable exception must return from the on:do:
expression that created the handler block. However, a resumable
exception usually returns from the message that signaled the exception.
It is so called because it resumes execution rather than returning from the
exception.

Resumability is an attribute of an exception, not of an exception handler.
Most subclasses of Error are nonresumable and therefore do not return to
the method that signaled the exception, but return directly from the
handler block. On the other hand, exceptions such as Notification and
Application Developer’s Guide 15-11

Exception and Error Handling
Warning are not errors, and are generally resumable. Resumable
exceptions typically return the value of the active handler for the
exception from the signaling message:

Warning raiseSignal: 'Low memory, save files!'
The return/resume behavior must be made explicit by sending a return: or
resume: message in the handler block. For example, the following
expression returns 'Value from handler' as the value of the on:do: message
because the signaled exception is an instance of Error, which is
nonresumable:

([Error raiseSignal. 'Value from protected block']
on: Error
do: [:ex | ex return: 'Value from handler'])

The next expression, however, returns 'Value from protected block' as the
value of the string, the last expression in the protected block, because the
signaled exception is an instance of Notification, which is resumable:

([Notification raiseSignal. 'Value from protected block']
on: Notification
do: [:ex | ex resume: 'Value from handler']).

Exception handling can be generalized by explicitly testing whether the
exception is resumable, using the message isResumable. In the following
example, the exception handler returns either 5 to the signaler or 10 from
the on:do: message, depending upon whether the exception class is
defined to be resumable or nonresumable:

[someExceptionClass raiseSignal]
on: Error
do:

[:exception|
exception isResumable

ifTrue: [5]
ifFalse: [10]]

Most exception classes inherit whether they are resumable or
nonresumable from their superclasses. To specify the resumability of a
new exception class, initialize its isResumable instance variable to true.

Note: Signaling a resumable exception while evaluating the
protected block of an unwind message does not cause the cleanup
block to be executed, because execution of the protected block
resumes instead of terminating.
15-12 VisualWorks

Translating Exceptions
Translating Exceptions
Occasionally, an exception handler might need to translate one exception
into another exception. This is usually done to provide more information,
or to consolidate low level exceptions to a higher level one. For example,
a low-level operating system error exception might need to be translated
into a higher level user exception.

Care is required to avoid executing the wrong handler. The reason is that
the exception environment within the handler signalling the low-level
exception is not necessarily the same as the exception environment
signalling the high-level exception. This problem is solved by using the
message resignalAs: instead of raiseSignal within the handler block. For
example:

[low-level I/O]
on: OperatingSystemException
do: [ex|

ex errorCode = -213
ifTrue: [ex resignalAs: EndOfFile new]
ifFalse: [ex resignalAs:

(Error new messageText: 'OS Error']]
The message resignalAs: aborts the current exception handler, restoring
the exception and execution environments to the states they were in
when the exception that is the receiver of resignalAs: was originally
signaled. (Note that this can cause the execution of unwind blocks). After
the environments are restored, the exception that is the argument to
resignalAs: is signaled. This causes the argument exception to function as
if it had been originally signaled in place of the receiver.

Unwind Protection
When a block of expressions contains opportunities for a premature
return, a means of cleaning up the mess may be required.

Providing such a mechanism is a kind of exception handling, though it is
accomplished with a variant of the value message that initiates a block.
Use ifCurtailed:, with the cleanup expressions as the argument block. The
cleanup block is used if the execution stack is cut back because of a
signal, if a return is used to exit from the block, or if the process is
terminated.
Application Developer’s Guide 15-13

Exception and Error Handling
To execute the cleanup block after either a normal or an abnormal exit,
use ensure:. Remember that these messages are addressed to a block,
not to a signal.

Using a Signal to Handle an Error
The Signal class provides an instance-based mechanism for signaling and
catching an error. This is the original exception handling mechanism
implemented in VisualWorks, and is largely, but not entirely, superseded
by the class-based system described previously.

Catching an error using this mechanism involves creating an instance of
Signal and telling it what you plan to do and how to handle an error. This is
accomplished with a handle:do: control structure. In pseudocode form, the
resulting expression for our calculator’s division method is:

aSignal
handle: [error handling code]
do: [the division operation].

The error that triggers the handle: block is an instance of Exception. Hence,
dynamic error trapping in Smalltalk is usually called exception handling.
An Exception is created by a raise message sent to a Signal. In our
example, the method that performs the actual division would send a
message such as:

aSignal raise
Thus, exception handling involves two steps: Placing a Signal handler to
watch over a block of expressions, and raising an Exception when an error
occurs.

Choosing or Creating a Signal
To create a new instance of Signal, use Signal new. The resulting instance
has a parent of Object errorSignal—the significance of this ancestry is
discussed below. To create a signal with a different parent, use newSignal
and address it to the desired parent, as in the expression

divSignal := (Number errorSignal) newSignal.
Most classes in the system have been updated to use the class-based
exception mechanism. Some still contain instances of Signal as class
variables. For cases that use Signal instances, it may be appropriate to
choose an existing signal instead of creating a new one. These “global”
signals are implemented as class variables, and accessed via class
15-14 VisualWorks

Using a Signal to Handle an Error
methods. For example, browse class Palette which defines two signals,
PaintNotFoundSignal and PixelNotFoundSignal, and provides accessors in
two class methods, paintNotFoundSignal and pixelNotFoundSignal.

Classes for which error handling has been updated to use the class-
based mechanism still provide class-side accessor methods, but return a
class instead of a Signal instance. For example, Object errorSignal returns
the class Error rather than an instance of Signal.

Proceedability
A Signal has a proceedability attribute, which indicates whether the error
is harmless enough to permit the process to proceed from that point
onward. By default, a new signal inherits the proceedability setting of its
parent signal. To establish a specific proceedability in a new signal, use
newSignalMayProceed:, as in the following expression:

divSignal:= (Number errorSignal) newSignalMayProceed: false

Creating an Exception
In the Signal mechanism, an Exception object is created by sending a raise
message to the appropriate signal. This object then travels back along
the message stack looking for its matching signal (or an ancestor),
triggering the intended handle: block.

For example, a paint program recognizing an error in the paint selection,
would signal that error by sending a raise message to PaintNotFoundSignal,
which raises the exception. This exception then traverses the chain of
calling objects until it finds a handler.

Because such Signal instances are not guaranteed to exist is future
versions, it is safer to use the accessor methods to access a signal. This
accessor method is updated to reference the class instead of the signal,
and using only the accessor method makes this transparent to the
application. So, it would be better to send:

Palette paintNotFoundSignal raise
The raise message effectively transfers control from the method in which
the error was perceived to the handle: block in the calling method. A
variant of raise permits control to proceed from the point of error (usually
after the handle: block warns the user or corrects the cause, or both). To
create a proceedable exception, use raiseRequest (the exception requests
that control be returned to it). A proceedable exception can only be
successfully addressed to a proceedable signal; a nonproceedable
exception can be addressed to either type of signal. Thus, the exception
largely determines its own proceedability.
Application Developer’s Guide 15-15

Exception and Error Handling
Setting Parameters
An exception can carry an argument object back to the handler block,
such as a value that can be used to diagnose the breakdown, an array of
such values, or a block of remedial operations. The default is nil. To set
that value, send a parameter: message to the exception, with the object as
argument.

For situations in which the signal’s notifier string needs to be replaced or
augmented, send errorString: to the exception, with the replacement string
as argument. If the first character of the argument string is a space, the
argument is appended to the signal’s notifier string. Otherwise, the
argument string is used instead of the signal’s string.

By default, an Exception begins its search for a handler in the context that
sent the raise message. To substitute a different starting place, send a
searchFrom: message to the Exception, with the starting-point context as
argument.

Because more than one instance of the same Signal can exist, as
implemented by different methods (with different handlers, possibly), an
Exception can get fielded by the wrong handler unless it has a way to
identify its originator. To do so, send originator to the Exception, with the
object that originated the raise message as argument. To equip the
handler with the originator, so it can spot the matching Exception, send a
handle:from:do: message, supplying the originator as the argument to the
from: keyword.

Passing Control From the Handler Block
A handler block can redirect the flow of control in one of four ways, listed
in order of increasing assertiveness:

• Refuse to handle the exception

• Exit from the handler block and from the method in which it is located
(i.e., a conventional return).

• Proceed from the point at which the error occurred.

• Restart the do: block and try it again.

To refuse control, use reject, as in anException reject. The exception will
then continue its search for a receptive signal.

To exit from the handler block, use return. The nil object will be returned.
To pass a value other than nil, use returnWith:.
15-16 VisualWorks

Using a Signal to Handle an Error
To return control to the point at which the error occurred, use proceed. To
pass an argument to be used as the value of the signal message, use
proceedWith:. To proceed by raising a new exception—in effect, to
substitute a different signal in place of the original error creator—use
proceedDoing: and raise the new exception in the argument block.

To restart the do: block, use restart. To substitute another block of
expressions for the original block, use restartDo:, as in the expression
theException restartDo: aBlock.

If a handler does not choose one of the four options described here, it
has the same effect as theException returnWith: the value of the block.

Raising a signal within its own handler does not restart the handler.
However, raising a signal within a proceedDoing: or restartDo: block does
invoke the signal’s handle block again.

Returning to the calculator example, let’s fill in the handler code:

ArithmeticValue divisionByZeroSignal
handle: [:theException |

Transcript cr; show: 'Enter a nonzero divisor'.
theException restart]

do: [the division operation]

Using Nested Signals
In some situations, it will be necessary to have more than one hawk
watching the same process. For example, you might want to catch both
numeric errors and dictionary errors, without using the full generality of a
mutual parent such as Object errorSignal. To avoid nesting one handle:do:
construct within another, create an instance of SignalCollection. A
SignalCollection is created via new and an element is appended via add:,
as with any OrderedCollection. Use handle:do: just as you would with an
individual signal. When an exception is raised, it will try each signal in the
collection until it comes to one that it recognizes.

A SignalCollection works fine when the same handler block is to be used
no matter what kind of error crops up. But if each type of signal is the
trigger for a different handler block, use a HandlerList. To create it, use
new.

Each element of a HandlerList consists of a signal and an associated
handler block. To add such an element, use on:handle:, as in aHandlerList
on: aSignal handle: aBlock. To begin execution of the do: block, use
handleDo:, as in anHC handleDo: aBlock.
Application Developer’s Guide 15-17

Exception and Error Handling
A HandlerList can be built in advance and reused in various contexts,
which is both more readable than the nesting approach and more efficient
than building even a single handler on the spot. Bear in mind, however,
that handlers in a HandlerList are not peers—they are effectively nested.
A signal that is raised in a nested series will not be fielded by a handler
that is lower in the hierarchy (or later in the collection). For example, the
first set of expressions below is semantically equivalent to the second.

HandlerList new
on: sg1 handle: [:ex | "response 1"];
on: sg2 handle: [:ex | "response 2"];
on: sg3 handle: [:ex | "response 3"];
 handleDo: ["Any arbitrary action"].

sg1 handle: [:ex | "response 1"]
do: [sg2 handle: [:ex | "response 2"]

do: [sg3 handle: [:ex | "response 3"]
 do: ["Any arbitrary action"]]].
15-18 VisualWorks

16
Debugging Techniques

Overview
Debugging is the, often difficult, task of tracking down causes of program
malfunction. Syntax errors are generally caught by the compiler. More
subtle errors, such as the mishandling of unusual assignments to a
variable, can take a lot of exploration to trace and resolve. To trace these
you need a mechanism for tracing the flow of a program and variable
assignments at various points.

VisualWorks provides several facilities to help you debug your programs.
Software probes insert triggers into the compiled byte code stack, without
changing your source code, which either interrupt processing
(breakpoints) or log status information (watch points). A walkback window
is opened when an unhandled exception is detected, showing the last
several message sends. The Debugger tool allows for extensive
exploration of the history of message sends, for modifying variable
values, and modifying code on the fly, and for controlling program
execution. There are also several special-purpose object engines for
debugging problems with calls to external libraries or virtual machine
crashes.

This chapter describes these facilities and techniques for using them to
diagnose problems with your code. For details on using the debugging
engines, see “Debugging Within the Virtual Machine” on page 16-32.
Application Developer’s Guide 16-1

Debugging Techniques
Software Probes
Software probes provide a mechanism analogous to hardware probes
used in troubleshooting electronic components, providing a way to check
the state of the system at a specific point. An electronic probe does not
change the design of an electronic circuit but, when used, it may change
the circuit's characteristics slightly. Similarly, using a software probe does
not change the source code design, but will affect the timing of the
program execution. In regards to a Smalltalk program, this means that the
source code is unchanged, so insertion and removal of a probe is not
logged, but program timing will be slightly changed. Usually, this is not a
problem.

A probe can be inserted before or after any message send, assignment
operation, or upon referencing a variable reference. Inserting a probe
actually inserts a message send to the probe object. Because a probe is
inserted by modifying the compiled method instead of source code, it is
possible to perform actions that are cumbersome to do within the
Smalltalk syntax.

There are two basic types: breakpoint and watchpoint. Every probe has a
conditional expression and an action. If the conditional expression returns
true, then the action is performed. In the case of an breakpoint, the
expression simply returns true. The action performed is determined by the
probe type.

Breakpoint
A breakpoint, which is the simplest kind of probe, immediately opens the
system debugger, skipping the notifier stage, when it is triggered. The top
method in the stack is the method containing the breakpoint. The current
message send depends on placement of the breakpoint. A breakpoint is
a better alternative to inserting self halt in code to invoke a debugger,
because it does not require a change in the source code.

A conditional expression may be used with a breakpoint, allowing you to
test for specific conditions and selectively trigger the breakpoint. The
expression can include any arbitrary operation, such as data collection.
However, it must return a Boolean upon completion. The debugger window
opens if the value is true, and does not open if the value is false.
16-2 VisualWorks

Software Probes
Watchpoint
Watchpoints display a string message in a watchpoint window, without
interrupting program execution.

The string provides information about the state of some part of the
program when the watchpoint is triggered. In general, the string is a
representation of an object.

There are four watchpoint types, which you select when creating the
watchpoint:

Top of Stack
Displays the value of the variable currently at the top of the argument
stack, which may be an argument or the last message result.

Instance Variable
Displays the value of the specified instance variable.

Temp Variable
Displays the value of the specified temporary variable.

Expression Watch
Displays the result of a Smalltalk expression, which must evaluate to
a String. This probe enables the user to properly display complex
information or to format a string in a more meaningful manner.

The String representing the object displayed by the Top of Stack,
Instance Variable, and Temp Variable probes is obtained by sending the
object the debugString message. This method is defined in class Object as
^self printString. It provides flexibility in representing an object.
Application Developer’s Guide 16-3

Debugging Techniques
Setting Probes
Inserting a probe into source code is done by selecting a menu command
in a browser and, in most cases, providing additional information in a few
probe editors.

Setting a breakpoint
A simple breakpoint is set in a method definition by placing the cursor at
the point at which you want to interrupt processing, and then selecting
Insert Breakpoint from the <Operate> menu. The character at the cursor
location is highlighted, indicating the breakpoint.

A breakpoint can also be made conditional. To do this, select Insert Probe
instead of Insert Breakpoint. Then, in the Select Probe Type dialog, select the
Breakpoint radio button and check the Conditional check box. Refer to
“Making a probe conditional” on page 16-7 for further information.

Setting a variable watchpoint
A watchpoint displays a message in a watch window without interrupting
processing, as does a breakpoint.

To set a variable watchpoint, place the cursor in a method definition, and
select Insert Probe in the <Operate> menu. In the Probe Type editor, select
the Variable Watch radio button.
16-4 VisualWorks

Setting Probes
Then click Done. The Select Watch Variable dialog opens.

The three buttons allow you to specify what variable to watch. You can
only specify one. Top of Stack will display in the watch window the value on
the top of the argument stack, which is either a message argument or
response. The Instance Variable and Temp Variable buttons pop up a list of
available variables (Temp Variable is active only if the method has
temporaries).

When you have selected the variable to watch, click Done. The probe is
set, and the watch window opens the first time the probe is triggered.

Setting an expression watchpoint
A watch expression provides a good deal of control over the display of
information. The expression must evaluate to a String, which you must
ensure in the expression, since the default debugString method is not
applied.

To set a variable watchpoint, place the cursor in a method definition, and
select Insert Probe in the <Operate> menu. In the Probe Type editor, select
the Variable Watch radio button.
Application Developer’s Guide 16-5

Debugging Techniques
Then click Done. The Expression Watch Probe editor opens.

The expression watch provides maximum probe control, so the editor
provides all of the editors. The top text box, the Conditional Test Expression
editor, is described in “Making a probe conditional” on page 16-7. The
Window ID text field and associated buttons allow you to select the watch
window in which to display the watch expression.

The Watch Expression text box is where you specify what to display in the
watch window. The expression can be any Smalltalk expression that
returns as a String. This allows you to include descriptive text, values of
Smalltalk expressions, and some formatting. For example, you could use
an expression like this to display the value of currentRandomValue from the
Walk Through:

^‘The current value is: ‘, currentRandomValue value printString, ’. ‘
Carriage returns included in the string are displayed as carriage returns,
or you can include a backslash and send withCRs to the whole string:

^’The current value is:
‘, currentRandValue value printString, ‘.’
16-6 VisualWorks

Setting Probes
When you’ve entered an appropriate expression, accept the change and
click Done. The probe is set, and the watch window opens the first time the
probe is triggered.

Removing probes
You can remove probes either selectively or from an entire method.

To remove a single probe, select its highlighted character and select
Remove Selected Probe from the <Operate> menu.

To remove all probes from the method, select Remove All Probes from the
<Operate> menu.

Making a probe conditional
A conditional breakpoint interrupts processing at the set point only if the
specified condition is met. To place a conditional breakpoint, place the
cursor and then select Insert Probe from the <Operate> menu. The Select
Probe Type editor opens:

Leave the Breakpoint radio button selected, and check the Conditional
check box. Click Done. The Conditional Text Expression probe editor opens.
Application Developer’s Guide 16-7

Debugging Techniques
Initially the expression is simply false, which will prevent the breakpoint
from triggering. You need to replace this with an expression that will
evaluate to true in just those cases where you want the breakpoint to
trigger, allowing you to further investigate the state.

For example, in RandomNumberPicker from the VisualWorks Walk
Through, you could insert a breakpoint in the nextRandom message, and
set the conditional expression to:

currentRandomValue value < 0.5
to break only when the random value is smaller than 0.5.

When you have entered the expression, accept the change (Accept on
the <Operate> menu), and click Done. The probe highlight is placed and
the probe is set.

A probe expression is a normal Smalltalk expression, except that it has
additional variable scoping. This scoping permits the expression to
reference variables in the probed method context and instance variables
of its receiver. Additionally, each probe may refer to its own local debug
variables and to global debug variables. Menu commands are available in
the condition editor pane to define new variables.

There are two predefined variables that you can reference to access
information in the context where the probe activation occurs:
DOITCONTEXT and TopOFStack. The variable DOITCONTEXT holds the
context itself, and TopOFStack is the object on the top of the context stack.
An additional predefined variable, ThisProbe, holds probe state
16-8 VisualWorks

Setting Probes
information, such as its characterIndex. This is useful when constructing an
expression watchpoint that reports method selector or probe character
position.

When a probe is created, it is given a default conditional expression.
Initially, this expression is set to ^DebugActive. DebugActive is a global
debug variable, and is used to permit enabling and disabling of probes
using the Probes menu in the Visual Launcher.

The default expression can be changed by editing the class method
newDefaultMethodFrom:inClass: in class CodeProbe.

The conditional expression editor text view has the following commands
to assist in building expressions:

Insert var
Opens a series of menus and submenus containing all the valid local
variables, providing a convenient means to locate a variable name
and insert it into the text. The selected variable is inserted into the
text.

Define debug var
Allows the user to define debug variables, both local and global.

Inspect debug vars
Opens a dictionary inspector on either the local or global debug
variable dictionary. The actual dictionary inspected is determined by
the submenu item selected, local or global.

Reset method
Resets the expression to a standard expression and method. Using a
standard method can speed up insertion of multiple probes, when
inserting probes using the Message Received or Instance Variable Reference
panels, and probe expression recompilation, as a result of a class
redefinition. This is because these standard expression methods are
known to the system and do not require rebinding.

Insert expression
Displays a menu of expressions currently in the expression library.
The selected expression is inserted at the text insertion point.

Save expression
Prompts the user for a name to identify the expression, and then
saves the expression text in the expression library. There is one
library for the Test expression and another library for the Watch
expression.
Application Developer’s Guide 16-9

Debugging Techniques
Select a watch window
For watch probes, you can specify which window displays the expression.
This allows you to reuse existing watch windows, and to display multiple
watch strings in a single window.

When first specifying the probe, check the Window parameters check box in
the Select Probe Type dialog. For a variable watch probe, the Window ID
dialog opens after you have selected the variable. For an expression
watch, the Window ID selection dialog is included in the expression editor
dialog, as shown above.

Either enter the numeric ID of a watch window in the entry field, or click
Select ID and choose a window from the list.

The Open Window button opens the window immediately, rather than
waiting for the probe to be triggered.

The Change Label button allows you to enter a more descriptive window
label string. You can then use the label later to identify this window for
other watch probes.

When the window parameters have been set, click Done.

Modifying a probe
Watch probes and conditional breakpoint probes can be modified. The
variable of a variable probe cannot be changed, but the conditional test,
watch expression, and window parameters all can be changed.
16-10 VisualWorks

Setting Probes
To modify a probe, select it by selecting the highlighted character
representing it, and select Modify probe on the <Operate> menu. A probe
editor will be displayed. While the editor varies for different probes, the
editor options are all the same as those described above for setting the
probes.

Make the desired changes and click Done.

Probe location
When a probe is present in a method, its position in the source code is
indicated by highlighting the character at that position. Permanent probes
are indicated by underlining the character and coloring it red. Temporary
probes, which are only available in the debugger, are indicated by
underlining the character and coloring it yellow.

Because the highlighting is done with a text emphasis, operations that
change the text may remove the probe highlight without actually removing
the probe.

The meaning of the highlights in various situations are as follows;

Message selector

• First or only character - probe activation occurs before message
send.

• Last character or following space - probe activation occurs after
message send.

• Last character of first component of keyword - probe activation
occurs after message send.

Variable name

• First character - probe activation occurs before variable access
(usually an assignment).

• Last character - probe activation occurs after variable access
(usually a read).

Examples of probe highlighting are shown later in the paragraph
discussing probe insertion within the browser.

Recompiling a Probed Method
Whenever a method is recompiled, either due to a method accept or
class redefinition, the probes are removed from their method. However,
the browser will give the user the option to reinsert, or discard, the
probes. If the user chooses to reinsert the probes, the probes are
Application Developer’s Guide 16-11

Debugging Techniques
checked to determine if they are still consistent with the recompiled
method. If a probe expression is no longer consistent, the probe is still
reinserted, but it is disabled so the user can correct the problem. If the
variable being watched by a variable watch probe is removed, then the
probe will not be reinserted.

Limitations

Probe highlights
Performing a format operation in a browser causes the probe highlight to
be lost. If you then accept the change, probe is lost as well. Because
probes are maintained by their position in the source code, reformatting
and accepting loses that position, so the cannot be reinserted.

Inserting probes at returns
The VisualWorks compiler compiles the following code:

^condition
ifTrue: [expression1]
ifFalse: [expression2]

as though it were written:

condition
 ifTrue: [^expression1]
 ifFalse: [^expression2]

That is, with two returns, one for each expression, rather than just one.
Because probes are added according to the parse tree, if you attempt to
probe the return value by inserting a probe at the return caret in the first
example, the result is as though one probe were inserted at the return
caret for only one of the expressions. The work-around is to insert two
probes, one at the end of expression1 and another at the end of
expression2.

The same situation occurs for the following code block:

[statements...
condition

ifTrue: [expression1]
ifFalse: [expression2]] value

which is compiled as though it were written:
16-12 VisualWorks

Class Probes
[statements...
condition

ifTrue: [expression1 blockReturn]
ifFalse: [expression2 blockReturn]] value

If a probe is placed at the condition, expecting to reflect the value
returned by one of the expressions, it would actually only capture one of
the expressions. This only occurs when the conditional statement is the
last statement in the block. Again, the proper work-around is to insert a
probe at the end of both expression1 and expression2.

Class Probes
Three commands on the Class menu in browsers provides for managing
probes at a class level: Add Class Probe, Remove Class Probe, and Browse Probed
Methods. These commands are aids to managing probes in bulk rather
than individually.

Adding class probes
The Class Add Class Probe command allows you to insert probes into
several methods in a single operation. The probes share any conditional
expression and any watch expression, thus allowing a single watch
expression or conditional breakpoint to be used for several methods.
However, once inserted, the expressions become independent, so if an
expression is later modified, the change applies only to the one probe.

The command has two submenus; On Instance Variable Access... and On
Message Receipt... .

On Instance Variable Access...
The On Instance Variable Access... command inserts a probe at each point a
selected variable is referenced in each method within a group of
methods. If the reference is a read operation, the probe is inserted just
after the byte code operation that places the object on the stack. If the
reference is a write operation, the probe is inserted just before byte code
that stores the object into the variable.

When you select the command, the setup panel opens.
Application Developer’s Guide 16-13

Debugging Techniques
The panel displays a filtered list of methods that reference the selected
instance variable. Select a variable from the Selected Instance Variable drop-
down list. Then, select filtering criteria by the using the On Read, On Write,
and Include Subclasses check boxes. The type of reference is shown to the
immediate left of the method string. In the list, select the methods into
which you want to support the probe.

The probe action to perform on the selected methods can be one of the
following:

Breakpoint
Inserts a breakpoint at the variable reference point in each selected
method.

Smart Watch
Inserts an expression watch probe at the variable reference point in
each method. The expression returns a string containing the class
name, method selector and character position of the probe in the
method. When triggered, this string is recorded in the watch window.
Next the debugString message is sent to the object on top of the stack.
The resulting string is then recorded in the watch window on the line
following the method identification string.
16-14 VisualWorks

Class Probes
Simple Watch
Inserts an expression watch probe at the variable reference point in
each method. When triggered, the debugString message is sent to the
object on top of the stack and the returned string is recorded in the
watch window.

N Simple Watches
Inserts an expression watch probe at the variable reference point in
each method. When triggered, the debugString message is sent to the
object on top of the stack and the returned string is recorded in a
watch window. This differs from the “simple watch” in that each probe
has its own watch window.

Expression Watch
Inserts an expression watch probe, with a user defined expression, at
the variable reference point in each method. When triggered, the
expression is executed and the returned string is recorded in a watch
window. After the setup panel closes, an expression editor is opened
for you to define the expression (refer to “Setting an expression
watchpoint” on page 16-5 for an explanation of the editor).

Conditional
After the setup panel closes, a conditional expression editor is
opened for you to define the expression (refer to “Making a probe
conditional” on page 16-7 for an explanation of the editor).

Window parameters
After the setup panel closes, the “Window parameter” panel opens
for you to specify the watch window (refer to “Select a watch window”
on page 16-10 for an explanation of the selector).

Generate report
Cause a report to be generated when the setup panel is closed. The
report lists all of the methods that have been selected to have a
probe inserted.

On Message Receipt...
The On Message Receipt... command allows you to insert a probe at the
beginning of each method in a selected group of methods. When you
select this command, the setup panel opens.
Application Developer’s Guide 16-15

Debugging Techniques
The panel displays a list of methods defined in the class and, optionally,
its subclasses. The type of action performed on the selected methods
can be one of the following:

Breakpoint
Inserts a breakpoint before the first statement in each selected
method.

Simple Msg Trace
Inserts an expression watch probe before the first statement in each
method. When triggered, the probes record the method receiver's
class and method selector in the watch window.

Ivar Watch
Inserts an instance variable watch probe into each selected method.
When triggered, the probes record a representation variable’s value
in the watch window. When this button is selected, the Select Variable
menu button is enabled, permitting you to select an instance variable.
16-16 VisualWorks

Class Probes
Expression Watch
Inserts an expression watch probe in each method. When triggered,
the probes cause the expression to be evaluated and the resulting
string to be recorded in the watch window. After the probe selection
panel closes, the expression editor opens (see “Setting an
expression watchpoint” on page 16-5 for an explanation of the
editor).

Conditional
After the setup panel closes, a conditional expression editor is
opened for you to define the expression (refer to “Making a probe
conditional” on page 16-7 above for an explanation of the editor).

Window parameters
After the setup panel closes, the “Window parameter” panel opens
for you to specify the watch window (refer to “Select a watch window”
on page 16-10 for an explanation of the selector).

Generate report
Cause a report to be generated when the setup panel is closed. The
report lists all of the methods that have been selected to have a
probe inserted.

Remove class probes
This command remove all the probes from the selected class's methods.
The command has two submenus: From This Class Only, which removes
only probes in the selected class, and From This Class and Subclasses, which
removes all probes from its subclasses as well.

Browse probed methods
This command will open a browser on all the probed methods in the
selected class.
Application Developer’s Guide 16-17

Debugging Techniques
Debugger

Walkback Notifier
When a program error occurs, a notifier window appears. This notifier
displays the last five message-sends in the context stack. The context
stack lists message-sends that were waiting for a return when the
breakdown occurred.

Sometimes that listing of the context stack is sufficient for you to identify
the problem and correct it. If so, click the Terminate button to close the
notifier and abort the program.

When the error is not so serious as to prevent proceeding with the
program (that is, it is a warning), you can click Proceed to close the notifier
and continue executing the program.

Debugger Window
When you need to examine the conditions that led to the failure more
closely, click Debug. The notifier is replaced by a debugger, which enables
you to trace the program flow leading to the error, proceed with execution
step by step, and examine the operative method and the values of the
variables at each stage of execution.

The VisualWorks debugger enables you to look at the methods that are
waiting for a return value when a program interrupt occurs, examine the
values of variables in each context, dynamically change a value or a
method, insert breakpoints, and restart execution at a chosen location
with the new values and logic experimentally in place.
16-18 VisualWorks

Debugger
At the top are three stack panes. On the left is the stack view, which lists
the message-sends that were waiting for a return at the time of the error.
The right two panes are the stack inspector, which allows inspection of
the selected expression’s intermediate stack values (see “Inspecting the
Stack” on page 16-23 below for more information).

The code view is similar to the System Browser’s code view. When a
message-send is highlighted in the stack view, the corresponding method
is displayed in the code view. Within the method, the current point of
execution is automatically highlighted by the debugger.

At the bottom of the window are the instance-variable inspector, to the
left, and the temporary-variable inspector, to the right, which allow you to
examine the values of the variables. The variables and their values are
updated each time you choose a different position in the execution stack
with the stack view.
Application Developer’s Guide 16-19

Debugging Techniques
The debugger toolbar can be repositioned to below the stack panes by
changing the setting on the Debugger page of the Settings tool.

Reading the Execution Stack
To diagnose a problem, sometimes it is sufficient to see the last few
entries in the context stack. The Debugger’s top view lists as much of the
stack as you want to see, but you may not even have to launch the
Debugger. The error notifier that results from a program interrupt lists the
last five contexts. This error notifier shows the results of a programmatic
error (3 + ‘two’).

The window label tells us that a sumFromInteger: message was sent to an
object that does not implement a method by that name. (This summary is
repeated in the top line of the window, for situations in which the window
label is not wide enough to display all of the message.) Looking at the top
line of the stack, we see that it was an object of type ByteString. (ByteString
didn’t understand the message, so it invoked the doesNotUnderstand
method implemented by its parent class, Object). This is puzzling because
we sent a + message to a SmallInteger, as recorded in the second line of
the stack transcript. The last three lines of the transcript are not
enlightening —they merely expose some of the execution machinery,
which we have no reason to suspect in this case.

This example illustrates two features of the execution stack worth
emphasizing. The first line of the execution stack is often only of marginal
interest, because it usually represents the method that handles the
error—it doesn’t necessarily help you understand what caused the error.
Also, the execution machinery is a frequent inhabitant of the execution
stack—very quickly you learn to read around it.

Back to our example: Something odd happened in the SmallInteger>>+
method. You can either use the System Browser to look at that method,
or you can open a Debugger, as described in the next section.
16-20 VisualWorks

Debugger
The following figure shows a debugger displaying the results of a
programmatic error (3 + 'two').

Continuing our example from the previous section, in which the
expression 3 + 'two' was executed, we can see that the illegal expression
could not be handled by the primitive method that normally adds two
integers together. The alternative Smalltalk code was then executed.

Here we find the explanation for the mysterious sumFromInteger: message,
which was sent to a ByteString. As you can see, the + method calls the
sumFromInteger: method. But the receiver of the + message is the
argument (self) of the sumFromInteger: message. The message receiver
and argument have traded places. We know that the argument was the
string 'two', so the sumFromInteger: message is being sent to an object of
the wrong class, to a string instead of an integer. In the next section, we’ll
show how to verify this deduction.
Application Developer’s Guide 16-21

Debugging Techniques
Editing a Method Definition
The debugger code pane is a text editor, just like in a browser. You can
modify a method definition in the debugger, then accept the definition and
continue processing using the revised definition.

If you change the method selector of the definition and Accept the change,
the method is accepted and a method browser opens on the method.
After the browser opens, the debugger text pane is reset to the original
method text of the selected context. The effect is to create a new method
definition. The new method will be in the (none) pseudo-package.

Inspecting and Changing Variables
The bottom of the Debugger is devoted to two inspectors that allow you to
see the values of variables as they exist at the chosen point in the
execution stack. Each inspector consists of a pair of views, with a list of
variables in the left view and the value of a selected variable in the right
view. The inspector on the left is for instance variables, while the right-
hand inspector displays temporary variables.

In the example that was introduced above, the expression 3 + 'two' has
caused the expression 'two' sumFromInteger: 3 to be executed. Now we
know where sumFromInteger: came from. We can also see why it was
“misunderstood” as indicated in the error notifier’s window label—it was
addressed to a string instead of the expected number. To verify this,
select aNumber in the inspector view.
16-22 VisualWorks

Debugger
The Debugger’s inspectors let you change the value of a variable and
then restart the program. Simply edit the value, changing 'two' to a legal
value such as the integer 2. Then select accept in the <Operate> menu.
You can then select Execute Restart, and then Execute Run to resume
execution.

In practice, the value 'two' normally would be supplied by another method
rather than a Workspace expression. Having traced the problem to this
value, you can correct its parent method. To do so, edit and Accept the
revised method in any code view such as the one in the Debugger or the
one in the System Browser.

Inspecting the Stack
The stack inspector occupies the upper right corner of the debugger. It
allows inspection of expression intermediate stack values. If the inspector
can determine that a message send will occur next, the intermediate
objects are shown in the field list as "arg1", "arg2", ..., "rcvr". Otherwise,
they are displayed as, "top", "-1", "-2", etc.

When stepping is performed, the inspector will automatically select the
topmost element, if one is present. This will allow immediate observation
of message returns. However, one should be aware that this element is
not always the result of the last message send. If the user deselects the
selected element then the inspector will not automatically select the top
element when a step is performed. Use this feature when an object does
not respond to the printString message properly.

Tracing the Flow of Messages
As described above, the error notifier displays the last five message-
sends in the execution stack. When you need to look at one or more of
those methods, the Debugger is the most convenient tool to use.

The Debugger’s execution stack view, at the top, contains the most recent
message-sends that occurred before the error. To see the associated
method, select a message-send. In the illustration, SmallInteger>>+ has
been highlighted. The code view, in the center of the Debugger, displays
the method. Within that method, the message-send that was being
processed when the program failed is highlighted automatically.

Several commands are provided, by menu and by button, to walk through
the flow of messages. Select a message send in the step, and then use
the following commands to trace the message flow.
Application Developer’s Guide 16-23

Debugging Techniques
Stack menu
Copy Stack Report

Copies the context list to the clipboard so it can be pasted into a
document or workspace.

Show More Stack
This command adds more contexts to the context list. Under normal
conditions the debugger opens with the stack size set to 500, so this
command is seldom needed.

Filter Stack
Enables stack filtering, as specified in Settings tool, on the Debugger
page. The editor allows one to specify coloring of the context items
according to matching rules. For more information view the editor
help.

Use Short Class Names
When selected, displays only the class names, without the dotted-
name prefix for classes that are not visible outside the Smalltalk name
space.

Select Home Context
Searches the stack and selects the home context of the currently
selected context. If the home context is not on the stack, a dialog will
inform the user of the situation.

Inspect Context
Opens an inspector on the method context.

Bookmark Context
Highlights the stack item (context) and adds it as an item on the
Stack Bookmark menu, for easy access to this context.

Clear Bookmark
Clears the bookmark for this context.

Method menu
Most of these menu items are the same as in the System Browser. The
only exception is:

Recompile with Full Blocks
Recompiles the method so that all the blocks are full blocks. This also
has the effect of causing the method to be reentered, i.e., the
execution state of the method is reset. An Accept command also
causes the method to be reentered. This method is a temporary
method and disappears when a method return is executed.
16-24 VisualWorks

Debugger
Execute menu
Step Into

The most detailed stepping operation. When a message send is
selected, it sends the message and displays the resulting context.
Otherwise, it steps through the method, stepping into blocks along
the way.

Step
Steps through the method, stepping into blocks along the way.

Step Over
Steps through the method, stepping over blocks as they occur.

Restart
Initializes the selected context and restarts execution at beginning of
its method, as if the debugger had just stepped into it. The method
may be either a CompiledMethod or a CompiledBlock.

Return
Allows the selected method or block to discontinue further execution
and return immediately to its sender.

Run to caret
Advances to the caret, either into or out of a block closure. This is
limited to full block closures. If a return is encountered within the
selected context before the caret is reached, execution will stop
before executing the return. However, if the return is within a block
closure the method may return, at which point execution will stop.

Jump to caret
Jumps over code to the next caret, without execution. It causes the
execution point to be positioned at the beginning of the statement
containing the caret. A jump to caret into or out of a block closure
cannot be performed. However, it is possible to jump into and out of
conditional blocks, because they have been optimized by the
compiler and are not real block closures. Also, it is not possible to
jump into a loop, even if it has been optimized by the compiler.

Run
Continues execution from the current location.

Run with Break on Return
This command and the next are useful for debugging loops. This
command is similar to Run, except that an implicit breakpoint is set to
be triggered upon return from the current context. Also, the debugger
remains open. Execution stops either upon return from the context, or
if another breakpoint is encountered before then. Execution is
guaranteed to stop, so runaway loops can be interrupted.
Application Developer’s Guide 16-25

Debugging Techniques
Run with Break Again
Like Run with Break on Return, except that it does not establish a
breakpoint to be triggered on return. This option becomes available
only after a breakpoint has been set up by Run with Break on Return.
Refer to “Iteration debugging” on page 16-28 for more information

Terminate
Terminates the process being debugged and closes the debugger.
This is the same action that occurs when the window is closed using
a window close command.

Abort
This command is activated when the code is running, during one of
the Step commands or Run with Break on Return. The step has to take a
significant time to run before you will notice that the command is
available.

Correct menu
Define method

Activated when the top context is a MNU, this command inserts a
new method definition for the not understood selector, which simply
calls halt. The message is defined in UndefinedObject.

Correct selector
Activated when the top context is a MNU, this command presents a
list of suggested correct spellings of the not understood message
selector. If the correct selector is in the list, select it, and the
command corrects the source code, recompiles the method, then
does the send.

Inserting Probes in the Debugger
The debugger code view <Operate> menu has the same probe
commands as the browser code view, and adds support for temporary
probes. Temporary probes persist only as long as the debugger does,
and are then removed. Probes can be added in the debugger without
having to restart the context (see “Probe context management” on
page 16-27 for details).

Temporary Probes
Temporary probes are probes that disappear when the method returns,
as they only apply to the method context and its blocks. They appear in
the text view as yellow highlights, instead of red like permanent probes.
16-26 VisualWorks

Inserting Probes in the Debugger
Creating a temporary probe is accomplished by an additional button on
the Probe Selection Panel.

The Default to Temp probes or Default to Perm probes command on the Visual
Launcher Probes menu sets whether the Temporary button is initially set or
cleared. Additionally, the command determines if the “insert breakpoint”
command will insert a temporary breakpoint or a permanent breakpoint.

Probe context management
You can insert and remove probes without having to restart the context.

When a probe is inserted into a method in the browser, the method is
changed from a CompiledMethod to a ProbedCompiledMethod, and all of its
blocks are changed from CompiledBlock to ProbedCompiledBlock.
Furthermore, when a second probe is inserted, a copy of the first probed
compiled method is created and the probe is inserted into the copy. This
is done so that an active process will not inadvertently have its method
changed, thereby causing a VM crash.

However, when a probe is inserted into a method in the debugger, it is
important that the change be reflected in the selected context and any
contexts and closures that are descendants of the home context of the
selected context. This is accomplished by performing the following
procedure whenever a probe is inserted or removed within the debugger.

1. If the home context of the selected context cannot be found, i.e. one
of the block closures between the current context and the home
context is not a full block closure, the operation is terminated.

2. If one of the block closures, between the block containing the text
insertion point and the home context, is not a full block closure, the
operation is terminated. Full closures are required because the home
context of a non-full closure cannot be located.
Application Developer’s Guide 16-27

Debugging Techniques
3. Probes inserted into or removed from a method will only affect the
home context, block closures, and block contexts that are
descendants of the home context. Contexts and closures that are a
result of a different message send, but the same method, will not
have the probe operation performed on them.

Refer to the following section on Debugging tips for assistance with
problems with inserting probes into blocks.

Debugging Tips

Inserting probes into blocks
When a probe is inserted into a method, the compiled method is replaced
with a probed compiled method. If the probe was inserted via the browser
all the blocks are recompiled as full blocks. If the probe was inserted via
the debugger then the block structure is not changed. The importance of
this is that in order to insert a probe in a block via the debugger the block
must be a full block. This also affects the operation of the debugger
Skip to caret command, which operates by inserting a temporary breakpoint
in the method, continuing execution, and then removing the breakpoint
when it is encountered.

If you wish to insert a probe into a block that is not a full block you can
use the debugger Make full blocks menu command, or you can insert a
probe into the method using the browser before the method is executed.
If the method of interest is a method that cannot be halted with a
breakpoint, you can disable it by inserting a conditional breakpoint and
have the conditional expression return false. When the method is
subsequently entered, in the debugger, all its blocks will be full blocks
which will permit temporary breakpoints to be inserted in a block as well
as using skip-to-caret into or out of blocks. The “Implementation Limits”
document, in the doc/TechNotes directory, has a more complete
description of blocks.

Iteration debugging
Frequently, one would like to continue execution in the debugger for the
next iteration for some iterator construct. The Execute Return with Break on
Return and Return with Break Again commands provide this capability.

These two commands are especially useful for debugging loops. You can
set a breakpoint inside a loop, and then use Run with Break on Return to start
execution. It will stop either on the breakpoint inside the loop or, if the
16-28 VisualWorks

Debugging Tips
loop did not iterate, upon return from the method. When stopped inside
the loop, you can use Run with Break Again to do the next iteration, with a
protection against “running away” in case there is no next iteration.

The following steps illustrate how to do this.

1 Insert a temporary breakpoint in the loop code where you want
control to be returned to the debugger, or in some message that is
sent from the loop.

2 Select either the home method context or a context between the
block context and the home context.

3 Issue the Run with Break on Return command.

4 When the process stops inside the loop, perform successive
iterations by issuing the Run with Break Again command. It does not
matter what context is selected when the command is reissued.

5 If you want to reset the guard context, select the desired context and
issue the Run with Break on Return command.

Interrupting a Program

In addition to inserting breakpoint probes, you can manually stop a
Smalltalk program by typing a user interrupt key sequence or by inserting
a halt message in the program.

<Control>-y invokes the user interrupt function. Enter this key sequence
when you want to freeze a program that is looping endlessly, or to capture
its state at a specific observable stage.

<Control>-\ freezes all user processes and opens a process monitor,
allowing you to explore them individually.

Inserting the expression self halt in a method at the location where you
want execution to be interrupted, used to be normal practice. In the
presence of breakpoints, this is seldom necessary, but is an option. When
a self halt is encountered, the Debugger is opened immediately, by-
passing the initial walkback.
Application Developer’s Guide 16-29

Debugging Techniques
Global Probe Management
The Visual Launcher has a Debug menu with commands that give general
control over probes and other debugging features. Commands for the
probe and expression libraries are described in the following subsections.

Enable probes / Disable probes
Sets the global debug variable DebugActive, to true for enable, or false
for disable. Unless changed by the user, all probes use the
expression ^DebugActive as their conditional expression. If Disable
probes is listed, then debugging is active; if Enable probes is listed, then
debugging is inactive.

Remove All Probes...
Clears all probes.

Remove Unused Watch Windows
This command removes unused watch windows from the watch
window dictionary.

Remove Unused Debug Variables
This command removes unused debug variables, those that are not
referred to by any probe expression, from the debug variable pool
dictionary.

Browse Probes
Opens a method list browser on all methods with probes.

Inspect Debug Variables
Opens an inspector on the debug variable pool dictionary.

Probe Library
Provides submenu items to Load a probe library or to Save the
current probes into a library.

Watch Library
Provides submenu items to manage the watch expression library.

Test Library
Provides submenu items to manage the test expression library.

Process Monitor
Opens the Process Monitor.

Probe library
The probe library feature stores collections of probes in external files.
This allows you to use a standard set of probes to employ in debugging a
new image. For information about the file format, read
pdp/LibFrmt.txt.
16-30 VisualWorks

Global Probe Management
The following commands, on the Probes menu in the Visual Launcher, are
used to save and load the probe library files.

Probe Library Load
This command will save all the probes in the image to the specified
file.

Probe Library Save
This command will read the specified file and load the described
probes into the image.

Expression libraries
Two expression libraries are provided to assist in using common probe
expressions. One library is for test expressions (Testlib.st) and the
other is for watch expressions (Watchlib.st). Both libraries are in the
pdp/ directory.

The following commands for managing the libraries are on the Debug
Watch Library and Test Library submenus in the Visual Launcher. Each
command has two submenus which select either the test expression
library or the watch expression library.

Load
This command prompts for the name of a file containing an
expression library. The entries contained in the file will be added to
the entries already in the library.

Save
This command prompts for the name of a file into which to save the
expression library.

Inspect
This command opens an inspector on the library.

Clear
This command clears the expression library of all entries.

Storing CompiledMethods Externally
Occasionally, it becomes necessary to store a CompiledMethod externally.
This can be done in a Store repository, a parcel, or a BOSS file.

Any method that has a probe inserted in it is represented by an instance
of ProbedCompiledMethod. The probed compiled method replaces the
normal compiled method in the method dictionary. Therefore, whenever
an operation to write the method to an external file is performed, one
must insure that the original compiled method is used instead of the
Application Developer’s Guide 16-31

Debugging Techniques
probed compiled method. This package has modified the necessary
methods to insure that the normal operation of the base system will not
write a ProbedCompiledMethod to a file.

The following methods can be used to assist the user in ensuring that a
ProbedCompiledMethod is not written to a file as a result of additional
system enhancements.

CompiledMethod>>isProbed
Returns false.

ProbedCompiledMethod>>isProbed
Returns true.

CompiledMethod>>originalMethod
Returns self.

ProbedCompiledMethod>>originalMethod
Returns the original compiled method.

CompiledMethod>>revert
Does nothing.

ProbedCompiledMethod>>revert
Puts the original compiled method back in the method dictionary.

Behavior>>revertAllProbedMethods
Insures that all the methods in the method dictionary are the original
compiled methods.

Behavior>>revertAllProbedMethodsInTree
Insures that all the methods in the method dictionary of the receiver
and its subclasses are the original compiled methods.

Debugging Within the Virtual Machine
The standard VisualWorks distribution includes several special-purpose
object engines that may be useful when debugging crashes during calls
to external libraries (C or COM, for example) or within the object engine
itself.

During normal development and debugging, we recommend using the
“unstripped” engines, which include symbols for the platform’s debugger.
These engines are named vwPlatformName (e.g., vwlinux86 or
vwnt.exe) to distinguish them from the standard engines.

Object engines with additional platform debugging features are also
available. Refer to Appendix C, “Virtual Machines,” for details.
16-32 VisualWorks

17
Process Control

Overview
Besides control blocks, VisualWorks provides a mechanism for controlling
the flow of execution by separating control into several processes. The
process control mechanism facilitates controlling multiple independent
processes.

UI Processes
Due to process management limitation in the VisualWorks UI architecture
prior to version 7.1, it was not safe to include code that affects the UI in a
process other than the UI process. If a forked process had to affect a UI
process, it was necessary to load the ForkedUI parcel.

Beginning in 7.1, the VisualWorks UI architecture fully supports multiple
processes. The new architecture provides for multiple window managers,
each of which may manage events for either a single or multiple windows.
Managing windows events is described in the GUI Developer’s Guide.
Refer to chapter 3, “Controlling the GUI Programmatically.”

Creating a Process
A Smalltalk process is a light-weight process that is non-preemptive of
other processes of the same or lower priority. It represents a sequence of
actions being performed by the computer. Frequently, two or more such
processes need to be running simultaneously. For example, you might
wish to assemble an index in the background at the same time as your
application user is performing an unrelated activity such as entering data.
Application Developer’s Guide 17-1

Process Control
In that case, the computer’s attention must be divided between the two
activities—in effect, we want to place a fork in the path so the processor
will progress down both paths at the same time.

To split a new process to run alongside an existing one, send the
message fork to a block, creating a new instance of Process. If the
indexing operation mentioned above were capable of being launched
from within the data-entry program, the expression for doing so would
look something like indexingBlock fork, where indexingBlock is a block
containing the launching instructions for the index program.

The fork message triggers execution of the block’s contents just as a value
message would. The difference is that the next instruction following the
fork is executed immediately. The instruction that follows a value has to
wait until the block has finished, which is undesirable in the case of a
background process such as an indexing operation.

A block’s response to fork is to create a new instance of Process, then
notify the Processor to add the new process to its work load. This latter
step is known as scheduling a process.

To create a new process without scheduling it, use newProcess instead of
fork. In effect, the newly created process is immediately suspended,
presumably so it can be restarted by another part of your program at the
appropriate moment. In that way, the creation of the process can be
separated from the scheduling.

To pass one or more arguments to a processing block, use
newProcessWith:, supplying the argument objects in an Array, as in aBlock
newProcessWith: #(2 #NewHire). The number of elements in the Array must
be equal to the number of block arguments.

Scheduling a Process
Processor is the lone instance of class ProcessorScheduler, and is defined
as a shared variable, so it is accessible by all objects. Processor is
responsible for deciding which instruction to execute next, choosing
among the next actions in all of the current processes. It has to be made
aware of a process first—the process has to be scheduled.

The fork message, described above, automatically schedules its newly
created process. To schedule a suspended process (including a process
created with a newProcess message), use resume, as in the expression
aProcess resume.
17-2 VisualWorks

Setting the Priority Level
To temporarily prevent execution of a process’s instructions, use suspend.
Thus, resume and suspend are complementary methods. A resumed
process starts up where it left off when it was suspended.

To unschedule a process permanently, whether it is in resume or suspend
mode, send it the message terminate.

Thus, a process can be in any of four different states: suspended, waiting,
runnable, and running. The first two are very similar, with the distinction
that explicit suspend and resume messages push a suspended process
from or into runnability, while primitive semaphore methods accomplish
the same for a waiting process. A runnable process is ready to go as
soon as the ProcessorScheduler gives it permission. A running process is
the one that the processor is working on.

Setting the Priority Level
The Processor has a great deal in common with a juggler who spins plates
on the tops of those long, wobbly poles and then scurries from one to
another, acutely attentive. Like the juggler, who services whichever plate
is wobbling the most and spinning the least, Processor lets its processes
set their own priority levels. Otherwise, it handles them in the order in
which they were scheduled.

There are 100 possible priority levels. Eight of the levels are commonly
used and can be accessed by name in code references. The table below
describes the purpose of these priority levels.

Priority Levels

Priority
number

Method Purpose

100 timingPriority Processes that are dependent
on real time

98 highIOPriority Critical I/O processes, such as
network input handling

90 lowIOPriority Normal input/output activity,
such as keyboard input

70 userInterruptPriority High-priority user interaction;
such a process pre-empts
window management, so it
should be of limited duration

50 userSchedulingPriority Normal user interaction

30 userBackgroundPriority Background user processes
Application Developer’s Guide 17-3

Process Control
A newly created process inherits the priority level of the process that
created it.

To assign a new priority to a process, use an expression of the form
aProcess priority: (Processor userInterruptPriority). Notice that the priority:
method expects an integer argument, but the sender asks the Processor
for the integer by name.

You can also specify the priority level at process creation time, using
forkAt: with the requisite priority level integer.

The Processor gives control to the process having the highest priority.
When the highest priority is held by multiple processes, the active
process can be moved to the back of the line with the expression
Processor yield—otherwise it will run until it is suspended or terminated
before giving up the processor. A process that is yielded will regain
control before a process of lower priority.

Synchronizing Processes
Sometimes one process has to wait for another process to mature before
it can take a particular action. For example, a printer might be tied up for
the next 20 minutes printing someone else’s job. Does that mean your
printing job should just tie up the Processor and refuse to yield until the
printer is available?

Semaphore
The Semaphore class provides a simple mechanism for resolving such
problems. In the printer example, an instance of Semaphore would be
created to keep an eye on the printer:

printerSemaphore := Semaphore new.
The process that funnels output to the printer, which we’ll call
printerProcess, sends the message printerSemaphore signal each time it
becomes available for more input. The waiting process, which has been
suspended so it won’t lock up the processor, is then resumed.

10 systemBackgroundPriority Background system processes

1 systemRockBottomPriority The lowest possible priority

Priority Levels (Continued)

Priority
number

Method Purpose
17-4 VisualWorks

Synchronizing Processes
How did the waiting process get suspended in the first place? Instead of
just sending its contents and assuming it will be caught by printerProcess,
the waiting process sends the message printerSemaphore wait. Because
printerSemaphore has not yet received a signal message from
printerProcess, the waiting process was suspended. If the printerProcess
had already sent a signal message that was not consumed by another
process, printerSemaphore would have done nothing, permitting the waiting
process to send its data.

If a Semaphore receives a wait message from two or more processes, it
resumes only one process for each signal message it receives from the
process it is monitoring. A Semaphore resumes the oldest process of the
highest priority.

The three steps involved in using a semaphore

A Semaphore is like a guard who permits one person to approach the
Queen at a time. Each time the Queen finishes an audience, she looks
up at the guard and says signal. The guard then lets the next courtier in.
(To add to the indignity, a courtier will not receive a place in line unless he
or she gives the password to the guard: wait.)

job3

job2

job1

semaphore semaphore semaphore

job3

job2

job1

job3

job2

job1

print
queue

print
queue

print
queue

wait

raiseSignal

resume
Application Developer’s Guide 17-5

Process Control
Sharing Data Between Processes
When an application needs to match the output of one process with the
input for another process, care must be taken to make sure the transfer of
data goes as planned. The SharedQueue class provides a means of
coordinating this transfer.

To create a SharedQueue, use new or new: with an integer argument
specifying the number of desired slots.

To store an object in the SharedQueue, send it a nextPut: message with the
data structure as argument. If another process has been waiting for an
element to be added to the queue, which it indicated by sending next to
the SharedQueue, that process will be resumed.

Using a Delay
The Delay class answers the common need for a means of postponing a
process for a specific amount of time. To create a Delay, use forSeconds:,
as in Delay forSeconds: 30. Or use forMilliseconds: if you require a finer
quantification of time.

To create a Delay that continues until the system’s millisecond counter
reaches a particular value, use untilMilliseconds:. To find out the current
value of the counter, use the expression Delay millisecondClockValue.

Merely creating a Delay has no impact on the current process. The
process must send the wait message to the instance of Delay. Thus, the
following expression in a method would suspend the current process for
30 seconds: (Delay forSeconds: 30) wait.

Delay and Time Change Interaction
It has been noted, particularly on Windows systems, that changing the
time clock adversely affects applications that are in a Delay. The results
vary, but can be as severe as an image hang or crash.

The problem occurs if the system gets out of synchronization with
network time, so that a large correction is necessary. The problem can be
minimized by configuring windows to run a full NTP server, which
changes time gradually, rather than the default SNTP server that corrects
the time all at once.

Arbitrary changes to the clock will continue to cause problems with
running applications in a Delay.
17-6 VisualWorks

18
Refactoring

Overview
Developing reusable software typically involves many design iterations.
Each iteration may introduce new requirements that change or extend the
original design. Simultaneously, the excesses of the original design may
be corrected or improved through deeper architectural changes.

This iterative process of re-architecting a design may be described as
code refactoring. Refactoring is a common development strategy that has
been formalized into a set of practices for reorganizing code while
preserving its behavior.

Whereas re-working or re-writing code may involve dramatic changes in
functionality, refactoring is an intermediate step that generally doesn’t
disturb the behavior of an application. Refactoring can help when tackling
reusability problems, but its primary goals are to clarify abstractions, to
simplify and thereby improve the code design.

The VisualWorks system browser provides full functionality for code
refactoring.

This chapter provides an overview of the individual refactorings, and
shows you how to perform a few of the more common design changes
using code refactorings.

For a more in-depth discussion of the methodology of refactoring, you
may consult a number of articles on the Web and several books currently
in print. In particular, we recommend:

Refactoring: improving the design of existing code
By Martin Fowler
Contributions by Kent Beck, John Brant, William Opdyke, and Don Roberts.
Reading, MA : Addison-Wesley, 1999
Application Developer’s Guide 18-1

Refactoring
ISBN: 0201485672.
The VisualWorks browser provides over two-dozen distinct refactoring
operations for manipulating classes, methods, and individual statements
within a method. Refactoring operations are thus class-, method-, or
statement-oriented.

Also, visit the Camp Smalltalk page at:

http://wiki.cs.uiuc.edu/CampSmalltalk/Custom+Refactorings+and+
Rewrite+Editor+Usability

Class-oriented refactorings
These operate on classes, instance variables, and class variables
and are available on the browser’s Class menu (for details, refer to
“Refactoring Classes” on page 18-9).

Method-oriented refactorings
These operate on methods, and are available on the Method menu
(for details, refer to “Refactoring Methods” on page 18-11).

Class-oriented Refactorings

Create a Subclass

Rename a Class and its References

Safely Remove a Class

Change a Class to a Sibling

Add a Variable

Rename a Variable and its References

Remove a Variable

Move a Variable to/from a Subclass

Create Variable Accessors

Make a Variable Abstract/Concrete

Method-oriented Refactorings

Move a Definition to Another Component

Rename a Method and its References

Safely Remove a Method

Add a Parameter to a Method

Inline all Sends to Self

Move a Method to/from a Superclass
18-2 VisualWorks

http://wiki.cs.uiuc.edu/CampSmalltalk/Custom+Refactorings+and+Rewrite+Editor+Usability

Overview
Statement-oriented refactorings
These operate on individual statements in a method and are
available through the context sensitive menus in the code tool
(for details, refer to “Refactoring Portions of a Method” on
page 18-12).

Statement-oriented Refactorings

Extract a Method

Inline a Temporary Variable

Convert a Temporary to an Instance Variable

Remove a Parameter

Inline a Parameter

Rename a Temporary Variable

Move a Temporary to an Inner Scope

Extract to a Temporary

Inline a Message
Application Developer’s Guide 18-3

Refactoring
Refactoring for Abstraction
It is often desirable to change the design of an application to use abstract
and concrete classes. This requirement may emerge as the application
evolves, and it is then necessary to create a new, abstract class.

Making this design change involves inserting a new superclass into an
existing hierarchy, then splitting the functionality of the existing concrete
class and the newly-created superclass.

Several refactorings may be used to simplify this type of design change.

Conceptually, there are three steps involved:

1. Create an abstract superclass for the existing concrete class(es).

2. Find all instance variables common to the concrete subclasses, and
move them into the new abstract superclass.

3. Find all methods or code fragments that are common to the concrete
subclasses, and move them into the new superclass.

Creating an Abstract Class
Let’s consider the following example: a Web application for retailers might
provide a framework for different types of shopping applications available
at a single site.

Suppose that a first retail application is developed to purchase items from
a catalog. The class that represents items in a shopping cart, might look
like this:

WebAppNamespace defineClass: #CatalogPurchase
superclass: #{Core.Object}
...
instanceVariableNames: 'item catalog'
...

The business logic for this class is defined as a method:

CatalogPurchase>>purchaseItemFor: aCustomer
| price |
price := catalog costForItem: item.
item isAvailable

ifTrue: [aCustomer chargeForItem: item cost: price]
....
18-4 VisualWorks

Refactoring for Abstraction
Let’s further suppose that another application is developed for purchasing
items that have been discounted for clearance. The business logic for this
application is slightly different, so a new class is defined for purchases:

WebAppNamespace defineClass: #ClearancePurchase
superclass: #{Core.Object}
...
instanceVariableNames: 'item catalog discount'
...

Class ClearancePurchase handles purchases that can be discounted, so it
defines a method that looks like this:

ClearancePurchase>>purchaseItemFor: aCustomer
| price discountedPrice |
price := catalog costForItem: item.
discountedPrice := price - (price * discount).
item isAvailable

ifTrue: [aCustomer chargeForItem: item cost: discountedPrice]
....

The design of these two applications can be simplified by using an
abstract class named Purchase that CatalogPurchase and ClearancePurchase
both inherit from.

To simplify the design by refactoring the code:

1 Open the browser on the superclass of CatalogPurchase (in this case:
Core.Object). Select Class Refactor Create Subclass.... A dialog
prompts for the name for the new subclass.

2 Enter the name of the new abstract class: Purchase. Click OK.

3 A dialog with a list view prompts for the subclasses of the new
abstract class. Scroll down the list and select both CatalogPurchase
and ClearancePurchase. Click OK.

The new class Purchase is created and inserted in the hierarchy.

Moving Instance Variables to a Superclass
In the example described above, the instance variables item and catalog
are duplicated in two classes. We can eliminate this duplication by
moving these variables into a shared superclass:

1 Open the browser on the class definition for CatalogPurchase.

2 Highlight the instance variable item, and then select
Instance Variables Push Up... from the Class menu.

3 Repeat step 2 for the variable catalog.
Application Developer’s Guide 18-5

Refactoring
Since the same instance variables are defined by the sibling class
ClearancePurchase, this refactoring operation also removes them from the
sibling class.

Consolidating Common Code
In the example framework, the method purchaseItemFor: is similar in both
classes CatalogPurchase and ClearancePurchase. We can make a further
refactoring to consolidate this code in a single method in the Purchase
superclass.

To separate the common code:

1 Open a browser on the method CatalogPurchase>>purchaseItemFor:,
and highlight the lines of code that are unique:

| price |
price := catalog costForItem: item.

2 Select Refactor Extract Method from the <Operate> menu.

a A dialog prompts to ask whether you want to extract the
assignment of price. Answer No.

3 A new dialog appears, prompting for the name of a new method to
contain the extracted code. Enter: computePrice.

The refactoring operation creates a new method using the extracted
code:

computePrice
^catalog costForItem: item

4 Select the method ClearancePurchase>>purchaseItemFor: and highlight
the unique code:

| price discountedPrice |
price := catalog costForItem: item.
discountedPrice := price - (price * discount).

5 Select Extract Method from the <Operate> menu.

a A dialog prompts to ask whether you want to extract the
assignment of price. Answer No.

6 A new dialog appears, prompting for the name of a new method to
contain the extracted code. Enter: computePrice.
18-6 VisualWorks

Refactoring for Abstraction
The Extract Method refactoring operation creates a new method:

computePrice
| price |
price := catalog costForItem: item.
^price - (price * discount)

Note that the method ClearancePurchase>>purchaseItemFor: is now
functionally identical to the same method in class CatalogPurchase.
Accordingly, we can consolidate both into a single method in the common
superclass.

To move the method purchaseItemFor: to class Purchase:

1 Examine CatalogPurchase>>purchaseItemFor: in the browser and select
Refactor Push Up from the Method menu.

2 A dialog prompts to ask whether you want to remove duplicate
subclass methods. Answer Yes.

The method purchaseItemFor: is moved to class Purchase, thus eliminating
all duplicate code in its subclasses.

Inlining Methods
It is often desirable or necessary to inline the functionality contained in a
method by moving it to a different, more appropriate, class.

For example, suppose an application class defines the following method:

copyDictionary: aDictionary
| newDictionary |
newDictionary := Dictionary new: aDictionary size.
aDictionary

keysAndValuesDo: [:key :value | newDictionary at: key put: value].
^newDictionary

Since this method works entirely with its parameter, aDictionary, it would
simplify the overall design of the application if this functionality were
relocated in class Dictionary, i.e.:

Dictionary>>copyWithAssociations
| newDictionary |
newDictionary := Dictionary new: self size.
self keysAndValuesDo:

[:key :value | newDictionary at: key put: value].
^newDictionary

By placing the functionality in class Dictionary, we can replace indirect
sends such as self copyDictionary: someDictionary with direct, inline sends
to the Dictionary object.
Application Developer’s Guide 18-7

Refactoring
To apply this refactoring:

1 Open a browser on the method copyDictionary:, and select
Move to Component... from the Method menu.

2 A dialog prompts to ask whether you want to move the method using
an argument or instance variables. Select the argument to the
method, aDictionary.

3 A dialog prompts for the class(es) in which you would like to define
the new method. Select Core.Dictionary.

4 A dialog prompts to ask for the name of the new method. Enter:
copyDictionary and click OK.

When the refactoring is applied, the original copyDictionary: method is
changed to use the new method, i.e.:

copyDictionary: aDictionary
^aDictionary copyDictionary

Since the new method essentially works only to forward the send, we can
inline all of its senders, making them bypass the forwarder.

To inline sends to the forwarder and then remove it:

1 Select Refactor Inline All Self Sends from the Method menu.

2 A dialog prompts to ask whether you want to inline the parameters.
Answer Yes.

3 Select Remove... from the Method menu.
18-8 VisualWorks

Individual Refactorings
Individual Refactorings
The VisualWorks browser provides over two-dozen distinct refactoring
operations for manipulating classes, methods, and individual statements
within a method.

Refactoring Classes

Creating a Subclass
To insert a new class into the middle of an existing hierarchy, use the
browser’s navigator to choose the superclass for the new class and then
select Class Create Subclass.... A dialog prompts for the name of the new
subclass(es).

This refactoring operation may be used to insert a new class between an
abstract superclass and all of its subclasses.

Renaming a Class and Its References
To rename a class and every reference to it in the image, select
Class Rename....

This refactoring operation checks for symbols with the same name as the
class, and these, too, are renamed (this catches the use of expressions
like Smalltalk at: ...).

Note that in the case of class names constructed by sending the asSymbol
message, the strings containing the class name will not be changed.

Safely Removing a Class
To remove a class, first checking for any references to it, select
Class Safe Remove....

Note that if the class is referenced using constructed symbols or Smalltalk
at: ..., this refactoring may remove the class even though code still uses it.

Changing a Class to a Sibling
To insert a new superclass into an existing hierarchy, use the browser’s
navigator to choose the subclass for the new class and then select
Class Refactor Convert to Sibling.

When requested, enter the name of the class to be created. If the
selected class has subclasses, a class selection dialog opens, for you to
select classes to make as siblings of the selected class, under the new
superclass. The new class will be a superclass of the class selected in
the browser’s navigator, and the other selected classes are moved to be
siblings of the selected class under the new class. It also pushes up
Application Developer’s Guide 18-9

Refactoring
common methods and variables to the new superclass. Finally, for
methods that are not common, it writes a self subclassResponsibility
method.

Adding a Variable
To add an instance or class variable to the currently selected class, select
Instance Variables Add... or Class Variables Add... from the Class menu.

This refactoring operation checks that the new variable’s name doesn’t
already exist in the scope of the definition.

Renaming a Variable and its References
To rename an instance or class variable and all references to it, select
Instance Variables Rename... or Class Variables Rename... from the Class
menu.

Any methods using instVarAt: may be broken by this refactoring operation,
since the renamed variable is always added to the end of the list of
variables.

Removing a Variable
To remove an instance or class variable only if it is not referenced by any
code in the image, select Instance Variables Remove... or
Class Variables Remove... from the Class menu.

Moving a Variable from or to a Subclass
When a variable definition is defined by a class but only used by one of its
subclasses, you may use Class Instance Variables Push Down... or
Class Class Variables Push Down... to move the variable to only those
subclasses that use it.

If no subclass has a reference to the variable, it is simply removed.

This refactoring operation is only allowed if the selected class contains no
references to the variable. For class variables, it can only move the
variable down into one subclass; otherwise, it would be necessary to split
the one class variable into two and possibly break the code.

Note also that if there are any instances or the class or its subclasses
exist, these variables will become nil.

Conversely, to move a variable definition from the currently selected class
into its superclass, you may use Class Instance Variables Push Up... or
Class Class Variables Push Up....

Any methods using instVarAt: may be broken by this refactoring operation.
18-10 VisualWorks

Individual Refactorings
Creating Variable Accessors
To create accessor methods for a variable, select
Instance Variables Create Accessors... or Class Variables Create Accessors...
from the Class menu.

The new accessor methods are named with the name of the variable. If a
method with the chosen name already exists, the refactoring operation
adds a number to the message selector until it no longer conflicts.

Abstracting a Variable
To create accessor methods for a variable and then convert all direct
references to use the new accessor methods, select
Instance Variables Abstract... or Class Variables Abstract... from the Class
menu.

This operation uses the Create Accessors... refactoring operation.

When detecting accessors, this operation scans for methods that simply
assign a value to the variable in question, regardless of the method’s
name. For this reason, coding techniques such as lazy initialization are
not discovered, and new accessor methods are created.

Making a Variable Concrete
To convert all variable accessor sends to direct variable references,
select Instance Variables Protect... or Class Variables Protect... from the
Class menu.

If the accessor method is no longer used then it will be removed.

Refactoring Methods

Moving a Definition to Another Component
To move a method, an argument or an instance variable to another
component, select Move to Component... from the Method menu.

This operation can be used to move the body of a method to another
component, leaving a forwarder and thereby not changing the external
interface of the class that contains the original method.

Renaming a Method and its References
To rename all implementors of a method, all senders, and all symbols
references, select Rename... from the Method menu.

In addition to strict renaming, this refactoring operation also enables you
to rearrange the method’s parameters. However, when rearranging the
parameters, any symbols that are performed cannot be permuted.
Application Developer’s Guide 18-11

Refactoring
Safely Removing a Method
To remove a method, checking for senders and symbols that reference
the method’s name, select Safe Remove from the Method menu.

The method is only removed if there are no unresolved references to it.
This operation also removes the method if it is equivalent to the
superclass' definition.

Adding a Parameter to a Method
To add a default parameter to all implementors of the method, select
Refactor Add Parameter... from the Method menu.

Inlining all Sends to Self
To inline all senders within the class of the method,
Refactor Inline All Self Sends... from the Method menu.

If there are no remaining senders after all inlines have been performed,
this operation also removes the method.

Moving a Method to or from a Superclass
Select Refactor Push Up from the Method menu to move a method up into
the superclass. If the superclass is abstract and already defines the
method, then the superclass' method is copied down into the other
subclasses (assuming they don't already define the method).

To move a method from the currently selected class down into all
subclasses that don't implement it, select Refactor Push Down from the
Method menu.

This operation is only performed if the class is abstract, and the browser
checks for this by scanning the class for methods which send
subclassResponsibility, or for no references to the class.

Refactoring Portions of a Method

Extracting a Method
To extract a portion of code as a separate method, highlight the code
fragment and select Refactor Extract Method from the <Operate> menu.

This refactoring operation determines which temporary variables are
needed in the new method, and prompts for a selector that takes
arguments.
18-12 VisualWorks

Individual Refactorings
Inlining a Temporary Variable
To remove the assignment of a variable, replacing all references to the
variable with the right hand side of the assignment, highlight the code
fragment that contains the assignment and select
Refactor Inline Temporary from the <Operate> menu.

Converting a Temporary into an Instance Variable
To convert a temporary into an instance variable, highlight the temporary
variable name and select Refactor Convert to Instance Variable from the
<Operate> menu.

This operation is useful when eliminating parameters to methods that are
only used internally within a class.

Note: this refactoring should not be used on methods that are recursive.

Removing a Parameter
To remove an unused parameter from all implementors of the method,
and from all message sends, highlight the parameter and select
Refactor Remove Parameter from the <Operate> menu.

Inlining a Parameter
To remove a parameter from the method, adding a corresponding
assignment at the beginning of the method, highlight the parameter and
select Refactor Inline Parameter from the <Operate> menu.

This operation is only performed if all senders of the method have the
same value for the parameter.

Renaming a Temporary
To rename a temporary variable in the body of the method, highlight it
and select Refactor Rename... from the <Operate> menu.

Moving a Temporary to an Inner Scope
To move a temporary variable definition into the tightest scope that
contains both the variable assignment and references, highlight it and
select Refactor Move to Inner Scope from the <Operate> menu.

This operation is useful for improving code performance by converting
unoptimized blocks into optimized ones.

Extracting to a Temporary
To extract a message into an assignment statement, highlight the
statement and select Refactor Extract to Temporary from the <Operate>
menu.
Application Developer’s Guide 18-13

Refactoring
For example, in an expression such as:

self someMessage anotherMessage foo: 1 bar: 2
To code self someMessage may be extracted to a temporary named temp.
The result of the operation looks like:

| temp |
temp := self someMessage.
temp anotherMessage foo: 1 bar: 2

Inlining a Message
To inline a message send, highlight the statement and select
Refactor Inline Method from the <Operate> menu.

If there are multiple implementors of the message, this operation prompts
for the implementation that should be inlined.
18-14 VisualWorks

19
Weak Reference and Finalization

Overview
In early versions of Smalltalk, all object pointers (OOPs) were treated as
strong pointers. A strong pointer is a reference that cannot be broken by
any of the virtual machine’s (VM) garbage collection mechanisms. Thus,
if any object is reachable from the system roots via a chain of strong
references, that object is exempt from being reclaimed as garbage by the
VM.

In most cases, the fact that all references were strong was desirable,
because most objects are not prepared to have the objects to which they
refer suddenly disappear with the rest of the garbage. In some
circumstances, however, strong references caused objects to live longer
than their designers intended.

Suppose, for example, you want to profile the performance characteristics
of an application. You might place some of the objects created by that
application into an array so you could tabulate statistics on them.
Unfortunately, the mere fact that you referenced these objects from such
an array guaranteed that the objects would not be reclaimed as garbage
even if the application code ceased to reference them.

This unintended side effect can be avoided by using the class WeakArray.
A related facilities, ephemerons, provides additional options for weakly
holding keys, allowing garbage collection.
Application Developer’s Guide 19-1

Weak Reference and Finalization
Weak Arrays
A WeakArray is similar to an ordinary Array, the prime difference being that
a WeakArray references its elements weakly.

When an element of a WeakArray is no longer referenced by any object
other than another WeakArray, then that element is eligible for reclamation
by the garbage collector. During reclamation, the reference to that
element is removed from the WeakArray and replaced by zero.

Only the indexed variables of the WeakArray class are weak references.
The named instance variable, dependents, is strong. Further, this is the
only class whose references can be weak. Even subclasses of this class
can contain only strong references.

It is possible, however, to add named instance variables to this class, if
you are willing to redefine the class. As stated above, such variables will
be strong. The fact that this is the only class that can have weak
references may seem to be a substantial restriction, but you can easily
construct more complicated objects with a mix of strong and weak
references by using a WeakArray as a subcomponent.

Finalization
WeakArray also provides the system with a way of performing a final set of
actions when an object expires. For example, an application might need
to release some external resource when the objects using that resource
have all been garbage collected. Finalization provides the system the
ability to notify the application that the objects using the external resource
have all expired, thus letting the application know that it is safe to loosen
its hold on the external resource.

The mechanism involves sending a changed message to any WeakArray
that has had one of its elements zeroed out as described above. This
notification is then propagated to each of the dependents of that
WeakArray, allowing them to take the actions necessitated by the death of
the WeakArray’s element.

Of course, any such dependent will need to store whatever information it
needs prior to receiving such notification, because the object that was
once an element of the WeakArray will already have been destroyed. The
dependent must also ensure that it can subsequently locate that
information based solely on the dead element’s index in the WeakArray
(the dependent can find the index of a WeakArray’s dead element by
invoking the indexOf:replaceWith:startingAt:stoppingAt: primitive).
19-2 VisualWorks

Finalization
To be more exact, the dependents of a given WeakArray are notified that
one or more of its elements have expired as follows:

• When an element of a WeakArray expires, the VM zeros out the slot in
the WeakArray that was previously occupied by the now dead object.

• In addition, the VM places this WeakArray on a finalization queue that
is managed by the VM, and then signals the FinalizationSemaphore.

• Signalling the FinalizationSemaphore causes the FinalizationProcess
(which is generally waiting on the FinalizationSemaphore) to resume,
and the FinalizationProcess then sends a changed message to every
WeakArray on the finalization queue (it uses a primitive to fetch the
WeakArrays that are on the finalization queue).

• Eventually, every dependent of each WeakArray that suffered a loss
will receive an update message.

For example, consider an application that has a set of objects that act as
proxies for external resources. The application wishes to free these
external resources when the proxies are no longer in use. Further,
assume that the proxies know which external resource they are
associated with by virtue of a proxy instance variable that contains an
external handle.

The application could arrange for the external resources to be freed
automatically by simply placing the proxy objects in a WeakArray and
copying their associated external handles into the corresponding
locations of a strong Array. Then, when one or more of the proxy objects
was no longer in use, the memory manager would reclaim the proxy
object, zero out its location in the WeakArray, place the WeakArray on the
finalization queue, and signal the FinalizationSemaphore, eventually
resulting in an update message being sent to the application, assuming
that the application had registered one of its objects as a dependent of
the WeakArray. The application could then identify which proxy objects
actually expired and free their associated external resources as follows:

weakArrayOfProxies
forAllDeadIndicesDo:

[:deadIndex | externalConnection
freeResource: (externalHandleArray at: deadIndex)]

There is alternative protocol to make nil the value at each dead index of
the WeakArray as it is uncovered (nilAllCorpsesAndDo:) as well as for
replacing the value with an arbitrary object
(forAllDeadIndicesDo:replacingCorpsesWith:). Because these methods use
Application Developer’s Guide 19-3

Weak Reference and Finalization
the indexOf:replaceWith:startingAt:stoppingAt: primitive, which finds a given
element and replaces it atomically, they can be used to prevent another
process from mistakenly duplicating the finalization actions.

This scheme requires some extra work on the part of the application,
because it forces the application to save a copy of the external handles in
a parallel array. However, it completely avoids the problems that can
occur if the proxy object that we are finalizing is resurrected, either by the
code performing the finalization or by some other code that happens to
get a handle on the proxy object before it is actually destroyed by the VM
and after the finalization action has been completed.

Variable Values Description

Instance variable for WeakArray:

dependents nil, Object,
dependentsCollection

Objects that must receive
notification when one of the
WeakArray’s elements dies.

Class variables for WeakArray:

FinalizationProcess Process The process responsible for
sending a changed message to any
WeakArray that has died

FinalizationSemaphore Semaphore The semaphore signalled by the OE
whenever a WeakArray has died

QueueOverflowSigna Signal The signal that indicates that the
OE’s finalization queue has
overflowed. It may be appropriate in
this event to send a changed
message to every WeakArray
19-4 VisualWorks

WeakDictionary
WeakDictionary
A WeakDictionary is a dictionary whose valueArray is a WeakArray. Such a
dictionary is fully protocol-compatible with IdentityDictionary. The lookup is
done using == rather than =.

For finalization, WeakDictionary also stores an array of executors for its
elements. The default executor for each element is a shallow copy of the
element. An element’s executor is responsible for finalization after the
element has been reclaimed. An element with special finalization
requirements should implement the finalize message, which is sent to the
executor to actually perform the finalization. The default implementation
of finalize in the Object class performs no finalization.

HandleRegistry
A HandleRegistry is a WeakDictionary whose values all respond to a key
message. The elements of a HandleRegistry are registered using their
response to the key message as the dictionary key and using the element
as the value. Access functions are all implemented as critical regions so
that multiple processes can operate on an instance at the same time.

Finalization Example
To illustrate the finalization mechanism outlined above, we provide an
example in the form of code for an Executor class. An Executor is an object
that executes the last will and testament of a familyMember. To try it, enter
the code into the system, then evaluate the expression in the class
comment.

Variable Value Description

Instance variable for WeakDictionary:

executors Array The array in which the
shallow copies of the
values are stored

Variable Value Description

Instance variable for HandleRegistry:

accessLock Semaphore Mutex semaphore
protecting accesses
Application Developer’s Guide 19-5

Weak Reference and Finalization
Class definition:

Smalltalk.Examples defineClass: #Executor
superclass: #{Smalltalk.Object}
indexedType: #none
private: false
instanceVariableNames: 'familyMembers familyWills'
classInstanceVariableNames: ''
imports: ''
category: 'Finalization-Example'

Class comment:

The Executor class is a simple example of how finalization can be
achieved by using WeakArrays. After entering the code into the
system, evaluate the expression: “Executor example inspect”.

Instance Variables:
familyMembers

<WeakArray> containing the name string of each family member.
familyWills

<Array> of blocks that will print the last will and testament of the
corresponding person in the familyMembers array on the Transcript.

Instance methods for finalization:

readLastWillAndTestamentOfTheDeparted
"Read the will of each family member who has died."

familyMembers nilAllCorpsesAndDo: [:deadIndex |
(familyWills at: deadIndex) value]

Instance methods for updating:

update: anAspectSymbol with: aParameter from: aSender
"Finalize all finalizable entries of aSender."

(aSender == familyMembers and:
[anAspectSymbol = #ElementExpired])
ifTrue: [self readLastWillAndTestamentOfTheDeparted]
ifFalse: [^self]

Instance methods for accessing:

familyMembers: aWeakArray

familyMembers removeDependent: self.
familyMembers := aWeakArray.
familyMembers addDependent: self

familyWills: anArray
familyWills := anArray
19-6 VisualWorks

Ephemerons
Class methods for example:

example
"Executor example inspect"

| family wills familyLawyer |
family := WeakArray

with: 'cain' copy
with: 'abel' copy
with: 'eve' copy
with: 'adam' copy.

wills := Array
with: [Transcript show:

'Cain has died. Bequeaths his assets to the church.'; cr]
with: [Transcript show:

'Abel has died. Killed by Cain for his assets.'; cr]
with: [Transcript show:

'Eve has died. Bequeaths her assets to Abel.'; cr]
with: [Transcript show:

'Adam has died. Bequeaths his assets to Eve.'; cr].
familyLawyer := Executor new.
familyLawyer familyWills: wills.
familyLawyer familyMembers: family.
^familyLawyer

Ephemerons
Ephemerons are special forms of Association that are used to attach
properties to objects without preventing those objects from being garbage
collected. They are like an Association whose key is weak, but they are
more sophisticated in that references back to the key from the transitive
closure of an ephemeron's other fields do not contribute to the key being
counted as “alive” for garbage collection purposes.

Both the DependentsFields dictionary, which associates dependents with
instances that don't inherit from Model, and the EventHandlers dictionary,
which associates event handlers with all objects, are implemented to use
EphemeronDictionary to use ephemerons. The result is that adding
dependents or event handlers to an object does prevent that object from
being garbage collected, and means that application code does not need
to handle that clean-up itself.

Ephemerons also support instance-based finalization, in that simply
attaching an ephemeron to an object is a way of arranging that the
ephemeron will be notified when there exist no other references to an
object than from ephemerons.
Application Developer’s Guide 19-7

Weak Reference and Finalization
19-8 VisualWorks

20
Creating an Application without a GUI

Overview
Applications that rely on direct user interaction typically provide graphical
user interfaces for collecting input and displaying output. You can also
write batch or server applications that, by their nature, do not rely on
direct user interaction, and may run on computers that have no console
or windowing system. Such applications execute in headless
VisualWorks images—that is, images that run with the display system
deactivated (in headless mode).

This chapter describes the general steps for creating a headless image
and executing an application in it.

Key Concepts
The headlessness of an image is controlled by the sole instance of the
class HeadlessImage. This instance (HeadlessImage default) enables you to
create new images by saving them either in headless mode (with the
display system deactivated) or in “headful” mode (with an activated
display system). You typically develop your application in a headful
image, test it in a headless image, and then debug it in a headful image
that is created from the headless image. The HeadlessImage instance
records the image’s mode and can be queried for it.

The basic way to provide input to a headless image is through a startup
file. A startup file is a file that contains Smalltalk expressions in file-in
format. When a headless image is started, it reads the file and evaluates
the expressions. You typically use a startup file to start your application in
the headless image. Applications can also accept input through sockets,
file I/O, TTY interaction, and so on.
Application Developer’s Guide 20-1

Creating an Application without a GUI
By default, output that would normally be displayed in the System
Transcript is saved to disk in a transcript file.

Setting Up a Headless Image
To prepare to execute an application in headless mode, you start with a
standard VisualWorks image, configure it, and then create a headless
image from it, as described in the following steps:

1 In a standard VisualWorks image, load headless.pcl. This
introduces the HeadlessImage class plus several other classes in the
category Headless-Support.

2 Write your application so that it can run in headless mode (see “Tips
for Programming a Headless Application” on page 20-5). Note that
the application can send messages to the HeadlessImage instance (for
example, to test whether it is running in a headless or headful image).

3 Decide how you will want to start your application and prepare
accordingly (see “Techniques for Starting a Headless Application” on
page 20-6). You may want to file out your application into a startup
file, or make certain modifications to the system. A basic technique is
to leave the application in the image and create a startup file that
contains a line such as MyApplication open!.

4 Decide whether you want the headless image to file in a startup file,
and if so, whether to use the default startup filename
(headless-startup.st).

• If you do not want to use a startup file, evaluate the following
expression:

HeadlessImage default startupFilename: nil
If you want to use a startup file with a nondefault name (for
example, myStartUp.st), evaluate an expression such as the
following:

HeadlessImage default startupFilename: 'myStartUp.st'
The default name is returned by the defaultStartupFilename class
method.

5 Decide whether you want the headless image to append transcript
messages to the file headless-transcript.log:

• If you do not want to use any transcript file, evaluate the following
expression:
20-2 VisualWorks

Running an Application in Headless Mode
HeadlessImage default transcriptFilename: nil
• If you want to use a transcript file with a nondefault name (for

example, myTranscript.tr), evaluate an expression such as
the following:

HeadlessImage default transcriptFilename: 'myTranscript.tr'
The default name is returned by the defaultTranscriptFilename
class method.

6 Create a headless image by selecting File Save Headless As... or by
evaluating an expression such as the following:

HeadlessImage default saveHeadless: 'headlessImageName'
This creates a new image named headlessImageName.im in which
HeadlessImage’s state is set to headless. Creating a headless image has
no effect on the current image.

Running an Application in Headless Mode
To run an application in headless mode, start the headless image as you
would normally start a standard VisualWorks image. The difference is in
the virtual machine executable you run, or the command line options you
use.

Starting on Unix/Linux
Most of the Unix platforms have a headless engine. These engines
exclude the GUI and window management primitives, dynamically
loading them as required from a shared library. (The all-in-one, “headful”
engines are still provided.)

The headless engines are named in the vw<platform> format, as
usual. The GUI inclusive engines are named vw<platform>gui. To
start a headless image using a headless vm, simply invoke the virtual
machine with the image as usual, for example:

vwlinux86 myHeadless.im

plus any necessary options.

Starting on Windows
On Windows platforms, you will want to suppress the splash screen and
sound, however, so use the -noherald command line option:

visual -noherald myImage.im
Application Developer’s Guide 20-3

Creating an Application without a GUI
On Windows systems, there are two console engines available:
vwconsole.exe and vwntconsole.exe. Use the appropriate engine
to launch the headless image instead of visual.exe.

When an Image Starts
When a standard VisualWorks image starts, ObjectMemory installs objects
that are fundamental to the display, thereby hooking the image up to the
host windowing system. ObjectMemory also broadcasts
#returnFromSnapshot to its various dependents, which respond with their
own startup actions.

When a headless image starts, the ObjectMemory refrains from hooking it
up to the underlying windowing system and does not install the objects
that are associated with the display. Consequently, those objects are not
available for referencing later.

The HeadlessImage is registered as a dependent of ObjectMemory. Upon
receiving #returnFromSnapshot, the HeadlessImage instance checks its state
to verify that the image is headless and replaces the normal Transcript (a
display-oriented object of class TextCollector) with a file-based surrogate
of class FileTextCollector or NullTextCollector if a nil transcript filename is
provided. The normal Transcript is retained (so it can be reinstalled in the
image if it is saved as headful), but is not accessible while headless.

Finally, the HeadlessImage instance checks whether a startup file has been
specified; if so, the start-up file is filed in and the Smalltalk expressions in
it are evaluated. Typically, these expressions start up the headless
application.

If an Application Attempts to Access a Display
If an application that is running in a headless image attempts to access
the non-existent display, the attempt is trapped, and a HeadlessImage
headlessErrorSignal exception is raised. If the exception is not caught, the
offending process is suspended and saved by the HeadlessImage instance
for debugging.

More specifically, the message #checkHeadless is sent to the HeadlessImage
instance by methods that attempt to create instances of DisplaySurface or
its subclasses (for example, ScheduledWindow or ApplicationWindow). In a
standard, headful image, #checkHeadless returns without any side effect. In
a headless image, the HeadlessImage instance responds to #checkHeadless
by sending itself #cannotSend. This, in turn, causes the HeadlessImage
instance to raise the exception, suspend and save the process, write a
context trace to the transcript file, save the image as a headful image,
and then terminate the image.
20-4 VisualWorks

Debugging a Suspended Process
Debugging a Suspended Process
When a process has been suspended as the result of an attempt to
display something, you can use the saved, headful image to debug a
suspended process:

1 Start the headful image that was saved by the headless image before
it terminated. By default, the image is called headless-debug,
which is returned by the defaultDebugImageName class method.

2 Inspect the suspended processes by evaluating the following
expression:

HeadlessImage default suspendedProcesses inspect
3 In the Inspector, select a process and then invoke debug from the

<Operate> menu. VisualWorks brings up a debugger on the selected
process.

Creating a Headful Copy of a Headless Image
In general, you can create a headful copy of a headless image by
including an expression such as the following in your application code or
by providing the expression in file-in format in a startup file:

HeadlessImage default saveHeadfull: 'name'
In the resulting image, the HeadlessImage instance’s state is set to headful,
which enables the display at startup. Saving a headful image from a
headless image is useful if you need to debug a failure (see “Debugging a
Suspended Process” on page 20-5).

When a headful image is created from a headless one, the normal
Transcript is restored.

Tips for Programming a Headless Application
Your headless application may do whatever you wish, as long as it does
not access the display. When programming your application, you need to
consider how to start it, how users can communicate with it, how to
terminate it, and how to prevent it from accessing the display.
Application Developer’s Guide 20-5

Creating an Application without a GUI
Techniques for Starting a Headless Application
A simple technique for starting an application is to write it in a start-up file
(in file-in format). The start-up file is read and evaluated (filed in) when
the image starts. By writing your application in the start-up file, you have
the flexibility to make changes and re-execute relatively quickly. That is,
you can change your application without having to start up and save a
headful image; you can simply change the startup file and restart the
headless image.

Alternatively, you can write your application in the headful image from
which you will create the headless image. When your application resides
in the headless image, you have three options for starting it:

• Use the start-up file—for example, MyApplication open!.

• Modify HeadlessImage>returnFromSnapshot to fork off a process with
your application—for example, (MyApplication open) fork.

• Register your application as a dependent of ObjectMemory and wait for
#returnFromSnapshot to be broadcast. Look at HeadlessImage for an
example, particularly #initialize and #update: If you do this, make sure
that HeadlessImage appears before your application in the dependents
collection.

Techniques for Communicating with a Headless Application
Your application must provide some means other than a window system
for users to interact with a headless image. This can be addressed with
sockets, file I/O, or some other manner.

Terminating a Headless Application
Your application should make provisions for shutting down gracefully,
under both normal and exceptional circumstances. The last message
send should be ObjectMemory quit, which causes the image to terminate.
Failure to do so will leave the image running, but with nothing to do. Your
only recourse then is to terminate the image from the operating system
(for example, by using kill in UNIX).

Sending Output to the System Console
When running in headless mode, it is frequently necessary to send output
to the console.

In the image, write an external interface to either use write(0,...) to write
to stdout, or load the C runtime library and use printf. For example, here
are two methods:
20-6 VisualWorks

Tips for Programming a Headless Application
printf: aString
<C: int printf(void _oopref *aString)>
^self externalAccessFailedWith: _errorCode

"self new printf: 'Hello World!',
(String with: Character cr with: Character lf with: (Character value: 0))"

"self new printf: ('Hello World!',
(String with: Character cr with: Character lf)) asFixedArgument"

printfArgs: argArray
<C: int printf(...)>
^self externalAccessFailedWith: _errorCode

"self new printfArgs: (Array
with: 'Hello %d %s!', (String with: Character cr with: Character lf)

asFixedArgument
with: 1
with: 'World')"

Explore the ThapiExample parcel, in the dllcc/ directory, as a guide for
more examples.

Preventing Access to the Display
If a headless application attempts to access the non-existent display, the
attempt is trapped, and a HeadlessImage headlessErrorSignal exception is
raised.

Your application can ignore this exception and rely on default behavior.
Alternatively your application can handle the exception as appropriate.
Note that you can still execute the default behavior if you #proceed rather
than #return in the exception handler. For example:

[...whatever your application does normally...]
on: HeadlessImage headlessErrorSignal
do: [:exception |

 ... special handling for the headless error...
exception resume]

If your application is to have different behavior depending on the kind of
image it is running in, you can use the following expression to determine
whether it is currently running in a headless image:

HeadlessImage default isHeadless
Similarly, you may send #checkHeadless from your application code when
you have code that should be executed only in a headful image:

HeadlessImage default checkHeadless
Application Developer’s Guide 20-7

Creating an Application without a GUI
Note that you may modify the HeadlessImage>>cannotSend method to tailor
it for your specific needs.

Delivering a Headless Application
You deliver a headless application much the same way that you delivery
any other application:

• organize your application into an image and a (possibly empty) set of
parcels, then

• run Runtime Packager to create a “stripped” deployment image as
described in Chapter 21, “Application Delivery.”

When the Build headless image option (Set common options, Details page) is
selected in the Runtime Packager, the final runtime image is created for
headless operation. All functions of the application which might have
interacted with the GUI are suppressed when operating in a headless
mode. Limited functions are permitted for cursor operations, but most
other functions which explicitly or implicitly reference the user interface or
its components will create an error.

The class HeadlessImage, supplied in the Headless parcel, must be
present when the option is selected and must not be deleted by the
stripping process.

The Action on last window close option (Set common options, Details page) takes
on a special meaning in a headless image. When a runtime image starts,
the startup method is invoked. This provides convenient way to initiate
processing even in a headless image. After the startup method completes
its processing and answers back to Runtime Packager, the Action on last
window close is examined. Headless images do not differ from other
images in this regard. If no windows are open at this point, which will
certainly be true for a headless image, then the image is shutdown. In
some cases, including those in which there is no startup method to be
invoked, this may not be the desired function. If the image is to continue
operation after the startup method, if any, completes its processing, then
either Continue processing or Standard behavior should be selected as the
action.

The class RuntimeHeadlessExample provides a simple test case for creating
headless images. This class writes a line to file so that its execution can
be ascertained.
20-8 VisualWorks

21
Application Delivery

Overview
When you have finished developing your application, you need to extract
it from the VisualWorks development environment and prepare it to run
as a stand-alone application. This process is called deploying an
application.

The basic activities in deploying an application are:

• Preparing the application to run stand-alone, by removing
dependencies on development environment

• Organizing code into deployment parcels

• Building the deployment image

To simplify the process of preparing an image and installing it on a
customer’s system, VisualWorks includes:

• Runtime Packager, a utility for creating a deployment image from a
development image.

• An application installation framework is provided. This framework
was used in the VisualWorks installation program. To examine the
framework, load the VisualWorks Installer parcel.
Application Developer’s Guide 21-1

Application Delivery
Choosing a Delivery Strategy
There are three ways to organize your application for deployment:

• As a single deployment image containing all application code

• As one or more separately-loadable parcels containing application
code, delivered with a minimal deployment image

• As a combination of an image containing part of the application code,
and parcels containing the rest

Each approach has its advantages.

Single Image File
Single image files work well for small applications. They are simple to
deploy, requiring only the object engine and image file.

However, a single image file is often too large for easy distribution and too
large-grained to provide adequately for the individual support of
subsystems or sub-applications.

Parcels
Parcels, files that contain application objects, can be rapidly loaded into
an image without the use of a compiler. This makes parcels
advantageous in large, complex applications. Parcels allow you to:

• Deliver a very small base image

• Incrementally update your application without supplying a new image

• Customize your application at run time

• Tailor the memory footprint of your running application

Combined Deployment
Even though loading parcels is fast, loading the image is faster. Loading
your entire application from parcels into a minimal image might not be
optimal for a variety of reasons.

A combined use of the image and parcels might have the core application
code saved in the image, at least up to the first window. From that
window, additional code can be loaded from parcels as needed. Seldom
used code might never be loaded by some users.
21-2 VisualWorks

Packaging for Distribution
Packaging for Distribution
The files you need to distribute for your application are:

• The VisualWorks virtual machine executable and any required
support files.

For deployed applications, the visual or visual.exe executable is
preferred. The executable may be renamed for your application.

On Windows 95/98/ME platforms, vwft16.dll and vwft32.dll
are needed to call 16-bit code, and should be included. For Windows
NT/2k/XP platforms, they are not used, and should be omitted.

• Your deployment image.

• Any VisualWorks product parcels (e.g., database support parcels)
that you set to load during runtime.

• Any application parcels that you set to load during runtime.

You are responsible to set up necessary directory structures and
configure your image and Runtime Packager to use them.

Deploying as a Single File
On Windows and Mac platforms you have the option of combining an
image and the virtual machine in a stand-alone executable.

For Mac platforms there is no additional software required; packaging
uses standard facilities. Instructions for packaging are provided in
packaging:mac:MacPackaging.txt.bin (for Mac OS 9.x) and
packaging/macx/DeliverApps.rtf (for Mac OS X).

For Windows platforms some third-party software is required to add files
to the executable vm as resources. We recommend ResHacker, and
provide this along with instructions in
packaging\win\WindowsPackaging.txt.

VisualWorks Installer
The VisualWorks installation program is built on the Installer Framework.
This framework, which is provided in packaging/installer, is
available for use in building an installer for your application.

Load the VWInstallerFramework parcel to use the framework.
Application Developer’s Guide 21-3

Application Delivery
Running a Deployed Image
You start a deployment image the same way you start a development
image, by specifying the object engine and name of the deployment
image. For the full command line syntax and options see “Running
VisualWorks” on page 1-1.

On Windows systems, the engine default is to read an image file with the
same name in the same directory. So, if you rename the executable to or
myApp.exe and the image file to myApp.im, you can simply execute:

> myApp

with any required options.

Loading Parcels At Start Up
Deployment images, images created using Runtime Packager, can load
parcels during startup. Parcels to load at startup are identified by
command-line options, listed either individually or in a configuration file.

When a deployed image starts up, it looks in the startup directory for a
parcel configuration file with the filename imagename.cnf, where
imagename is the same as the image file’s name. If such a file exists, the
image loads the parcel files named in the file. Parcel file names should be
listed one per line, and are resolved with respect to the working directory,
or the parcel path if one is specified in the deployed image.

You can use command-line arguments to specify additional parcels and
parcel configuration files to load:

-pcl filename
Loads the specified parcel file

-cnf filename
Loads all of the parcels listed in the specified configuration file

Opening a Runtime Application
There are several options available for opening an application upon
startup.

• Create a subclass of UserApplication (a subclass of Subsystem), and
define its main method to open the application. (Refer to
“Responding to System Events” on page 9-24 for more information.)

• If you use Runtime Packager to create a runtime application, you
have two mechanisms for opening a runtime application:

• In the Runtime Packager, on the Basics page of the Set common
21-4 VisualWorks

Running a Deployed Image
options step, you can specify a Startup Class and Startup Method. The
method is sent to the class upon image startup, after parcels
specified to load at runtime are loaded.

• If your application loads one or more parcels at launch, the
application can be opened by a parcel’s Post-load Action. For
example, to open the WalkThru example RandomNumberPicker
application, edit the parcel’s Post-load Action property to:

[:package | WalkThru.RandomNumberPicker open]
Then republish the parcel.

• You can save the deployment image with an open application
window. This is not the preferred method, so avoid it if possible. If you
use Runtime Packager to create the deployment image, make sure
that your application code is selected as “kept,” because Runtime
Packager does not automatically keep code for open windows (see
“Specify Items to Keep and Delete” on page 21-28).

Exiting a Deployed Image
An application may provide an explicit shutdown command, allowing it to
exist gracefully. For example, a graceful exit frequently involves closing
external connections to files or databases.

Applications also frequently exit when its last window is closed by the
user. This facility provided by many window managers can shortcut the
procedures invoked by an explicit shutdown command. To accommodate
this situation, Runtime Packager can invoke a shutdown block. See
“Shutdown When the Last Window Closes” on page 21-10 for more
information.

Installing as a Service on Windows
Especially in the case of server applications being deployed on Windows
NT or 2000/XP, it is occasionally desirable to install the application as a
service. There are no specific requirements for a VisualWorks application
to be installed as a service. The procedure for installing it is entirely a
Windows procedure.

For general information on installing and running an application as a
user-defined service, refer to the Microsoft Knowledge Base article
137890, “HOWTO: Create a User-Defined Service.” You will also need to
obtain and install the appropriate Resource Kit for your operating system.

To run a VisualWorks application as a service, you need to set the
following :
Application Developer’s Guide 21-5

Application Delivery
1 Using the Services applet in the Windows Control Panel, edit the
properties of your service and select "Allow service to interact with
desktop."

2 Using the Registry Editor, create and set the Application and
AppDirectory values in the Parameter key for your service as follows:

Value Name: Application
Data Type : REG_SZ
String : <vw-path>\vwnt.exe -noherald <my-image>

Value Name: AppDirectory
Data Type : REG_SZ
String : <vw-path>

where <vw-path> is the full drive and directory location of your
VisualWorks application files (for example,
C:\VisualWorksServer), and <my-image> is the name of your
image file (for example, MyImage.im). If your application requires
other command line parameters, include them in the Application
string, in the same way you would when you create a Windows
shortcut to start the application.

3 It is also a good idea to make sure your PATH= environment variable
includes the location of your VisualWorks application files.

Preparing an Image for Deployment
Before creating a deployment image for your application, there are a few
aspects of the resulting image that you may need to deal with. The
following topics can be used as a check list for preparing an image for
deployment.

Loading Application Code
Application code can be either held in the image or in parcels that are
loaded at runtime.

Code Developed in the Image
If you develop your code directly in your image and save it by saving the
image, then your application code is ready for processing by Runtime
Packager for deployment as a single image.

If you want to load some of your code as parcels, you need to create the
parcels and then proceed as for parcelled code.
21-6 VisualWorks

Preparing an Image for Deployment
Code Saved in File-outs
If you store your application code is file-out format files, simply file-in the
code to your image. Then proceed as for code developed directly in the
image.

Code Saved in Parcels
In general, you should load all parcelled code into the image before
running Runtime Packager. This allows Runtime Packager to include it in
its scan for dependencies while determining which code to keep or delete
from the image. It also provides the option of having Runtime Packager
save your parcels as runtime parcels that are optimized and saved
without source code.

For each parcel that is loaded into the image, you need to specify
whether its code is saved with the image (and so does not need the
accompanying parcel file), or will be loaded during runtime. For parcels
that are loaded at runtime, there are other options as well. These
decisions are made as part of the Set common options step, on the Parcels
page (see “Set Common Options” on page 21-22 for more information).

You also need to plan the location of parcels. The development
environment has a complex parcel path. Your application will probably
have a simpler path, or not path at all and hold all parcels in the same
directory as the image. By default, Runtime Packager clears the parcel
path (Set common options, Details page). When you decide on a parcel
location strategy, you need to make sure you specify the necessary
information in Runtime Packager (Set common options, Parcels page).

Also, if you specify parcel paths relative to the VisualWorks home
directory, $VISUALWORKS, you need a strategy for setting that directory.

Code in a Store Database
If you develop using Store, you can either load your packages and
bundles into the image, or publish some or all of your packages and
bundles as parcels. You can, of course, combine of these options, loading
some code into the image and publishing some as loadable parcels.

Unparcelled code that is loaded into the image is included in the
deployment image. You are responsible to make sure that required code
is marked to be “kept” by the Runtime Packager.

Code that you publish as parcels should be processed just as any other
parcelled code.
Application Developer’s Guide 21-7

Application Delivery
Removing Source Files
By default, source files are included with a deployed image. This is not
always desirable, both for disk space and for security reasons. To detach
source files, send:

SourceFileManager default removeAllSources.
Alternatively, to selectively remove source files, send removeFileAt:. You
will need to know the index for the file to remove. Inspect:

files := OrderedCollection new.
SourceFileManager default fileIndicesDo:

[:index| files add: (SourceFileManager default fileAt: index)].
^files

Then remove a file by its index, for example:

SourceFileManager removeFileAt: 2

The Transcript
The Transcript object is preserved in a deployment image, but is not
displayed as in the development image. Messages sent to Transcript
continue to process without errors but do not display themselves unless
you define a window to show the state of the Transcript.

Handling Errors
Your application is expected to catch all anticipated errors and to handle
them. Refer to Chapter 15, “Exception and Error Handling,” for
information about error handling in VisualWorks.

For unhandled errors, Runtime Packager replaces calls to open a
NotifierView with calls to a RuntimeEmergencyNotifier. This simplified notifier
excludes tool support, such as the debugger, and simply notifies the user
that an unhandled exception has occurred, with a brief description of the
error. It also writes a summary of the error and its stack to an error log file
(by default called error.log).

Both the error handling class and the error log name are specified on the
Exceptions page of the Options step. You can create your own handling
procedures for unhandled exceptions and specify it on this page.

Registering an Interest in System Events
It is often appropriate to invoke particular behavior at system startup or
exit. Two mechanisms, one pragma based and the other message based,
are provided to register messages as dependents of system events,
which can be used for this purpose. The pragma-based mechanism is
21-8 VisualWorks

Preparing an Image for Deployment
generally preferred because it automatically registers the dependency on
parcel load, and deregisters it on unload. The message-based
mechanism is useful for exceptional cases, such as when the dependent
is an instance rather than a class.

For both mechanisms, the system event is an event sent from
ObjectMemory, and is one of the following symbols: #aboutToQuit,
#aboutToSnapshot, #earlySystemInstallation, #finishedSnapshot,
#returnFromSnapshot, or #scavengeOccurred. Both mechanisms support
registering only unary selectors.

The two events most commonly of interest are #returnFromSnapshot and
#aboutToQuit. #returnFromSnapshot is sent on system startup, after all
VisualWorks subsystems have been initialized. Use it to perform actions
such as starting your own application. #aboutToQuit is sent before shutting
down the system. Use it to do things like closing network connections
open by your application.

Pragma-based Event Dependency
The pragma-based mechanism is used by adding an annotated method
to class SystemEventInterest. The class side dependencies-pragma method
category is provided as a convenient placeholder for these methods. An
example of a pragma-based dependency is:

startMyApplication
<triggerAtSystemEvent: #returnFromSnapshot>
MyApplication open

When the system event #returnFromSnapshot is received,
SystemEventInterest sends #startMyApplication to itself, which then sends
#open to MyApplication. See the SystemEventInterest class method example
for additional examples.

This type of dependency is registered whenever a method with this
pragma is compiled or loaded into SystemEventInterest class, and
unregistered when the method is either recompiled without the pragma,
or removed or unloaded from the system.

Message-based Event Dependency
In addition to specifying the event to trigger the notification, clients using
the message-based mechanism also specify the receiver of the
notification and the selector that will be sent. The following messages
register and deregister command line processing actions when sent to
class SystemEventInterest. The first one arranges to send the message
#start to anObject when ObjectMemory triggers the event
#returnFromSnapshot.
Application Developer’s Guide 21-9

Application Delivery
SystemEventInterest
atSystemEvent: #returnFromSnapshot
send: #start
to: anObject

To deregister the dependency that will send #start to anObject upon event
#returnFromSnapshot, use this one:

SystemEventInterest
removeDependencyOnSystemEvent: #returnFromSnapshot
selector: #start
receiver: anObject

To deregister all message-based system event dependencies for
anObject, for any selector or event, send:

SystemEventInterest removeAllDependenciesFor: anObject

Shutdown When the Last Window Closes
In a development image, you must explicitly choose to exit VisualWorks to
shut down the system. In a deployed application, however, it is expected
that the application will shut down when its last window is closed. This
can be configured using the Runtime Packager (see “Set Common
Options” on page 21-22). For more control, consider using the following
procedure.

There are frequently special functions that must be performed before the
image is shutdown. When the shutdown is initiated because there are no
more open windows, the application has no direct way of learning that the
shutdown is about to occur. To allow for special application processing at
this stage, for example, to close open database connections, the
application can register a block to be evaluated. The block is registered
by sending a message to class RuntimeManager as in:

RuntimeManager quitBlock: applicationShutdownBlock
where applicationShutdownBlock should be a block accepting zero or one
argument. If one argument is accepted, the block will be provided with
one of the following depending on the reason the image is being
shutdown:

normal
Shutdown is caused by the last window being closed or no
application windows being open after startup processing was
completed.

exception
Shutdown is caused by an unhandled exception or some other error.
21-10 VisualWorks

Preparing an Image for Deployment
Handling Command Line Options
The Smalltalk expression:

CEnvironment commandLine
returns an Array of Strings which are the command line tokens, or switches
and switch arguments, in the order they were specified. Note that a token
may include white space characters by enclosing the token in either
single or double quotation marks on the command line.

Usually, retrieving the command line is of interest only as a result of some
ObjectMemory event, such as #returnFromSnapshot. Instead of sending
commandLine directly, or as a command registered as described in
“Registering an Interest in System Events” on page 21-8, forms of the
event registration mechanisms specific to command line interests are
provided.

Both pragma-based and message-based versions are provided. The
pragma-based mechanism is preferred because it automatically registers
a dependency on parcel load, and deregisters it on unload. The
message-based mechanism is provided for exceptional cases, such as
when the dependent is an instance rather than a class.

For both mechanisms, the command line switch is a string, such as '-foo'.
The ObjectMemory event can be any of the system events, but the event
typically of interest for command line dependents is #returnFromSnapshot,
which is sent on system startup after all VisualWorks subsystems have
been initialized, and is the usual time to perform actions such as starting
your own application.

All command line switches for a registered event are processed from left
to right through the command line. For example, consider the following
command line:

visual visual.im -pcl ../parcels/Foo.pcl
-hookup -port 4736

Suppose that -hookup is registered for #earlySystemInstallation, and -pcl
and -port are registered for #returnFromSnapshot. At system startup, the
-hookup action would be triggered first, because the
#earlySystemInstallation event precedes #returnFromSnapshot. Then the
-pcl action will be triggered, because it proceeds (is to the left of) -port
on the command line. Finally, the -port action will be triggered.

The exception to this rule occurs when new command line interests are
registered during command-line processing for a particular event. For
example, say the option -port proceeded -pcl in our example
Application Developer’s Guide 21-11

Application Delivery
command line, but the dependency on -port isn't registered until
Foo.pcl is loaded. In such cases, another pass of the command line is
made to accommodate the newly registered interest.

In the above example, the option -hookup takes no arguments, the
option -port takes one argument, and -pcl takes one or more
arguments. For zero-argument options, clients may register a unary
selector for either the message-based or pragma-based mechanism. An
example of a client method to process the -hookup option might be:

hookup
^self installInSystem

For one- or many-argument options, clients may register a single-
argument selector. When a single-argument selector is registered for
either mechanism, the argument passed will be a ReadStream on the
collection of command line tokens, positioned at the registered switch.
That is, the argument is the value of the expression:

CEnvironment commandLine readStream through: optionString; yourself
An example of a client method to process the -port option might be:

port: tokenReadStream
port := Number readFrom: tokenReadStream.

Processing an arbitrary number of arguments, such as for the -pcl
option, would be done in a loop, such as:

loadParcelsFromCommandLine: tokenReadStream
[tokenReadStream atEnd not

and: [(token := tokenReadStream next) first ~~ $-]] whileTrue:
[self loadParcelFrom: token].

Registering multiple-argument selectors is not allowed by either
mechanism. The registered selector must expect either no arguments or
a single argument, as described above.

Pragma-based Option Processing
The pragma-based mechanism is used by adding a class method to
CommandLineInterest, in the dependencies-pragma method category. An
example of a pragma-based dependency is:

loadParcelsFromCommandLine: tokenReadStream
<triggerAtSystemEvent: #returnFromSnapshot option: '-pcl'>
Parcel loadParcelsFromCommandLine: tokenReadStream

When both conditions in the pragma are true, CommandLineInterest sends
loadParcelsFromCommandLine: to itself, which then forwards the message to
class Parcel. See the example class method in CommandLineInterest for
additional examples.
21-12 VisualWorks

Preparing an Image for Deployment
This type of dependency is registered whenever a method with this
pragma is compiled or loaded into CommandLineInterest class, and
unregistered when the method is either recompiled without the pragma,
or removed or unloaded from the system.

Message-based Option Processing
In addition to specifying the switch and the event, the message-based
mechanism also specifies a message and a receiver. The following class
methods in CommandLineInterest, register and deregister command line
processing actions:

atSystemEvent: aSymbol send: aSelector to: anObject
commandLineOption: aString
When ObjectMemory triggers event aSymbol and command line switch
aString occurred in the command line, then send message aSelector
to anObject.

removeDependencyOnSystemEvent: aSymbol selector: aSelector
receiver: anObject commandLineOption: aString
Deregister the action to send aSelector to anObject upon event
aSymbol in the presence of command line switch aString.

removeAllDependenciesFor: anObject
Deregister all actions to send any message to anObject, in response
to any event or command line switch.

An example of registering interest in -hookup using the message-based
mechanism would be:

CommandLineInterest
atSystemEvent: #earlySystemInstallation
send: #hookup
to: self
commandLineOption: '-hookup'

An example of registering interest in -port using the message-based
mechanism would be:

CommandLineInterest
atSystemEvent: #returnFromSnapshot
send: #port:
to: anHTTPServer
commandLineOption: '-port'

To deregister interest in -hookup, send this message:
Application Developer’s Guide 21-13

Application Delivery
CommandLineInterest
removeDependencyOnSystemEvent: #earlySystemInstallation
selector: #hookup
receiver: self
commandLineOption: '-hookup'

To deregister interest in -port, send this message:

CommandLineInterest
removeDependencyOnSystemEvent: #returnFromSnapshot
selector: #port:
receiver: anHTTPServer
commandLineOption: '-port'

To clear all message-based dependencies for anObject, send:

CommandLineInterest removeAllDependenciesFor: anObject

Unload Tools Parcels
Even though Runtime Packager will remove development tools classes
during its processing, it is advisable to remove development tools that are
loaded from parcels, such as the UI Painter, before starting Runtime
Packager. Unloading these parcels allows the system to clean up the
image, simplifying Runtime Packager’s procedure.

Removing Undeclared Variables
The system maintains a name space for undeclared variables, which you
can access by the name Undeclared. Runtime Packager performs
operations to clear and to browse such references as part of its
procedure, but you may also wish to deal with these before starting
Runtime Packager.

An entry is appended to Undeclared when:

• A reference to a nonexistent variable is compiled during file-in (or
interactively, if you override the compiler’s warning).

• A variable is removed while references still exist.

• A class is removed (regardless of whether outside references to it
exist). This assures that any outside references that may exist will be
properly reconnected if the class is recreated.

The Undeclared name space should be empty in a deployed image.

To inspect Undeclared, enter “Undeclared” in a workspace and choose
Inspect from the <Operate> menu.
21-14 VisualWorks

Preparing an Image for Deployment
The inspector provides commands for examining variables and finding
methods that refer to a selected variable. When you are satisfied that no
references to a variable exist, use the Remove command to delete the
entry. Note that hidden references are not reported, and will have to be
found using other means.

Garbage Collecting Lingering Instances
It is possible, after a lot of experimenting and development work, to have
instances retained in the image that should have been garbage collected.
These should be released and garbage collected before deploying, to
keep the image size down. For a method for finding and releasing these
instances, see “Lingering Instances” on page 5-7.

Splashscreen and Sound

Replacing the Splashscreen and Sound
You can change the splash screen displayed and the sound played at
startup. We ask that you not replace the splash screen for your
development image.

On Microsoft Windows platforms, simply replace either or both of the files
herald.bmp and herald.wav in the \bin\win subdirectory.

On other systems, you need create a bitmap image in VisualWorks, and
recompile the virtual machine. The necessary C files and scripts are
provided in the release (starting in 5i.2). For instructions, see the
comment at the beginning of bin/<platform>/userprim/splash-
bits-4.h.

Suppressing the Splashscreen and Sound
Rather than replace the splash screen and sound, it is sometimes
desirable to repress them entirely.

The simplest way is to use the RuntimePackager option. In the Set common
options step, on the Details page, make sure the Suppress splash screen and
herald sound option is selected, which is the default.

Another option, when appropriate, is to start VisualWorks using the
-nologo engine commandline switch. For example:

..\bin\win\visual.exe -nologo visual.im

This is frequently not the appropriate approach to take for a deployed
application.
Application Developer’s Guide 21-15

Application Delivery
To get the same effect as the RuntimePackager option, set ObjectMemory
to not show the splashscreen at all. To set this, evaluate the following
expression and save the image:

ObjectMemory registerObject: false withEngineFor: 'showHerald'
This image will now start without the splashscreen and sound.

Controlling Splashscreen Duration
Rather than repressing the splash screen, there are times you might want
to display it longer. The system sends primInformSystemReady to let the
VM know that the image is up and running, at which point that the VM
dismisses the splash screen.

To increase the duration, you might override postSnapshotBootstrap in class
Snapshot, including a Delay. For example:

postSnapshotBootstrap
"We're returning from a snapshot, bootstrapping from a disk image.
Start up everything."

Subsystem markAllInactive.
self signalSystemEvent: #earlySystemInstallation.
Processor activeProcess priority: originalPriority.

"Now delay so the user can see the glory of the splash screen."
(Delay forSeconds: 3) wait.
self signalSystemEvent: #returnFromSnapshot.
ObjectMemory primInformSystemReady.

Creating the Deployment Image
A deployment image is a Smalltalk image that has been stripped of the
development environment, to be run as an end-user application. Once
you have done all the necessary preparation of your application, you are
ready to run Runtime Packager to create the deployment image.

development image deployed application

parcels

unparcelled code

development tools

Smalltalk base
21-16 VisualWorks

Creating the Deployment Image
Running Runtime Packager
To create a deployment image, you use the Runtime Packager utility.
Runtime Packager removes development tools and other unwanted
classes from an image, leaving an image file that occupies significantly
less disk space because it contains only objects required by your
application.

To use Runtime Packager:

1 Set up your application as you want it to be delivered:

2 Load the Runtime Packager parcel.

3 In the Launcher, select Tools Runtime Packager, or in a Workspace
execute:

RuntimePackager open
Runtime Packager starts and displays a window that allows you to
choose what you want to remove from your development image
before saving it as a deployment image.

Runtime Packager UI leads you through the process, providing a general
description for each step as well as more detailed help. Some of that
information will be repeated here. For other, please read the tool’s online
help.

The basic procedure consists of the following steps. Each of these step
requires more explanation, which is provided in the following section.
Application Developer’s Guide 21-17

Application Delivery
1 Clean Up Image. Check the image for extraneous global objects.

2 Set Common Options. Specify parameters used in later steps.

3 Specify Items to Keep and Delete. Customize the items to be kept
for runtime.

4 Scan for Unreferenced Items. Scan the image for unreferenced
classes, methods, and globals.

5 Review Kept Items. Review the results of the previous scan.

6 Save Loadable Parcels. Save any parcels needed for the runtime
image.

7 Test the Application. Interactively detect missed references to
application classes and methods.

8 Set Runtime Memory Parameters. Set sizes for different spaces on
startup and set memory policy values.

9 Strip and Save Image. Create a stripped image for stand-alone
application execution.

A Short-cut Procedure
The basic procedure can be rather slow, and you don’t always need to
perform every step. The menu command File Package Runtime Image
creates a runtime image in one operation by automatically executing the
Scan for unreferenced items, Save loadable parcels, and the final Strip and save
steps.

You still need to set options appropriately, especially specifying how to
handle parcels. But, once you understand the whole process, know what
you do and do not need to do for your image, or have a parameters file
that specifies various features, this short-cut procedure can be a great
convenience. (Refer to “Saving Runtime Packager Parameters” on
page 21-21 for details on this file.)

Examples
The following short examples use the RuntimeExample application that is
loaded as part of the Runtime Packager parcel.

Building a Stand-alone Image
For simple applications you build the deployment image with all of the
application code directly in the image.
21-18 VisualWorks

Creating the Deployment Image
This is the simplest procedure. The only options that need to be set are
the Startup Class and Startup Method. Runtime Packager begins with the
resulting startup message and analyzes code the image to which code
must remain and which may be deleted.

1 Load and start Runtime Packager in the usual way, into a clean
image.

2 Do the Clean up image step. Undeclared and DependentFields should both
be clean.

3 Do the Set common options step. On the Basics page set the following:

Startup Class: RuntimePackager.RuntimeExample

Startup Method: open

Runtime Image Page Name: runtime1

Then close the Common Options window.

4 Do the Scan for unreferenced items step, to search for classes and
methods to keep and delete.

5 Do the Review kept classes and methods step.

Explore the results as you desire, but be sure to look at the following.
Select RuntimePackager in the Packages/Bundles pane, and in the Kept
Classes/Globals pane, select RuntimeExample. Notice that all of the
RuntimeExample methods are in the Kept Methods pane, except for
postLoadActionFor:. This method, which is included for use when the
example is loaded as a parcel, is not used because we have
specified a startup class and method. Runtime Packager has
discovered that fact, and excluded the method from the application.

Close the window.

6 Do to the Strip and Save Image step.

The image is saved as runtime1.im. Launch the image using a
command such the following.

visual.exe runtime1.im
The image should launch and open the example application.

Building an Image Using Parcels
Building an application as a baseline image with loadable parcels is most
easily done by first loading all parcels used in the application into the
development image. The runtime image and runtime parcels are then
created from the development image.
Application Developer’s Guide 21-19

Application Delivery
Parcels that will load at runtime are identified as part of the Set common
options step (see “Set Common Options” on page 21-22) on the Parcels
page. After the scan for unreferenced items, if any, is completed, runtime
versions of parcels can be created.

While the same parcels can be used for development as for runtime,
Runtime Packager permits the parcels to be analyzed for unused classes
and methods.

Classes that are to be loaded as part of a parcel should not be specified
as deleted unless they are to be removed from the runtime version of the
parcel as well.

To illustrate the process for building an image in which applications are
loaded through parcels, the following procedure describes how an image
executing the example application can be created. The method
postLoadActionFor: has been added to the RuntimeExample class to illustrate
opening the application with a post-load action.

We begin by building a parcel out of the example, and then building the
deployed application.

1 Load and start Runtime Packager in the usual way.

2 Do the Specify common options step, and specify:

Runtime Image Path Name on the Basics page: runtime2

Process command line on the Details page: yes (checked).

3 In the Parcels page of the Common Options window, click the New Parcel
button, and enter RuntimeExample to create a new parcel.

4 Open a Browser (select Browse System in the Launcher window),
and set its navigator to display parcels (select Browser Parcel).
In the browser, select both the RuntimeExample parcel and the
RuntimeExample class. Then select Class Move All to Parcel...,
to add the class to the parcel.

5 In the parcel’s Properties display (select the Properties tab), set the
Post-Load Action to be the following:

[:pkg | #{RuntimePackager.RuntimeExample}
value postLoadActionFor: pkg]

6 In the Runtime Packager Common Options window, on the Parcels page,
select the RuntimeExample parcel and set the following options:

Parcel is loaded into image at runtime: yes (checked)

Strip unreferenced items and save: yes (checked)
21-20 VisualWorks

Runtime Packager Process Details
Path name: RuntimeExample.pcl

Close the Common Options window.

7 Do the Scan for Unreferenced Items step.

8 Do the Save Loadable Parcels step. The file RuntimeExample.pcl
should be written to the current directory.

9 Do to the Strip and Save Image step.

The runtime image is saved as runtime2.im. Launch the image using a
command such the following.

visual.exe runtime2.im -pcl RuntimeExample.pcl
The image should launch and open the example application.

Note that a number of other parameters can be specified on the
command line. See the description of the Process command line option in
the Options step for a complete list of the parameters supported.

Runtime Packager Process Details
The following provide details about the operations performed by Runtime
Packager in the series of steps.

Saving Runtime Packager Parameters
At any time during the procedure before doing the Strip and save image
step, you can save the parameters you have set, simplifying subsequent
runs of Runtime Packager.

To save the current parameters, select File Save parameters... . This
creates a file, named with a .rtp extension, that contains Smalltalk code
defining the parameters.

To load a parameters file, select File Load parameters... .

Clean Up Image
Objects can accumulate in a development image that are not needed for
runtime execution and would occupy storage needlessly. This step scans
for global objects that commonly arise in the development process.

The scan for referenced and unreferenced items detects unreferenced
globals appearing in the system name spaces.
Application Developer’s Guide 21-21

Application Delivery
Unreferenced globals that are either undeclared variables or non-model
objects that have dependents cannot be detected in the scan of
referenced items. When this step is performed, inspectors are opened on
the contents of Undeclared and DependentsFields. If no suspicious contents
are found, you will be notified and no inspectors are opened.

If entries exist in the Undeclared dictionary, you will be prompted to remove
any items that are apparently unreferenced and which are also currently
bound to nil before opening the inspector. These entries can be left
behind when classes are removed from the system, for example.
Removing these entries should normally be harmless and will greatly
simplify analyzing the Undeclared items. However, there is no provision for
restoring entries deleted by this process, so the image should first be
saved if you are not sure that the entries are extraneous.

In most cases, undeclared variables represent some type of problem in
the development process and each entry should be investigated to
ensure that no problems are lurking in the application. If no references to
an entry can be found, the entry can be eliminated. Be especially careful
when removing items from DependentsFields if you do not understand why
they are there.

If parcels are loaded that contain facilities used only in the development
image, such as the UIPainter and Store parcels, they should be unloaded
before beginning the packaging process. If you are unable to account for
entries in Undeclared after unloading these parcels, close the Runtime
Packager window, invoke garbage collection, and open Runtime
Packager again.

This step can be skipped if you do not want to eliminate the types of
global objects detected here.

Set Common Options
Options and data entry fields used in later steps are entered here. For
simplicity of organization, the options are grouped into pages of a
notebook. Pages in the notebook are as follow.

Basics Page

This page includes the essential elements that are always needed. These
are:

Startup Class and Startup Method
Enter the fully qualified name of the Startup Class, and the Startup Method
message selector. This message provides a convenient way to open
the initial window of the application or do other application
initializations. The initial message is included in the scan of sent
21-22 VisualWorks

Runtime Packager Process Details
messages done later. If you do not use a Startup Class and Startup
Method, you will need to specify the starting point for scanning
referenced classes and methods in the next step.

Image Path Name
When the image is finally stripped, it is saved to the file named here.
For obvious reasons, this field is required and the file named must be
writable. The same conventions for appending suffixes to the file
name are used here as are normally used for image saves (that is,
don’t include the .im suffix).

Details Page
This page includes a variety of options that are commonly selected:

Remove compiler classes
Remove classes related to the public interface to the system
compiler. In many cases the compiler will be required in the runtime
environment.

Install emergency evaluator as a dialog
The emergency evaluator is invoked by pressing Control-Shift-Y. If
this box is checked, a dialog will appear confirming that the user
wants to exit the image. If this box is not checked, Control-Shift-Y is
ignored.

Build headless image
Create an image that does not access the display. Refer to
Chapter 20, “Creating an Application without a GUI,” for more
information.

Clear parcel search path
Clears the list of directories to be searched when loading parcels. If
this is not selected, the Settings values are preserved in the runtime
image.

Use three-step procedure
A three-step procedure is recommended for optimal runtime images.
The procedure will be used if this box is checked. Because of the
extra time required for three saves, the default is to create a slightly
less optimal image in a single step.

The three step save process does the following:

a Do Perm Save Image As..., then exit and restart.

b Do Collect All Garbage, snapshot, exit, restart (removes transient
objects in PermSpace).

c Snapshot one more time (compacts objects in PermSpace).
Application Developer’s Guide 21-23

Application Delivery
Skip default scan for unreferenced items
The menu item File Package Runtime Image normally performs a scan
for unreferenced items as part of the packaging process. To skip
doing the scan, select this option.

Suppress splash screen and herald sound
Prevents the splash screen from being displayed, and the herald
sound from being played, upon image startup. See “Splashscreen
and Sound” on page 21-15 for additional options.

Action on last window close
This option selects what is to be done when the last window in the
runtime image is closed. The choices are:

• Shutdown image - shutdown the image using normal quit
procedures

• Continue - continue processing without any windows open

• Standard Behavior - allow base image behavior to determine the
action

If you select Shutdown image, and there are no windows open when the
application startup procedure completes, then the image will be
shutdown at that time.

For a headless application, these options have special meaning.
Refer to “Delivering a Headless Application” on page 20-8 for more
information.

Platforms Page
This page allows you to select UILooks and Operating Systems to be
supported in the runtime image. By default only the current platform and
look are supported and any others required must be selected. These
selections are used to set defaults for classes to be deleted from the
system.

Exceptions Page
This page specifies information needed to handle exceptions in the
runtime image:

Error Notifier Class
The default class, RuntimeEmergencyNotifier, notifies the user and
creates a diagnostic dump when an unhandled exception is detected.
If you want to enhance the standard behavior, you can subclass
RuntimeEmergencyNotifier and specify your class here. Other error
21-24 VisualWorks

Runtime Packager Process Details
handler classes provided with Runtime Packager are
RuntimeDebugNotifier and RuntimeQuietEmergencyNotifier. The fully
qualified name of the class to be used must be entered in this field.

Image Dumper Class
The default class, RuntimeImageDumper, is used by
RuntimeEmergencyNotifier to create the diagnostic dump when an
unhandled exception occurs. If your emergency error handler does
not use the dumper class, the dumper class may be omitted here.
The fully qualified name of the class to be used must be entered in
this field.

Error Log Path Name
The diagnostic dump created on unhandled exceptions is written to
the file named here. This file should be writable by the runtime user
for a dump to be created. Exceptions occurring during the final
stages of the image stripping process are also reported as dumps to
this file. If you do not want dumps to be created, leave this field blank.

Parcels Page
This page allows you to provide information about parcels that will be
loaded into the runtime image. Each parcel defined in the current image
is listed, enclosed in brackets (<>). Parcels and applications indicated as
loadable are shown in the selection list as bold items.

The following information can be provided for each parcel or application
by selecting it from the list:

Parcel is loaded into image at runtime
Select this option for each parcel that is to be loaded into the image
during runtime execution. If unchecked, the code contained in the
parcel is saved in the image, and the parcel does not need to be
included with the application. If checked, other parcel options can be
set, such as saving the parcel.

Unload before saving runtime image
Select this option to cause the parcel or application to be unloaded in
the normal way before stripping and saving the runtime image. If this
option is not selected, all classes and methods defined in the parcel
or application are deleted before saving the runtime image, but pre-
unload and remove actions are not performed.

Save options
The Save Loadable Parcels step to follow allows you to save parcels that
are loaded into the runtime image. This option controls how the
selected parcel is to be handled in that step. The choices are:
Application Developer’s Guide 21-25

Application Delivery
• Strip unreferenced items and save

Saves only those classes and methods that are determined to
be referenced. The contents of the parcel in the image are not
changed, but the version of the parcel saved omits
unreferenced items.

• Save full parcel

The full contents of the parcel, including unreferenced items are
saved based on the current definition of the parcel in the image.

• Do not save parcel

The parcel is not saved. You should ensure that the parcel is
saved by using the Parcel Browser before the Test step is done
and before using the runtime image.

Path name
After the scan for referenced items is completed, loadable parcels are
stored. Each parcel is stored in the file specified with this option. The
path is required for the parcels that are to be saved. If the parcel is
not to be saved, empty this field.

Parcel operations
The following operation buttons are provided for convenience. The
operations can also be performed in a Parcel browser.

• New Parcel - creates a new empty parcel and adds it to the list.

• Unload Parcel - unloads the currently selected parcel. This removes
classes and extension methods defined in the parcel from the current
image.

• Discard Parcel - discards the currently selected parcel. This removes
the definition of the parcel from the image and copies source of the
parcel to ensure that the changes are recorded.

• Browse Parcels - open the Parcel Browser.

Stripping Page
This page allows specification of options that control the final stripping
step. These options are:

Remove system organization
Remove the system organization and categories. This option will
reduce the size of the runtime image, but may conflict with some
services that require categories to be present. Defined categories are
replaced with empty category objects so that functions which expect
such objects to be present can operate without raising exceptions.
21-26 VisualWorks

Runtime Packager Process Details
Package external interfaces
Prior to creating the stripped image, evaluate each instance of
CMacroDefinition and replace it with the resulting value.

Merge method and block byte codes
The byte codes that control the operation of the virtual machine are
merged so that unique values are stored in a single instance of
ByteArray rather than being duplicated.

Use compact compiled methods
CompiledMethod objects contain pointers to source code and other
objects not used in the runtime image. This option will cause a
replacement class to be used eliminating the extra storage needed
for the pointers.

Merge literals
Multiple instances of compiler generated literals with the same value
are merged into single instances. This option should be used very
carefully since it can cause some application bugs to be manifest in
ways that could be very difficult to debug.

Merge methods
Multiple instances of methods that are equal except for the class in
which they appear are merged into a common method. In many
cases, this operation is safe, but since the identity of merged
methods cannot be determined in all cases, there are possible
exposures, especially in some exception handling logic.

Remove unreferenced globals
Unreferenced globals are set to nil and removed from their name
spaces during the final stripping step if this option is selected.

Trace Level
During the final stripping step additional information can be logged in
the progress notifier window so that hangs or crashes can be
isolated. For the Medium setting, classes and globals being removed
are shown. For the High setting, individual methods are shown as they
are stripped from the image.

Prestrip Class
Prestrip Class names a class to which a message will be sent before
the actual stripping processing commences. This message can be
used to invoke user logic for customizing some aspects of the
stripping process, for example, by becoming a dependent of
RuntimeManager and monitoring changed: messages used to inform of
progress through the different steps in the stripping process. The fully
qualified name of the class should entered in this field.
Application Developer’s Guide 21-27

Application Delivery
Prestrip Method
Prestrip Method names the method to which the pre-strip message is to
be sent. This method must be one the prestrip class can respond to.
If no message is to be sent, Prestrip Method and Prestrip Class should be
blank.

Specify Items to Keep and Delete
In this step you specify globals, classes, and methods that should be kept
or deleted in the final runtime image. Items are divided into three major
categories:

• Deleted - these are always deleted in the runtime image.

• Contingent - these are deleted if no references to them can be
detected.

• Kept - these are kept in any case.

Being deleted has different meanings for different types of objects. For
globals, being deleted means that the global's name is removed from the
system, and any previous references to the global by name become
references to nil. For classes, being deleted means that the class is
replaced with a subclass of Object having no methods of its own and
having the class name removed from the system. Deleting a method
means removing it from the method dictionary in which it appears.

When a class is kept, only the definition of the class is necessarily kept in
its entirety. Methods that are unreferenced can still be deleted from kept
classes. When a method is kept, it will remain in the runtime image only if
its defining class is not otherwise deleted.

Several rules are enforced in the specification of kept and deleted items.
You cannot delete a class if subclasses of it are kept. Specifying that a
class is to be deleted implicitly specifies that its subclasses are also to be
deleted.

The packages/bundles selection list allows you to select which package
or bundle for which classes and shared variables (“Globals”) are
displayed. When you select a package or bundle, all classes in that
package/bundle are shown in the class selection boxes. When you select
classes, all methods implemented on either as instance methods or as
class methods are shown in the method selection boxes.

Name spaces do not appear with the list of classes and shared variables.
There is no provision for keeping or deleting a name space, and by
default all name spaces are kept.
21-28 VisualWorks

Runtime Packager Process Details
The status of classes and methods can be changed by pressing the
buttons between the selection boxes. The meaning of the buttons is
mnemonic:

>> means move all selected items from the left to the right.

<< means move all selected items from the right to the left.

After items are moved, they become the selected items in the box to
which they are moved. Hence, you can easily undo an erroneous button
press by pressing the button for movement in the opposite direction.

Pop-up menus are provided in each selection box. These can be used to
select all items currently appearing in the box, clear all selections, look at
specific items, and scan for references. Two types of reference scan are
provided. The standard reference scan is provided by the Browser
classes and may miss some references that will be detected during the
more complete scan for referenced items in the next step. The extended
reference scan is more inclusive. It also allows you to filter out the items
that are not being kept in the runtime image, which is especially useful
after the scan for referenced items has been completed in the following
step.

Classes that are dynamically loaded through the use of parcels should be
indicated as contingent or kept in the runtime image.

A menu option is provided for resetting classes and methods to their
default settings. Only classes and methods in currently selected
categories (or applications) will be affected. This permits a more selective
way to reset to default values than would be achieved by pressing TAKE
DEFAULTS in the main window.

Pop-up Menus
The following pop-up menus are used to perform actions with respect to
applications, categories, classes, and methods shown in this step. These
pop-up menus can also be selected from the window's main menu.

Packages/Bundles Menu

• Select all - Select all categories or applications

• Clear all - Clear all category/application selections

• Find Package ... - Search list for packages

• Find Class/Variable/Name Space... - Search list for classes, shared
variables, and name spaces

• Keep - move all package/bundle contents to the Kept list.
Application Developer’s Guide 21-29

Application Delivery
• Delete - move all package/bundle contents to the Deleted list.

• Make Contingent - move all package/bundle contents to the Contingent
list.

• Browse - Open a system browser on the selected packages/bundles.

• Reset to Defaults - Reset either all or only selected packages/bundles to
their default settings.

Classes Menu

This menu is available as a pop-up menu for Deleted, Contingent, and Kept
classes. This menu can also be selected via the Classes entry in the
window's menu bar.

• Select all - Select all classes in the related selection list

• Clear all - Clear all selections in the related selection list

• Browse - Open a browser on the selected class

• References - Use the Extended References Browser to located
references to the selected class

Methods Menu

This menu is available as a pop-up menu for Deleted, Contingent, and Kept
methods. This menu can also be selected via the Methods entry in the
window's menu bar.

• Select all - select all methods in the selection list

• Select category - select methods in a chosen category

• Clear all - clear all selections in the selection list

• Browse - open a method browser on selected methods

• Implementors - browse all implementors of the chosen selector

• References - Use the Extended References Browser to located
references to the chosen selector

Defaults

By default, some classes are kept. These are kernel classes and they are
almost certainly needed to make a runtime image. For a complete list,
see the method defaultClassesKeptVW in class RuntimeBuilderItems.
21-30 VisualWorks

Runtime Packager Process Details
Class RuntimeManager within Runtime Packager is needed for image start-
up and is by default also a kept class. RuntimeManagerStripper is a special
subclass of RuntimeManager used to complete the stripping operation and
is required. It is eliminated in the final runtime image.

Global objects are not kept by default, but the major system globals are
referenced in numerous places will be detected as referenced.

Classes that are not generally used in the runtime image are deleted by
default. These classes come from the Tools name space and related Tools
categories. For a complete list, see the method defaultClassesDeletedVW in
class RuntimeBuilderItems.

When an image starts, ObjectMemory sends update:with:from: messages to
all its dependents. By default, the classes of all dependents of
ObjectMemory are kept. If you know that a dependent is not needed in the
runtime image, you can specify the class as deleted.

Scan for Unreferenced Items
In this step the image is scanned to detect classes, methods, and globals
that should be kept in the runtime image. Conceptually, the scan is a
straightforward process. Kept methods within kept classes are scanned
for selectors representing message sends and references to classes and
globals. As new methods, classes, and globals are detected, they are
added to the list of kept items and, in turn, scanned for references to
other items. Eventually the processes reaches the point at which no new
references can be detected and the scan ends. For details of this process
and how to modify it, see “Customizing Detected References” on
page 21-41.

The initial kept classes and methods are those indicated as such in the
previous step plus the application startup class and method as well as
classes named in the various Options specifications.

If a baseline image is to be built where unreferenced classes and
methods are kept for future use, the Scan for Unreferenced Items step should
be skipped. When this step is skipped, only classes and methods
explicitly indicated as deleted and those associated with runtime loadable
parcels will be removed from the current image to create the baseline.

Deleted classes are bypassed in the scan for referenced items, as are
deleted globals and methods.

The following special class methods are used to allow classes to specify
additional items to be kept:
Application Developer’s Guide 21-31

Application Delivery
dynamicallyReferencedClasses
Answer a collection of classes or qualified class names that are to be
kept in the runtime image.

dynamicallyReferencedSelectors
Answer a collection of symbols naming methods that are to be kept in
the runtime image.

dynamicallyReferencedGlobals
Answer a collection of qualified names of globals that are to be kept
in the runtime image.

itemsReferencedBySelector: aSymbol
Answer the collection of literals including symbols, variable bindings,
and classes referenced in the instance method named by aSymbol.
In the scan, these literals replace entirely those found in the method
itself.

itemsReferencedByClassSelector: aSymbol
Answer the collection of literals including symbols, variable bindings,
and classes referenced in the class method named by aSymbol. In
the scan, these literals replace entirely those found in the method
itself.

When these selectors are implemented as class methods, the answers
provided by them are used during the scan to include classes, methods,
and globals to be considered referenced and thus kept in the runtime
image. If an improper answer is returned by these selectors, a dialog is
used to alert you to the error.

To start scanning, click the Do This Step button. A window will open to show
you progress reports. Scanning a large image might take some time.
When the scan is complete, a dialog box opens summarizing the results
of the scan. You can see more detailed information by proceeding to the
next step.

If you choose to bypass this step, only classes, methods, and globals that
you have explicitly indicated as deleted will be removed from the runtime
image.

Review Kept Items
In this step, you review the detailed results of the previous step. The first
time through, this might not be especially meaningful, but you probably
want to make sure that your application was not somehow bypassed in
the scan and thus declared deleted. If you are pursuing an aggressive
strategy of removing all extraneous classes, you would want to check
here to see that you have eliminated exactly what you intended.
21-32 VisualWorks

Runtime Packager Process Details
When you click Do This Step, a window with a collection of selection boxes
opens, that can be used to view categories, classes, and methods. In this
step, there is no contingent category. Everything being deleted is shown
as such.

You can select classes to see which of their methods are being deleted. If
you select a deleted class, you will be shown methods, some of which
may be kept and some deleted. All methods are removed from a deleted
class even if some appear as kept here. You can use pop-up menus to
browse or scan references for all methods shown.

There are no decisions to make in this step. If you find that something
needs to be changed, you must return to an earlier step to make the
change. In all likelihood, you will want to rerun the scan for referenced
items after your change.

RuntimeManagerStripper is shown as kept when, in fact, it will be eliminated
in the final runtime image. This class is a special case due to the need to
discard the stripper methods after the final image has been created, but
not before. Similarly, copyright methods are preserved in the final image
but may appear as deleted here. These are also treated as special cases
to preserve copyright markings.

Press the Close button to close this window. If you want to write a report
file, press the Report button. You will be prompted for the name of the file
to which the report should be written. After the report is written, a file
browser is opened on the report file created.

Pop-up Menus
The pop-up menus used in this step function the same as those
described in “Specify Items to Keep and Delete” on page 21-28.

Save Loadable Parcels
Parcels identified as loadable in the runtime image are saved to files in
this step. The identification of which parcels are loadable and the file
names under which they will be saved occurred in the Set Common Options
step earlier. Changing which parcels are loadable would affect the
outcome of the previous scan step.

Parcels are saved in their entirety except for those where the Save only
referenced classes and methods option was selected. For these parcels,
only classes and methods found to be referenced in the previous scan
step will be saved. The contents of the parcel in the current image are not
changed.
Application Developer’s Guide 21-33

Application Delivery
Parcels are saved without source. Care should be taken that a version of
the parcel file (*.pcl) is not overwritten when a corresponding parcel
sources file (*.pst) is present. If the overwrite occurs, the source file will
not be usable and the source for the parcel may be lost.

To start this step, click Do This Step. The names of parcels saved are
written to the Transcript as the saves proceed. If a file is about to be
overwritten, you will be prompted for permission to overwrite the file
before proceeding.

If there are no runtime loadable parcels, this step can be skipped. If no
parcels have been defined as runtime loadable, you will be notified if this
step is attempted.

Test the Application
It would be nice to say that the process of scanning references was
foolproof and that you could rest assured that all the classes and
methods, and only the classes and methods, needed to run your
application will remain in the runtime image. This, however, is not the
case. A number of types of references can slip past unnoticed causing
the application to die an untimely death in the runtime version.

Typically the problems revolve around dynamically created names. For
example, the following code would cause an undetected reference:

pickOne: aString
self perform: (#pick, aString) asSymbol.

In general, there is no way to know what values aString might assume,
even if you could connect them together with the naming convention that
prefixes them with #pick to form a selector name. Classes and globals can
be referenced in similar dynamic fashion.

Similarly, extraneous references are very common. For example, there is
frequently a chain of references leading to Visual Launcher, which, in
turn, references most programming tools, none of which are probably
needed in the runtime image. The only way to eliminate these extraneous
references is to delete either classes or methods explicitly.

This step provides a way for you to take a broad-brush approach towards
which classes and methods are needed and find out where you were
wrong by running test cases. When you reference a deleted class or
method during a test, it is recorded as referenced and can be fed back to
the selection of kept items. If your test cases are sufficient, you will
discover all dynamic references. At a minimum, you should be able to
discover the pattern of which things are dynamically referenced and
which are not.
21-34 VisualWorks

Runtime Packager Process Details
Note that image startup and shutdown processing is not included within
the scope of a test. Deleting classes or methods used in startup or
shutdown is a common source of difficulty in creating a viable runtime
image. In most cases, dumps written to the error log are the best way to
debug startup or shutdown problems.

If you have extra windows open, for example a browser, you should close
or minimize them before beginning an application test. References to
classes and methods from all open windows are considered part of the
application being tested. Having extra windows open tends to result in
extraneous references and may cause you to include unneeded classes
and methods in the runtime image.

Buttons along the top of the window control activities during the
application test. These buttons are:

Save Image
In spite of all precautions to the contrary, it is possible that the image
could be corrupted during the test. If you don’t have a recently saved
image, click this button to save it now. Once the test starts, you do not
want to save the image.

Begin Test
This button begins the test process. All deleted classes and methods
are altered to allow the detection of any references to them. When
that process has been completed, the startup message, if any, is sent
and the application starts its execution in the normal way.

End Test
When you have completed application testing, pressing this button
will restore the image to its status prior to the beginning of the test. If
debugger windows are opened during the test, you might want to
press this button before debugging the problem.

Accept Dynamic References
As deleted classes and methods are referenced, they are reported in
the scrollable text area below. If you want to accept all such classes
and methods as items to be kept in the runtime image, press this
button.

Ignore Dynamic References
In some cases you may see references to items that are clearly not
part of your application. For example, you may see references to the
debugger if an error occurs. To ignore the dynamic references
appearing in the text area below, press this button. All dynamic
references displayed will be ignored. This button is active both during
and after the test. If pressed during the test, displayed dynamic
Application Developer’s Guide 21-35

Application Delivery
references revert to the status they had at the beginning of the test. If
pressed after the test, displayed dynamic references are simply
ignored.

References to classes and methods that would have been deleted in the
runtime image are shown in the scrollable text area as they occur. Only
the first reference to each item is shown. Once the references are
accepted or are ignored, the text area is cleared.

After the test ends, press OK to have all accepted dynamic references
included as kept items. You might want to go back and rerun the scan
step at this time to pick up other classes and methods that are now
reachable but just did not happen to get used in your test. If you press
Cancel, no changes are made to the kept items and the window is simply
closed.

Classes and methods that are potentially loadable through parcels do not
get special treatment in this step. The assumption is that loadable parcels
will be loaded into the image through command processing at start up or
through some equivalent process. Do not allow parcels to be loaded
during the test or you not be able to recover the source for methods
contained in such parcels, as would be case if runtime parcels into any
development image.
21-36 VisualWorks

Runtime Packager Process Details
Set Runtime Memory Parameters
This step provides a way to set memory parameters for the runtime
image.

Space sizes
• Eden - initial space used for creating new object

• Survivor - space used for new objects that have graduated from Eden

• Large - space for objects larger than 1K

• Stack - space holding the portion of the stack not converted to objects

• Code Cache - cache of dynamically compiled method machine code

• Old - tenured objects that have graduated from survivor space

Policy Values
• Growth Increment - how much additional memory to allocate at a time

when growing memory

• Retry Decrement - how much less to ask for if memory is not available
when an attempt is made to grow memory

• Growth Regime Limit - size at which reclaiming space is preferred to
expansion

• Memory Limit - maximum amount of memory allocated

Space sizes have a minimum value of 10000 bytes and a maximum value
of 1000 times the default sizes at startup. Growth Increment must be at least
twice Retry Decrement and no more than Memory Limit.

Notes
Spaces sizes are derived from values supplied by the method
ObjectMemory class>>defaultSizesAtStartup.

Memory policy values are taken from the following aspects of
MemoryPolicy:

• preferredGrowthIncrement

• growthRetryDecrement

• growthRegimeUpperBound

• memoryUpperBound

When the values specified here are recorded in the parameters file, they
are recorded as double floating point fractions of the default sizes at
image startup. It is possible that a small difference could appear between
Application Developer’s Guide 21-37

Application Delivery
the value entered and the value restored when loaded from the
parameters file. When moving from one platform to another, the values
will be converted proportional to the default values of the new platform.
This conversion should be reviewed whenever a parameters file created
for one platform is used on another since simple proportions may not be
the optimal settings. If you have not changed any of the values provided
here from their initial defaults, then the default values on image start-up
would always be used regardless of platforms since the fraction recorded
in the parameters file would be 1.0 in each case.

Strip and Save Image
This step is the final one. Deleted classes and methods are removed and
the final image is saved under the name provided earlier on the options
window. The final image is created with the following steps:

1. The image is checked for instances of applications that will be
deleted. Associated windows will be closed automatically if you press
Yes in the dialog box.

2. VisualLauncher instances are closed if you so authorize by pressing
Yes in the dialog box. You probably do not want the standard launcher
in your runtime image, but you might want to use instances of the
launcher in your application. If so, you should close the launchers
manually and just say No here instead of closing all launchers
automatically.

3. You will be given one last chance to change your mind.

4. Parcels that are loadable at runtime are removed from the image.
Only the definitions are removed. Classes and methods defined in
these parcels are removed in a later step of the stripping process.

5. Subclasses of ExternalInterface are packaged for the runtime
environment. C macros are fully expanded.

6. The emergency notifier is installed. If you are using the default notifier
class RuntimeEmergencyNotifier, any errors after this point will cause a
dump file to be written. If the debuggers are stripped out this could be
the only way to debug a problem in this step.

7. Sources are discarded. That is, the image will no longer look for
sources or create changes entries.

8. A new emergency evaluator is installed. The evaluator is invoked
when you press Ctrl-Shift-Y. The replacement evaluator is a dialog
confirming that you want to quit now.
21-38 VisualWorks

Runtime Packager Process Details
9. A series of mundane clean-ups are done. One of these is clearing the
Transcript. The transcript is written to the dump file on errors, and you
might want to place application error messages there even if the
transcript is not shown to the user.

10. If you requested deletion of the compiler, the default pop-up menu for
text fields that could contain code is replaced with the menu for
straight text (the compiler is needed to evaluate anything). A few
other menus that reference the compiler are not altered. If you select
DoIt from these menus, the request is ignored.

11. System and method categories are discarded if the remove system
organization and categories option was selected.

12. Methods, classes, and globals are deleted from the image. Copyright
notices in the method named copyright are always retained.

13. If selected, literals are merged based on value.

14. If selected, multiple instances of the same byte code string are
consolidated into a single instance referenced from multiple methods.

15. If selected, multiple instances of the same method are consolidated
into a single instance as a method in RuntimeMergedMethodOwner.

16. If the compact compiled methods option was selected the method
dictionaries are rebuilt with instances of CompiledMethod replaced by
RuntimeCompiledMethod instances.

17. The symbol table is rehashed to reclaim space from unreferenced
symbols.

18. You are informed that the image is about to be saved. This window
and the one appearing later do not have controllers. You will be given
5 seconds to read the contents and then the window is closed
automatically.

19. The garbage collector runs to remove all the deleted objects from the
image. A Perm Save is then done.

20. Another window appears letting you know that the save was done
successfully.

21. The image exits.

If you are using the three step procedure for saving the image, the image
is left in a state in which another save is done upon image startup for the
next two times the image is launched. A garbage collection is done before
the first of these saves.
Application Developer’s Guide 21-39

Application Delivery
You now have a stripped runtime image.

Debugging a Deployed Image
Although a deployed image does not contain development tools, such as
the debugger, there is still a limited amount of debugging facility available
for a deployed image.

The default Runtime Packager configuration opens a notifier with a brief
message describing the error. It also writes a file, by default named
error.log, which contains more diagnostic information and a message
stack. These actions are specified on the Set common options, Exceptions
page.

Given the information provided in the error log file, you should be able to
trace the source of the error in the unstripped image using the usual
methods.

You may also provide your own Emergency Notifier to enhance the
information and features of the one provided by Runtime Packager.

Customizing the Emergency Notifier
Notifiers to handle otherwise handled exceptions are provided in
RuntimeErrorNotifier and its subclasses. A different class, for example, a
subclass of RuntimeEmergencyNotifier, can be specified as an option for the
Error Notifier Class. This notifier is invoked by sending the class the
message notify: anException context: aContext when an unhandled
exception occurs.

RuntimeErrorNotifier provides the basic mechanics for handling the
exception, but does not include a user interface. Typically one of the
subclasses of RuntimeErrorNotifier would supply the necessary support for
the user interface. The following hierarchy is supplied with Runtime
Packager:

RuntimeErrorNotifier "abstract class"
RuntimeEmergencyNotifier "terminates after notifier"

RuntimeDebugNotifier "user decides whether to terminate"
RuntimeQuietEmergencyNotifier "writes error log without notification"
21-40 VisualWorks

Customizing Detected References
Class variables in RuntimeEmergencyNotifier carry the text of messages
presented to the user and permit changing the messages merely by
changing the value of the class variable prior to stripping the image. The
string values of these variables can be changed through the following
accessor functions:

RuntimeErrorNotifier prevents recursive error conditions by setting the class
variable ErrorState to different values as the error notification processing is
done. If another unhandled exception occurs during the notification
process itself, processing is restarted with few steps being attempted.
Subclasses of RuntimeErrorNotifier can take advantage of this behavior by
overriding only selected methods. See RuntimeQuietEmergencyNotifier for
an example.

Actions taken to record diagnostic information are controlled by the Image
Dumper Class option specification, which by default is RuntimeImageDumper.
To change this behavior, either supply your own class or use a class from
the following hierarchy:

RuntimeDumperFramework
RuntimeShortImageDumper

RuntimeImageDumper

Customizing Detected References
The process of scanning for unreferenced items can be customized for
the classes, methods, and globals that are discovered as referenced.
These references can be altered by explicit specification through the user
interface, but including the overrides in the application itself offers
advantages in terms of maintenance and removes some possibilities of
error.

These customizations are performed by way of class methods detected
during the scan process. When a class is found to referenced, the class
methods implemented by the class itself, as opposed to those inherited,
are examined. The following class methods are invoked if implemented
by the class:

dumpFailedMsg: a diagnostic dump could not be written

userInterruptMsg: control-Y was pressed (user interrupt)

errorOccurredMsg: an unhandled exception has occurred (programming
error)

emergencyAbortText: shift-control-Y was pressed (normally emergency
evaluator
Application Developer’s Guide 21-41

Application Delivery
dynamicallyReferencedClasses
Answers a collection of classes or qualified class names that are to
be kept in the runtime image. This method could be simple as a literal
containing an array of class names or much more complex.

dynamicallyReferencedSelectors
Answers a collection of symbols naming methods that are to be kept
in the runtime image. Again, this method could be a simple literal,
enforce an application naming convention, or perform a more
complex analysis of the image.

dynamicallyReferencedGlobals
Answers a collection of qualified names for globals that are to be kept
in the runtime image.

When a selector is found as referenced, all implementations of the
selector in referenced classes are examined for further references. The
following class methods can be implemented by the implementing class.
If found, these methods can supply an alternative collection of references
to replace the references that would have been inferred by the usual
algorithm used in the scan process.

itemsReferencedBySelector: aSymbol
Answer the collection of literals including symbols, variable bindings,
and classes referenced in the instance method named by aSymbol.
In the scan, these literals replace entirely those found in the method
itself.

itemsReferencedByClassSelector: aSymbol
Answer the collection of literals including symbols, variable bindings,
and classes referenced in the class method named by aSymbol. In
the scan, these literals replace entirely those found in the method
itself.

If nil is answered by these methods, then the normal inferred references
are used.

Examples of the general pattern used by these customizing methods can
be found in class RuntimeManager.
21-42 VisualWorks

Customizing Image Stripping
Customizing Image Stripping
RuntimeManager provides for customizing the stripping process in several
ways.

The Set common options, Stripping page options allow you to name a class
and method to be invoked just prior to stripping the image in the Prestrip
Class and Prestrip Method fields. The method you supply allows you to
establish the necessary environment for further stripping, if needed.

During the stripping operations, RuntimeManager changed: messages are
sent to allow your application to monitor progress in the final stages of
stripping the image and to insert the necessary special processing
required for the particular application being stripped.

RuntimeManager class>>postStripBlock: allows you to register a block that is
evaluated after the stripped image has been created. The block is
evaluated just before the image save. The postStripBlock is a convenient
place to release any relationships used only during the stripping process.

Trouble Shooting

Workspace or Browser is Opened with the Application
Typically this is because you left the window open before stripping.
Perhaps it was minimized. Make sure all windows are closed and restrip
the image.

Parcel File not Readable
A notifier tells you that “Parcel file xxx.pcl is not readable.”

If you are using a parcel not built by Runtime Packager, the parcel is
probably not on the deployed image’s parcel path. Try copying the parcel
file to the image directory.

Application Cannot Find a Parcel Source File
A notifier tells you that it “Failed to find source file xxx.pst.”

This occurs if you are using a parcel not built by Runtime Packager, and
was saved with sources, but the source file is not in the same directory
with the .pcl file. For deployment purposes, you should rebuild the parcel
without sources.
Application Developer’s Guide 21-43

Application Delivery
Application Exits Immediately
The splash screen displays, but the application exits immediately.

Usually you want the application to close when there are no more
windows open (Action on last window close option on the Common Options,
Details page). If the specified action is Shutdown image, which is the default,
then your application is not opening a window for some reason.

If you are trying to build your deployment image with an application
window open, check to make sure your application code is being kept
(see the Specify classes and methods to keep step).

Otherwise, investigate to see why your Startup method and class or your
post-load action are failing to open your application window.

An Identifier has no Binding
A notifier opens saying “Unhandled exception: The identifier xxx has no binding”

This indicates that the item specified (xxx), usually a class, is not defined
in the system. On opening an application that is defined in a parcel, it
may mean that you didn’t specify the parcel on the command line. Later
in an application it may mean the same thing, that the defining parcel isn’t
loaded, or simply that the class is not defined in the system.
21-44 VisualWorks

A
VisualWorks Smalltalk Syntax Description

Overview
In the sections that follow, the syntax of the Smalltalk language is formally
defined with the aid of Backus-Naur form. The following characters have
special meanings unless they are enclosed in quotation marks.

Lexical Primitives
The lexical syntax is formally ambiguous, in that, for example, the string
abc: can be parsed either as an identifier followed by a non-quote-
character, or as a keyword. We resolve this ambiguity in all cases in favor

Character Description

= expands to

‘ ’ terminal (single quotes surround an atomic literal)

“ ” comment (double quotes surround a comment)

| or

+ one or more

* zero or more

[] zero or one

\ excluding the following

... through

() grouping

< > keyboard key
Application Developer’s Guide A-1

of the longest token that can be formed starting at a given point in the
source text. Thus abc: is always considered to be a keyword, if the a is
the beginning of the token.

Character Classes
The definition of token is not used anywhere else in the syntax; it is
supplied only for exposition.

Numbers

Other Lexical Constructs

token = number | identifier | special-character | keyword | block-argument |
assignment-operator | binary-selector | character-constant | string

digit = ‘0’ | ... | ‘9’

letter = ‘A’ | ... | ‘Z’ | ‘a’ | ... | ‘z’ | non_ASCII_Unicode_letters

binary-character = ‘+’ | ‘/’ | ‘\’ | ‘*’ | ‘~’ | ‘<’ | ‘>’ | ‘=’ | ‘@’ | ‘%’ | ‘|’ | ‘&’ |
‘?’ | ‘!’ | ‘,’ | Unicode_Symbol_math | Unicode_Symbol_currency |
Unicode_Symbol_other

whitespace-character = <tab> | <space> | <newline>

non-quote-character = digit | letter | binary-character | whitespace-character |
‘[’ | ‘]’ | ‘{’ | ‘}’ | ‘(’ | ‘)’ | ‘_’ | ‘^’ | ‘;’ | ‘$’ | ‘#’ | ‘:’ | ‘.’ | ‘-’ | ‘`’

digits = digit+

big-digits = (digit | letter)+ “as appropriate for radix”

number = digits (‘r’ [‘-’] big-digits | optional-fraction-and-exponent)

optional-fraction-and-exponent = [‘.’ digits] [(‘e’ | ‘d’ | ‘s’) [‘-’] digits]

extended-letter = letter | ‘_’

identifier = extended-letter (extended-letter | digit)*

block-argument = ‘:’ identifier

assignment-operator = ‘:’ ‘=’

keyword = identifier ‘:’

binary-selector = (‘-’ | binary-character) [binary-character]

unary-selector = identifier

character-constant = ‘$’ (non-quote-character | ‘'’ | ‘"’)

symbol = identifier | binary-selector | keyword+
A-2 VisualWorks

Atomic Terms
Atomic Terms

Note that “binding” here is used in a more general sense than elsewhere
in this document, to include variables and bindings.

We originally intended that the definition of array-literal be the following:

array-literal = ‘#’ ‘(’ literal* ‘)’
This would have simplified the syntax, eliminating the need for array-
literal-body and byte-array-literal-body as separate constructs. However,
this definition is not backward-compatible with previous versions of the
Smalltalk-80 language. Specifically, it requires symbols and arrays
appearing within an array literal to be quoted with #. Because of this, we
adopted the more complex definition.

string = ‘'’ (non-quote-character | ‘'’ ‘'’ | ‘"’)* ‘'’

comment = ‘"’ (non-quote-character | ‘'’)* ‘"’

separator = (whitespace-character | comment)+

literal = [‘-’] number | named-literal | symbol-literal | character-literal | string |
array-literal | byte-array-literal | binding-literal

named-literal = ‘nil’ | ‘true’ | ‘false’

symbol-literal = ‘#’ (symbol | string)

array-literal = ‘#’ array-literal-body

array-literal-body =
‘(’ (literal | symbol | array-literal-body | byte-array-literal-body)* ‘)’

byte-array-literal = ‘#’ byte-array-literal-body

byte-array-literal-body = ‘[’ number* “integer between 0 and 255” ‘]’

binding-name = identifier \ (named-literal | pseudovariable-name | ‘super’)

extended-binding-name = binding-name [(‘.’ binding-name)*]

binding-reference = ‘#’ ‘{’ extended-binding-name ‘}’
Application Developer’s Guide A-3

Expressions and Statements

In order to keep lexical analysis and parsing separate, but still allow
constructs like x:=3 (without a space, making it look like a keyword, x:), we
have had to introduce the alternative

keyword ‘=’ expression
for assignment. This should really be read as though it were

binding-name ‘:=’ assignment

primary = extended-binding-name | binding-reference | pseudovariable-name |
literal | block-constructor | ‘(’ expression ‘)’

pseudovariable-name = ‘self’ | ‘thisContext’

unary-message = unary-selector

binary-message = binary-selector primary unary-message*

keyword-message = (keyword primary unary-message* binary-message*)+

cascaded-messages = (‘;’ (unary-message | binary-message |
keyword-message))*

messages = unary-message+ binary-message* [keyword-message] |
binary-message+ [keyword-message] | keyword-message

rest-of-expression = [messages cascaded-messages]

expression = (extended-binding-name | binding-reference)
(assignment-operator expression | rest-of-expression)
| keyword ‘=’ expression “see below” |
primary rest-of-expression | ‘super’ messages cascaded-messages

expression-list = expression (‘.’ expression)* [‘.’]

temporaries = ‘|’ temporary-list ‘|’ | ‘||’

temporary-list = declared-variable-name*

declared-variable-name = binding-name

statements = [‘^’ expression [‘.’] | expression [‘.’ statements]]

block-constructor = ‘[’ [block-declarations] statements ‘]’

block-declarations = temporaries |
block-argument+ (‘|’ [temporaries] | ‘||’ temporary-list ‘|’ | ‘|||’)
A-4 VisualWorks

Methods
Methods

A special case of a pragma are the <primitive: N> and
<primitive: N errorCode: errName> pragmas. In these cases, the method
invokes a primitive before or instead of invoking the following statements.
The N may be an integer between 0 and 65535. The errName is not a
literal, but a binding-reference, which identifies an object explaining why
the primitive could not run successfully.

method = message-pattern pragma* [temporaries] statements

message-pattern = unary-selector | binary-selector declared-variable-name |
(keyword declared-variable-name)+

pragma = ‘<’ unary-selector | (keyword literal)+ ‘>’
Application Developer’s Guide A-5

A-6 VisualWorks

B
Special Characters

Overview
A variety of special characters, such as the yen sign (¥), can be typed
into VisualWorks text views by using a special key sequence. A prefix
known as the compose key is the first element in the key sequence,
followed by two characters that define the desired special character. On
some keyboards, a single key has been defined to send the required
sequence, such as the dollar sign on American keyboards. If the font in
use does not contain a character, it is displayed as a black square.

For example, <Control>-k = Y is the sequence for composing the yen
sign.

The default compose key is <Control>-k. To change the default key,
execute the expression CharacterComposer setComposeKey. The new
compose key will affect newly created views but not existing views.

To create special characters programmatically, send an asCharacter
message to the numeric representation of the character. Numeric codes
are given in the following charts as hexadecimal values, and so can be
displayed as follows, again, for the yen sign:

Transcript cr; nextPut: 16r00A5 asCharacter; flush
Note that not all characters can be displayed on all platforms, but are
dependent on fonts installed on the platform. Unsupported characters are
displayed as a black box.
Application Developer’s Guide B-1

Composed Characters
The following table lists the special characters in the left column. The two
characters that make up the body of the compose sequence are shown in
the second column. The hexadecimal equivalents of these two columns
are displayed in the right-hand columns. A description is shown in the
middle column.

Special character Composition sequence Description Character
hex code

characters hex codes

+ + 2B 2B number sign 0023

$ | S 7C 53 dollar sign 0024

@ A A 41 41 at 0040

[((28 28 left bracket 005B

\ / / 2F 2F backslash 005C

])) 29 29 right bracket 005D

{ (- 28 2D left brace 007B

| / ^ 2F 5E vertical bar 007C

}) - 29 2D right brace 007D

~ ^ ^ 5E 5E tilde 007E

¡ ! ! 21 21 inverted exclamation 00A1

¢ | c 7C 63 cent sign 00A2

£ = L 3D 4C pound sign 00A3

¤ x o 78 6F currency 00A4

¥ = Y 3D 59 yen sign 00A5

§ ! s 21 73 section 00A7

© O C 4F 43 copyright 00A9

ª _ a 5F 61 ordfeminine 00AA

« < < 3C 3C << 00AB

- - - 2D 2D horizontal bar 00AD

® O R 4F 52 registered 00AE

° ^ 0 5E 30 degree sign 00B0

± + - 2B 2D plus or minus 00B1
B-2 VisualWorks

Composed Characters
2 ^ 2 5E 32 superscript 2 00B2

3 ^ 3 5E 33 superscript 3 00B3

µ / u 2F 75 micro, mu 00B5

¶ ! p 21 70 paragraph sign 00B6

· . ^ 2E 5E middle dot 00B7

1 ^ 1 5E 31 superscript 1 00B9

º _ o 5F 6F ordmasculine 00BA

» > > 3E 3E >> 00BB

¼ 1 4 31 34 one fourth 00BC

½ 1 2 31 32 one half 00BD

¾ 3 4 33 34 three fourths 00BE

¿ ? ? 3F 3F inverted ? 00BF

Æ A E 41 45 AE diphthong 00C6

Ð + D 2B 44 capital eth 00D0

× x x 78 78 cross 00D7

Ø / O 2F 4F O slash 00D8

| O 7C 4F capital thorn 00DE

ß s s 73 73 German double-s 00DF

æ a e 61 65 ae diphthong 00E6

+ d 2B 64 small eth 00F0

÷ - : 2D 3A divide 00F7

ø / o 2F 6F o slash 00F8

| o 7C 6F small thorn 00FE

Ð - D 2D 44 D with stroke 0110

- d 2D 64 d with stroke 0111

- H 2D 48 H with stroke 0126

- h 2D 68 h with stroke 0127

. i 2E 69 dotless i 0131

Special character Composition sequence Description Character
hex code

characters hex codes

d

H

h

i

Application Developer’s Guide B-3

IJ I J 49 4A IJ ligature 0132

ij i j 69 6A ij ligature 0133

k k k 6B 6B kra 0138

. L 2E 4C L with dot 013F

. l 2E 6C l with dot 0140

- L 2D 4C L with stroke 0141

- l 2D 6C l with stroke 0142

’n n ’ 6E 27 n apostrophe 0149

N) 4E 29 capital eng 014A

n) 6E 29 small eng 014B

Œ O E 4F 45 OE diphthong 0152

œ o e 6F 65 oe diphthong 0153

- T 2D 54 T with stroke 0166

- t 2D 74 t with stroke 0167

‘ ‘ 1 60 31 single quote left 2018

’ ’ 1 27 31 single quote right 2019

“ ‘ ‘ 60 60 double quote left 201C

” ’ ’ 27 27 double quote right 201D

€ = C 3D 43 euro 20AC

™ T M 54 4D trademark 2122

Ω o m 6F 6D omega 2126

1/8 1 8 31 38 one eighth 215B

3/8 3 8 33 38 three eighths 215C

5/8 5 8 35 38 five eighths 215D

7/8 7 8 37 38 seven eighths 215E

← - < 2D 3C arrow left 2190

↑ | ^ 7C 5E arrow up 2191

→ - > 2D 3E arrow right 2192

Special character Composition sequence Description Character
hex code

characters hex codes

L.

l.

L

l

T

t

B-4 VisualWorks

Diacritical Marks
Diacritical Marks
A diacritical mark, such as a circumflex (^), is combined with a character
in a similar fashion. The compose key (<Control>-k by default) comes
first, then a character representing the diacritical mark (taken from the
table below) and finally the base character. For example, to get ñ, you
would type <Control>-k, followed by a tilde (~) and the letter ‘n’.

Programmatically, add the diacritical by sending, for example:

| baseChar diacrit composedChar |
baseChar := $a.
diacrit := 16r0300 asCharacter.
composedChar := baseChar composeDiacritical: diacrit.
Transcript cr; nextPut: composedChar; flush

You can also identify the diacritical by name:

diacrit := Character diacriticalNamed: #grave.
The names are specified in the diacriticalNamed: method definition.

In the following table, the diacritical mark is shown in position relative to a
broken circle representing the base character.

↓ | v 7C 76 arrow down 2193

n o 6E 6F musical note 266A

. j 2E 6A dotless j FC10

Diacritical mark Composition sequence Description Diacritical
hex code

character hex code

` 60 grave 0300

’ 27 acute 0301

^ 5E circumflex 0302

~ 7E tilde 0303

- 2D macron 0304

u 75 breve 0306

. 2E dot above 0307

Special character Composition sequence Description Character
hex code

characters hex codes

j

Application Developer’s Guide B-5

" 22 dieresis 0308

* 2A ring above 030A

: 3A double acute 030B

v 76 hacek (caron) 030C

, 2C cedilla 0327

; 3B ogonek 0328

_ 5F underline 0332

Diacritical mark Composition sequence Description Diacritical
hex code

character hex code
B-6 VisualWorks

C
Virtual Machines

Overview
VisualWorks provides special-purpose virtual machines for development,
deployment, server (headless) deployment, linking with external libraries,
and for engine debugging.

This appendix describes each virtual machine and its appropriate use.
These optional VMs are available for each supported platform.

For details on command line options used when starting an engine, see
“Virtual Machine Command Line Options” on page C-3.

VisualWorks Virtual Machines
By default, the standard development and deployment virtual machines
are installed in the bin/<platform>/ subdirectory of the root
VisualWorks installation directory. Special-purpose engines are installed
in subdirectories, as noted below.

Production Engines
The production engines are called visual or visual.exe. These are
the standard engines, which are stripped of all debug symbols, and are
suitable for deploying VisualWorks applications because of their relatively
small size.

There are also "unstripped" versions of the production engines, which
can be useful in your own development. These include debug symbols,
and so, if you encounter a crash (e.g. by calling external C or COM code
incorrectly), you may be able to use your platform's debugger to
Application Developer’s Guide C-1

investigate the problem. They are named vwPlatformName, for example
vwlinux86 or vwnt.exe, to distinguish them from the standard
engines.

Debug Engines
Debug engines include debug symbols and have assertion-checking
code compiled throughout. They are considerably slower than their
production counterparts, but are suitable for debugging object engine
crashes. They are named vwPlatformNamedbg, for example
vwlinux86dbg or vwndbg.exe, and are located in the debug/
subdirectory for each platform engine. All engines contain debug
functions that can be used to examine the state of the system, trace the
Smalltalk (engine) stack, and so on, using platform debuggers.

Assert Engines
These engines are fully-optimized, but with asserts compiled-in and
enabled. They run at least 50% of the speed of the fully-optimized
production engine, even though they check engine asserts. For for
normal development, this provides perfectly acceptable performance
while checking the engine during normal use. They are named
vwPlatformNameast, for example vwlinux86ast or vwntast.exe,
and are located in the assert/ subdirectory for each platform engine.

Headless and Headful Engines
Most of the Unix platforms now provide a headless engine. These
engines exclude the GUI and window management primitives,
dynamically loading them as required from a shared library. The all-in-
one, “headful” engines are still provided.

The headless engines are named in the vw<platform> format, as
usual. The GUI inclusive engines are named vw<platform>gui.

Each headless engine automatically searches for an associated GUI
shared library when a GUI primitive is first invoked. Engines look for a
shared library of the same name as the engine with “gui.so” appended.
For example, the vwlinux86 engine is headless, and will search for
linux86gui.so if a GUI primitive is invoked. Headful engines have
“gui” appended to their name, to the corresponding headful engine is
vwlinux86gui.
C-2 VisualWorks

Virtual Machine Command Line Options
Linkable Object Engines
All VisualWorks object engines can access external code by dynamically
loading external libraries (called variously shared libraries, shared
objects, DLLs, etc.). This is the preferred way of interfacing to external
libraries. But, if required, you can statically link in code using the linkable
object engines. These are called visual.o or visual.lib, and are in
the $(VISUALWORKS)/bin/<platform>/userprim directories, along
with associated makefiles.

Console Object Engines
In server configurations one may want to run the system from the
command-line, or console, possibly without a user interface (headless),
and possibly to read from standard input and/or write to standard output.
On the UNIX and Linux platforms, the standard object engines can run
from the command-line. But on Windows, GUI and command-line
applications require different executables. So for Windows we also
provide “console” versions of the three standard engines called,
vwconsole.exe, vwntconsole.exe, vwntdgbconsole.exe, which
can be used to read from standard input and/or write to standard output.

Virtual Machine Command Line Options

All platforms
When starting VisualWorks, you may specify the following command line
switches after the name of the virtual machine:

-?
Report the available object engine level command-line options.

-console
Open a console window for stdout and stderr.

-v
Report version information.

-h bytesValue
Request the specified number of extra bytes be reserved for heap
headroom at startup. The value is decimal, unless prefixed with O for
octal or Ox for hexadecimal. The value is bytes unless suffixed with k
for kilobytes, m for megabytes, or g for gigabytes.
Application Developer’s Guide C-3

-l loadPolicy
Specifies the image load policy:
promote - load all objects into perm space
demote - load all objects into old space
normal - (default) load all objects into their current space

-z bytes
Make the CompiledCodeCache, or native methods zone, bytes large.

On all platforms except MacOS, these additional switches are supported:

-logo bmpFile
Displays the specified bitmap file as the startup splash screen. On
Windows, prepend .\ to a relative path name.

-nologo
Suppress the splash screen on startup

-sound wavFile
Play wavFile on image startup.

-nosound
Suppress playing the startup sound

Windows platforms
On MS Windows systems, this switch is supported:

-walltime
Use the lower-resolution GetSystemTimeAsFileTime instead of
QueryPerformanceCounter to drive the microsecond clock. This is
useful for long-running applications that are very time sensitive, since
the default QueryPerformanceCounter, while higher-resolution, tends
to drift from the wall clock over a period of hours.

Unix/Linux platforms
These headless engines support two new command-line switches:

-gui:
Load default GUI subsystem shared library on startup.

-guilib guilib.so:
Load specified GUI subsystem shared library on startup.

The headless GUI engines currently do not support Input Management
when used with their GUI library. This is a bug we will fix in a subsequent
release. For now I18N users who want to use headful applications should
use the all-in-one engines.
C-4 VisualWorks

System Colors on X11
Note: All UNIX and Linux VMs now write all herald information to
/dev/tty, instead of stdout, so VisualWorks can be used on a
pipe.

System Colors on X11
The Windows and Mac OS window managers provide “schemes” that
define things like symbolic colours for button highlight, menu selection,
and so on. X11 provides no such niceties. Instead we have provided a
scheme built above Xrdb, the X11 "relational desktop database," which
allows you to define your own scheme.

On starting X11, the system arranges that the contents of .Xresources
(or .Xdeefaults on older systems) to be loaded into the Xrdb. One can
also use Xrdb directly to change settings while X11 is running (see
Xrdb(1)). An example of the relevant entries for .Xresources is:

St80*background:AntiqueWhite
St80*selectionForeground:White
St80*selectionBackground: RoyalBlue
St80*inactiveSelectionForeground: LightGrey
St80*inactiveSelectionBackground:RoyalBlue3
St80*menuBackground: LightCyan

St80a*background: moccasin
St80a*selectionForeground: White
St80a*selectionBackground: RoyalBlue
St80a*inactiveSelectionForeground: LightGrey
St80a*inactiveSelectionBackground: RoyalBlue3
St80a*menuBackground: LightCyan

Note that there are two schemes in the file, one for key St80 and one for
key St80a. The vm's default lookup key in Xrdb is St80. One can change
the key the vm uses using the -className className switch when
starting the X11 engines. For example:

$VISUALWORKS/bin/linux86/vwlinux86gui -className
St80a myimage.im
Application Developer’s Guide C-5

C-6 VisualWorks

Index
Symbols
.st files 8-27
<Operate> button xxiv
<Select> button xxiv
<Window> button xxiv
^ 5-12

A
A 15-15
aboutToQuit 21-9
aboutToQuit event 21-9
aboutToSnapshot 21-9
abstract class 3-11
access date of a file 13-6
activate 9-24
adding

class definition 2-18
method definition 2-18

animation
double buffering 12-27
flashing 12-25

announcement 11-1
announcing 11-6
handle 11-8
handling 11-16
management 11-10
missed 11-15
process 11-8
registry 11-7
subscribe 11-1, 11-7, 11-9
suspend 11-12
unsubscribe 11-4
veto 11-9
weak 11-18

Announcement class 11-1
appending

text to a file 13-9
application

framework 9-1
model 9-1

Application settings, defined 9-12
ApplicationWindow class 12-9
arc, See geometrics, elliptical arc
argument variable 4-7
ArithmeticError class 15-3

array
defined 4-4

assigning variable values 4-17

B
behavior, defined 3-5
Bezier curve 12-7
binary file

See also BOSS
BinaryObjectStorage 14-1
bitmap, defined 12-3
block expression 4-25
BlockClosure class 7-1
Boolean class 7-1
boolean values 4-4
BOSS

retrieving contents of a file 14-3
retrieving specific objects 14-5
searching for an Object 14-4
sequential access 14-4
skipping the initial scan 14-3
storing a class 14-6
storing objects 14-1
storing objects in a file 14-1
stream positioning 14-2
using custom storage formats 14-9
versioning 14-8

BOSS vs. file out 14-7
branching 7-1–7-3
button 2-3
buttons

mouse xxiv

C
CachedImage class 12-16
cap style of a line 12-21
capitalization conventions 4-5
cascade 4-23
case statement 7-3
change

veto 11-9
Change Set

sharing code between images 8-27
character literal 4-3
Circle class 12-7
Application Developer’s Guide Index-1

class
abstract 3-11
creating 2-18
defined 3-7
hierarchy 3-8
in a BOSS file 14-6
inheritance 3-8–3-10
method 3-7
variable 3-7

class button 2-17
classes

TextCollector 2-2
cleanup blocks 15-11
code

formatting 4-30
testing 2-7

code override 8-16
collection

looping 7-6–7-7
color editing 2-20
ColorEditing parcel 2-20
ColorValue class 12-17
command line options 21-11
comparing

files or directories 13-11
component 8-1
ComposedText 13-13
composite object 3-4
conditional looping 7-4
conditional selection 7-1
control structure 7-1–7-7

methods 7-7
conventions

naming 3-6, 3-7
typographic xxii

copying
a file or directory 13-10

CoverageValue class 12-17
creating

filename 13-2
point 12-4
process 17-1
signal instance 15-14

Cursor class 12-29

D
deactivate 9-24
Debug it 2-9
Debugger 16-18–16-20

See also debugging techniques

debugging
external libraries 16-32
virtual machine code 16-32

debugging techniques
inspecting and changing variables 16-22
interrupting a program 16-29
reading the execution stack 16-20
tracing message flow 16-21, 16-23

decompiled code 2-19
DefaultDirectoryString shared variable 13-5
Delay class 17-6
deleting a file or directory 13-9
diacritical mark B-5
Dictionary class 5-10
dimension

of a display surface 12-8
directory

characteristics 13-4
comparing 13-11
contents 13-7
copying or moving 13-10
creating 13-3
dates 13-6
default 13-5
deleting 13-9
distinguishing from file 13-6
parent 13-5

display surface
mapped 12-16
unmapped 12-16

display surface types 12-8
DisplaySurface class 10-7, 12-8, 12-16
diving inspector 2-23
Do it 2-8
domain model 9-1
double buffering, in animation 12-27

E
earlySystemInstallation 21-9
editing

source code 2-18
ElipticalArc class 12-6
Emergency Evaluator 1-8
Emergency exit 1-7
equality 5-9
error

compilation 5-11
Error class 15-3

as Exception subclass 15-3
nonresumable exceptions 15-11

error notifier, See notifier
Index-2 VisualWorks

event
 announcement

Event class 10-8
eventHandlers instance variable 10-9
EventHandlers shared variable 10-6, 10-8
EventManager class 10-9
events

aboutToQuit 21-9
defining 10-7
described 10-1
exceptional 15-3
register handler 10-3
removing handlers 10-6
returnFromSnapshot 21-9
triggering 10-2

examples xxviii
Examples Browser xxviii
exception

adding handlers 15-7
cleaning up 15-13
defined 15-1
defining handlers 15-4
environment 15-7–15-9
executing handler blocks 15-11
exiting handlers 15-9
flow of control 15-16–15-17
get description 15-3
handling 15-4, 15-14
nonresumable 15-11
raising 15-6
resumable 15-11
setting parameters 15-16
signaling 15-6
terminating handler blocks 15-10
translating 15-13

Exception class 15-14, 15-15
exception handlers

active 15-7
described 15-4
exiting explicity 15-9

Exception subclasses 15-12
exception

See also error
ExceptionSet class 15-6
execution stack 16-20
executor, defined 19-5
exiting the system

emergency 1-8
expression 4-20
extension method 8-15

F
false 4-4
file

binary
See also BOSS

characteristics 13-4
comparing 13-11
contents 13-7
copying or moving 13-10
creating 13-3
dates 13-6
deleting 13-9
distinguishing from directory 13-6
parts of name 13-6
printing 13-13
storing text 13-8

file name
create 13-1

file out
vs. a BOSS file 14-7

Filename class 13-1
file-out file 8-26
FileOut30 8-27
finalization 19-2
finding a method 3-9
finishedSnapshot 21-9
flashing, in animation 12-25
FontDescription class 12-22
FontPolicy class 12-22
fonts xxii
for loop, See number looping
formatting conventions 4-30
functions

see Methods 5-10

G
geometric

circle 12-7
elliptical arc 12-6
line and line segment 12-6
polyline 12-6
rectangle 12-6
spline curve 12-7

getting help xxiv
graphic image

as graphic object 12-7
graphics

coordinate system 12-3
display surfaces 12-8
image 12-7

GraphicsMedium class 12-8, 12-16
Application Developer’s Guide Index-3

H
HandleRegistry class 19-5
hardcopy, See printing
hierarchy of objects 3-4

I
Icon class 12-31
identity 5-9
if statements 7-1
image 1-5

Smalltalk 1-1
Image class 12-7
immediate object 5-5
indexed instance variable 4-8
informational message, displaying 2-2
inheritance 3-8–3-10
inherited method, overriding 3-10
Inspect it 2-8
inspector

debugger 16-22
defined 2-22
dive 2-23
pop 2-23
variable 16-19

instance
defined 3-7

instance button 2-17
instance method 3-7
instance variable 4-8
iterative operations 7-4
iterative operations, See looping

J
join style of a line 12-22

L
line

cap style 12-21
join style 12-22
thickness 12-20

line, See geometric, line and line segment
LineSegment class 12-6
literal

array 4-4
character 4-3
number 4-1
string 4-3
symbol 4-3

looping 7-1–7-7
types of 7-4

loose coupling 10-1

M
Mask class 12-9, 12-16
memory leaks 5-7
message 3-6

cascade 4-23
category 3-6
expression 4-20
in sequence 4-23
keyword 4-22
selector 3-5
types 4-20
unary 4-21

MessageNotUnderstood class 15-3
method 3-5–3-10

class method 3-7
creating 2-18
defined 3-3
grouping 3-6
instance method 3-7
overriding 3-10

method lookup 3-7, 3-9
model

application 9-2
domain 9-1

modification date of a file 13-6
mouse button operations 2-3
mouse buttons xxiv

<Operate> button xxiv
<Select> button xxiv
<Window> button xxiv

moving a file or directory 13-10

N
name spaces 3-13, 4-16
named change sets 8-24
named instance variable 4-8
naming conventions 3-6, 3-7, 4-5
nil 4-4
nonresumable exceptions 15-11–15-12
notational conventions xxii
Notification, class

as Exception subclass 15-3
exceptional events 15-3

notifier
debugging window 16-18
execution stack 16-20

number literal 4-1
number looping 7-5

O
object

behavior 3-5
Index-4 VisualWorks

composite 3-4
examining variable values 2-22
hierarchy 3-4
state, defined 3-5

Object class 3-11
object engine

command line switches C-3
object engine, See virtual machine
object file

See also BOSS
ObjectMemory 21-9, 21-11
ObjectMemory class 9-24
object-oriented programming 3-1–3-13
Options, application-specific 9-12
override 8-16
overrides

packages 8-19
parcels 8-19

P
packages

creating in StORE 8-7
overrides 8-19
prerequisites 8-12

pad source 8-22
parcel 2-10
parcel path 2-11
parcels

overrides 8-19
prerequisites 8-12

pause 9-24
persistence

See also BOSS
pixel, defined 12-3
Pixmap class 12-9, 12-16
Point class

arithmetic functions supported 12-5
creating an instance 12-4
specifying polar coordinates 12-5

Polyline class 12-6
Pragma class 4-26
pragmas 4-26
pragmas, in settings definitions 9-13, 9-16
Preferences, application 9-12
Print it 2-8
printing

a text file 13-13
priority level 17-3–17-4
proceedability attribute 15-15
process 15-14

coordinating 17-3, 17-4
creating 17-1

fork 17-2
postponing 17-6
running multiple 17-2
scheduling 17-2
setting the priority level 17-3–17-4
sharing data 17-6
states of 17-3
terminating 17-3

Processor object 17-2
protected blocks of code 15-12

R
range

iterating on numbers 7-5
read stream 13-14
rectangle

creating 12-6
Rectangle class 12-6
registry

handles 19-5
resumable exceptions 15-11
resume 9-24
retained medium 12-9
return

from a method 5-12
returnFromSnapshot 21-9, 21-11
returnFromSnapshot event 21-9
Runtime Packager 21-1
RuntimeErrorNotifier class 21-40
RuntimeManager 21-10

S
save source code 2-18
scavengeOccurred 21-9
ScheduledWindow class 12-9
selector 3-5
self 4-18
Semaphore class 17-4
sequential access

in a BOSS file 14-4
Set class 5-10
Settings framework 9-12
Settings Manager 9-12
Settings tool 2-27
Settings, defined 9-12
shared variables button 2-17
SharedQueue class 17-6
shortcut

brackets 2-6
quotes 2-6
text format 2-3

shutdown 21-8, 21-10
Application Developer’s Guide Index-5

signal
choosing 15-14
creating 15-14
global 15-14
nested 15-17–15-18

Signal class 15-14
signaling exceptions 15-6
Smalltalk at

 5-6
snap-shot 1-5
sound C-4
source code

editing 2-18
missing 2-19
saving 2-18

spawn command 5-12
special characters B-1–B-6
special symbols xxii
splash screen 1-3, C-4
Spline class 12-7
stack 16-20
startup 21-8
startup sound C-4
state of an object 3-5
StORE

packages, creating 8-7
stream

closing 13-9
creating 13-9

string literal 4-3
Subsystem class 9-24
super 4-18
superclass 3-11
symbol 4-3
symbols used in documentation xxii
syntax

fixed-point numbers 4-2
floating-point numbers 4-2
integers 4-2
nondecimal numbers 4-2
numbers 4-1
scientific notation 4-2

System Browser 2-13
system constant 3-7
system events 21-8
system variable 13-2
SystemEventInterest 21-9
SystemEventInterest class 9-24

T
technical support xxiv
temporary variable 4-6

text
storing in file 13-8

TextCollector class 2-2
thickness of a line 12-20
time change 17-6
tools

Debugger 16-18
Settings 2-27
Workspace 2-7

Transcript 2-2
transcript 2-2
translating exceptions 15-13
true 4-4
typographic conventions xxii

U
unary message 4-21
unwind protection 15-13
user interrupt 16-29
User settings, application-specific 9-12
User settings, defined 9-12

V
variable

argument 4-7
assignment 4-17
defined 3-5
instance 4-8
system 13-2
temporary 4-6

variables
workspace 2-8, 2-9

version
of a BOSS file 14-8

virtual image 1-5
virtual machine 1-1

command line switches C-3
debugging and deployment C-1

VisualComponent class 10-7

W
Warning class 15-3, 15-12
weak array 19-1

finalization 19-2
WeakArray class 19-1
WeakDictionary class 19-5
while loop 7-4
Window class 12-8, 12-16
working directory 13-5
Workspace 2-7
workspace variables 2-9
write stream 13-13
Index-6 VisualWorks

Z
ZeroDivide class 15-3
Application Developer’s Guide Index-7

Index-8 VisualWorks

Method Index
Symbols
= 5-9, 7-1
== 5-9, 7-1
~= 5-10
~~ 5-10

A
actionForEvent: 10-6, 10-9
activate 9-28
allNamed:from:to: 4-28
allNamed:in: 4-28
ambivalentEventChecking 10-7
appendStream 13-9
asComposedText 13-13
asFilename 13-2
asRetainedMedium 12-17
atEnd 14-4

B
beCurrentDirectory 13-5
binary 4-21
binaryReaderBlockForVersion:format: 14-8

C
canBeWritten 13-15
canTriggerEvent: 10-10
clippingBounds 12-14, 12-24
clippingRectangle: 12-14
clippingRectangleOrNil 12-24
clippingRectangleOrNill 12-14
close 13-9
constructEventsTriggered 10-8
contents 14-3
contentsOfEntireFile 13-7, 13-12
convertForGraphicsDevice: 12-13
copyArea:from:sourceOffset:destinationOffs

et: 12-18
copyTo: 13-10
currentCursor 12-30
currentCursor: 12-30

D
dates 13-6
defaultAction 15-9
defaultDirectory 13-5
delete 13-9

directoryContents 13-7, 13-12
displayFilledOn: 12-12
displayOn: 12-11
displayOn:at: 12-11, 12-13
displayStrokedOn: 12-12
dumpFailedMsg 21-41

E
emergencyAbortText 21-41
ensure: 14-2
errorOccurredMsg 21-41
eventsHandled 10-10
exists 13-4
extent: 12-17
extent:on: 12-17
extent:on:initialize: 12-17

F
figure:transparentAtPoint: 12-31
fileSize 13-4
findDefaultDirectory 13-5
follow:while:on: 12-25
font: 12-22
fontPolicy: 12-23
forgetInterval: 14-5
fork 17-2

G
graphicsContext 12-11

H
halt 16-29
hasActionForEvent: 10-10
hash 5-10

I
image:mask:hotSpot:name: 12-29
isDirectory 13-6
isInteger 5-10
isNil 4-4, 5-10
isResumable 15-12

L
lineWidth: 12-20

M
main 9-25
Application Developer’s Guide Method Index-1

makeDirectory 13-4
makeUnwritable 13-15
makeWritable 13-15
moveTo: 13-10
moveTo:on:restoring: 12-26
myEventTable 10-9
myEventTable: 10-9

N
name 5-6
nextPut: 14-2
nextPutAll: 13-9, 14-2
nextPutClasses: 14-7
notify:context: 21-40
notNil 5-10

O
on:do: 15-4, 15-7, 15-10, 15-11
onNew: 14-1
onOld: 14-2, 14-3
onOldNoScan: 14-3

P
paint: 12-23
paintPolicy: 12-23
paintPreferences: 12-23
pass 15-9, 15-11
pauseAction 9-25
position: 14-5
postSnapshotBootstrap 21-16
preSave: 8-5
printTextFile 13-13

Q
quitBlock

 21-10

R
raiseSignal 15-2
raiseSignal: 15-7
readAppendStream 14-2
readStream 14-3
receiver:selector:arguments: 14-9
release 10-6
releaseEventTable 10-6
removeAction:forEvent: (and variants) 10-7
removeActionsWithReceiver:forEvent: 10-6
renameTo: 13-11
representBinaryOn: 14-9
resignalAs: 15-9, 15-13
resumeAction 9-25
retainedMediumWithExtent: 12-17
retry 15-9, 15-10

retryUsing: 15-9, 15-10
return 15-9, 15-10

S
scale: 12-24
setDispatchTableForPlatform 1-7
setToEnd 14-2
setUp 9-25
show 12-30
showWhile: 12-30
signal 15-2, 15-6, 17-4
signalWith: 15-7
sourceMode: 14-7

T
tearDown 9-25
thisContext 4-18
tilePhase: 12-24
triggerEvent: (and variants) 10-2

U
unsubscribe: 11-4
unsubscribe:from: 11-4
userInterruptMsg 21-41

W
wait 17-5
when:do: 11-2
when:do:for: 11-2
when:send:to: 10-3, 11-2
widget:when:do: (and variants) 10-11
writeStream 13-9
Method Index-2 VisualWorks

	Contents
	About This Book
	Overview
	Audience

	Conventions
	Typographic Conventions
	Special Symbols
	Mouse Buttons and Menus

	Getting Help
	Commercial Licensees
	Before Contacting Technical Support
	Contacting Technical Support

	Non-Commercial Licensees

	Additional Sources of Information
	Smalltalk Tutorial
	Online Help
	VisualWorks FAQ
	News Groups
	VisualWorks Wiki
	Commercial Publications
	Examples

	The VisualWorks Environment
	Overview
	Running VisualWorks
	VisualWorks Startup Commands
	VisualWorks Command Line Options
	Image Level Switches

	Running Multiple Versions Under Windows

	Saving Your Work
	Saving the Image
	Restoring the Original Image
	Sources and Changes

	Exiting VisualWorks
	Closing on Windows Shutdown
	Emergency Exit

	Programming in VisualWorks
	Overview
	VisualWorks Launcher
	Mouse (Pointer) Operations
	Text Entry and Formatting
	Character Formatting
	Short-cut Controls
	Enclosing an Expression

	Evaluating Smalltalk Code in a Workspace
	Evaluating Commands
	Workspace Variables
	Name Spaces in Workspaces
	Saving Workspace Contents

	Loading Code Libraries
	Using the Parcel Manager
	Loading Parcels Programmatically
	Setting the Parcel Path

	Browsing and Editing Smalltalk Code
	Browsing the System
	Browser Navigator
	Package View
	Parcel View
	Hierarchy View
	Class / Name Space View
	Instance, Class, and Variable Views
	Icons in the Navigator

	Working with the Browser
	Editing Source Code
	Missing Source Code
	Searching
	Drag and Drop
	Controlling Visibility of Methods
	Using Multiple Views
	Source Code Formatting

	Browsing Files
	Exploring Objects
	Inspecting an Object
	Inspecting Collections
	Modifying Objects
	Evaluating Expressions
	Browsing and Editing Behavior

	Painting a GUI
	System Settings
	VisualWorks Home
	Settings
	Saving and Loading System Settings

	Object Orientation
	Overview
	Procedures vs. Objects
	Objects and Methods
	Composite Objects
	Variables and Methods
	Method Names
	Method Categories

	Classes and Instances
	Class Variables
	Class Methods vs. Instance Methods

	Class Inheritance
	Looking up a Method
	Overriding an Inherited Method
	Abstract Classes
	Choosing a Superclass

	Syntax
	Overview
	Literals
	Numbers
	Integers
	Floating Point Numbers
	Fixed-Point Numbers
	Nondecimal Numbers
	Numbers in Scientific Notation

	Characters
	Strings
	Symbols
	Byte Arrays
	Arrays
	Booleans
	nil

	Variables
	Variable Types
	Variable Names and Conventions
	Private Variables
	Temporary Variables
	Argument Variables
	Instance Variables
	Class Instance Variables

	Shared Variables
	Class Variables
	Pool Variables
	As Global Variables
	Class and Name Spaces Names
	Constant and Variable Bindings
	Public and Private Shared Variables
	Defining a Binding as Private or Public
	Initializing Shared Variables

	Assigning a Value to a Variable
	Special Variables
	Undeclared Variables

	Message Expressions
	Unary Messages
	Binary Messages
	Keyword Messages
	Messages in Sequence
	Cascading Messages
	Parsing Order for Messages

	Block Expressions
	Pragmas
	Declaring Pragmas
	Including a Pragma in a Method
	Processing Pragmas
	Collecting Pragmas
	Performing Operations with Pragmas
	Accessing Pragma Components

	Formatting Conventions

	Classes and Instances
	Overview
	Defining a Class
	Creating a Class using the New Class Dialog
	Editing a Class Definition
	Class Types

	Locating a Class by Name
	Working with Instances
	Creating an Instance
	Destroying an Instance
	Garbage Collecting
	Finalization
	Lingering Instances

	Immutable objects
	Object Comparison

	Methods
	Creating a Method
	Fixing Common Errors at Compile Time
	Undeclared temporary variables
	Undeclared class and instance variables
	Missing period
	Missing delimiters

	Returning from a Method
	Returning From an Enclosed Block
	Returning the Result of a Message
	Returning a Conditional Value

	Name Spaces
	Overview
	Multiple Name Spaces
	Getting Started
	Name Spaces and Their Contents
	Name Space Contents
	The Name Space Hierarchy
	Smalltalk.Root.Smalltalk

	Working with Name Spaces
	Browsing Name Spaces
	Creating Name Spaces
	Naming a Name Space
	When to Create a New Name Space
	Rearranging Name Spaces
	Classes as Name Spaces

	Referencing Objects in Name Spaces
	Dotted Names and Name Space Paths
	Binding References
	Binding Reference Resolution
	When to Use BindingReference or LiteralBindingReference

	Importing Bindings
	Importing Classes and Name Spaces
	Importing Class Variables
	Importing Pool Variables
	Circular System Imports

	Binding Rules and Errors

	Control Structures
	Overview
	Branching
	Boolean Values
	Conditional Tests
	Compound Conditions

	Looping
	Conditional Looping
	whileTrue: and whileFalse:
	repeat

	Number Iteration
	timesRepeat:
	to:by:do:
	to:do:

	Collection Iteration
	do:
	select:
	reject:
	detect:
	collect:
	inject:into:

	Managing Smalltalk Source Code
	Overview
	Organizing Smalltalk Code
	Package and Bundle Contents
	Browsing Packages and Bundles
	Loading Code into Packages and Bundles
	Loading from Parcels
	Loading from a File-in Files
	Loading from a Store Repository

	Controlling Load and Unload Behavior
	Saving
	Loading
	Unloading

	Managing Packages
	Creating a Package
	Adding Definitions to a Package
	Removing a Package

	Managing Bundles
	Creating and Arranging Bundles
	Editing a Bundle Specification
	Removing a Bundle

	Designing a Package Structure
	Package and Bundle Properties
	Prerequisites
	Warning Suppression Action
	Prerequisite Version Selection Action
	Load and Unload Actions
	Other Properties

	Specifying Prerequisites
	Specifying Deployment Prerequisites
	Specifying Development Prerequisites
	Specifying a Prerequisite Version

	References Between Packages
	Code Overrides
	Creating an Override
	Reviewing Overrides
	Resolving Overrides
	Publishing Parcels and Packages with Overrides

	Publishing Packages
	Publishing as Parcels

	Source Code Files
	Archiving Source Files

	Managing Changes
	Recovering Changes
	Compressing Changes
	Using Change Sets
	Change Set Manager
	Selecting a Current Change Set
	Creating a New Change Set
	Saving Changes

	File-Out Files
	Filing Out Code
	Filing In Code

	Parcels
	Loading and Unloading Parcels
	Parcel Files
	Loading Parcels Programmatically
	Loading Parcels with Command Line Options
	Parcel Search Path

	Managing Parcels
	Parcel Condition Indicators
	Creating a New Parcel
	Adding and Removing Definitions
	Saving a Parcel
	Finding Unparcelled Methods

	Guidelines for Clean Loading and Unloading
	Limitations and Restrictions
	Restrictions on Parcel Contents
	Partial Loading
	Shape Change Tolerance

	Application Framework
	Overview
	Separating the Domain and the User Interface
	Application Model Acts as Mediator
	Value Model Links Widget to Attribute
	Builder Assembles User Interface

	Dependencies Between Objects
	The Update/Change System
	Notifications From Value Model to Application Model
	Notifications From Any Object to Any Object
	DependencyTransformer
	Direct Dependency
	Removing Dependents
	Circular Dependencies

	Application Startup and Shutdown
	Selecting an Interface
	Prebuild Intervention
	Postbuild Intervention
	Postopen Intervention
	Application Cleanup

	User Settings Framework
	Settings
	Browsing the Definition for a Setting
	Defining a Setting
	Additional Setting Parameters
	Controlling the Vertical Position of a Setting
	Settings Pages
	Defining a Page of Settings
	Setting Types
	Creating a Setting Model
	Backward Compatibility with VisualWorks UISettings
	Using Drop-Down List and Radio Button Settings
	Defining a Settings Domain
	Saving and Loading Settings

	Responding to System Events
	Defining System Event Actions
	Command Line Processing in a Subsystem
	Activating a Subsystem
	Dependency Ordering of Subsystems

	Trigger-Event System
	Overview
	Triggering Events
	Event Triggering Messages

	Registering an Event Handler
	Handling an Event with Arguments
	Handler Registration Messages

	Removing Event Handlers
	RemoveAction messages

	Defining Event Sets
	Specifying event strictness
	Specifying events to trigger
	Event classes

	How Handlers are Registered
	Trigger Event System Support Methods
	Trigger Event Support Methods Available to All Objects
	Trigger Event Support Methods In ApplicationModel

	Announcements
	Overview
	Subscribing to Announcements
	Unsubscribing

	Announcing an Event
	Accepting Subscriptions
	Handling an Announcement
	Processing an Announcement
	Vetoing an Event

	Advanced Announcement Management
	How Subscriptions are Managed
	Selecting Subscriptions
	Suspending a Subscription
	Batching Missed Announcements
	Substituting a Handler
	Making Subscriptions Weak

	Working With Graphics and Colors
	Overview
	A Note about the Examples

	The VisualWorks Graphics Environment
	Pixels
	Coordinate System
	Points
	Rectangles
	Graphical Objects
	Text Objects
	Geometric Objects
	Bitmap Image Objects
	VisualPart

	Colors and Patterns
	Graphics Media and Display Surfaces
	Windows
	Pixmaps
	Masks

	Graphics Context
	Graphics Device

	Displaying a Graphic
	Getting a GraphicsContext
	Displaying a Graphical Object on a GraphicsContext
	Drawing a Transient Shape
	Displaying a Bitmap Image
	Shifting (Translating) the Display Position
	Displaying a Restricted Area
	Copying from a Display

	Working with Unmappable Display Surfaces
	Creating a Display Surface from an Image
	Creating a New Display Surface
	Composing on a Pixmap
	Displaying a Display Surface
	Copying from a Display Surface

	GraphicsContext Attributes
	Line Properties
	Line Width
	Line Cap Style
	Line Join Style

	Font Properties
	Paint Properties
	Clipping Properties
	X and Y Offsets
	Scaling

	Animating Graphics
	Moving a Static Object
	Animating a Changing Object

	Using Graphics in an Application
	Cursors
	Icons
	As a Component in an Application Window
	Graphics as Labels and Decoration
	As a Custom View

	Files
	File Names
	Creating a Filename
	Constructing a Portable Filename

	Creating a File or Directory
	Creating an Empty File
	Creating a New Disk Directory

	Getting File Information
	Testing for Existence
	Getting the Size of a File
	Getting and Setting the Working Directory
	Getting the Parent Directory
	Getting the Parts of a Pathname
	Distinguishing a File from a Directory
	Getting the Access and Modification Times

	Getting File or Directory Contents
	Getting the Contents of a File
	Getting the Contents of a Directory

	System Variables
	Storing Text in a File
	Writing a Stream to a File
	Appending Text to a File

	Deleting a File or Directory
	Copying or Moving a File
	Copying a File
	Moving a File
	Renaming a File

	Comparing Two Files or Directories
	Comparing Two Filenames or Two Files
	Comparing Two Filenames or Two Directories

	Printing a File
	Print a Text File
	Printing a File Directly
	Writing Fields to a Data File
	Reading Fields from a Data File

	Setting File Permissions
	Unix Volume List

	Binary Object Files (BOSS)
	Storing Objects in a BOSS File
	Storing a Collection of Objects
	Appending an Object to a File

	Getting Objects from a BOSS File
	Retrieving All Objects
	Searching Sequentially for an Object
	Getting an Object at a Specific Position

	Storing and Getting a Class
	Storing a Collection of Classes
	Loading a Collection of Classes

	Converting Data After Changing a Class
	Customizing the Storage Representation

	Exception and Error Handling
	Overview
	ANSI Exception Handling
	Adapting Signal-based Code
	Reinitializing Signal Creators and Initializers
	Name Signals
	Do Not Depend on Signal noHandlerSignal

	Exception Classes
	Handling Exceptions
	Exception Sets

	Signaling Exceptions
	Exception Environment
	Exiting Handlers Explicitly
	Resumable and Nonresumable Exceptions
	Translating Exceptions
	Unwind Protection
	Using a Signal to Handle an Error
	Choosing or Creating a Signal
	Proceedability
	Creating an Exception
	Setting Parameters
	Passing Control From the Handler Block
	Using Nested Signals

	Debugging Techniques
	Overview
	Software Probes
	Breakpoint
	Watchpoint

	Setting Probes
	Setting a breakpoint
	Setting a variable watchpoint
	Setting an expression watchpoint
	Removing probes
	Making a probe conditional
	Select a watch window
	Modifying a probe
	Probe location
	Recompiling a Probed Method
	Limitations
	Probe highlights
	Inserting probes at returns

	Class Probes
	Adding class probes
	On Instance Variable Access...
	On Message Receipt...

	Remove class probes
	Browse probed methods

	Debugger
	Walkback Notifier
	Debugger Window
	Reading the Execution Stack
	Editing a Method Definition
	Inspecting and Changing Variables
	Inspecting the Stack
	Tracing the Flow of Messages
	Stack menu
	Method menu
	Execute menu
	Correct menu

	Inserting Probes in the Debugger
	Temporary Probes
	Probe context management

	Debugging Tips
	Inserting probes into blocks
	Iteration debugging
	Interrupting a Program

	Global Probe Management
	Probe library
	Expression libraries
	Storing CompiledMethods Externally

	Debugging Within the Virtual Machine

	Process Control
	Overview
	UI Processes
	Creating a Process
	Scheduling a Process
	Setting the Priority Level
	Synchronizing Processes
	Semaphore

	Sharing Data Between Processes
	Using a Delay
	Delay and Time Change Interaction

	Refactoring
	Overview
	Refactoring for Abstraction
	Creating an Abstract Class
	Moving Instance Variables to a Superclass
	Consolidating Common Code

	Inlining Methods

	Individual Refactorings
	Refactoring Classes
	Creating a Subclass
	Renaming a Class and Its References
	Safely Removing a Class
	Changing a Class to a Sibling
	Adding a Variable
	Renaming a Variable and its References
	Removing a Variable
	Moving a Variable from or to a Subclass
	Creating Variable Accessors
	Abstracting a Variable
	Making a Variable Concrete

	Refactoring Methods
	Moving a Definition to Another Component
	Renaming a Method and its References
	Safely Removing a Method
	Adding a Parameter to a Method
	Inlining all Sends to Self
	Moving a Method to or from a Superclass

	Refactoring Portions of a Method
	Extracting a Method
	Inlining a Temporary Variable
	Converting a Temporary into an Instance Variable
	Removing a Parameter
	Inlining a Parameter
	Renaming a Temporary
	Moving a Temporary to an Inner Scope
	Extracting to a Temporary
	Inlining a Message

	Weak Reference and Finalization
	Overview
	Weak Arrays
	Finalization
	WeakDictionary
	HandleRegistry

	Finalization Example
	Ephemerons

	Creating an Application without a GUI
	Overview
	Key Concepts
	Setting Up a Headless Image
	Running an Application in Headless Mode
	Starting on Unix/Linux
	Starting on Windows
	When an Image Starts
	If an Application Attempts to Access a Display

	Debugging a Suspended Process
	Creating a Headful Copy of a Headless Image
	Tips for Programming a Headless Application
	Techniques for Starting a Headless Application
	Techniques for Communicating with a Headless Application
	Terminating a Headless Application
	Sending Output to the System Console
	Preventing Access to the Display

	Delivering a Headless Application

	Application Delivery
	Overview
	Choosing a Delivery Strategy
	Single Image File
	Parcels
	Combined Deployment

	Packaging for Distribution
	Deploying as a Single File
	VisualWorks Installer

	Running a Deployed Image
	Loading Parcels At Start Up
	Opening a Runtime Application
	Exiting a Deployed Image
	Installing as a Service on Windows

	Preparing an Image for Deployment
	Loading Application Code
	Code Developed in the Image
	Code Saved in File-outs
	Code Saved in Parcels
	Code in a Store Database

	Removing Source Files
	The Transcript
	Handling Errors
	Registering an Interest in System Events
	Pragma-based Event Dependency
	Message-based Event Dependency

	Shutdown When the Last Window Closes
	Handling Command Line Options
	Pragma-based Option Processing
	Message-based Option Processing

	Unload Tools Parcels
	Removing Undeclared Variables
	Garbage Collecting Lingering Instances
	Splashscreen and Sound
	Replacing the Splashscreen and Sound
	Suppressing the Splashscreen and Sound
	Controlling Splashscreen Duration

	Creating the Deployment Image
	Running Runtime Packager
	A Short-cut Procedure
	Examples
	Building a Stand-alone Image
	Building an Image Using Parcels

	Runtime Packager Process Details
	Saving Runtime Packager Parameters
	Clean Up Image
	Set Common Options
	Details Page
	Platforms Page
	Exceptions Page
	Parcels Page
	Parcel operations
	Stripping Page

	Specify Items to Keep and Delete
	Pop-up Menus

	Scan for Unreferenced Items
	Review Kept Items
	Pop-up Menus

	Save Loadable Parcels
	Test the Application
	Set Runtime Memory Parameters
	Space sizes
	Policy Values
	Notes

	Strip and Save Image

	Debugging a Deployed Image
	Customizing the Emergency Notifier

	Customizing Detected References
	Customizing Image Stripping
	Trouble Shooting
	Workspace or Browser is Opened with the Application
	Parcel File not Readable
	Application Cannot Find a Parcel Source File
	Application Exits Immediately
	An Identifier has no Binding

	VisualWorks Smalltalk Syntax Description
	Overview
	Lexical Primitives
	Character Classes
	Numbers
	Other Lexical Constructs

	Atomic Terms
	Expressions and Statements
	Methods

	Special Characters
	Overview
	Composed Characters
	Diacritical Marks

	Virtual Machines
	Overview
	VisualWorks Virtual Machines
	Production Engines
	Debug Engines
	Assert Engines
	Headless and Headful Engines
	Linkable Object Engines
	Console Object Engines

	Virtual Machine Command Line Options
	All platforms
	Windows platforms
	Unix/Linux platforms

	System Colors on X11

	Index
	Method Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

