

VisualWorks®

7.4 Release Notes

P46-0106-11

© 1999–2005 by Cincom Systems, Inc.

All rights reserved.

This product contains copyrighted third-party software.

Part Number: P46-0106-11

Software Release 7.4

This document is subject to change without notice.

RESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Trademark acknowledgments:

CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of
Cincom Systems, Inc. ParcPlace and VisualWorks are trademarks of Cincom Systems,
Inc., its subsidiaries, or successors and are registered in the United States and other
countries. ObjectLens, ObjectSupport, ParcPlace Smalltalk, Database Connect, DLL & C
Connect, COM Connect, and StORE are trademarks of Cincom Systems, Inc., its
subsidiaries, or successors. ENVY is a registered trademark of Object Technology
International, Inc. All other products or services mentioned herein are trademarks of their
respective companies. Specifications subject to change without notice.

The following copyright notices apply to software that accompanies this
documentation:

VisualWorks is furnished under a license and may not be used, copied, disclosed, and/or
distributed except in accordance with the terms of said license. No class names,
hierarchies, or protocols may be copied for implementation in other systems.
This manual set and online system documentation © 1999–2005 by Cincom Systems, Inc.
All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior written consent
from Cincom.

Cincom Systems, Inc.

55 Merchant Street

Cincinnati, Ohio 45246

Phone: (513) 612-2300

Fax: (513) 612-2000

World Wide Web: http://www.cincom.com

Contents

Chapter 1 Introduction to VisualWorks 7.4 8

Product Support .. 8
Support Status ... 8
Product Patches ... 9

ARs Resolved in this Release ... 9
Items Of Special Note ... 9

Image and Engine Compatibility .. 9
Parcel Version Updated .. 9
Store Database Update .. 9
Several Limits Raised ... 10

Known Limitations ... 10
Mac OSX character spacing inaccurate for some fonts 10
Linux Startup Issue on X.org X11 Installations .. 10
HPUX11 User Primitive Engine ..11
Limitations listed in other sections ... 11

Chapter 2 VW 7.4 New and Enhanced Features 12

Virtual Machine ... 12
New Platform VMs .. 12
64-bit VM .. 13

Base system ..14
Environment Variable Handling ..14
Deployment and Startup Processing .. 14

Runtime and Development Subsystems ... 14
Subsystem Prerequisites Re-arranged ... 14
Ordering Tool ... 15

Headless Image Changes .. 15
Standard I/O Streams ... 16
Transcript Handling ... 16
Exception Handling ... 16
Limitation on Code Loading While Headless 16
Release Notes 3

Contents
Suppressing Splash and Herald .. 17
Printing .. 17

Tools ... 17
Parcel Loading ... 17
File Dialogs .. 17

Advanced Tools .. 18
Database .. 18

Miscellaneous changes ... 18
Oracle Library Path .. 18

Runtime Packager .. 19
WebService .. 20

Bindings for Collections ... 20
Creating Classes in Specified Namespace .. 21
New Struct Class ... 22
Opentalk Server Support ... 22
WSDL Tool Enhancement .. 22
One-way Operations .. 22
Binding Wizard .. 22
Soap headers in Opentalk ... 22

Opentalk client header support ... 23
Generating a Wsdl schema with Soap headers 25
Tool Support for Soap headers ... 27

WebService Demonstration Code ... 28
Create Smalltalk Classes from a Wsdl Specification 28
Create a Wsdl specification from Classes Defining that Service 28
Create and Run an Opentalk-SOAP Server 28

Net Clients .. 29
Security ... 29

ASN.1 .. 29
Modules .. 30
Subtyping .. 32
Type Equivalence .. 33
Constraints .. 33
Struct .. 33
TypeWrapper .. 34
Choice .. 35
Enumeration ... 36
INTEGER .. 36
Marshaling .. 37

X.509 ... 37
SSL .. 39

Opentalk ... 39
Protocols-Common .. 39
4 VisualWorks 7.4

Contents
Improving firewall traversal capabilities of Opentalk-STST40
Configuration of process prioirities ... 40
Message Interceptors ... 41
Multicast broker improvements ..42

DST ...42
New implementation of weak dictionaries ..42
Extended Message Interceptor API ... 43

Application Server ... 44
Documentation .. 44

Advanced Tools Guide ...45
Basic Libraries Guide ... 45
Tool Guide .. 45
Application Developer’s Guide ... 45
COM Connect Guide .. 45
Database Application Developer’s Guide ... 45
DLL and C Connect Guide ... 45
DotNETConnect User’s Guide ... 46
DST Application Developer’s Guide ... 46
GUI Developer’s Guide ...46
Internationalization Guide .. 46
Internet Client Developer’s Guide ... 46
Opentalk Communication Layer Developer's Guide 46
Plugin Developer’s Guide ... 46
Security Guide ..46
Source Code Management Guide .. 46
Walk Through ... 46
Web Application Developer’s Guide ... 46
Web GUI Developer’s Guide .. 46
Web Server Configuration Guide ... 47
Web Service Developer’s Guide ... 47
TechNotes .. 47

Goodies ... 47

Chapter 3 Deprecated Features 48

Chapter 4 Preview Components 49

Base Image for Packaging .. 49
Unicode Support for Windows ... 49
Store Previews .. 50

Store for Access ... 50
Store for Supra ... 50

StoreForSupra installation instructions .. 51
Release Notes 5

Contents
New GUI Framework (Pollock), Feature Set 2 .. 52
Background .. 52
High Level Goals ... 53
Pollock ... 53

Pollock Requirements ... 54
The New Metaphor: Panes with frames, agents, and artists 55
Other notes of interest ... 56
So, What Now? .. 57

Security ... 58
OpenSSL cryptographic function wrapper ... 58

Opentalk ... 59
Distributed Profiler ... 59

Installing the Opentalk Profiler in a Target Image 59
Installing the Opentalk Profiler in a Client Image 60

Opentalk Remote Debugger .. 60
Testing and Remote Testing .. 61
Miscellaneous .. 63

Opentalk SNMP .. 63
Usage .. 64

Initial Configuration ... 64
Broker or Engine Creation and Configuration 64
Engine Use ... 65

Entity Configuration ... 67
MIBs .. 67
Limitations ... 67

Port 161 and the AGENTX MIB .. 67
OpentalkCORBA .. 68

Examples ... 70
Remote Stream Access .. 70
“Locate” API .. 70
Transparent Request Forwarding .. 71
Listing contents of a Java Naming Service 72
List Initial DST Services .. 73

Virtual Machine ... 73
IEEE floating point ... 73

GLORP ... 74
SmalltalkDoc ... 74

Chapter 5 Microsoft Windows CE 76

Supported Devices ... 76
Distribution contents ... 76
Prerequisites ... 77
6 VisualWorks 7.4

Contents
Developing an Application for CE .. 78
Filenames ... 78
DLL names ... 78
Window sizes and options .. 78
Input devices .. 79
.NET access ... 79

Deploying on a CE Device .. 79
Starting VisualWorks on CE .. 79
Known limitations .. 80

Sockets ... 80
File I/O .. 80
Windows and Graphics .. 80
User primitive ... 81

Chapter 6 Installer Framework 82

Customizing the install.map File ... 82
Dynamic Attributes ... 82
Components ... 83

License .. 84
Customizing the Code ... 84

Creating Component Archives ... 85
Local Installations .. 85
Remote installations .. 85
Release Notes 7

1
Introduction to VisualWorks 7.4

These release notes outline the changes made in the version 7.4 release
of VisualWorks. Both Commercial and Non-Commercial releases are
covered. These notes are not intended to be a comprehensive
explanation of new features and functionality nor are they intended to be
used in lieu of the product documentation. Refer to the VisualWorks
documentation set for more information.

Release notes for 7.0 and later releases are included in the doc/
directory (7.2.1 release notes cover 7.2 as well).

For late-breaking information on VisualWorks, check the Cincom
Smalltalk website at http://www.cincom.com/smalltalk. For a growing
collection of recent, trouble-shooting tips, visit
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Trouble+Shooter.

Product Support

Support Status
Basic support policies for the current release are described in the
licensing agreement. As a product ages, its support status changes. To
find the support status for any version of VisualWorks and Object Studio,
refer to this web page:

http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/
Cincom+Smalltalk+Platform+Support+Guide
8 VisualWorks 7.4

http://www.cincom.com/smalltalk
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Trouble+Shooter
http://www.cincomsmalltalk.com:8080/CincomSmalltalkWiki/Cincom+Smalltalk+Platform+Support+Guide

ARs Resolved in this Release
Product Patches
Fixes to known problems may become available for this release, and will
be posted at this web site:

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

ARs Resolved in this Release
The Action Requests (ARs) resolved in this release are listed in:
fixed_ars.txt.

Additional ARs may be discussed in individual sections of these release
notes.

Outstanding ARs and limitations are noted throughout these release
notes, as appropriate.

Items Of Special Note

Image and Engine Compatibility
Because of changes to the byte code set for 7.4, images saved using the
7.4 object engine can not be read by pre-7.4 engines. 7.4 engines are,
however, fully backward compatible with pre-7.4 images.

Accordingly, pre-7.4 images that you edit and save using a 7.4 engine will
no longer be readable by pre-7.4 engines.

Parcel Version Updated
Because of changes to the byte code set, the parcel version has been
updated. This prevents parcels created in 7.4 or later, which use the
extended bytecodes, from being loaded into earlier images.

Store Database Update
The Store schema has been updated, requiring an update to the
database. To update the database, the administrator must evaluate

DbRegistry update74
in a workspace.

After updating, you can still load from and publish to the database from
older images. To take advantage of the added table structure, however,
you must access the database from a 7.4 image.
Release Notes 9

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VW+Patches

Introduction to VisualWorks 7.4
Several Limits Raised
Various limits to size restrictions have been lifted or raised. These are all
described in the updated ImplementationLimits7x.pdf document.

Byte codes have also changed as a result.

Known Limitations
While a large number of ARs (Action Requests) have been addressed in
this release, a number remain outstanding.

Known Limitations sections are provided throughout this document,
pertaining to specific product areas.

Mac OSX character spacing inaccurate for some fonts
Some Mac OSX fonts, noteably Lucida_Grande and Apple_Chancery,
report inaccurate character spacing when used in VisualWorks. Text
using this font may appear clipped within the bounds of a widget, the text
insertion point may be one or more characters from the displayed cursor,
or selected text may appear misaligned. This issue does not apply when
the Mac OSX X11 engine is used. Avoid use of these fonts until this issue
is resolved. To work around this limitation, Helvetica has been substituted
for Lucida_Grande as the default system font family for the OSX Aqua
look on native Mac OSX platforms. When available, the Lucida font is still
used as this look policy system font on other platforms including Mac
OSX X11.

Linux Startup Issue on X.org X11 Installations
A system hang condition has been observed on some Linux systems with
X.org X11 support (AR48619). This appears to be related to fonts.

Refer to "HOWTO Xorg and Fonts" at

http://gentoo-wiki.com/HOWTO_Xorg_and_Fonts
Then consider specifying additional fonts, and ensure that FontPaths is
defined in /etc/X11/xorg.conf, as described in that document.

For specifics of one user’s fix, refer to Isaac Gouy’s comment at:

http://www.parcplace.net/list/vwnc-archive/0511/msg00251.html
10 VisualWorks 7.4

http://gentoo-wiki.com/HOWTO_Xorg_and_Fonts
http://www.parcplace.net/list/vwnc-archive/0511/msg00251.html

Known Limitations
HPUX11 User Primitive Engine
The HPUX11 User Primitive engine does not run for as yet not
understood reasons. This is covered by AR 49661. The engine appears
to compile and link correctly but then exits prematurely after executing a
few Smalltalk expressions, apparently without error. We hope to have this
problem resolved by 7.4.1.

Limitations listed in other sections
• Limitation on Code Loading While Headless

• SNMP preview Limitations
Release Notes 11

2
VW 7.4 New and Enhanced Features

This section describes the major changes in this release.

Virtual Machine

New Platform VMs
Several VMs are introduced in this release, either as beta/preview or as
unsupported. One platform is now supported, previously in preview. Refer
to “64-bit VM” for more information about 64-bit VM issues. The VMs are
summarized in the following table.

A VM is considered to be in “preview” if it is intended to be fully supported
in a future release, pending additional testing.

A VM is considered “unsupported” for a variety of reasons, including that:
the platform itself is uncertain (as in many linux distributions which can be
height variable); we are insufficiently experienced with a platform to be
able to support it with confidence; customer demand is small enough that
the cost of full support is not warranted.

Virtual Machine Bit size Support status

solaris64 64-bit Preview/beta

solaris86 32-bit Unsupported

solaris86_64 64-bit Unsupported

linuxx86_64 64-bit Supported
12 VisualWorks 7.4

Virtual Machine
64-bit VM
This release supports native 64-bit VisualWorks on the first platform,
linuxx86_64, which is 64-bit Linux running on the AMD x86-64
architecture. Note that AMD x86-64 is, for these purposes, compatible
with Intel's EMT64 architecture. It also introduces a beta of solaris64,
which is 64-bit Solaris running on SPARC V9 platforms, and an
unsupported beta of solarisx86_64, which is 64-bit Solaris running on
x86-64/EMT86 platforms.

To use the 64-bit system, you must transform a 32-bt image into a 64-bit
one using the ImageWriter and run it on a 64-bit engine. The ImageWriter
can be found in $(VISUALWORKS)/preview/64-
bit/ImageWriter.pcl. The x86-64 engines are in
bin/linuxx86_64, the Solaris SPARC engines are in
bin/preview/solaris64, and the Solaris x86-64 engines are in
bin/unsupported/solarisx86_64. The ImageWriter parcel's
comment includes instructions for transforming images. You can find
more information in readme.txt for each 64-bit vm.

The 64-bit system is changed little from the 32-bit system. The most
significant change is the addition of an immediate double floatng-point
type, SmallDouble, which should reduce the memory footprint and
increase the performance of double floating-point intensive applications
(see the class comment). Also, in the 64-bit system SmallIntegers are in
the range -2 raisedTo: 60 to (2 raisedTo: 60) - 1.

In general Smalltalk code should "just run" unchanged. For example,
parcels can be read, written, and freely interchanged between 32-bit and
64-bit systems. But images can only be moved between the two widths
using the ImageWriter.

We expect to add a number of additional 64-bit platforms. The highest
priorities currently are:

• HP-UX PA-RISC 64-bit

• AIX PowerOC 64-bit

• Windows x86-64/EMT64 64-bit when it emerges from beta

Please contact Cinsom support to voice preferences for any other
potential 64-bit platforms.
Release Notes 13

VW 7.4 New and Enhanced Features
Base system

Environment Variable Handling
This release changes how environment variables are looked up on
Windows. In previous releases environment variables were only looked
up in the Windows registry. In this release they are first looked up in the C
environment. This allows one to override the registry values, for example
by setting variables in a DOS window. Setting variables is still done by
updating the registry.

Deployment and Startup Processing
This release makes some moderately significantly changes to Subsystem
classes.

Runtime and Development Subsystems
This release introduces RuntimeSystem and DevelopmentSystem classes.

RuntimeSystem is particularly useful, as it allows applications to detect if
the system is "ready" by including RuntimeSystem as a prerequisites. This
doesn't mean that all subsystems have necessarily run, particularly since
other things can have RuntimeSystem as a prerequisite, but it indicates
that the basic system facilities are available. It also provides a uniform
mechanism for testing if this is a development or a runtime image, with
the isRuntime and isDevelopment methods.

DevelopmentSystem will only activate if we are not in runtime, and sets up
the basic development environment (e.g. sets up the changes file if the
image name has changed).

Note that DevelopmentSystem runs quite early in the startup process, and
is not an indicator that the entire development environment is ready for
use. Rather, if the image is in development mode, then DevelopmentSystem
becomes a prerequisite for RuntimeSystem, and you should still test
RuntimeSystem to determine if the image is ready for use.

DeploymentOptionsSystem is also introduced. This is a very early activating
system that allows control over the startup process, e.g. implementing the
-runtime and -development command-line options.

Subsystem Prerequisites Re-arranged
CacheFlushingSystem has been renamed to EarlyInterestNotificationSystem, to
better reflect its purpose. Code that uses the old name can be made to
work by loading the System-Subsystem Compatibility package.
14 VisualWorks 7.4

Base system
Similarly, ExternalAccessSystem has been renamed to
EarlyInstallationSystem.

Subsystem startup has been changed slightly for subsystems loaded
during startup. When the system first starts, it makes a list of all
subsystems, and then attempts to activate them all. However, some
subsystems, notably ImageConfigurationSystem, can cause code to be
loaded, and this code may contain new subsystems. Previously, these
would be activated immediately. However, this could cause circularities if
the loaded systems had ImageConfigurationSystem as a prerequisite, or if it
was necessary for activation to wait until other code had also been
loaded. The new mechanism will not activate them immediately if it is still
in startup, and the startup mechanism will continue looping over the list of
subsystems and activating them until no new ones have been created in
the current pass. After system startup is complete, newly loaded
subsystems will be immediately activated as before.

Reading the default configuration file imageName.cnf now happens
before any other ImageConfigurationSystem actions (e.g. -doit) rather
than afterwards. This makes it easier to load code from a configuration
file and have a -doit on the command line to do something with that
code.

Subsystem canActivate now checks if the subsystem or any of its
prerequisites can activate. So, if something depends on, e.g.,
DevelopmentSystem, and we are in runtime mode, then it will automatically
return false for canActivate. Previously it would not activate, but the
canActivate test would return true.

Ordering Tool
A tool page has been added to the system browser to help visual
subsystem startup dependencies and ordering. Load the Tools-
StartupOrderingTool parcel. Then, when you select a Subsystem subclass
an additional tab is provided in the source area that graphically shows the
prerequisite dependencies.

Headless Image Changes
The Headless package is now included in the standard base image, so all
headless options are available. The package can be unloaded it if it is not
required.

Saving an image headless automatically disables the startup splash
screen and herald sound.
Release Notes 15

VW 7.4 New and Enhanced Features
Standard I/O Streams
Support for standard I/O streams (stdin, stdout, stderr) has been
incorporated into the base image, in the Standard IO Streams package.
This defines shared variables OS.Stdout, OS.Stdin, and OS.Stderr. If these
streams are available from the operating system, then the variables will
be set up appropriately during system startup.

Note that if running on Windows, these will only be available if using the
console engine. Under MacOS9 or earlier, they are unavailable. In
general, they may not be available, or may not go anywhere meaningful, if
starting up an application other than from the command line.

Transcript Handling
Transcript handling while headless has been changed. It is now possible
to have multiple simultaneous output channels for the Transcript. Included
with the image are the standard Visual Launcher GUI, a file, and standard
out. By default, when running headless, the Transcript goes to a file, and
to stdout (if available). When running with a GUI, it goes only to the Visual
Launcher. These options can be controlled programmatically, or if the
TranscriptSettings package is loaded, then a Transcript settings page can
also be used.

Exception Handling
Exception handling when headless has been changed to use the "Notifier
current" mechanism rather than overriding the Notifier code. When
starting up without a GUI, the Notifier current is set to be the
HeadlessImage, and the previous value is remembered and reset when
we start up with a GUI.

Limitation on Code Loading While Headless
If you attempt to load code into a clean visual.im while running
headless, the image will crash with a headless error trying to update the
mini change set manager in the visual launcher. For example, this occurs
when executing:

 <virtualmachine> visual.im -nogui -pcl HTTP

This also applies to any other image which has an open visual launcher
and an empty default change set displayed in it.

To work around this, start up the image, make some code change, and
save the image. Alternatively, you can remove the mini change set
manager by removing the method miniChangeSetManager in
16 VisualWorks 7.4

Tools
VisualLauncherToolDock. If this is done via file-in from the command line
before other code is loaded, it will prevent the headless crash from
occurring.

Suppressing Splash and Herald
The ability to suppress the splash screen and herald sound has been
enhanced. The Runtime Packager now provides settings for these
options. To disable the splash screen and herald sound programmatically,
evaluate the following expression and save the image:

ObjectMemory registerObject: false withEngineFor: 'showHerald'
This image will now start without the splashscreen and sound.

Printing
VW no longer approximates eliptical arcs in PostScript, but instead uses
the PostScript language arc function. All magnitudes and angles of arcs
are now rendered to the precision of the PostScript printer.

Tools

Parcel Loading
The Load Parcel Named... menu item has been moved from the Tools menu
to the System menu, and now uses an incremental search dialog rather
than a simple prompter.

File Dialogs
This release adds support for specialized file and directory selection
dialogs on all platforms. See subclasses of the class FileDialog in the
Tools-Dialogs package.

The legacy file and directory selection API on the class side of Dialog now
uses the new dialogs as well. To the best of our knowledge at the time of
the release, applications relying on that API need no changes. However,
in case of unforeseen problems, you can revert the Dialog class API to the
old prompter-based behavior by evaluating the following expression:

Dialog.UseOldFilePrompters := true
Release Notes 17

VW 7.4 New and Enhanced Features
By default as before, VisualWorks running on Windows uses Window
common file dialogs. To change this and use Smalltalk-based dialogs on
Windows as well, turn off the Use native file dialogs setting on the Tools page
of the Settings Tool, or evaluate:

Dialog.UseNativeDialogs := false
The new file dialog framework is partially based on the file dialogs
implementation contributed by Milan Cermak.

Advanced Tools
Documentation for Advanced Tools has been distributed to the new Tool
Guide and Basic Libraries Guide.

Database

Miscellaneous changes
• Oracle connection pooling is provided in parcel OracleThapiCPEXDI.

It works for Oracle 9.0 and later in multi-threaded mode.

• Sybase Threaded Interface is provided in parcel CTLibThapiEXDI.

• Methods for direct execution of SQL statement and connecting
through SQLDriverConnect are added in ODBCEXDI.

Oracle Library Path
All hard-coded references to library directories for Oracle have been
removed from all Oracle interface classes that used them (e.g.,
OracleLinuxInterface). Instead, all library directories are now read from the
environment variable: on UNIX and Linux systems, LD_LIBRARY_PATH;
on Windows, PATH.

Accordingly, it is essential to set the library path, as per the Oracle
installation instructions.

This change resolves a problem loading the correct libraries on both 32-
bit and 64-bit systems (AR 49088), and in a Multi-Oracle-Home situation.
18 VisualWorks 7.4

Runtime Packager
Runtime Packager
This release includes number of bug fixes and improvements to Runtime
Packager, and to deployment in general.

• The Runtime Packager GUI is now organized around packages and
bundles, rather than around namespaces and class categories. This
brings it more into line with the browsers, and also makes it easier to
manage class extensions. There are a variety of smaller user
interface improvements as well, including menu items that allow you
to quickly keep or discard all of a package or bundle, or a
package/bundle and all of its prerequisites.

• It is now possible to keep or delete namespaces and individual non-
class items in namespaces and/or shared variables from the user
interface.

• In general, the tracer's ability to reason about namespaces and
shared variables is significantly improved. Class references in shared
variables will be followed. In particular, this is useful for the Net
framework, which used shared variables to keep track of handler
classes for different protocols.

• The tracer is now aware of pragmas, and will attempt to include any
references to it. This is necessarily conservative, since the pragma
mechanism relies on reflection. The heuristics are that if a method
being traced contains a pragma method, then include any senders of
the pragma selector which also directly reference the class Pragma.
If a class is being traced, automatically include all pragma methods
that are part of that class. With this, the tracer can properly handle
the settings framework.

• It is now possible to set a flag in an image so that it will suppress the
splash screen and herald sound on startup. This is now an option
when creating a runtime image, and is on by default. This is
particularly useful for a headless image.

• The application startup when the image starts is now done using the
Subsystem mechanism, as is the loading of code from the command
line.

• Debugger probes are now automatically removed during the
preparation of a runtime.

• By default, all OS and Window System looks are now kept, so the
runtime images are portable. To minimize the image size, manually
remove the looks that you don't want.
Release Notes 19

VW 7.4 New and Enhanced Features
• By default, Subsystem and all of its subclasses are kept.

• There are new command-line options related to deployment and
startup

• -nogui, -gui and -headful are now available as synonyms
for -headless and -headfull

• -runtime and -development toggle whether an image is
treated as a runtime or not (note that the "Loading" settings can
be used disable these options, along with others that could be
security risks in a deployed application, such as -filein and -pcl)

• -listOptions will print all of the available command-line
options to stdout (if available) and then quit the image

• The handling of dialogs and other windows when headless has been
improved, mostly on a case-by-case basis. A Store image started up
headless will not attempt to bring up a connection dialog. When a
Runtime Packager image is in the process of the three-step save to
optimize perm space usage, and is started up headless, it will not put
up a notice about the three-step save but will simply start up and
immediately save and quit.

WebService

Bindings for Collections
(AR#49739) The XML-to-Object binding for collections previously tested
collection types only if the collections were kind of Collection class. It
allowed passing a Struct as a valid Collection type. The marshaling
exception did not provide meaningful explanation about the problem.
Another side effect of the old implementation was not consistent
approach how we marshal and unmarshal collections. It was possible to
send and marshal an array but unmarshaling would always return an
ordered collection if this type was specified in XML to object binding.

The fix checks and allows collection types exactly as they are specified in
a XML-to-Object binding. The collection can have two descriptions, either

<sequence_of name="myCollection" >
<..../>

</sequence_of>
or

<element name="anotherCollection maxOccurs="unbounded"/>
20 VisualWorks 7.4

WebService
In either case the default type is OrderedCollection and argument values
have to be passed as an OrderedCollection. Passing other collection types
will raise the proceedable exception: WrongObjectType.

This change will break implementations which, for example, used Arrays
instead of OrderedCollections. There are a few options to fix broken
applications:

• Change the default collection type in XML to object binding
specification to desired one. The <sequence_of> collection mapping
allows specifying other than default collection type in the
"smalltalkClass" attribute:

<sequence_of name="myCollection" smalltalkClass="Array">
Currently there is no support to provide other than default collection
type for:

<element name="anotherCollection maxOccurs="unbounded"/>
• Restore old collection validation rule:

ManyRelation class useExactCollectionType: false.
The default option value is "true".

• Use collection types as they were specified in XML to Object binding.

Creating Classes in Specified Namespace
(AR#49420) There was a problem that we were unable to create classes
from WSDL in a non-default namespace when those class names were
used in the system namespaces.

To resolve this, there is a new dialog added to the Wsdl wizard for "Create
classes from a wsdl schema" option. The dialog displays two lists: a list of
all classes to create and a list of classes with duplicate bindings. A user
can choose create or not create classes or rename the duplicate
bindings.

If the classes are created using WsdlClassBuilder there will be raised the
WSDuplicateBindingsError exception for duplicate bindings. The exception
parameter will be a Struct with the duplicate bindings list. The "exception
proceed" instruction will not create classes from the duplicate bindings.
New classes will be created if the exception resumes with #createAll
parameter. A user can provide its own list of classes to create and return
it in the #createClassesList Struct entry.
Release Notes 21

VW 7.4 New and Enhanced Features
New Struct Class
This release has a new Protocols.Struct class. WebServices.Struct will be
replaced by the Protocols.Struct in the 7.5 release. The Protocols.Struct
class is not a Dictionary class extension anymore. See Opentalk notes for
more comments about Protocols.Struct.

Opentalk Server Support
(AR#49125) This enhancement allows sending to Opentalk server query
"..?wsdl" and the server returns a wsdl schema string.

WSDL Tool Enhancement
Beginning with this release the wsdl tool generates an addition mapping
for operation selectors. This change fixed an old problem with selectors
between a Wsdl and Opentalk clients. The selector map will be created
for Opentalk client and server classes and used to find a Soap operation.

One-way Operations
(AR#49348) Added support for one-way operation.

Binding Wizard
We have added an XML-to-Object Binding Wizard. The tool allows
creating XML to object bindings and testing marshaling/unmarshaling
Smalltalk objects to XML.

Soap headers in Opentalk
(AR#48590) WSOpentalkServer is an abstract super class for an Opentalk
server. The class initializes the RequestBroker and knows its service
classes. The RequestBroker is responsible for setting Soap header
processors and processing policy (SOAPProcessingPolicy). The Soap
processing policy defines the SOAPInterceptorDispatcher which is going to
send message processing events to each registered message
interceptor. The SOAPMessageInterceptor invokes specific subclasses of
WSHeaderEntryProcessor to process header entries for an operation.

The SOAPInterceptorDispatcher implements the header entry processing
policy:

1. If a header entry has mustUnderstand=1 or mustUnderstand=0
attribute, targeted at SOAPProcessingPolicy>>role and has a header
entry processor, the header entry will be processed with result that
header entry is returned to client.
22 VisualWorks 7.4

WebService
2. If a header entry has mustUnderstand=0 attribute, targeted at
SOAPProcessingPolicy>>role and doesn't have a header entry
processor, the header entry will be ignored.

3. If a header entry has mustUnderstand=1 attribute, targeted at
SOAPProcessingPolicy>>role and doesn't have a header entry
processor, the SoapMustUnderstandFault will be raised.

4. If a header entry is not targeted at SOAPProcessingPolicy>>role it will be
ignored.

WSHeaderEntryProcessor is superclass for the specific header entry
processors. Subclasses must implement actions on header entries when
a request is received or reply is sent.

Subclasses must implement the following messages:

Instance methods:
processOutputHeader:reply:transport:

processing reply header on the client side (optional)

processInputHeader:transport:
processing request header on the server side

addOutputHeaderTo:transport:
add reply headers to the soap message on a server

addInputHeader:transport:
add request headers on a client

Class methods:
headerTag

Header entry node tag for the specific header processor.

header
The CtmHeader description. The description includes a Smalltalk type
and exception types. For example in HPAuthenticationToken class:

header
^self ctmHeader

smalltalkType: AuthenticationToken;
addExceptionNamed: 'AuthenticationTokenException'

smalltalkType: WebServices.AuthenticationTokenException;
addExceptionNamed: 'WrongPassword'

smalltalkType: WebServices.WrongPasswordException;
yourself.

Opentalk client header support
WSOpentalkClient is abstract class for the user specific client class.
Release Notes 23

VW 7.4 New and Enhanced Features
A customer should create a client class as subclass of WSOpentalkClient
and implement the following methods:

Class methods:

• serverUrl

• port

• bindingName

Instance methods:

The public api category is the default for all methods used to access web
services.

WSHeaderEntryProcessor is superclass for the user-specific header entry
processors. The class implements the default action on header entry
when a request is sent or response is received.

If there is not a header entry, but the Wsdl schema describes header
entries for the operation, the MissingRequestHeader exception will be
raised. When the response is received the default header entry processor
does not perform any action on this header entry. If the response header
is missing some header entries the MissingResponseHeader exception will
be raised.

When the message is sent, the specific header processor can add some
input header entries by sending the message addInputHeader:transport:.

When the response is received, the specific header entry processor can
add some processing to the header entry by sending the message
processOutputHeader:reply:transport:.

The header entry can be added to the request in two ways:

• using a client:

client := Smalltalk.CustomerClient new.
client start.
(client headerFor: #AuthenticationToken)

value: (AuthenticationToken new
userID: 'UserID';
password: 'password';
yourself).

• in a header entry processor
24 VisualWorks 7.4

WebService
anHPAuthenticationID addInputHeader: aSOAPRequest
transport: aTransport.

self headerEntry value isNil
ifTrue:

[(aSOAPRequest headerFor: #AuthenticationID)
value: (WebServices.Struct new

id: 'ID#1234';
yourself)]

ifFalse: [super addInputHeader: aSOAPRequest
transport: aTransport]

The result of the client service invocation can be set to return:

• a result, which is the body value. Access to a response header will be
avaliable only in client header entry processors:

SOAPMarshaler defaultReturnedObject: #result.
or:

client returnedObject: #result.
• an envelope, which is an instance of WebServices.SoapEnvelope.

Having an envelope as a result allows you to get access to response
header and body:

SOAPMarshaler defaultReturnedObject: #envelope
or:

client returnedObject: #envelope.
• a SoapResponse. Having a WebServices.SoapResponse as a result can

be helpful for debugging purpose:

SOAPMarshaler defaultReturnedObject: #response
or:

client returnedObject: #response.
The header demo can be loaded from the Opentalk-SOAP-
HeadersDemo. In this demo the CustomerServer class implements the
Opentalk server.

The WebServicesDemo parcel has another sample
(WSLD1TestSoapHeader class) that creates classes and header processors
from a Wsdl schema.

Generating a Wsdl schema with Soap headers
To generate a Wsdl schema with Soap headers, perform the following
steps:
Release Notes 25

VW 7.4 New and Enhanced Features
1 Create a header processor class. The class has to be a subclass of
Opentalk.WSHeaderEntryProcessor. For example:

Smalltalk.WebServices defineClass: #HdPrAuthenticationToken
superclass: #{Opentalk.WSHeaderEntryProcessor}
indexedType: #none
private: false
instanceVariableNames: ''
classInstanceVariableNames: ''
imports: ''
category: 'Web Services'

2 Add the processor type and exception description to the class. For
example, in HdPrAuthenticationToken, define class methods:

header
^self ctmHeader

smalltalkType: WebServices.AuthenticationToken;
addExceptionNamed: 'AuthenticationTokenException'

smalltalkType: WebServices.AuthenticationTokenException;
addExceptionNamed: 'WrongPassword'

smalltalkType: WebServices.WrongPasswordException;
yourself.

headerTag
^NodeTag new

qualifier: ''
ns: 'urn:LibDemo\AuthSearch'
type: 'AuthenticationToken'

3 Add header pragmas to an operation, as in this method in
WSLDAuthenticatedSearch:
26 VisualWorks 7.4

WebService
authenticatedSearchByTitleWord: aString includeAffiliatedLibraries: aBoolean
"Generated by WS Tool on #(January 24, 2003 10:33:22 am)"
<operationName: #'AuthenticatedSearchByTitle'>
<documentation: #'To be able to make this request the message

should include authentication token and access level. The
SearchByExactWord operation returns a collection of holdings or
empty collection if no holdings found'>

<addParameter: #'titleWord' type: #'String'>
<addParameter: #'includeAffiliatedLibraries' type: #'Boolean'>
<result: #(#Collection #'LDHoldingBook')>
"add input header to the operation "
<inputHeader: #HdPrAuthenticationToken>
<inputHeader: #HdPrAccessLevel>
"adds output header to the operation"
<outputHeader: #HdPrConfirmation>
<outputHeader: #HdPrAccessLevel>

^(self searchByTitleWord: aString includeAffiliatedLibraries: aBoolean)
values.

4 Use WsdlBuilder to create a wsdl schema with headers:

builder := WsdlBuilder new
useDocument;
buildFromService: WSLDAuthenticatedSearch
classNamespace: 'WebServices'
targetNamespace: 'urn:LibDemo\AuthSearch'.

builder printSpecWithSmalltalkBindingOn: aStream.
To see some samples you will need to load the WebServicesDemo parcel
and look at methods:

WSLD1TestCreateWSDL>>testCreateSpec8DocWithHeaders
WSLD1TestCreateWSDL>>testCreateSpec9RPCWithHeaders

Tool Support for Soap headers
Added preview quality WsdlWizardWithHeaders parcel that allows
creating Soap header processors and test Web services with headers.

To create Soap header processors load the parcel and start the
WsdlWizard.

Select the first option "Expose an application as a web service"

Select an operation you want to add a header and press "Add Header.."
button.

Create a new header processor and add it to the selected operation or all
operations.
Release Notes 27

VW 7.4 New and Enhanced Features
WebService Demonstration Code
The WebServicesDemo parcel, as shipped, includes a dependency on a
parcel that is not included with the distribution. When loading the demo,
and warned of the dependency, select to load the parcel anyway.

WebServicesDemo is intended to demonstrate features of using
WebServices library. The following examples function in the absence of
the missing code.

Create Smalltalk Classes from a Wsdl Specification
builder := WsdlClassBuilder readFrom: schemaDoc readStream.
builder package: 'WSTestLDOpentalk'.
builder opentalkServerName: 'OpentalkServerDoc'.
serviceClass := builder createServiceClasses first.
serverClass := builder createOpentalkServerClass.
proxyClientClass := builder createOpentalkClientClasses first.

Create a Wsdl specification from Classes Defining that Service
serverClass := OpentalkServerSrvcGenPublicDoc.
builder := WsdlBuilder new.
builder

useDocument;
buildFromOpentalkServer: serverClass

classNamespace: 'WebServices'
targetNamespace: 'urn:LibraryDemo\srvcGeneral\doc'.

stream := String new writeStream.
builder printSpecWithSmalltalkBindingOn: stream.

Create and Run an Opentalk-SOAP Server
builder := WsdlBuilder new.
builder

useDocument;
buildFromOpentalkServer: OpentalkServerSrvcGenPublicDoc
classNamespace: 'WebServices'
targetNamespace: 'urn:LibraryDemo\srvcGeneral\doc'.

stream := (String new: 2048) writeStream.
builder printSpecWithSmalltalkBindingOn: stream.
server := OpentalkServerSrvcGenPublicDoc new.
client := OpentalkClientWSLDSrvcGeneralPublicDoc new.
main := server services first key library.
book := main ownedHoldingsColl first.
acquisitionNumber := book acquisitionNumber.
"...find the book by existing number"
book1 := (client holdingByAcquisitionNumber: acquisitionNumber) first.
28 VisualWorks 7.4

Net Clients
Net Clients
• Base64StreamEncoder and TimedPromise classes are moved from Net

namespace to Protocols and into a new parcel, Protocols-Common.

• All classes from the URISupport parcel are moved to the Smalltalk.OS
namespace.

• The Net namespace is not loaded to the base image anymore.

• If you have any problem loading your extensions to URI classes you
will need to load the NetNamespace parcel.

• The Net namespace defines the compatibility variables for URI
support classes. Please note, that the compatibility aliases in the Net
namespace are meant to help with transition to the new names and
will likely be removed in some future release. We highly recommend
switching to the new names as soon as possible

Security

ASN.1
There were significant developments in the ASN.1 framework. It was
reorganized in multiple packages:

• ASN1-Support: ASN1 namespace, OID and SMINode, Entity and
Module, BitString and Stuct, ...

• ASN1-Constraints: Constraint hierarchy

• ASN1-Types: Type and TypeWrapper hierrarchy

• ASN1: encoding support, TLVStreams (BER/DER) and
EncodingPolicies

Since the framework lives in its own namespace the Asn1 prefix on all
class names was dropped. The names of classes representing ASN.1
types were changed to match the ASN.1 conventions, so for example
ASN.1 'INTEGER' is represented by class INTEGER and ASN.1
'SEQUENCE OF' is represented by class SEQUENCE_OF. Similarly the
names of the constraints and marshaling streams were simplified as well.

A lot of new supporting API was added, and will be described in the
following text.
Release Notes 29

VW 7.4 New and Enhanced Features
Modules
One of the major changes is adding support for ASN.1 modules. This
change eliminates the global hardwired type repository. Modules are
completely independent and multiple ASN.1 applications can coexist
without having to worry about name clashes with others. Modules will
eventually support importing and exporting of types; however, that is not
supported yet. Of course there is nothing preventing an application to
make its module globally accessible. In fact the X509 framework now
exposes it's module via X509Object.ASN1Module.

This change had a profound impact on the type construction API. The old
#register:* constructors were not feasible anymore, and therefore were
removed. In most common scenarios the module instance will have to be
involved in construction of type definitions. We made a conscious attempt
to make the new API reasonably concise and flexible, and hopefully the
result is easier to use than the original API.

Here's the ASN.1 type description for X509.TBSCertificate as an
example. It takes advantage of the module instance being accessible via
shared variable ASN1. To keep the example reasonably short, some
supporting types are not defined here:

(ASN1 SEQUENCE: self asn1TypeName)
addElement: #version type: #Version tag: 0

tagging: #explicit default: 0;
addElement: #serialNumber type: #CertificateSerialNumber;
addElement: #signature type: #AlgorithmIdentifier;
addElement: #issuer type: #Name;
addElement: #validity type: #Validity;
addElement: #subject type: #Name;
addElement: #subjectPublicKeyInfo type: #SubjectPublicKeyInfo;
addOptionalElement: #issuerUniqueID type: #UniqueIdentifier

tag: 1 tagging: #implicit;
addOptionalElement: #subjectUniqueID type: #UniqueIdentifier

tag: 2 tagging: #implicit;
addOptionalElement: #extensions type: #Extensions tag: 3

tagging: #explicit;
mapping: self;
retainEncoding: true.

(ASN1 INTEGER: #Version)
constraint: (ASN1.Asn1ConstraintEnumerated

with: #v1 -> 0
with: #v2 -> 1
with: #v3 -> 2).
30 VisualWorks 7.4

Security
ASN1 INTEGER: #CertificateSerialNumber.

ASN1 BIT_STRING: #UniqueIdentifier.

(ASN1 SEQUENCE: #Extensions OF: #Extension)
constraint: (ASN1.Asn1ConstraintSize lower: 1

upper: SmallInteger maxVal).
Here are the changes described in a bit more detail. Modules are
represented with instances of a new class, Module. All Types now
maintain a reference to their module and acquired associated API, to
maintain the bi-directional association. That said, the type instances are
still basically fully functional without having a module assigned. So you
can create a type on the fly, for example:

(INTEGER name: #X) constraint: (Constraint from: 10 to: 50); yourself
and use the type to validate or marshal objects. It's mostly operations
involving lookup of other types by name where a module is necessary, as
it provides the context for this lookup. For this a Module provides the same
sort of operations as the Asn1Type.TypeRegistry API used to:
#register:/#unregister:/#find: ...

There are two main avenues to building types in a module:

1. Module>>new: <aTypeSpec> named: <aSymbol> and a suite of
associated "standard" type constructors provided in the 'definitions'
protocol on Asn1Module, e.g. #SEQUENCE:, #INTEGER:, #SET:OF:, etc.

2. all Types understand #name: <Symbol> in: <Asn1Module>.

Also, all structured types have new convenience API for adding elements
(protocol ''accessing - element constructors''). Arguments that represent
types can be specified using type name or a type instance; moreover,
basic types can be specified using the type class.

Asn1Module overrides #doesNotUnderstand: to allow fetching types by using
their name as a message sent to the module instance. It also allows to
use a name of an already existing type as a single keyword message, to
mimic behavior of messages for standard types like #SEQUENCE:,
#BOOLEAN:, etc. Here's an example of creating type B derived from type
A:

module INTEGER: #A.
module A: #B

An equivalent way to create the instance without using the
#doesNotUnderstand: feature is:

module new: #A named: #B
Release Notes 31

VW 7.4 New and Enhanced Features
Similarly you can also get an instances of basic type via
#doesNotUnderstand, as in:

module INTEGER
However names of constructed types will signal an InvalidTypeReference
error, because such type definition would not be fully specified and it
would be an error to use it as a real type, in a sequence element for
example.

Most type definitions should now print themselves in a shortened ASN.1
style way to aid debugging. Types also add a full ASN.1 syntax equivalent
of themselves, as an inspector attribute, labeled '-ASN.1'.

Subtyping
This release further enhances support for ASN.1 subtyping, which is
basicly constraining an existing type, e.g:

X ::= INTEGER (70..140)
Y ::= X (50..100)

Subtypes are modeled as instances of SubType. Regular Type instances
are always used as roots of the subtype 'parent' chain and all derived
types are modeled as SubType instances. This model is more faithful to
the ASN.1 notion, because there possibilities of what you can do with a
subtype are limited. Modeling subtypes as full Type instances would allow
creation of definitions that aren't valid from the point of view of ASN.1.
This model also allows to define subtypes before supertypes which
wasn't previously supported.

So back to our initial example. Using the new API it will look like this

tX := (INTEGER name: #X) constraint: (Constraint from: 70 to: 140).
tY := (tX named: #Y) constraint: (Constraint from: 50 to:100).

The 'tX named: #Y' construct creates an instance of SubType, names it #Y
and makes tX its parent. There's also #named:in: to assign the newly
created type to a specified module as well.

Type tagging is modelled as subtyping as well. Take for example

X ::= [5] IMPLICIT INTEGER
Y ::= [6] IMPLICIT X

To be able to model this, Types now maintain their #tag and #tagging. The
above example would be expressed as follows

tX := (INTEGER name: #X) tag: 5; tagging: #implicit; yourself.
tY := (tX named: #Y) tag: 6; tagging: #implicit; yourself.
32 VisualWorks 7.4

Security
There's yet another benefit to attaching tags to types. With that we don't
need to tie tags to elements. An element with a tag is modelled as a
simple element with tagged 'anonymous' type. So let's take the following
example

X ::= [5] INTEGER
S ::= SEQUENCE {e [3] X}

This is now described as

tX := (INTEGER name: #X) tag: 5.
tS := (SEQUENCE name: #S)

addElement: #e type: tX tag: 3;
yourself.

What happens is that the #addElement:type:tag: method creates an
"anonymous private" subtype on the fly '(tX name: nil) tag: 3' and uses it as
the type of the element #e.

Type Equivalence
The previous release started defining equality for Types as a "structural
equivalence" of type definitions. This makes it non-trivial to satisfy the
standard Smalltalk contraints imposed on #= and #hash. Type equivalence
carries most of the complexity and performance penalties of general DAG
equivalence and using #= and consequently #hash for this purpose is
dangerous. So we renamed all the #= implementations in Type and
Constraint to #equals: and removed all the #hash definitions. Therefore, #=
and #hash will now default to the identity based ones from Object. We've
developed the #equals: methods a bit further than #= was in previous
release in an attempt to emulate the notion of "type compatibility" as
described by the semantic model of ASN.1 (p.121 of Dubuisson).

Constraints
AbstractConstraint was renamed to Constraint and new instance creation
helpers were added in a protocol ''construction,' present on both the class
and instance sides. A complex constraint can now be created as follows:

((Constraint size: 10) & (Constraint values: #(1 2 3 4))) -
(Constraint type: INTEGER new)

Constraints also try to print themselves using standard ASN.1 syntax.

Struct
In an effort to address some of the issues of exploitation of
MessageNotUnderstood handling we have made Struct a proper nil
subclass.
Release Notes 33

VW 7.4 New and Enhanced Features
There's now a new package Protocols-Common that contains a nil
subclass Protocols.ProtoObject. This is a trimmed down version of Object
with a reduced set of basic capabilities (comparing, printing, inspecting,
class membership, some system primitives). The recognized set of
selectors is chosen so that there's is only minimal probability of conflict
with application domain selectors (intentionally avoiding things like #value,
#size, #name, etc). Note, however, that in order to satisfy some of the more
prevalent expectations of the environment it does define #=, #==, #hash
and #class.

Protocols.Struct is subclass of ProtoObject. Its protocol supports Smalltalk
style accessors (via doesNotUnderstand:), Dictionary style accessing and a
subset of Dictionary protocol, structural equivalence and copying. Again
intentionally avoids selectors that are likely to clash with application
domains, so for example the 'name' is accessed via #structName. Struct
grows transparently by fixed amount (currently 5).

ASN1.Struct is now a subclass of Protocols.Struct. Its extensions are explicit
support for encoding retention ('enconding' inst var) and a change in
equality semantics. Two ASN1.Structs with equal set of elements are
equal even if their particular element order doesn't match. This is to
support the diverse set of ASN.1 encodings.

TypeWrapper
TypeWrapper is also converted into a nil subclass. There's a new generic
Protocols.MessageForwarder subclass of nil with absolutely minimal
protocol. It has only #doesNotUnderstand: and couple of supporting
methods prefixed with $_ to minimize the chance of clashes. TypeWrapper
is a subclass of Protocols.MessageForwarder. It's again striving to minimize
the potential of selector clashes. We've switched to accessing protocol
using $_ prefix (so #value or #type won't be a problem anymore). It defines
#yourself so that things don't get unwrapped unintentionally (losing the
attached type information). It extends printing to provide visual hints of
wrapper presence.

We have also fixed up comparison for TypeWrappers to allow comparison
of wrapped and unwrapped values, so the following should answer true:

5 = (5 withAsn1Type: INTEGER new)
We've also cleaned up the constructors and added permissibility check to
most of them. TypeRealizationError is now signaled when an invalid
wrapper is created, for example:

5 withAsn1Type: BOOLEAN new
34 VisualWorks 7.4

Security
The instance accessors (#_type:, #_value:) can be used to avoid the
checking if necessary.

We have renamed #asAsn1Type: to #withAsn1Type:. The former was
misleading since it doesn't convert an Object into and ASN1.Type but
simply wrapps it in a TypeWrapper.

Choice
Choice is also a wrapper around an object that is used as an actual value
for a CHOICE type. Its main role is to disambiguate the cases where it's
not clear which of the CHOICE alternatives is represented by given
object. In this release we have made Choice a TypeWrapper subclass to
provide the same kind of transparency and for more consistency in
general. Choice accessors were also replaced with accessors prefixed
with $_ (to reduce the chance of clashes with application domain). We've
added an #asAsn1Choice:[symbol:] constructors to encapsulate and
simplify creation of Choices.

The previous release was strictly forcing use of Choice instances for all
CHOICE types. While they are definitely necessary to disambiguate
some cases (e.g. a choice with four integral options), it's definitely
sometimes desirable to represent choices as real classes (e.g.
X509.Name). Also in many cases there will be no ambiguity (e.g. a choice
with a boolean, integral and string option). In these cases forcing the
wrapping in a Choice instance might be perceived as gratuitous. Therefore
we have added provisions allowing arbitrary objects to be used in place of
Choice for marshaling purposes as long as they implement
#asn1ChoiceType and #asn1ChoiceValue (see for example X509.Name). The
default implementations in Object make the marshaling machinery do a
guessing game where it simply iterates over the CHOICE elements using
the #permits: logic. The first one that succeeds is it. If it's the wrong one
you may either get a marshaling error or it may marshal successfully but
not as intended. Note, however, that in many cases (e.g., X509.Name)
there is no need to guess and the #asn1ChoiceType can point straight to
the right type, so users can avoid the perfomance penalty and ambiguity
with little effort.

Note that the two selectors mentioned above are replacing #valueType and
#value used for similar purpose, because the former selectors are too
prone to name clashes with other frameworks.
Release Notes 35

VW 7.4 New and Enhanced Features
However there still will be cases that will be ambiguous (e.g. a choice of
simple types). In these cases the users are encouraged to employ
Choices wrapping the objects. Using Choice instances is also efficient
because the Choice embeds all the necessary type information so there's
no need to do the #permits: trials.

To support more consistency we've added #useChoice flag to CHOICE
type which instructs the marshaler to wrap unmarshaled value in a Choice
instance. This way users can control which CHOICEs are meant to
employ Choice instances and which aren't. Since the Choice instances
prevent ambiguities, the default is to use those. Users have to turn the
Choice usage off explictly for specific CHOICE instances.

Note that having the marshaler use Choice instances doesn't prevent
mapping to user classes, as is demonstrated by X509.Name, but you need
to do the unwrapping manually.

Enumeration
Enumeration is almost the same thing as TypeWrapper, so it's now a
subclass of TypeWrapper which also gives it more transparency and
consistency with TypeWrapper and Choice. For more consistency with the
TypeWrapper hierarchy we've replaced Enumeration>>valueSymbol with
#_symbol and Enumeration class>>type:valueSymbol with #type:symbol:. We
have added permissibility checking to Enumeration constructors and
added #asAsn1Enumeration: constructor to Integer and Symbol.

Similarly to CHOICE>>useChoice, there's now also
ENUMERATED>>useEnumeration flag which controls if enumerations are
unmarshaled as bare Integers or as Enumeration instances. The default is
true to preserve backward compatibility.

The changes also required updates in ENUMERATED. Only one extension
marker is allowed, as per the spec. We added support for auto-
numbering of elements, so it is now possible to add just bare symbols
and not only associations (symbol -> integer). Auto-numbering kicks in
lazily when needed. Modification of an existing type will be handled
properly as well. We have fixed ENUMERATED>>includes: and dropped
#asENUMERATED as it cannot create valid Enumeration instances.

INTEGER
Similar changes were required in INTEGER. We have replaced the
enumeration constraint with explicit support for value "identifiers". The
constraint approach wasn't quite appropriate because the identifier are
not constraining, i.e. a value is not made invalid just because it's not
mentioned amogst identifiers. For this we have also added supporting
API: #identifiers, #identifiers:, and #identify:as:.
36 VisualWorks 7.4

Security
Marshaling
The encoding retention flag was moved from marshaler level to type level,
allowing to fine tune retention behavior. Applications can now selectively
enable retention for specific types where it is useful and avoid the
overhead for the rest. The accessor for this flag is Type>>retainEncoding:.

Moreover the encoding retention support was refactored into a pluggable
EncodingPolicy component of the marshaling stream. The EncodingPolicy
also serves as a dummy "do nothing about encodings" policy and the
existing encoding support is represented by the RetainEncodings subclass.
This allows people to turn encoding support on and off easily.
EncodingPolicy support was moved up to BERStreamBasic, therefore pretty
much any ASN.1 stream can now retain encodings, or do something else
at the various encoding interception points if provided with customized
EncodingPolicy. An interesting example of such custom policy is the
PrettyPrinter which pretty-prints indented structure of encoded entities
onto a stream as it marshals them. The streams now have their
#defaultEncodingPolicy. The defaults are set so that only the DERStream
defaults to RetainEncodings for backward compatiblity.

We've made numerous fixes in the marshaling logic. Most notably
marshaling of implicit/explict tags had a lot of problems before.

There was also an issue with distinguishing the cases where nil
represents a NULL value and where it represents absence of an optional
element. This is the case of X.509 AlgorighmIdentifier, where element
''parameters'' is defined as ANY OPTIONAL. Some algorithms (the RSA
signing ones) prescribe that their parameters should contain ASN.1
NULL value. Marshaling machinery has no chance to distinguish if nil
means absence (as with the DSA algorithm) or presence of NULL.
Therefore to express presence in such case the marshaling machinery
now expects a nil wrapped in a type wrapper (with type ANY in this case,
but it could be a CHOICE or NULL as well). Type ANY now allows general
use of TypeWrappers to direct marshaling of ANY to type-in-hand rather
than typeless marshaling.

X.509
X509 classes were moved to a new namespace, X509. Consequently the
X509 prefix was removed on most of the classes. To improve backward
compatibility we've added an alias Security.X509Certificate pointing to
X509.Certificate. Most of the other classes are basically private so the
rename shouldn't cause too much trouble. The other public class
X509Registry kept its name, so it should work the same provided your
application adds the import of the X509 namespace.
Release Notes 37

VW 7.4 New and Enhanced Features
The most significant development in this release is switching to the new
automatic mapping support of the underlying ASN.1 framework. It
effectively removed all the marshaling code from the X509 framework and
automatically handles not only decoding but also encoding of certificates.
So it is now possibly to generate X.509 certificates from VisualWorks.
The changes to the certificate APIs are minimal, just enough to provide
simple way to create a certificate. Most of the X509 entities comprising a
certificate are now created lazily upon access. X509Name now also
provides simple creation API via #add: method taking an association with
the attribute type name and value expressed as an association. We also
needed to add API to actually sign a certificate, #signUsing:, which takes
an instance of signing algorithm as the parameter. The algorithm has to
be set up with the keys upfront so that it can do its job when #sign: is
invoked. Access to various algorithms is provided via specific
constructors on X509AlgorithmIdentifier. Here is how to generate a self-
signed certificate

cert := Certificate new.
name := Name new

add: 'C' -> 'US';
add: 'L' -> 'Cincinnati';
add: 'O' -> 'Cincom Systems';
add: 'OU' -> 'Cincom Smalltalk';
add: 'CN'-> 'Test CA';
yourself.

cert
serialNumber: 1000;
issuer: name;
subject: name;
notBefore: Date today;
notAfter: (Date today addDays: 7);
publicKey: aPublicKey;
forCertificateSigning;
yourself.

cert signUsing: (
DSA new

privateKey: aPrivateDSAKey;
yourself).

marshaler := DERStream on: (ByteArray new: 100).
marshaler marshalObject: cert withType: cert asn1Type.
marshaler contents

The X509CertificateFileReader can now read both OpenSSL PEM files and
the ca-bundle.crt file. There is a slight change though, since
X509.Certificate doesn't have the privateKey instance variable (to reduce the
38 VisualWorks 7.4

Opentalk
chance of somebody sending out the certificate along with the private key
by accident), both keys and certificates are now returned by the reader in
the same OrderedCollection in the same order as they were in the file.

The X509Registry has been simplified as well. There were a few unused
shared variables that were causing some confusion. All the associated
API has been redirected to the default registry instance.

SSL
Recent improvements in the X.509 framework allowed us to eliminate a
long standing limitation. The server now passes the list of all CA names
from its SSLContext's registry and the CertificateRequest message now
reads and writes those. With this change a VisualWorks server can
properly advertise the list of all recognized certificate authorities.

Opentalk

Protocols-Common
To reduce duplication of functionality among the various networking
frameworks, we are introducing a new package, Protocols-Common,
gathering useful components and extensions to share. Currently it
contains things like Struct, TimedPromise, Base64StreamEncoder, etc. To
avoid dependencies on any of the specific frameworks a new
namespace, Protocols, has been created and imported into the existing
namespaces. Consequently some of the classes were moved to this new
namespace. Some of the components underwent further development
and clean up.

There's now a new class, Protocols.ProtoObject. It is a nil subclass meant
to be a trimmed down version of Object with a reduced set of basic
capabilities (comparing, printing, inspecting, class membership, some
system primitives). The recognized set of selectors is chosen so that
there's is only minimal probability of conflict with application domain
selectors (intentionally avoiding things like #value, #size, #name, etc). Note,
however, that in order to satisfy some of the more prevalent expectations
of the environment it does define #=, #==, #hash, and #class.

Protocols.Struct is subclass of ProtoObject. In the spirit of our previous
incarnations of Struct, its protocol supports smalltalk style accessors (via
a #doesNotUnderstand: override), Dictionary style accessing via #at: and
#at:put:, and a reduced subset of Dictionary protocol. As before it defines
equivalence in terms of structural comparison. Again it intentionally
Release Notes 39

VW 7.4 New and Enhanced Features
avoids selectors that are likely to clash with application domains, so for
examplike the 'name' is accessed via #structName. Struct grows
transparently by fixed amount (currently 5).

There is also a new Protocols.MessageForwarder. It is again a subclass of nil
but with absolutely minimal protocol. It has only #doesNotUnderstand: and
couple of supporting methods prefixed with $_ to minimize the chance of
clashes.

Improving firewall traversal capabilities of Opentalk-STST
Opentalk-STST checks the receiver of each incoming request to verify
that it is indeed a local object. However this check is based on IP
addresses which creates a problem with firewalls or with any other
network setup involving NAT (network address translation). A server in a
DMZ zone is at least one firewall away from the internet and so the
chances that the IP address in the request receiver's reference will match
the IP address of the host that runs the server is virtually zero. As a
consequence, Opentalk servers were unnecessarily hostile to firewalls
and internet. However an Opentalk server should be able to work at least
as well as a WS/SOAP server if you avoid passing objects by reference
(which is exactly what WEB/SOAP communication boils down to).
Therefore we have added configurable locality check support, see
AdaptorConfiguration>>localityTest:. The check is expressed as a
configurable 2 argument block which takes an ObjRef and an Adaptor
instance and answers true if the reference is local to that adaptor and
false otherwise. This allows users to use customized locality tests that
can take into account any external access points of the broker.

Configuration of process prioirities
We've added configuration parameters for priority of the rest of
background processes employed by Opentalk.

ConnectionAdaptorConfiguration>>listenerPriority: is for the listener process
employed by connection oriented brokers. Its responsibility is waiting for
incoming connection requests and setting up Transport instances to
handle the connections. There's only one listener process per broker.
Note that connection-less brokers don't use listener processes.

TransportConfiguration>>serverPriority: is for server processes. There's one
server process associated with each Transport. There's usually single
Transport instance for connection-less brokers. Connection-oriented
brokers employ one Transport instance for each established connection.
40 VisualWorks 7.4

Opentalk
Each transport uses a server process to read incoming messages,
unmarshal them and dispatch them for execution. Note that actual
execution is performed by worker processes.

Message Interceptors
This release introduces message interceptors, a fairly common pattern
employed by many middleware frameworks for distributed computing
(e.g. CORBA) to allow applications to observe and possibly intervene
with processing of remote messages. While there aren't many
fundamental differences between message interceptors and broker event
handlers, which have been available with Opentalk for a while, there are
certain advantages to modelling these handlers as objects, rather than
add hoc blocks hooked into the broker events. For example it is much
easier to pass state from one interception point to another in the context
of an interceptor object. More detailed description of the new message
interceptors follows.

BasicObjectAdaptor now maintains a ProcessingPolicy, which is configured
as a processingPolicy aspect of AdaptorConfiguration. The main
responsibility of ProcessingPolicy is to provideInterceptorDispatcher to any
incoming/outgoing request. By default a new instance of
InterceptorDispatcher configured with fresh set of MessageInterceptor
instances is created to handle each request/reply pair. However there's
nothing preventing the policy to optimize by reusing
dispatcher/interceptor instances if the processing is stateless. The kinds
of dispatchers and interceptors used depend on the policy which is
currently configured with dispatcher class and a sequence of interceptor
classes to use. These will be different for different protocols as the
interception points might be different for different protocols, consider for
example message envelope processing in SOAP. Users may or may not
use their specialized class of dispatcher (if some pre/post processing is
necessary before/after interceptors get invoked) and usually will provide
custom interceptor classes filling in actual processing at specific
interception points. Interceptors have a back pointer to their dispatcher
which allows interceptors to reflect on other interceptors in case such
coordination is necessary. Therefore the dispatcher also serves a a sort
of "processing context" for the interceptors.

To preserve backward compatibility with old configurations that don't
specify processing policy in their configuration, there's now
MarshalerConfiguration>>defaultProcessingPolicyClass which allows to default
to the right type of Interceptors/Dispatcher which can deal with protocol
specific events. For example SOAP brokers need
Release Notes 41

VW 7.4 New and Enhanced Features
SOAPInterceptorDispatcher which is aware of the message envelope events.
The policy default is delegated to marshaler configuration because it is
the one configuration component that reflects the application protocol.

The same interceptor is expected to process corresponding request and
reply. Interceptors are assigned to a request as soon as it is created on
the client or server side, before any interception points are reached.
Similarly each reply gets the dispatcher from its corresponding request as
soon as possible as well. On the client side the reply has to be first
matched with the corresponding request. If the request is not found then
a new dispatcher is obtained from the processing policy so that the
interceptors can process events of the orphaned reply.

Multicast broker improvements
There was a bit of confusion in the multicast brokers with regards to the
function of the transport #accessAddress. The most prominent presentation
of the confusion was that you couldn't restart an mcast broker on some
platforms (e.g. Windows) because once the broker started, the
accessAddress was set to the multicast group address and on subsequent
restart the broker tried to bind its socket to the mcast address. Windows
XP and possibly other platforms refuse that (although Stevens says that
on some platforms it is a valid way to restrict a UDP socket to receive
multicast packets only, as oposed to unicast packets targetted at the
same port number). To address this issue we have separated the notion
of group address from the access address. Access address now
represents only the address to which the broker socket is bound ("any" if
not specified). Group address is the address of the group that the broker
belongs to. BcastTransport now caches its group address in a dedicated
instance variable, #groupAddress, while McastTransport's group address is
the first of its mcast addresses (there's usually only one).

New #mcastAddresses, #ttl and #loopBack parameters were also added to
McastTransportConfiguration, so that users can configure those. The default
multicast address is now configurable on the class side of McastTransport.

DST

New implementation of weak dictionaries
We had reports of serious thrashing of the WeakKeyDictionaries in some
specific circumstances. In particular this would happen with
DSTtypeAny.CORBATypeMap under heavy load involving a lot of incoming
objects marshaled as type Any. We narrowed it down to overly aggressive
42 VisualWorks 7.4

DST
shrinking strategy in the existing implementation of WeakKeyDictionary. The
new strategy allows to fine tune the growth parameters and defaults to
somewhat less aggressive shrinking. It also allows turning shrinking off
altogether which is the most efficient approach in many scenarios. For
more details about tuning the parameters, please refer to the class
comment on WeakKeyDictionary.

Since this is a critical component of the DST machinery we decided to
also keep the old implementation as OldWeakKeyDictionary and
OldWeakValueDictionary and added configuration APIs throughout DST
(in the DSTObjRef hierarchy and DSTtypeAny) allowing to plug in custom
weak collections for each specific purpose. This will allow users to roll
back to the old strategy in case the new one fails to match the
performance of the old one in some unforeseen scenario. Note that this
API allows to do this in fully forward compatible way and also opens up
the possibility to use completely customized solutions.

Extended Message Interceptor API
Based on customer requests we have extended some of the interceptor
events to include more parameters. Here is a sample of current sequence
of interception events as logged in the transcript using the
DSTSampleComputeService example:

clientInvokePreSend: a GIOPMessage
context: an ORBContext
target: a (remotable) "DSTSampleComputeServiceInterface"
operation: ... ::carmichaelNumber
parameters: #(2465)

preSendMessage: a GIOPMessage
context: an ORBContext
target: a (remotable) "DSTSampleComputeServiceInterface"

preReceiveMessage: a GIOPMessage
context: an ORBContext
target: a DSTSampleComputeService

targetInvokePreReceive: a GIOPMessage
context: an ORBContext
target: a DSTSampleComputeService
parameters: DSTsignature (2465)

targetInvokePostReceive: a GIOPMessage
context: an ORBContext
target: a DSTSampleComputeService
result: true
Release Notes 43

VW 7.4 New and Enhanced Features
postReceiveMessage: a GIOPMessage
context: an ORBContext
target: a DSTSampleComputeService
reply: a GIOPMessage

postSendMessage: a GIOPMessage
context: an ORBContext
target: a (remotable) "DSTSampleComputeServiceInterface"
reply: a GIOPMessage

clientInvokePostSend: a GIOPMessage
context: an ORBContext
target: a (remotable) "DSTSampleComputeServiceInterface"
operation: operation ... ::carmichaelNumber
result: true

(Full operation names will occur where ellipses are shown.) The new
extended events call the old ones by default to preserve backward
compatibility with older interceptors.

Application Server
• Fixed a memory leak in the ISAPI gateway

• Changed the perl gateway to use SERVER_ADDR rather than
SERVER_NAME, which is needed when the server is doing NAT.

• Added logic for HEAD request processing in general, and specifically
when serving files. Corrected some minor problems with expiry dates
and cache control.

• Support for server-side comments (<%-- ... -->) was missing

Documentation
This section provides a summary of the main documentation changes.

A general change that is beginning to work its way into the PDF
documentation is that page numbering is changing to a chapter-page
format. This is done to accommodate those users who print the
documentation, reducing the need to print chapters that have not
changed.

Another change will be the post-release launch of the documents in web
page format. Watch the Cincom Smalltalk site for the launch.
44 VisualWorks 7.4

Documentation
Advanced Tools Guide
Obsoleted. Content has been distributed to the new Tool Guide and Basic
Libraries Guide, or deleted, as appropriate.

Basic Libraries Guide
Mostly a spin-off from the Application Developer’s Guide, but including
material from other documents and new material as well, this document
describes the content and use of the most common and foundational
libraries, for purposes of application development.

Tool Guide
Mostly a spin-off from the Application Developer’s Guide, but including
material from other documents and new material as well, this document
describes the VisualWorks tools and their use in application
development.

Application Developer’s Guide
Changes to the ADG continue the trend of reorganization to make this
more of a user’s guide than the all-purpose manual that it has been in the
past.

• Further updated to reflect the current use of packages/bundles for
representing code organization

• Several “library” chapters have been spun out into the Basic Libraries
Guide.

• Major revision of the graphics chapter, including inclusion of
animation facilities

• Various smaller updates.

COM Connect Guide
No changes

Database Application Developer’s Guide
Minor updates

DLL and C Connect Guide
Several small changes
Release Notes 45

VW 7.4 New and Enhanced Features
DotNETConnect User’s Guide
Updated to reflect improvements made for 7.4

DST Application Developer’s Guide
No changes

GUI Developer’s Guide
Various small changes

Internationalization Guide
No changes

Internet Client Developer’s Guide
No changes

Opentalk Communication Layer Developer's Guide
• New chapter on processes and scheduling

• Updates to broker configuration

Plugin Developer’s Guide
No changse

Security Guide
• Limitations for SSL updated

• New ASN.1 chapter added

Source Code Management Guide
No changes

Walk Through
Major update, including a new chapter creating a Hello World example.

Web Application Developer’s Guide
No changes

Web GUI Developer’s Guide
No changes
46 VisualWorks 7.4

Goodies
Web Server Configuration Guide
Minor updates

Web Service Developer’s Guide
No changes

TechNotes
The following documents in the TechNotes directory have been updated:

ImplementationLimits7x
This document has been updated for 7.4.

Goodies
The traditional “goodies” directory has been renamed to “contributed,” to
reflect better that the contents are not “toys,” but serious contributions to
the product. The subdiretory structure has also been flattened,
eliminating the “parc” and “other” distinction.

In this diretory is a wide range of software contributions, from tool
enhancements, full evaluation copies of applications, utilities, and even
some toys and games.
Release Notes 47

48 VisualWorks 7.4

3
Deprecated Features

By deprecating certain features, we remove them from the system. These
are made available for a limited time as parcels in the obsolete/
directory, to provide you the opportunity to port applications away from
using the features before they are removed altogether. This directory is
on the default parcel path.

4
Preview Components

Several features are included in a preview/ and available on a “beta
test,” or even pre-beta test, basis, allowing us to provide early access to
forthcoming features. Several are described in the following sections.
Browse the directory contents for last minute inclusions.

Base Image for Packaging
preview/packaging/base.im is a new image file to be used for
deployment. This image does not include any of the standard
VisualWorks programming tools loaded. The image is intended for use as
a starting point into which you load deployment parcels. Then strip the
image with the runtime packager, as usual.

Unicode Support for Windows
Extended support for Unicode character sets is provided as a preview, on
Windows 2000 and later platforms. Support is restricted to the character
sets that Windows supports.

The parcels provide support for copying via clipboard (the whole
character set), and for displaying more than 33.000 different characters,
without any special locales.

The workspace included in preview/unicode/unicode.ws is
provided for testing character display, and displays the entire character
set found in Arial Unicode MS.
Release Notes 49

Preview Components
First, open the workspace; you'll see a lot of black rectangles. Then load
preview/unicode/AllEncodings.pcl and instantly the workspace
will update to display all the unicode characters that you have loaded. You
can copy and paste text, for example from MS Word to VW, without
problems.

If there are still black rectangles, you need to load Windows support for
the character sets. In the Windows control panel, open Regional and
Language Options. (Instructions are for Windows XP; other versions may
differ slightly.) Check the Supplemental language support options you want to
install, and click OK. The additional characters will then be installed.

To write these characters using a Input Method Editor (IME) pad, load the
UnicodeCharacterInput.pcl.

Store Previews

Store for Access
The StoreForAccess parcel, formerly in “goodies,” has been enhanced by
Cincom and moved into preview. It is now called StoreForMSAccess, to
distinguish it from the former parcel.

The enhancements include:

• A schema identical that for the supported Store databases.

• Ability to upgrade the schema with new Cincom releases (eg.,
running DbRegistry update74).

• Ability to create the database and install the tables all from within
Smalltalk, as described in the documentation.

• No need to use the Windows Control Panel to create the Data Source
Name.

The original parcel is no longer compatible with VW 7.4, because it does
not have the same schema and ignores the newer Store features.

While MS Access is very useful for personal repositories, for multi-user
environments we recommend using a more powerful database.

Store for Supra
In order to allow Store to use Supra SQL as the repository, the
StoreForSupra package provides a slightly modified version of the Supra
EXDI, and implements circumventions for the limitations and restrictions
of Supra SQL which are exposed by Store. The Store version of Supra
50 VisualWorks 7.4

Store Previews
EXDI does not modify/overide anything in the base SupraEXDI package.
Instead, modifications to the Supra EXDI are achieved by subclassing the
Supra EXDI classes.

Circumventions are implemented by catching error codes produced when
attempting SQL constructs that are unsupported by Supra SQL and
inserting one or more specifically modified SQL requests. The Supra SQL
limitations that are circumvented are :

• Blob data (i.e. LONGVARCHAR column) is returned as null when
accessed through a view.

• INSERT statement may not be combined with a SELECT on the
same table (CSWK7025)

• UPDATE statement may not update any portion of the primary KEY
(CSWK7042)

• DELETE statement may not have a WHERE ... IN (...) clause with
lots of values (CSWK1101, CSWK1103)

• When blob data (i.e. LONGVARCHAR column) is retrieved from the
data base, the maximum length is returned rather than the actual
length

• Supra SQL does not have SEQUENCE

StoreForSupra requires Supra SQL 2.9 or newer, with the following tuning
parameters:

SQLLONGVARCHAR = Y
SQLMAXRESULTSETS = 256

StoreForSupra installation instructions
1 Install Supra SQL

2 Create a Supra database

3 Use XPARAM under Windows to set the following

• set Password Case Conversion = Mixed

• set Supra tuning variable SQLLONGVARCHAR = Y

• set Supra tuning variable SQLMAXRESULTSETS = 256

4 Start the Supra database

5 From the SUPERDBA user, create the Store administration user with
DBA privileges.

• Userid BERN is recommended, password is your own choice.
Release Notes 51

Preview Components
• Sample SQL for creating the Store administration use :

create user BERN password BERN DBA not exclusive
6 Load the StoreForSupra parcel.

7 To create the Store tables in the Supra database, run the following
Smalltalk code from a workspace (You will be prompted for the Supra
database name, the Supra administration user id and password.)

Store.DbRegistry goOffLine installDatabaseTables.
8 To remove the Store tables from the Supra database, run the

following Smalltalk code from a workspace

Store.DbRegistry goOffLine deinstallDatabaseTables.

New GUI Framework (Pollock), Feature Set 2
Pollock remains in preview in 7.4.

Featureset one includes a full complement of widgets, and so is a major
milestone one the way to a full production release. There is still a lot of
work left to be done, however.

Background
Over the last several years, we have become increasingly dissatisfied
with both the speed and structure of our GUI frameworks. In that time, it
has become obvious that the current GUI frameworks have reached a
plateau in terms of flexibility. Our list of GUI enhancements is long,
supplemented as it has been by comments from the larger VisualWorks
communities on comp.lang.smalltalk and the VWNC list. There is nothing
we would like more than to be able to provide every enhancement on that
list, and more.

But, the current GUI frameworks aren't up to the job of providing the
enhancements we all want and need, and still remain maintainable. In
fact, we are actually beyond the point of our current GUI frameworks
being reasonably maintainable.

This is not in any way meant to denigrate the outstanding work of those
who created and maintained the current GUI system in the past. Quite
the opposite, we admire the fact that the existing frameworks, now over a
decade old, have been able to show the flexibility and capability that have
allowed us to reach as far as we have.
52 VisualWorks 7.4

New GUI Framework (Pollock), Feature Set 2
However, the time has come to move on. As time has passed, and new
capabilities have been added to VisualWorks, the decisions of the past no
longer hold up as well as they once did.

Over the past several decades, our GUI Project Leader, Samuel S.
Shuster, has studied the work of other GUI framework tools including,
VisualWorks, VisualAge Smalltalk, Smalltalk/X, Dolphin, VisualSmalltalk,
Smalltalk MT, PARTS, WindowBuilder, Delphi, OS/2, CUI, Windows,
MFC, X11, MacOS. He has also been lucky enough to have been privy to
the “private” code bases and been able to have discussions with
developers of such projects as WindowBuilder, Jigsaw, Van Gogh and
PARTS.

Even with that background, we have realized that we have nothing new to
say on the subject of GUI frameworks. We have no new ideas. What we
do have is the tremendous body of information that comes from the
successes and failures of those who came before us.

With that background, we intend to build a new GUI framework, which we
call Pollock.

High Level Goals
The goals of the new framework are really quite simple: make a GUI
framework that maintains all of the goals of the current VisualWorks GUI,
and is flexible and capable enough to see us forward for at least the next
decade.

To this general goal, we add the following more specific goals:

• The new framework must be more accessible to both novice and
expert developers.

• The new framework must be more modular.

• The new framework must be more adaptable to new looks and feels.

• The new framework must have comprehensive unit tests.

Finally, and most importantly:

• The new framework must be developed out in the open.

Pollock
The name for this new framework has been code named Pollock after the
painter Jackson Pollock. It's not a secret. We came up with the name
during our review of other VisualWorks GUI frameworks, most directly,
Van Gogh. It's just our way of saying we need a new, modern abstraction.
Release Notes 53

Preview Components
Pollock Requirements
The high level goals lead to a number of design decisions and
requirements. These include:

No Wrappers
The whole structure of the current GUI is complicated by the
wrappers. We have SpecWrappers, and BorderedWrappers, and
WidgetWrappers, and many more. There is no doubt that they all
work, but learning and understanding how they work has always
been difficult. Over the years, the wrappers have had to take on more
and more ugly code in order to support needed enhancements, such
as mouse wheel support. Pollock will instead build the knowledge of
how to deal with all of these right into the widgets.

No UIBuilder at runtime
The UIBuilder has taken on a huge role. Not only does it build your
user interface from the specification you give it, it then hangs around
and acts as a widget inventory. Pollock will break these behaviors in
two, with two separate mechanisms: a UI Builder for building and a
Widget Inventory for runtime access to widgets and other important
information in your user interface.

New Drag/Drop Framework
The current Drag/Drop is limited and hard to work with. It also doesn't
respect platform mouse feel aspects, nor does it cleanly support
multiple window drag drop. Pollock will redo the Drag/Drop framework
as a state machine. It will also use the trigger event system instead of
the change / update system of the current framework. Finally, it will
be more configurable to follow platform feels, as well as developer
extensions.

The Default/Smalltalk look is dead
We will have at the minimum the following looks and feels: Win95/NT,
Win98/2K, MacOSX and Motif. We will provide a Win2K look soon
after the first production version of Pollock.

Better hotkey mapping
Roel Wuyts has been kind enough to give permission allowing us to
use his MagicKeys hot key mapping tool and adapt it for inclusion in
the base product. Thank you Roel.

XML Specs
We will be providing both traditional, array-based, and XML-based
spec support, but our main format for the specifications will be XML.
We will provide a DTD and tools to translate old array specifications
54 VisualWorks 7.4

New GUI Framework (Pollock), Feature Set 2
to and from the new XML format. Additionally, in Pollock, the specs
will be able to be saved to disk, as well as loaded from disk at
runtime.

Conversion Tools
With the release of the first production version of the Pollock UI
framework, we will also produce tools that will allow you to convert
existing applications to the new framework. These tools will be in the
form of refactorings that can be used in conjunction with the
Refactoring tools that are an integral part of VisualWorks, as well as
other tools and documentation to ease the developer in transitioning
to the new framework.

Unit Tests
Pollock will, and already does, have a large suite of unit tests. These
will help maintain the quality of the Pollock framework as it evolves.
The tests are in the PollockTesting parcel. To load this parcel, you
must have both the Pollock and SUnit parcels loaded.

New Metaphor
The Pollock framework is based on a guiding metaphor; “Panes with
Frames, with Agents and Artists.” More on that below.

Automatic look and feel adaptation
In the current UI framework, when you change the look and/or feel,
not all of your windows will update themselves to the new look or feel.
In Pollock, all widgets will know how to automatically adapt
themselves to new looks and feels without special code having to be
supplied by the developer. This comes “free” with the new “Panes
with Frames, with Agents and Artists” metaphor.

The New Metaphor: Panes with frames, agents, and artists
In Pollock, a pane, at its simplest, is akin to the existing VisualComponent.
A pane may have subpanes. Widgets are kinds of panes. There is an
AbstractPane class. A Window is also a kind of pane, but it will remain in it's
own hierarchy so we don't have to reinvent every wheel. Also, the Screen
becomes in effect the outermost pane. Other than those, all panes, and
notably all widgets, will be subclassed in one way or another from the
AbstractPane.

A frame has a couple of pieces, but in general can be thought of as that
which surrounds a pane. One part of a frame is its layout, which is like our
existing layout classes, and defines where it sits in the enclosing pane. It
may also have information about where it resides in relation to sibling
panes and their frames.
Release Notes 55

Preview Components
A border or scroll bar in the pane may “clip” the view inside the pane. In
this case, the frame also works as the view port into the pane. As such, a
pane may be actually larger than its frame, and the frame then could
provide the scrolling offsets into the view of the pane. The old bounds and
preferred bounds terminology is gone, and replaced by two new, more
consistent terms: visible bounds and displayable bounds. The visible
bounds represents the whole outer bounds of the pane. The displayable
bounds represents that area inside the pane that is allowed to be
displayed on by any subpane. For example, a button typically has a
border. The visible bounds is the whole outer bounds of the pane, while
the displayable bounds represents the area that is not “clipped” by the
border.

Another example is a text editor pane. The pane itself has a border, and
typically has scroll bars. The visible bounds are the outer bounds of the
pane, and the displayable bounds are the inner area of the text editor
pane that the text inside it can be displayed in. The text that is displayed
in a text editor, may have its own calculated visible bounds that is larger
than the displayable bounds of the text editor pane. In this case, the
Frame of the text editor pane will interact with the scroll bars and the
position of the text inside the pane to show a view of the text.

Artists are objects that do the drawing of pane contents. No longer does
the “view” handle all of the drawing. All of the displayOn: messages simply
get re-routed to the artist for the pane. This allows plugging different
artists into the same pane. For instance, a TextPane could have a separate
artist for drawing word-wrapped and non-word-wrapped text. A
ComposedTextPane could have one artist for viewing the text composed,
and another for XML format. Additionally, the plug-and-play ability of the
artist allows for automatically updating panes when the underlying look
changes. No longer will there be multiple versions of views or controllers,
one for each look or feel. Instead, the artists, together with agents, can be
plugged directly into the pane as needed.

Agents interact with the artists and the panes on behalf of the user. Now,
if this sounds like a replacement of the Controller, you're partially correct.
Pollock has done away with Controllers. Like the artist, the agent is
pluggable. Thus, a TextPane may have a read-only agent, which doesn't
allow modifying the model.

Other notes of interest
The change/update mechanism will be taking a back seat to the
TriggerEvent mechanism. The ValueModel will remain, and Pollock will be
adding a set of TriggerEvent based subclasses that will have changed, value:
56 VisualWorks 7.4

New GUI Framework (Pollock), Feature Set 2
and value events. Internal to the Pollock GUI, there simply will not be a
single place where components will communicate with each other via the
change/update mechanism as they do today. While they will continue to
talk to the model in the usual way, there will be much less chatty
change/update noise going on.

The ApplicationModel in name is gone. It was never really a model, nor did
it typically represent an application. Instead, a new class named
UserInteface replaces it. This new class will know how to do all things
Pollock. Conversion tools will take existing ApplicationModel subclasses
and make UserInterface subclasses.

A new ScheduledWindow class (in the Pollock namespace) with two
subclasses: ApplicationWindow and DialogWindow. The ScheduledWindow
will be a full-fledged handler of all events, not just mouse events like the
current ScheduledWindow. The ApplicationWindow will be allowed to have
menus and toolbars, the ScheduledWindow and DialogWindow will not. The
ApplicationWindow and DialogWindow will know how to build and open
UserInterface specifications, the ScheduledWindow will not. Conversely the
UserInterface will only create instances of ApplicationWindow and
DialogWindow.

So, What Now?
Pollock now as all of it's widgets, and most (but not all) of the internal
turmoil in the APIs and guts of the system are completed. Most of the
behavior to match the features of Wrapper are completed. Major changes
and additions to the Feature Set 2 release include:

• WinXP Look and Feel

• New Keyboard Hot Key System

• Removal of Controllers

• Action framework for Hot Keys and Menus

• Text can load and save to XML

• New Frame bounds API (see comment on AbstractFrame)

Feature Set 3, which is the Production release of Pollock, will reach the
stage of being a full replacement for our current Wrapper framework.
Besides matching or surpassing all of the Wrapper framework's features
and behaviors, it will contain the following major features and changes:

• Announcements: Replacing the Symbol based Trigger Events with
Object based Announcements
Release Notes 57

Preview Components
• ValueSuppliers: These will provide type safe dynamic values for most
widget attributes.

• Toolbar Toggle Buttons

• Toolbar as a fist class Pane

• DoIt attribute for Text

• Grid support of Tree as a Model, as well as display of a TreeView in
the first column

• Grid support of ANY pane in ANY cell

• Drag Drop from ANY pane to ANY pane

The target for Feature Set 3/Production is currently the Summer/Fall of
2007. Once this is done, the VisualWorks Tools will being migrated to
Pollock.

Security

OpenSSL cryptographic function wrapper
The OpenSSL package provides access to some of the encryption
functions of the popular OpenSSL library (http://www.openssl.org). The
functions currently available include ARC4, AES, DES and Blowfish, with
support for the usual padding, and encryption modes. The API of this
wrapper is modelled after the native Smalltalk encryption classes so that
they can be polymorphically substituted where necessary. Since these
classes use the same name they have to live in their own namespace,
Security.OpenSSL. The intent is that each set of classes can be used
interchangably with minimal modification of existing user code.

Along these lines, you can instantiate an instance of an OpenSSL
algorithm same way as the native ones. For example:

| des ciphertext plaintext |
des := Security.OpenSSL.DES newBP_CBC

setKey: '12345678' asByteArray;
setIV: '87654321' asByteArray;
yourself.

ciphertext := des encrypt: ('Hello World!' asByteArrayEncoding: #utf_8).
plaintext := (des decrypt: ciphertext) asStringEncoding: #utf_8

An alternative way to configure an algorithm instance is using cipher
wrappers. The equivalent of the #newBP_CBC method shown above would
be the following.
58 VisualWorks 7.4

http://www.openssl.org

Opentalk
des := Security.OpenSSL.BlockPadding on: (
Security.OpenSSL.CipherBlockChaining on:

Security.OpenSSL.DES new).
Note that while the APIs look the same the two implementations have
different underlying architectures, so generally their components should
not be mixed. That is, OpenSSL wrappers merely call the OpenSSL
library with some additional "flags", whereas the Smalltalk versions
augment the calculations. In general, it won't work properly to use a
Smalltalk cipher mode wrapper class around an OpenSSL algorithm and
vice versa.

The current version should support usual OpenSSL installations on
Windows and Linux (possibly other Unixes too, but that was not tested).
There is only one interface class, with platform specific library file and
directory specifications in it. You may need to change or add these
entries for your specific platform. If you get a LibraryNotFoundError when
trying to use this package, you need to find out what is the correct name
of the OpenSSL cryptographic library on your platform and where is it
located, and update the #libraryFiles: and #libraryDirectories: attributes of
the OpenSSLInterface class accordingly. More information can be found in
the DLL and C Connect User’s Guide (p.51). To obtain the shared library
for your platform, see http://www.openssl.org/source. Note that the library
is usually included with many of the popular Linux distributions, therefore
in most cases this package should just work.

Opentalk
The Opentalk preview provides extensions to 7.2 and the Opentalk
Communication Layer. It includes a preview implementation of SNMP, a
remote debugger and a distributed profiler. The load balancing
components formerly shipped as preview components in 7.0 is now part
of the Opentalk release.

For installation and usage information, see the readme.txt files and the
parcel comments.

Distributed Profiler
The profiler has not changed since the last release and works only with
the old AT Profiler, shipped in the obsolete/ directory.

Installing the Opentalk Profiler in a Target Image
If you want to install only the code needed for images, potentially
headless, that are targets of remote profiling, install the following parcel:
Release Notes 59

http://www.openssl.org/source

Preview Components
• Opentalk-Profiler-Core

Installing the Opentalk Profiler in a Client Image
To create an image that contains the entire Opentalk profiler install the
following parcels in the order shown:

• Opentalk-Profiler-Core

• Opentalk-Profiler-Tool

Opentalk Remote Debugger
This release includes an early preview of the Remote Debugger. Its
functionality is seriously limited when compared to the Base debugger,
however its basic capabilities are good enough to be useful in many
cases. The limitations are mostly related to actions that open other tools.
For those to work, we have yet to make the other tools remotable as well.

The remote debugger is contained in two parcels.

The Opentalk-Debugger-Remote-Monitor parcel loads support for the
image that will run the remote debugger interface. The monitor is started
by sending:

RemoteDebuggerClient startMonitor
Once the monitor is started, other images can “attach” to it. The monitor
will host the debuggers for any unhandled exceptions in the attached
images.

To shutdown a monitor image, all the attached images should be
detached first and then the monitor should be stopped, by sending:

RemoteDebuggerClient stopMonitor
The Opentalk-Debugger-Remote-Target parcel loads support for the
image that is expected to be debugged remotely. To enable remote
debugging this image has to be “attached” to a monitor, i.e., to the image
that runs the remote debugger UI. Attaching is performed with one of the
“attach*' messages defined on the class side of RemoteDebuggerService.
Use detachMonitor to stop forwarding of unhandled exceptions to the
remote monitor image.

A packaged (possibly headless) image can be converted into a “target”
during startup by loading the Opentalk-Debugger-Remote-Target parcel
using the -pcl command line option. Additionally it can be immediately
attached to a monitor image using an -attach [host][:port] option
on the same command line. It is assumed that the Base debugger is in
the image (hasn't been stripped out) and that the prerequisite Opentalk
parcels are also available on the parcel path of the image.
60 VisualWorks 7.4

Opentalk
Testing and Remote Testing
The preview/opentalk subdirectory contains two new parcels,
included for those users who expressed an interest in the multi-image
extension to the SUnit framework used to demonstrate the Opentalk Load
Balancing Facility:

• Opentalk-Tests-Core contains basic extensions to the SUnit
framework used to test Opentalk. Version number 73 6 is shipped
with this release.

• Opentalk-Remote-Tests-Core contains the central classes of the
remote testing framework and some simple examples. Version
number 73 9 is shipped with this release.

The framework these packages implement is known to have defects and
is evolving. Future versions will differ, substantially.

The central idea behind the framework is that since SUnit resources are
classes, there is no reason why references to remote classes cannot be
substituted for them in a test case.

The are two central classes in the framework.

OpentalkTestCaseWithRemoteResources
This is the superclass of all concrete, multi-image test cases. It
contains an instance variable named 'resources' that is populated
with references to remote resource classes. The references are
constructed from the data returned by the method resourceObjRefs,
which any concrete test case must implement. The class has a
shared variable named CaseBroker that contains the broker in which
the resource references are registered. This request broker is the one
used by all multi-image test cases to communicate with remote
resources.

OpentalkTestRemoteResource
This is the superclass of all concrete remote resources. It has a
shared variable named ResourceBroker that holds the broker through
which test resources communicate with test cases. Concrete
resources register themselves with this broker, using their class
name as an OID, so that test cases may programmatically generate
references to them.

Since multi-image tests usually involve resources that start up brokers
and exchange messages of their own, care must be taken in any test to
determine that the communication exchange under test has completed
before any 'assert:'s are evaluated. Also, since the exchange between
resources may be complex, the assert: messages are usually phrased in
Release Notes 61

Preview Components
terms of the contents of event logs. Much use is made of the Opentalk
event and event logging facilities. Test may create event logs of their own,
or analyze the remote event logs created by a remote resource.

The current scheme assumes that there will be only one resource per
image, but you may construct a resources with arbitrary complexity.

The drill for configuring a multi-image test is now overly complex,
because port numbers are derived from the suffix of the image name,
expected to consist of two decimal digits. Port numbers are also hard-
coded in the method resourceObjRefs. This is the wrong way to do things
that we intend to move to a scheme where the test case image starts its
broker on a well known port, and resource images register with the test
case image on startup.

That said, the current drill goes as follows. The essentials are also
discussed in the class comment of CaseRemoteClientServer.

1 Make sure that the machines you intend to use are not already
listening on the default ports used by the multi-image testing
framework. The CaseBroker, if you follow our recommendations, will
come up on port 1800, and resource brokers will come up in the
range 1900-1999. If your machines are already using these ports,
alter the class-side method basePortNumber in
OpentalkTestCaseWithRemoteResources or
OpentalkTestCaseRemoteResource, as appropriate. The following
directions will assume that you did not need to change an
implementation of basePortNumber.

2 Write your resource class or classes. You may use any of the
concrete classes under ResourceWithConfiguration as models.

3 Write your test case class. You may use any of the concrete classes
under CaseRemoteClientServer as models.

4 Save your image.

5 Remind yourself of how many resources your test case employs. For
example, class CaseRemoteClients1Servers1 requires three images. You
can check this by examining its implementation of resourceObjRefs.
Two references are set up, one for a client and one for a server. The
third image will be the one that runs the test case. So, if your image is
named otwrk.im, clone copies of it now, named otwrk00.im,
otwrk01.im and otwrk02.im. All the image names must end in
two digits. The name ending in “00” is conveniently reserved for the
test running image, making its broker come up on port 1800. All the
images derive the port of their broker from their image name. In this
62 VisualWorks 7.4

Opentalk SNMP
case, the resource images will start their brokers on ports 1901 and
1902.

6 After saving the images, reopen them, and start the relevant brokers.
Remember that in the test case image you only want to start the
CaseBroker. In the resource images, you start their ResourceBroker. The
class-side protocol of OpentalkTestCaseWithRemoteResources and
OpentalkTestCaseRemoteResource both contain start up methods with
useful executable comments, if you like doing things that way. (You
will use only one image, and start both kinds of brokers in it, only
when you intend that everything run in the same image. And that
setup is very useful in debugging.)

7 Run your tests, from the test case image, and run them one at a time.
The framework has known difficulties running a test suite.

If you ever find that your event logs show record of, say, 50 messages,
when your test only sends 30, then the preceding test run—which you
probably thought you had successfully terminated by, say, closing your
debugger—was still going strong. Clean up as necessary and start again.

Miscellaneous
The listeners now bind to specific network interface if an explicit IP
address is specified (as opposed to the default IPSocketAddress>>thisHost).

Opentalk SNMP
SNMP is a widely deployed protocol that is commonly used to monitor,
configure, and manage network devices such as routers and hosts.
SNMP uses ASN.1 BER as its wire encoding and it is specified in several
IETF RFCs.

The Opentalk SNMP preview partially implements two of the three
versions of the SNMP protocol: SNMPv1 and SNMPv2. It does so in the
context of a framework that both derives from the Opentalk
Communication Layer and maintains large-scale fidelity to the
recommended SNMPv3 implementation architecture specified in IETF
RFC 2571.
Release Notes 63

Preview Components
Usage

Initial Configuration
Opentalk SNMP cares about the location of one DTD file and several MIB
XML files. So, before you start to experiment, be sure to modify
'SNMPContext>>mibDirectories' if you have relocated the Opentalk
SNMP directories.

Broker or Engine Creation and Configuration
In SNMPv3 parlance a broker is called an “engine”. An engine has more
components that a typical Opentalk broker. In addition to a single
transport mapping, a single marshaler, and so on, it must have or be able
to have

• several transport mappings,

• a PDU dispatcher,

• several possible security systems,

• several possible access control subsystems,

• a logically distinct marshaler for each SNMP dialect, plus

• an attached MIB module for recording data about its own
performance.

So, under the hood, SNMP engine configuration is more complex than
the usual Opentalk broker configuration. You can create a simple SNMP
engine with

SNMPEngine newUDPAtPort: 161.
But, this is implemented in terms of the more complex method below.
Note that, for the moment, within the code SNMP protocol versions are
distinguished by the integer used to identify them on the wire.
64 VisualWorks 7.4

Opentalk SNMP
newUdpAtPorts: aSet
| oacs |

oacs := aSet collect: [:pn |
AdaptorConfiguration snmpUDP

accessPointPort: pn;
transport: (TransportConfiguration snmpUDP

 marshaler: (SNMPMarshalerConfiguration snmp))].

^((SNMPEngineConfiguration snmp)
accessControl: (SNMPAccessControlSystemConfiguration snmp

accessControlModels: (Set
with: SNMPAccessControlModelConfiguration snmpv0
with: SNMPAccessControlModelConfiguration snmpv1));

instrumentation: (SNMPInstrumentationConfiguration snmp
contexts: (Set with: (

SNMPContextConfiguration snmp
name: SNMP.DefaultContextName;
values: (Set with: 'SNMPv2-MIB'))));

securitySystem: (SNMPSecuritySystemConfiguration snmp
securityModels: (Set

with: SNMPSecurityModelConfiguration snmpv0
with: SNMPSecurityModelConfiguration snmpv1));

adaptors: oacs;
yourself

) new
As you can see, it is a bit more complex, and the creation method makes
several assumptions about just how you want your engine configured,
which, of course, you may change.

Engine Use
Engines are useful in themselves only as lightweight SNMP clients. You
can use an engine to send a message and get a response in two ways.
The Opentalk SNMP Preview now supports an object-reference based
usage style, as well as a lower-level API.

OR-Style Usage

If you play the object reference game, you get back an Association or a
Dictionary of ASN.1 OIDs and the objects associated with them. For
example, the port 3161 broker sets up its request using an object
reference:
Release Notes 65

Preview Components
| broker3161 broker3162 oid ref return |

broker3161 := SNMPEngine newUdpAtPort: 3161.
broker3162 := self snmpv0CommandResponderAt: 3162.
broker3161 start.
broker3162 start.
oid := CanonicalAsn1OID symbol: #'sysDescr.0'.
ref := RemoteObject

newOnOID: oid
hostName: <aHostname>
port: 3162
requestBroker: broker3161.

^return := ref get.
This expression returns:

Asn1OBJECTIDENTIFIER(CanonicalAsn1OID(#'1.3.6.1.2.1.1.1.0'))->
Asn1OCTETSTRING('VisualWorks®, Pre-Release 7 godot
mar02.3 of March 20, 2002')

Object references with ASN.1 OIDs respond to get, set:, and so forth.
These are translated into the corresponding SNMP PDU type, for
example, a GetRequest and a SetRequest PDU in the two cases
mentioned.

Explicit Style Usage

You can do the same thing more explicitly the following way, in which case
you will get back a whole message:

| oid broker1 entity2 msg returnMsg |

oid := CanonicalAsn1OID symbol: #'1.3.6.1.2.1.1.1.0'.
broker1 := SNMPEngine newUdpAtPort: 161.
entity2 := self snmpv1CommandResponderAt: 162.
broker1 start.
entity2 start.
msg := SNMPAbstractMessage getRequest.
msg version: 1.
msg destTransportAddress: (IPSocketAddress hostName: self

localHostName port: 162).
msg pdu addPduBindingKey: (Asn1OBJECTIDENTIFIER value: oid).
returnMsg := broker1 send: msg.

which returns:

SNMPAbstractMessage:GetResponse[1]
Note that in this example, you must explicitly create a request with the
appropriate PDU and explicitly add bindings to the message's binding list.
66 VisualWorks 7.4

Opentalk SNMP
Entity Configuration
In the SNMPv3 architecture, an engine does not amount to much. It must
be connected to several SNMP 'applications' in order to do useful work.
And 'entity' is an engine conjoined with a set of applications. Applications
are things like command generators, command responders, notification
originators, and so on. There are several methods that create the usually
useful kinds of SNMP entities, like

SNMP snmpv0CommandResponderAt: anInteger
Again, this invokes a method of greater complexity, but with a standard
and easily modifiable pattern. There as several examples in the code.

MIBs
Opentalk SNMP comes with a small selection MIBS that define a subtree
for Cincom-specific managed objects. So far, we only provide MIBs for
reading or writing a few ObjectMemory and MemoryPolicy parameters. A
set of standard MIBS is also provided. Note that MIBs are provided in
both text and XML format. The Opentalk SNMP MIB parser required
MIBS in XML format.

If you need to create an XML version of a MIB that is not provided, use
the 'snmpdump' utility. It is a part of the 'libsmi' package produced by the
Institute of Operating Systems and Computer Networks, TU
Braunschweig. The package is available for download through
http://www.ibr.cs.tu-bs.de/projects/libsmi/index.html, and at
http://rpmfind.net.

Limitations
The Opentalk SNMP Preview is raw and has several limitations. Despite
them, the current code allows a user, using the SNMPv2 protocol, to
modify and examine a running VW image with a standard SNMP tool like
ucd-snmp. However, one constraint should be especially noted.

Port 161 and the AGENTX MIB
SNMP is a protocol used for talking to devices, not applications, and by
default SNMP uses a UDP socket at port 161. This means that in the
absence of coordination between co-located SNMP agents, they will
conflict over ownership of port 161. This problem is partially addressed by
the AGENTX MIB, which specifies an SNMP inter-agent protocol.
Opentalk SNMP does not yet support the AGENTX MIB. This means that
an Opentalk SNMP agent for a VisualWorks application (only a virtual
device) must either displace the host level SNMP agent on port 161, or
run on some other port. Opentalk SNMP can run on any port, however
Release Notes 67

Preview Components
many commercial SNMP management applications are hard-wired to
communicate only on port 161. This places limitations on the extent to
which existing SNMP management applications can now be used to
manage VisualWorks images.

OpentalkCORBA
This release includes an early preview of our OpentalkCORBA initiative.
Though our ultimate goal is to replace DST, DST will remain a supported
product until OpentalkCORBA matches all its relevant capabilities and we
provide a reasonable migration path for current DST users. So, we would
very much like to hear from our DST users, about the features and tools
they would like us to carry over into OpentalkCORBA.

For example, we do not intend to port any of the presentation-semantic
split framework, or any of the UIs that essentially depend upon it, unless
there is strong user demand. Please contact Support, and ask them to
forward your concerns and needs to the VW Protocol and Distribution
Team.

This version of OpentalkCORBA combines the standard Opentalk broker
architecture with DST's IDL marshaling infrastructure to provide IIOP
support for Opentalk. OpentalkCORBA has its own clone of the IDL
infrastructure residing in the Opentalk namespace so that changes made
for Opentalk do not destabilize DST. The two frameworks are almost
capable of running side by side in the same image. The standard base
class extensions, however, like 'CORBAName' can only work for one
framework, usually the one that was loaded last. Therefore, if you want to
load both and be sure that DST is unaffected, make sure it is loaded after
OpentalkCORBA, not before.

This version of OpentalkCORBA already offers a few improvements over
DST. In particular, it supports the newer versions of IIOP, though there is
no support for value types yet. A short list of interesting features and
limitations follows:

• supports IIOP 1.0, 1.1, 1.2

• defaults to IIOP 1.2

• does not support value types

• does not support Bi-Directional IIOP

• doesn't support the NEEDS_ADDRESSING_MODE reply status

• system exceptions are currently raised as Opentalk.SystemExceptions
68 VisualWorks 7.4

OpentalkCORBA
• user exceptions are currently raised as Error on the client side

• supports LocateRequest/LocateReply

• does not support CancelRequest

• does not support message fragmenting

• the general IOR infrastructure is fleshed out (IOPTaggedProfiles,
IOPTaggedComponents, IOPServiceContexts) and adding new kinds of
these components amounts to adding new subclasses and writing
correspondingread/write/print methods

• the supported profiles are IIOPProfile and IOPMultipleComponentProfile,
and anything else is treated as an IOPUnknownProfile

• the only supported service context is CodeSet, and anything else is
treated as an IOPUnknownContext

• however it does not support the codeset negotiation algorithm yet;
correct character encoders for both char and wchar types can be set
manually on the CDRStream class

• the supported tagged components are CodeSets, ORBType and
AlternateAddress, and anything else is treated as an
IOPUnknownComponent

IIOP has the following impact on the standard Opentalk architecture and
APIs:

• there is a new IIOPTransport and CDRMarshaler with corresponding
configuration classes

• these transport and marshaler configurations must be included in the
configuration of an IIOP broker in the usual way

• the new broker creation API consists of the following methods

• #newCdrIIOPAt:

• #newCdrIIOPAt:minorVersion:

• #newCdrIIOPAtPort:

• #newCdrIIOPAtPort:minorVersion:

• IIOP proxies are created using Broker>>remoteObjectAt:oid:interfaceId:

• there is an extended object reference class named IIOPObjRef

• the LocateRequest capabilities are accessible via

• Broker>>locate: anIIOPObjRef
Release Notes 69

Preview Components
• RemoteObject>>_locate

• LocateRequests are handled transparently on the server side.

• A location forward is achieved by exporting a remote object on the
server side (see the example below)

Examples

Remote Stream Access
The following example illustrates basic messaging capability by
accessing a stream remotely. The example takes advantage of the IDL
definitions in the SmalltakTypes IDL module:

| broker stream proxy oid |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[oid := 'stream' asByteArray.

stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
 interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

proxy next: 5.
] ensure: [broker stop]

“Locate” API
This example demonstrates the behavior of the “locate” API:
70 VisualWorks 7.4

OpentalkCORBA
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream oid proxy found |

found := OrderedCollection new.

"Try to locate a non-existent remote object"
oid := 'stream' asByteArray.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

result := proxy _locate.
found add: result.

"Now try to locate an existing remote object"
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
result := proxy _locate.
found add: result.
found

] ensure: [broker stop]

Transparent Request Forwarding
This example shows how to set up location forward on the server side
and demonstrates that it is handled transparently by the client.
Release Notes 71

Preview Components
| broker |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker start.
[| result stream proxy oid fproxy foid|

oid := 'stream' asByteArray.
stream := 'Hello World' asByteArray readStream.
broker objectAdaptor export: stream oid: oid.
proxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: oid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

foid := 'forwarder' asByteArray.
broker objectAdaptor export: proxy oid: foid.
fproxy := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 4242)

oid: foid
interfaceId: 'IDL:SmalltalkTypes/Stream:1.0'.

fproxy next: 5.
] ensure: [broker stop]

Listing contents of a Java Naming Service
This example provides the code for listing the contents of a running Java
JDK 1.4 naming service. It presumes that you have Opentalk-COS-
Naming loaded. To run the Java naming service, just invoke 'orbd -
ORBInitialPort 1050' on a machine with JDK 1.4 installed.

Note that this example also exercises the LOCATION_FORWARD reply
status, the broker transparently forwards the request to the true address
of the Java naming service received in response to the pseudo reference
'NameService'.
72 VisualWorks 7.4

Virtual Machine
| broker context list iterator |
broker := Opentalk.BasicRequestBroker newCdrIiopAtPort: 4242.
broker passErrors; start.
[context := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 1050)

oid: 'NameService' asByteArray
interfaceId: 'IDL:CosNaming/NamingContextExt:1.0'.

list := nil asCORBAParameter.
iterator := nil asCORBAParameter.
context

listContext: 10
bindingList: list
bindingIterator: iterator.

list value
] ensure: [broker stop]

List Initial DST Services
This is how you can list initial services of a running DST ORB. Note that
we're explicitly setting IIOP version to 1.0.

| broker dst |
broker := Opentalk.BasicRequestBroker

newCdrIiopAtPort: 4242
minorVersion: 0.

broker start.
[dst := broker

remoteObjectAt: (
IPSocketAddress

hostName: 'localhost'
port: 3460)

oid: #[0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0]
interfaceId: 'IDL:CORBA/ORB:1.0'.

dst listInitialServices
] ensure: [broker stop]

Virtual Machine

IEEE floating point
The engine now supports IEEE floating-point primitives. The old system
used IEEE floats, but would fail primitives that would have answered an
IEEE Inf or NaN value. The new engine does likewise but can run in a
mode where the primitives return Infs and NaNs rather than fail.
Release Notes 73

Preview Components
Again due to time constraints the system has not been changed to use
this new scheme and we intend to move to it in the next release. In the
interim, Image-level support for printing and creating NaNs and Infs has
been kindly contributed by Mark Ballard and is in
preview/parcels/IEEEMath.pcl. To use this facility load the IEEE
Math parcel and start the engine with the -ieeefp command-line option.

GLORP
GLORP (Generic Lightweight Object-Relational Persistence) is an open-
source project for mapping Smalltalk objects to and from relational
databases. While it is still missing many useful properties for such a
mapping, it can already do quite a few useful things.

Warning: This is UNSUPPORTED PREVIEW CODE. While
it should be harmless to use this code for reading, use of this
code to write into a Store database MAY CAUSE LOSS OF
DATA.

GLORP is licensed under the LGPL(S), which is the Lesser GNU Public
License with some additional explanation of how the authors consider
those conditions to apply to Smalltalk. Note that as part of this licensing
the code is unsupported and comes with absolutely no warranty. See the
licensing information accompanying the software for more information.

Cincom currently plans to do a signficant overhaul of the current
database mapping facilities in Lens, using GLORP as one component of
that overhaul. GLORP is included in preview as an illustration of what
these future capabilities might include.

Included on the CD is the GLORP library, its test suite, some rudimentary
user-provided documentation, and some supplementary parcels. For
more information, see the preview/glorp/ directory. Note that one of
these includes a preliminary mapping to the Store database schema.

SmalltalkDoc
SmalltalkDoc is a Smalltalk application for creating and presenting
comprehensive XML documentation for VisualWorks Smalltalk. It consists
of a new System Browser tool for creating and editing documentation, a
content management facility (a database) for managing snapshots of
74 VisualWorks 7.4

SmalltalkDoc
system documentation, and a web application for presenting
documentation. SmalltalkDoc will be used to document VisualWorks
components, and it can be used to document customer applications.

SmalltalkDoc is presently in preview status. When loaded, the
Documentation editor may be used in the System Browser, and
SmalltalkDoc content may be saved in file-out format. It is currently not
possible to publish SmalltalkDoc content to a Store repository, though this
is in development and planned for a subsequent release.

For additional information, refer to the HTML documentation in
preview/SmalltalkDoc/Docs/Overview.html.
Release Notes 75

5
Microsoft Windows CE

WinCE devices have been supported since 7.3. Because separate
documentation has not been developed or provided elsewhere, this
section repeats the information provided in the releases here from the
previous release.

Supported Devices
Virutal machines for Microsoft Windows CE are intended for use on CE
devices as an application deployment environment. Typically, an
application is developed in a standard development environment, and
prepared for deployment on a CE device. The image, VM, and any
supporting files, are then copied to the CE device and executed.

VisualWorks has been successfully tested on the following hardware:

• Simpad SLC with StrongARM-SA-1110, Windows CE .NET Version
4.0

• skeye.pad with StrongARM-SA-1110, Windows CE .NET Version 4.1

• HP iPAQ H2210 with Intel PXA255 XScale, Windows Pocket PC 2003
(Windows Mobile 2003)

• Tatung WebPAD with Geode GXm, Windows CE .NET Version 4.10

There are, however, limitations. Refer to “Known limitations” below for
details.

Distribution contents
There are two directories with virtual machines for the different
processors:
76 VisualWorks 7.4

Prerequisites
• bin\cearm – for StrongARM and XScale processors,

• bin\cex86 – for Pentium-compatible processors like the Geode.

Each directory contains three executables and a DLL:

• vwntoe.dll – the DLL containing the virtual machine.

• vwnt.exe – the GUI stub exe which is normally used to run GUI
applications. It uses vwntoe.dll.

• vwntconsole.exe – the console stub executable which is normally
used to run console applications. It uses vwntoe.dll.

• visual.exe – the single virtual machine, which is used for single-
file executable packaged applications.

The assert and debug subdirectories contain versions of these
executables with asserts turned on for debugging. The debug engines are
not optimized and so can be used with the Microsoft eMbedded Visual
C++ debugger. Refer to the engine type descriptions in the Application
Developer’s Guide, Appendix C, for further information.

Prerequisites
Windows CE VMs require a few additions to the standard image. These
are provided in the parcel ce.pcl. On the PC, prior to the deployment to
your CE machine, load this parcel into your image.

This parcel contains two major changes:

• A new SystemSupport subclass for CE – This is necessary because
the name of the DLLs differs from other Windows versions and they
contain different versions of the called functions. For example, only
Unicode versions of most functions are provided and some
convenience functions are missing.

• A new filename subclass, CEFilename – CE does not have a "current
working directory" concept, so only absolute paths are supported.
Therefore CEFilename stores the current directory and expands
relative paths into absolute paths.
Release Notes 77

Microsoft Windows CE
Developing an Application for CE
In general, developing an application for deployment on a CE device is
the same as for any other application. The notable differences have to do
with screen size, especially on small PDA-type devices, and filename
handling, because CE does not use file volumes or disk drive letters.

Before beginning development, load the CE parcel (ce.pcl) into the
development image. The changes it makes only take effect when the
image is installed on the CE device, so you can develop as usual on your
standard development system.

Filenames
WinCE does not use relative file paths or volume (disk) letters. This is
transparent during development, because the CEFilename class handles
converting all paths to absolute paths when the application is deployed
on a CE device. No special development restrictions need to be
observed.

DLL names
Similar, DLL names are modified appropriately when installed on a CE
device.

Window sizes and options
CE devices come in a variety of screen sizes. For the larger devices, with
a screen size of 640x400, the limitations are not extreme. However, on
the smaller devices, such as a Pocket PC with a screen size or 240x320,
the size greatly affects your GUI and application design.

As a deployment environment, you generally should have all development
tools, such as browsers closed, and possibly removed from the system,
though this is not required.

However, when testing and debugging it is convenient to have all of these
development resources available, and this can present serious difficulties.

Also, especially for smaller devices, select an appropriate opening
position for the GUI, in the canvas settings. Opening screen center is
generally a safe choice.
78 VisualWorks 7.4

Deploying on a CE Device
Input devices
The input side limitations are also worth mentioning. Typically you only
have a touch sensitive screen and a pen for it. There is no keyboard,
hence no modifier keys. You have no mouse buttons where VisualWorks
prefers to have three. So moving the pen somewhere always implies a
pressed button. You can open the 'soft input panel', i.e. a small window
with a keyboard in it. But it is not really comfortable to enter longer texts
this way and this window needs some of your valuable screen space. So
whenever you expect textual input, you should leave some free room for
the keyboard. (At 240x320, a full screen work space contains 10 lines of
text plus title bar, menu bar, tool bar buttons and the status bar at the
bottom. The Keyboard window covers the lines 8 to 10 and the status
bar.)

The CE parcel adds code which interprets holding the pen for approx 1.3
seconds as a right button press to open the operate context menu. This
behavior can be turned on and off in the look and feel section of the
settings window. On pocket PC, but not on the CE web pads, users are
trained to expect this behavior.

.NET access
While WinCE .NET uses the features of the Microsoft .NET platform, the
DotNETConnect preview does not support their use.

Deploying on a CE Device
Load the CE parcel ($(VISUALWORKS)\bin\winCE\CE.pcl) into your
development image. This provides the features described above (see
“Prerequisites”).

Deployment preparation is, otherwise, the same as usual, though there
may be practical considerations. On many devices

Starting VisualWorks on CE
There are several ways to start VisualWorks on Windows CE:

• In the command shell, execute:

visual [options] visual.im

(Not all CE environments have a command shell interface.)
Release Notes 79

Microsoft Windows CE
• Double-click on visual.exe. This starts VisualWorks with the
default image, visual.im..

By default, the vm attempts to open an image with the same name as
the vm and in the same directory. So, you can rename the the vm to
match your image name and execute it in this way.

• Double-click on an image file. This works only if the .im extension is
associated with VisualWorks in the registry of the CE device.

If you are developing on the CE device, you can evaluate this
expression in a workspace:

WinCESystemSupport registerVisualworksExtension
• If you have packaged the vm and image as a single executable file

(e.g. using ResHacker provided in the packaging/win directory),
you can simply run the executable.

• Create a short-cut to read e.g.

"\My Documents\vwnt" "\My Documents\visual.im"
The default CE Windows explorer can be used to create associations
by copying an existng short-cut (e.g., Control panel), renaming it, and
editing its properties. On CE machines that lack the standard
explorer, you can find free tools to edit associations.

Known limitations

Sockets
• Non-blocking calls are not yet supported.

• Conversion of hostnames to IP addresses, service names to ports,
etc., is not implemented. Use addresses instead, e.g., 192.109.54.11
instead of www.cincom.com.

File I/O
• File locking does not exist on CE (prim 667)

• Delete, rename, etc., do not work on open files (prim 1601,1602,..)

• “ '\' asFilename fileSize “ fails with FILE_NOT_FOUND_ERROR.

Windows and Graphics
• Animation primitives not working properly (prims 935-937)
80 VisualWorks 7.4

Known limitations
• Only full circles are supported by the OS; arcs and wedges are
converted to polylines

• No pixmap <-> clipboard primitives

User primitive
• As yet there is no support for user primitives or primitive plugins.
Release Notes 81

6
Installer Framework

The Installer Framework has moved from goodies to the packaging
directory. Until full documentation can be provided, the following notes
are provided.

The VWInstallerFramework parcel provides the basic functionality for the
installer, while the VWInstaller parcel serves as an example of
customizing this framework for an individual company and product. The
installer application is a wizard with a set of pages that are displayed in
sequence. Creating a custom installer is largely a matter of changing the
install.map file for that installation. See the install.map files on
either the Commercial or Non-commercial CDs for examples. These can
be hand-edited to suit your particular installation needs.

Customizing the install.map File

Dynamic Attributes
The first item in this file is a dictionary containing version information
about the particular distribution to be installed. Edit this section as
appropriate for your needs. Many attriburtes are self explanatory, but
others may require some explanation.

#defaultTargetTail
The default name of the installation subdirectory, which the user can
change at install time.

#imageSignature
Used for updating VisualWorks.ini file at install time (auto update of
this file is currently a no-op).
82 VisualWorks 7.4

Customizing the install.map File
#installDirectoryVariableName
The name of the system variable (or registry key) representing the
installed location of the product. For VisualWorks, this is
$VISUALWORKS. This can be changed as necessary.

#mapVersion
This can be used by the installer to identify older or newer install.map
formats.

#requiresKey
Setting this value to true will display the KeyVerifierPage, and will only
proceed with the installation once a proper product key has been
supplied by the user. VisualWorks installations no longer require this,
but the feature remains for those who want it.

#sourcePathVariableName
The name of the system variable (or registry key) representing the
location from which the product was installed. For VisualWorks, this
is $SOURCE_PATH. This can be changed as necessary.

#variablePath
The path in the Windows registry to use for setting variables on that
platform (see Win95SystemSupport.CurrentVersion).

There is also a section of dictionary entries with integer keys and string
values of the form “VM *”. The integers represent bytes from the engine
thumbprint of the running installer, and are used to identify to the installer
the name of the default VM component for the platform on which the
installer is run.

Components
Each component is listed in install.map with various attributes. Many
of these are self explanatory, but others require some explanation.

#target: #tgtDir
Although the VisualWorks components are all installed to the main
installation directory, the framework anticipates that a need might
arise for some components to be installed to a different location. The
symbol #tgtDir resolves to the installation directory chosen by the
user. However, one could add other symbols, along with supporting
code, to allow multiple target directories. For example, if the same
installer were to install ObjectStudio and VisualWorks, the symbols
#osTgtDir and #vwTgtDir could be used if methods by these names
were implemented to answer the appropriate directories.
Release Notes 83

Installer Framework
#environmentItems:
These represent system variables (or Windows registry entries) to be
set when the containing component is installed. In the VisualWorks
installation, only the Base VisualWorks component contains these.

#startItems:
These describe the attributes necessary to create a Windows
shortcut, such as in the start menu or on the desktop. On Unix these
attributes are used to create a small script to launch the newly
installed image and VM.

#sizes:
A collection of the uncompressed sizes of all the files in the archive,
for determining disk space requirements at install time.

License
The presence of the optional license string in install.map determines
whether the LicenseVerifierPage will be displayed. This string is present in
the Non-Commercial installer application, and so the page is displayed,
but not in the Commercial installer.

Customizing the Code
The wizard application is called InstallerMainApplication, and the wizard
pages are subclasses of AbstractWizardPage. These pages are only
displayed when listed in InstallerMainApplication>>subapplicationsForInstall.

Some pages are conditionally displayed, as determined by implementors
of #okToBuild. For example, CheckServerPage is only displayed if the server
has not yet been checked, or if available updates have not yet been
applied. Also, as mentioned earlier LicenseVerifierPage is only displayed if
the install.map to be installed contains a license string.

To change the GUI of either the wizard or its pages, simply subclass and
tailor the window or subcanvas spec to suit your needs. Then reference
your subclass in #subapplicationsForInstall and it will become part of your
installer.

The graphic at the top of the wizard window can be changed by
implementing #defaultBanner in a class method of your subclass of
InstallerMainApplication.

Once your customizations are done, you can strip your install image from
the launcher by selecting Tools Strip Install Image.
84 VisualWorks 7.4

Local Installations
Creating Component Archives
The packaging tool (goodies/parc/PackingList.pcl) that
automatically packages our product. However, it is very tailored to our
particular build processes, and is not recommended for general use. It
runs on a linux box, and creates component archives by first staging all
the files in a directory structure and then invoking the following code:

UnixProcess
cshOne: ('tar --create --directory="<1s>" --file="<2s>" --owner=0 --totals

--verify --same-order <3s>'
expandMacrosWith: directoryString
with: fileString
with: contentString)

Note that any Mac files with resource forks must be added to the archive
in MacBinaryIII format (*.bin) to be installed properly later.

Local Installations
The scripts and structure of our CDs serve as examples of a working
packaged CD. Any archive could be installed from another part of the CD
if its #path: attribute is adjusted in the install.map file.

Cincom uses and recommends CDEveryWhere
(www.cdeverywhere.com) to create hybrid CDs for distribution that run on
Win, Mac, and Unix/linux.

Remote installations
Your wizard subclass should implement #configFileLocation, which answers
anFtpURL. This XML file should reside on your server and list the current
installer image version, available patches, and available products to
install. An example from our NC download site follows:
Release Notes 85

http://www.cdeverywhere.com

Installer Framework
<?xml version="1.0"?>

<configuration>
<installerImageVersion>'1.1'</installerImageVersion>
<installerParcelVersions>

'#()'
</installerParcelVersions>
<applicationsToInstall>

'#(#(''VisualWorks 7.1 Non-Commercial'' ''vwnc7.1'')
#(''VisualWorks 7.2 Non-Commercial'' ''vwnc7.2'')
#(''VisualWorks 7.2.1 Non-Commercial'' ''vwnc7.2.1''))'

</applicationsToInstall>
</configuration>

In the above example, the last application listed is 'VisualWorks 7.2.1 Non-
Commercial', which is the string that will appear in the drop down list of
available versions. The string following that, 'vwnc7.2.1', is the
subdirectory on the ftp server which contains the application. This
subdirectory is flat, unlike the CST CD directory structure, and contains
the install.map and archive files. The same install.map file can
work unchanged for CD and remote installations. For remote installations,
only the tail of the component archive file is used, since it is assumed that
the FTP server does not need the deeper directory structure of the CST
CDs.

In addition to the default configuration file location hard coded into your
wizard class, users can also keep a local config file, named
installerConfiguration.xml, which can list alternate local install
sources or remote servers. For example, the following local config file lists
two additional servers from which one could install any products available
there:

<?xml version="1.0"?>

<configuration>
<additionalConfigFiles>

'#(''ftp://anonymous:foo@myServer//remoteInstall/
installerConfiguration.xml''

''ftp://anonymous:foo@theirServer//remoteInstall/
installerConfiguration.xml'')'

</additionalConfigFiles>
</configuration>

This may be useful anywhere frequent installations might be performed,
such as a QA or Tech Support computer lab.
86 VisualWorks 7.4

	Introduction to VisualWorks 7.4
	Product Support
	Support Status
	Product Patches

	ARs Resolved in this Release
	Items Of Special Note
	Image and Engine Compatibility
	Parcel Version Updated
	Store Database Update
	Several Limits Raised

	Known Limitations
	Mac OSX character spacing inaccurate for some fonts
	Linux Startup Issue on X.org X11 Installations
	HPUX11 User Primitive Engine
	Limitations listed in other sections

	VW 7.4 New and Enhanced Features
	Virtual Machine
	New Platform VMs
	64-bit VM

	Base system
	Environment Variable Handling
	Deployment and Startup Processing
	Runtime and Development Subsystems
	Subsystem Prerequisites Re-arranged
	Ordering Tool

	Headless Image Changes
	Standard I/O Streams
	Transcript Handling
	Exception Handling
	Limitation on Code Loading While Headless

	Suppressing Splash and Herald
	Printing

	Tools
	Parcel Loading
	File Dialogs

	Advanced Tools
	Database
	Miscellaneous changes
	Oracle Library Path

	Runtime Packager
	WebService
	Bindings for Collections
	Creating Classes in Specified Namespace
	New Struct Class
	Opentalk Server Support
	WSDL Tool Enhancement
	One-way Operations
	Binding Wizard
	Soap headers in Opentalk
	Opentalk client header support
	Generating a Wsdl schema with Soap headers
	Tool Support for Soap headers

	WebService Demonstration Code
	Create Smalltalk Classes from a Wsdl Specification
	Create a Wsdl specification from Classes Defining that Service
	Create and Run an Opentalk-SOAP Server

	Net Clients
	Security
	ASN.1
	Modules
	Subtyping
	Type Equivalence
	Constraints
	Struct
	TypeWrapper
	Choice
	Enumeration
	INTEGER
	Marshaling

	X.509
	SSL

	Opentalk
	Protocols-Common
	Improving firewall traversal capabilities of Opentalk-STST
	Configuration of process prioirities
	Message Interceptors
	Multicast broker improvements

	DST
	New implementation of weak dictionaries
	Extended Message Interceptor API

	Application Server
	Documentation
	Advanced Tools Guide
	Basic Libraries Guide
	Tool Guide
	Application Developer’s Guide
	COM Connect Guide
	Database Application Developer’s Guide
	DLL and C Connect Guide
	DotNETConnect User’s Guide
	DST Application Developer’s Guide
	GUI Developer’s Guide
	Internationalization Guide
	Internet Client Developer’s Guide
	Opentalk Communication Layer Developer's Guide
	Plugin Developer’s Guide
	Security Guide
	Source Code Management Guide
	Walk Through
	Web Application Developer’s Guide
	Web GUI Developer’s Guide
	Web Server Configuration Guide
	Web Service Developer’s Guide
	TechNotes

	Goodies

	Deprecated Features
	Preview Components
	Base Image for Packaging
	Unicode Support for Windows
	Store Previews
	Store for Access
	Store for Supra
	StoreForSupra installation instructions

	New GUI Framework (Pollock), Feature Set 2
	Background
	High Level Goals
	Pollock
	Pollock Requirements

	The New Metaphor: Panes with frames, agents, and artists
	Other notes of interest
	So, What Now?

	Security
	OpenSSL cryptographic function wrapper

	Opentalk
	Distributed Profiler
	Installing the Opentalk Profiler in a Target Image
	Installing the Opentalk Profiler in a Client Image

	Opentalk Remote Debugger
	Testing and Remote Testing
	Miscellaneous

	Opentalk SNMP
	Usage
	Initial Configuration
	Broker or Engine Creation and Configuration
	Engine Use

	Entity Configuration
	MIBs
	Limitations
	Port 161 and the AGENTX MIB

	OpentalkCORBA
	Examples
	Remote Stream Access
	“Locate” API
	Transparent Request Forwarding
	Listing contents of a Java Naming Service
	List Initial DST Services

	Virtual Machine
	IEEE floating point

	GLORP
	SmalltalkDoc

	Microsoft Windows CE
	Supported Devices
	Distribution contents
	Prerequisites
	Developing an Application for CE
	Filenames
	DLL names
	Window sizes and options
	Input devices
	.NET access

	Deploying on a CE Device
	Starting VisualWorks on CE
	Known limitations
	Sockets
	File I/O
	Windows and Graphics
	User primitive

	Installer Framework
	Customizing the install.map File
	Dynamic Attributes
	Components
	License

	Customizing the Code
	Creating Component Archives

	Local Installations
	Remote installations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

