
NumPy Reference
Release 1.11.1

Written by the NumPy community

June 25, 2016

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (ndarray) . 3
1.2 Scalars . 46
1.3 Data type objects (dtype) . 61
1.4 Indexing . 74
1.5 Iterating Over Arrays . 82
1.6 Standard array subclasses . 93
1.7 Masked arrays . 216
1.8 The Array Interface . 365
1.9 Datetimes and Timedeltas . 369

2 Universal functions (ufunc) 379
2.1 Broadcasting . 379
2.2 Output type determination . 380
2.3 Use of internal buffers . 380
2.4 Error handling . 380
2.5 Casting Rules . 383
2.6 Overriding Ufunc behavior . 385
2.7 ufunc . 385
2.8 Available ufuncs . 395

3 Routines 399
3.1 Array creation routines . 399
3.2 Array manipulation routines . 434
3.3 Binary operations . 471
3.4 String operations . 478
3.5 C-Types Foreign Function Interface (numpy.ctypeslib) . 523
3.6 Datetime Support Functions . 525
3.7 Data type routines . 530
3.8 Optionally Scipy-accelerated routines (numpy.dual) . 544
3.9 Mathematical functions with automatic domain (numpy.emath) 545
3.10 Floating point error handling . 546
3.11 Discrete Fourier Transform (numpy.fft) . 550
3.12 Financial functions . 573
3.13 Functional programming . 583
3.14 Numpy-specific help functions . 589
3.15 Indexing routines . 591
3.16 Input and output . 624
3.17 Linear algebra (numpy.linalg) . 643
3.18 Logic functions . 681
3.19 Mathematical functions . 698

i

3.20 Matrix library (numpy.matlib) . 765
3.21 Miscellaneous routines . 770
3.22 Padding Arrays . 774
3.23 Polynomials . 777
3.24 Random sampling (numpy.random) . 953
3.25 Set routines . 1061
3.26 Sorting, searching, and counting . 1064
3.27 Statistics . 1078
3.28 Test Support (numpy.testing) . 1113
3.29 Window functions . 1126

4 Packaging (numpy.distutils) 1135
4.1 Modules in numpy.distutils . 1135
4.2 Building Installable C libraries . 1146
4.3 Conversion of .src files . 1147

5 Numpy C-API 1149
5.1 Python Types and C-Structures . 1149
5.2 System configuration . 1162
5.3 Data Type API . 1163
5.4 Array API . 1168
5.5 Array Iterator API . 1208
5.6 UFunc API . 1225
5.7 Generalized Universal Function API . 1231
5.8 Numpy core libraries . 1234
5.9 C API Deprecations . 1239

6 Numpy internals 1241
6.1 Numpy C Code Explanations . 1241
6.2 Internal organization of numpy arrays . 1248
6.3 Multidimensional Array Indexing Order Issues . 1248

7 Numpy and SWIG 1251
7.1 Numpy.i: a SWIG Interface File for NumPy . 1251
7.2 Testing the numpy.i Typemaps . 1266

8 Acknowledgements 1269

Bibliography 1271

Index 1281

ii

NumPy Reference, Release 1.11.1

Release
1.11

Date
June 25, 2016

This reference manual details functions, modules, and objects included in Numpy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1

NumPy Reference, Release 1.11.1

2 CONTENTS

CHAPTER

ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, etc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in Numpy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

Fig. 1.1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe
the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element
of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number
of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray .

3

http://docs.python.org/dev/library/stdtypes.html#tuple

NumPy Reference, Release 1.11.1

Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python strings or objects implementing the buffer or array
interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<type 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')

The array can be indexed using Python container-like syntax:

>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2]

For example slicing can produce views of the array:

>>> y = x[:,1]
>>> y
array([2, 5])
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5])
>>> x
array([[1, 9, 3],

[4, 5, 6]])

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray An array object represents a multidimensional, homogeneous array of fixed-size items.

class numpy.ndarray
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array , zeros or empty (refer to the See Also section below). The
parameters given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)

shape : tuple of ints

Shape of created array.

4 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.11.1

dtype : data-type, optional

Any object that can be interpreted as a numpy data type.

buffer : object exposing buffer interface, optional

Used to fill the array with data.

offset : int, optional

Offset of array data in buffer.

strides : tuple of ints, optional

Strides of data in memory.

order : {‘C’, ‘F’}, optional

Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

Notes

There are two modes of creating an array using __new__:

1.If buffer is None, then only shape, dtype, and order are used.

2.If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier
ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[-1.13698227e+002, 4.25087011e-303],

[2.88528414e-306, 3.27025015e-309]]) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes

1.1. The N-dimensional array (ndarray) 5

NumPy Reference, Release 1.11.1

T Same as self.transpose(), except that self is returned if self.ndim < 2.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
real The real part of the array.
size Number of elements in the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
shape Tuple of array dimensions.
strides Tuple of bytes to step in each dimension when traversing an array.
ctypes An object to simplify the interaction of the array with the ctypes module.
base Base object if memory is from some other object.

ndarray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

ndarray.data
Python buffer object pointing to the start of the array’s data.

ndarray.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')

6 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> type(x.dtype)
<type 'numpy.dtype'>

ndarray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using low-
ercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

1.1. The N-dimensional array (ndarray) 7

NumPy Reference, Release 1.11.1

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWN-
DATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only.
A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UP-
DATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array
will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

ndarray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

8 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

ndarray.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

ndarray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

ndarray.itemsize
Length of one array element in bytes.

1.1. The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

ndarray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

10 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

1.1. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.11.1

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x

12 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

array([[0, 1],
[2, 3]])

>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

ndarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Methods

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.

Continued on next page

1.1. The N-dimensional array (ndarray) 13

NumPy Reference, Release 1.11.1

Table 1.3 – continued from previous page
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.

ndarray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all
equivalent function

ndarray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

14 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Refer to numpy.any for full documentation.

See also:

numpy.any
equivalent function

ndarray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax
equivalent function

ndarray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin
equivalent function

ndarray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition
equivalent function

ndarray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort
equivalent function

ndarray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

1.1. The N-dimensional array (ndarray) 15

NumPy Reference, Release 1.11.1

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

ndarray.byteswap(inplace)
Swap the bytes of the array elements

16 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

ndarray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose
equivalent function

ndarray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip
equivalent function

ndarray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress
equivalent function

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.11.1

ndarray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

ndarray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

ndarray.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

ndarray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

18 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.cumprod
equivalent function

ndarray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum
equivalent function

ndarray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal
equivalent function

ndarray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot
equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

ndarray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

ndarray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

1.1. The N-dimensional array (ndarray) 19

NumPy Reference, Release 1.11.1

Parameters
None

ndarray.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

ndarray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

ndarray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

20 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

ndarray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

1.1. The N-dimensional array (ndarray) 21

NumPy Reference, Release 1.11.1

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

ndarray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

ndarray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax
equivalent function

ndarray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

22 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

See also:

numpy.mean
equivalent function

ndarray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin
equivalent function

ndarray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. new_order codes
can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

ndarray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero
equivalent function

ndarray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this

1.1. The N-dimensional array (ndarray) 23

NumPy Reference, Release 1.11.1

element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

ndarray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod
equivalent function

24 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

ndarray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp
equivalent function

ndarray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put
equivalent function

ndarray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

ndarray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

ndarray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

ndarray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.

1.1. The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.11.1

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing...

26 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

ndarray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around
equivalent function

ndarray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

ndarray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

1.1. The N-dimensional array (ndarray) 27

NumPy Reference, Release 1.11.1

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

ndarray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

28 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

ndarray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

1.1. The N-dimensional array (ndarray) 29

NumPy Reference, Release 1.11.1

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

ndarray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze
equivalent function

ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std
equivalent function

ndarray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum
equivalent function

ndarray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

30 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.swapaxes
equivalent function

ndarray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

ndarray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

ndarray.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

1.1. The N-dimensional array (ndarray) 31

NumPy Reference, Release 1.11.1

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

ndarray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

ndarray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True

32 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace
equivalent function

ndarray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape
= (i[n-1], i[n-2], ... i[1], i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

1.1. The N-dimensional array (ndarray) 33

NumPy Reference, Release 1.11.1

ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var
equivalent function

ndarray.view(dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

34 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array[selection]. Similar syntax is also used
for accessing fields in a structured array.

See also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an indexing scheme that maps N integers into the location of an
item in the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes
each item takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. Numpy is flexible, and ndarray objects can accommodate any

1.1. The N-dimensional array (ndarray) 35

NumPy Reference, Release 1.11.1

strided indexing scheme. In a strided scheme, the N-dimensional index (𝑛0, 𝑛1, ..., 𝑛𝑁−1) corresponds to the offset
(in bytes):

𝑛offset =

𝑁−1∑︁
𝑘=0

𝑠𝑘𝑛𝑘

from the beginning of the memory block associated with the array. Here, 𝑠𝑘 are integers which specify the strides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

𝑠column
𝑘 =

𝑘−1∏︁
𝑗=0

𝑑𝑗 , 𝑠row𝑘 =

𝑁−1∏︁
𝑗=𝑘+1

𝑑𝑗 .

where 𝑑𝑗 = self.itemsize * self.shape[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the
above strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index[k] == 0. This means that in the formula for
the offset 𝑛𝑘 = 0 and thus 𝑠𝑘𝑛𝑘 = 0 and the value of 𝑠𝑘 = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any
array with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self‘‘and ‘‘self.squeeze() always have the same contiguity and aligned flags value.
This also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of
self.itemsize.

Note: Points (1) and (2) are not yet applied by default. Beginning with Numpy 1.8.0, they are applied consistently
only if the environment variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy was built.
Eventually this will become the default.

You can check whether this option was enabled when your NumPy was built by looking at the value of
np.ones((10,1), order=’C’).flags.f_contiguous. If this is True, then your NumPy has relaxed
strides checking enabled.

Warning: It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1.4 Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed

36 Chapter 1. Array objects

http://docs.python.org/dev/glossary.html#term-contiguous

NumPy Reference, Release 1.11.1

attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.
ndarray.shape Tuple of array dimensions.
ndarray.strides Tuple of bytes to step in each dimension when traversing an array.
ndarray.ndim Number of array dimensions.
ndarray.data Python buffer object pointing to the start of the array’s data.
ndarray.size Number of elements in the array.
ndarray.itemsize Length of one array element in bytes.
ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

Data type

See also:

Data type objects

The data type object associated with the array can be found in the dtype attribute:

ndarray.dtype Data-type of the array’s elements.

Other attributes

ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
ndarray.real The real part of the array.
ndarray.imag The imaginary part of the array.
ndarray.flat A 1-D iterator over the array.
ndarray.ctypes An object to simplify the interaction of the array with the ctypes module.

Array interface

See also:

The Array Interface.

__array_interface__ Python-side of the array interface
__array_struct__ C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the ctypes module.

1.1. The N-dimensional array (ndarray) 37

NumPy Reference, Release 1.11.1

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any , argmax, argmin,
argpartition, argsort, choose, clip, compress, copy , cumprod, cumsum, diagonal, imag,
max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var.

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar and return it.
ndarray.tolist() Return the array as a (possibly nested) list.
ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
ndarray.tostring([order]) Construct Python bytes containing the raw data bytes in the array.
ndarray.tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.dump(file) Dump a pickle of the array to the specified file.
ndarray.dumps() Returns the pickle of the array as a string.
ndarray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.
ndarray.byteswap(inplace) Swap the bytes of the array elements
ndarray.copy([order]) Return a copy of the array.
ndarray.view([dtype, type]) New view of array with the same data.
ndarray.getfield(dtype[, offset]) Returns a field of the given array as a certain type.
ndarray.setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
ndarray.fill(value) Fill the array with a scalar value.

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

ndarray.reshape(shape[, order]) Returns an array containing the same data with a new shape.
ndarray.resize(new_shape[, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.
ndarray.squeeze([axis]) Remove single-dimensional entries from the shape of a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray.take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
ndarray.put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ndarray.repeat(repeats[, axis]) Repeat elements of an array.

Continued on next page

38 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.10 – continued from previous page
ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
ndarray.sort([axis, kind, order]) Sort an array, in-place.
ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.
ndarray.partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.
ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
ndarray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
ndarray.nonzero() Return the indices of the elements that are non-zero.
ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.
ndarray.diagonal([offset, axis1, axis2]) Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

• If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a 0-dimensional array or array scalar. (An array scalar is
an instance of the types/classes float32, float64, etc., whereas a 0-dimensional array is an ndarray instance
containing precisely one array scalar.)

• If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created
along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

>>> x
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8]],

[[9, 10, 11],
[12, 13, 14],
[15, 16, 17]],

[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

>>> x.sum(axis=0)
array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]])

>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]]),

array([[9, 12, 15],
[36, 39, 42],
[63, 66, 69]]),

array([[3, 12, 21],
[30, 39, 48],
[57, 66, 75]]))

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction

1.1. The N-dimensional array (ndarray) 39

NumPy Reference, Release 1.11.1

using a larger data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data
type in which case casting will be performed.

ndarray.argmax([axis, out]) Return indices of the maximum values along the given axis.
ndarray.min([axis, out, keepdims]) Return the minimum along a given axis.
ndarray.argmin([axis, out]) Return indices of the minimum values along the given axis of a.
ndarray.ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
ndarray.clip([min, max, out]) Return an array whose values are limited to [min, max].
ndarray.conj() Complex-conjugate all elements.
ndarray.round([decimals, out]) Return a with each element rounded to the given number of decimals.
ndarray.trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
ndarray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
ndarray.mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
ndarray.var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
ndarray.std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
ndarray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
ndarray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
ndarray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

1.1.6 Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield
ndarray objects as results.

Each of the arithmetic operations (+, -, *, /, //, %, divmod(), ** or pow(), <<, >>, &, ^, |, ~) and the
comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in
Numpy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray.__lt__ x.__lt__(y) <==> x<y
ndarray.__le__ x.__le__(y) <==> x<=y
ndarray.__gt__ x.__gt__(y) <==> x>y
ndarray.__ge__ x.__ge__(y) <==> x>=y
ndarray.__eq__ x.__eq__(y) <==> x==y
ndarray.__ne__ x.__ne__(y) <==> x!=y

ndarray.__lt__
x.__lt__(y) <==> x<y

ndarray.__le__
x.__le__(y) <==> x<=y

ndarray.__gt__
x.__gt__(y) <==> x>y

ndarray.__ge__
x.__ge__(y) <==> x>=y

ndarray.__eq__

40 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

x.__eq__(y) <==> x==y

ndarray.__ne__
x.__ne__(y) <==> x!=y

Truth value of an array (bool):

ndarray.__nonzero__ x.__nonzero__() <==> x != 0

ndarray.__nonzero__
x.__nonzero__() <==> x != 0

Note: Truth-value testing of an array invokes ndarray.__nonzero__, which raises an error if the number of
elements in the the array is larger than 1, because the truth value of such arrays is ambiguous. Use .any() and
.all() instead to be clear about what is meant in such cases. (If the number of elements is 0, the array evaluates to
False.)

Unary operations:

ndarray.__neg__ x.__neg__() <==> -x
ndarray.__pos__ x.__pos__() <==> +x
ndarray.__abs__() <==> abs(x)
ndarray.__invert__ x.__invert__() <==> ~x

ndarray.__neg__
x.__neg__() <==> -x

ndarray.__pos__
x.__pos__() <==> +x

ndarray.__abs__() <==> abs(x)

ndarray.__invert__
x.__invert__() <==> ~x

Arithmetic:

ndarray.__add__ x.__add__(y) <==> x+y
ndarray.__sub__ x.__sub__(y) <==> x-y
ndarray.__mul__ x.__mul__(y) <==> x*y
ndarray.__div__ x.__div__(y) <==> x/y
ndarray.__truediv__ x.__truediv__(y) <==> x/y
ndarray.__floordiv__ x.__floordiv__(y) <==> x//y
ndarray.__mod__ x.__mod__(y) <==> x%y
ndarray.__divmod__(y) <==> divmod(x, y)
ndarray.__pow__(y[, z]) <==> pow(x, y[, z])
ndarray.__lshift__ x.__lshift__(y) <==> x<<y
ndarray.__rshift__ x.__rshift__(y) <==> x>>y
ndarray.__and__ x.__and__(y) <==> x&y
ndarray.__or__ x.__or__(y) <==> x|y
ndarray.__xor__ x.__xor__(y) <==> x^y

1.1. The N-dimensional array (ndarray) 41

NumPy Reference, Release 1.11.1

ndarray.__add__
x.__add__(y) <==> x+y

ndarray.__sub__
x.__sub__(y) <==> x-y

ndarray.__mul__
x.__mul__(y) <==> x*y

ndarray.__div__
x.__div__(y) <==> x/y

ndarray.__truediv__
x.__truediv__(y) <==> x/y

ndarray.__floordiv__
x.__floordiv__(y) <==> x//y

ndarray.__mod__
x.__mod__(y) <==> x%y

ndarray.__divmod__(y) <==> divmod(x, y)

ndarray.__pow__(y[, z]) <==> pow(x, y[, z])

ndarray.__lshift__
x.__lshift__(y) <==> x<<y

ndarray.__rshift__
x.__rshift__(y) <==> x>>y

ndarray.__and__
x.__and__(y) <==> x&y

ndarray.__or__
x.__or__(y) <==> x|y

ndarray.__xor__
x.__xor__(y) <==> x^y

Note:

• Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

• The three division operators are all defined; div is active by default, truediv is active when __future__
division is in effect.

• Because ndarray is a built-in type (written in C), the __r{op}__ special methods are not directly defined.

• The functions called to implement many arithmetic special methods for arrays can be modified using
set_numeric_ops.

Arithmetic, in-place:

ndarray.__iadd__ x.__iadd__(y) <==> x+=y
ndarray.__isub__ x.__isub__(y) <==> x-=y
ndarray.__imul__ x.__imul__(y) <==> x*=y
ndarray.__idiv__ x.__idiv__(y) <==> x/=y

Continued on next page

42 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#pow
http://docs.python.org/dev/library/__future__.html#module-__future__

NumPy Reference, Release 1.11.1

Table 1.16 – continued from previous page
ndarray.__itruediv__ x.__itruediv__(y) <==> x/=y
ndarray.__ifloordiv__ x.__ifloordiv__(y) <==> x//=y
ndarray.__imod__ x.__imod__(y) <==> x%=y
ndarray.__ipow__ x.__ipow__(y) <==> x**=y
ndarray.__ilshift__ x.__ilshift__(y) <==> x<<=y
ndarray.__irshift__ x.__irshift__(y) <==> x>>=y
ndarray.__iand__ x.__iand__(y) <==> x&=y
ndarray.__ior__ x.__ior__(y) <==> x|=y
ndarray.__ixor__ x.__ixor__(y) <==> x^=y

ndarray.__iadd__
x.__iadd__(y) <==> x+=y

ndarray.__isub__
x.__isub__(y) <==> x-=y

ndarray.__imul__
x.__imul__(y) <==> x*=y

ndarray.__idiv__
x.__idiv__(y) <==> x/=y

ndarray.__itruediv__
x.__itruediv__(y) <==> x/=y

ndarray.__ifloordiv__
x.__ifloordiv__(y) <==> x//=y

ndarray.__imod__
x.__imod__(y) <==> x%=y

ndarray.__ipow__
x.__ipow__(y) <==> x**=y

ndarray.__ilshift__
x.__ilshift__(y) <==> x<<=y

ndarray.__irshift__
x.__irshift__(y) <==> x>>=y

ndarray.__iand__
x.__iand__(y) <==> x&=y

ndarray.__ior__
x.__ior__(y) <==> x|=y

ndarray.__ixor__
x.__ixor__(y) <==> x^=y

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore,
for mixed precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose a =
ones((3,3)). Then, a += 3j is different than a = a + 3j: while they both perform the same computation,
a += 3 casts the result to fit back in a, whereas a = a + 3j re-binds the name a to the result.

Matrix Multiplication:

1.1. The N-dimensional array (ndarray) 43

NumPy Reference, Release 1.11.1

ndarray.__matmul__

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP465. Numpy 1.10 has a preliminary
implementation of @ for testing purposes. Further documentation can be found in the matmul documentation.

1.1.7 Special methods

For standard library functions:

ndarray.__copy__([order]) Return a copy of the array.
ndarray.__deepcopy__(() -> Deep copy of array.) Used if copy.deepcopy is called on an array.
ndarray.__reduce__() For pickling.
ndarray.__setstate__(version, shape, dtype, ...) For unpickling.

ndarray.__copy__([order])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

ndarray.__deepcopy__()→ Deep copy of array.
Used if copy.deepcopy is called on an array.

ndarray.__reduce__()
For pickling.

ndarray.__setstate__(version, shape, dtype, isfortran, rawdata)
For unpickling.

Parameters
version : int

optional pickle version. If omitted defaults to 0.

shape : tuple

dtype : data-type

isFortran : bool

rawdata : string or list

a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__((S, ...)
ndarray.__array__(...) Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array.
ndarray.__array_wrap__(...)

ndarray.__new__(S, ...) → a new object with type S, a subtype of T

44 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

ndarray.__array__(|dtype)→ reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap__(obj)→ Object of same type as ndarray object a.

Container customization: (see Indexing)

ndarray.__len__() <==> len(x)
ndarray.__getitem__ x.__getitem__(y) <==> x[y]
ndarray.__setitem__ x.__setitem__(i, y) <==> x[i]=y
ndarray.__getslice__ x.__getslice__(i, j) <==> x[i:j]
ndarray.__setslice__ x.__setslice__(i, j, y) <==> x[i:j]=y
ndarray.__contains__ x.__contains__(y) <==> y in x

ndarray.__len__() <==> len(x)

ndarray.__getitem__
x.__getitem__(y) <==> x[y]

ndarray.__setitem__
x.__setitem__(i, y) <==> x[i]=y

ndarray.__getslice__
x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.

ndarray.__setslice__
x.__setslice__(i, j, y) <==> x[i:j]=y

Use of negative indices is not supported.

ndarray.__contains__
x.__contains__(y) <==> y in x

Conversion; the operations complex, int, long, float, oct, and hex. They work only on arrays that have one
element in them and return the appropriate scalar.

ndarray.__int__() <==> int(x)
ndarray.__long__() <==> long(x)
ndarray.__float__() <==> float(x)
ndarray.__oct__() <==> oct(x)
ndarray.__hex__() <==> hex(x)

ndarray.__int__() <==> int(x)

ndarray.__long__() <==> long(x)

ndarray.__float__() <==> float(x)

ndarray.__oct__() <==> oct(x)

1.1. The N-dimensional array (ndarray) 45

http://docs.python.org/dev/library/functions.html#oct
http://docs.python.org/dev/library/functions.html#hex

NumPy Reference, Release 1.11.1

ndarray.__hex__() <==> hex(x)

String representations:

ndarray.__str__() <==> str(x)
ndarray.__repr__() <==> repr(x)

ndarray.__str__() <==> str(x)

ndarray.__repr__() <==> repr(x)

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays. 1 This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance(val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance(val, np.complexfloating) will return True if val is a complex valued type, while
isinstance(val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as
well as from the generic array scalar type:

Array scalar type Related Python type
int_ IntType (Python 2 only)
float_ FloatType
complex_ ComplexType
str_ StringType
unicode_ UnicodeType

1 However, array scalars are immutable, so none of the array scalar attributes are settable.

46 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Fig. 1.2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types
intp and uintp which just point to the integer type that holds a pointer for the platform. All the number types can
be obtained using bit-width names as well.

1.2. Scalars 47

NumPy Reference, Release 1.11.1

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This is
different than Python’s default implementation of bool as a sub-class of int.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer
a fixed-width integer type.

Tip: The default data type in Numpy is float_.

In the tables below, platform? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in
the same way.

Booleans:

Type Remarks Character code
bool_ compatible: Python bool ’?’
bool8 8 bits

Integers:

byte compatible: C char ’b’
short compatible: C short ’h’
intc compatible: C int ’i’
int_ compatible: Python int ’l’
longlong compatible: C long long ’q’
intp large enough to fit a pointer ’p’
int8 8 bits
int16 16 bits
int32 32 bits
int64 64 bits

Unsigned integers:

ubyte compatible: C unsigned char ’B’
ushort compatible: C unsigned short ’H’
uintc compatible: C unsigned int ’I’
uint compatible: Python int ’L’
ulonglong compatible: C long long ’Q’
uintp large enough to fit a pointer ’P’
uint8 8 bits
uint16 16 bits
uint32 32 bits
uint64 64 bits

Floating-point numbers:

48 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#int

NumPy Reference, Release 1.11.1

half ’e’
single compatible: C float ’f’
double compatible: C double
float_ compatible: Python float ’d’
longfloat compatible: C long float ’g’
float16 16 bits
float32 32 bits
float64 64 bits
float96 96 bits, platform?
float128 128 bits, platform?

Complex floating-point numbers:

csingle ’F’
complex_ compatible: Python complex ’D’
clongfloat ’G’
complex64 two 32-bit floats
complex128 two 64-bit floats
complex192 two 96-bit floats, platform?
complex256 two 128-bit floats, platform?

Any Python object:

object_ any Python object ’O’

Note: The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python lists, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing object_ items does not return an object_ object on
item access, but instead returns the actual object that the array item refers to.

The following data types are flexible. They have no predefined size: the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

str_ compatible: Python str ’S#’
unicode_ compatible: Python unicode ’U#’
void ’V#’

Warning: Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never
recommended), you will need to change some of them to the new characters. In particular, the needed changes
are c -> S1, b -> B, 1 -> b, s -> h, w -> H, and u -> I. These changes make the type character
convention more consistent with other Python modules such as the struct module.

1.2.2 Attributes

The array scalar objects have an array priority of NPY_SCALAR_PRIORITY (-1,000,000.0). They also do
not (yet) have a ctypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags integer value of flags
generic.shape tuple of array dimensions
generic.strides tuple of bytes steps in each dimension

Continued on next page

1.2. Scalars 49

http://docs.python.org/dev/library/stdtypes.html#list
http://docs.python.org/dev/library/struct.html#module-struct

NumPy Reference, Release 1.11.1

Table 1.23 – continued from previous page
generic.ndim number of array dimensions
generic.data pointer to start of data
generic.size number of elements in the gentype
generic.itemsize length of one element in bytes
generic.base base object
generic.dtype get array data-descriptor
generic.real real part of scalar
generic.imag imaginary part of scalar
generic.flat a 1-d view of scalar
generic.T transpose
generic.__array_interface__ Array protocol: Python side
generic.__array_struct__ Array protocol: struct
generic.__array_priority__ Array priority.
generic.__array_wrap__ sc.__array_wrap__(obj) return scalar from array

generic.flags
integer value of flags

generic.shape
tuple of array dimensions

generic.strides
tuple of bytes steps in each dimension

generic.ndim
number of array dimensions

generic.data
pointer to start of data

generic.size
number of elements in the gentype

generic.itemsize
length of one element in bytes

generic.base
base object

generic.dtype
get array data-descriptor

generic.real
real part of scalar

generic.imag
imaginary part of scalar

generic.flat
a 1-d view of scalar

generic.T
transpose

generic.__array_interface__
Array protocol: Python side

generic.__array_struct__
Array protocol: struct

50 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

generic.__array_priority__
Array priority.

generic.__array_wrap__()
sc.__array_wrap__(obj) return scalar from array

1.2.3 Indexing

See also:

Indexing, Data type objects (dtype)

Array scalars can be indexed like 0-dimensional arrays: if x is an array scalar,

• x[()] returns a 0-dimensional ndarray

• x[’field-name’] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a structured data type.)

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert
the scalar to an equivalent 0-dimensional array and to call the corresponding array method. In addition, math operations
on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that
the error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic Base class for numpy scalar types.
generic.__array__ sc.__array__(|type) return 0-dim array
generic.__array_wrap__ sc.__array_wrap__(obj) return scalar from array
generic.squeeze Not implemented (virtual attribute)
generic.byteswap Not implemented (virtual attribute)
generic.__reduce__
generic.__setstate__
generic.setflags Not implemented (virtual attribute)

class numpy.generic
Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as
ndarray , despite many consequent attributes being either “get-only,” or completely irrelevant. This is the
class from which it is strongly suggested users should derive custom scalar types.

Attributes

T transpose
base base object
data pointer to start of data
dtype get array data-descriptor
flags integer value of flags
flat a 1-d view of scalar
imag imaginary part of scalar

Continued on next page

1.2. Scalars 51

NumPy Reference, Release 1.11.1

Table 1.25 – continued from previous page
itemsize length of one element in bytes
nbytes length of item in bytes
ndim number of array dimensions
real real part of scalar
shape tuple of array dimensions
size number of elements in the gentype
strides tuple of bytes steps in each dimension

generic.nbytes
length of item in bytes

Methods

all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)
astype Not implemented (virtual attribute)
byteswap Not implemented (virtual attribute)
choose Not implemented (virtual attribute)
clip Not implemented (virtual attribute)
compress Not implemented (virtual attribute)
conj
conjugate Not implemented (virtual attribute)
copy Not implemented (virtual attribute)
cumprod Not implemented (virtual attribute)
cumsum Not implemented (virtual attribute)
diagonal Not implemented (virtual attribute)
dump Not implemented (virtual attribute)
dumps Not implemented (virtual attribute)
fill Not implemented (virtual attribute)
flatten Not implemented (virtual attribute)
getfield Not implemented (virtual attribute)
item Not implemented (virtual attribute)
itemset Not implemented (virtual attribute)
max Not implemented (virtual attribute)
mean Not implemented (virtual attribute)
min Not implemented (virtual attribute)
newbyteorder([new_order]) Return a new dtype with a different byte order.
nonzero Not implemented (virtual attribute)
prod Not implemented (virtual attribute)
ptp Not implemented (virtual attribute)
put Not implemented (virtual attribute)
ravel Not implemented (virtual attribute)
repeat Not implemented (virtual attribute)
reshape Not implemented (virtual attribute)
resize Not implemented (virtual attribute)
round Not implemented (virtual attribute)
searchsorted Not implemented (virtual attribute)

Continued on next page

52 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.26 – continued from previous page
setfield Not implemented (virtual attribute)
setflags Not implemented (virtual attribute)
sort Not implemented (virtual attribute)
squeeze Not implemented (virtual attribute)
std Not implemented (virtual attribute)
sum Not implemented (virtual attribute)
swapaxes Not implemented (virtual attribute)
take Not implemented (virtual attribute)
tobytes
tofile Not implemented (virtual attribute)
tolist Not implemented (virtual attribute)
tostring Not implemented (virtual attribute)
trace Not implemented (virtual attribute)
transpose Not implemented (virtual attribute)
var Not implemented (virtual attribute)
view Not implemented (virtual attribute)

generic.all()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.any()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argmax()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argmin()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.argsort()
Not implemented (virtual attribute)

1.2. Scalars 53

NumPy Reference, Release 1.11.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.astype()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.byteswap()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.choose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.clip()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.compress()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.conj()

generic.conjugate()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

54 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

The

generic.copy()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.cumprod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.cumsum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.diagonal()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.dump()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.dumps()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.fill()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

1.2. Scalars 55

NumPy Reference, Release 1.11.1

See also:

The

generic.flatten()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.getfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.item()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.itemset()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.max()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.mean()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.min()
Not implemented (virtual attribute)

56 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

•‘S’ - swap dtype from current to opposite endian

•{‘<’, ‘L’} - little endian

•{‘>’, ‘B’} - big endian

•{‘=’, ‘N’} - native order

•{‘|’, ‘I’} - ignore (no change to byte order)

Parameters
new_order : str, optional

Byte order to force; a value from the byte order specifications above. The default value
(‘S’) results in swapping the current byte order. The code does a case-insensitive check
on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’
or ‘biggish’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.

generic.nonzero()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.prod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.ptp()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

1.2. Scalars 57

NumPy Reference, Release 1.11.1

generic.put()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.ravel()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.repeat()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.reshape()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.resize()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.round()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.searchsorted()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

58 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

The

generic.setfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.setflags()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.sort()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.squeeze()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.sum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.swapaxes()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

1.2. Scalars 59

NumPy Reference, Release 1.11.1

See also:

The

generic.take()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.tobytes()

generic.tofile()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.tolist()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.tostring()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.trace()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.transpose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

60 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

generic.var()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.view()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

generic.__array__()
sc.__array__(|type) return 0-dim array

generic.__reduce__()

generic.__setstate__()

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing structured types dtypes from
the built-in scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This
will work to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the
data type of an array you need to define a new data-type, and register it with NumPy. Such new types can only be
defined in C, using the Numpy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy.dtype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)

3. Byte order of the data (little-endian or big-endian)

4. If the data type is structured, an aggregate of other data types, (e.g., describing an array item consisting of an
integer and a float),

(a) what are the names of the “fields” of the structure, by which they can be accessed,

(b) what is the data-type of each field, and

(c) which part of the memory block each field takes.

5. If the data type is a sub-array, what is its shape and data type.

1.3. Data type objects (dtype) 61

NumPy Reference, Release 1.11.1

To describe the type of scalar data, there are several built-in scalar types in Numpy for various precision of integers,
floating-point numbers, etc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is
the scalar type associated with the data type of the array.

Note that the scalar types are not dtype objects, even though they can be used in place of one whenever a data type
specification is needed in Numpy.

Structured data types are formed by creating a data type whose fields contain other data types. Each field has a name
by which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is
nearly always based on the void type which allows an arbitrary item size. Structured data types may also contain
nested structured sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.

If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the
shape of the array when the array is created. Sub-arrays in a field of a structured type behave differently, see Field
Access.

Sub-arrays always have a C-contiguous memory layout.

Example

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> dt = np.dtype('>i4')
>>> dt.byteorder
'>'
>>> dt.itemsize
4
>>> dt.name
'int32'
>>> dt.type is np.int32
True

The corresponding array scalar type is int32.

Example

A structured data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point
number (in field ‘grades’):

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt['name']
dtype('|S16')
>>> dt['grades']
dtype(('float64',(2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]
('John', [6.0, 7.0])
>>> x[1]['grades']
array([6., 7.])
>>> type(x[1])
<type 'numpy.void'>

62 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> type(x[1]['grades'])
<type 'numpy.ndarray'>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dtype object or something that can be
converted to one can be supplied. Such conversions are done by the dtype constructor:

dtype Create a data type object.

class numpy.dtype
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters
obj

Object to be converted to a data type object.

align : bool, optional

Add padding to the fields to match what a C compiler would output for a similar C-
struct. Can be True only if obj is a dictionary or a comma-separated string. If a struct
dtype is being created, this also sets a sticky alignment flag isalignedstruct.

copy : bool, optional

Make a new copy of the data-type object. If False, the result may just be a reference
to a built-in data-type object.

See also:

result_type

Examples

Using array-scalar type:

>>> np.dtype(np.int16)
dtype('int16')

Structured type, one field name ‘f1’, containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Structured type, one field named ‘f1’, in itself containing a structured type with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

1.3. Data type objects (dtype) 63

NumPy Reference, Release 1.11.1

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

Attributes

base
descr Array-interface compliant full description of the data-type.
fields Dictionary of named fields defined for this data type, or None.
hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.
isalignedstruct Boolean indicating whether the dtype is a struct which maintains field alignment.
isbuiltin Integer indicating how this dtype relates to the built-in dtypes.
isnative Boolean indicating whether the byte order of this dtype is native to the platform.
metadata
name A bit-width name for this data-type.
names Ordered list of field names, or None if there are no fields.
shape Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.
str The array-protocol typestring of this data-type object.
subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

dtype.base

dtype.descr
Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the __array_interface__ attribute.

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple

64 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

fully describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string or unicode then it will also be a key in
the fields dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be
passed directly as arguments to the ndarray.getfield and ndarray.setfield methods.

See also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print(dt.fields)
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

dtype.hasobject
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address
of that object (a pointer). Special handling may be required, and this attribute is useful for distinguishing
data types that may contain arbitrary Python objects and data-types that won’t.

dtype.isalignedstruct
Boolean indicating whether the dtype is a struct which maintains field alignment. This flag is sticky, so
when combining multiple structs together, it is preserved and produces new dtypes which are also aligned.

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0 if this is a structured array type, with fields
1 if this is a dtype compiled into numpy (such as ints, floats etc)
2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API

machinery to extend numpy to handle a new array type. See user.user-defined-data-types in the
Numpy manual.

Examples

>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

dtype.isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

dtype.metadata

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

1.3. Data type objects (dtype) 65

NumPy Reference, Release 1.11.1

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through
all of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

dtype.str
The array-protocol typestring of this data-type object.

dtype.subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of
the array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are
tacked on to the end of the retrieved array.

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

dtype.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. The default value
(‘S’) results in swapping the current byte order. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alterna-
tives. For example, any of ‘>’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

66 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

What can be converted to a data-type object is described below:

dtype object

Used as-is.

None

The default data type: float_.

Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their
sub-classes as well.

Note that not all data-type information can be supplied with a type-object: for example, flexible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> dt = np.dtype(np.int32) # 32-bit integer
>>> dt = np.dtype(np.complex128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding type objects according to the associations:

1.3. Data type objects (dtype) 67

NumPy Reference, Release 1.11.1

number, inexact, floating float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dtype object:

int int_
bool bool_
float float_
complex cfloat
str string
unicode unicode_
buffer void
(all others) object_

Example

>>> dt = np.dtype(float) # Python-compatible floating-point number
>>> dt = np.dtype(int) # Python-compatible integer
>>> dt = np.dtype(object) # Python object

Types with .dtype

Any type object with a dtype attribute: The attribute will be accessed and used directly. The attribute
must return something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with ’>’ (big-endian), ’<’ (little-
endian), or ’=’ (hardware-native, the default), to specify the byte order.

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt = np.dtype('b') # byte, native byte order
>>> dt = np.dtype('>H') # big-endian unsigned short
>>> dt = np.dtype('<f') # little-endian single-precision float
>>> dt = np.dtype('d') # double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining characters specify the number of bytes
per item, except for Unicode, where it is interpreted as the number of characters. The item size must
correspond to an existing type, or an error will be raised. The supported kinds are

68 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#bool
http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/functions.html#complex
http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.11.1

’b’ boolean
’i’ (signed) integer
’u’ unsigned integer
’f’ floating-point
’c’ complex-floating point
’m’ timedelta
’M’ datetime
’O’ (Python) objects
’S’, ’a’ (byte-)string
’U’ Unicode
’V’ raw data (void)

Example

>>> dt = np.dtype('i4') # 32-bit signed integer
>>> dt = np.dtype('f8') # 64-bit floating-point number
>>> dt = np.dtype('c16') # 128-bit complex floating-point number
>>> dt = np.dtype('a25') # 25-character string

String with comma-separated fields

A short-hand notation for specifying the format of a structured data type is a comma-separated string of
basic formats.

A basic format in this context is an optional shape specifier followed by an array-protocol type string.
Parenthesis are required on the shape if it has more than one dimension. NumPy allows a modification
on the format in that any string that can uniquely identify the type can be used to specify the data-type
in a field. The generated data-type fields are named ’f0’, ’f1’, ..., ’f<N-1>’ where N (>1) is the
number of comma-separated basic formats in the string. If the optional shape specifier is provided, then
the data-type for the corresponding field describes a sub-array.

Example

• field named f0 containing a 32-bit integer

• field named f1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

• field named f2 containing a 32-bit floating-point number

>>> dt = np.dtype("i4, (2,3)f8, f4")

• field named f0 containing a 3-character string

• field named f1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

• field named f2 containing a 3 x 4 sub-array containing 10-character strings

>>> dt = np.dtype("a3, 3u8, (3,4)a10")

Type strings

Any string in numpy.sctypeDict.keys():

Example

>>> dt = np.dtype('uint32') # 32-bit unsigned integer
>>> dt = np.dtype('Float64') # 64-bit floating-point number

1.3. Data type objects (dtype) 69

NumPy Reference, Release 1.11.1

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a zero-sized flexible data-type object, the second
argument is an integer providing the desired itemsize.

Example

>>> dt = np.dtype((void, 10)) # 10-byte wide data block
>>> dt = np.dtype((str, 35)) # 35-character string
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second
argument is the desired shape of this type. If the shape parameter is 1, then the data-type object is
equivalent to fixed dtype. If shape is a tuple, then the new dtype defines a sub-array of the given shape.

Example

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
>>> dt = np.dtype(('S10', 1)) # 10-character string
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2 x 3 structured sub-array

[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the
descr item in the __array_interface__ attribute.)

The first element, field_name, is the field name (if this is ’’ then a standard field name, ’f#’, is as-
signed). The field name may also be a 2-tuple of strings where the first string is either a “title” (which
may be any string or unicode string) or meta-data for the field which can be any object, and the second
string is the “name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

The optional third element field_shape contains the shape if this field represents an array of the data-type
in the second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dtype constructor as it is assumed that all of the memory is
accounted for by the array interface description.

Example

Data-type with fields big (big-endian 32-bit integer) and little (little-endian 32-bit integer):

>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])

{’names’: ..., ’formats’: ..., ’offsets’: ..., ’titles’: ..., ’itemsize’:
...}

70 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

This style has two required and three optional keys. The names and formats keys are required. Their
respective values are equal-length lists with the field names and the field formats. The field names must
be strings and the field formats can be any object accepted by dtype constructor.

When the optional keys offsets and titles are provided, their values must each be lists of the same length
as the names and formats lists. The offsets value is a list of byte offsets (integers) for each field, while the
titles value is a list of titles for each field (None can be used if no title is desired for that field). The titles
can be any string or unicode object and will add another entry to the fields dictionary keyed by the
title and referencing the same field tuple which will contain the title as an additional tuple member.

The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the
fields are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible
by the struct alignment.

Example

Data type with fields r, g, b, a, each being a 8-bit unsigned integer:

>>> dt = np.dtype({'names': ['r','g','b','a'],
... 'formats': [uint8, uint8, uint8, uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte
position 0 from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
... 'offsets': [0, 2],
... 'titles': ['Red pixel', 'Blue pixel']})

{’field1’: ..., ’field2’: ..., ...}

This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you
have a field called ‘names’ and a field called ‘formats’ there will be a conflict.

This style allows passing in the fields attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type,
offset, title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), col2 (32-bit float at byte posi-
tion 10), and col3 (integers at byte position 14):

>>> dt = np.dtype({'col1': ('S10', 0), 'col2': (float32, 10),
'col3': (int, 14)})

(base_dtype, new_dtype)

In NumPy 1.7 and later, this form allows base_dtype to be interpreted as a structured dtype. Arrays
created with this dtype will have underlying dtype base_dtype but will have fields and flags taken from
new_dtype. This is useful for creating custom structured dtypes, as done in record arrays.

This form also makes it possible to specify struct dtypes with overlapping fields, functioning like the
‘union’ type in C. This usage is discouraged, however, and the union mechanism is preferred.

Both arguments must be convertible to data-type objects with the same total size. .. admonition:: Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the fol-
lowing two bytes via field imag.

1.3. Data type objects (dtype) 71

NumPy Reference, Release 1.11.1

>>> dt = np.dtype((np.int32,{'real':(np.int16, 0),'imag':(np.int16, 2)})

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit
integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four
unsigned integers:

>>> dt = np.dtype(('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1')]))

1.3.2 dtype

Numpy data type descriptions are instances of the dtype class.

Attributes

The type of the data is described by the following dtype attributes:

dtype.type The type object used to instantiate a scalar of this data-type.
dtype.kind A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.
dtype.char A unique character code for each of the 21 different built-in types.
dtype.num A unique number for each of the 21 different built-in types.
dtype.str The array-protocol typestring of this data-type object.

dtype.type
The type object used to instantiate a scalar of this data-type.

dtype.kind
A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b boolean
i signed integer
u unsigned integer
f floating-point
c complex floating-point
m timedelta
M datetime
O object
S (byte-)string
U Unicode
V void

dtype.char
A unique character code for each of the 21 different built-in types.

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

Size of the data is in turn described by:

72 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type object.

dtype.byteorder
A character indicating the byte-order of this data-type object.

One of:

‘=’ native
‘<’ little-endian
‘>’ big-endian
‘|’ not applicable

All built-in data-type objects have byteorder either ‘=’ or ‘|’.

Examples

>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True

Information about sub-data-types in a structured data type:

dtype.fields Dictionary of named fields defined for this data type, or None.
dtype.names Ordered list of field names, or None if there are no fields.

For data types that describe sub-arrays:

1.3. Data type objects (dtype) 73

NumPy Reference, Release 1.11.1

dtype.subdtype Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.
dtype.shape Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Attributes providing additional information:

dtype.hasobject Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.
dtype.flags Bit-flags describing how this data type is to be interpreted.
dtype.isbuiltin Integer indicating how this dtype relates to the built-in dtypes.
dtype.isnative Boolean indicating whether the byte order of this dtype is native to the platform.
dtype.descr Array-interface compliant full description of the data-type.
dtype.alignment The required alignment (bytes) of this data-type according to the compiler.

dtype.flags
Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

dtype.alignment
The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

dtype.__reduce__
dtype.__setstate__

dtype.__reduce__()

dtype.__setstate__()

1.4 Indexing

ndarrays can be indexed using the standard Python x[obj] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: field access, basic slicing, advanced indexing. Which one occurs depends
on obj.

Note: In Python, x[(exp1, exp2, ..., expN)] is equivalent to x[exp1, exp2, ..., expN]; the

74 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

latter is just syntactic sugar for the former.

1.4.1 Basic Slicing and Indexing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice
object (constructed by start:stop:step notation inside of brackets), an integer, or a tuple of slice objects and
integers. Ellipsis and newaxis objects can be interspersed with these as well. In order to remain backward
compatible with a common usage in Numeric, basic slicing is also initiated if the selection object is any non-ndarray
sequence (such as a list) containing slice objects, the Ellipsis object, or the newaxis object, but not for
integer arrays or other embedded sequences.

The simplest case of indexing with N integers returns an array scalar representing the corresponding item. As in
Python, all indices are zero-based: for the i-th index 𝑛𝑖, the valid range is 0 ≤ 𝑛𝑖 < 𝑑𝑖 where 𝑑𝑖 is the i-th element of
the shape of the array. Negative indices are interpreted as counting from the end of the array (i.e., if 𝑛𝑖 < 0, it means
𝑛𝑖 + 𝑑𝑖).

All arrays generated by basic slicing are always views of the original array.

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index).
Some useful concepts to remember include:

• The basic slice syntax is i:j:k where i is the starting index, j is the stopping index, and k is the step (𝑘 ̸= 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, ..., i + (m - 1) k where
𝑚 = 𝑞 + (𝑟 ̸= 0) and q and r are the quotient and remainder obtained by dividing j - i by k: j - i = q k + r, so
that i + (m - 1) k < j.

Example

>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])

• Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding
dimension. Negative k makes stepping go towards smaller indices.

Example

>>> x[-2:10]
array([8, 9])
>>> x[-3:3:-1]
array([7, 6, 5, 4])

• Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to 0 for k >
0 and n - 1 for k < 0 . If j is not given it defaults to n for k > 0 and -1 for k < 0 . If k is not given it defaults to 1.
Note that :: is the same as : and means select all indices along this axis.

Example

>>> x[5:]
array([5, 6, 7, 8, 9])

1.4. Indexing 75

http://docs.python.org/dev/library/functions.html#slice
http://docs.python.org/dev/library/stdtypes.html#list
http://docs.python.org/dev/library/functions.html#slice

NumPy Reference, Release 1.11.1

• If the number of objects in the selection tuple is less than N , then : is assumed for any subsequent dimensions.

Example

>>> x = np.array([[[1],[2],[3]], [[4],[5],[6]]])
>>> x.shape
(2, 3, 1)
>>> x[1:2]
array([[[4],

[5],
[6]]])

• Ellipsis expand to the number of : objects needed to make a selection tuple of the same length as x.ndim.
There may only be a single ellipsis present.

Example

>>> x[...,0]
array([[1, 2, 3],

[4, 5, 6]])

• Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one
unit-length dimension. The added dimension is the position of the newaxis object in the selection tuple.

Example

>>> x[:,np.newaxis,:,:].shape
(2, 1, 3, 1)

• An integer, i, returns the same values as i:i+1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - 1. If N = 1 then the returned object is an array scalar. These objects are explained
in Scalars.

• If the selection tuple has all entries : except the p-th entry which is a slice object i:j:k, then the returned
array has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k,
..., i + (m - 1) k < j,

• Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using
a single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by
:). Thus, x[ind1,...,ind2,:] acts like x[ind1][...,ind2,:] under basic slicing.

Warning: The above is not true for advanced indexing.

• You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the
value to be set in x[obj] = value must be (broadcastable) to the same shape as x[obj].

Note: Remember that a slicing tuple can always be constructed as obj and used in the x[obj] notation. Slice objects
can be used in the construction in place of the [start:stop:step] notation. For example, x[1:10:5,::-1]
can also be implemented as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . This can be
useful for constructing generic code that works on arrays of arbitrary dimension.

76 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.newaxis
The newaxis object can be used in all slicing operations to create an axis of length one. :const: newaxis is
an alias for ‘None’, and ‘None’ can be used in place of this with the same result.

1.4.2 Advanced Indexing

Advanced indexing is triggered when the selection object, obj, is a non-tuple sequence object, an ndarray (of data
type integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are
two types of advanced indexing: integer and Boolean.

Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

Warning: The definition of advanced indexing means that x[(1,2,3),] is fundamentally different than
x[(1,2,3)]. The latter is equivalent to x[1,2,3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this occurs.
Also recognize that x[[1,2,3]] will trigger advanced indexing, whereas x[[1,2,slice(None)]] will
trigger basic slicing.

Integer array indexing

Integer array indexing allows selection of arbitrary items in the array based on their N-dimensional index. Each integer
array represents a number of indexes into that dimension.

Purely integer array indexing

When the index consists of as many integer arrays as the array being indexed has dimensions, the indexing is straight
forward, but different from slicing.

Advanced indexes always are broadcast and iterated as one:

result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
..., ind_N[i_1, ..., i_M]]

Note that the result shape is identical to the (broadcast) indexing array shapes ind_1, ..., ind_N.

Example

From each row, a specific element should be selected. The row index is just [0, 1, 2] and the column index
specifies the element to choose for the corresponding row, here [0, 1, 0]. Using both together the task can be
solved using advanced indexing:

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> x[[0, 1, 2], [0, 1, 0]]
array([1, 4, 5])

To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function ix_ can help with
this broadcasting. This is best understood with an example.

Example

From a 4x3 array the corner elements should be selected using advanced indexing. Thus all elements for which the
column is one of [0, 2] and the row is one of [0, 3] need to be selected. To use advanced indexing one needs to
select all elements explicitly. Using the method explained previously one could write:

1.4. Indexing 77

NumPy Reference, Release 1.11.1

>>> x = array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = np.array([[0, 0],
... [3, 3]], dtype=np.intp)
>>> columns = np.array([[0, 2],
... [0, 2]], dtype=np.intp)
>>> x[rows, columns]
array([[0, 2],

[9, 11]])

However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such
as rows[:, np.newaxis] + columns) to simplify this:

>>> rows = np.array([0, 3], dtype=np.intp)
>>> columns = np.array([0, 2], dtype=np.intp)
>>> rows[:, np.newaxis]
array([[0],

[3]])
>>> x[rows[:, np.newaxis], columns]
array([[0, 2],

[9, 11]])

This broadcasting can also be achieved using the function ix_:

>>> x[np.ix_(rows, columns)]
array([[0, 2],

[9, 11]])

Note that without the np.ix_ call, only the diagonal elements would be selected, as was used in the previous example.
This difference is the most important thing to remember about indexing with multiple advanced indexes.

Combining advanced and basic indexing

When there is at least one slice (:), ellipsis (...) or np.newaxis in the index (or the array has more dimensions
than there are advanced indexes), then the behaviour can be more complicated. It is like concatenating the indexing
result for each advanced index element

In the simplest case, there is only a single advanced index. A single advanced index can for example replace a slice and
the result array will be the same, however, it is a copy and may have a different memory layout. A slice is preferable
when it is possible.

Example

>>> x[1:2, 1:3]
array([[4, 5]])
>>> x[1:2, [1, 2]]
array([[4, 5]])

The easiest way to understand the situation may be to think in terms of the result shape. There are two parts to
the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the
advanced indexing part. Two cases of index combination need to be distinguished:

• The advanced indexes are separated by a slice, ellipsis or newaxis. For example x[arr1, :, arr2].

78 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

• The advanced indexes are all next to each other. For example x[..., arr1, arr2, :] but not x[arr1,
:, 1] since 1 is an advanced index in this regard.

In the first case, the dimensions resulting from the advanced indexing operation come first in the result array, and the
subspace dimensions after that. In the second case, the dimensions from the advanced indexing operations are inserted
into the result array at the same spot as they were in the initial array (the latter logic is what makes simple advanced
indexing behave just like slicing).

Example

Suppose x.shape is (10,20,30) and ind is a (2,3,4)-shaped indexing intp array, then result =
x[...,ind,:] has shape (10,2,3,4,30) because the (20,)-shaped subspace has been replaced with a (2,3,4)-shaped
broadcasted indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace then result[...,i,j,k,:]
= x[...,ind[i,j,k],:]. This example produces the same result as x.take(ind, axis=-2).

Example

Let x.shape be (10,20,30,40,50) and suppose ind_1 and ind_2 can be broadcast to the shape (2,3,4). Then
x[:,ind_1,ind_2] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has been replaced
with the (2,3,4) subspace from the indices. However, x[:,ind_1,:,ind_2] has shape (2,3,4,10,30,50) because
there is no unambiguous place to drop in the indexing subspace, thus it is tacked-on to the beginning. It is always
possible to use .transpose() to move the subspace anywhere desired. Note that this example cannot be replicated
using take.

Boolean array indexing

This advanced indexing occurs when obj is an array object of Boolean type, such as may be returned from comparison
operators. A single boolean index array is practically identical to x[obj.nonzero()] where, as described above,
obj.nonzero() returns a tuple (of length obj.ndim) of integer index arrays showing the True elements of obj.
However, it is faster when obj.shape == x.shape.

If obj.ndim == x.ndim, x[obj] returns a 1-dimensional array filled with the elements of x corresponding to
the True values of obj. The search order will be row-major, C-style. If obj has True values at entries that are outside
of the bounds of x, then an index error will be raised. If obj is smaller than x it is identical to filling it with False.

Example

A common use case for this is filtering for desired element values. For example one may wish to select all entries from
an array which are not NaN:

>>> x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]])
>>> x[~np.isnan(x)]
array([1., 2., 3.])

Or wish to add a constant to all negative elements:

>>> x = np.array([1., -1., -2., 3])
>>> x[x < 0] += 20
>>> x
array([1., 19., 18., 3.])

1.4. Indexing 79

NumPy Reference, Release 1.11.1

In general if an index includes a Boolean array, the result will be identical to inserting obj.nonzero() into the
same position and using the integer array indexing mechanism described above. x[ind_1, boolean_array,
ind_2] is equivalent to x[(ind_1,) + boolean_array.nonzero() + (ind_2,)].

If there is only one Boolean array and no integer indexing array present, this is straight forward. Care must only be
taken to make sure that the boolean index has exactly as many dimensions as it is supposed to work with.

Example

From an array, select all rows which sum up to less or equal two:

>>> x = np.array([[0, 1], [1, 1], [2, 2]])
>>> rowsum = x.sum(-1)
>>> x[rowsum <= 2, :]
array([[0, 1],

[1, 1]])

But if rowsum would have two dimensions as well:

>>> rowsum = x.sum(-1, keepdims=True)
>>> rowsum.shape
(3, 1)
>>> x[rowsum <= 2, :] # fails
IndexError: too many indices
>>> x[rowsum <= 2]
array([0, 1])

The last one giving only the first elements because of the extra dimension. Compare rowsum.nonzero() to
understand this example.

Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with
the obj.nonzero() analogy. The function ix_ also supports boolean arrays and will work without any surprises.

Example

Use boolean indexing to select all rows adding up to an even number. At the same time columns 0 and 2 should be
selected with an advanced integer index. Using the ix_ function this can be done with:

>>> x = array([[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8],
... [9, 10, 11]])
>>> rows = (x.sum(-1) % 2) == 0
>>> rows
array([False, True, False, True], dtype=bool)
>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array([[3, 5],

[9, 11]])

Without the np.ix_ call or only the diagonal elements would be selected.

Or without np.ix_ (compare the integer array examples):

>>> rows = rows.nonzero()[0]
>>> x[rows[:, np.newaxis], columns]
array([[3, 5],

[9, 11]])

80 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

1.4.3 Detailed notes

These are some detailed notes, which are not of importance for day to day indexing (in no particular order):

• The native NumPy indexing type is intp and may differ from the default integer array type. intp is the
smallest data type sufficient to safely index any array; for advanced indexing it may be faster than other types.

• For advanced assignments, there is in general no guarantee for the iteration order. This means that if an element
is set more than once, it is not possible to predict the final result.

• An empty (tuple) index is a full scalar index into a zero dimensional array. x[()] returns a scalar if x is zero
dimensional and a view otherwise. On the other hand x[...] always returns a view.

• If a zero dimensional array is present in the index and it is a full integer index the result will be a scalar and not
a zero dimensional array. (Advanced indexing is not triggered.)

• When an ellipsis (...) is present but has no size (i.e. replaces zero :) the result will still always be an array. A
view if no advanced index is present, otherwise a copy.

• the nonzero equivalence for Boolean arrays does not hold for zero dimensional boolean arrays.

• When the result of an advanced indexing operation has no elements but an individual index is out of bounds,
whether or not an IndexError is raised is undefined (e.g. x[[], [123]] with 123 being out of bounds).

• When a casting error occurs during assignment (for example updating a numerical array using a sequence of
strings), the array being assigned to may end up in an unpredictable partially updated state. However, if any
other error (such as an out of bounds index) occurs, the array will remain unchanged.

• The memory layout of an advanced indexing result is optimized for each indexing operation and no particular
memory order can be assumed.

• When using a subclass (especially one which manipulates its shape), the default ndarray.__setitem__
behaviour will call __getitem__ for basic indexing but not for advanced indexing. For such a subclass it
may be preferable to call ndarray.__setitem__ with a base class ndarray view on the data. This must be
done if the subclasses __getitem__ does not return views.

1.4.4 Field Access

See also:

Data type objects (dtype), Scalars

If the ndarray object is a structured array the fields of the array can be accessed by indexing the array with strings,
dictionary-like.

Indexing x[’field-name’] returns a new view to the array, which is of the same shape as x (except when the field
is a sub-array) but of data type x.dtype[’field-name’] and contains only the part of the data in the specified
field. Also record array scalars can be “indexed” this way.

Indexing into a structured array can also be done with a list of field names, e.g.
x[[’field-name1’,’field-name2’]]. Currently this returns a new array containing a copy of the
values in the fields specified in the list. As of NumPy 1.7, returning a copy is being deprecated in favor of
returning a view. A copy will continue to be returned for now, but a FutureWarning will be issued when writing
to the copy. If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e. use
x[[’field-name1’,’field-name2’]].copy(). This will work with both past and future versions of NumPy.

If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result.

Example

1.4. Indexing 81

NumPy Reference, Release 1.11.1

>>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64, (3,3))])
>>> x['a'].shape
(2, 2)
>>> x['a'].dtype
dtype('int32')
>>> x['b'].shape
(2, 2, 3, 3)
>>> x['b'].dtype
dtype('float64')

1.4.5 Flat Iterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying
the fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection
object is not a tuple. This should be clear from the fact that x.flat is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer
indexing object.

1.5 Iterating Over Arrays

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one
or more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on
arrays in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of
nditer is a relatively straightforward mapping of the C array iterator API, these ideas will also provide help working
with array iteration from C or C++.

1.5.1 Single Array Iteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print x,
...
0 1 2 3 4 5

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default
one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a.T):
... print x,

82 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

...
0 1 2 3 4 5

>>> for x in np.nditer(a.T.copy(order='C')):
... print x,
...
0 3 1 4 2 5

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order=’C’) get visited in a different order because they have been put into a different memory
layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order=’K’ to keep the existing order. This can be overridden with order=’C’
for C order and order=’F’ for Fortran order.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, order='F'):
... print x,
...
0 3 1 4 2 5
>>> for x in np.nditer(a.T, order='C'):
... print x,
...
0 3 1 4 2 5

Modifying Array Values

By default, the nditer treats the input array as a read-only object. To modify the array elements, you must specify
either read-write or write-only mode. This is controlled with per-operand flags.

Regular assignment in Python simply changes a reference in the local or global variable dictionary instead of modifying
an existing variable in place. This means that simply assigning to x will not place the value into the element of the
array, but rather switch x from being an array element reference to being a reference to the value you assigned. To
actually modify the element of the array, x should be indexed with the ellipsis.

Example

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> for x in np.nditer(a, op_flags=['readwrite']):
... x[...] = 2 * x
...
>>> a
array([[0, 2, 4],

[6, 8, 10]])

1.5. Iterating Over Arrays 83

NumPy Reference, Release 1.11.1

Using an External Loop

In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can
be used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C’ and ‘F’ order,
we get different external loop sizes. This mode is enabled by specifying an iterator flag.

Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop']):
... print x,
...
[0 1 2 3 4 5]

>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print x,
...
[0 3] [1 4] [2 5]

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current element in a computation. For example, you may want
to visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look
up values in a different array.

The Python iterator protocol doesn’t have a natural way to query these additional values from the iterator, so we
introduce an alternate syntax for iterating with an nditer. This syntax explicitly works with the iterator object itself,
so its properties are readily accessible during iteration. With this looping construct, the current value is accessible by
indexing into the iterator, and the index being tracked is the property index or multi_index depending on what was
requested.

The Python interactive interpreter unfortunately prints out the values of expressions inside the while loop during each
iteration of the loop. We have modified the output in the examples using this looping construct in order to be more
readable.

Example

>>> a = np.arange(6).reshape(2,3)
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
... print "%d <%d>" % (it[0], it.index),
... it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

84 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> it = np.nditer(a, flags=['multi_index'])
>>> while not it.finished:
... print "%d <%s>" % (it[0], it.multi_index),
... it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> it = np.nditer(a, flags=['multi_index'], op_flags=['writeonly'])
>>> while not it.finished:
... it[0] = it.multi_index[1] - it.multi_index[0]
... it.iternext()
...
>>> a
array([[0, 1, 2],

[-1, 0, 1]])

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index
value per element. If you try to combine these flags, the nditer object will raise an exception

Example

>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external_loop'])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is being tracked

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is
generally fine, however in pure Python code this can cause a significant reduction in performance.

By enabling buffering mode, the chunks provided by the iterator to the inner loop can be made larger, significantly
reducing the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to
see all the elements in one go when buffering is enabled.

Example

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print x,
...
[0 3] [1 4] [2 5]

>>> for x in np.nditer(a, flags=['external_loop','buffered'], order='F'):
... print x,
...
[0 3 1 4 2 5]

1.5. Iterating Over Arrays 85

NumPy Reference, Release 1.11.1

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one
may want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when
writing low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the
data type yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except
for special cases, where the whole array is needed at once outside the iterator, buffering is recommended over tem-
porary copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with
minimal memory overhead.

In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
... print np.sqrt(x),
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

Example

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly','copy'],
... op_dtypes=['complex128']):
... print np.sqrt(x),
...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
... print np.sqrt(x),
...
1.73205080757j 1.41421356237j 1j 0j (1+0j) (1.41421356237+0j)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from
64 to 32-bit float, but not from float to int or from complex to float.

86 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Example

>>> a = np.arange(6.)
>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
... print x,
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype('float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
... casting='same_kind'):
... print x,
...
0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind'):
... print x,
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype('int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example

>>> a = np.arange(6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
... op_dtypes=['float64'], casting='same_kind'):
... x[...] = x / 2.0
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype('float64') to dtype('int64'), the operand 0 dtype, according to the rule 'same_kind'

1.5.2 Broadcasting Array Iteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these
rules for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> a = np.arange(3)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print "%d:%d" % (x,y),

1.5. Iterating Over Arrays 87

NumPy Reference, Release 1.11.1

...
0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose
the problem.

Example

>>> a = np.arange(2)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print "%d:%d" % (x,y),
...
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and addition-
ally have an optional parameter called ‘out’ where the result will be placed when it is provided. The nditer object
provides a convenient idiom that makes it very easy to support this mechanism.

We’ll show how this works by creating a function square which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

Example

>>> def square(a):
... it = np.nditer([a, None])
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...
>>> square([1,2,3])
array([1, 4, 9])

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means
we were able to provide just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as
‘out’, the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input
arrays is to prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’,
any broadcasting operation would also trigger a reduction, a topic which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast.
This is important, because we only want one input value for each output. Aggregating more than one input value
is a reduction operation which requires special handling. It would already raise an error because reductions must
be explicitly enabled in an iterator flag, but the error message that results from disabling broadcasting is much more
understandable for end-users. To see how to generalize the square function to a reduction, look at the sum of squares
function in the section about Cython.

For completeness, we’ll also add the ‘external_loop’ and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

88 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Example

>>> def square(a, out=None):
... it = np.nditer([a, out],
... flags = ['external_loop', 'buffered'],
... op_flags = [['readonly'],
... ['writeonly', 'allocate', 'no_broadcast']])
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...

>>> square([1,2,3])
array([1, 4, 9])

>>> b = np.zeros((3,))
>>> square([1,2,3], out=b)
array([1., 4., 9.])
>>> b
array([1., 4., 9.])

>>> square(np.arange(6).reshape(2,3), out=b)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in square

ValueError: non-broadcastable output operand with shape (3) doesn't match the broadcast shape (2,3)

Outer Product Iteration

Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the
nditer object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to
do this with newaxis indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish
this with no intermediate views.

We’ll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second
operand. The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s
axes to the axes of the operand.

Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is
-1 for the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second
operand, but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, 0, 1]. The output operand
maps onto the iterator axes in the standard manner, so we can provide None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled
by the iterator setup.

Example

>>> a = np.arange(3)
>>> b = np.arange(8).reshape(2,4)
>>> it = np.nditer([a, b, None], flags=['external_loop'],
... op_axes=[[0, -1, -1], [-1, 0, 1], None])
>>> for x, y, z in it:
... z[...] = x*y

1.5. Iterating Over Arrays 89

NumPy Reference, Release 1.11.1

...
>>> it.operands[2]
array([[[0, 0, 0, 0],

[0, 0, 0, 0]],
[[0, 1, 2, 3],
[4, 5, 6, 7]],

[[0, 2, 4, 6],
[8, 10, 12, 14]]])

Reduction Iteration

Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction.
The nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when
‘reduce_ok’ is provided as an iterator flag.

For a simple example, consider taking the sum of all elements in an array.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> b = np.array(0)
>>> for x, y in np.nditer([a, b], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite']]):
... y[...] += x
...
>>> b
array(276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis
of a.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> it.operands[1][...] = 0
>>> for x, y in it:
... y[...] += x
...
>>> it.operands[1]
array([[6, 22, 38],

[54, 70, 86]])
>>> np.sum(a, axis=2)
array([[6, 22, 38],

[54, 70, 86]])

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may

90 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.

The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffer-
ing. When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be
ready for regular iteration. Here’s how the previous example looks if we also enable buffering.

Example

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external_loop',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> it.operands[1][...] = 0
>>> it.reset()
>>> for x, y in it:
... y[...] += x
...
>>> it.operands[1]
array([[6, 22, 38],

[54, 70, 86]])

1.5.3 Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the nditer object, this means letting the iterator take care of broadcasting,
dtype conversion, and buffering, while giving the inner loop to Cython.

For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward
Python. We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list
for the op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist(axis, ndim):
... if axis is None:
... return [-1] * ndim
... else:
... if type(axis) is not tuple:
... axis = (axis,)
... axeslist = [1] * ndim
... for i in axis:
... axeslist[i] = -1
... ax = 0
... for i in range(ndim):
... if axeslist[i] != -1:
... axeslist[i] = ax
... ax += 1
... return axeslist
...
>>> def sum_squares_py(arr, axis=None, out=None):
... axeslist = axis_to_axeslist(axis, arr.ndim)
... it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',

1.5. Iterating Over Arrays 91

NumPy Reference, Release 1.11.1

... 'buffered', 'delay_bufalloc'],

... op_flags=[['readonly'], ['readwrite', 'allocate']],

... op_axes=[None, axeslist],

... op_dtypes=['float64', 'float64'])

... it.operands[1][...] = 0

... it.reset()

... for x, y in it:

... y[...] += x*x

... return it.operands[1]

...
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_py(a)
array(55.0)
>>> sum_squares_py(a, axis=-1)
array([5., 50.])

To Cython-ize this function, we replace the inner loop (y[...] += x*x) with Cython code that’s specialized for the float64
dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-dimensional, so
very little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist(axis, ndim):
if axis is None:

return [-1] * ndim
else:

if type(axis) is not tuple:
axis = (axis,)

axeslist = [1] * ndim
for i in axis:

axeslist[i] = -1
ax = 0
for i in range(ndim):

if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

@cython.boundscheck(False)
def sum_squares_cy(arr, axis=None, out=None):

cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size
cdef double value

axeslist = axis_to_axeslist(axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',

'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],
op_axes=[None, axeslist],
op_dtypes=['float64', 'float64'])

it.operands[1][...] = 0
it.reset()
for xarr, yarr in it:

92 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

x = xarr
y = yarr
size = x.shape[0]
for i in range(size):

value = x[i]
y[i] = y[i] + value * value

return it.operands[1]

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -I/usr/include/python2.7 -fno-strict-aliasing -o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_cy(a)
array(55.0)
>>> sum_squares_cy(a, axis=-1)
array([5., 50.])

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in
sum function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(a*a, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all(sum_squares_cy(a, axis=-1) == np.sum(a*a, axis=-1))
True

>>> np.all(sum_squares_py(a, axis=-1) == np.sum(a*a, axis=-1))
True

1.6 Standard array subclasses

The ndarray in NumPy is a “new-style” Python built-in-type. Therefore, it can be inherited from (in Python or in
C) if desired. Therefore, it can form a foundation for many useful classes. Often whether to sub-class the array object
or to simply use the core array component as an internal part of a new class is a difficult decision, and can be simply a
matter of choice. NumPy has several tools for simplifying how your new object interacts with other array objects, and
so the choice may not be significant in the end. One way to simplify the question is by asking yourself if the object
you are interested in can be replaced as a single array or does it really require two or more arrays at its core.

1.6. Standard array subclasses 93

NumPy Reference, Release 1.11.1

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly
through your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict
guidelines, asanyarray would rarely be useful. However, most subclasses of the array object will not redefine
certain aspects of the array object such as the buffer interface, or the attributes of the array. One important example,
however, of why your subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine
the “*” operator to be matrix-multiplication, rather than element-by-element multiplication.

1.6.1 Special attributes and methods

See also:

Subclassing ndarray

Numpy provides several hooks that classes can customize:

class.__numpy_ufunc__(ufunc, method, i, inputs, **kwargs)
New in version 1.11.

Any class (ndarray subclass or not) can define this method to override behavior of Numpy’s ufuncs. This works
quite similarly to Python’s __mul__ and other binary operation routines.

•ufunc is the ufunc object that was called.

•method is a string indicating which Ufunc method was called (one of "__call__", "reduce",
"reduceat", "accumulate", "outer", "inner").

•i is the index of self in inputs.

•inputs is a tuple of the input arguments to the ufunc

•kwargs is a dictionary containing the optional input arguments of the ufunc. The out argument is always
contained in kwargs, if given. See the discussion in Universal functions (ufunc) for details.

The method should return either the result of the operation, or NotImplemented if the operation requested
is not implemented.

If one of the arguments has a __numpy_ufunc__ method, it is executed instead of the ufunc. If more
than one of the input arguments implements __numpy_ufunc__, they are tried in the order: subclasses
before superclasses, otherwise left to right. The first routine returning something else than NotImplemented
determines the result. If all of the __numpy_ufunc__ operations return NotImplemented, a TypeError
is raised.

If an ndarray subclass defines the __numpy_ufunc__ method, this disables the __array_wrap__,
__array_prepare__, __array_priority__ mechanism described below.

Note: In addition to ufuncs, __numpy_ufunc__ also overrides the behavior of numpy.dot even though it
is not an Ufunc.

Note: If you also define right-hand binary operator override methods (such as __rmul__) or comparison
operations (such as __gt__) in your class, they take precedence over the __numpy_ufunc__ mechanism
when resolving results of binary operations (such as ndarray_obj * your_obj).

The technical special case is: ndarray.__mul__ returns NotImplemented if the other object is not a
subclass of ndarray , and defines both __numpy_ufunc__ and __rmul__. Similar exception applies for
the other operations than multiplication.

94 Chapter 1. Array objects

http://docs.python.org/dev/library/constants.html#NotImplemented
http://docs.python.org/dev/library/constants.html#NotImplemented
http://docs.python.org/dev/library/constants.html#NotImplemented
http://docs.python.org/dev/library/exceptions.html#TypeError

NumPy Reference, Release 1.11.1

In such a case, when computing a binary operation such as ndarray_obj * your_obj, your
__numpy_ufunc__ method will not be called. Instead, the execution passes on to your right-hand
__rmul__ operation, as per standard Python operator override rules.

Similar special case applies to in-place operations: If you define __rmul__, then ndarray_obj *=
your_obj will not call your __numpy_ufunc__ implementation. Instead, the default Python behavior
ndarray_obj = ndarray_obj * your_obj occurs.

Note that the above discussion applies only to Python’s builtin binary operation mechanism.
np.multiply(ndarray_obj, your_obj) always calls only your __numpy_ufunc__, as expected.

class.__array_finalize__(obj)
This method is called whenever the system internally allocates a new array from obj, where obj is a subclass
(subtype) of the ndarray . It can be used to change attributes of self after construction (so as to ensure
a 2-d matrix for example), or to update meta-information from the “parent.” Subclasses inherit a default
implementation of this method that does nothing.

class.__array_prepare__(array, context=None)
At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

class.__array_wrap__(array, context=None)
At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the
user. Subclasses inherit a default implementation of this method, which transforms the array into a new instance
of the object’s class. Subclasses may opt to use this method to transform the output array into an instance of the
subclass and update metadata before returning the array to the user.

class.__array_priority__
The value of this attribute is used to determine what type of object to return in situations where there is more
than one possibility for the Python type of the returned object. Subclasses inherit a default value of 0.0 for this
attribute.

class.__array__([dtype])
If a class (ndarray subclass or not) having the __array__ method is used as the output object of an ufunc,
results will be written to the object returned by __array__. Similar conversion is done on input arrays.

1.6.2 Matrix objects

matrix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices
but expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;’) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for func-
tions that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a
matrix when m is a matrix.

1.6. Standard array subclasses 95

NumPy Reference, Release 1.11.1

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(...) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T Returns the transpose of the matrix.
matrix.H Returns the (complex) conjugate transpose of self.
matrix.I Returns the (multiplicative) inverse of invertible self.
matrix.A Return self as an ndarray object.

matrix.T
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

Parameters
None

Returns
ret : matrix object

The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

matrix.H
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

Parameters
None

Returns
ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()

96 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

matrix([[0. +0.j, 4. +4.j, 8. +8.j],
[1. +1.j, 5. +5.j, 9. +9.j],
[2. +2.j, 6. +6.j, 10.+10.j],
[3. +3.j, 7. +7.j, 11.+11.j]])

matrix.I
Returns the (multiplicative) inverse of invertible self.

Parameters
None

Returns
ret : matrix object

If self is non-singular, ret is such that ret * self == self * ret ==
np.matrix(np.eye(self[0,:].size) all return True.

Raises
numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1.],

[1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.],

[0., 1.]])

matrix.A
Return self as an ndarray object.

Equivalent to np.asarray(self).

Parameters
None

Returns
ret : ndarray

self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA()
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

1.6. Standard array subclasses 97

NumPy Reference, Release 1.11.1

Warning: Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to be matrix-multiplication and matrix
power, respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then
you must use the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own
subclass of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted
to an ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix Returns a matrix from an array-like object, or from a string of data.
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or array.

class numpy.matrix
Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that
retains its 2-D nature through operations. It has certain special operators, such as * (matrix multiplication) and
** (matrix power).

Parameters
data : array_like or string

If data is a string, it is interpreted as a matrix with commas or spaces separating
columns, and semicolons separating rows.

dtype : data-type

Data-type of the output matrix.

copy : bool

If data is already an ndarray , then this flag determines whether the data is copied
(the default), or whether a view is constructed.

See also:

array

Examples

>>> a = np.matrix('1 2; 3 4')
>>> print(a)
[[1 2]
[3 4]]

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],

[3, 4]])

Attributes

A Return self as an ndarray object.
A1 Return self as a flattened ndarray .
H Returns the (complex) conjugate transpose of self.
I Returns the (multiplicative) inverse of invertible self.
T Returns the transpose of the matrix.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.

Continued on next page

98 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.40 – continued from previous page
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.

matrix.A1
Return self as a flattened ndarray .

Equivalent to np.asarray(x).ravel()

Parameters
None

Returns
ret : ndarray

self, 1-D, as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA1()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

matrix.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

matrix.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

1.6. Standard array subclasses 99

NumPy Reference, Release 1.11.1

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712

100 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

matrix.data
Python buffer object pointing to the start of the array’s data.

matrix.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

matrix.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using low-
ercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

1.6. Standard array subclasses 101

NumPy Reference, Release 1.11.1

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWN-
DATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only.
A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UP-
DATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array
will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

matrix.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

102 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

matrix.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

matrix.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

matrix.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes

1.6. Standard array subclasses 103

NumPy Reference, Release 1.11.1

480
>>> np.prod(x.shape) * x.itemsize
480

matrix.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

matrix.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

matrix.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

104 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

matrix.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

matrix.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])

1.6. Standard array subclasses 105

NumPy Reference, Release 1.11.1

>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

Methods

all([axis, out]) Test whether all matrix elements along a given axis evaluate to True.
any([axis, out]) Test whether any array element along a given axis evaluates to True.
argmax([axis, out]) Indexes of the maximum values along an axis.
argmin([axis, out]) Indexes of the minimum values along an axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a flattened copy of the matrix.
getA() Return self as an ndarray object.
getA1() Return self as a flattened ndarray .
getH() Returns the (complex) conjugate transpose of self.
getI() Returns the (multiplicative) inverse of invertible self.
getT() Returns the transpose of the matrix.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out]) Return the maximum value along an axis.
mean([axis, dtype, out]) Returns the average of the matrix elements along the given axis.
min([axis, out]) Return the minimum value along an axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out]) Return the product of the array elements over the given axis.
ptp([axis, out]) Peak-to-peak (maximum - minimum) value along the given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened matrix.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.

Continued on next page

106 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.41 – continued from previous page
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Return a possibly reshaped matrix.
std([axis, dtype, out, ddof]) Return the standard deviation of the array elements along the given axis.
sum([axis, dtype, out]) Returns the sum of the matrix elements, along the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the matrix as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof]) Returns the variance of the matrix elements, along the given axis.
view([dtype, type]) New view of array with the same data.

matrix.all(axis=None, out=None)
Test whether all matrix elements along a given axis evaluate to True.

Parameters
See ‘numpy.all‘ for complete descriptions

See also:

numpy.all

Notes

This is the same as ndarray.all, but it returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> y = x[0]; y
matrix([[0, 1, 2, 3]])
>>> (x == y)
matrix([[True, True, True, True],

[False, False, False, False],
[False, False, False, False]], dtype=bool)

>>> (x == y).all()
False
>>> (x == y).all(0)
matrix([[False, False, False, False]], dtype=bool)
>>> (x == y).all(1)
matrix([[True],

[False],
[False]], dtype=bool)

matrix.any(axis=None, out=None)
Test whether any array element along a given axis evaluates to True.

1.6. Standard array subclasses 107

NumPy Reference, Release 1.11.1

Refer to numpy.any for full documentation.

Parameters
axis : int, optional

Axis along which logical OR is performed

out : ndarray, optional

Output to existing array instead of creating new one, must have same shape as expected
output

Returns
any : bool, ndarray

Returns a single bool if axis is None; otherwise, returns ndarray

matrix.argmax(axis=None, out=None)
Indexes of the maximum values along an axis.

Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See ‘numpy.argmax‘ for complete descriptions

See also:

numpy.argmax

Notes

This is the same as ndarray.argmax, but returns a matrix object where ndarray.argmax would
return an ndarray .

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.argmax()
11
>>> x.argmax(0)
matrix([[2, 2, 2, 2]])
>>> x.argmax(1)
matrix([[3],

[3],
[3]])

matrix.argmin(axis=None, out=None)
Indexes of the minimum values along an axis.

Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See ‘numpy.argmin‘ for complete descriptions.

See also:

numpy.argmin

108 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

This is the same as ndarray.argmin, but returns a matrix object where ndarray.argmin would
return an ndarray .

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],

[-4, -5, -6, -7],
[-8, -9, -10, -11]])

>>> x.argmin()
11
>>> x.argmin(0)
matrix([[2, 2, 2, 2]])
>>> x.argmin(1)
matrix([[3],

[3],
[3]])

matrix.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition
equivalent function

matrix.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort
equivalent function

matrix.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

1.6. Standard array subclasses 109

NumPy Reference, Release 1.11.1

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

matrix.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

110 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

matrix.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose
equivalent function

matrix.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip
equivalent function

matrix.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress
equivalent function

matrix.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

1.6. Standard array subclasses 111

NumPy Reference, Release 1.11.1

matrix.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

matrix.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

matrix.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod
equivalent function

matrix.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

112 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.cumsum
equivalent function

matrix.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal
equivalent function

matrix.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot
equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

matrix.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

matrix.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

matrix.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

1.6. Standard array subclasses 113

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

matrix.flatten(order=’C’)
Return a flattened copy of the matrix.

All N elements of the matrix are placed into a single row.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran-style) order. ‘A’ means to flatten in column-major order if m is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten m in the order the
elements occur in memory. The default is ‘C’.

Returns
y : matrix

A copy of the matrix, flattened to a (1, N) matrix where N is the number of elements in
the original matrix.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the matrix.

Examples

>>> m = np.matrix([[1,2], [3,4]])
>>> m.flatten()
matrix([[1, 2, 3, 4]])
>>> m.flatten('F')
matrix([[1, 3, 2, 4]])

matrix.getA()
Return self as an ndarray object.

Equivalent to np.asarray(self).

Parameters
None

Returns
ret : ndarray

self as an ndarray

114 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA()
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

matrix.getA1()
Return self as a flattened ndarray .

Equivalent to np.asarray(x).ravel()

Parameters
None

Returns
ret : ndarray

self, 1-D, as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA1()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

matrix.getH()
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose(self) if self is real-valued.

Parameters
None

Returns
ret : matrix object

complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()
matrix([[0. +0.j, 4. +4.j, 8. +8.j],

[1. +1.j, 5. +5.j, 9. +9.j],
[2. +2.j, 6. +6.j, 10.+10.j],
[3. +3.j, 7. +7.j, 11.+11.j]])

matrix.getI()
Returns the (multiplicative) inverse of invertible self.

1.6. Standard array subclasses 115

NumPy Reference, Release 1.11.1

Parameters
None

Returns
ret : matrix object

If self is non-singular, ret is such that ret * self == self * ret ==
np.matrix(np.eye(self[0,:].size) all return True.

Raises
numpy.linalg.LinAlgError: Singular matrix

If self is singular.

See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1.],

[1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.],

[0., 1.]])

matrix.getT()
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use .H.

Parameters
None

Returns
ret : matrix object

The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

matrix.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits

116 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

matrix.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

1.6. Standard array subclasses 117

NumPy Reference, Release 1.11.1

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

matrix.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

matrix.max(axis=None, out=None)
Return the maximum value along an axis.

Parameters
See ‘amax‘ for complete descriptions

See also:

amax, ndarray.max

118 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

This is the same as ndarray.max, but returns a matrix object where ndarray.max would return
an ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.max()
11
>>> x.max(0)
matrix([[8, 9, 10, 11]])
>>> x.max(1)
matrix([[3],

[7],
[11]])

matrix.mean(axis=None, dtype=None, out=None)
Returns the average of the matrix elements along the given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean

Notes

Same as ndarray.mean except that, where that returns an ndarray , this returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.mean()
5.5
>>> x.mean(0)
matrix([[4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[1.5],

[5.5],
[9.5]])

matrix.min(axis=None, out=None)
Return the minimum value along an axis.

Parameters
See ‘amin‘ for complete descriptions.

See also:

amin, ndarray.min

1.6. Standard array subclasses 119

NumPy Reference, Release 1.11.1

Notes

This is the same as ndarray.min, but returns a matrix object where ndarray.min would return an
ndarray.

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],

[-4, -5, -6, -7],
[-8, -9, -10, -11]])

>>> x.min()
-11
>>> x.min(0)
matrix([[-8, -9, -10, -11]])
>>> x.min(1)
matrix([[-3],

[-7],
[-11]])

matrix.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. new_order codes
can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

matrix.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero
equivalent function

120 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

matrix.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

matrix.prod(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis.

Refer to prod for full documentation.

See also:

1.6. Standard array subclasses 121

NumPy Reference, Release 1.11.1

prod, ndarray.prod

Notes

Same as ndarray.prod, except, where that returns an ndarray , this returns a matrix object instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.prod()
0
>>> x.prod(0)
matrix([[0, 45, 120, 231]])
>>> x.prod(1)
matrix([[0],

[840],
[7920]])

matrix.ptp(axis=None, out=None)
Peak-to-peak (maximum - minimum) value along the given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp

Notes

Same as ndarray.ptp, except, where that would return an ndarray object, this returns a matrix
object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.ptp()
11
>>> x.ptp(0)
matrix([[8, 8, 8, 8]])
>>> x.ptp(1)
matrix([[3],

[3],
[3]])

matrix.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put
equivalent function

122 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

matrix.ravel(order=’C’)
Return a flattened matrix.

Refer to numpy.ravel for more documentation.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

The elements of m are read using this index order. ‘C’ means to index the elements
in C-like order, with the last axis index changing fastest, back to the first axis index
changing slowest. ‘F’ means to index the elements in Fortran-like index order, with the
first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order
if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the
elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns
ret : matrix

Return the matrix flattened to shape (1, N) where N is the number of elements in the
original matrix. A copy is made only if necessary.

See also:

matrix.flatten
returns a similar output matrix but always a copy

matrix.flat
a flat iterator on the array.

numpy.ravel
related function which returns an ndarray

matrix.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

matrix.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

matrix.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

1.6. Standard array subclasses 123

NumPy Reference, Release 1.11.1

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing...

124 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

matrix.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around
equivalent function

matrix.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

matrix.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

1.6. Standard array subclasses 125

NumPy Reference, Release 1.11.1

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

matrix.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

126 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

matrix.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

1.6. Standard array subclasses 127

NumPy Reference, Release 1.11.1

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

matrix.squeeze(axis=None)
Return a possibly reshaped matrix.

Refer to numpy.squeeze for more documentation.

Parameters
axis : None or int or tuple of ints, optional

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns
squeezed : matrix

The matrix, but as a (1, N) matrix if it had shape (N, 1).

See also:

numpy.squeeze
related function

Notes

If m has a single column then that column is returned as the single row of a matrix. Otherwise m is returned.
The returned matrix is always either m itself or a view into m. Supplying an axis keyword argument will
not affect the returned matrix but it may cause an error to be raised.

Examples

>>> c = np.matrix([[1], [2]])
>>> c
matrix([[1],

[2]])
>>> c.squeeze()
matrix([[1, 2]])
>>> r = c.T
>>> r

128 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

matrix([[1, 2]])
>>> r.squeeze()
matrix([[1, 2]])
>>> m = np.matrix([[1, 2], [3, 4]])
>>> m.squeeze()
matrix([[1, 2],

[3, 4]])

matrix.std(axis=None, dtype=None, out=None, ddof=0)
Return the standard deviation of the array elements along the given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std

Notes

This is the same as ndarray.std, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.std()
3.4520525295346629
>>> x.std(0)
matrix([[3.26598632, 3.26598632, 3.26598632, 3.26598632]])
>>> x.std(1)
matrix([[1.11803399],

[1.11803399],
[1.11803399]])

matrix.sum(axis=None, dtype=None, out=None)
Returns the sum of the matrix elements, along the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum

Notes

This is the same as ndarray.sum, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix([[1, 2], [4, 3]])
>>> x.sum()
10
>>> x.sum(axis=1)
matrix([[3],

[7]])
>>> x.sum(axis=1, dtype='float')

1.6. Standard array subclasses 129

NumPy Reference, Release 1.11.1

matrix([[3.],
[7.]])

>>> out = np.zeros((1, 2), dtype='float')
>>> x.sum(axis=1, dtype='float', out=out)
matrix([[3.],

[7.]])

matrix.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

matrix.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

matrix.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

matrix.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).

130 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

matrix.tolist()
Return the matrix as a (possibly nested) list.

See ndarray.tolist for full documentation.

See also:

ndarray.tolist

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

matrix.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

1.6. Standard array subclasses 131

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

matrix.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace
equivalent function

matrix.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape
= (i[n-1], i[n-2], ... i[1], i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

132 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

matrix.var(axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the matrix elements, along the given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var

Notes

This is the same as ndarray.var, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.var()
11.916666666666666
>>> x.var(0)
matrix([[10.66666667, 10.66666667, 10.66666667, 10.66666667]])
>>> x.var(1)
matrix([[1.25],

[1.25],
[1.25]])

matrix.view(dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

1.6. Standard array subclasses 133

NumPy Reference, Release 1.11.1

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])

134 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

array([[(1, 2)],
[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

numpy.asmatrix(data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix(data, copy=False).

Parameters
data : array_like

Input data.

dtype : data-type

Data-type of the output matrix.

Returns
mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],

[3, 4]])

numpy.bmat(obj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters
obj : str or array_like

Input data. Names of variables in the current scope may be referenced, even if obj is a
string.

ldict : dict, optional

A dictionary that replaces local operands in current frame. Ignored if obj is not a string
or gdict is None.

gdict : dict, optional

A dictionary that replaces global operands in current frame. Ignored if obj is not a
string.

Returns
out : matrix

Returns a matrix object, which is a specialized 2-D array.

See also:

matrix

1.6. Standard array subclasses 135

NumPy Reference, Release 1.11.1

Examples

>>> A = np.mat('1 1; 1 1')
>>> B = np.mat('2 2; 2 2')
>>> C = np.mat('3 4; 5 6')
>>> D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

Example 1: Matrix creation from a string

>>> a=mat('1 2 3; 4 5 3')
>>> print (a*a.T).I
[[0.2924 -0.1345]
[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat([[1,5,10],[1.0,3,4j]])
matrix([[1.+0.j, 5.+0.j, 10.+0.j],

[1.+0.j, 3.+0.j, 0.+4.j]])

Example 3: Matrix creation from an array

>>> mat(random.rand(3,3)).T
matrix([[0.7699, 0.7922, 0.3294],

[0.2792, 0.0101, 0.9219],
[0.3398, 0.7571, 0.8197]])

1.6.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout,
without reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array. For small files, the over-head of reading the entire file into memory is typically not significant,
however for large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): .flush()
which must be called manually by the user to ensure that any changes to the array actually get written to disk.

memmap Create a memory-map to an array stored in a binary file on disk.
memmap.flush() Write any changes in the array to the file on disk.

136 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

class numpy.memmap
Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire
file into memory. Numpy’s memmap’s are array-like objects. This differs from Python’s mmap module, which
uses file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit
properly as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an
ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=’ parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.

Delete the memmap instance to close.

Parameters
filename : str or file-like object

The file name or file object to be used as the array data buffer.

dtype : data-type, optional

The data-type used to interpret the file contents. Default is uint8.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

‘r’ Open existing file for reading only.
‘r+’ Open existing file for reading and writing.
‘w+’ Create or overwrite existing file for reading and writing.
‘c’ Copy-on-write: assignments affect data in memory, but changes are not saved

to disk. The file on disk is read-only.

Default is ‘r+’.

offset : int, optional

In the file, array data starts at this offset. Since offset is measured in bytes, it should
normally be a multiple of the byte-size of dtype. When mode != ’r’, even pos-
itive offsets beyond end of file are valid; The file will be extended to accommodate
the additional data. By default, memmap will start at the beginning of the file, even if
filename is a file pointer fp and fp.tell() != 0.

shape : tuple, optional

The desired shape of the array. If mode == ’r’ and the number of remaining bytes
after offset is not a multiple of the byte-size of dtype, you must specify shape. By
default, the returned array will be 1-D with the number of elements determined by file
size and data-type.

order : {‘C’, ‘F’}, optional

Specify the order of the ndarray memory layout: row-major, C-style or column-major,
Fortran-style. This only has an effect if the shape is greater than 1-D. The default order
is ‘C’.

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance(fp,
numpy.ndarray) returns True.

Memory-mapped arrays use the Python memory-map object which (prior to Python 2.5) does not allow files to
be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.

1.6. Standard array subclasses 137

NumPy Reference, Release 1.11.1

When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents
of the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled
with zero bytes.

Examples

>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’
filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

138 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> fpc
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

>>> fpc[0,:] = 0
>>> fpc
memmap([[0., 0., 0., 0.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)

Attributes

filename (str) Path to the mapped file.
offset (int) Offset position in the file.
mode (str) File mode.

Methods

flush() Write any changes in the array to the file on disk.

memmap.flush()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None

See also:

memmap

Example:

>>> a = memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a
>>> b = fromfile('newfile.dat', dtype=float)
>>> print b[10], b[30]
10.0 30.0
>>> a = memmap('newfile.dat', dtype=float)
>>> print a[10], a[30]
10.0 30.0

1.6. Standard array subclasses 139

NumPy Reference, Release 1.11.1

1.6.4 Character arrays (numpy.char)

See also:

Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, string_ or unicode_, and use the free functions in the numpy.char module for fast vectorized
string operations.

These are enhanced arrays of either string_ type or unicode_ type. These arrays inherit from the ndarray ,
but specially-define the operations +, *, and % on a (broadcasting) element-by-element basis. These operations are
not available on the standard ndarray of character type. In addition, the chararray has all of the standard
string (and unicode) methods, executing them on an element-by-element basis. Perhaps the easiest way to create
a chararray is to use self.view(chararray) where self is an ndarray of str or unicode data-type. However, a
chararray can also be created using the numpy.chararray constructor, or via the numpy.char.array function:

chararray Provides a convenient view on arrays of string and unicode values.
core.defchararray.array(obj[, itemsize, ...]) Create a chararray .

class numpy.chararray
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy.char module for fast
vectorized string operations.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:

1.values automatically have whitespace removed from the end when indexed

2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",
"*", "%")

chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len(shape) >= 2 and
order=’Fortran’, in which case strides is in “Fortran order”.

Parameters
shape : tuple

Shape of the array.

itemsize : int, optional

Length of each array element, in number of characters. Default is 1.

unicode : bool, optional

Are the array elements of type unicode (True) or string (False). Default is False.

140 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str
http://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.11.1

buffer : int, optional

Memory address of the start of the array data. Default is None, in which case a new
array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis? Default is 0. Needs to be >=0.

strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description). Default is None.

order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ -> “row major” order (the
default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],

['a', 'a', 'a'],
['a', 'a', 'a']],
dtype='|S1')

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([['abc', 'abc', 'abc'],

['abc', 'abc', 'abc'],
['abc', 'abc', 'abc']],
dtype='|S5')

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.

chararray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

1.6. Standard array subclasses 141

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

chararray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

chararray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

142 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

chararray.data
Python buffer object pointing to the start of the array’s data.

chararray.dtype
Data-type of the array’s elements.

1.6. Standard array subclasses 143

NumPy Reference, Release 1.11.1

Parameters
None

Returns
d : numpy dtype object

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

chararray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using low-
ercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

144 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWN-
DATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only.
A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UP-
DATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array
will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

chararray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

1.6. Standard array subclasses 145

NumPy Reference, Release 1.11.1

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

chararray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

chararray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

chararray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

chararray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1

146 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

chararray.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

chararray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

chararray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

1.6. Standard array subclasses 147

NumPy Reference, Release 1.11.1

chararray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
copy([order]) Return a copy of the array.

Continued on next page

148 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.46 – continued from previous page
count(sub[, start, end]) Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].
decode([encoding, errors]) Calls str.decode element-wise.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
encode([encoding, errors]) Calls str.encode element-wise.
endswith(suffix[, start, end]) Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.
expandtabs([tabsize]) Return a copy of each string element where all tab characters are replaced by one or more spaces.
fill(value) Fill the array with a scalar value.
find(sub[, start, end]) For each element, return the lowest index in the string where substring sub is found.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
index(sub[, start, end]) Like find, but raises ValueError when the substring is not found.
isalnum() Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise.
isalpha() Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdecimal() For each element in self, return True if there are only decimal characters in the element.
isdigit() Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.
islower() Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.
isnumeric() For each element in self, return True if there are only numeric characters in the element.
isspace() Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.
istitle() Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.
isupper() Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.
item(*args) Copy an element of an array to a standard Python scalar and return it.
join(seq) Return a string which is the concatenation of the strings in the sequence seq.
ljust(width[, fillchar]) Return an array with the elements of self left-justified in a string of length width.
lower() Return an array with the elements of self converted to lowercase.
lstrip([chars]) For each element in self, return a copy with the leading characters removed.
nonzero() Return the indices of the elements that are non-zero.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
replace(old, new[, count]) For each element in self, return a copy of the string with all occurrences of substring old replaced by new.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
rfind(sub[, start, end]) For each element in self, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].
rindex(sub[, start, end]) Like rfind, but raises ValueError when the substring sub is not found.
rjust(width[, fillchar]) Return an array with the elements of self right-justified in a string of length width.
rsplit([sep, maxsplit]) For each element in self, return a list of the words in the string, using sep as the delimiter string.
rstrip([chars]) For each element in self, return a copy with the trailing characters removed.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
split([sep, maxsplit]) For each element in self, return a list of the words in the string, using sep as the delimiter string.
splitlines([keepends]) For each element in self, return a list of the lines in the element, breaking at line boundaries.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
startswith(prefix[, start, end]) Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.
strip([chars]) For each element in self, return a copy with the leading and trailing characters removed.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
swapcase() For each element in self, return a copy of the string with uppercase characters converted to lowercase and vice versa.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.

Continued on next page

1.6. Standard array subclasses 149

http://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.11.1

Table 1.46 – continued from previous page
title() For each element in self, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
translate(table[, deletechars]) For each element in self, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.
transpose(*axes) Returns a view of the array with axes transposed.
upper() Return an array with the elements of self converted to uppercase.
view([dtype, type]) New view of array with the same data.
zfill(width) Return the numeric string left-filled with zeros in a string of length width.

chararray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

150 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

chararray.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

chararray.count(sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start,
end].

See also:

char.count

1.6. Standard array subclasses 151

NumPy Reference, Release 1.11.1

chararray.decode(encoding=None, errors=None)
Calls str.decode element-wise.

See also:

char.decode

chararray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

chararray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

chararray.encode(encoding=None, errors=None)
Calls str.encode element-wise.

See also:

char.encode

chararray.endswith(suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:

char.endswith

chararray.expandtabs(tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:

char.expandtabs

chararray.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

chararray.find(sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

152 Chapter 1. Array objects

http://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.11.1

See also:

char.find

chararray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

chararray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)

1.6. Standard array subclasses 153

NumPy Reference, Release 1.11.1

array([[1., 0.],
[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

chararray.index(sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

See also:

char.index

chararray.isalnum()
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:

char.isalnum

chararray.isalpha()
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:

char.isalpha

chararray.isdecimal()
For each element in self, return True if there are only decimal characters in the element.

See also:

char.isdecimal

chararray.isdigit()
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:

char.isdigit

chararray.islower()
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See also:

char.islower

chararray.isnumeric()
For each element in self, return True if there are only numeric characters in the element.

See also:

char.isnumeric

chararray.isspace()
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

154 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

See also:

char.isspace

chararray.istitle()
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:

char.istitle

chararray.isupper()
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:

char.isupper

chararray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1

1.6. Standard array subclasses 155

NumPy Reference, Release 1.11.1

>>> x.item((2, 2))
3

chararray.join(seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:

char.join

chararray.ljust(width, fillchar=’ ‘)
Return an array with the elements of self left-justified in a string of length width.

See also:

char.ljust

chararray.lower()
Return an array with the elements of self converted to lowercase.

See also:

char.lower

chararray.lstrip(chars=None)
For each element in self, return a copy with the leading characters removed.

See also:

char.lstrip

chararray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero
equivalent function

chararray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put
equivalent function

chararray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

156 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

chararray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

chararray.replace(old, new, count=None)
For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:

char.replace

chararray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

chararray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

1.6. Standard array subclasses 157

NumPy Reference, Release 1.11.1

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

chararray.rfind(sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:

char.rfind

chararray.rindex(sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:

char.rindex

158 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

chararray.rjust(width, fillchar=’ ‘)
Return an array with the elements of self right-justified in a string of length width.

See also:

char.rjust

chararray.rsplit(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.rsplit

chararray.rstrip(chars=None)
For each element in self, return a copy with the trailing characters removed.

See also:

char.rstrip

chararray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

chararray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)

1.6. Standard array subclasses 159

NumPy Reference, Release 1.11.1

array([[3, 3, 3],
[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

chararray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True

160 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

chararray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])

1.6. Standard array subclasses 161

NumPy Reference, Release 1.11.1

>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

chararray.split(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.split

chararray.splitlines(keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:

char.splitlines

chararray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze
equivalent function

chararray.startswith(prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:

char.startswith

chararray.strip(chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See also:

char.strip

chararray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

162 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

chararray.swapcase()
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:

char.swapcase

chararray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

chararray.title()
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:

char.title

chararray.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

chararray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

1.6. Standard array subclasses 163

NumPy Reference, Release 1.11.1

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

chararray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

chararray.translate(table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:

char.translate

chararray.transpose(*axes)
Returns a view of the array with axes transposed.

164 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape
= (i[n-1], i[n-2], ... i[1], i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

chararray.upper()
Return an array with the elements of self converted to uppercase.

See also:

char.upper

chararray.view(dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

1.6. Standard array subclasses 165

NumPy Reference, Release 1.11.1

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

166 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

chararray.zfill(width)
Return the numeric string left-filled with zeros in a string of length width.

See also:

char.zfill

argsort

numpy.core.defchararray.array(obj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray .

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy.char
for fast vectorized string operations instead.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:

1.values automatically have whitespace removed from the end when indexed

2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +, *,
%)

Parameters
obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into itemsize pieces.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (itemsize, unicode, order, etc.).

unicode : bool, optional

1.6. Standard array subclasses 167

NumPy Reference, Release 1.11.1

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

• a chararray ,

• an ndarray of type str or unicode

• a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then
the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous).

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

1.6.5 Record arrays (numpy.rec)

See also:

Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

Numpy provides the recarray class which allows accessing the fields of a structured array as attributes, and a
corresponding scalar data type object record.

recarray Construct an ndarray that allows field access using attributes.
record A data-type scalar that allows field access as attribute lookup.

class numpy.recarray
Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], where each entry in the array is a pair of (int, float). Normally, these attributes
are accessed using dictionary lookups such as arr[’x’] and arr[’y’]. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters
shape : tuple

Shape of output array.

dtype : data-type, optional

The desired data-type. By default, the data-type is determined from formats, names,
titles, aligned and byteorder.

formats : list of data-types, optional

A list containing the data-types for the different columns, e.g. [’i4’, ’f8’,
’i4’]. formats does not support the new convention of using types directly, i.e.
(int, float, int). Note that formats must be a list, not a tuple. Given that
formats is somewhat limited, we recommend specifying dtype instead.

168 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

names : tuple of str, optional

The name of each column, e.g. (’x’, ’y’, ’z’).

buf : buffer, optional

By default, a new array is created of the given shape and data-type. If buf is specified
and is an object exposing the buffer interface, the array will use the memory from the
existing buffer. In this case, the offset and strides keywords are available.

Returns
rec : recarray

Empty array of the given shape and type.

Other Parameters
titles : tuple of str, optional

Aliases for column names. For example, if names were (’x’, ’y’, ’z’) and
titles is (’x_coordinate’, ’y_coordinate’, ’z_coordinate’), then
arr[’x’] is equivalent to both arr.x and arr.x_coordinate.

byteorder : {‘<’, ‘>’, ‘=’}, optional

Byte-order for all fields.

aligned : bool, optional

Align the fields in memory as the C-compiler would.

strides : tuple of ints, optional

Buffer (buf) is interpreted according to these strides (strides define how many bytes
each array element, row, column, etc. occupy in memory).

offset : int, optional

Start reading buffer (buf) from this offset onwards.

order : {‘C’, ‘F’}, optional

Row-major (C-style) or column-major (Fortran-style) order.

See also:

rec.fromrecords
Construct a record array from data.

record
fundamental data-type for recarray .

format_parser
determine a data-type from formats, names, titles.

Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
a record array from data, use one of the following methods:

1.Create a standard ndarray and convert it to a record array, using arr.view(np.recarray)

2.Use the buf keyword.

3.Use np.rec.fromrecords.

1.6. Standard array subclasses 169

NumPy Reference, Release 1.11.1

Examples

Create an array with two fields, x and y:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],

dtype=[('x', '<f8'), ('y', '<i4')])

>>> x['x']
array([1., 3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([1., 3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)])
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),

(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.

recarray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])

170 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

recarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

recarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

1.6. Standard array subclasses 171

NumPy Reference, Release 1.11.1

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

recarray.data
Python buffer object pointing to the start of the array’s data.

recarray.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See also:

172 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

recarray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using low-
ercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

1.6. Standard array subclasses 173

NumPy Reference, Release 1.11.1

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWN-
DATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only.
A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UP-
DATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array
will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

recarray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

174 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

recarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

recarray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

recarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

recarray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1

1.6. Standard array subclasses 175

NumPy Reference, Release 1.11.1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

recarray.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

recarray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

recarray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

176 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

recarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

Methods

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

Continued on next page

1.6. Standard array subclasses 177

NumPy Reference, Release 1.11.1

Table 1.49 – continued from previous page
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
field(attr[, val])
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.

Continued on next page

178 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.49 – continued from previous page
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.

recarray.all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all
equivalent function

recarray.any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any
equivalent function

recarray.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax
equivalent function

recarray.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin
equivalent function

recarray.argpartition(kth, axis=-1, kind=’introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition
equivalent function

1.6. Standard array subclasses 179

NumPy Reference, Release 1.11.1

recarray.argsort(axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort
equivalent function

recarray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

180 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

recarray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

recarray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose
equivalent function

recarray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

1.6. Standard array subclasses 181

NumPy Reference, Release 1.11.1

See also:

numpy.clip
equivalent function

recarray.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress
equivalent function

recarray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

recarray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

recarray.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

182 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

recarray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod
equivalent function

recarray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum
equivalent function

recarray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal
equivalent function

recarray.dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot
equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

1.6. Standard array subclasses 183

NumPy Reference, Release 1.11.1

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

recarray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

recarray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

recarray.field(attr, val=None)

recarray.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

recarray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

184 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

recarray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

recarray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

1.6. Standard array subclasses 185

NumPy Reference, Release 1.11.1

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

recarray.itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray , if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.itemset(4, 0)

186 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],

[2, 0, 3],
[8, 5, 9]])

recarray.max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax
equivalent function

recarray.mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean
equivalent function

recarray.min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin
equivalent function

recarray.newbyteorder(new_order=’S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. new_order codes
can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘L’} - little endian

• {‘>’, ‘B’} - big endian

• {‘=’, ‘N’} - native order

• {‘|’, ‘I’} - ignore (no change to byte order)

1.6. Standard array subclasses 187

NumPy Reference, Release 1.11.1

The default value (‘S’) results in swapping the current byte order. The code does a
case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr : array

New array object with the dtype reflecting given change to the byte order.

recarray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero
equivalent function

recarray.partition(kth, axis=-1, kind=’introselect’, order=None)
Rearranges the elements in the array in such a way that value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth : int or sequence of ints

Element index to partition by. The kth element value will be in its final sorted position
and all smaller elements will be moved before it and all equal or greater elements behind
it. The order all elements in the partitions is undefined. If provided with a sequence of
kth it will partition all elements indexed by kth of them into their sorted position at once.

axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.partition
Return a parititioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

188 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

recarray.prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod
equivalent function

recarray.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp
equivalent function

recarray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put
equivalent function

recarray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

recarray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

1.6. Standard array subclasses 189

NumPy Reference, Release 1.11.1

See also:

numpy.repeat
equivalent function

recarray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

recarray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

190 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

recarray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around
equivalent function

recarray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

recarray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

1.6. Standard array subclasses 191

NumPy Reference, Release 1.11.1

Parameters
val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

recarray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

192 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

recarray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

1.6. Standard array subclasses 193

NumPy Reference, Release 1.11.1

numpy.sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

recarray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze
equivalent function

recarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std
equivalent function

194 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

recarray.sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum
equivalent function

recarray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

recarray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

recarray.tobytes(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

1.6. Standard array subclasses 195

NumPy Reference, Release 1.11.1

recarray.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

recarray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

recarray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

196 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace
equivalent function

recarray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape
= (i[n-1], i[n-2], ... i[1], i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

1.6. Standard array subclasses 197

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

recarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var
equivalent function

recarray.view(dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

198 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

class numpy.record
A data-type scalar that allows field access as attribute lookup.

1.6. Standard array subclasses 199

NumPy Reference, Release 1.11.1

Attributes

200 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

T transpose
base base object
data pointer to start of data
dtype dtype object
flags integer value of flags
flat a 1-d view of scalar
imag imaginary part of scalar
itemsize length of one element in bytes
nbytes length of item in bytes
ndim number of array dimensions
real real part of scalar
shape tuple of array dimensions
size number of elements in the gentype
strides tuple of bytes steps in each dimension

record.T
transpose

record.base
base object

record.data
pointer to start of data

record.dtype
dtype object

record.flags
integer value of flags

record.flat
a 1-d view of scalar

record.imag
imaginary part of scalar

record.itemsize
length of one element in bytes

record.nbytes
length of item in bytes

record.ndim
number of array dimensions

record.real
real part of scalar

record.shape
tuple of array dimensions

record.size
number of elements in the gentype

record.strides
tuple of bytes steps in each dimension

Methods

1.6. Standard array subclasses 201

NumPy Reference, Release 1.11.1

all Not implemented (virtual attribute)
any Not implemented (virtual attribute)
argmax Not implemented (virtual attribute)
argmin Not implemented (virtual attribute)
argsort Not implemented (virtual attribute)
astype Not implemented (virtual attribute)
byteswap Not implemented (virtual attribute)
choose Not implemented (virtual attribute)
clip Not implemented (virtual attribute)
compress Not implemented (virtual attribute)
conj
conjugate Not implemented (virtual attribute)
copy Not implemented (virtual attribute)
cumprod Not implemented (virtual attribute)
cumsum Not implemented (virtual attribute)
diagonal Not implemented (virtual attribute)
dump Not implemented (virtual attribute)
dumps Not implemented (virtual attribute)
fill Not implemented (virtual attribute)
flatten Not implemented (virtual attribute)
getfield
item Not implemented (virtual attribute)
itemset Not implemented (virtual attribute)
max Not implemented (virtual attribute)
mean Not implemented (virtual attribute)
min Not implemented (virtual attribute)
newbyteorder([new_order]) Return a new dtype with a different byte order.
nonzero Not implemented (virtual attribute)
pprint() Pretty-print all fields.
prod Not implemented (virtual attribute)
ptp Not implemented (virtual attribute)
put Not implemented (virtual attribute)
ravel Not implemented (virtual attribute)
repeat Not implemented (virtual attribute)
reshape Not implemented (virtual attribute)
resize Not implemented (virtual attribute)
round Not implemented (virtual attribute)
searchsorted Not implemented (virtual attribute)
setfield
setflags Not implemented (virtual attribute)
sort Not implemented (virtual attribute)
squeeze Not implemented (virtual attribute)
std Not implemented (virtual attribute)
sum Not implemented (virtual attribute)
swapaxes Not implemented (virtual attribute)
take Not implemented (virtual attribute)
tobytes
tofile Not implemented (virtual attribute)
tolist Not implemented (virtual attribute)
tostring Not implemented (virtual attribute)

Continued on next page

202 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.51 – continued from previous page
trace Not implemented (virtual attribute)
transpose Not implemented (virtual attribute)
var Not implemented (virtual attribute)
view Not implemented (virtual attribute)

record.all()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.any()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argmax()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argmin()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.argsort()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.astype()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

1.6. Standard array subclasses 203

NumPy Reference, Release 1.11.1

record.byteswap()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.choose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.clip()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.compress()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.conj()

record.conjugate()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.copy()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.cumprod()
Not implemented (virtual attribute)

204 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.cumsum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.diagonal()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.dump()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.dumps()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.fill()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.flatten()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

1.6. Standard array subclasses 205

NumPy Reference, Release 1.11.1

record.getfield()

record.item()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.itemset()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.max()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.mean()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.min()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.newbyteorder(new_order=’S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

•‘S’ - swap dtype from current to opposite endian

•{‘<’, ‘L’} - little endian

•{‘>’, ‘B’} - big endian

•{‘=’, ‘N’} - native order

206 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

•{‘|’, ‘I’} - ignore (no change to byte order)

Parameters
new_order : str, optional

Byte order to force; a value from the byte order specifications above. The default value
(‘S’) results in swapping the current byte order. The code does a case-insensitive check
on the first letter of new_order for the alternatives above. For example, any of ‘B’ or ‘b’
or ‘biggish’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.

record.nonzero()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.pprint()
Pretty-print all fields.

record.prod()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.ptp()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.put()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.ravel()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

1.6. Standard array subclasses 207

NumPy Reference, Release 1.11.1

The

record.repeat()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.reshape()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.resize()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.round()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.searchsorted()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.setfield()

record.setflags()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

208 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

record.sort()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.squeeze()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.sum()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.swapaxes()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.take()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tobytes()

record.tofile()
Not implemented (virtual attribute)

1.6. Standard array subclasses 209

NumPy Reference, Release 1.11.1

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tolist()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.tostring()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.trace()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.transpose()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.var()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

record.view()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also:

The

210 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

1.6.6 Masked arrays (numpy.ma)

See also:

Masked arrays

1.6.7 Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy.lib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the
ndarray itself and so it is included by default. It is not documented here beyond mentioning its existence because you
are encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(data[, ...]) Standard container-class for easy multiple-inheritance.

class numpy.lib.user_array.container(data, dtype=None, copy=True)
Standard container-class for easy multiple-inheritance.

Methods

copy
tostring
byteswap
astype

1.6.8 Array Iterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter
is an iterator object, then the Python code:

for val in myiter:
...
some code involving val
...

calls val = myiter.next() repeatedly until StopIteration is raised by the iterator. There are several ways
to iterate over an array that may be useful: default iteration, flat iteration, and 𝑁 -dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
val = arr[i]

This default iterator selects a sub-array of dimension 𝑁 − 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires 𝑁 for-loops.

>>> a = arange(24).reshape(3,2,4)+10
>>> for val in a:
... print 'item:', val
item: [[10 11 12 13]

1.6. Standard array subclasses 211

http://docs.python.org/dev/library/exceptions.html#StopIteration

NumPy Reference, Release 1.11.1

[14 15 16 17]]
item: [[18 19 20 21]
[22 23 24 25]]

item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> for i, val in enumerate(a.flat):
... if i%5 == 0: print i, val
0 10
5 15
10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

class numpy.ndenumerate(arr)
Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

Parameters
arr : ndarray

Input array.

See also:

ndindex, flatiter

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print(index, x)
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

Methods

212 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

next() Standard iterator method, returns the index tuple and array value.

ndenumerate.next()
Standard iterator method, returns the index tuple and array value.

Returns
coords : tuple of ints

The indices of the current iteration.

val : scalar

The array element of the current iteration.

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):
... if sum(i)%5 == 0: print i, val
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy.broadcast
Produce an object that mimics broadcasting.

Parameters
in1, in2, ... : array_like

Input parameters.

Returns
b : broadcast object

Broadcast the input parameters against one another, and return an object that encapsu-
lates the result. Amongst others, it has shape and nd properties, and may be used as
an iterator.

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)

>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[5., 6., 7.],

[6., 7., 8.],
[7., 8., 9.]])

1.6. Standard array subclasses 213

NumPy Reference, Release 1.11.1

Compare against built-in broadcasting:

>>> x + y
array([[5, 6, 7],

[6, 7, 8],
[7, 8, 9]])

Attributes

index current index in broadcasted result
iters tuple of iterators along self‘s “components.”
shape Shape of broadcasted result.
size Total size of broadcasted result.

broadcast.index
current index in broadcasted result

Examples

>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (1, 5), (1, 6))
>>> b.index
3

broadcast.iters
tuple of iterators along self‘s “components.”

Returns a tuple of numpy.flatiter objects, one for each “component” of self.

See also:

numpy.flatiter

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> row, col = b.iters
>>> row.next(), col.next()
(1, 4)

broadcast.shape
Shape of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.shape
(3, 3)

214 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

broadcast.size
Total size of broadcasted result.

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.size
9

Methods

next
reset() Reset the broadcasted result’s iterator(s).

broadcast.next

broadcast.reset()
Reset the broadcasted result’s iterator(s).

Parameters
None

Returns
None

Examples

>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]]
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes
𝑁 objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the
broadcasted result.

>>> for val in broadcast([[1,0],[2,3]],[0,1]):
... print val
(1, 0)
(0, 1)
(2, 0)
(3, 1)

1.6. Standard array subclasses 215

NumPy Reference, Release 1.11.1

1.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

1.7.1 The numpy.ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor
may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to
address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean()
2.75

The numpy.ma module

The main feature of the numpy.ma module is the MaskedArray class, which is a subclass of numpy.ndarray .
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy.ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

>>> y = ma.array([1, 2, 3], mask = [0, 1, 0])

216 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

To create a masked array where all values close to 1.e20 are invalid, we would do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.7.2 Using numpy.ma

Constructing masked arrays

There are several ways to construct a masked array.

• A first possibility is to directly invoke the MaskedArray class.

• A second possibility is to use the two masked array constructors, array and masked_array .

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array alias of MaskedArray

numpy.ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None,
keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)

An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Parameters
data : array_like

Input data.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as data. True
indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output. If dtype is None, the type of the data argument (data.dtype)
is used. If dtype is not None and different from data.dtype, a copy is performed.

copy : bool, optional

Whether to copy the input data (True), or to use a reference instead. Default is False.

subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a plain
MaskedArray . Default is True.

ndmin : int, optional

Minimum number of dimensions. Default is 0.

fill_value : scalar, optional

1.7. Masked arrays 217

NumPy Reference, Release 1.11.1

Value used to fill in the masked values when necessary. If None, a default based on the
data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any (True), or to use only
mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values cannot be un-
masked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous order
(last-index varies the fastest). If order is ‘F’, then the returned array will be in Fortran-
contiguous order (first-index varies the fastest). If order is ‘A’ (default), then the returned
array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless
a copy is required, in which case it will be C-contiguous.

numpy.ma.masked_array
alias of MaskedArray

• A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1, 2, 3])
>>> x.view(ma.MaskedArray)
masked_array(data = [1 2 3],

mask = False,
fill_value = 999999)

>>> x = np.array([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view(ma.MaskedArray)
masked_array(data = [(1, 1.0) (2, 2.0)],

mask = [(False, False) (False, False)],
fill_value = (999999, 1e+20),

dtype = [('a', '<i4'), ('b', '<f8')])

• Yet another possibility is to use any of the following functions:

asarray(a[, dtype, order]) Convert the input to a masked array of the given data-type.
asanyarray(a[, dtype]) Convert the input to a masked array, conserving subclasses.
fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a fill value.
masked_equal(x, value[, copy]) Mask an array where equal to a given value.
masked_greater(x, value[, copy]) Mask an array where greater than a given value.
masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given value.
masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or infs).
masked_less(x, value[, copy]) Mask an array where less than a given value.
masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to value.
masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.

Continued on next page

218 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.60 – continued from previous page
masked_values(x, value[, rtol, atol, copy, ...]) Mask using floating point equality.
masked_where(condition, a[, copy]) Mask an array where a condition is met.

numpy.ma.asarray(a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray , a base class
MaskedArray is returned.

Parameters
a : array_like

Input data, in any form that can be converted to a masked array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

Masked array interpretation of a.

See also:

asanyarray
Similar to asarray , but conserves subclasses.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(data =
[[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.]],

mask =
False,

fill_value = 1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>

numpy.ma.asanyarray(a, dtype=None)
Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray , its class is conserved. No copy is performed if the input is already
an ndarray.

Parameters
a : array_like

Input data, in any form that can be converted to an array.

1.7. Masked arrays 219

NumPy Reference, Release 1.11.1

dtype : dtype, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

MaskedArray interpretation of a.

See also:

asarray
Similar to asanyarray , but does not conserve subclass.

Examples

>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(data =
[[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.]],

mask =
False,

fill_value = 1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>

numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

Parameters
a : array_like

Input array, a (subclass of) ndarray.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as data. True
indicates a masked (i.e. invalid) data.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False). Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which case the a.fill_value
is used.

Returns
b : MaskedArray

The input array with invalid entries fixed.

220 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data = [-- -1.0 nan inf],

mask = [True False False False],
fill_value = 1e+20)

>>> np.ma.fix_invalid(x)
masked_array(data = [-- -1.0 -- --],

mask = [True False True True],
fill_value = 1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,

1.00000000e+20])
>>> x.data
array([1., -1., NaN, Inf])

numpy.ma.masked_equal(x, value, copy=True)
Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values(x, value).

See also:

masked_where
Mask where a condition is met.

masked_values
Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

numpy.ma.masked_greater(x, value, copy=True)
Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).

See also:

masked_where
Mask where a condition is met.

1.7. Masked arrays 221

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],

mask = [False False False True],
fill_value=999999)

numpy.ma.masked_greater_equal(x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],

mask = [False False True True],
fill_value=999999)

numpy.ma.masked_inside(x, v1, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2).
The boundaries v1 and v2 can be given in either order.

See also:

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

mask = [False False True True False False],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

222 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

mask = [False False True True False False],
fill_value=1e+20)

numpy.ma.masked_invalid(a, copy=True)
Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask
is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types),
but accepts any array_like object.

See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=np.float)
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array([0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 -- -- 4.0],

mask = [False False True True False],
fill_value=1e+20)

numpy.ma.masked_less(x, value, copy=True)
Mask an array where less than a given value.

This function is a shortcut to masked_where, with condition = (x < value).

See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],

mask = [True True False False],
fill_value=999999)

numpy.ma.masked_less_equal(x, value, copy=True)
Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).

See also:

masked_where
Mask where a condition is met.

1.7. Masked arrays 223

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

numpy.ma.masked_not_equal(x, value, copy=True)
Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with condition = (x != value).

See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],

mask = [True True False True],
fill_value=999999)

numpy.ma.masked_object(x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters
x : array_like

Array to mask

value : object

Comparison value

copy : {True, False}, optional

Whether to return a copy of x.

shrink : {True, False}, optional

Whether to collapse a mask full of False to nomask

Returns
result : MaskedArray

The result of masking x where equal to value.

See also:

224 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

masked_values
Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> print(eat)
[-- ham]
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> print(eat)
[cheese ham pineapple]

Note that mask is set to nomask if possible.

>>> eat
masked_array(data = [cheese ham pineapple],

mask = False,
fill_value=?)

numpy.ma.masked_outside(x, v1, v2, copy=True)
Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2).
The boundaries v1 and v2 can be given in either order.

See also:

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [True True False False True True],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [True True False False True True],
fill_value=1e+20)

1.7. Masked arrays 225

NumPy Reference, Release 1.11.1

numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the
following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using
masked_equal.

Parameters
x : array_like

Array to mask.

value : float

Masking value.

rtol : float, optional

Tolerance parameter.

atol : float, optional

Tolerance parameter (1e-8).

copy : bool, optional

Whether to return a copy of x.

shrink : bool, optional

Whether to collapse a mask full of False to nomask.

Returns
result : MaskedArray

The result of masking x where approximately equal to value.

See also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 -- 2.0 -- 3.0],

mask = [False True False True False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)
masked_array(data = [1. 1.1 2. 1.1 3.],

mask = False,
fill_value=1.5)

226 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=2)

>>> ma.masked_equal(x, 2)
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=999999)

numpy.ma.masked_where(condition, a, copy=True)
Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked
in the output.

Parameters
condition : array_like

Masking condition. When condition tests floating point values for equality, consider
using masked_values instead.

a : array_like

Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify a in place and return a
view.

Returns
result : MaskedArray

The result of masking a where condition is True.

See also:

masked_values
Mask using floating point equality.

masked_equal
Mask where equal to a given value.

masked_not_equal
Mask where not equal to a given value.

masked_less_equal
Mask where less than or equal to a given value.

masked_greater_equal
Mask where greater than or equal to a given value.

masked_less
Mask where less than a given value.

masked_greater
Mask where greater than a given value.

1.7. Masked arrays 227

NumPy Reference, Release 1.11.1

masked_inside
Mask inside a given interval.

masked_outside
Mask outside a given interval.

masked_invalid
Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b -- d],

mask = [False False True False],
fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],

mask = [False True True False],
fill_value=999999)

>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data = [99 -- -- 3],

mask = [False True True False],
fill_value=999999)

>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

>>> b = np.arange(4)

228 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data = [-- 1 2 3],

mask = [True False False False],
fill_value=999999)

>>> ma.masked_where(a == 3, b)
masked_array(data = [-- 1 -- --],

mask = [True False True True],
fill_value=999999)

Accessing the data

The underlying data of a masked array can be accessed in several ways:

• through the data attribute. The output is a view of the array as a numpy.ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

• through the __array__ method. The output is then a numpy.ndarray .

• by directly taking a view of the masked array as a numpy.ndarray or one of its subclass (which is actually
what using the data attribute does).

• by using the getdata function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule,
where a representation of the array is required without any masked entries, it is recommended to fill the array with the
filled method.

Accessing the mask

The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask(x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray(x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with
as many elements as x.

Accessing only the valid entries

To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be
calculated with the numpy.logical_not function or simply with the ~ operator:

>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> x[~x.mask]
masked_array(data = [1 4],

mask = [False False],
fill_value = 999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed()
array([1, 4])

Note that the output of compressed is always 1D.

1.7. Masked arrays 229

NumPy Reference, Release 1.11.1

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special
value masked to them:

>>> x = ma.array([1, 2, 3])
>>> x[0] = ma.masked
>>> x
masked_array(data = [-- 2 3],

mask = [True False False],
fill_value = 999999)

>>> y = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array(data =
[[1 -- 3]
[4 5 --]
[-- 8 9]],

mask =
[[False True False]
[False False True]
[True False False]],

fill_value = 999999)
>>> z = ma.array([1, 2, 3, 4])
>>> z[:-2] = ma.masked
>>> z
masked_array(data = [-- -- 3 4],

mask = [True True False False],
fill_value = 999999)

A second possibility is to modify the mask directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the
special value nomask, that corresponds roughly to the boolean False. Trying to set an element of nomask will fail
with a TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x.mask = True
>>> x
masked_array(data = [-- -- --],

mask = [True True True],
fill_value = 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1, 2, 3])
>>> x.mask = [0, 1, 0]
>>> x
masked_array(data = [1 -- 3],

mask = [False True False],
fill_value = 999999)

230 Chapter 1. Array objects

http://docs.python.org/dev/library/exceptions.html#TypeError

NumPy Reference, Release 1.11.1

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],

mask = [False False False],
fill_value = 999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before
the allocation. It can be re-hardened with harden_mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x[-1] = 5
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x.soften_mask()
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],

mask = [False False False],
fill_value = 999999)

>>> x.harden_mask()

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to
assign the constant nomask to the mask:

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> x.mask = ma.nomask
>>> x
masked_array(data = [1 2 3],

mask = [False False False],
fill_value = 999999)

Indexing and slicing

As a MaskedArray is a subclass of numpy.ndarray , it inherits its mechanisms for indexing and slicing.

1.7. Masked arrays 231

NumPy Reference, Release 1.11.1

When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x[0]
1
>>> x[-1]
masked_array(data = --,

mask = True,
fill_value = 1e+20)

>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a numpy.void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> y = ma.masked_array([(1,2), (3, 4)],
... mask=[(0, 0), (0, 1)],
... dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
masked_array(data = (3, --),

mask = (False, True),
fill_value = (999999, 999999),

dtype = [('a', '<i4'), ('b', '<i4')])

When accessing a slice, the output is a masked array whose data attribute is a view of the original data, and whose
mask is either nomask (if there was no invalid entries in the original array) or a copy of the corresponding slice of
the original mask. The copy is required to avoid propagation of any modification of the mask to the original.

>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0, 0, 1])
>>> mx = x[:3]
>>> mx
masked_array(data = [1 -- 3],

mask = [False True False],
fill_value = 999999)

>>> mx[1] = -1
>>> mx
masked_array(data = [1 -1 3],

mask = [False True False],
fill_value = 999999)

>>> x.mask
array([False, True, False, False, True], dtype=bool)
>>> x.data
array([1, -1, 3, 4, 5])

Accessing a field of a masked array with structured datatype returns a MaskedArray .

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a
masked array are not processed, meaning that the corresponding data entries should be the same before and after the
operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

232 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

The numpy.ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as log or divide) return the masked constant whenever the input is masked or falls outside
the validity domain:

>>> ma.log([-1, 0, 1, 2])
masked_array(data = [-- -- 0.0 0.69314718056],

mask = [True True False False],
fill_value = 1e+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If
the ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments
and its domain), the context is processed and entries of the output masked array are masked wherever the corresponding
input fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
>>> np.log(x)
masked_array(data = [-- -- 0.0 0.69314718056 --],

mask = [True True False False True],
fill_value = 1e+20)

1.7.3 Examples

Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average
value of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma
>>> x = [0.,1.,-9999.,3.,4.]
>>> mx = ma.masked_values (x, -9999.)
>>> print mx.mean()
2.0
>>> print mx - mx.mean()
[-2.0 -1.0 -- 1.0 2.0]
>>> print mx.anom()
[-2.0 -1.0 -- 1.0 2.0]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print mx.filled(mx.mean())
[0. 1. 2. 3. 4.]

Numerical operations

Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots
of negative numbers, etc.:

>>> import numpy as np, numpy.ma as ma
>>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y = ma.array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print np.sqrt(x/y)
[1.0 -- -- 1.0 -- --]

1.7. Masked arrays 233

NumPy Reference, Release 1.11.1

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values

Let’s consider an array d of random floats between 0 and 1. We wish to compute the average of the values of d while
ignoring any data outside the range [0.1, 0.9]:

>>> print ma.masked_outside(d, 0.1, 0.9).mean()

1.7.4 Constants of the numpy.ma module

In addition to the MaskedArray class, the numpy.ma module defines several constants.

numpy.ma.masked
The masked constant is a special case of MaskedArray , with a float datatype and a null shape. It is used to
test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 -- --],

mask = [False True True],
fill_value = 999999)

numpy.ma.nomask
Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed.

numpy.ma.masked_print_options
String used in lieu of missing data when a masked array is printed. By default, this string is ’--’.

1.7.5 The MaskedArray class

class numpy.ma.MaskedArray

A subclass of ndarray designed to manipulate numerical arrays with missing data.

An instance of MaskedArray can be thought as the combination of several elements:

• The data, as a regular numpy.ndarray of any shape or datatype (the data).

• A boolean mask with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value nomask is also acceptable for arrays without named fields, and indicates
that no data is invalid.

• A fill_value, a value that may be used to replace the invalid entries in order to return a standard
numpy.ndarray .

Attributes and properties of masked arrays

See also:

234 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Array Attributes

MaskedArray.data
Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of
numpy.ndarray , it is returned as such.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],

[3, 4]])

The type of the data can be accessed through the baseclass attribute.

MaskedArray.mask
Returns the underlying mask, as an array with the same shape and structure as the data, but where all fields are
atomically booleans. A value of True indicates an invalid entry.

MaskedArray.recordmask
Returns the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans
where entries are True if all the fields are masked, False otherwise:

>>> x = ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False, True, False, False], dtype=bool)

MaskedArray.fill_value
Returns the value used to fill the invalid entries of a masked array. The value is either a scalar (if the masked
array has no named fields), or a 0-D ndarray with the same dtype as the masked array if it has named fields.

The default filling value depends on the datatype of the array:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’

MaskedArray.baseclass
Returns the class of the underlying data.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 0], [1, 0]])
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix'>

MaskedArray.sharedmask
Returns whether the mask of the array is shared between several masked arrays. If this is the case, any modifi-
cation to the mask of one array will be propagated to the others.

MaskedArray.hardmask
Returns whether the mask is hard (True) or soft (False). When the mask is hard, masked entries cannot be
unmasked.

As MaskedArray is a subclass of ndarray , a masked array also inherits all the attributes and properties of a
ndarray instance.

MaskedArray.base Base object if memory is from some other object.
Continued on next page

1.7. Masked arrays 235

NumPy Reference, Release 1.11.1

Table 1.61 – continued from previous page
MaskedArray.ctypes An object to simplify the interaction of the array with the ctypes module.
MaskedArray.dtype Data-type of the array’s elements.
MaskedArray.flags Information about the memory layout of the array.
MaskedArray.itemsize Length of one array element in bytes.
MaskedArray.nbytes Total bytes consumed by the elements of the array.
MaskedArray.ndim Number of array dimensions.
MaskedArray.shape Tuple of array dimensions.
MaskedArray.size Number of elements in the array.
MaskedArray.strides Tuple of bytes to step in each dimension when traversing an array.
MaskedArray.imag Imaginary part.
MaskedArray.real Real part
MaskedArray.flat Flat version of the array.
MaskedArray.__array_priority__

MaskedArray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

MaskedArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid

236 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the
shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

MaskedArray.dtype
Data-type of the array’s elements.

1.7. Masked arrays 237

NumPy Reference, Release 1.11.1

Parameters
None

Returns
d : numpy dtype object

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

MaskedArray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assign-
ment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0] ==
self.itemsize for Fortran-style contiguous arrays is true.

238 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWNDATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only. A
view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of a
writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,
currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable array raises a
RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UPDATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array will
be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

MaskedArray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

MaskedArray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

1.7. Masked arrays 239

NumPy Reference, Release 1.11.1

MaskedArray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

MaskedArray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged

MaskedArray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

MaskedArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

240 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

MaskedArray.imag
Imaginary part.

MaskedArray.real
Real part

MaskedArray.flat
Flat version of the array.

MaskedArray.__array_priority__ = 15

1.7.6 MaskedArray methods

See also:

Array methods

1.7. Masked arrays 241

NumPy Reference, Release 1.11.1

Conversion

MaskedArray.__float__() Convert to float.
MaskedArray.__hex__() <==> hex(x)
MaskedArray.__int__() Convert to int.
MaskedArray.__long__() <==> long(x)
MaskedArray.__oct__() <==> oct(x)
MaskedArray.view([dtype, type]) New view of array with the same data.
MaskedArray.astype(newtype) Returns a copy of the MaskedArray cast to given newtype.
MaskedArray.byteswap(inplace) Swap the bytes of the array elements
MaskedArray.compressed() Return all the non-masked data as a 1-D array.
MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a given value.
MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
MaskedArray.toflex() Transforms a masked array into a flexible-type array.
MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierarchical Python list.
MaskedArray.torecords() Transforms a masked array into a flexible-type array.
MaskedArray.tostring([fill_value, order]) This function is a compatibility alias for tobytes.
MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes in the array.

MaskedArray.__float__()
Convert to float.

MaskedArray.__hex__() <==> hex(x)

MaskedArray.__int__()
Convert to int.

MaskedArray.__long__() <==> long(x)

MaskedArray.__oct__() <==> oct(x)

MaskedArray.view(dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

242 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be
predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a
is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose,
etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

1.7. Masked arrays 243

NumPy Reference, Release 1.11.1

File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

MaskedArray.astype(newtype)
Returns a copy of the MaskedArray cast to given newtype.

Returns
output : MaskedArray

A copy of self cast to input newtype. The returned record shape matches self.shape.

Examples

>>> x = np.ma.array([[1,2,3.1],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1.0 -- 3.1]
[-- 5.0 --]
[7.0 -- 9.0]]
>>> print(x.astype(int32))
[[1 -- 3]
[-- 5 --]
[7 -- 9]]

MaskedArray.byteswap(inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters
inplace : bool, optional

If True, swap bytes in-place, default is False.

Returns
out : ndarray

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],

dtype='|S3')

244 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

MaskedArray.compressed()
Return all the non-masked data as a 1-D array.

Returns
data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>

MaskedArray.filled(fill_value=None)
Return a copy of self, with masked values filled with a given value. However, if there are no masked values to
fill, self will be returned instead as an ndarray.

Parameters
fill_value : scalar, optional

The value to use for invalid entries (None by default). If None, the fill_value
attribute of the array is used instead.

Returns
filled_array : ndarray

A copy of self with invalid entries replaced by fill_value (be it the function argument
or the attribute of self), or self itself as an ndarray if there are no invalid entries to
be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked array is a matrix, filled returns a
matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[1, 999999],

[999999, 4]])

MaskedArray.tofile(fid, sep=’‘, format=’%s’)
Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

1.7. Masked arrays 245

NumPy Reference, Release 1.11.1

Raises
NotImplementedError

When tofile is called.

MaskedArray.toflex()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

•the _data field stores the _data part of the array.

•the _mask field stores the _mask part of the array.

Parameters
None

Returns
record : ndarray

A new flexible-type ndarray with two fields: the first element containing a value, the
second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.toflex())
[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]]

MaskedArray.tolist(fill_value=None)
Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value.
If fill_value is None, the corresponding entries in the output list will be None.

Parameters
fill_value : scalar, optional

The value to use for invalid entries. Default is None.

Returns
result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]

246 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

MaskedArray.torecords()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:

•the _data field stores the _data part of the array.

•the _mask field stores the _mask part of the array.

Parameters
None

Returns
record : ndarray

A new flexible-type ndarray with two fields: the first element containing a value, the
second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.toflex())
[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]]

MaskedArray.tostring(fill_value=None, order=’C’)
This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

MaskedArray.tobytes(fill_value=None, order=’C’)
Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

New in version 1.9.0.

Parameters
fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which case
MaskedArray.fill_value is used.

order : {‘C’,’F’,’A’}, optional

Order of the data item in the copy. Default is ‘C’.

• ‘C’ – C order (row major).

• ‘F’ – Fortran order (column major).

1.7. Masked arrays 247

NumPy Reference, Release 1.11.1

• ‘A’ – Any, current order of array.

• None – Same as ‘A’.

See also:

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc., but also about fill_value, will be lost.

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
'\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00'

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
MaskedArray.resize(newshape[, refcheck, order])
MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.
MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.
MaskedArray.T

MaskedArray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

248 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

MaskedArray.ravel(order=’C’)
Returns a 1D version of self, as a view.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to index the elements
in C-like order, with the last axis index changing fastest, back to the first axis index
changing slowest. ‘F’ means to index the elements in Fortran-like index order, with the
first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order
if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the
elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns
MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.ravel())
[1 -- 3 -- 5 -- 7 -- 9]

MaskedArray.reshape(*s, **kwargs)
Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original
array; if this is not possible, a ValueError is raised.

Parameters
shape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer is supplied,
then the result will be a 1-D array of that length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C (row-major) or FORTRAN
(column-major) order.

Returns
reshaped_array : array

A new view on the array.

1.7. Masked arrays 249

NumPy Reference, Release 1.11.1

See also:

reshape
Equivalent function in the masked array module.

numpy.ndarray.reshape
Equivalent method on ndarray object.

numpy.reshape
Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use
a.shape = s

Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> print(x)
[[-- 2]
[3 --]]
>>> x = x.reshape((4,1))
>>> print(x)
[[--]
[2]
[3]
[--]]

MaskedArray.resize(newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own
its data and therefore cannot safely be resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

MaskedArray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze
equivalent function

MaskedArray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

MaskedArray.transpose(*axes)
Returns a view of the array with axes transposed.

250 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-
dicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1],
... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1],
i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

MaskedArray.T

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

MaskedArray.argmax([axis, fill_value, out]) Returns array of indices of the maximum values along the given axis.
MaskedArray.argmin([axis, fill_value, out]) Return array of indices to the minimum values along the given axis.
MaskedArray.argsort([axis, kind, order, ...]) Return an ndarray of indices that sort the array along the specified axis.
MaskedArray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
MaskedArray.compress(condition[, axis, out]) Return a where condition is True.
MaskedArray.diagonal([offset, axis1, axis2]) Return specified diagonals.

Continued on next page

1.7. Masked arrays 251

NumPy Reference, Release 1.11.1

Table 1.64 – continued from previous page
MaskedArray.fill(value) Fill the array with a scalar value.
MaskedArray.item(*args) Copy an element of an array to a standard Python scalar and return it.
MaskedArray.nonzero() Return the indices of unmasked elements that are not zero.
MaskedArray.put(indices, values[, mode]) Set storage-indexed locations to corresponding values.
MaskedArray.repeat(repeats[, axis]) Repeat elements of an array.
MaskedArray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
MaskedArray.sort([axis, kind, order, ...]) Sort the array, in-place
MaskedArray.take(indices[, axis, out, mode])

MaskedArray.argmax(axis=None, fill_value=None, out=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of maxi-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

MaskedArray.argmin(axis=None, fill_value=None, out=None)
Return array of indices to the minimum values along the given axis.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of mini-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

252 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns
ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along
the given axis. Otherwise, returns a scalar of index to the minimum values along the
given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print(x)
[[-- --]
[2 3]]
>>> print(x.argmin(axis=0, fill_value=-1))
[0 0]
>>> print(x.argmin(axis=0, fill_value=9))
[1 1]

MaskedArray.argsort(axis=None, kind=’quicksort’, order=None, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters
axis : int, optional

Axis along which to sort. The default is -1 (last axis). If None, the flattened array is
used.

fill_value : var, optional

Value used to fill the array before sorting. The default is the fill_value attribute of
the input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

1.7. Masked arrays 253

NumPy Reference, Release 1.11.1

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.argsort()
array([1, 0, 2])

MaskedArray.choose(choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose
equivalent function

MaskedArray.compress(condition, axis=None, out=None)
Return a where condition is True.

If condition is a MaskedArray , missing values are considered as False.

Parameters
condition : var

Boolean 1-d array selecting which entries to return. If len(condition) is less than the
size of a along the axis, then output is truncated to length of condition array.

axis : {None, int}, optional

Axis along which the operation must be performed.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
result : MaskedArray

A MaskedArray object.

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of
compressed does not.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> x.compress([1, 0, 1])
masked_array(data = [1 3],

mask = [False False],
fill_value=999999)

254 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.compress([1, 0, 1], axis=1)
masked_array(data =
[[1 3]
[-- --]
[7 9]],

mask =
[[False False]
[True True]
[False False]],

fill_value=999999)

MaskedArray.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous
NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal for full documentation.

See also:

numpy.diagonal
equivalent function

MaskedArray.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

MaskedArray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument is
interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

1.7. Masked arrays 255

NumPy Reference, Release 1.11.1

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

MaskedArray.nonzero()
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also:

numpy.nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

256 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]],

mask =
False,

fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
[[1.0 0.0 0.0]
[0.0 -- 0.0]
[0.0 0.0 1.0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
[[False False False]
[True True True]
[True True True]],

mask =
False,

fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

MaskedArray.put(indices, values, mode=’raise’)
Set storage-indexed locations to corresponding values.

1.7. Masked arrays 257

NumPy Reference, Release 1.11.1

Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If
values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters
indices : 1-D array_like

Target indices, interpreted as integers.

values : array_like

Values to place in self._data copy at target indices.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave. ‘raise’ : raise an error. ‘wrap’ : wrap
around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> x.put([0,4,8],[10,20,30])
>>> print(x)
[[10 -- 3]
[-- 20 --]
[7 -- 30]]

>>> x.put(4,999)
>>> print(x)
[[10 -- 3]
[-- 999 --]
[7 -- 30]]

MaskedArray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

MaskedArray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

258 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

MaskedArray.sort(axis=-1, kind=’quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters
a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices (at the end of the
array) (True) or lower indices (at the beginning). When the array contains unmasked
values of the largest (or smallest if False) representable value of the datatype the order-
ing of these values and the masked values is undefined. To enforce the masked values
are at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values. If fill_value is not None, it supersedes
endwith.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()

1.7. Masked arrays 259

NumPy Reference, Release 1.11.1

>>> print(a)
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print(a)
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print(a)
[1 -- -- 3 5]

MaskedArray.take(indices, axis=None, out=None, mode=’raise’)

Pickling and copy

MaskedArray.copy([order]) Return a copy of the array.
MaskedArray.dump(file) Dump a pickle of the array to the specified file.
MaskedArray.dumps() Returns the pickle of the array as a string.

MaskedArray.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

260 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> y.flags['C_CONTIGUOUS']
True

MaskedArray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

MaskedArray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters
None

Calculations

MaskedArray.all([axis, out]) Check if all of the elements of a are true.
MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic mean) along the given axis.
MaskedArray.any([axis, out]) Check if any of the elements of a are true.
MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min, max].
MaskedArray.conj() Complex-conjugate all elements.
MaskedArray.conjugate() Return the complex conjugate, element-wise.
MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
MaskedArray.max([axis, out, fill_value]) Return the maximum along a given axis.
MaskedArray.mean([axis, dtype, out]) Returns the average of the array elements.
MaskedArray.min([axis, out, fill_value]) Return the minimum along a given axis.
MaskedArray.prod([axis, dtype, out]) Return the product of the array elements over the given axis.
MaskedArray.product([axis, dtype, out]) Return the product of the array elements over the given axis.
MaskedArray.ptp([axis, out, fill_value]) Return (maximum - minimum) along the the given dimension (i.e.
MaskedArray.round([decimals, out]) Return a with each element rounded to the given number of decimals.
MaskedArray.std([axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
MaskedArray.sum([axis, dtype, out]) Return the sum of the array elements over the given axis.
MaskedArray.trace([offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
MaskedArray.var([axis, dtype, out, ddof]) Compute the variance along the specified axis.

MaskedArray.all(axis=None, out=None)
Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result. Masked values are considered as True
during computation. For convenience, the output array is masked where ALL the values along the current axis
are masked: if the output would have been a scalar and that all the values are masked, then the output is masked.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

1.7. Masked arrays 261

NumPy Reference, Release 1.11.1

See also:

all
equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

MaskedArray.anom(axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters
axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

MaskedArray.any(axis=None, out=None)
Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result. Masked values are considered as False during
computation.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array and return a
scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See also:

262 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

any
equivalent function

MaskedArray.clip(min=None, max=None, out=None)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip
equivalent function

MaskedArray.conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

MaskedArray.conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate
equivalent function

MaskedArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis. The cumulative product is taken over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the product is computed. The default (axis = None) is to compute
over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are multiplied. If dtype has the value None and the type of a is an integer type
of precision less than the default platform integer, then the default platform integer
precision is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumprod : ndarray

1.7. Masked arrays 263

NumPy Reference, Release 1.11.1

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array. axis may be negative, in which case it counts from the last to the
first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumsum : ndarray.

A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print(marr.cumsum())
[0 1 3 -- -- -- 9 16 24 33]

MaskedArray.max(axis=None, out=None, fill_value=None)
Return the maximum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.

out : array_like, optional

264 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values. If None, use the output of maxi-
mum_fill_value().

Returns
amax : array_like

New array holding the result. If out was specified, out is returned.

See also:

maximum_fill_value
Returns the maximum filling value for a given datatype.

MaskedArray.mean(axis=None, dtype=None, out=None)
Returns the average of the array elements.

Masked entries are ignored. The average is taken over the flattened array by default, otherwise over the specified
axis. Refer to numpy.mean for the full documentation.

Parameters
a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point, inputs it is the same as the input dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See also:

numpy.ma.mean
Equivalent function.

numpy.mean
Equivalent function on non-masked arrays.

numpy.ma.average
Weighted average.

1.7. Masked arrays 265

NumPy Reference, Release 1.11.1

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.mean()
1.5

MaskedArray.min(axis=None, out=None, fill_value=None)
Return the minimum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

Returns
amin : array_like

New array holding the result. If out was specified, out is returned.

See also:

minimum_fill_value
Returns the minimum filling value for a given datatype.

MaskedArray.prod(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

266 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

MaskedArray.product(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

1.7. Masked arrays 267

NumPy Reference, Release 1.11.1

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

MaskedArray.ptp(axis=None, out=None, fill_value=None)
Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value).

Parameters
axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

Returns
ptp : ndarray.

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

MaskedArray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around
equivalent function

MaskedArray.std(axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Calculate the standard deviation of these values.

axis : None or int or tuple of ints, optional

Axis or axes along which the standard deviation is computed. The default is to compute
the standard deviation of the flattened array.

If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of
a single axis or all the axes as before.

dtype : dtype, optional

268 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

1.7. Masked arrays 269

NumPy Reference, Release 1.11.1

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177

MaskedArray.sum(axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis. Masked elements are set to 0 internally.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified axis removed. If self is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference
to out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.sum())
25
>>> print(x.sum(axis=1))
[4 5 16]
>>> print(x.sum(axis=0))
[8 5 12]
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<type 'numpy.int64'>

MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

270 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.trace
equivalent function

MaskedArray.var(axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the variance is computed. The default is to compute the
variance of the flattened array.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single
axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x -
x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator

1.7. Masked arrays 271

NumPy Reference, Release 1.11.1

of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Arithmetic and comparison operations

Comparison operators:

MaskedArray.__lt__ x.__lt__(y) <==> x<y
MaskedArray.__le__ x.__le__(y) <==> x<=y
MaskedArray.__gt__ x.__gt__(y) <==> x>y
MaskedArray.__ge__ x.__ge__(y) <==> x>=y
MaskedArray.__eq__(other) Check whether other equals self elementwise.
MaskedArray.__ne__(other) Check whether other doesn’t equal self elementwise

MaskedArray.__lt__
x.__lt__(y) <==> x<y

MaskedArray.__le__
x.__le__(y) <==> x<=y

MaskedArray.__gt__
x.__gt__(y) <==> x>y

MaskedArray.__ge__
x.__ge__(y) <==> x>=y

272 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

MaskedArray.__eq__(other)
Check whether other equals self elementwise.

MaskedArray.__ne__(other)
Check whether other doesn’t equal self elementwise

Truth value of an array (bool):

MaskedArray.__nonzero__ x.__nonzero__() <==> x != 0

MaskedArray.__nonzero__
x.__nonzero__() <==> x != 0

Arithmetic:

MaskedArray.__abs__() <==> abs(x)
MaskedArray.__add__(other) Add self to other, and return a new masked array.
MaskedArray.__radd__(other) Add other to self, and return a new masked array.
MaskedArray.__sub__(other) Subtract other from self, and return a new masked array.
MaskedArray.__rsub__(other) Subtract self from other, and return a new masked array.
MaskedArray.__mul__(other) Multiply self by other, and return a new masked array.
MaskedArray.__rmul__(other) Multiply other by self, and return a new masked array.
MaskedArray.__div__(other) Divide other into self, and return a new masked array.
MaskedArray.__rdiv__ x.__rdiv__(y) <==> y/x
MaskedArray.__truediv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rtruediv__(other) Divide self into other, and return a new masked array.
MaskedArray.__floordiv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rfloordiv__(other) Divide self into other, and return a new masked array.
MaskedArray.__mod__ x.__mod__(y) <==> x%y
MaskedArray.__rmod__ x.__rmod__(y) <==> y%x
MaskedArray.__divmod__(y) <==> divmod(x, y)
MaskedArray.__rdivmod__(y) <==> divmod(y, x)
MaskedArray.__pow__(other) Raise self to the power other, masking the potential NaNs/Infs
MaskedArray.__rpow__(other) Raise other to the power self, masking the potential NaNs/Infs
MaskedArray.__lshift__ x.__lshift__(y) <==> x<<y
MaskedArray.__rlshift__ x.__rlshift__(y) <==> y<<x
MaskedArray.__rshift__ x.__rshift__(y) <==> x>>y
MaskedArray.__rrshift__ x.__rrshift__(y) <==> y>>x
MaskedArray.__and__ x.__and__(y) <==> x&y
MaskedArray.__rand__ x.__rand__(y) <==> y&x
MaskedArray.__or__ x.__or__(y) <==> x|y
MaskedArray.__ror__ x.__ror__(y) <==> y|x
MaskedArray.__xor__ x.__xor__(y) <==> x^y
MaskedArray.__rxor__ x.__rxor__(y) <==> y^x

MaskedArray.__abs__() <==> abs(x)

MaskedArray.__add__(other)
Add self to other, and return a new masked array.

MaskedArray.__radd__(other)
Add other to self, and return a new masked array.

1.7. Masked arrays 273

NumPy Reference, Release 1.11.1

MaskedArray.__sub__(other)
Subtract other from self, and return a new masked array.

MaskedArray.__rsub__(other)
Subtract self from other, and return a new masked array.

MaskedArray.__mul__(other)
Multiply self by other, and return a new masked array.

MaskedArray.__rmul__(other)
Multiply other by self, and return a new masked array.

MaskedArray.__div__(other)
Divide other into self, and return a new masked array.

MaskedArray.__rdiv__
x.__rdiv__(y) <==> y/x

MaskedArray.__truediv__(other)
Divide other into self, and return a new masked array.

MaskedArray.__rtruediv__(other)
Divide self into other, and return a new masked array.

MaskedArray.__floordiv__(other)
Divide other into self, and return a new masked array.

MaskedArray.__rfloordiv__(other)
Divide self into other, and return a new masked array.

MaskedArray.__mod__
x.__mod__(y) <==> x%y

MaskedArray.__rmod__
x.__rmod__(y) <==> y%x

MaskedArray.__divmod__(y) <==> divmod(x, y)

MaskedArray.__rdivmod__(y) <==> divmod(y, x)

MaskedArray.__pow__(other)
Raise self to the power other, masking the potential NaNs/Infs

MaskedArray.__rpow__(other)
Raise other to the power self, masking the potential NaNs/Infs

MaskedArray.__lshift__
x.__lshift__(y) <==> x<<y

MaskedArray.__rlshift__
x.__rlshift__(y) <==> y<<x

MaskedArray.__rshift__
x.__rshift__(y) <==> x>>y

MaskedArray.__rrshift__
x.__rrshift__(y) <==> y>>x

MaskedArray.__and__
x.__and__(y) <==> x&y

274 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

MaskedArray.__rand__
x.__rand__(y) <==> y&x

MaskedArray.__or__
x.__or__(y) <==> x|y

MaskedArray.__ror__
x.__ror__(y) <==> y|x

MaskedArray.__xor__
x.__xor__(y) <==> x^y

MaskedArray.__rxor__
x.__rxor__(y) <==> y^x

Arithmetic, in-place:

MaskedArray.__iadd__(other) Add other to self in-place.
MaskedArray.__isub__(other) Subtract other from self in-place.
MaskedArray.__imul__(other) Multiply self by other in-place.
MaskedArray.__idiv__(other) Divide self by other in-place.
MaskedArray.__itruediv__(other) True divide self by other in-place.
MaskedArray.__ifloordiv__(other) Floor divide self by other in-place.
MaskedArray.__imod__ x.__imod__(y) <==> x%=y
MaskedArray.__ipow__(other) Raise self to the power other, in place.
MaskedArray.__ilshift__ x.__ilshift__(y) <==> x<<=y
MaskedArray.__irshift__ x.__irshift__(y) <==> x>>=y
MaskedArray.__iand__ x.__iand__(y) <==> x&=y
MaskedArray.__ior__ x.__ior__(y) <==> x|=y
MaskedArray.__ixor__ x.__ixor__(y) <==> x^=y

MaskedArray.__iadd__(other)
Add other to self in-place.

MaskedArray.__isub__(other)
Subtract other from self in-place.

MaskedArray.__imul__(other)
Multiply self by other in-place.

MaskedArray.__idiv__(other)
Divide self by other in-place.

MaskedArray.__itruediv__(other)
True divide self by other in-place.

MaskedArray.__ifloordiv__(other)
Floor divide self by other in-place.

MaskedArray.__imod__
x.__imod__(y) <==> x%=y

MaskedArray.__ipow__(other)
Raise self to the power other, in place.

MaskedArray.__ilshift__
x.__ilshift__(y) <==> x<<=y

1.7. Masked arrays 275

NumPy Reference, Release 1.11.1

MaskedArray.__irshift__
x.__irshift__(y) <==> x>>=y

MaskedArray.__iand__
x.__iand__(y) <==> x&=y

MaskedArray.__ior__
x.__ior__(y) <==> x|=y

MaskedArray.__ixor__
x.__ixor__(y) <==> x^=y

Representation

MaskedArray.__repr__() Literal string representation.
MaskedArray.__str__() String representation.
MaskedArray.ids() Return the addresses of the data and mask areas.
MaskedArray.iscontiguous() Return a boolean indicating whether the data is contiguous.

MaskedArray.__repr__()
Literal string representation.

MaskedArray.__str__()
String representation.

MaskedArray.ids()
Return the addresses of the data and mask areas.

Parameters
None

Examples

>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
(166670640, 166659832)

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in
memory:

>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
(166691080, 3083169284L)

MaskedArray.iscontiguous()
Return a boolean indicating whether the data is contiguous.

Parameters
None

Examples

>>> x = np.ma.array([1, 2, 3])
>>> x.iscontiguous()
True

iscontiguous returns one of the flags of the masked array:

276 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

Special methods

For standard library functions:

MaskedArray.__copy__([order]) Return a copy of the array.
MaskedArray.__deepcopy__([memo])
MaskedArray.__getstate__() Return the internal state of the masked array, for pickling purposes.
MaskedArray.__reduce__() Return a 3-tuple for pickling a MaskedArray.
MaskedArray.__setstate__(state) Restore the internal state of the masked array, for pickling purposes.

MaskedArray.__copy__([order])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

MaskedArray.__deepcopy__(memo=None)

MaskedArray.__getstate__()
Return the internal state of the masked array, for pickling purposes.

MaskedArray.__reduce__()
Return a 3-tuple for pickling a MaskedArray.

MaskedArray.__setstate__(state)
Restore the internal state of the masked array, for pickling purposes. state is typically the output of the
__getstate__ output, and is a 5-tuple:

•class name

•a tuple giving the shape of the data

•a typecode for the data

•a binary string for the data

•a binary string for the mask.

Basic customization:

MaskedArray.__new__([data, mask, dtype, ...]) Create a new masked array from scratch.
MaskedArray.__array__(...) Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is different from the current dtype of the array.
MaskedArray.__array_wrap__(obj[, context]) Special hook for ufuncs.

1.7. Masked arrays 277

NumPy Reference, Release 1.11.1

static MaskedArray.__new__(data=None, mask=False, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None, **options)

Create a new masked array from scratch.

Notes

A masked array can also be created by taking a .view(MaskedArray).

MaskedArray.__array__(|dtype)→ reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

MaskedArray.__array_wrap__(obj, context=None)
Special hook for ufuncs.

Wraps the numpy array and sets the mask according to context.

Container customization: (see Indexing)

MaskedArray.__len__() <==> len(x)
MaskedArray.__getitem__(indx) x.__getitem__(y) <==> x[y]
MaskedArray.__setitem__(indx, value) x.__setitem__(i, y) <==> x[i]=y
MaskedArray.__delitem__ x.__delitem__(y) <==> del x[y]
MaskedArray.__getslice__(i, j) x.__getslice__(i, j) <==> x[i:j]
MaskedArray.__setslice__(i, j, value) x.__setslice__(i, j, value) <==> x[i:j]=value
MaskedArray.__contains__ x.__contains__(y) <==> y in x

MaskedArray.__len__() <==> len(x)

MaskedArray.__getitem__(indx)
x.__getitem__(y) <==> x[y]

Return the item described by i, as a masked array.

MaskedArray.__setitem__(indx, value)
x.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those locations.

MaskedArray.__delitem__
x.__delitem__(y) <==> del x[y]

MaskedArray.__getslice__(i, j)
x.__getslice__(i, j) <==> x[i:j]

Return the slice described by (i, j). The use of negative indices is not supported.

MaskedArray.__setslice__(i, j, value)
x.__setslice__(i, j, value) <==> x[i:j]=value

Set the slice (i,j) of a to value. If value is masked, mask those locations.

MaskedArray.__contains__
x.__contains__(y) <==> y in x

278 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.__setmask__(mask[, copy]) Set the mask.
MaskedArray.harden_mask() Force the mask to hard.
MaskedArray.soften_mask() Force the mask to soft.
MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.
MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

MaskedArray.__setmask__(mask, copy=False)
Set the mask.

MaskedArray.harden_mask()
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:

hardmask

MaskedArray.soften_mask()
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False.

See also:

hardmask

MaskedArray.unshare_mask()
Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property.
unshare_mask ensures the mask is not shared. A copy of the mask is only made if it was shared.

See also:

sharedmask

MaskedArray.shrink_mask()
Reduce a mask to nomask when possible.

Parameters
None

Returns
None

Examples

>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],

[False, False]], dtype=bool)
>>> x.shrink_mask()

1.7. Masked arrays 279

NumPy Reference, Release 1.11.1

>>> x.mask
False

Handling the fill_value

MaskedArray.get_fill_value() Return the filling value of the masked array.
MaskedArray.set_fill_value([value]) Set the filling value of the masked array.

MaskedArray.get_fill_value()
Return the filling value of the masked array.

Returns
fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
999999
999999
1e+20
(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.get_fill_value()
-inf

MaskedArray.set_fill_value(value=None)
Set the filling value of the masked array.

Parameters
value : scalar, optional

The new filling value. Default is None, in which case a default based on the data type
is used.

See also:

ma.set_fill_value
Equivalent function.

Examples

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
1e+20

280 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Counting the missing elements

MaskedArray.count([axis]) Count the non-masked elements of the array along the given axis.

MaskedArray.count(axis=None)
Count the non-masked elements of the array along the given axis.

Parameters
axis : int, optional

Axis along which to count the non-masked elements. If axis is None, all non-masked
elements are counted.

Returns
result : int or ndarray

If axis is None, an integer count is returned. When axis is not None, an array with shape
determined by the lengths of the remaining axes, is returned.

See also:

count_masked
Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
[[0 1 2]
[-- -- --]],

mask =
[[False False False]
[True True True]],

fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

1.7.7 Masked array operations

Constants

ma.MaskType alias of bool_

numpy.ma.MaskType
alias of bool_

1.7. Masked arrays 281

NumPy Reference, Release 1.11.1

Creation

From existing data

ma.masked_array alias of MaskedArray
ma.array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
ma.copy(self, *args, **params) a.copy(order=) Return a copy of the array.
ma.frombuffer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.
ma.fromfunction(function, shape, **kwargs) Construct an array by executing a function over each coordinate.
ma.MaskedArray.copy([order]) Return a copy of the array.

numpy.ma.copy(self, *args, **params) a.copy(order=’C’) = <numpy.ma.core._frommethod instance>

Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

numpy.ma.frombuffer(buffer, dtype=float, count=-1, offset=0) = <numpy.ma.core._convert2ma in-
stance>

Interpret a buffer as a 1-dimensional array.

Parameters
buffer : buffer_like

An object that exposes the buffer interface.

dtype : data-type, optional

Data-type of the returned array; default: float.

count : int, optional

Number of items to read. -1 means all data in the buffer.

282 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],

dtype='|S1')

numpy.ma.fromfunction(function, shape, **kwargs) = <numpy.ma.core._convert2ma instance>
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters
function : callable

The function is called with N parameters, where N is the rank of shape. Each param-
eter represents the coordinates of the array varying along a specific axis. For example,
if shape were (2, 2), then the parameters in turn be (0, 0), (0, 1), (1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of the coordinate arrays
passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function. By default, dtype is float.

Returns
fromfunction : any

The result of the call to function is passed back directly. Therefore the shape of
fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, True]], dtype=bool)

1.7. Masked arrays 283

NumPy Reference, Release 1.11.1

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

Ones and zeros

ma.empty(shape[, dtype, order]) Return a new array of given shape and type, without initializing entries.
ma.empty_like(a[, dtype, order, subok]) Return a new array with the same shape and type as a given array.
ma.masked_all(shape[, dtype]) Empty masked array with all elements masked.
ma.masked_all_like(arr) Empty masked array with the properties of an existing array.
ma.ones(shape[, dtype, order]) Return a new array of given shape and type, filled with ones.
ma.zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with zeros.

numpy.ma.empty(shape, dtype=float, order=’C’) = <numpy.ma.core._convert2ma instance>
Return a new array of given shape and type, without initializing entries.

Parameters
shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in row-major (C-style) or column-major
(Fortran-style) order in memory.

Returns
out : ndarray

Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays
will be initialized to None.

See also:

empty_like, zeros, ones

Notes

empty , unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[496041986, 19249760]]) #random

numpy.ma.empty_like(a, dtype=None, order=’K’, subok=True) = <numpy.ma.core._convert2ma in-
stance>

Return a new array with the same shape and type as a given array.

284 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Parameters
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a
as closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of uninitialized (arbitrary) data with the same shape and type as a.

See also:

ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random

[0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random

[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

1.7. Masked arrays 285

NumPy Reference, Release 1.11.1

numpy.ma.masked_all(shape, dtype=<type ‘float’>)
Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the data are masked.

Parameters
shape : tuple

Shape of the required MaskedArray.

dtype : dtype, optional

Data type of the output.

Returns
a : MaskedArray

A masked array with all data masked.

See also:

masked_all_like
Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
masked_array(data =
[[-- -- --]
[-- -- --]
[-- -- --]],

mask =
[[True True True]
[True True True]
[True True True]],

fill_value=1e+20)

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')

numpy.ma.masked_all_like(arr)
Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters
arr : ndarray

An array describing the shape and dtype of the required MaskedArray.

Returns
a : MaskedArray

A masked array with all data masked.

286 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Raises
AttributeError

If arr doesn’t have a shape attribute (i.e. not an ndarray)

See also:

masked_all
Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[0., 0., 0.],

[0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array(data =
[[-- -- --]
[-- -- --]],

mask =
[[True True True]
[True True True]],

fill_value=1e+20)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype
dtype('float32')
>>> ma.masked_all_like(arr).dtype
dtype('float32')

numpy.ma.ones(shape, dtype=None, order=’C’) = <numpy.ma.core._convert2ma instance>
Return a new array of given shape and type, filled with ones.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of ones with the given shape, dtype, and order.

See also:

zeros, ones_like

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

1.7. Masked arrays 287

NumPy Reference, Release 1.11.1

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],

[1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

numpy.ma.zeros(shape, dtype=float, order=’C’) = <numpy.ma.core._convert2ma instance>
Return a new array of given shape and type, filled with zeros.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of zeros with the given shape, dtype, and order.

See also:

zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],

[0.]])

288 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],

[0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

Inspecting the array

ma.all(self[, axis, out]) Check if all of the elements of a are true.
ma.any(self[, axis, out]) Check if any of the elements of a are true.
ma.count(a[, axis]) Count the non-masked elements of the array along the given axis.
ma.count_masked(arr[, axis]) Count the number of masked elements along the given axis.
ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array of False.
ma.getdata(a[, subok]) Return the data of a masked array as an ndarray.
ma.nonzero(self) Return the indices of unmasked elements that are not zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.
ma.is_masked(x) Determine whether input has masked values.
ma.is_mask(m) Return True if m is a valid, standard mask.
ma.MaskedArray.data Return the current data, as a view of the original underlying data.
ma.MaskedArray.mask Mask
ma.MaskedArray.recordmask Return the mask of the records.
ma.MaskedArray.all([axis, out]) Check if all of the elements of a are true.
ma.MaskedArray.any([axis, out]) Check if any of the elements of a are true.
ma.MaskedArray.count([axis]) Count the non-masked elements of the array along the given axis.
ma.MaskedArray.nonzero() Return the indices of unmasked elements that are not zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.

numpy.ma.all(self, axis=None, out=None) = <numpy.ma.core._frommethod instance>
Check if all of the elements of a are true.

Performs a logical_and over the given axis and returns the result. Masked values are considered as True
during computation. For convenience, the output array is masked where ALL the values along the current axis
are masked: if the output would have been a scalar and that all the values are masked, then the output is masked.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See also:

1.7. Masked arrays 289

NumPy Reference, Release 1.11.1

all
equivalent function

Examples

>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

numpy.ma.any(self, axis=None, out=None) = <numpy.ma.core._frommethod instance>
Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result. Masked values are considered as False during
computation.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array and return a
scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See also:

any
equivalent function

numpy.ma.count(a, axis=None)
Count the non-masked elements of the array along the given axis.

Parameters
axis : int, optional

Axis along which to count the non-masked elements. If axis is None, all non-masked
elements are counted.

Returns
result : int or ndarray

If axis is None, an integer count is returned. When axis is not None, an array with shape
determined by the lengths of the remaining axes, is returned.

See also:

count_masked
Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(data =
[[0 1 2]

290 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

[-- -- --]],
mask =

[[False False False]
[True True True]],

fill_value = 999999)
>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

numpy.ma.count_masked(arr, axis=None)
Count the number of masked elements along the given axis.

Parameters
arr : array_like

An array with (possibly) masked elements.

axis : int, optional

Axis along which to count. If None (default), a flattened version of the array is used.

Returns
count : int, ndarray

The total number of masked elements (axis=None) or the number of masked elements
along each slice of the given axis.

See also:

MaskedArray.count
Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
[[0 1 2]
[-- 4 --]
[6 -- 8]],

mask =
[[False False False]
[True False True]
[False True False]],

fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

1.7. Masked arrays 291

NumPy Reference, Release 1.11.1

>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])

numpy.ma.getmask(a)
Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask.
To guarantee a full array of booleans of the same shape as a, use getmaskarray .

Parameters
a : array_like

Input MaskedArray for which the mask is required.

See also:

getdata
Return the data of a masked array as an ndarray.

getmaskarray
Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getmask(a)
array([[False, True],

[False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],

[False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
[[1 2]
[3 4]],

mask =
False,

fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True

292 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> b.mask == ma.nomask
True

numpy.ma.getmaskarray(arr)
Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters
arr : array_like

Input MaskedArray for which the mask is required.

See also:

getmask
Return the mask of a masked array, or nomask.

getdata
Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],

[False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(data =
[[1 2]
[3 4]],

mask =
False,

fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],

[False, False]], dtype=bool)

numpy.ma.getdata(a, subok=True)
Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass
(depending on subok) if not.

Parameters
a : array_like

1.7. Masked arrays 293

NumPy Reference, Release 1.11.1

Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok : bool

Whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray
if appropriate (True, default).

See also:

getmask
Return the mask of a masked array, or nomask.

getmaskarray
Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getdata(a)
array([[1, 2],

[3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data
array([[1, 2],

[3, 4]])

numpy.ma.nonzero(self) = <numpy.ma.core._frommethod instance>
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also:

294 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]],

mask =
False,

fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
[[1.0 0.0 0.0]
[0.0 -- 0.0]
[0.0 0.0 1.0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(data =
[[False False False]
[True True True]
[True True True]],

mask =

1.7. Masked arrays 295

NumPy Reference, Release 1.11.1

False,
fill_value=999999)

>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

numpy.ma.shape(obj)
Return the shape of an array.

Parameters
a : array_like

Input array.

Returns
shape : tuple of ints

The elements of the shape tuple give the lengths of the corresponding array dimensions.

See also:

alen

ndarray.shape
Equivalent array method.

Examples

>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

numpy.ma.size(obj, axis=None)
Return the number of elements along a given axis.

Parameters
a : array_like

Input data.

axis : int, optional

Axis along which the elements are counted. By default, give the total number of ele-
ments.

Returns
element_count : int

296 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Number of elements along the specified axis.

See also:

shape
dimensions of array

ndarray.shape
dimensions of array

ndarray.size
number of elements in array

Examples

>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

numpy.ma.is_masked(x)
Determine whether input has masked values.

Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked
values.

Parameters
x : array_like

Array to check for masked values.

Returns
result : bool

True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
masked_array(data = [-- 1 -- 2 3],

mask = [True False True False False],
fill_value=999999)

>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
masked_array(data = [0 1 0 2 3],

mask = False,
fill_value=999999)

>>> ma.is_masked(x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked(x)

1.7. Masked arrays 297

NumPy Reference, Release 1.11.1

False
>>> x = 'a string'
>>> ma.is_masked(x)
False

numpy.ma.is_mask(m)
Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the type is MaskType. In particular, this function
returns False if the mask has a flexible dtype.

Parameters
m : array_like

Array to test.

Returns
result : bool

True if m.dtype.type is MaskType, False otherwise.

See also:

isMaskedArray
Test whether input is an instance of MaskedArray.

Examples

>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data = [-- 1 -- 2 3],

mask = [True False True False False],
fill_value=999999)

>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True

Input must be an ndarray (or have similar attributes) for it to be considered a valid mask.

>>> m = [False, True, False]
>>> ma.is_mask(m)
False
>>> m = np.array([False, True, False])
>>> m
array([False, True, False], dtype=bool)
>>> ma.is_mask(m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
'formats':[np.bool, np.bool]})

>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],

dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],

dtype=[('monty', '|b1'), ('pithon', '|b1')])

298 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> ma.is_mask(m)
False

MaskedArray.data
Return the current data, as a view of the original underlying data.

MaskedArray.mask
Mask

MaskedArray.recordmask
Return the mask of the records.

A record is masked when all the fields are masked.

Manipulating a MaskedArray

Changing the shape

ma.ravel(self[, order]) Returns a 1D version of self, as a view.
ma.reshape(a, new_shape[, order]) Returns an array containing the same data with a new shape.
ma.resize(x, new_shape) Return a new masked array with the specified size and shape.
ma.MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
ma.MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
ma.MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
ma.MaskedArray.resize(newshape[, refcheck, ...])

numpy.ma.ravel(self, order=’C’) = <numpy.ma.core._frommethod instance>
Returns a 1D version of self, as a view.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to index the elements
in C-like order, with the last axis index changing fastest, back to the first axis index
changing slowest. ‘F’ means to index the elements in Fortran-like index order, with the
first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order
if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the
elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns
MaskedArray

Output view is of shape (self.size,) (or
(np.ma.product(self.shape),)).

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]

1.7. Masked arrays 299

NumPy Reference, Release 1.11.1

>>> print(x.ravel())
[1 -- 3 -- 5 -- 7 -- 9]

numpy.ma.reshape(a, new_shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to MaskedArray.reshape for full documentation.

See also:

MaskedArray.reshape
equivalent function

numpy.ma.resize(x, new_shape)
Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy.resize function. The new array is filled with repeated copies of
x (in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new
mask will be a repetition of the old one.

See also:

numpy.resize
Equivalent function in the top level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value = 999999)
>>> np.resize(a, (3, 3))
array([[1, 2, 3],

[4, 1, 2],
[3, 4, 1]])

>>> ma.resize(a, (3, 3))
masked_array(data =
[[1 -- 3]
[4 1 --]
[3 4 1]],

mask =
[[False True False]
[False False True]
[False False False]],

fill_value = 999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
masked_array(data =
[[1 2 3]

300 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

[4 1 2]
[3 4 1]],

mask =
False,

fill_value = 999999)

Modifying axes

ma.swapaxes(self, *args, ...) Return a view of the array with axis1 and axis2 interchanged.
ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy.ma.swapaxes(self, *args, **params) a.swapaxes(axis1, axis2) = <numpy.ma.core._frommethod
instance>

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

numpy.ma.transpose(a, axes=None)
Permute the dimensions of an array.

This function is exactly equivalent to numpy.transpose.

See also:

numpy.transpose
Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array(data =
[[0 1]
[2 --]],

mask =
[[False False]
[False True]],

fill_value = 999999)
>>> ma.transpose(x)
masked_array(data =
[[0 2]
[1 --]],

mask =
[[False False]
[False True]],

fill_value = 999999)

1.7. Masked arrays 301

NumPy Reference, Release 1.11.1

Changing the number of dimensions

ma.atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
ma.atleast_2d(*arys) View inputs as arrays with at least two dimensions.
ma.atleast_3d(*arys) View inputs as arrays with at least three dimensions.
ma.expand_dims(x, axis) Expand the shape of an array.
ma.squeeze(a[, axis]) Remove single-dimensional entries from the shape of an array.
ma.MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.
ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.dstack(tup) Stack arrays in sequence depth wise (along third axis).
ma.hstack(tup) Stack arrays in sequence horizontally (column wise).
ma.hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally (column-wise).
ma.mr_ Translate slice objects to concatenation along the first axis.
ma.row_stack(tup) Stack arrays in sequence vertically (row wise).
ma.vstack(tup) Stack arrays in sequence vertically (row wise).

numpy.ma.atleast_1d(*arys) = <numpy.ma.extras._fromnxfunction instance>

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arys1, arys2, ... : array_like

One or more input arrays.

Returns
ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

numpy.ma.atleast_2d(*arys) = <numpy.ma.extras._fromnxfunction instance>

302 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

View inputs as arrays with at least two dimensions.

Parameters
arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have two or more dimensions are preserved.

Returns
res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

numpy.ma.atleast_3d(*arys) = <numpy.ma.extras._fromnxfunction instance>

View inputs as arrays with at least three dimensions.

Parameters
arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have three or more dimensions are preserved.

Returns
res1, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D
array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array([[[3.]]])

1.7. Masked arrays 303

NumPy Reference, Release 1.11.1

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

numpy.ma.expand_dims(x, axis)
Expand the shape of an array.

Expands the shape of the array by including a new axis before the one specified by the axis parameter. This
function behaves the same as numpy.expand_dims but preserves masked elements.

See also:

numpy.expand_dims
Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 4])
>>> x[1] = ma.masked
>>> x
masked_array(data = [1 -- 4],

mask = [False True False],
fill_value = 999999)

>>> np.expand_dims(x, axis=0)
array([[1, 2, 4]])
>>> ma.expand_dims(x, axis=0)
masked_array(data =
[[1 -- 4]],

mask =
[[False True False]],

fill_value = 999999)

The same result can be achieved using slicing syntax with np.newaxis.

>>> x[np.newaxis, :]
masked_array(data =
[[1 -- 4]],

mask =
[[False True False]],

fill_value = 999999)

numpy.ma.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.

304 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Parameters
a : array_like

Input data.

axis : None or int or tuple of ints, optional

New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns
squeezed : ndarray

The input array, but with all or a subset of the dimensions of length 1 removed. This is
always a itself or a view into a.

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=(2,)).shape
(1, 3)

numpy.ma.column_stack(tup) = <numpy.ma.extras._fromnxfunction instance>

Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are
stacked as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters
tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

Returns
stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.ma.concatenate(arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

1.7. Masked arrays 305

NumPy Reference, Release 1.11.1

Parameters
arrays : sequence of array_like

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

Returns
result : MaskedArray

The concatenated array with any masked entries preserved.

See also:

numpy.concatenate
Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],

mask = [False True False],
fill_value = 999999)

>>> b
masked_array(data = [2 3 4],

mask = False,
fill_value = 999999)

>>> ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],

mask = [False True False False False False],
fill_value = 999999)

numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction instance>

Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds
arrays divided by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for
processing.

Parameters
tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all but the third axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

306 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

stack
Join a sequence of arrays along a new axis.

vstack
Stack along first axis.

hstack
Stack along second axis.

concatenate
Join a sequence of arrays along an existing axis.

dsplit
Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction instance>

Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided
by hsplit.

Parameters
tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

stack
Join a sequence of arrays along a new axis.

vstack
Stack arrays in sequence vertically (row wise).

1.7. Masked arrays 307

NumPy Reference, Release 1.11.1

dstack
Stack arrays in sequence depth wise (along third axis).

concatenate
Join a sequence of arrays along an existing axis.

hsplit
Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.ma.hsplit(ary, indices_or_sections) = <numpy.ma.extras._fromnxfunction instance>

Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is
always split along the second axis regardless of the array dimension.

See also:

split
Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[0., 1.],

[4., 5.],
[8., 9.],
[12., 13.]]),

array([[2., 3.],
[6., 7.],
[10., 11.],
[14., 15.]])]

308 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],

[4., 5., 6.],
[8., 9., 10.],
[12., 13., 14.]]),

array([[3.],
[7.],
[11.],
[15.]]),

array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[0., 1.]],

[[4., 5.]]]),
array([[[2., 3.]],

[[6., 7.]]])]

numpy.ma.mr_ = <numpy.ma.extras.mr_class object>
Translate slice objects to concatenation along the first axis.

This is the masked array version of lib.index_tricks.RClass.

See also:

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])

numpy.ma.row_stack(tup) = <numpy.ma.extras._fromnxfunction instance>

Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided
by vsplit.

Parameters
tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

1.7. Masked arrays 309

NumPy Reference, Release 1.11.1

stack
Join a sequence of arrays along a new axis.

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays along an existing axis.

vsplit
Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[2],
[3],
[4]])

numpy.ma.vstack(tup) = <numpy.ma.extras._fromnxfunction instance>

Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided
by vsplit.

Parameters
tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

stack
Join a sequence of arrays along a new axis.

310 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays along an existing axis.

vsplit
Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[2],
[3],
[4]])

Joining arrays

ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.append(a, b[, axis]) Append values to the end of an array.
ma.dstack(tup) Stack arrays in sequence depth wise (along third axis).
ma.hstack(tup) Stack arrays in sequence horizontally (column wise).
ma.vstack(tup) Stack arrays in sequence vertically (row wise).

numpy.ma.append(a, b, axis=None)
Append values to the end of an array.

New in version 1.9.0.

Parameters
a : array_like

Values are appended to a copy of this array.

b : array_like

These values are appended to a copy of a. It must be of the correct shape (the same
shape as a, excluding axis). If axis is not specified, b can be any shape and will be
flattened before use.

1.7. Masked arrays 311

NumPy Reference, Release 1.11.1

axis : int, optional

The axis along which v are appended. If axis is not given, both a and b are flattened
before use.

Returns
append : MaskedArray

A copy of a with b appended to axis. Note that append does not occur in-place: a new
array is allocated and filled. If axis is None, the result is a flattened array.

See also:

numpy.append
Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
>>> print(ma.append(a, b))
[1 -- 3 4 5 6 -- 8 9]

Operations on masks

Creating a mask

ma.make_mask(m[, copy, shrink, dtype]) Create a boolean mask from an array.
ma.make_mask_none(newshape[, dtype]) Return a boolean mask of the given shape, filled with False.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

numpy.ma.make_mask(m, copy=False, shrink=True, dtype=<type ‘numpy.bool_’>)
Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence
that is convertible to integers, or nomask. Does not require that contents must be 0s and 1s, values of 0 are
interepreted as False, everything else as True.

Parameters
m : array_like

Potential mask.

copy : bool, optional

Whether to return a copy of m (True) or m itself (False).

shrink : bool, optional

Whether to shrink m to nomask if all its values are False.

dtype : dtype, optional

Data-type of the output mask. By default, the output mask has a dtype of MaskType
(bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when m
is nomask, in which case nomask is always returned.

312 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns
result : ndarray

A boolean mask derived from m.

Examples

>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
array([True, False, True, True], dtype=bool)

Effect of the shrink parameter.

>>> m = np.zeros(4)
>>> m
array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
array([False, False, False, False], dtype=bool)

Using a flexible dtype.

>>> m = [1, 0, 1, 1]
>>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
... arr.append((man, mouse))
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],

'formats':[np.int, np.int]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],

dtype=[('man', '<i4'), ('mouse', '<i4')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],

dtype=[('man', '|b1'), ('mouse', '|b1')])

numpy.ma.make_mask_none(newshape, dtype=None)
Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations.
If a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters
newshape : tuple

A tuple indicating the shape of the mask.

dtype : {None, dtype}, optional

1.7. Masked arrays 313

NumPy Reference, Release 1.11.1

If None, use a MaskType instance. Otherwise, use a new datatype with the same fields
as dtype, converted to boolean types.

Returns
result : ndarray

An ndarray of appropriate shape and dtype, filled with False.

See also:

make_mask
Create a boolean mask from an array.

make_mask_descr
Construct a dtype description list from a given dtype.

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
array([False, False, False], dtype=bool)

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],
'formats':[np.float32, np.int]})

>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],

dtype=[('foo', '|b1'), ('bar', '|b1')])

numpy.ma.mask_or(m1, m2, copy=False, shrink=True)
Combine two masks with the logical_or operator.

The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Parameters
m1, m2 : array_like

Input masks.

copy : bool, optional

If copy is False and one of the inputs is nomask, return a view of the other input mask.
Defaults to False.

shrink : bool, optional

Whether to shrink the output to nomask if all its values are False. Defaults to True.

Returns
mask : output mask

The result masks values that are masked in either m1 or m2.

Raises
ValueError

If m1 and m2 have different flexible dtypes.

314 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False], dtype=bool)

numpy.ma.make_mask_descr(ndtype)
Construct a dtype description list from a given dtype.

Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered.

Parameters
ndtype : dtype

The dtype to convert.

Returns
result : dtype

A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],

'formats':[np.float32, np.int]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i4')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
<type 'numpy.bool_'>

Accessing a mask

ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array of False.
ma.masked_array.mask Mask

masked_array.mask
Mask

Finding masked data

ma.flatnotmasked_contiguous(a) Find contiguous unmasked data in a masked array along the given axis.
ma.flatnotmasked_edges(a) Find the indices of the first and last unmasked values.
ma.notmasked_contiguous(a[, axis]) Find contiguous unmasked data in a masked array along the given axis.
ma.notmasked_edges(a[, axis]) Find the indices of the first and last unmasked values along an axis.
ma.clump_masked(a) Returns a list of slices corresponding to the masked clumps of a 1-D array.
ma.clump_unmasked(a) Return list of slices corresponding to the unmasked clumps of a 1-D array.

numpy.ma.flatnotmasked_contiguous(a)
Find contiguous unmasked data in a masked array along the given axis.

Parameters
a : narray

1.7. Masked arrays 315

NumPy Reference, Release 1.11.1

The input array.

Returns
slice_list : list

A sorted sequence of slices (start index, end index).

See also:

flatnotmasked_edges, notmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_contiguous(a)
slice(0, 10, None)

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> np.ma.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> print(np.ma.flatnotmasked_edges(a))
None

numpy.ma.flatnotmasked_edges(a)
Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray , returns None if all values are masked.

Parameters
a : array_like

Input 1-D MaskedArray

Returns
edges : ndarray or None

The indices of first and last non-masked value in the array. Returns None if all values
are masked.

See also:

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange(10)
>>> flatnotmasked_edges(a)
[0,-1]

316 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> flatnotmasked_edges(a)
array([3, 8])

>>> a[:] = np.ma.masked
>>> print(flatnotmasked_edges(ma))
None

numpy.ma.notmasked_contiguous(a, axis=None)
Find contiguous unmasked data in a masked array along the given axis.

Parameters
a : array_like

The input array.

axis : int, optional

Axis along which to perform the operation. If None (default), applies to a flattened
version of the array.

Returns
endpoints : list

A list of slices (start and end indexes) of unmasked indexes in the array.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> mask = np.zeros_like(a)
>>> mask[1:, 1:] = 1

>>> ma = np.ma.array(a, mask=mask)
>>> np.array(ma[~ma.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.notmasked_contiguous(ma)
[slice(0, 4, None), slice(6, 7, None)]

numpy.ma.notmasked_edges(a, axis=None)
Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the
first and last unmasked values respectively.

Parameters
a : array_like

The input array.

1.7. Masked arrays 317

NumPy Reference, Release 1.11.1

axis : int, optional

Axis along which to perform the operation. If None (default), applies to a flattened
version of the array.

Returns
edges : ndarray or list

An array of start and end indexes if there are any masked data in the array. If there are
no masked data in the array, edges is a list of the first and last index.

See also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous,
clump_masked, clump_unmasked

Examples

>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1

>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.notmasked_edges(ma)
array([0, 6])

numpy.ma.clump_masked(a)
Returns a list of slices corresponding to the masked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters
a : ndarray

A one-dimensional masked array.

Returns
slices : list of slice

The list of slices, one for each continuous region of masked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,
notmasked_contiguous, clump_unmasked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_masked(a)
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]

numpy.ma.clump_unmasked(a)
Return list of slices corresponding to the unmasked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

318 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Parameters
a : ndarray

A one-dimensional masked array.

Returns
slices : list of slice

The list of slices, one for each continuous region of unmasked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,
notmasked_contiguous, clump_masked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_unmasked(a)
[slice(3, 6, None), slice(7, 8, None)]

Modifying a mask

ma.mask_cols(a[, axis]) Mask columns of a 2D array that contain masked values.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.mask_rowcols(a[, axis]) Mask rows and/or columns of a 2D array that contain masked values.
ma.mask_rows(a[, axis]) Mask rows of a 2D array that contain masked values.
ma.harden_mask(self) Force the mask to hard.
ma.soften_mask(self) Force the mask to soft.
ma.MaskedArray.harden_mask() Force the mask to hard.
ma.MaskedArray.soften_mask() Force the mask to soft.
ma.MaskedArray.shrink_mask() Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

numpy.ma.mask_cols(a, axis=None)
Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also:

mask_rowcols
Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

1.7. Masked arrays 319

NumPy Reference, Release 1.11.1

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_cols(a)
masked_array(data =
[[0 -- 0]
[0 -- 0]
[0 -- 0]],

mask =
[[False True False]
[False True False]
[False True False]],

fill_value=999999)

numpy.ma.mask_rowcols(a, axis=None)
Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected
using the axis parameter.

•If axis is None, rows and columns are masked.

•If axis is 0, only rows are masked.

•If axis is 1 or -1, only columns are masked.

Parameters
a : array_like, MaskedArray

The array to mask. If not a MaskedArray instance (or if no array elements are masked).
The result is a MaskedArray with mask set to nomask (False). Must be a 2D array.

axis : int, optional

Axis along which to perform the operation. If None, applies to a flattened version of the
array.

Returns
a : MaskedArray

A modified version of the input array, masked depending on the value of the axis pa-
rameter.

Raises
NotImplementedError

If input array a is not 2D.

See also:

320 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

mask_rows
Mask rows of a 2D array that contain masked values.

mask_cols
Mask cols of a 2D array that contain masked values.

masked_where
Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_rowcols(a)
masked_array(data =
[[0 -- 0]
[-- -- --]
[0 -- 0]],

mask =
[[False True False]
[True True True]
[False True False]],

fill_value=999999)

numpy.ma.mask_rows(a, axis=None)
Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also:

mask_rowcols
Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.

1.7. Masked arrays 321

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(data =
[[0 0 0]
[0 -- 0]
[0 0 0]],

mask =
[[False False False]
[False True False]
[False False False]],

fill_value=999999)
>>> ma.mask_rows(a)
masked_array(data =
[[0 0 0]
[-- -- --]
[0 0 0]],

mask =
[[False False False]
[True True True]
[False False False]],

fill_value=999999)

numpy.ma.harden_mask(self) = <numpy.ma.core._frommethod instance>
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:

hardmask

numpy.ma.soften_mask(self) = <numpy.ma.core._frommethod instance>
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False.

See also:

hardmask

Conversion operations

> to a masked array

ma.asarray(a[, dtype, order]) Convert the input to a masked array of the given data-type.
ma.asanyarray(a[, dtype]) Convert the input to a masked array, conserving subclasses.

Continued on next page

322 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.90 – continued from previous page
ma.fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a fill value.
ma.masked_equal(x, value[, copy]) Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given value.
ma.masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
ma.masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or infs).
ma.masked_less(x, value[, copy]) Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
ma.masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to value.
ma.masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.
ma.masked_values(x, value[, rtol, atol, ...]) Mask using floating point equality.
ma.masked_where(condition, a[, copy]) Mask an array where a condition is met.

> to a ndarray

ma.compress_cols(a) Suppress whole columns of a 2-D array that contain masked values.
ma.compress_rowcols(x[, axis]) Suppress the rows and/or columns of a 2-D array that contain masked values.
ma.compress_rows(a) Suppress whole rows of a 2-D array that contain masked values.
ma.compressed(x) Return all the non-masked data as a 1-D array.
ma.filled(a[, fill_value]) Return input as an array with masked data replaced by a fill value.
ma.MaskedArray.compressed() Return all the non-masked data as a 1-D array.
ma.MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a given value.

numpy.ma.compress_cols(a)
Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np.ma.compress_rowcols(a, 1), see extras.compress_rowcols for de-
tails.

See also:

extras.compress_rowcols

numpy.ma.compress_rowcols(x, axis=None)
Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.

•If axis is None, both rows and columns are suppressed.

•If axis is 0, only rows are suppressed.

•If axis is 1 or -1, only columns are suppressed.

Parameters
x : array_like, MaskedArray

The array to operate on. If not a MaskedArray instance (or if no array elements are
masked), x is interpreted as a MaskedArray with mask set to nomask. Must be a 2D
array.

axis : int, optional

Axis along which to perform the operation. Default is None.

1.7. Masked arrays 323

NumPy Reference, Release 1.11.1

Returns
compressed_array : ndarray

The compressed array.

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(data =
[[-- 1 2]
[-- 4 5]
[6 7 8]],

mask =
[[True False False]
[True False False]
[False False False]],

fill_value = 999999)

>>> np.ma.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.compress_rowcols(x, 1)
array([[1, 2],

[4, 5],
[7, 8]])

numpy.ma.compress_rows(a)
Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.compress_rowcols(a, 0), see extras.compress_rowcols for de-
tails.

See also:

extras.compress_rowcols

numpy.ma.compressed(x)
Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a MaskedArray , see
MaskedArray.compressed for details.

See also:

MaskedArray.compressed
Equivalent method.

numpy.ma.filled(a, fill_value=None)
Return input as an array with masked data replaced by a fill value.

If a is not a MaskedArray , a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is
set to a.fill_value.

Parameters
a : MaskedArray or array_like

An input object.

324 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

fill_value : scalar, optional

Filling value. Default is None.

Returns
a : ndarray

The filled array.

See also:

compressed

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled()
array([[999999, 1, 2],

[999999, 4, 5],
[6, 7, 8]])

> to another object

ma.MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
ma.MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierarchical Python list.
ma.MaskedArray.torecords() Transforms a masked array into a flexible-type array.
ma.MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes in the array.

Pickling and unpickling

ma.dump(a, F) Pickle a masked array to a file.
ma.dumps(a) Return a string corresponding to the pickling of a masked array.
ma.load(F) Wrapper around cPickle.load which accepts either a file-like object or a filename.
ma.loads(strg) Load a pickle from the current string.

numpy.ma.dump(a, F)
Pickle a masked array to a file.

This is a wrapper around cPickle.dump.

Parameters
a : MaskedArray

The array to be pickled.

F : str or file-like object

The file to pickle a to. If a string, the full path to the file.

numpy.ma.dumps(a)
Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.

Parameters
a : MaskedArray

The array for which the string representation of the pickle is returned.

1.7. Masked arrays 325

NumPy Reference, Release 1.11.1

numpy.ma.load(F)
Wrapper around cPickle.load which accepts either a file-like object or a filename.

Parameters
F : str or file

The file or file name to load.

See also:

dump
Pickle an array

Notes

This is different from numpy.load, which does not use cPickle but loads the NumPy binary .npy format.

numpy.ma.loads(strg)
Load a pickle from the current string.

The result of cPickle.loads(strg) is returned.

Parameters
strg : str

The string to load.

See also:

dumps
Return a string corresponding to the pickling of a masked array.

Filling a masked array

ma.common_fill_value(a, b) Return the common filling value of two masked arrays, if any.
ma.default_fill_value(obj) Return the default fill value for the argument object.
ma.maximum_fill_value(obj) Return the minimum value that can be represented by the dtype of an object.
ma.maximum_fill_value(obj) Return the minimum value that can be represented by the dtype of an object.
ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.
ma.MaskedArray.get_fill_value() Return the filling value of the masked array.
ma.MaskedArray.set_fill_value([value]) Set the filling value of the masked array.
ma.MaskedArray.fill_value Filling value.

numpy.ma.common_fill_value(a, b)
Return the common filling value of two masked arrays, if any.

If a.fill_value == b.fill_value, return the fill value, otherwise return None.

Parameters
a, b : MaskedArray

The masked arrays for which to compare fill values.

Returns
fill_value : scalar or None

The common fill value, or None.

326 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> x = np.ma.array([0, 1.], fill_value=3)
>>> y = np.ma.array([0, 1.], fill_value=3)
>>> np.ma.common_fill_value(x, y)
3.0

numpy.ma.default_fill_value(obj)
Return the default fill value for the argument object.

The default filling value depends on the datatype of the input array or the type of the input scalar:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’

Parameters
obj : ndarray, dtype or scalar

The array data-type or scalar for which the default fill value is returned.

Returns
fill_value : scalar

The default fill value.

Examples

>>> np.ma.default_fill_value(1)
999999
>>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
1e+20
>>> np.ma.default_fill_value(np.dtype(complex))
(1e+20+0j)

numpy.ma.maximum_fill_value(obj)
Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

Parameters
obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

Returns
val : scalar

The minimum representable value.

Raises
TypeError

If obj isn’t a suitable numeric type.

See also:

1.7. Masked arrays 327

NumPy Reference, Release 1.11.1

minimum_fill_value
The inverse function.

set_fill_value
Set the filling value of a masked array.

MaskedArray.fill_value
Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value(a)
-inf

numpy.ma.set_fill_value(a, fill_value)
Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function
returns silently, without doing anything.

Parameters
a : array_like

Input array.

fill_value : dtype

Filling value. A consistency test is performed to make sure the value is compatible with
the dtype of a.

Returns
None

Nothing returned by this function.

See also:

maximum_fill_value
Return the default fill value for a dtype.

MaskedArray.fill_value
Return current fill value.

MaskedArray.set_fill_value
Equivalent method.

328 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array(data = [-- -- -- 3 4],

mask = [True True True False False],
fill_value=999999)

>>> ma.set_fill_value(a, -999)
>>> a
masked_array(data = [-- -- -- 3 4],

mask = [True True True False False],
fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
>>> a
[0, 1, 2, 3, 4]
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100)
>>> a
array([0, 1, 2, 3, 4])

MaskedArray.fill_value
Filling value.

Masked arrays arithmetics

Arithmetics

ma.anom(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic mean) along the given axis.
ma.anomalies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic mean) along the given axis.
ma.average(a[, axis, weights, returned]) Return the weighted average of array over the given axis.
ma.conjugate(x[, out]) Return the complex conjugate, element-wise.
ma.corrcoef(x[, y, rowvar, bias, ...]) Return Pearson product-moment correlation coefficients.
ma.cov(x[, y, rowvar, bias, allow_masked, ddof]) Estimate the covariance matrix.
ma.cumsum(self[, axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
ma.cumprod(self[, axis, dtype, out]) Return the cumulative product of the elements along the given axis.
ma.mean(self[, axis, dtype, out]) Returns the average of the array elements.
ma.median(a[, axis, out, overwrite_input]) Compute the median along the specified axis.
ma.power(a, b[, third]) Returns element-wise base array raised to power from second array.
ma.prod(self[, axis, dtype, out]) Return the product of the array elements over the given axis.
ma.std(self[, axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
ma.sum(self[, axis, dtype, out]) Return the sum of the array elements over the given axis.

Continued on next page

1.7. Masked arrays 329

NumPy Reference, Release 1.11.1

Table 1.95 – continued from previous page
ma.var(self[, axis, dtype, out, ddof]) Compute the variance along the specified axis.
ma.MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic mean) along the given axis.
ma.MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
ma.MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
ma.MaskedArray.mean([axis, dtype, out]) Returns the average of the array elements.
ma.MaskedArray.prod([axis, dtype, out]) Return the product of the array elements over the given axis.
ma.MaskedArray.std([axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
ma.MaskedArray.sum([axis, dtype, out]) Return the sum of the array elements over the given axis.
ma.MaskedArray.var([axis, dtype, out, ddof]) Compute the variance along the specified axis.

numpy.ma.anom(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance>
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters
axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

numpy.ma.anomalies(self, axis=None, dtype=None) = <numpy.ma.core._frommethod instance>
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters
axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

330 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data = [-1. 0. 1.],

mask = False,
fill_value = 1e+20)

numpy.ma.average(a, axis=None, weights=None, returned=False)
Return the weighted average of array over the given axis.

Parameters
a : array_like

Data to be averaged. Masked entries are not taken into account in the computation.

axis : int, optional

Axis along which the average is computed. The default is to compute the average of the
flattened array.

weights : array_like, optional

The importance that each element has in the computation of the average. The weights
array can either be 1-D (in which case its length must be the size of a along the given
axis) or of the same shape as a. If weights=None, then all data in a are assumed to
have a weight equal to one. If weights is complex, the imaginary parts are ignored.

returned : bool, optional

Flag indicating whether a tuple (result, sum of weights) should be returned
as output (True), or just the result (False). Default is False.

Returns
average, [sum_of_weights] : (tuple of) scalar or MaskedArray

The average along the specified axis. When returned is True, return a tuple with the
average as the first element and the sum of the weights as the second element. The
return type is np.float64 if a is of integer type and floats smaller than float64, or the
input data-type, otherwise. If returned, sum_of_weights is always float64.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange(6.).reshape(3, 2)
>>> print(x)
[[0. 1.]
[2. 3.]
[4. 5.]]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> print(avg)
[2.66666666667 3.66666666667]

numpy.ma.conjugate(x[, out]) = <numpy.ma.core._MaskedUnaryOperation instance>
Return the complex conjugate, element-wise.

1.7. Masked arrays 331

NumPy Reference, Release 1.11.1

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

numpy.ma.corrcoef(x, y=None, rowvar=True, bias=<class numpy._NoValue>, allow_masked=True,
ddof=<class numpy._NoValue>)

Return Pearson product-moment correlation coefficients.

Except for the handling of missing data this function does the same as numpy.corrcoef. For more details
and examples, see numpy.corrcoef.

Parameters
x : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row of x
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same shape as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed: each column represents a variable,
while the rows contain observations.

bias : _NoValue, optional

Has no effect, do not use.

Deprecated since version 1.10.0.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked in x, the corre-
sponding value is masked in y. If False, raises an exception. Because bias is deprecated,
this argument needs to be treated as keyword only to avoid a warning.

ddof : _NoValue, optional

Has no effect, do not use.

Deprecated since version 1.10.0.

See also:

332 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.corrcoef
Equivalent function in top-level NumPy module.

cov
Estimate the covariance matrix.

Notes

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

numpy.ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Estimate the covariance matrix.

Except for the handling of missing data this function does the same as numpy.cov . For more details and
examples, see numpy.cov .

By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated:
if x[i,j] is masked, then y[i,j] will also be masked. Setting allow_masked to False will raise an exception
if values are missing in either of the input arrays.

Parameters
x : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row of x
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same form as x.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed: each column represents a variable,
while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the number of observations given
(unbiased estimate). If bias is True, then normalization is by N. This keyword can be
overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked in x, the cor-
responding value is masked in y. If False, raises a ValueError exception when some
values are missing.

ddof : {None, int}, optional

If not None normalization is by (N - ddof), where N is the number of observations;
this overrides the value implied by bias. The default value is None.

New in version 1.5.

Raises
ValueError

Raised if some values are missing and allow_masked is False.

1.7. Masked arrays 333

NumPy Reference, Release 1.11.1

See also:

numpy.cov

numpy.ma.cumsum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod in-
stance>

Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 0 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array. axis may be negative, in which case it counts from the last to the
first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumsum : ndarray.

A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> print(marr.cumsum())
[0 1 3 -- -- -- 9 16 24 33]

numpy.ma.cumprod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod in-
stance>

Return the cumulative product of the elements along the given axis. The cumulative product is taken over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the product is computed. The default (axis = None) is to compute
over the flattened array.

dtype : {None, dtype}, optional

334 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Determines the type of the returned array and of the accumulator where the elements
are multiplied. If dtype has the value None and the type of a is an integer type
of precision less than the default platform integer, then the default platform integer
precision is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy.ma.mean(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance>
Returns the average of the array elements.

Masked entries are ignored. The average is taken over the flattened array by default, otherwise over the specified
axis. Refer to numpy.mean for the full documentation.

Parameters
a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point, inputs it is the same as the input dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See also:

numpy.ma.mean
Equivalent function.

numpy.mean
Equivalent function on non-masked arrays.

1.7. Masked arrays 335

NumPy Reference, Release 1.11.1

numpy.ma.average
Weighted average.

Examples

>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data = [1 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.mean()
1.5

numpy.ma.median(a, axis=None, out=None, overwrite_input=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
a : array_like

Input array or object that can be converted to an array.

axis : int, optional

Axis along which the medians are computed. The default (None) is to compute the
median along a flattened version of the array.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array (a) for calculations. The input array
will be modified by the call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. Note that, if overwrite_input is True, and
the input is not already an ndarray, an error will be raised.

Returns
median : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned. Return data-type is float64 for integers and floats smaller than
float64, or the input data-type, otherwise.

See also:

mean

Notes

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2], when N is odd, or {Vs[N/2 - 1] + Vs[N/2]}/2 when N is even.

Examples

>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.median(x)
1.5

336 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.median(x)
2.5
>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array(data = [2. 5.],

mask = False,
fill_value = 1e+20)

numpy.ma.power(a, b, third=None)
Returns element-wise base array raised to power from second array.

This is the masked array version of numpy.power. For details see numpy.power.

See also:

numpy.power

Notes

The out argument to numpy.power is not supported, third has to be None.

numpy.ma.prod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance>
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

1.7. Masked arrays 337

NumPy Reference, Release 1.11.1

Examples

>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.]])
24.0
>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod in-
stance>

Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Calculate the standard deviation of these values.

axis : None or int or tuple of ints, optional

Axis or axes along which the standard deviation is computed. The default is to compute
the standard deviation of the flattened array.

If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of
a single axis or all the axes as before.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

338 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177

numpy.ma.sum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod instance>
Return the sum of the array elements over the given axis. Masked elements are set to 0 internally.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

1.7. Masked arrays 339

NumPy Reference, Release 1.11.1

Returns
sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified axis removed. If self is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference
to out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.sum())
25
>>> print(x.sum(axis=1))
[4 5 16]
>>> print(x.sum(axis=0))
[8 5 12]
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<type 'numpy.int64'>

numpy.ma.var(self, axis=None, dtype=None, out=None, ddof=0) = <numpy.ma.core._frommethod in-
stance>

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the variance is computed. The default is to compute the
variance of the flattened array.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single
axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

340 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x -
x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Minimum/maximum

ma.argmax(a[, axis, fill_value]) Returns array of indices of the maximum values along the given axis.
ma.argmin(a[, axis, fill_value]) Return array of indices to the minimum values along the given axis.

Continued on next page

1.7. Masked arrays 341

NumPy Reference, Release 1.11.1

Table 1.96 – continued from previous page
ma.max(obj[, axis, out, fill_value]) Return the maximum along a given axis.
ma.min(obj[, axis, out, fill_value]) Return the minimum along a given axis.
ma.ptp(obj[, axis, out, fill_value]) Return (maximum - minimum) along the the given dimension (i.e.
ma.MaskedArray.argmax([axis, fill_value, out]) Returns array of indices of the maximum values along the given axis.
ma.MaskedArray.argmin([axis, fill_value, out]) Return array of indices to the minimum values along the given axis.
ma.MaskedArray.max([axis, out, fill_value]) Return the maximum along a given axis.
ma.MaskedArray.min([axis, out, fill_value]) Return the minimum along a given axis.
ma.MaskedArray.ptp([axis, out, fill_value]) Return (maximum - minimum) along the the given dimension (i.e.

numpy.ma.argmax(a, axis=None, fill_value=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of maxi-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
index_array : {integer_array}

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

numpy.ma.argmin(a, axis=None, fill_value=None)
Return array of indices to the minimum values along the given axis.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis

fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of mini-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

342 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns
ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along
the given axis. Otherwise, returns a scalar of index to the minimum values along the
given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print(x)
[[-- --]
[2 3]]
>>> print(x.argmin(axis=0, fill_value=-1))
[0 0]
>>> print(x.argmin(axis=0, fill_value=9))
[1 1]

numpy.ma.max(obj, axis=None, out=None, fill_value=None)
Return the maximum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values. If None, use the output of maxi-
mum_fill_value().

Returns
amax : array_like

New array holding the result. If out was specified, out is returned.

See also:

maximum_fill_value
Returns the maximum filling value for a given datatype.

numpy.ma.min(obj, axis=None, out=None, fill_value=None)
Return the minimum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.

out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

1.7. Masked arrays 343

NumPy Reference, Release 1.11.1

Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

Returns
amin : array_like

New array holding the result. If out was specified, out is returned.

See also:

minimum_fill_value
Returns the minimum filling value for a given datatype.

numpy.ma.ptp(obj, axis=None, out=None, fill_value=None)
Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value).

Parameters
axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the flattened array is used.

out : {None, array_like}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

Returns
ptp : ndarray.

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Sorting

ma.argsort(a[, axis, kind, order, fill_value]) Return an ndarray of indices that sort the array along the specified axis.
ma.sort(a[, axis, kind, order, endwith, ...]) Sort the array, in-place
ma.MaskedArray.argsort([axis, kind, order, ...]) Return an ndarray of indices that sort the array along the specified axis.
ma.MaskedArray.sort([axis, kind, order, ...]) Sort the array, in-place

numpy.ma.argsort(a, axis=None, kind=’quicksort’, order=None, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters
axis : int, optional

Axis along which to sort. The default is -1 (last axis). If None, the flattened array is
used.

fill_value : var, optional

Value used to fill the array before sorting. The default is the fill_value attribute of the
input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

344 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data = [3 2 --],

mask = [False False True],
fill_value = 999999)

>>> a.argsort()
array([1, 0, 2])

numpy.ma.sort(a, axis=-1, kind=’quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters
a : array_like

Array to be sorted.

axis : int, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices (at the end of the
array) (True) or lower indices (at the beginning). When the array contains unmasked

1.7. Masked arrays 345

NumPy Reference, Release 1.11.1

values of the largest (or smallest if False) representable value of the datatype the order-
ing of these values and the masked values is undefined. To enforce the masked values
are at the end (beginning) in this case one must sort the mask.

fill_value : {var}, optional

Value used internally for the masked values. If fill_value is not None, it supersedes
endwith.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> print(a)
[1 3 5 -- --]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> print(a)
[-- -- 1 3 5]

>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> print(a)
[1 -- -- 3 5]

Algebra

ma.diag(v[, k]) Extract a diagonal or construct a diagonal array.
ma.dot(a, b[, strict, out]) Return the dot product of two arrays.
ma.identity(n[, dtype]) Return the identity array.
ma.inner(a, b) Inner product of two arrays.
ma.innerproduct(a, b) Inner product of two arrays.

Continued on next page

346 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Table 1.98 – continued from previous page
ma.outer(a, b) Compute the outer product of two vectors.
ma.outerproduct(a, b) Compute the outer product of two vectors.
ma.trace(self[, offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.trace([offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy.ma.diag(v, k=0)
Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy.diag that takes masked values into account, see numpy.diag for
details.

See also:

numpy.diag
Equivalent function for ndarrays.

numpy.ma.dot(a, b, strict=False, out=None)
Return the dot product of two arrays.

This function is the equivalent of numpy.dot that takes masked values into account. Note that strict and out
are in different position than in the method version. In order to maintain compatibility with the corresponding
method, it is recommended that the optional arguments be treated as keyword only. At some point that may be
mandatory.

Note: Works only with 2-D arrays at the moment.

Parameters
a, b : masked_array_like

Inputs arrays.

strict : bool, optional

Whether masked data are propagated (True) or set to 0 (False) for the computation.
Default is False. Propagating the mask means that if a masked value appears in a row
or column, the whole row or column is considered masked.

out : masked_array, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

New in version 1.10.2.

See also:

numpy.dot
Equivalent function for ndarrays.

1.7. Masked arrays 347

NumPy Reference, Release 1.11.1

Examples

>>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
>>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
masked_array(data =
[[21 26]
[45 64]],

mask =
[[False False]
[False False]],

fill_value = 999999)
>>> np.ma.dot(a, b, strict=True)
masked_array(data =
[[-- --]
[-- 64]],

mask =
[[True True]
[True False]],

fill_value = 999999)

numpy.ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma instance>
Return the identity array.

The identity array is a square array with ones on the main diagonal.

Parameters
n : int

Number of rows (and columns) in n x n output.

dtype : data-type, optional

Data-type of the output. Defaults to float.

Returns
out : ndarray

n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

numpy.ma.inner(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters
a, b : array_like

If a and b are nonscalar, their last dimensions must match.

Returns
out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

348 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Raises
ValueError

If the last dimension of a and b has different size.

See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

einsum
Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],

[86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

numpy.ma.innerproduct(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters
a, b : array_like

If a and b are nonscalar, their last dimensions must match.

Returns
out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

Raises
ValueError

If the last dimension of a and b has different size.

1.7. Masked arrays 349

NumPy Reference, Release 1.11.1

See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

einsum
Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],

[86, 110, 134]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

numpy.ma.outer(a, b)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [R50]
is:

[[a0*b0 a0*b1 ... a0*bN]
[a1*b0 .
[... .
[aM*b0 aM*bN]]

Parameters
a : (M,) array_like

First input vector. Input is flattened if not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

350 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Returns
out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also:

inner, einsum

Notes

Masked values are replaced by 0.

References

[R50]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

numpy.ma.outerproduct(a, b)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [R51]
is:

[[a0*b0 a0*b1 ... a0*bN]
[a1*b0 .
[... .
[aM*b0 aM*bN]]

1.7. Masked arrays 351

NumPy Reference, Release 1.11.1

Parameters
a : (M,) array_like

First input vector. Input is flattened if not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

Returns
out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also:

inner, einsum

Notes

Masked values are replaced by 0.

References

[R51]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

352 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

numpy.ma.trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1=0,
axis2=1, dtype=None, out=None) = <numpy.ma.core._frommethod instance>

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace
equivalent function

Polynomial fit

ma.vander(x[, n]) Generate a Vandermonde matrix.
ma.polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy.ma.vander(x, n=None)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector
raised element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters
x : array_like

1-D input array.

N : int, optional

Number of columns in the output. If N is not specified, a square array is returned (N =
len(x)).

increasing : bool, optional

Order of the powers of the columns. If True, the powers increase from left to right, if
False (the default) they are reversed.

New in version 1.9.0.

Returns
out : ndarray

Vandermonde matrix. If increasing is False, the first column is x^(N-1), the second
x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

1.7. Masked arrays 353

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],

[8, 4, 2, 1],
[27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],

[1, 2, 4, 8],
[1, 3, 9, 27],
[1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

numpy.ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

354 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights to apply to the y-coordinates of the sample points. For gaussian uncertainties,
use 1/sigma (not 1/sigma**2).

cov : bool, optional

Return the estimate and the covariance matrix of the estimate If full is True, then cov is
not returned.

Returns
p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the coefficients for k-th data
set are in p[:,k].

residuals, rank, singular_values, rcond :

Present only if full = True. Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde coefficient matrix, its singular values, and the specified value of
rcond. For more details, see linalg.lstsq.

V : ndarray, shape (M,M) or (M,M,K)

Present only if full = False and cov‘=True. The covariance matrix of the polynomial
coefficient estimates. The diagonal of this matrix are the variance estimates for each
coefficient. If y is a 2-D array, then the covariance matrix for the ‘k-th data set are in
V[:,:,k]

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also:

polyval
Compute polynomial values.

linalg.lstsq
Computes a least-squares fit.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.

1.7. Masked arrays 355

NumPy Reference, Release 1.11.1

References

[R52], [R53]

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

356 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Clipping and rounding

ma.around Round an array to the given number of decimals.
ma.clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.
ma.round(a[, decimals, out]) Return a copy of a, rounded to ‘decimals’ places.
ma.MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min, max].
ma.MaskedArray.round([decimals, out]) Return a with each element rounded to the given number of decimals.

numpy.ma.around = <numpy.ma.core._MaskedUnaryOperation instance>
Round an array to the given number of decimals.

Refer to around for full documentation.

See also:

around
equivalent function

numpy.ma.clip(a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters
a : array_like

Array containing elements to clip.

a_min : scalar or array_like

Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

1.7. Masked arrays 357

NumPy Reference, Release 1.11.1

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See also:

numpy.doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy.ma.round(a, decimals=0, out=None)
Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to 0.

Parameters
decimals : int

Number of decimals to round to. May be negative.

out : array_like

Existing array to use for output. If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Miscellanea

ma.allequal(a, b[, fill_value]) Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.
ma.allclose(a, b[, masked_equal, rtol, atol]) Returns True if two arrays are element-wise equal within a tolerance.
ma.apply_along_axis(func1d, axis, arr, ...) Apply a function to 1-D slices along the given axis.
ma.arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.
ma.choose(indices, choices[, out, mode]) Use an index array to construct a new array from a set of choices.
ma.ediff1d(arr[, to_end, to_begin]) Compute the differences between consecutive elements of an array.
ma.indices(dimensions[, dtype]) Return an array representing the indices of a grid.
ma.where(condition[, x, y]) Return a masked array with elements from x or y, depending on condition.

358 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

numpy.ma.allequal(a, b, fill_value=True)
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters
a, b : array_like

Input arrays to compare.

fill_value : bool, optional

Whether masked values in a or b are considered equal (True) or not (False).

Returns
y : bool

Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any , numpy.ma.allclose

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],

mask = [False False True],
fill_value=1e+20)

>>> b = array([1e10, 1e-7, -42.0])
>>> b
array([1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
>>> ma.allequal(a, b, fill_value=False)
False
>>> ma.allequal(a, b)
True

numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to allclose except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters
a, b : array_like

Input arrays to compare.

masked_equal : bool, optional

Whether masked values in a and b are considered equal (True) or not (False). They are
considered equal by default.

rtol : float, optional

Relative tolerance. The relative difference is equal to rtol * b. Default is 1e-5.

atol : float, optional

Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8.

Returns
y : bool

1.7. Masked arrays 359

NumPy Reference, Release 1.11.1

Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any

numpy.allclose
the non-masked allclose.

Notes

If the following equation is element-wise True, then allclose returns True:

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Return True if all elements of a and b are equal subject to given tolerances.

Examples

>>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data = [10000000000.0 1e-07 --],

mask = [False False True],
fill_value = 1e+20)

>>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
False

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

Masked values are not compared directly.

>>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)
True
>>> ma.allclose(a, b, masked_equal=False)
False

numpy.ma.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.

Parameters
func1d : function

This function should accept 1-D arrays. It is applied to 1-D slices of arr along the
specified axis.

axis : integer

Axis along which arr is sliced.

arr : ndarray

Input array.

360 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

args : any

Additional arguments to func1d.

kwargs: any

Additional named arguments to func1d.

New in version 1.9.0.

Returns
apply_along_axis : ndarray

The output array. The shape of outarr is identical to the shape of arr, except along the
axis dimension, where the length of outarr is equal to the size of the return value of
func1d. If func1d returns a scalar outarr will have one fewer dimensions than arr.

See also:

apply_over_axes
Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that doesn’t return a scalar, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

numpy.ma.arange([start], stop[, step], dtype=None) = <numpy.ma.core._convert2ma instance>
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters
start : number, optional

Start of interval. The interval includes this value. The default start value is 0.

stop : number

End of interval. The interval does not include this value, except in some cases where
step is not an integer and floating point round-off affects the length of out.

step : number, optional

1.7. Masked arrays 361

http://docs.python.org/lib/built-in-funcs.html

NumPy Reference, Release 1.11.1

Spacing between values. For any output out, this is the distance between two adjacent
values, out[i+1] - out[i]. The default step size is 1. If step is specified, start
must also be given.

dtype : dtype

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

Returns
arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is ceil((stop -
start)/step). Because of floating point overflow, this rule may result in the last
element of out being greater than stop.

See also:

linspace
Evenly spaced numbers with careful handling of endpoints.

ogrid
Arrays of evenly spaced numbers in N-dimensions.

mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

numpy.ma.choose(indices, choices, out=None, mode=’raise’)
Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method will create a new array that merges each of
the choice arrays. Where a value in a is i, the new array will have the value that choices[i] contains in the same
place.

Parameters
a : ndarray of ints

This array must contain integers in [0, n-1], where n is the number of choices.

choices : sequence of arrays

Choice arrays. The index array and all of the choices should be broadcastable to the
same shape.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

362 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Specifies how out-of-bounds indices will behave.

• ‘raise’ : raise an error

• ‘wrap’ : wrap around

• ‘clip’ : clip to the range

Returns
merged_array : array

See also:

choose
equivalent function

Examples

>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
masked_array(data = [3 2 1],

mask = False,
fill_value=999999)

numpy.ma.ediff1d(arr, to_end=None, to_begin=None)
Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked values into account, see
numpy.ediff1d for details.

See also:

numpy.ediff1d
Equivalent function for ndarrays.

numpy.ma.indices(dimensions, dtype=<type ‘int’>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis.

Parameters
dimensions : sequence of ints

The shape of the grid.

dtype : dtype, optional

Data type of the result.

Returns
grid : ndarray

The array of grid indices, grid.shape = (len(dimensions),) +
tuple(dimensions).

See also:

mgrid, meshgrid

1.7. Masked arrays 363

NumPy Reference, Release 1.11.1

Notes

The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

numpy.ma.where(condition, x=<class numpy._NoValue>, y=<class numpy._NoValue>)
Return a masked array with elements from x or y, depending on condition.

Returns a masked array, shaped like condition, where the elements are from x when condition is True, and from
y otherwise. If neither x nor y are given, the function returns a tuple of indices where condition is True (the
result of condition.nonzero()).

Parameters
condition : array_like, bool

The condition to meet. For each True element, yield the corresponding element from x,
otherwise from y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same shape as condition, or be
broadcast-able to that shape.

Returns
out : MaskedArray or tuple of ndarrays

The resulting masked array if x and y were given, otherwise the result of
condition.nonzero().

See also:

numpy.where
Equivalent function in the top-level NumPy module.

364 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Examples

>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
>>> print(x)
[[0.0 -- 2.0]
[-- 4.0 --]
[6.0 -- 8.0]]
>>> np.ma.where(x > 5) # return the indices where x > 5
(array([2, 2]), array([0, 2]))

>>> print(np.ma.where(x > 5, x, -3.1416))
[[-3.1416 -- -3.1416]
[-- -3.1416 --]
[6.0 -- 8.0]]

1.8 The Array Interface

Note: This page describes the numpy-specific API for accessing the contents of a numpy array from other C exten-
sions. PEP 3118 – The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and
3.0 for any extension module to use. Cython‘s buffer array support uses the PEP 3118 API; see the Cython numpy
tutorial. Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6
because it has a backward-compatible implementation utilizing the array interface described here.

version
3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to
re-use each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is
a default mechanism for objects to share N-dimensional array memory and information. The interface consists of a
Python-side and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application
code should support at least one of these attributes. Objects wishing to support an N-dimensional array in application
code should look for at least one of these attributes and use the information provided appropriately.

This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type
can be very simple or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

1.8.1 Python side

This approach to the interface consists of the object having an __array_interface__ attribute.

__array_interface__
A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if
they are not provided.

The keys are:

shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int or
long). Note that these integers could be larger than the platform “int” or “long” could hold (a Python

1.8. The Array Interface 365

https://www.python.org/dev/peps/pep-3118
http://docs.python.org/dev/c-api/buffer.html#c.PyObject_GetBuffer
http://cython.org/
https://www.python.org/dev/peps/pep-3118
http://wiki.cython.org/tutorials/numpy
http://wiki.cython.org/tutorials/numpy

NumPy Reference, Release 1.11.1

int is a C long). It is up to the code using this attribute to handle this appropriately; either by raising
an error when overflow is possible, or by using Py_LONG_LONG as the C type for the shapes.

typestr (required)

A string providing the basic type of the homogenous array The basic string format consists of 3 parts:
a character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a
character code giving the basic type of the array, and an integer providing the number of bytes the
type uses.

The basic type character codes are:

t Bit field (following integer gives the number of bits in the bit field).
b Boolean (integer type where all values are only True or False)
i Integer
u Unsigned integer
f Floating point
c Complex floating point
m Timedelta
M Datetime
O Object (i.e. the memory contains a pointer to PyObject)
S String (fixed-length sequence of char)
U Unicode (fixed-length sequence of Py_UNICODE)
V Other (void * – each item is a fixed-size chunk of memory)

descr (optional)

A list of tuples providing a more detailed description of the memory layout for each item in the
homogeneous array. Each tuple in the list has two or three elements. Normally, this attribute would
be used when typestr is V[0-9]+, but this is not a requirement. The only requirement is that the
number of bytes represented in the typestr key is the same as the total number of bytes represented
here. The idea is to support descriptions of C-like structs that make up array elements. The elements
of each tuple in the list are

1.A string providing a name associated with this portion of the datatype. This could also be a tuple
of (’full name’, ’basic_name’) where basic name would be a valid Python variable
name representing the full name of the field.

2.Either a basic-type description string as in typestr or another list (for nested structured types)

3.An optional shape tuple providing how many times this part of the structure should be repeated.
No repeats are assumed if this is not given. Very complicated structures can be described using
this generic interface. Notice, however, that each element of the array is still of the same data-
type. Some examples of using this interface are given below.

Default: [(’’, typestr)]

data (optional)

A 2-tuple whose first argument is an integer (a long integer if necessary) that points to the data-area
storing the array contents. This pointer must point to the first element of data (in other words any
offset is always ignored in this case). The second entry in the tuple is a read-only flag (true means
the data area is read-only).

This attribute can also be an object exposing the buffer interface which will be used to share
the data. If this key is not present (or returns None), then memory sharing will be done through the
buffer interface of the object itself. In this case, the offset key can be used to indicate the start of the
buffer. A reference to the object exposing the array interface must be stored by the new object if the
memory area is to be secured.

Default: None

366 Chapter 1. Array objects

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/unicode.html#c.Py_UNICODE
http://docs.python.org/dev/c-api/objbuffer.html#c.PyObject_AsCharBuffer

NumPy Reference, Release 1.11.1

strides (optional)

Either None to indicate a C-style contiguous array or a Tuple of strides which provides the number of
bytes needed to jump to the next array element in the corresponding dimension. Each entry must be
an integer (a Python int or long). As with shape, the values may be larger than can be represented
by a C “int” or “long”; the calling code should handle this appropiately, either by raising an error, or
by using Py_LONG_LONG in C. The default is None which implies a C-style contiguous memory
buffer. In this model, the last dimension of the array varies the fastest. For example, the default
strides tuple for an object whose array entries are 8 bytes long and whose shape is (10,20,30) would
be (4800, 240, 8)

Default: None (C-style contiguous)

mask (optional)

None or an object exposing the array interface. All elements of the mask array should be interpreted
only as true or not true indicating which elements of this array are valid. The shape of this object
should be “broadcastable” to the shape of the original array.

Default: None (All array values are valid)

offset (optional)

An integer offset into the array data region. This can only be used when data is None or returns a
buffer object.

Default: 0.

version (required)

An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to
invalidate objects exposing future versions of the interface.

1.8.2 C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-
defined C-structure.

__array_struct__
A :c:type: PyCObject whose voidptr member contains a pointer to a filled PyArrayInterface structure.
Memory for the structure is dynamically created and the PyCObject is also created with an appropriate
destructor so the retriever of this attribute simply has to apply Py_DECREF to the object returned by this
attribute when it is finished. Also, either the data needs to be copied out, or a reference to the object exposing
this attribute must be held to ensure the data is not freed. Objects exposing the __array_struct__ interface
must also not reallocate their memory if other objects are referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject.h as:

typedef struct {
int two; /* contains the integer 2 -- simple sanity check */
int nd; /* number of dimensions */
char typekind; /* kind in array --- character code of typestr */
int itemsize; /* size of each element */
int flags; /* flags indicating how the data should be interpreted */

/* must set ARR_HAS_DESCR bit to validate descr */
Py_intptr_t *shape; /* A length-nd array of shape information */
Py_intptr_t *strides; /* A length-nd array of stride information */
void *data; /* A pointer to the first element of the array */
PyObject *descr; /* NULL or data-description (same as descr key

of __array_interface__) -- must set ARR_HAS_DESCR

1.8. The Array Interface 367

http://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF

NumPy Reference, Release 1.11.1

flag or this will be ignored. */
} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how
the Interface should be interpreted. The data-bits are CONTIGUOUS (0x1), FORTRAN (0x2), ALIGNED (0x100),
NOTSWAPPED (0x200), and WRITEABLE (0x400). A final flag ARR_HAS_DESCR (0x800) indicates whether or not
this structure has the arrdescr field. The field should not be accessed unless this flag is present.

New since June 16, 2006:

In the past most implementations used the “desc” member of the PyCObject itself (do not confuse this with the
“descr” member of the PyArrayInterface structure above — they are two separate things) to hold the pointer to
the object exposing the interface. This is now an explicit part of the interface. Be sure to own a reference to the object
when the PyCObject is created using PyCObject_FromVoidPtrAndDesc.

1.8.3 Type description examples

For clarity it is useful to provide some examples of the type description and corresponding __array_interface__
‘descr’ entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

* Float data
typestr == '>f4'
descr == [('','>f4')]

* Complex double
typestr == '>c8'
descr == [('real','>f4'), ('imag','>f4')]

* RGB Pixel data
typestr == '|V3'
descr == [('r','|u1'), ('g','|u1'), ('b','|u1')]

* Mixed endian (weird but could happen).
typestr == '|V8' (or '>u8')
descr == [('big','>i4'), ('little','<i4')]

* Nested structure
struct {

int ival;
struct {

unsigned short sval;
unsigned char bval;
unsigned char cval;

} sub;
}
typestr == '|V8' (or '<u8' if you want)
descr == [('ival','<i4'), ('sub', [('sval','<u2'), ('bval','|u1'), ('cval','|u1')])]

* Nested array
struct {

int ival;
double data[16*4];

368 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

}
typestr == '|V516'
descr == [('ival','>i4'), ('data','>f8',(16,4))]

* Padded structure
struct {

int ival;
double dval;

}
typestr == '|V16'
descr == [('ival','>i4'),('','|V4'),('dval','>f8')]

It should be clear that any structured type could be described using this interface.

1.8.4 Differences with Array interface (Version 2)

The version 2 interface was very similar. The differences were largely aesthetic. In particular:

1. The PyArrayInterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)

2. The desc member of the PyCObject returned from __array_struct__ was not specified. Usually, it was the object
exposing the array (so that a reference to it could be kept and destroyed when the C-object was destroyed). Now
it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose second element
is the object exposing the array.

3. The tuple returned from __array_interface__[’data’] used to be a hex-string (now it is an integer or a long
integer).

4. There was no __array_interface__ attribute instead all of the keys (except for version) in the __array_interface__
dictionary were their own attribute: Thus to obtain the Python-side information you had to access separately the
attributes:

• __array_data__

• __array_shape__

• __array_strides__

• __array_typestr__

• __array_descr__

• __array_offset__

• __array_mask__

1.9 Datetimes and Timedeltas

New in version 1.7.0.

Starting in NumPy 1.7, there are core array data types which natively support datetime functionality. The data type is
called “datetime64”, so named because “datetime” is already taken by the datetime library included in Python.

Note: The datetime API is experimental in 1.7.0, and may undergo changes in future versions of NumPy.

1.9. Datetimes and Timedeltas 369

NumPy Reference, Release 1.11.1

1.9.1 Basic Datetimes

The most basic way to create datetimes is from strings in ISO 8601 date or datetime format. The unit for internal
storage is automatically selected from the form of the string, and can be either a date unit or a time unit. The date
units are years (‘Y’), months (‘M’), weeks (‘W’), and days (‘D’), while the time units are hours (‘h’), minutes (‘m’),
seconds (‘s’), milliseconds (‘ms’), and some additional SI-prefix seconds-based units.

Example

A simple ISO date:

>>> np.datetime64('2005-02-25')
numpy.datetime64('2005-02-25')

Using months for the unit:

>>> np.datetime64('2005-02')
numpy.datetime64('2005-02')

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64('2005-02', 'D')
numpy.datetime64('2005-02-01')

From a date and time:

>>> np.datetime64('2005-02-25T03:30')
numpy.datetime64('2005-02-25T03:30')

When creating an array of datetimes from a string, it is still possible to automatically select the unit from the inputs,
by using the datetime type with generic units.

Example

>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64')
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172'], dtype='datetime64')
array(['2001-01-01T12:00:00.000-0600', '2002-02-03T13:56:03.172-0600'], dtype='datetime64[ms]')

The datetime type works with many common NumPy functions, for example arange can be used to generate ranges
of dates.

Example

All the dates for one month:

>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]')
array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04',

'2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08',
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12',
'2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16',
'2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20',
'2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24',
'2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'],
dtype='datetime64[D]')

370 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

The datetime object represents a single moment in time. If two datetimes have different units, they may still be
representing the same moment of time, and converting from a bigger unit like months to a smaller unit like days is
considered a ‘safe’ cast because the moment of time is still being represented exactly.

Example

>>> np.datetime64('2005') == np.datetime64('2005-01-01')
True

>>> np.datetime64('2010-03-14T15Z') == np.datetime64('2010-03-14T15:00:00.00Z')
True

1.9.2 Datetime and Timedelta Arithmetic

NumPy allows the subtraction of two Datetime values, an operation which produces a number with a time unit.
Because NumPy doesn’t have a physical quantities system in its core, the timedelta64 data type was created to com-
plement datetime64.

Datetimes and Timedeltas work together to provide ways for simple datetime calculations.

Example

>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
numpy.timedelta64(366,'D')

>>> np.datetime64('2009') + np.timedelta64(20, 'D')
numpy.datetime64('2009-01-21')

>>> np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')
numpy.datetime64('2011-06-15T12:00-0500')

>>> np.timedelta64(1,'W') / np.timedelta64(1,'D')
7.0

There are two Timedelta units (‘Y’, years and ‘M’, months) which are treated specially, because how much time they
represent changes depending on when they are used. While a timedelta day unit is equivalent to 24 hours, there is no
way to convert a month unit into days, because different months have different numbers of days.

Example

>>> a = np.timedelta64(1, 'Y')

>>> np.timedelta64(a, 'M')
numpy.timedelta64(12,'M')

>>> np.timedelta64(a, 'D')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to the rule 'same_kind'

1.9. Datetimes and Timedeltas 371

NumPy Reference, Release 1.11.1

1.9.3 Datetime Units

The Datetime and Timedelta data types support a large number of time units, as well as generic units which can be
coerced into any of the other units based on input data.

Datetimes are always stored based on POSIX time (though having a TAI mode which allows for accounting of leap-
seconds is proposed), with a epoch of 1970-01-01T00:00Z. This means the supported dates are always a symmetric
interval around the epoch, called “time span” in the table below.

The length of the span is the range of a 64-bit integer times the length of the date or unit. For example, the time span
for ‘W’ (week) is exactly 7 times longer than the time span for ‘D’ (day), and the time span for ‘D’ (day) is exactly 24
times longer than the time span for ‘h’ (hour).

Here are the date units:

Code Meaning Time span (relative) Time span (absolute)
Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
W week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]

And here are the time units:

Code Meaning Time span (relative) Time span (absolute)
h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s second +/- 2.9e12 years [2.9e9 BC, 2.9e9 AD]
ms millisecond +/- 2.9e9 years [2.9e6 BC, 2.9e6 AD]
us microsecond +/- 2.9e6 years [290301 BC, 294241 AD]
ns nanosecond +/- 292 years [1678 AD, 2262 AD]
ps picosecond +/- 106 days [1969 AD, 1970 AD]
fs femtosecond +/- 2.6 hours [1969 AD, 1970 AD]
as attosecond +/- 9.2 seconds [1969 AD, 1970 AD]

1.9.4 Business Day Functionality

To allow the datetime to be used in contexts where only certain days of the week are valid, NumPy includes a set of
“busday” (business day) functions.

The default for busday functions is that the only valid days are Monday through Friday (the usual business days). The
implementation is based on a “weekmask” containing 7 Boolean flags to indicate valid days; custom weekmasks are
possible that specify other sets of valid days.

The “busday” functions can additionally check a list of “holiday” dates, specific dates that are not valid days.

The function busday_offset allows you to apply offsets specified in business days to datetimes with a unit of ‘D’
(day).

Example

>>> np.busday_offset('2011-06-23', 1)
numpy.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-23', 2)
numpy.datetime64('2011-06-27')

When an input date falls on the weekend or a holiday, busday_offset first applies a rule to roll the date to a valid
business day, then applies the offset. The default rule is ‘raise’, which simply raises an exception. The rules most
typically used are ‘forward’ and ‘backward’.

372 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

Example

>>> np.busday_offset('2011-06-25', 2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Non-business day date in busday_offset

>>> np.busday_offset('2011-06-25', 0, roll='forward')
numpy.datetime64('2011-06-27')

>>> np.busday_offset('2011-06-25', 2, roll='forward')
numpy.datetime64('2011-06-29')

>>> np.busday_offset('2011-06-25', 0, roll='backward')
numpy.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-25', 2, roll='backward')
numpy.datetime64('2011-06-28')

In some cases, an appropriate use of the roll and the offset is necessary to get a desired answer.

Example

The first business day on or after a date:

>>> np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')

The first business day strictly after a date:

>>> np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

The function is also useful for computing some kinds of days like holidays. In Canada and the U.S., Mother’s day is
on the second Sunday in May, which can be computed with a custom weekmask.

Example

>>> np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

When performance is important for manipulating many business dates with one particular choice of weekmask and
holidays, there is an object busdaycalendar which stores the data necessary in an optimized form.

np.is_busday():

To test a datetime64 value to see if it is a valid day, use is_busday .

Example

1.9. Datetimes and Timedeltas 373

NumPy Reference, Release 1.11.1

>>> np.is_busday(np.datetime64('2011-07-15')) # a Friday
True
>>> np.is_busday(np.datetime64('2011-07-16')) # a Saturday
False
>>> np.is_busday(np.datetime64('2011-07-16'), weekmask="Sat Sun")
True
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.is_busday(a)
array([True, True, True, True, True, False, False], dtype='bool')

np.busday_count():

To find how many valid days there are in a specified range of datetime64 dates, use busday_count:

Example

>>> np.busday_count(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
5
>>> np.busday_count(np.datetime64('2011-07-18'), np.datetime64('2011-07-11'))
-5

If you have an array of datetime64 day values, and you want a count of how many of them are valid dates, you can do
this:

Example

>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.count_nonzero(np.is_busday(a))
5

Custom Weekmasks

Here are several examples of custom weekmask values. These examples specify the “busday” default of Monday
through Friday being valid days.

Some examples:

Positional sequences; positions are Monday through Sunday.
Length of the sequence must be exactly 7.
weekmask = [1, 1, 1, 1, 1, 0, 0]
list or other sequence; 0 == invalid day, 1 == valid day
weekmask = "1111100"
string '0' == invalid day, '1' == valid day

string abbreviations from this list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"
any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

374 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

1.9.5 Changes with NumPy 1.11

In prior versions of NumPy, the datetime64 type always stored times in UTC. By default, creating a datetime64 object
from a string or printing it would convert from or to local time:

old behavior
>>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00-0800') # note the timezone offset -08:00

A concensus of datetime64 users agreed that this behavior is undesirable and at odds with how datetime64 is usu-
ally used (e.g., by pandas_). For most use cases, a timezone naive datetime type is preferred, similar to the
datetime.datetime type in the Python standard library. Accordingly, datetime64 no longer assumes that in-
put is in local time, nor does it print local times:

>>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00')

For backwards compatibility, datetime64 still parses timezone offsets, which it handles by converting to UTC. How-
ever, the resulting datetime is timezone naive:

>>> np.datetime64('2000-01-01T00:00:00-08')
DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise an error in the future
numpy.datetime64('2000-01-01T08:00:00')

As a corollary to this change, we no longer prohibit casting between datetimes with date units and datetimes with
timeunits. With timezone naive datetimes, the rule for casting from dates to times is no longer ambiguous.

pandas_: http://pandas.pydata.org

1.9.6 Differences Between 1.6 and 1.7 Datetimes

The NumPy 1.6 release includes a more primitive datetime data type than 1.7. This section documents many of the
changes that have taken place.

String Parsing

The datetime string parser in NumPy 1.6 is very liberal in what it accepts, and silently allows invalid input without
raising errors. The parser in NumPy 1.7 is quite strict about only accepting ISO 8601 dates, with a few convenience
extensions. 1.6 always creates microsecond (us) units by default, whereas 1.7 detects a unit based on the format of the
string. Here is a comparison.:

NumPy 1.6.1
>>> np.datetime64('1979-03-22')
1979-03-22 00:00:00
NumPy 1.7.0
>>> np.datetime64('1979-03-22')
numpy.datetime64('1979-03-22')

NumPy 1.6.1, unit default microseconds
>>> np.datetime64('1979-03-22').dtype
dtype('datetime64[us]')
NumPy 1.7.0, unit of days detected from string
>>> np.datetime64('1979-03-22').dtype
dtype('<M8[D]')

NumPy 1.6.1, ignores invalid part of string
>>> np.datetime64('1979-03-2corruptedstring')

1.9. Datetimes and Timedeltas 375

http://pandas.pydata.org

NumPy Reference, Release 1.11.1

1979-03-02 00:00:00
NumPy 1.7.0, raises error for invalid input
>>> np.datetime64('1979-03-2corruptedstring')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "1979-03-2corruptedstring" at position 8

NumPy 1.6.1, 'nat' produces today's date
>>> np.datetime64('nat')
2012-04-30 00:00:00
NumPy 1.7.0, 'nat' produces not-a-time
>>> np.datetime64('nat')
numpy.datetime64('NaT')

NumPy 1.6.1, 'garbage' produces today's date
>>> np.datetime64('garbage')
2012-04-30 00:00:00
NumPy 1.7.0, 'garbage' raises an exception
>>> np.datetime64('garbage')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "garbage" at position 0

NumPy 1.6.1, can't specify unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: function takes at most 1 argument (2 given)
NumPy 1.7.0, unit in scalar constructor
>>> np.datetime64('1979-03-22T19:00', 'h')
numpy.datetime64('1979-03-22T19:00-0500','h')

NumPy 1.6.1, reads ISO 8601 strings w/o TZ as UTC
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array([1979-03-22 19:00:00], dtype=datetime64[h])
NumPy 1.7.0, reads ISO 8601 strings w/o TZ as local (ISO specifies this)
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]')
array(['1979-03-22T19-0500'], dtype='datetime64[h]')

NumPy 1.6.1, doesn't parse all ISO 8601 strings correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')
array([1979-03-22 00:00:00], dtype=datetime64[h])
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array([1979-03-22 12:00:00], dtype=datetime64[h])
NumPy 1.7.0, handles this case correctly
>>> np.array(['1979-03-22T12'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]')
array(['1979-03-22T12-0500'], dtype='datetime64[h]')

Unit Conversion

The 1.6 implementation of datetime does not convert between units correctly.:

NumPy 1.6.1, the representation value is untouched
>>> np.array(['1979-03-22'], dtype='M8[D]')
array([1979-03-22 00:00:00], dtype=datetime64[D])

376 Chapter 1. Array objects

NumPy Reference, Release 1.11.1

>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array([2250-08-01 00:00:00], dtype=datetime64[M])
NumPy 1.7.0, the representation is scaled accordingly
>>> np.array(['1979-03-22'], dtype='M8[D]')
array(['1979-03-22'], dtype='datetime64[D]')
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]')
array(['1979-03'], dtype='datetime64[M]')

Datetime Arithmetic

The 1.6 implementation of datetime only works correctly for a small subset of arithmetic operations. Here we show
some simple cases.:

NumPy 1.6.1, produces invalid results if units are incompatible
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array([1970-01-01 00:00:00.080988], dtype=datetime64[us])
NumPy 1.7.0, promotes to higher-resolution unit
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]')
>>> b = np.array([3*60], dtype='m8[m]')
>>> a + b
array(['1979-03-22T15:00-0500'], dtype='datetime64[m]')

NumPy 1.6.1, arithmetic works if everything is microseconds
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array([1979-03-22 15:00:00], dtype=datetime64[us])
NumPy 1.7.0
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]')
>>> b = np.array([3*60*60*1000000], dtype='m8[us]')
>>> a + b
array(['1979-03-22T15:00:00.000000-0500'], dtype='datetime64[us]')

1.9. Datetimes and Timedeltas 377

NumPy Reference, Release 1.11.1

378 Chapter 1. Array objects

CHAPTER

TWO

UNIVERSAL FUNCTIONS (UFUNC)

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized”
wrapper for a function that takes a fixed number of scalar inputs and produces a fixed number of scalar outputs.

In Numpy, universal functions are instances of the numpy.ufunc class. Many of the built-in functions are imple-
mented in compiled C code, but ufunc instances can also be produced using the frompyfunc factory function.

2.1 Broadcasting

Each universal function takes array inputs and produces array outputs by performing the core function element-wise
on the inputs. Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be
usefully operated on. Broadcasting can be understood by four rules:

1. All input arrays with ndim smaller than the input array of largest ndim, have 1’s prepended to their shapes.

2. The size in each dimension of the output shape is the maximum of all the input sizes in that dimension.

3. An input can be used in the calculation if its size in a particular dimension either matches the output size in that
dimension, or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for all
calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step
along that dimension (the stride will be 0 for that dimension).

Broadcasting is used throughout NumPy to decide how to handle disparately shaped arrays; for example, all arith-
metic operations (+, -, *, ...) between ndarrays broadcast the arrays before operation. A set of arrays is called
“broadcastable” to the same shape if the above rules produce a valid result, i.e., one of the following is true:

1. The arrays all have exactly the same shape.

2. The arrays all have the same number of dimensions and the length of each dimensions is either a common length
or 1.

3. The arrays that have too few dimensions can have their shapes prepended with a dimension of length 1 to satisfy
property 2.

Example

If a.shape is (5,1), b.shape is (1,6), c.shape is (6,) and d.shape is () so that d is a scalar, then a, b, c, and d
are all broadcastable to dimension (5,6); and

• a acts like a (5,6) array where a[:,0] is broadcast to the other columns,

• b acts like a (5,6) array where b[0,:] is broadcast to the other rows,

379

NumPy Reference, Release 1.11.1

• c acts like a (1,6) array and therefore like a (5,6) array where c[:] is broadcast to every row, and finally,

• d acts like a (5,6) array where the single value is repeated.

2.2 Output type determination

The output of the ufunc (and its methods) is not necessarily an ndarray , if all input arguments are not ndarrays.

All output arrays will be passed to the __array_prepare__ and __array_wrap__ methods of the in-
put (besides ndarrays, and scalars) that defines it and has the highest __array_priority__ of any other
input to the universal function. The default __array_priority__ of the ndarray is 0.0, and the default
__array_priority__ of a subtype is 1.0. Matrices have __array_priority__ equal to 10.0.

All ufuncs can also take output arguments. If necessary, output will be cast to the data-type(s) of the provided output
array(s). If a class with an __array__ method is used for the output, results will be written to the object returned
by __array__. Then, if the class also has an __array_prepare__ method, it is called so metadata may be
determined based on the context of the ufunc (the context consisting of the ufunc itself, the arguments passed to
the ufunc, and the ufunc domain.) The array object returned by __array_prepare__ is passed to the ufunc for
computation. Finally, if the class also has an __array_wrap__ method, the returned ndarray result will be
passed to that method just before passing control back to the caller.

2.3 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to be converted from one data type to
another. The size of internal buffers is settable on a per-thread basis. There can be up to 2(𝑛inputs + 𝑛outputs) buffers
of the specified size created to handle the data from all the inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed, but all input arrays are smaller than the buffer
size, those misbehaved or incorrectly-typed arrays will be copied before the calculation proceeds. Adjusting the size of
the buffer may therefore alter the speed at which ufunc calculations of various sorts are completed. A simple interface
for setting this variable is accessible using the function

setbufsize(size) Set the size of the buffer used in ufuncs.

numpy.setbufsize(size)
Set the size of the buffer used in ufuncs.

Parameters
size : int

Size of buffer.

2.4 Error handling

Universal functions can trip special floating-point status registers in your hardware (such as divide-by-zero). If avail-
able on your platform, these registers will be regularly checked during calculation. Error handling is controlled on a
per-thread basis, and can be configured using the functions

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
seterrcall(func) Set the floating-point error callback function or log object.

380 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)
Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by
these settings.

Parameters
all : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Set treatment for all types of floating-point errors at once:

• ignore: Take no action when the exception occurs.

• warn: Print a RuntimeWarning (via the Python warnings module).

• raise: Raise a FloatingPointError.

• call: Call a function specified using the seterrcall function.

• print: Print a warning directly to stdout.

• log: Record error in a Log object specified by seterrcall.

The default is not to change the current behavior.

divide : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for division by zero.

over : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point overflow.

under : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for floating-point underflow.

invalid : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional

Treatment for invalid floating-point operation.

Returns
old_settings : dict

Dictionary containing the old settings.

See also:

seterrcall
Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

•Division by zero: infinite result obtained from finite numbers.

•Overflow: result too large to be expressed.

•Underflow: result so close to zero that some precision was lost.

•Invalid operation: result is not an expressible number, typically indicates that a NaN was produced.

2.4. Error handling 381

http://docs.python.org/dev/library/warnings.html#module-warnings

NumPy Reference, Release 1.11.1

Examples

>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
'under': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}

>>> np.int16(32000) * np.int16(3)
30464
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FloatingPointError: overflow encountered in short_scalars

>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
>>> np.int16(32000) * np.int16(3)
Warning: overflow encountered in short_scalars
30464

numpy.seterrcall(func)
Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first is to set the error-handler to ‘call’, using
seterr. Then, set the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr. Floating-point errors then trigger a call to the
‘write’ method of the provided object.

Parameters
func : callable f(err, flag) or object with write method

Function to call upon floating-point errors (‘call’-mode) or object whose ‘write’ method
is used to log such message (‘log’-mode).

The call function takes two arguments. The first is a string describing the type of error
(such as “divide by zero”, “overflow”, “underflow”, or “invalid value”), and the second
is the status flag. The flag is a byte, whose four least-significant bits indicate the type of
error, one of “divide”, “over”, “under”, “invalid”:

[0 0 0 0 divide over under invalid]

In other words, flags = divide + 2*over + 4*under + 8*invalid.

If an object is provided, its write method should take one argument, a string.

Returns
h : callable, log instance or None

The old error handler.

See also:

seterr, geterr, geterrcall

382 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

Examples

Callback upon error:

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...

>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')

>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
>>> np.seterr(**save_err)
{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}

Log error message:

>>> class Log(object):
... def write(self, msg):
... print("LOG: %s" % msg)
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide

array([Inf, Inf, Inf])

>>> np.seterrcall(saved_handler)
<__main__.Log object at 0x...>
>>> np.seterr(**save_err)
{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}

2.5 Casting Rules

Note: In NumPy 1.6.0, a type promotion API was created to encapsulate the mechansim for determining output types.
See the functions result_type, promote_types, and min_scalar_type for more details.

At the core of every ufunc is a one-dimensional strided loop that implements the actual function for a specific type
combination. When a ufunc is created, it is given a static list of inner loops and a corresponding list of type signatures
over which the ufunc operates. The ufunc machinery uses this list to determine which inner loop to use for a particular
case. You can inspect the .types attribute for a particular ufunc to see which type combinations have a defined inner
loop and which output type they produce (character codes are used in said output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc does not have a core loop implementation for
the input types provided. If an implementation for the input types cannot be found, then the algorithm searches for an
implementation with a type signature to which all of the inputs can be cast “safely.” The first one it finds in its internal

2.5. Casting Rules 383

NumPy Reference, Release 1.11.1

list of loops is selected and performed, after all necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user settable).

Note: Universal functions in NumPy are flexible enough to have mixed type signatures. Thus, for example, a universal
function could be defined that works with floating-point and integer values. See ldexp for an example.

By the above description, the casting rules are essentially implemented by the question of when a data type can be
cast “safely” to another data type. The answer to this question can be determined in Python with a function call:
can_cast(fromtype, totype). The Figure below shows the results of this call for the 24 internally supported
types on the author’s 64-bit system. You can generate this table for your system with the code given in the Figure.

Figure

Code segment showing the “can cast safely” table for a 32-bit system.

>>> def print_table(ntypes):
... print 'X',
... for char in ntypes: print char,
... print
... for row in ntypes:
... print row,
... for col in ntypes:
... print int(np.can_cast(row, col)),
... print
>>> print_table(np.typecodes['All'])
X ? b h i l q p B H I L Q P e f d g F D G S U V O M m
? 1
b 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
h 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
i 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
l 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
q 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
p 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
B 0 0 1 0 0
H 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0
I 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
L 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
Q 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
P 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
e 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
S 0 1 1 1 1 0 0
U 0 1 1 1 0 0
V 0 1 1 0 0
O 0 1 1 0 0
M 0 1 0
m 0 1

You should note that, while included in the table for completeness, the ‘S’, ‘U’, and ‘V’ types cannot be operated on
by ufuncs. Also, note that on a 32-bit system the integer types may have different sizes, resulting in a slightly altered
table.

384 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

Mixed scalar-array operations use a different set of casting rules that ensure that a scalar cannot “upcast” an array
unless the scalar is of a fundamentally different kind of data (i.e., under a different hierarchy in the data-type hierarchy)
than the array. This rule enables you to use scalar constants in your code (which, as Python types, are interpreted
accordingly in ufuncs) without worrying about whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.

2.6 Overriding Ufunc behavior

Classes (including ndarray subclasses) can override how ufuncs act on them by defining certain special methods. For
details, see Standard array subclasses.

2.7 ufunc

2.7.1 Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.

out

New in version 1.6.

The first output can be provided as either a positional or a keyword parameter. Keyword ‘out’ arguments
are incompatible with positional ones.

..versionadded:: 1.10

The ‘out’ keyword argument is expected to be a tuple with one entry per output (which can be None for
arrays to be allocated by the ufunc). For ufuncs with a single output, passing a single array (instead of a
tuple holding a single array) is also valid.

Passing a single array in the ‘out’ keyword argument to a ufunc with multiple outputs is deprecated, and
will raise a warning in numpy 1.10, and an error in a future release.

where

New in version 1.7.

Accepts a boolean array which is broadcast together with the operands. Values of True indicate to calculate
the ufunc at that position, values of False indicate to leave the value in the output alone.

casting

New in version 1.6.

May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’. See can_cast for explanations of the parameter
values.

Provides a policy for what kind of casting is permitted. For compatibility with previous versions of
NumPy, this defaults to ‘unsafe’ for numpy < 1.7. In numpy 1.7 a transition to ‘same_kind’ was begun
where ufuncs produce a DeprecationWarning for calls which are allowed under the ‘unsafe’ rules, but not
under the ‘same_kind’ rules. From numpy 1.10 and onwards, the default is ‘same_kind’.

order

New in version 1.6.

2.6. Overriding Ufunc behavior 385

NumPy Reference, Release 1.11.1

Specifies the calculation iteration order/memory layout of the output array. Defaults to ‘K’. ‘C’ means
the output should be C-contiguous, ‘F’ means F-contiguous, ‘A’ means F-contiguous if the inputs are F-
contiguous and not also not C-contiguous, C-contiguous otherwise, and ‘K’ means to match the element
ordering of the inputs as closely as possible.

dtype

New in version 1.6.

Overrides the dtype of the calculation and output arrays. Similar to signature.

subok

New in version 1.6.

Defaults to true. If set to false, the output will always be a strict array, not a subtype.

signature

Either a data-type, a tuple of data-types, or a special signature string indicating the input and output
types of a ufunc. This argument allows you to provide a specific signature for the 1-d loop to use in
the underlying calculation. If the loop specified does not exist for the ufunc, then a TypeError is raised.
Normally, a suitable loop is found automatically by comparing the input types with what is available and
searching for a loop with data-types to which all inputs can be cast safely. This keyword argument lets
you bypass that search and choose a particular loop. A list of available signatures is provided by the
types attribute of the ufunc object. For backwards compatibility this argument can also be provided as
sig, although the long form is preferred.

extobj

a list of length 1, 2, or 3 specifying the ufunc buffer-size, the error mode integer, and the error call-
back function. Normally, these values are looked up in a thread-specific dictionary. Passing them here
circumvents that look up and uses the low-level specification provided for the error mode. This may be
useful, for example, as an optimization for calculations requiring many ufunc calls on small arrays in a
loop.

2.7.2 Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

__doc__ A docstring for each ufunc. The first part of the docstring is dynamically generated from the number of
outputs, the name, and the number of inputs. The second part of the docstring is provided at creation
time and stored with the ufunc.

__name__The name of the ufunc.

ufunc.nin The number of inputs.
ufunc.nout The number of outputs.
ufunc.nargs The number of arguments.
ufunc.ntypes The number of types.
ufunc.types Returns a list with types grouped input->output.
ufunc.identity The identity value.

ufunc.nin
The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

386 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

Examples

>>> np.add.nin
2
>>> np.multiply.nin
2
>>> np.power.nin
2
>>> np.exp.nin
1

ufunc.nout
The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout
1
>>> np.multiply.nout
1
>>> np.power.nout
1
>>> np.exp.nout
1

ufunc.nargs
The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including optional ones.

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out”
argument.

Examples

>>> np.add.nargs
3
>>> np.multiply.nargs
3
>>> np.power.nargs
3
>>> np.exp.nargs
2

ufunc.ntypes
The number of types.

The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.

See also:

numpy.ufunc.types

2.7. ufunc 387

NumPy Reference, Release 1.11.1

Examples

>>> np.add.ntypes
18
>>> np.multiply.ntypes
18
>>> np.power.ntypes
17
>>> np.exp.ntypes
7
>>> np.remainder.ntypes
14

ufunc.types
Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given
using the character codes.

See also:

numpy.ufunc.ntypes

Examples

>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']

>>> np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']

ufunc.identity
The identity value.

Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is
None.

Examples

>>> np.add.identity
0
>>> np.multiply.identity
1
>>> np.power.identity
1

388 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

>>> print(np.exp.identity)
None

2.7.3 Methods

All ufuncs have four methods. However, these methods only make sense on ufuncs that take two input arguments
and return one output argument. Attempting to call these methods on other ufuncs will cause a ValueError. The
reduce-like methods all take an axis keyword and a dtype keyword, and the arrays must all have dimension >= 1.
The axis keyword specifies the axis of the array over which the reduction will take place and may be negative, but
must be an integer. The dtype keyword allows you to manage a very common problem that arises when naively using
{op}.reduce. Sometimes you may have an array of a certain data type and wish to add up all of its elements, but the
result does not fit into the data type of the array. This commonly happens if you have an array of single-byte integers.
The dtype keyword allows you to alter the data type over which the reduction takes place (and therefore the type of
the output). Thus, you can ensure that the output is a data type with precision large enough to handle your output.
The responsibility of altering the reduce type is mostly up to you. There is one exception: if no dtype is given for a
reduction on the “add” or “multiply” operations, then if the input type is an integer (or Boolean) data-type and smaller
than the size of the int_ data type, it will be internally upcast to the int_ (or uint) data-type.

Ufuncs also have a fifth method that allows in place operations to be performed using fancy indexing. No buffering
is used on the dimensions where fancy indexing is used, so the fancy index can list an item more than once and the
operation will be performed on the result of the previous operation for that item.

ufunc.reduce(a[, axis, dtype, out, keepdims]) Reduces a‘s dimension by one, by applying ufunc along one axis.
ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all elements.
ufunc.reduceat(a, indices[, axis, dtype, out]) Performs a (local) reduce with specified slices over a single axis.
ufunc.outer(A, B) Apply the ufunc op to all pairs (a, b) with a in A and b in B.
ufunc.at(a, indices[, b]) Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’.

ufunc.reduce(a, axis=0, dtype=None, out=None, keepdims=False)
Reduces a‘s dimension by one, by applying ufunc along one axis.

Let 𝑎.𝑠ℎ𝑎𝑝𝑒 = (𝑁0, ..., 𝑁𝑖, ..., 𝑁𝑀−1). Then 𝑢𝑓𝑢𝑛𝑐.𝑟𝑒𝑑𝑢𝑐𝑒(𝑎, 𝑎𝑥𝑖𝑠 = 𝑖)[𝑘0, .., 𝑘𝑖−1, 𝑘𝑖+1, .., 𝑘𝑀−1] = the
result of iterating j over 𝑟𝑎𝑛𝑔𝑒(𝑁𝑖), cumulatively applying ufunc to each 𝑎[𝑘0, .., 𝑘𝑖−1, 𝑗, 𝑘𝑖+1, .., 𝑘𝑀−1]. For a
one-dimensional array, reduce produces results equivalent to:

r = op.identity # op = ufunc
for i in range(len(A)):
r = op(r, A[i])

return r

For example, add.reduce() is equivalent to sum().

Parameters
a : array_like

The array to act on.

axis : None or int or tuple of ints, optional

Axis or axes along which a reduction is performed. The default (axis = 0) is perform
a reduction over the first dimension of the input array. axis may be negative, in which
case it counts from the last to the first axis.

New in version 1.7.0.

If this is None, a reduction is performed over all the axes. If this is a tuple of ints,
a reduction is performed on multiple axes, instead of a single axis or all the axes as

2.7. ufunc 389

http://docs.python.org/dev/library/exceptions.html#ValueError

NumPy Reference, Release 1.11.1

before.

For operations which are either not commutative or not associative, doing a reduction
over multiple axes is not well-defined. The ufuncs do not currently raise an exception
in this case, but will likely do so in the future.

dtype : data-type code, optional

The type used to represent the intermediate results. Defaults to the data-type of the
output array if this is provided, or the data-type of the input array if no output array is
provided.

out : ndarray, optional

A location into which the result is stored. If not provided, a freshly-allocated array is
returned.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

New in version 1.7.0.

Returns
r : ndarray

The reduced array. If out was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange(8).reshape((2,2,2))
>>> X
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.add.reduce(X, 0)
array([[4, 6],

[8, 10]])
>>> np.add.reduce(X) # confirm: default axis value is 0
array([[4, 6],

[8, 10]])
>>> np.add.reduce(X, 1)
array([[2, 4],

[10, 12]])
>>> np.add.reduce(X, 2)
array([[1, 5],

[9, 13]])

ufunc.accumulate(array, axis=0, dtype=None, out=None)
Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty(len(A))
t = op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):

390 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

t = op(t, A[i])
r[i] = t

return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters
array : array_like

The array to act on.

axis : int, optional

The axis along which to apply the accumulation; default is zero.

dtype : data-type code, optional

The data-type used to represent the intermediate results. Defaults to the data-type of the
output array if such is provided, or the the data-type of the input array if no output array
is provided.

out : ndarray, optional

A location into which the result is stored. If not provided a freshly-allocated array is
returned.

Returns
r : ndarray

The accumulated values. If out was supplied, r is a reference to out.

Examples

1-D array examples:

>>> np.add.accumulate([2, 3, 5])
array([2, 5, 10])
>>> np.multiply.accumulate([2, 3, 5])
array([2, 6, 30])

2-D array examples:

>>> I = np.eye(2)
>>> I
array([[1., 0.],

[0., 1.]])

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate(I, 0)
array([[1., 0.],

[1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
array([[1., 0.],

[1., 1.]])

Accumulate along axis 1 (columns), through rows:

2.7. ufunc 391

NumPy Reference, Release 1.11.1

>>> np.add.accumulate(I, 1)
array([[1., 1.],

[0., 1.]])

ufunc.reduceat(a, indices, axis=0, dtype=None, out=None)
Performs a (local) reduce with specified slices over a single axis.

For i in range(len(indices)), reduceat computes ufunc.reduce(a[indices[i]:indices[i+1]]),
which becomes the i-th generalized “row” parallel to axis in the final result (i.e., in a 2-D array, for example, if
axis = 0, it becomes the i-th row, but if axis = 1, it becomes the i-th column). There are three exceptions to this:

•when i = len(indices) - 1 (so for the last index), indices[i+1] = a.shape[axis].

•if indices[i] >= indices[i + 1], the i-th generalized “row” is simply a[indices[i]].

•if indices[i] >= len(a) or indices[i] < 0, an error is raised.

The shape of the output depends on the size of indices, and may be larger than a (this happens if
len(indices) > a.shape[axis]).

Parameters
a : array_like

The array to act on.

indices : array_like

Paired indices, comma separated (not colon), specifying slices to reduce.

axis : int, optional

The axis along which to apply the reduceat.

dtype : data-type code, optional

The type used to represent the intermediate results. Defaults to the data type of the
output array if this is provided, or the data type of the input array if no output array is
provided.

out : ndarray, optional

A location into which the result is stored. If not provided a freshly-allocated array is
returned.

Returns
r : ndarray

The reduced values. If out was supplied, r is a reference to out.

Notes

A descriptive example:

If a is 1-D, the function ufunc.accumulate(a) is the same as ufunc.reduceat(a, indices)[::2]
where indices is range(len(array) - 1) with a zero placed in every other element: indices =
zeros(2 * len(a) - 1), indices[1::2] = range(1, len(a)).

Don’t be fooled by this attribute’s name: reduceat(a) is not necessarily smaller than a.

Examples

To take the running sum of four successive values:

>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([6, 10, 14, 18])

392 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

A 2-D example:

>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

reduce such that the result has the following five rows:
[row1 + row2 + row3]
[row4]
[row2]
[row3]
[row1 + row2 + row3 + row4]

>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[12., 15., 18., 21.],

[12., 13., 14., 15.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[24., 28., 32., 36.]])

reduce such that result has the following two columns:
[col1 * col2 * col3, col4]

>>> np.multiply.reduceat(x, [0, 3], 1)
array([[0., 3.],

[120., 7.],
[720., 11.],
[2184., 15.]])

ufunc.outer(A, B)
Apply the ufunc op to all pairs (a, b) with a in A and b in B.

Let M = A.ndim, N = B.ndim. Then the result, C, of op.outer(A, B) is an array of dimension M + N
such that:

𝐶[𝑖0, ..., 𝑖𝑀−1, 𝑗0, ..., 𝑗𝑁−1] = 𝑜𝑝(𝐴[𝑖0, ..., 𝑖𝑀−1], 𝐵[𝑗0, ..., 𝑗𝑁−1])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(A)):

for j in range(len(B)):
r[i,j] = op(A[i], B[j]) # op = ufunc in question

Parameters
A : array_like

First array

B : array_like

Second array

Returns
r : ndarray

Output array

2.7. ufunc 393

NumPy Reference, Release 1.11.1

See also:

numpy.outer

Examples

>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[4, 5, 6],

[8, 10, 12],
[12, 15, 18]])

A multi-dimensional example:

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[1, 2, 3, 4]],

[[2, 4, 6, 8]],
[[3, 6, 9, 12]]],

[[[4, 8, 12, 16]],
[[5, 10, 15, 20]],
[[6, 12, 18, 24]]]])

ufunc.at(a, indices, b=None)
Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc,
this method is equivalent to a[indices] += b, except that results are accumulated for elements that are indexed
more than once. For example, a[[0,0]] += 1 will only increment the first element once because of buffering,
whereas add.at(a, [0,0], 1) will increment the first element twice.

New in version 1.8.0.

Parameters
a : array_like

The array to perform in place operation on.

indices : array_like or tuple

Array like index object or slice object for indexing into first operand. If first operand has
multiple dimensions, indices can be a tuple of array like index objects or slice objects.

b : array_like

Second operand for ufuncs requiring two operands. Operand must be broadcastable
over first operand after indexing or slicing.

Examples

Set items 0 and 1 to their negative values:

>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> print(a)
array([-1, -2, 3, 4])

Increment items 0 and 1, and increment item 2 twice:

394 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> print(a)
array([2, 3, 5, 4])

Add items 0 and 1 in first array to second array, and store results in first array:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
>>> print(a)
array([2, 4, 3, 4])

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result
will silently wrap. One should use dtype to increase the size of the data-type over which reduction takes place.

2.8 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety
of operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g.,
add(a, b) is called internally when a + b is written and a or b is an ndarray). Nevertheless, you may still want
to use the ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of
your choice.

Recall that each ufunc operates element-by-element. Therefore, each ufunc will be described as if acting on a set of
scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

2.8.1 Math operations

add(x1, x2[, out]) Add arguments element-wise.
subtract(x1, x2[, out]) Subtract arguments, element-wise.
multiply(x1, x2[, out]) Multiply arguments element-wise.
divide(x1, x2[, out]) Divide arguments element-wise.
logaddexp(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs in base-2.
true_divide(x1, x2[, out]) Returns a true division of the inputs, element-wise.
floor_divide(x1, x2[, out]) Return the largest integer smaller or equal to the division of the inputs.
negative(x[, out]) Numerical negative, element-wise.
power(x1, x2[, out]) First array elements raised to powers from second array, element-wise.
remainder(x1, x2[, out]) Return element-wise remainder of division.
mod(x1, x2[, out]) Return element-wise remainder of division.
fmod(x1, x2[, out]) Return the element-wise remainder of division.
absolute(x[, out]) Calculate the absolute value element-wise.
rint(x[, out]) Round elements of the array to the nearest integer.
sign(x[, out]) Returns an element-wise indication of the sign of a number.
conj(x[, out]) Return the complex conjugate, element-wise.

Continued on next page

2.8. Available ufuncs 395

NumPy Reference, Release 1.11.1

Table 2.5 – continued from previous page
exp(x[, out]) Calculate the exponential of all elements in the input array.
exp2(x[, out]) Calculate 2**p for all p in the input array.
log(x[, out]) Natural logarithm, element-wise.
log2(x[, out]) Base-2 logarithm of x.
log10(x[, out]) Return the base 10 logarithm of the input array, element-wise.
expm1(x[, out]) Calculate exp(x) - 1 for all elements in the array.
log1p(x[, out]) Return the natural logarithm of one plus the input array, element-wise.
sqrt(x[, out]) Return the positive square-root of an array, element-wise.
square(x[, out]) Return the element-wise square of the input.
reciprocal(x[, out]) Return the reciprocal of the argument, element-wise.
ones_like(a[, dtype, order, subok]) Return an array of ones with the same shape and type as a given array.

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are
large, complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of
temporary calculation spaces. For example, the expression G = a * b + c is equivalent to t1 = A * B; G =
T1 + C; del t1. It will be more quickly executed as G = A * B; add(G, C, G) which is the same as G
= A * B; G += C.

2.8.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180∘/𝜋.

sin(x[, out]) Trigonometric sine, element-wise.
cos(x[, out]) Cosine element-wise.
tan(x[, out]) Compute tangent element-wise.
arcsin(x[, out]) Inverse sine, element-wise.
arccos(x[, out]) Trigonometric inverse cosine, element-wise.
arctan(x[, out]) Trigonometric inverse tangent, element-wise.
arctan2(x1, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
hypot(x1, x2[, out]) Given the “legs” of a right triangle, return its hypotenuse.
sinh(x[, out]) Hyperbolic sine, element-wise.
cosh(x[, out]) Hyperbolic cosine, element-wise.
tanh(x[, out]) Compute hyperbolic tangent element-wise.
arcsinh(x[, out]) Inverse hyperbolic sine element-wise.
arccosh(x[, out]) Inverse hyperbolic cosine, element-wise.
arctanh(x[, out]) Inverse hyperbolic tangent element-wise.
deg2rad(x[, out]) Convert angles from degrees to radians.
rad2deg(x[, out]) Convert angles from radians to degrees.

2.8.3 Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise_and(x1, x2[, out]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2[, out]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2[, out]) Compute the bit-wise XOR of two arrays element-wise.

Continued on next page

396 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.11.1

Table 2.7 – continued from previous page
invert(x[, out]) Compute bit-wise inversion, or bit-wise NOT, element-wise.
left_shift(x1, x2[, out]) Shift the bits of an integer to the left.
right_shift(x1, x2[, out]) Shift the bits of an integer to the right.

2.8.4 Comparison functions

greater(x1, x2[, out]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2[, out]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2[, out]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2[, out]) Return the truth value of (x1 =< x2) element-wise.
not_equal(x1, x2[, out]) Return (x1 != x2) element-wise.
equal(x1, x2[, out]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords
will test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators
& and | instead.

logical_and(x1, x2[, out]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2[, out]) Compute the truth value of x1 OR x2 element-wise.
logical_xor(x1, x2[, out]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x[, out]) Compute the truth value of NOT x element-wise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons.
Be sure you understand the operator precedence: (a > 2) & (a < 5) is the proper syntax because a > 2
& a < 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(x1, x2[, out]) Element-wise maximum of array elements.

Tip: The Python function max() will find the maximum over a one-dimensional array, but it will do so using a
slower sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max() method will
not give answers you might expect for arrays with greater than one dimension. The reduce method of minimum also
allows you to compute a total minimum over an array.

minimum(x1, x2[, out]) Element-wise minimum of array elements.

Warning: the behavior of maximum(a, b) is different than that of max(a, b). As a ufunc, maximum(a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to
which element in the two arrays is larger. In contrast, max(a, b) treats the objects a and b as a whole, looks at
the (total) truth value of a > b and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) and min(a, b).

fmax(x1, x2[, out]) Element-wise maximum of array elements.
fmin(x1, x2[, out]) Element-wise minimum of array elements.

2.8. Available ufuncs 397

NumPy Reference, Release 1.11.1

2.8.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description
details only a single operation.

isreal(x) Returns a bool array, where True if input element is real.
iscomplex(x) Returns a bool array, where True if input element is complex.
isfinite(x[, out]) Test element-wise for finiteness (not infinity or not Not a Number).
isinf(x[, out]) Test element-wise for positive or negative infinity.
isnan(x[, out]) Test element-wise for NaN and return result as a boolean array.
signbit(x[, out]) Returns element-wise True where signbit is set (less than zero).
copysign(x1, x2[, out]) Change the sign of x1 to that of x2, element-wise.
nextafter(x1, x2[, out]) Return the next floating-point value after x1 towards x2, element-wise.
modf(x[, out1, out2]) Return the fractional and integral parts of an array, element-wise.
ldexp(x1, x2[, out]) Returns x1 * 2**x2, element-wise.
frexp(x[, out1, out2]) Decompose the elements of x into mantissa and twos exponent.
fmod(x1, x2[, out]) Return the element-wise remainder of division.
floor(x[, out]) Return the floor of the input, element-wise.
ceil(x[, out]) Return the ceiling of the input, element-wise.
trunc(x[, out]) Return the truncated value of the input, element-wise.

398 Chapter 2. Universal functions (ufunc)

CHAPTER

THREE

ROUTINES

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code,
which demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the %doctest_mode mode of IPython, which allows for pasting of multi-
line examples and preserves indentation.

3.1 Array creation routines

See also:

Array creation

3.1.1 Ones and zeros

empty(shape[, dtype, order]) Return a new array of given shape and type, without initializing entries.
empty_like(a[, dtype, order, subok]) Return a new array with the same shape and type as a given array.
eye(N[, M, k, dtype]) Return a 2-D array with ones on the diagonal and zeros elsewhere.
identity(n[, dtype]) Return the identity array.
ones(shape[, dtype, order]) Return a new array of given shape and type, filled with ones.
ones_like(a[, dtype, order, subok]) Return an array of ones with the same shape and type as a given array.
zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with zeros.
zeros_like(a[, dtype, order, subok]) Return an array of zeros with the same shape and type as a given array.
full(shape, fill_value[, dtype, order]) Return a new array of given shape and type, filled with fill_value.
full_like(a, fill_value[, dtype, order, subok]) Return a full array with the same shape and type as a given array.

numpy.empty(shape, dtype=float, order=’C’)
Return a new array of given shape and type, without initializing entries.

Parameters
shape : int or tuple of int

Shape of the empty array

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

399

NumPy Reference, Release 1.11.1

Whether to store multi-dimensional data in row-major (C-style) or column-major
(Fortran-style) order in memory.

Returns
out : ndarray

Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays
will be initialized to None.

See also:

empty_like, zeros, ones

Notes

empty , unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[496041986, 19249760]]) #random

numpy.empty_like(a, dtype=None, order=’K’, subok=True)
Return a new array with the same shape and type as a given array.

Parameters
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a
as closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of uninitialized (arbitrary) data with the same shape and type as a.

See also:

ones_like
Return an array of ones with shape and type of input.

400 Chapter 3. Routines

NumPy Reference, Release 1.11.1

zeros_like
Return an array of zeros with shape and type of input.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It
may be marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random

[0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random

[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

numpy.eye(N, M=None, k=0, dtype=<type ‘float’>)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters
N : int

Number of rows in the output.

M : int, optional

Number of columns in the output. If None, defaults to N.

k : int, optional

Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers
to an upper diagonal, and a negative value to a lower diagonal.

dtype : data-type, optional

Data-type of the returned array.

Returns
I : ndarray of shape (N,M)

An array where all elements are equal to zero, except for the k-th diagonal, whose values
are equal to one.

See also:

identity
(almost) equivalent function

diag
diagonal 2-D array from a 1-D array specified by the user.

3.1. Array creation routines 401

NumPy Reference, Release 1.11.1

Examples

>>> np.eye(2, dtype=int)
array([[1, 0],

[0, 1]])
>>> np.eye(3, k=1)
array([[0., 1., 0.],

[0., 0., 1.],
[0., 0., 0.]])

numpy.identity(n, dtype=None)
Return the identity array.

The identity array is a square array with ones on the main diagonal.

Parameters
n : int

Number of rows (and columns) in n x n output.

dtype : data-type, optional

Data-type of the output. Defaults to float.

Returns
out : ndarray

n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

numpy.ones(shape, dtype=None, order=’C’)
Return a new array of given shape and type, filled with ones.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of ones with the given shape, dtype, and order.

See also:

zeros, ones_like

402 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],

[1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

numpy.ones_like(a, dtype=None, order=’K’, subok=True)
Return an array of ones with the same shape and type as a given array.

Parameters
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of ones with the same shape and type as a.

See also:

zeros_like
Return an array of zeros with shape and type of input.

empty_like
Return an empty array with shape and type of input.

zeros
Return a new array setting values to zero.

ones
Return a new array setting values to one.

3.1. Array creation routines 403

NumPy Reference, Release 1.11.1

empty
Return a new uninitialized array.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],

[1, 1, 1]])

>>> y = np.arange(3, dtype=np.float)
>>> y
array([0., 1., 2.])
>>> np.ones_like(y)
array([1., 1., 1.])

numpy.zeros(shape, dtype=float, order=’C’)
Return a new array of given shape and type, filled with zeros.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of zeros with the given shape, dtype, and order.

See also:

zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

404 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],

[0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],

[0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

numpy.zeros_like(a, dtype=None, order=’K’, subok=True)
Return an array of zeros with the same shape and type as a given array.

Parameters
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of zeros with the same shape and type as a.

See also:

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

zeros
Return a new array setting values to zero.

3.1. Array creation routines 405

NumPy Reference, Release 1.11.1

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],

[0, 0, 0]])

>>> y = np.arange(3, dtype=np.float)
>>> y
array([0., 1., 2.])
>>> np.zeros_like(y)
array([0., 0., 0.])

numpy.full(shape, fill_value, dtype=None, order=’C’)
Return a new array of given shape and type, filled with fill_value.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.

fill_value : scalar

Fill value.

dtype : data-type, optional

The desired data-type for the array, e.g., np.int8. Default is float, but will change to
np.array(fill_value).dtype in a future release.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of fill_value with the given shape, dtype, and order.

See also:

zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

full_like
Fill an array with shape and type of input.

406 Chapter 3. Routines

http://docs.python.org/dev/library/functions.html#float

NumPy Reference, Release 1.11.1

zeros
Return a new array setting values to zero.

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

Examples

>>> np.full((2, 2), np.inf)
array([[inf, inf],

[inf, inf]])
>>> np.full((2, 2), 10, dtype=np.int)
array([[10, 10],

[10, 10]])

numpy.full_like(a, fill_value, dtype=None, order=’K’, subok=True)
Return a full array with the same shape and type as a given array.

Parameters
a : array_like

The shape and data-type of a define these same attributes of the returned array.

fill_value : scalar

Fill value.

dtype : data-type, optional

Overrides the data type of the result.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of fill_value with the same shape and type as a.

See also:

zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

zeros
Return a new array setting values to zero.

3.1. Array creation routines 407

NumPy Reference, Release 1.11.1

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

full
Fill a new array.

Examples

>>> x = np.arange(6, dtype=np.int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([nan, nan, nan, nan, nan, nan])

>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

3.1.2 From existing data

array(object[, dtype, copy, order, subok, ndmin]) Create an array.
asarray(a[, dtype, order]) Convert the input to an array.
asanyarray(a[, dtype, order]) Convert the input to an ndarray, but pass ndarray subclasses through.
ascontiguousarray(a[, dtype]) Return a contiguous array in memory (C order).
asmatrix(data[, dtype]) Interpret the input as a matrix.
copy(a[, order]) Return an array copy of the given object.
frombuffer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.
fromfile(file[, dtype, count, sep]) Construct an array from data in a text or binary file.
fromfunction(function, shape, **kwargs) Construct an array by executing a function over each coordinate.
fromiter(iterable, dtype[, count]) Create a new 1-dimensional array from an iterable object.
fromstring(string[, dtype, count, sep]) A new 1-D array initialized from raw binary or text data in a string.
loadtxt(fname[, dtype, comments, delimiter, ...]) Load data from a text file.

numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
Create an array.

Parameters
object : array_like

An array, any object exposing the array interface, an object whose __array__ method
returns an array, or any (nested) sequence.

dtype : data-type, optional

The desired data-type for the array. If not given, then the type will be determined as the
minimum type required to hold the objects in the sequence. This argument can only be
used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy : bool, optional

408 Chapter 3. Routines

NumPy Reference, Release 1.11.1

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (dtype, order, etc.).

order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’, then the array will be in C-contiguous
order (last-index varies the fastest). If order is ‘F’, then the returned array will be in
Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then
the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous), unless a copy is required, in which case it will be C-contiguous.

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned array will be
forced to be a base-class array (default).

ndmin : int, optional

Specifies the minimum number of dimensions that the resulting array should have. Ones
will be pre-pended to the shape as needed to meet this requirement.

Returns
out : ndarray

An array object satisfying the specified requirements.

See also:

empty , empty_like, zeros, zeros_like, ones, ones_like, fill

Examples

>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],

[3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

3.1. Array creation routines 409

NumPy Reference, Release 1.11.1

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],

[3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],

[3, 4]])

numpy.asarray(a, dtype=None, order=None)
Convert the input to an array.

Parameters
a : array_like

Input data, in any form that can be converted to an array. This includes lists, lists of
tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (C-style) or column-major (Fortran-style) memory represen-
tation. Defaults to ‘C’.

Returns
out : ndarray

Array interpretation of a. No copy is performed if the input is already an ndarray. If a
is a subclass of ndarray, a base class ndarray is returned.

See also:

asanyarray
Similar function which passes through subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfarray
Convert input to a floating point ndarray.

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

410 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray , ndarray subclasses are not passed through:

>>> issubclass(np.matrix, np.ndarray)
True
>>> a = np.matrix([[1, 2]])
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

numpy.asanyarray(a, dtype=None, order=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters
a : array_like

Input data, in any form that can be converted to an array. This includes scalars, lists,
lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (C-style) or column-major (Fortran-style) memory represen-
tation. Defaults to ‘C’.

Returns
out : ndarray or an ndarray subclass

Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is
and no copy is performed.

See also:

asarray
Similar function which always returns ndarrays.

ascontiguousarray
Convert input to a contiguous array.

asfarray
Convert input to a floating point ndarray.

3.1. Array creation routines 411

NumPy Reference, Release 1.11.1

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True

numpy.ascontiguousarray(a, dtype=None)
Return a contiguous array in memory (C order).

Parameters
a : array_like

Input array.

dtype : str or dtype object, optional

Data-type of returned array.

Returns
out : ndarray

Contiguous array of same shape and content as a, with type dtype if specified.

See also:

asfortranarray
Convert input to an ndarray with column-major memory order.

require
Return an ndarray that satisfies requirements.

ndarray.flags
Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True

412 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.copy(a, order=’K’)
Return an array copy of the given object.

Parameters
a : array_like

Input data.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a
as closely as possible. (Note that this function and :meth:ndarray.copy are very similar,
but have different default values for their order= arguments.)

Returns
arr : ndarray

Array interpretation of a.

Notes

This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.

Parameters
buffer : buffer_like

An object that exposes the buffer interface.

dtype : data-type, optional

Data-type of the returned array; default: float.

count : int, optional

Number of items to read. -1 means all data in the buffer.

offset : int, optional

Start reading the buffer from this offset; default: 0.

3.1. Array creation routines 413

NumPy Reference, Release 1.11.1

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],

dtype='|S1')

numpy.fromfile(file, dtype=float, count=-1, sep=’‘)
Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text
files. Data written using the tofile method can be read using this function.

Parameters
file : file or str

Open file object or filename.

dtype : data-type

Data type of the returned array. For binary files, it is used to determine the size and
byte-order of the items in the file.

count : int

Number of items to read. -1 means all items (i.e., the complete file).

sep : str

Separator between items if file is a text file. Empty (“”) separator means the file should
be treated as binary. Spaces (” ”) in the separator match zero or more whitespace char-
acters. A separator consisting only of spaces must match at least one whitespace.

See also:

load, save, ndarray.tofile

loadtxt
More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are are
not platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in
the platform independent .npy format using save and load instead.

Examples

Construct an ndarray:

>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25

414 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

Save the raw data to disk:

>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

numpy.fromfunction(function, shape, **kwargs)
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters
function : callable

The function is called with N parameters, where N is the rank of shape. Each param-
eter represents the coordinates of the array varying along a specific axis. For example,
if shape were (2, 2), then the parameters in turn be (0, 0), (0, 1), (1, 0), (1, 1).

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of the coordinate arrays
passed to function.

dtype : data-type, optional

Data-type of the coordinate arrays passed to function. By default, dtype is float.

Returns
fromfunction : any

The result of the call to function is passed back directly. Therefore the shape of
fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

3.1. Array creation routines 415

NumPy Reference, Release 1.11.1

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

numpy.fromiter(iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.

Parameters
iterable : iterable object

An iterable object providing data for the array.

dtype : data-type

The data-type of the returned array.

count : int, optional

The number of items to read from iterable. The default is -1, which means all data is
read.

Returns
out : ndarray

The output array.

Notes

Specify count to improve performance. It allows fromiter to pre-allocate the output array, instead of resizing
it on demand.

Examples

>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, np.float)
array([0., 1., 4., 9., 16.])

numpy.fromstring(string, dtype=float, count=-1, sep=’‘)
A new 1-D array initialized from raw binary or text data in a string.

Parameters
string : str

A string containing the data.

dtype : data-type, optional

The data type of the array; default: float. For binary input data, the data must be in
exactly this format.

count : int, optional

Read this number of dtype elements from the data. If this is negative (the default), the
count will be determined from the length of the data.

sep : str, optional

416 Chapter 3. Routines

NumPy Reference, Release 1.11.1

If not provided or, equivalently, the empty string, the data will be interpreted as binary
data; otherwise, as ASCII text with decimal numbers. Also in this latter case, this
argument is interpreted as the string separating numbers in the data; extra whitespace
between elements is also ignored.

Returns
arr : ndarray

The constructed array.

Raises
ValueError

If the string is not the correct size to satisfy the requested dtype and count.

See also:

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring('\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

numpy.loadtxt(fname, dtype=<type ‘float’>, comments=’#’, delimiter=None, converters=None,
skiprows=0, usecols=None, unpack=False, ndmin=0)

Load data from a text file.

Each row in the text file must have the same number of values.

Parameters
fname : file or str

File, filename, or generator to read. If the filename extension is .gz or .bz2, the file
is first decompressed. Note that generators should return byte strings for Python 3k.

dtype : data-type, optional

Data-type of the resulting array; default: float. If this is a structured data-type, the
resulting array will be 1-dimensional, and each row will be interpreted as an element of
the array. In this case, the number of columns used must match the number of fields in
the data-type.

comments : str or sequence, optional

The characters or list of characters used to indicate the start of a comment; default: ‘#’.

delimiter : str, optional

The string used to separate values. By default, this is any whitespace.

converters : dict, optional

A dictionary mapping column number to a function that will convert that col-
umn to a float. E.g., if column 0 is a date string: converters = {0:
datestr2num}. Converters can also be used to provide a default value for
missing data (but see also genfromtxt): converters = {3: lambda s:
float(s.strip() or 0)}. Default: None.

3.1. Array creation routines 417

NumPy Reference, Release 1.11.1

skiprows : int, optional

Skip the first skiprows lines; default: 0.

usecols : sequence, optional

Which columns to read, with 0 being the first. For example, usecols = (1,4,5)
will extract the 2nd, 5th and 6th columns. The default, None, results in all columns
being read.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be unpacked using
x, y, z = loadtxt(...). When used with a structured data-type, arrays are
returned for each field. Default is False.

ndmin : int, optional

The returned array will have at least ndmin dimensions. Otherwise mono-dimensional
axes will be squeezed. Legal values: 0 (default), 1 or 2.

New in version 1.6.0.

Returns
out : ndarray

Data read from the text file.

See also:

load, fromstring, fromregex

genfromtxt
Load data with missing values handled as specified.

scipy.io.loadmat
reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more
sophisticated handling of, e.g., lines with missing values.

New in version 1.10.0.

The strings produced by the Python float.hex method can be used as input for floats.

Examples

>>> from io import StringIO # StringIO behaves like a file object
>>> c = StringIO("0 1\n2 3")
>>> np.loadtxt(c)
array([[0., 1.],

[2., 3.]])

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
array([('M', 21, 72.0), ('F', 35, 58.0)],

dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO("1,0,2\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x

418 Chapter 3. Routines

NumPy Reference, Release 1.11.1

array([1., 3.])
>>> y
array([2., 4.])

3.1.3 Creating record arrays (numpy.rec)

Note: numpy.rec is the preferred alias for numpy.core.records.

core.records.array(obj[, dtype, shape, ...]) Construct a record array from a wide-variety of objects.
core.records.fromarrays(arrayList[, dtype, ...]) create a record array from a (flat) list of arrays
core.records.fromrecords(recList[, dtype, ...]) create a recarray from a list of records in text form
core.records.fromstring(datastring[, dtype, ...]) create a (read-only) record array from binary data contained in
core.records.fromfile(fd[, dtype, shape, ...]) Create an array from binary file data

numpy.core.records.array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None, copy=True)

Construct a record array from a wide-variety of objects.

numpy.core.records.fromarrays(arrayList, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a record array from a (flat) list of arrays

>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print(r[1])
(2, 'dd', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])

numpy.core.records.fromrecords(recList, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a recarray from a list of records in text form

The data in the same field can be heterogeneous, they will be promoted to the highest data type. This
method is intended for creating smaller record arrays. If used to create large array without formats
defined

r=fromrecords([(2,3.,’abc’)]*100000)

it can be slow.

If formats is None, then this will auto-detect formats. Use list of tuples rather than list of lists for
faster processing.

>>> r=np.core.records.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
... names='col1,col2,col3')
>>> print(r[0])
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
array(['dbe', 'de'],

3.1. Array creation routines 419

NumPy Reference, Release 1.11.1

dtype='|S3')
>>> import pickle
>>> print(pickle.loads(pickle.dumps(r)))
[(456, 'dbe', 1.2) (2, 'de', 1.3)]

numpy.core.records.fromstring(datastring, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

create a (read-only) record array from binary data contained in a string

numpy.core.records.fromfile(fd, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None)

Create an array from binary file data

If file is a string then that file is opened, else it is assumed to be a file object.

>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
>>> fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print(r[5])
(0.5, 10, 'abcde')
>>> r.shape
(10,)

3.1.4 Creating character arrays (numpy.char)

Note: numpy.char is the preferred alias for numpy.core.defchararray.

core.defchararray.array(obj[, itemsize, ...]) Create a chararray .
core.defchararray.asarray(obj[, itemsize, ...]) Convert the input to a chararray , copying the data only if necessary.

numpy.core.defchararray.asarray(obj, itemsize=None, unicode=None, order=None)
Convert the input to a chararray , copying the data only if necessary.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:

1.values automatically have whitespace removed from the end when indexed

2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +,
*,‘‘%‘‘)

Parameters
obj : array of str or unicode-like

itemsize : int, optional

420 Chapter 3. Routines

NumPy Reference, Release 1.11.1

itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into itemsize pieces.

unicode : bool, optional

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

• a chararray ,

• an ndarray of type str or ‘unicode‘

• a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order : {‘C’, ‘F’}, optional

Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest).

3.1.5 Numerical ranges

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.
linspace(start, stop[, num, endpoint, ...]) Return evenly spaced numbers over a specified interval.
logspace(start, stop[, num, endpoint, base, ...]) Return numbers spaced evenly on a log scale.
meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors.
mgrid nd_grid instance which returns a dense multi-dimensional “meshgrid”.
ogrid nd_grid instance which returns an open multi-dimensional “meshgrid”.

numpy.arange([start], stop[, step], dtype=None)
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters
start : number, optional

Start of interval. The interval includes this value. The default start value is 0.

stop : number

End of interval. The interval does not include this value, except in some cases where
step is not an integer and floating point round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance between two adjacent
values, out[i+1] - out[i]. The default step size is 1. If step is specified, start
must also be given.

dtype : dtype

3.1. Array creation routines 421

http://docs.python.org/lib/built-in-funcs.html

NumPy Reference, Release 1.11.1

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

Returns
arange : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is ceil((stop -
start)/step). Because of floating point overflow, this rule may result in the last
element of out being greater than stop.

See also:

linspace
Evenly spaced numbers with careful handling of endpoints.

ogrid
Arrays of evenly spaced numbers in N-dimensions.

mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

Parameters
start : scalar

The starting value of the sequence.

stop : scalar

The end value of the sequence, unless endpoint is set to False. In that case, the sequence
consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded.
Note that the step size changes when endpoint is False.

num : int, optional

Number of samples to generate. Default is 50. Must be non-negative.

endpoint : bool, optional

If True, stop is the last sample. Otherwise, it is not included. Default is True.

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.

dtype : dtype, optional

422 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

New in version 1.9.0.

Returns
samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or
the half-open interval [start, stop) (depending on whether endpoint is True or
False).

step : float

Only returned if retstep is True

Size of spacing between samples.

See also:

arange
Similar to linspace, but uses a step size (instead of the number of samples).

logspace
Samples uniformly distributed in log space.

Examples

>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3.])

>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])

>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

3.1. Array creation routines 423

NumPy Reference, Release 1.11.1

0 2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at base ** start (base to the power of start) and ends with base **
stop (see endpoint below).

Parameters
start : float

base ** start is the starting value of the sequence.

stop : float

base ** stop is the final value of the sequence, unless endpoint is False. In that
case, num + 1 values are spaced over the interval in log-space, of which all but the
last (a sequence of length num) are returned.

num : integer, optional

Number of samples to generate. Default is 50.

endpoint : boolean, optional

If true, stop is the last sample. Otherwise, it is not included. Default is True.

base : float, optional

The base of the log space. The step size between the elements in ln(samples) /
ln(base) (or log_base(samples)) is uniform. Default is 10.0.

dtype : dtype

The type of the output array. If dtype is not given, infer the data type from the other
input arguments.

Returns
samples : ndarray

num samples, equally spaced on a log scale.

See also:

424 Chapter 3. Routines

NumPy Reference, Release 1.11.1

arange
Similar to linspace, with the step size specified instead of the number of samples. Note that, when used
with a float endpoint, the endpoint may or may not be included.

linspace
Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

Notes

Logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
...
>>> power(base, y).astype(dtype)
...

Examples

>>> np.logspace(2.0, 3.0, num=4)
array([100. , 215.443469 , 464.15888336, 1000.])

>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([100. , 177.827941 , 316.22776602, 562.34132519])

>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([4. , 5.0396842 , 6.34960421, 8.])

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

3.1. Array creation routines 425

NumPy Reference, Release 1.11.1

numpy.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.

Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-
dimensional coordinate arrays x1, x2,..., xn.

Changed in version 1.9: 1-D and 0-D cases are allowed.

Parameters
x1, x2,..., xn : array_like

1-D arrays representing the coordinates of a grid.

indexing : {‘xy’, ‘ij’}, optional

Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See Notes for more details.

New in version 1.7.0.

sparse : bool, optional

If True a sparse grid is returned in order to conserve memory. Default is False.

New in version 1.7.0.

copy : bool, optional

If False, a view into the original arrays are returned in order to conserve memory. De-
fault is True. Please note that sparse=False, copy=False will likely return
non-contiguous arrays. Furthermore, more than one element of a broadcast array may
refer to a single memory location. If you need to write to the arrays, make copies first.

New in version 1.7.0.

Returns
X1, X2,..., XN : ndarray

For vectors x1, x2,..., ‘xn’ with lengths Ni=len(xi) , return (N1, N2,
N3,...Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,...Nn) shaped ar-
rays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first
dimension for x1, the second for x2 and so on.

See also:

index_tricks.mgrid
Construct a multi-dimensional “meshgrid” using indexing notation.

index_tricks.ogrid
Construct an open multi-dimensional “meshgrid” using indexing notation.

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’
returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case
with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing.
In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P)
for ‘ij’ indexing. The difference is illustrated by the following code snippet:

xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):

for j in range(ny):
treat xv[i,j], yv[i,j]

xv, yv = meshgrid(x, y, sparse=False, indexing='xy')

426 Chapter 3. Routines

NumPy Reference, Release 1.11.1

for i in range(nx):
for j in range(ny):

treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Examples

>>> nx, ny = (3, 2)
>>> x = np.linspace(0, 1, nx)
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = meshgrid(x, y)
>>> xv
array([[0. , 0.5, 1.],

[0. , 0.5, 1.]])
>>> yv
array([[0., 0., 0.],

[1., 1., 1.]])
>>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv
array([[0. , 0.5, 1.]])
>>> yv
array([[0.],

[1.]])

meshgrid is very useful to evaluate functions on a grid.

>>> x = np.arange(-5, 5, 0.1)
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = meshgrid(x, y, sparse=True)
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
>>> h = plt.contourf(x,y,z)

numpy.mgrid = <numpy.lib.index_tricks.nd_grid object>
nd_grid instance which returns a dense multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an dense (or fleshed out) mesh-grid
when indexed, so that each returned argument has the same shape. The dimensions and number of the output
arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop
is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ndarrays all of the same dimensions

See also:

numpy.lib.index_tricks.nd_grid
class of ogrid and mgrid objects

ogrid
like mgrid but returns open (not fleshed out) mesh grids

r_
array concatenator

3.1. Array creation routines 427

NumPy Reference, Release 1.11.1

Examples

>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],

[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

numpy.ogrid = <numpy.lib.index_tricks.nd_grid object>
nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open (i.e. not fleshed out) mesh-
grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and
number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ndarrays with only one dimension ̸= 1

See also:

np.lib.index_tricks.nd_grid
class of ogrid and mgrid objects

mgrid
like ogrid but returns dense (or fleshed out) mesh grids

r_
array concatenator

Examples

>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])
>>> ogrid[0:5,0:5]
[array([[0],

[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]

3.1.6 Building matrices

diag(v[, k]) Extract a diagonal or construct a diagonal array.
Continued on next page

428 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Table 3.6 – continued from previous page
diagflat(v[, k]) Create a two-dimensional array with the flattened input as a diagonal.
tri(N[, M, k, dtype]) An array with ones at and below the given diagonal and zeros elsewhere.
tril(m[, k]) Lower triangle of an array.
triu(m[, k]) Upper triangle of an array.
vander(x[, N, increasing]) Generate a Vandermonde matrix.

numpy.diag(v, k=0)
Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you
are using.

Parameters
v : array_like

If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a 2-D
array with v on the k-th diagonal.

k : int, optional

Diagonal in question. The default is 0. Use k>0 for diagonals above the main diagonal,
and k<0 for diagonals below the main diagonal.

Returns
out : ndarray

The extracted diagonal or constructed diagonal array.

See also:

diagonal
Return specified diagonals.

diagflat
Create a 2-D array with the flattened input as a diagonal.

trace
Sum along diagonals.

triu
Upper triangle of an array.

tril
Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])

3.1. Array creation routines 429

NumPy Reference, Release 1.11.1

>>> np.diag(x, k=-1)
array([3, 7])

>>> np.diag(np.diag(x))
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 8]])

numpy.diagflat(v, k=0)
Create a two-dimensional array with the flattened input as a diagonal.

Parameters
v : array_like

Input data, which is flattened and set as the k-th diagonal of the output.

k : int, optional

Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive (negative)
k giving the number of the diagonal above (below) the main.

Returns
out : ndarray

The 2-D output array.

See also:

diag
MATLAB work-alike for 1-D and 2-D arrays.

diagonal
Return specified diagonals.

trace
Sum along diagonals.

Examples

>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],

[0, 0, 2],
[0, 0, 0]])

numpy.tri(N, M=None, k=0, dtype=<type ‘float’>)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters
N : int

Number of rows in the array.

M : int, optional

Number of columns in the array. By default, M is taken equal to N.

k : int, optional

430 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The sub-diagonal at and below which the array is filled. k = 0 is the main diagonal,
while k < 0 is below it, and k > 0 is above. The default is 0.

dtype : dtype, optional

Data type of the returned array. The default is float.

Returns
tri : ndarray of shape (N, M)

Array with its lower triangle filled with ones and zero elsewhere; in other words
T[i,j] == 1 for i <= j + k, 0 otherwise.

Examples

>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

>>> np.tri(3, 5, -1)
array([[0., 0., 0., 0., 0.],

[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.]])

numpy.tril(m, k=0)
Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.

Parameters
m : array_like, shape (M, N)

Input array.

k : int, optional

Diagonal above which to zero elements. k = 0 (the default) is the main diagonal, k < 0
is below it and k > 0 is above.

Returns
tril : ndarray, shape (M, N)

Lower triangle of m, of same shape and data-type as m.

See also:

triu
same thing, only for the upper triangle

Examples

>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[0, 0, 0],

[4, 0, 0],
[7, 8, 0],
[10, 11, 12]])

numpy.triu(m, k=0)
Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal zeroed.

3.1. Array creation routines 431

NumPy Reference, Release 1.11.1

Please refer to the documentation for tril for further details.

See also:

tril
lower triangle of an array

Examples

>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[1, 2, 3],

[4, 5, 6],
[0, 8, 9],
[0, 0, 12]])

numpy.vander(x, N=None, increasing=False)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector
raised element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters
x : array_like

1-D input array.

N : int, optional

Number of columns in the output. If N is not specified, a square array is returned (N =
len(x)).

increasing : bool, optional

Order of the powers of the columns. If True, the powers increase from left to right, if
False (the default) they are reversed.

New in version 1.9.0.

Returns
out : ndarray

Vandermonde matrix. If increasing is False, the first column is x^(N-1), the second
x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

Examples

>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

432 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],

[8, 4, 2, 1],
[27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],

[1, 2, 4, 8],
[1, 3, 9, 27],
[1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

3.1.7 The Matrix class

mat(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or array.

numpy.mat(data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix(data, copy=False).

Parameters
data : array_like

Input data.

dtype : data-type

Data-type of the output matrix.

Returns
mat : matrix

data interpreted as a matrix.

Examples

>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

3.1. Array creation routines 433

NumPy Reference, Release 1.11.1

>>> x[0,0] = 5

>>> m
matrix([[5, 2],

[3, 4]])

3.2 Array manipulation routines

3.2.1 Basic operations

copyto(dst, src[, casting, where]) Copies values from one array to another, broadcasting as necessary.

numpy.copyto(dst, src, casting=’same_kind’, where=None)
Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if where is provided, it selects which elements to copy.

New in version 1.7.0.

Parameters
dst : ndarray

The array into which values are copied.

src : array_like

The array from which values are copied.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur when copying.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

where : array_like of bool, optional

A boolean array which is broadcasted to match the dimensions of dst, and selects ele-
ments to copy from src to dst wherever it contains the value True.

3.2.2 Changing array shape

reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
ravel(a[, order]) Return a contiguous flattened array.
ndarray.flat A 1-D iterator over the array.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.

434 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.reshape(a, newshape, order=’C’)
Gives a new shape to an array without changing its data.

Parameters
a : array_like

Array to be reshaped.

newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Read the elements of a using this index order, and place the elements into the reshaped
array using this index order. ‘C’ means to read / write the elements using C-like index
order, with the last axis index changing fastest, back to the first axis index changing
slowest. ‘F’ means to read / write the elements using Fortran-like index order, with the
first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of indexing. ‘A’ means to read / write the elements in Fortran-like index
order if a is Fortran contiguous in memory, C-like order otherwise.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy. Note there is no
guarantee of the memory layout (C- or Fortran- contiguous) of the returned array.

See also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to be
raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros((10, 2))
A transpose make the array non-contiguous
>>> b = a.T
Taking a view makes it possible to modify the shape without modifying
the initial object.
>>> c = b.view()
>>> c.shape = (20)
AttributeError: incompatible shape for a non-contiguous array

The order keyword gives the index ordering both for fetching the values from a, and then placing the values into
the output array. For example, let’s say you have an array:

>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

You can think of reshaping as first raveling the array (using the given index order), then inserting the elements
from the raveled array into the new array using the same kind of index ordering as was used for the raveling.

3.2. Array manipulation routines 435

NumPy Reference, Release 1.11.1

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],

[2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],

[2, 1, 5]])

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],

[3, 4],
[5, 6]])

numpy.ravel(a, order=’C’)
Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters
a : array_like

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’,’F’, ‘A’, ‘K’}, optional

The elements of a are read using this index order. ‘C’ means to index the elements in
row-major, C-style order, with the last axis index changing fastest, back to the first axis
index changing slowest. ‘F’ means to index the elements in column-major, Fortran-style
order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying
array, and only refer to the order of axis indexing. ‘A’ means to read the elements in
Fortran-like index order if a is Fortran contiguous in memory, C-like order otherwise.
‘K’ means to read the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ index order is used.

Returns
y : array_like

If a is a matrix, y is a 1-D ndarray, otherwise y is an array of the same subtype as a. The
shape of the returned array is (a.size,). Matrices are special cased for backward
compatibility.

See also:

436 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ndarray.flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

ndarray.reshape
Change the shape of an array without changing its data.

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the
quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along
the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-
style index ordering.

When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable.

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(np.ravel(x))
[1 2 3 4 5 6]

>>> print(x.reshape(-1))
[1 2 3 4 5 6]

>>> print(np.ravel(x, order='F'))
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print(np.ravel(x.T))
[1 4 2 5 3 6]
>>> print(np.ravel(x.T, order='A'))
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],

[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

3.2. Array manipulation routines 437

NumPy Reference, Release 1.11.1

3.2.3 Transpose-like operations

438 Chapter 3. Routines

NumPy Reference, Release 1.11.1

moveaxis(a, source, destination) Move axes of an array to new positions.
rollaxis(a, axis[, start]) Roll the specified axis backwards, until it lies in a given position.
swapaxes(a, axis1, axis2) Interchange two axes of an array.
ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
transpose(a[, axes]) Permute the dimensions of an array.

numpy.moveaxis(a, source, destination)
Move axes of an array to new positions.

Other axes remain in their original order.

Parameters
a : np.ndarray

The array whose axes should be reordered.

source : int or sequence of int

Original positions of the axes to move. These must be unique.

destination : int or sequence of int

Destination positions for each of the original axes. These must also be unique.

Returns
result : np.ndarray

Array with moved axes. This array is a view of the input array.

See also:

transpose
Permute the dimensions of an array.

swapaxes
Interchange two axes of an array.

Examples

>>> x = np.zeros((3, 4, 5))
>>> np.moveaxis(x, 0, -1).shape
(4, 5, 3)
>>> np.moveaxis(x, -1, 0).shape
(5, 3, 4)

These all achieve the same result:

>>> np.transpose(x).shape
(5, 4, 3)
>>> np.swapaxis(x, 0, -1).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1], [-1, -2]).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
(5, 4, 3)

numpy.rollaxis(a, axis, start=0)
Roll the specified axis backwards, until it lies in a given position.

3.2. Array manipulation routines 439

NumPy Reference, Release 1.11.1

Parameters
a : ndarray

Input array.

axis : int

The axis to roll backwards. The positions of the other axes do not change relative to one
another.

start : int, optional

The axis is rolled until it lies before this position. The default, 0, results in a “complete”
roll.

Returns
res : ndarray

For Numpy >= 1.10 a view of a is always returned. For earlier Numpy versions a view
of a is returned only if the order of the axes is changed, otherwise the input array is
returned.

See also:

moveaxis
Move array axes to new positions.

roll
Roll the elements of an array by a number of positions along a given axis.

Examples

>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

numpy.swapaxes(a, axis1, axis2)
Interchange two axes of an array.

Parameters
a : array_like

Input array.

axis1 : int

First axis.

axis2 : int

Second axis.

Returns
a_swapped : ndarray

For Numpy >= 1.10, if a is an ndarray, then a view of a is returned; otherwise a new
array is created. For earlier Numpy versions a view of a is returned only if the order of
the axes is changed, otherwise the input array is returned.

440 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],

[2],
[3]])

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.swapaxes(x,0,2)
array([[[0, 4],

[2, 6]],
[[1, 5],
[3, 7]]])

numpy.transpose(a, axes=None)
Permute the dimensions of an array.

Parameters
a : array_like

Input array.

axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values
given.

Returns
p : ndarray

a with its axes permuted. A view is returned whenever possible.

See also:

moveaxis, argsort

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],

[2, 3]])

>>> np.transpose(x)
array([[0, 2],

[1, 3]])

3.2. Array manipulation routines 441

NumPy Reference, Release 1.11.1

>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

3.2.4 Changing number of dimensions

atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
atleast_2d(*arys) View inputs as arrays with at least two dimensions.
atleast_3d(*arys) View inputs as arrays with at least three dimensions.
broadcast Produce an object that mimics broadcasting.
broadcast_to(array, shape[, subok]) Broadcast an array to a new shape.
broadcast_arrays(*args, **kwargs) Broadcast any number of arrays against each other.
expand_dims(a, axis) Expand the shape of an array.
squeeze(a[, axis]) Remove single-dimensional entries from the shape of an array.

numpy.atleast_1d(*arys)
Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arys1, arys2, ... : array_like

One or more input arrays.

Returns
ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

Examples

>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

numpy.atleast_2d(*arys)
View inputs as arrays with at least two dimensions.

Parameters
arys1, arys2, ... : array_like

442 Chapter 3. Routines

NumPy Reference, Release 1.11.1

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have two or more dimensions are preserved.

Returns
res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

Examples

>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

numpy.atleast_3d(*arys)
View inputs as arrays with at least three dimensions.

Parameters
arys1, arys2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have three or more dimensions are preserved.

Returns
res1, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D
array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Examples

>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True

3.2. Array manipulation routines 443

NumPy Reference, Release 1.11.1

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

numpy.broadcast_to(array, shape, subok=False)
Broadcast an array to a new shape.

Parameters
array : array_like

The array to broadcast.

shape : tuple

The shape of the desired array.

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned array will be
forced to be a base-class array (default).

Returns
broadcast : array

A readonly view on the original array with the given shape. It is typically not contigu-
ous. Furthermore, more than one element of a broadcasted array may refer to a single
memory location.

Raises
ValueError

If the array is not compatible with the new shape according to NumPy’s broadcasting
rules.

Notes

New in version 1.10.0.

Examples

>>> x = np.array([1, 2, 3])
>>> np.broadcast_to(x, (3, 3))
array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]])

numpy.broadcast_arrays(*args, **kwargs)
Broadcast any number of arrays against each other.

Parameters
‘*args‘ : array_likes

The arrays to broadcast.

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned arrays will be
forced to be a base-class array (default).

444 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
broadcasted : list of arrays

These arrays are views on the original arrays. They are typically not contiguous. Fur-
thermore, more than one element of a broadcasted array may refer to a single memory
location. If you need to write to the arrays, make copies first.

Examples

>>> x = np.array([[1,2,3]])
>>> y = np.array([[1],[2],[3]])
>>> np.broadcast_arrays(x, y)
[array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

Here is a useful idiom for getting contiguous copies instead of non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

numpy.expand_dims(a, axis)
Expand the shape of an array.

Insert a new axis, corresponding to a given position in the array shape.

Parameters
a : array_like

Input array.

axis : int

Position (amongst axes) where new axis is to be inserted.

Returns
res : ndarray

Output array. The number of dimensions is one greater than that of the input array.

See also:

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

3.2. Array manipulation routines 445

NumPy Reference, Release 1.11.1

>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis]
>>> y
array([[1],

[2]])
>>> y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

numpy.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.

Parameters
a : array_like

Input data.

axis : None or int or tuple of ints, optional

New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns
squeezed : ndarray

The input array, but with all or a subset of the dimensions of length 1 removed. This is
always a itself or a view into a.

Examples

>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=(2,)).shape
(1, 3)

3.2.5 Changing kind of array

asarray(a[, dtype, order]) Convert the input to an array.
asanyarray(a[, dtype, order]) Convert the input to an ndarray, but pass ndarray subclasses through.
asmatrix(data[, dtype]) Interpret the input as a matrix.
asfarray(a[, dtype]) Return an array converted to a float type.
asfortranarray(a[, dtype]) Return an array laid out in Fortran order in memory.
ascontiguousarray(a[, dtype]) Return a contiguous array in memory (C order).
asarray_chkfinite(a[, dtype, order]) Convert the input to an array, checking for NaNs or Infs.
asscalar(a) Convert an array of size 1 to its scalar equivalent.
require(a[, dtype, requirements]) Return an ndarray of the provided type that satisfies requirements.

numpy.asfarray(a, dtype=<type ‘numpy.float64’>)
Return an array converted to a float type.

446 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
a : array_like

The input array.

dtype : str or dtype object, optional

Float type code to coerce input array a. If dtype is one of the ‘int’ dtypes, it is replaced
with float64.

Returns
out : ndarray

The input a as a float ndarray.

Examples

>>> np.asfarray([2, 3])
array([2., 3.])
>>> np.asfarray([2, 3], dtype='float')
array([2., 3.])
>>> np.asfarray([2, 3], dtype='int8')
array([2., 3.])

numpy.asfortranarray(a, dtype=None)
Return an array laid out in Fortran order in memory.

Parameters
a : array_like

Input array.

dtype : str or dtype object, optional

By default, the data-type is inferred from the input data.

Returns
out : ndarray

The input a in Fortran, or column-major, order.

See also:

ascontiguousarray
Convert input to a contiguous (C order) array.

asanyarray
Convert input to an ndarray with either row or column-major memory order.

require
Return an ndarray that satisfies requirements.

ndarray.flags
Information about the memory layout of the array.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> y = np.asfortranarray(x)
>>> x.flags['F_CONTIGUOUS']
False
>>> y.flags['F_CONTIGUOUS']
True

3.2. Array manipulation routines 447

NumPy Reference, Release 1.11.1

numpy.asarray_chkfinite(a, dtype=None, order=None)
Convert the input to an array, checking for NaNs or Infs.

Parameters
a : array_like

Input data, in any form that can be converted to an array. This includes lists, lists of
tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs
or Infs.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (C-style) or column-major (Fortran-style) memory represen-
tation. Defaults to ‘C’.

Returns
out : ndarray

Array interpretation of a. No copy is performed if the input is already an ndarray. If a
is a subclass of ndarray, a base class ndarray is returned.

Raises
ValueError

Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).

See also:

asarray
Create and array.

asanyarray
Similar function which passes through subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfarray
Convert input to a floating point ndarray.

asfortranarray
Convert input to an ndarray with column-major memory order.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array. If all elements are finite asarray_chkfinite is identical to asarray.

>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])

Raises ValueError if array_like contains Nans or Infs.

448 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print('ValueError')
...
ValueError

numpy.asscalar(a)
Convert an array of size 1 to its scalar equivalent.

Parameters
a : ndarray

Input array of size 1.

Returns
out : scalar

Scalar representation of a. The output data type is the same type returned by the input’s
item method.

Examples

>>> np.asscalar(np.array([24]))
24

numpy.require(a, dtype=None, requirements=None)
Return an ndarray of the provided type that satisfies requirements.

This function is useful to be sure that an array with the correct flags is returned for passing to compiled code
(perhaps through ctypes).

Parameters
a : array_like

The object to be converted to a type-and-requirement-satisfying array.

dtype : data-type

The required data-type. If None preserve the current dtype. If your application requires
the data to be in native byteorder, include a byteorder specification as a part of the dtype
specification.

requirements : str or list of str

The requirements list can be any of the following

• ‘F_CONTIGUOUS’ (‘F’) - ensure a Fortran-contiguous array

• ‘C_CONTIGUOUS’ (‘C’) - ensure a C-contiguous array

• ‘ALIGNED’ (‘A’) - ensure a data-type aligned array

• ‘WRITEABLE’ (‘W’) - ensure a writable array

• ‘OWNDATA’ (‘O’) - ensure an array that owns its own data

• ‘ENSUREARRAY’, (‘E’) - ensure a base array, instead of a subclass

See also:

asarray
Convert input to an ndarray.

3.2. Array manipulation routines 449

NumPy Reference, Release 1.11.1

asanyarray
Convert to an ndarray, but pass through ndarray subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfortranarray
Convert input to an ndarray with column-major memory order.

ndarray.flags
Information about the memory layout of the array.

Notes

The returned array will be guaranteed to have the listed requirements by making a copy if needed.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

3.2.6 Joining arrays

concatenate((a1, a2, ...)[, axis]) Join a sequence of arrays along an existing axis.
stack(arrays[, axis]) Join a sequence of arrays along a new axis.
column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
dstack(tup) Stack arrays in sequence depth wise (along third axis).
hstack(tup) Stack arrays in sequence horizontally (column wise).
vstack(tup) Stack arrays in sequence vertically (row wise).

numpy.concatenate((a1, a2, ...), axis=0)
Join a sequence of arrays along an existing axis.

Parameters
a1, a2, ... : sequence of array_like

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional

The axis along which the arrays will be joined. Default is 0.

450 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
res : ndarray

The concatenated array.

See also:

ma.concatenate
Concatenate function that preserves input masks.

array_split
Split an array into multiple sub-arrays of equal or near-equal size.

split
Split array into a list of multiple sub-arrays of equal size.

hsplit
Split array into multiple sub-arrays horizontally (column wise)

vsplit
Split array into multiple sub-arrays vertically (row wise)

dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).

stack
Stack a sequence of arrays along a new axis.

hstack
Stack arrays in sequence horizontally (column wise)

vstack
Stack arrays in sequence vertically (row wise)

dstack
Stack arrays in sequence depth wise (along third dimension)

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray
object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected
as input, use the ma.concatenate function from the masked array module instead.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],

[3, 4, 6]])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],

3.2. Array manipulation routines 451

NumPy Reference, Release 1.11.1

mask = [False True False],
fill_value = 999999)

>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],

mask = False,
fill_value = 999999)

>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],

mask = [False True False False False False],
fill_value = 999999)

numpy.stack(arrays, axis=0)
Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0
it will be the first dimension and if axis=-1 it will be the last dimension.

New in version 1.10.0.

Parameters
arrays : sequence of array_like

Each array must have the same shape.

axis : int, optional

The axis in the result array along which the input arrays are stacked.

Returns
stacked : ndarray

The stacked array has one more dimension than the input arrays.

See also:

concatenate
Join a sequence of arrays along an existing axis.

split
Split array into a list of multiple sub-arrays of equal size.

Examples

>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)

>>> np.stack(arrays, axis=1).shape
(3, 10, 4)

>>> np.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],

[2, 3, 4]])

452 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.stack((a, b), axis=-1)
array([[1, 2],

[2, 3],
[3, 4]])

numpy.column_stack(tup)
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked
as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters
tup : sequence of 1-D or 2-D arrays.

Arrays to stack. All of them must have the same first dimension.

Returns
stacked : 2-D array

The array formed by stacking the given arrays.

See also:

hstack, vstack, concatenate

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.dstack(tup)
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds arrays divided
by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for processing.

Parameters
tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all but the third axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

stack
Join a sequence of arrays along a new axis.

vstack
Stack along first axis.

hstack
Stack along second axis.

concatenate
Join a sequence of arrays along an existing axis.

3.2. Array manipulation routines 453

NumPy Reference, Release 1.11.1

dsplit
Split array along third axis.

Notes

Equivalent to np.concatenate(tup, axis=2).

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

numpy.hstack(tup)
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided by
hsplit.

Parameters
tup : sequence of ndarrays

All arrays must have the same shape along all but the second axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

stack
Join a sequence of arrays along a new axis.

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third axis).

concatenate
Join a sequence of arrays along an existing axis.

hsplit
Split array along second axis.

Notes

Equivalent to np.concatenate(tup, axis=1)

454 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

numpy.vstack(tup)
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by vsplit.

Parameters
tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See also:

stack
Join a sequence of arrays along a new axis.

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays along an existing axis.

vsplit
Split array into a list of multiple sub-arrays vertically.

Notes

Equivalent to np.concatenate(tup, axis=0) if tup contains arrays that are at least 2-dimensional.

Examples

>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],

3.2. Array manipulation routines 455

NumPy Reference, Release 1.11.1

[2],
[3],
[2],
[3],
[4]])

3.2.7 Splitting arrays

split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.
array_split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.
dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis (depth).
hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally (column-wise).
vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-wise).

numpy.split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.

Parameters
ary : ndarray

Array to be divided into sub-arrays.

indices_or_sections : int or 1-D array

If indices_or_sections is an integer, N, the array will be divided into N equal arrays
along axis. If such a split is not possible, an error is raised.

If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along
axis the array is split. For example, [2, 3] would, for axis=0, result in

• ary[:2]

• ary[2:3]

• ary[3:]

If an index exceeds the dimension of the array along axis, an empty sub-array is returned
correspondingly.

axis : int, optional

The axis along which to split, default is 0.

Returns
sub-arrays : list of ndarrays

A list of sub-arrays.

Raises
ValueError

If indices_or_sections is given as an integer, but a split does not result in equal division.

See also:

array_split
Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal
division cannot be made.

456 Chapter 3. Routines

NumPy Reference, Release 1.11.1

hsplit
Split array into multiple sub-arrays horizontally (column-wise).

vsplit
Split array into multiple sub-arrays vertically (row wise).

dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

hstack
Stack arrays in sequence horizontally (column wise).

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

Examples

>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
array([3., 4.]),
array([5.]),
array([6., 7.]),
array([], dtype=float64)]

numpy.array_split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.

Please refer to the split documentation. The only difference between these functions is that array_split
allows indices_or_sections to be an integer that does not equally divide the axis.

See also:

split
Split array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(8.0)
>>> np.array_split(x, 3)

[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]

numpy.dsplit(ary, indices_or_sections)
Split array into multiple sub-arrays along the 3rd axis (depth).

Please refer to the split documentation. dsplit is equivalent to split with axis=2, the array is always
split along the third axis provided the array dimension is greater than or equal to 3.

See also:

3.2. Array manipulation routines 457

NumPy Reference, Release 1.11.1

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[0., 1., 2., 3.],

[4., 5., 6., 7.]],
[[8., 9., 10., 11.],
[12., 13., 14., 15.]]])

>>> np.dsplit(x, 2)
[array([[[0., 1.],

[4., 5.]],
[[8., 9.],
[12., 13.]]]),

array([[[2., 3.],
[6., 7.]],

[[10., 11.],
[14., 15.]]])]

>>> np.dsplit(x, np.array([3, 6]))
[array([[[0., 1., 2.],

[4., 5., 6.]],
[[8., 9., 10.],
[12., 13., 14.]]]),

array([[[3.],
[7.]],

[[11.],
[15.]]]),

array([], dtype=float64)]

numpy.hsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always
split along the second axis regardless of the array dimension.

See also:

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[0., 1.],

[4., 5.],
[8., 9.],
[12., 13.]]),

array([[2., 3.],
[6., 7.],
[10., 11.],
[14., 15.]])]

458 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],

[4., 5., 6.],
[8., 9., 10.],
[12., 13., 14.]]),

array([[3.],
[7.],
[11.],
[15.]]),

array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[0., 1.]],

[[4., 5.]]]),
array([[[2., 3.]],

[[6., 7.]]])]

numpy.vsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent to split with axis=0 (default), the array is
always split along the first axis regardless of the array dimension.

See also:

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.vsplit(x, 2)
[array([[0., 1., 2., 3.],

[4., 5., 6., 7.]]),
array([[8., 9., 10., 11.],

[12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]]),

array([[12., 13., 14., 15.]]),
array([], dtype=float64)]

With a higher dimensional array the split is still along the first axis.

3.2. Array manipulation routines 459

NumPy Reference, Release 1.11.1

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.vsplit(x, 2)
[array([[[0., 1.],

[2., 3.]]]),
array([[[4., 5.],

[6., 7.]]])]

3.2.8 Tiling arrays

tile(A, reps) Construct an array by repeating A the number of times given by reps.
repeat(a, repeats[, axis]) Repeat elements of an array.

numpy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted
to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A
to d-dimensions manually before calling this function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps
of (2, 2) is treated as (1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting
operations and functions.

Parameters
A : array_like

The input array.

reps : array_like

The number of repetitions of A along each axis.

Returns
c : ndarray

The tiled output array.

See also:

repeat
Repeat elements of an array.

broadcast_to
Broadcast an array to a new shape

Examples

460 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],

[3, 4],
[1, 2],
[3, 4]])

>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],

[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])

numpy.repeat(a, repeats, axis=None)
Repeat elements of an array.

Parameters
a : array_like

Input array.

repeats : int or array of ints

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.

See also:

tile
Tile an array.

Examples

>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)

3.2. Array manipulation routines 461

NumPy Reference, Release 1.11.1

array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])

>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],

[3, 4],
[3, 4]])

3.2.9 Adding and removing elements

delete(arr, obj[, axis]) Return a new array with sub-arrays along an axis deleted.
insert(arr, obj, values[, axis]) Insert values along the given axis before the given indices.
append(arr, values[, axis]) Append values to the end of an array.
resize(a, new_shape) Return a new array with the specified shape.
trim_zeros(filt[, trim]) Trim the leading and/or trailing zeros from a 1-D array or sequence.
unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.

numpy.delete(arr, obj, axis=None)
Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries
not returned by arr[obj].

Parameters
arr : array_like

Input array.

obj : slice, int or array of ints

Indicate which sub-arrays to remove.

axis : int, optional

The axis along which to delete the subarray defined by obj. If axis is None, obj is
applied to the flattened array.

Returns
out : ndarray

A copy of arr with the elements specified by obj removed. Note that delete does not
occur in-place. If axis is None, out is a flattened array.

See also:

insert
Insert elements into an array.

append
Append elements at the end of an array.

Notes

Often it is preferable to use a boolean mask. For example:

>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further use of mask.

462 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[1, 2, 3, 4],

[5, 6, 7, 8],
[9, 10, 11, 12]])

>>> np.delete(arr, 1, 0)
array([[1, 2, 3, 4],

[9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[2, 4],

[6, 8],
[10, 12]])

>>> np.delete(arr, [1,3,5], None)
array([1, 3, 5, 7, 8, 9, 10, 11, 12])

numpy.insert(arr, obj, values, axis=None)
Insert values along the given axis before the given indices.

Parameters
arr : array_like

Input array.

obj : int, slice or sequence of ints

Object that defines the index or indices before which values is inserted.

New in version 1.8.0.

Support for multiple insertions when obj is a single scalar or a sequence with one ele-
ment (similar to calling insert multiple times).

values : array_like

Values to insert into arr. If the type of values is different from that of arr, values is
converted to the type of arr. values should be shaped so that arr[...,obj,...]
= values is legal.

axis : int, optional

Axis along which to insert values. If axis is None then arr is flattened first.

Returns
out : ndarray

A copy of arr with values inserted. Note that insert does not occur in-place: a new
array is returned. If axis is None, out is a flattened array.

See also:

append
Append elements at the end of an array.

concatenate
Join a sequence of arrays along an existing axis.

delete
Delete elements from an array.

3.2. Array manipulation routines 463

NumPy Reference, Release 1.11.1

Notes

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values
is different from arr[:,[0],:] = values.

Examples

>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],

[2, 2],
[3, 3]])

>>> np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],

[2, 5, 2],
[3, 5, 3]])

Difference between sequence and scalars:

>>> np.insert(a, [1], [[1],[2],[3]], axis=1)
array([[1, 1, 1],

[2, 2, 2],
[3, 3, 3]])

>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True

>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])

>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])

>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])

>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[0, 999, 1, 2, 999, 3],

[4, 999, 5, 6, 999, 7]])

numpy.append(arr, values, axis=None)
Append values to the end of an array.

Parameters
arr : array_like

Values are appended to a copy of this array.

values : array_like

These values are appended to a copy of arr. It must be of the correct shape (the same
shape as arr, excluding axis). If axis is not specified, values can be any shape and will
be flattened before use.

464 Chapter 3. Routines

NumPy Reference, Release 1.11.1

axis : int, optional

The axis along which values are appended. If axis is not given, both arr and values are
flattened before use.

Returns
append : ndarray

A copy of arr with values appended to axis. Note that append does not occur in-place:
a new array is allocated and filled. If axis is None, out is a flattened array.

See also:

insert
Insert elements into an array.

delete
Delete elements from an array.

Examples

>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

When axis is specified, values must have the correct shape.

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):
...
ValueError: arrays must have same number of dimensions

numpy.resize(a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that
this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters
a : array_like

Array to be resized.

new_shape : int or tuple of int

Shape of resized array.

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See also:

ndarray.resize
resize an array in-place.

3.2. Array manipulation routines 465

NumPy Reference, Release 1.11.1

Examples

>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(2,3))
array([[0, 1, 2],

[3, 0, 1]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],

[0, 1, 2, 3]])

numpy.trim_zeros(filt, trim=’fb’)
Trim the leading and/or trailing zeros from a 1-D array or sequence.

Parameters
filt : 1-D array or sequence

Input array.

trim : str, optional

A string with ‘f’ representing trim from front and ‘b’ to trim from back. Default is ‘fb’,
trim zeros from both front and back of the array.

Returns
trimmed : 1-D array or sequence

The result of trimming the input. The input data type is preserved.

Examples

>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])

>>> np.trim_zeros(a, 'b')
array([0, 0, 0, 1, 2, 3, 0, 2, 1])

The input data type is preserved, list/tuple in means list/tuple out.

>>> np.trim_zeros([0, 1, 2, 0])
[1, 2]

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False)
Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique ele-
ments: the indices of the input array that give the unique values, the indices of the unique array that reconstruct
the input array, and the number of times each unique value comes up in the input array.

Parameters
ar : array_like

Input array. This will be flattened if it is not already 1-D.

return_index : bool, optional

If True, also return the indices of ar that result in the unique array.

return_inverse : bool, optional

If True, also return the indices of the unique array that can be used to reconstruct ar.

466 Chapter 3. Routines

NumPy Reference, Release 1.11.1

return_counts : bool, optional

If True, also return the number of times each unique value comes up in ar.

New in version 1.9.0.

Returns
unique : ndarray

The sorted unique values.

unique_indices : ndarray, optional

The indices of the first occurrences of the unique values in the (flattened) original array.
Only provided if return_index is True.

unique_inverse : ndarray, optional

The indices to reconstruct the (flattened) original array from the unique array. Only
provided if return_inverse is True.

unique_counts : ndarray, optional

The number of times each of the unique values comes up in the original array. Only
provided if return_counts is True.

New in version 1.9.0.

See also:

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],

dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],

dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])

3.2. Array manipulation routines 467

NumPy Reference, Release 1.11.1

>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

3.2.10 Rearranging elements

fliplr(m) Flip array in the left/right direction.
flipud(m) Flip array in the up/down direction.
reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
roll(a, shift[, axis]) Roll array elements along a given axis.
rot90(m[, k]) Rotate an array by 90 degrees in the counter-clockwise direction.

numpy.fliplr(m)
Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order
than before.

Parameters
m : array_like

Input array, must be at least 2-D.

Returns
f : ndarray

A view of m with the columns reversed. Since a view is returned, this operation is 𝒪(1).

See also:

flipud
Flip array in the up/down direction.

rot90
Rotate array counterclockwise.

Notes

Equivalent to A[:,::-1]. Requires the array to be at least 2-D.

Examples

>>> A = np.diag([1.,2.,3.])
>>> A
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.fliplr(A)
array([[0., 0., 1.],

[0., 2., 0.],
[3., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.fliplr(A)==A[:,::-1,...])
True

numpy.flipud(m)
Flip array in the up/down direction.

468 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order
than before.

Parameters
m : array_like

Input array.

Returns
out : array_like

A view of m with the rows reversed. Since a view is returned, this operation is 𝒪(1).

See also:

fliplr
Flip array in the left/right direction.

rot90
Rotate array counterclockwise.

Notes

Equivalent to A[::-1,...]. Does not require the array to be two-dimensional.

Examples

>>> A = np.diag([1.0, 2, 3])
>>> A
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.flipud(A)
array([[0., 0., 3.],

[0., 2., 0.],
[1., 0., 0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A)==A[::-1,...])
True

>>> np.flipud([1,2])
array([2, 1])

numpy.roll(a, shift, axis=None)
Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.

Parameters
a : array_like

Input array.

shift : int

The number of places by which elements are shifted.

axis : int, optional

The axis along which elements are shifted. By default, the array is flattened before
shifting, after which the original shape is restored.

3.2. Array manipulation routines 469

NumPy Reference, Release 1.11.1

Returns
res : ndarray

Output array, with the same shape as a.

See also:

rollaxis
Roll the specified axis backwards, until it lies in a given position.

Examples

>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],

[4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],

[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],

[9, 5, 6, 7, 8]])

numpy.rot90(m, k=1)
Rotate an array by 90 degrees in the counter-clockwise direction.

The first two dimensions are rotated; therefore, the array must be at least 2-D.

Parameters
m : array_like

Array of two or more dimensions.

k : integer

Number of times the array is rotated by 90 degrees.

Returns
y : ndarray

Rotated array.

See also:

fliplr
Flip an array horizontally.

flipud
Flip an array vertically.

Examples

>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],

470 Chapter 3. Routines

NumPy Reference, Release 1.11.1

[3, 4]])
>>> np.rot90(m)
array([[2, 4],

[1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],

[2, 1]])

3.3 Binary operations

3.3.1 Elementwise bit operations

bitwise_and(x1, x2[, out]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2[, out]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2[, out]) Compute the bit-wise XOR of two arrays element-wise.
invert(x[, out]) Compute bit-wise inversion, or bit-wise NOT, element-wise.
left_shift(x1, x2[, out]) Shift the bits of an integer to the left.
right_shift(x1, x2[, out]) Shift the bits of an integer to the right.

numpy.bitwise_and(x1, x2[, out]) = <ufunc ‘bitwise_and’>
Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator &.

Parameters
x1, x2 : array_like

Only integer and boolean types are handled.

Returns
out : array_like

Result.

See also:

logical_and, bitwise_or, bitwise_xor

binary_repr
Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise AND
of 13 and 17 is therefore 000000001, or 1:

>>> np.bitwise_and(13, 17)
1

>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12, 1])

3.3. Binary operations 471

NumPy Reference, Release 1.11.1

>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False, True], dtype=bool)

numpy.bitwise_or(x1, x2[, out]) = <ufunc ‘bitwise_or’>
Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator |.

Parameters
x1, x2 : array_like

Only integer and boolean types are handled.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
out : array_like

Result.

See also:

logical_or, bitwise_and, bitwise_xor

binary_repr
Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation 00001101. Likewise, 16 is represented by 00010000. The
bit-wise OR of 13 and 16 is then 000111011, or 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'

>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33, 6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([True, True], dtype=bool)

472 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.bitwise_xor(x1, x2[, out]) = <ufunc ‘bitwise_xor’>
Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ^.

Parameters
x1, x2 : array_like

Only integer and boolean types are handled.

Returns
out : array_like

Result.

See also:

logical_xor, bitwise_and, bitwise_or

binary_repr
Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR
of 13 and 17 is therefore 00011100, or 28:

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'

>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])

>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([True, False], dtype=bool)

numpy.invert(x[, out]) = <ufunc ‘invert’>
Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ~.

For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers
are represented by the two’s complement of the absolute value. This is the most common method of representing
signed integers on computers [R32]. A N-bit two’s-complement system can represent every integer in the range
−2𝑁−1 to +2𝑁−1 − 1.

Parameters
x1 : array_like

Only integer and boolean types are handled.

Returns
out : array_like

Result.

3.3. Binary operations 473

NumPy Reference, Release 1.11.1

See also:

bitwise_and, bitwise_or, bitwise_xor, logical_not

binary_repr
Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

References

[R32]

Examples

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'

When using signed integer types the result is the two’s complement of the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False]))
array([False, True], dtype=bool)

numpy.left_shift(x1, x2[, out]) = <ufunc ‘left_shift’>
Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1. Since the internal representation of numbers is
in binary format, this operation is equivalent to multiplying x1 by 2**x2.

Parameters
x1 : array_like of integer type

Input values.

x2 : array_like of integer type

Number of zeros to append to x1. Has to be non-negative.

474 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
out : array of integer type

Return x1 with bits shifted x2 times to the left.

See also:

right_shift
Shift the bits of an integer to the right.

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'

>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

numpy.right_shift(x1, x2[, out]) = <ufunc ‘right_shift’>
Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation
is equivalent to dividing x1 by 2**x2.

Parameters
x1 : array_like, int

Input values.

x2 : array_like, int

Number of bits to remove at the right of x1.

Returns
out : ndarray, int

Return x1 with bits shifted x2 times to the right.

See also:

left_shift
Shift the bits of an integer to the left.

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'

3.3. Binary operations 475

NumPy Reference, Release 1.11.1

>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

3.3.2 Bit packing

packbits(myarray[, axis]) Packs the elements of a binary-valued array into bits in a uint8 array.
unpackbits(myarray[, axis]) Unpacks elements of a uint8 array into a binary-valued output array.

numpy.packbits(myarray, axis=None)
Packs the elements of a binary-valued array into bits in a uint8 array.

The result is padded to full bytes by inserting zero bits at the end.

Parameters
myarray : array_like

An integer type array whose elements should be packed to bits.

axis : int, optional

The dimension over which bit-packing is done. None implies packing the flattened
array.

Returns
packed : ndarray

Array of type uint8 whose elements represent bits corresponding to the logical (0 or
nonzero) value of the input elements. The shape of packed has the same number of
dimensions as the input (unless axis is None, in which case the output is 1-D).

See also:

unpackbits
Unpacks elements of a uint8 array into a binary-valued output array.

Examples

>>> a = np.array([[[1,0,1],
... [0,1,0]],
... [[1,1,0],
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
array([[[160],[64]],[[192],[32]]], dtype=uint8)

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000.

numpy.unpackbits(myarray, axis=None)
Unpacks elements of a uint8 array into a binary-valued output array.

Each element of myarray represents a bit-field that should be unpacked into a binary-valued output array. The
shape of the output array is either 1-D (if axis is None) or the same shape as the input array with unpacking done
along the axis specified.

Parameters
myarray : ndarray, uint8 type

Input array.

476 Chapter 3. Routines

NumPy Reference, Release 1.11.1

axis : int, optional

Unpacks along this axis.

Returns
unpacked : ndarray, uint8 type

The elements are binary-valued (0 or 1).

See also:

packbits
Packs the elements of a binary-valued array into bits in a uint8 array.

Examples

>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[2],

[7],
[23]], dtype=uint8)

>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)

3.3.3 Output formatting

binary_repr(num[, width]) Return the binary representation of the input number as a string.

numpy.binary_repr(num, width=None)
Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s
complement of the number is returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s complement of the absolute
value. This is the most common method of representing signed integers on computers [R16]. A N-bit two’s-
complement system can represent every integer in the range −2𝑁−1 to +2𝑁−1 − 1.

Parameters
num : int

Only an integer decimal number can be used.

width : int, optional

The length of the returned string if num is positive, the length of the two’s complement
if num is negative.

Returns
bin : str

Binary representation of num or two’s complement of num.

See also:

3.3. Binary operations 477

NumPy Reference, Release 1.11.1

base_repr
Return a string representation of a number in the given base system.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x faster.

References

[R16]

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and width is specified:

>>> np.binary_repr(-3, width=4)
'1101'

3.4 String operations

This module provides a set of vectorized string operations for arrays of type numpy.string_ or
numpy.unicode_. All of them are based on the string methods in the Python standard library.

3.4.1 String operations

add(x1, x2) Return element-wise string concatenation for two arrays of str or unicode.
multiply(a, i) Return (a * i), that is string multiple concatenation, element-wise.
mod(a, values) Return (a % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of str or unicode.
capitalize(a) Return a copy of a with only the first character of each element capitalized.
center(a, width[, fillchar]) Return a copy of a with its elements centered in a string of length width.
decode(a[, encoding, errors]) Calls str.decode element-wise.
encode(a[, encoding, errors]) Calls str.encode element-wise.
join(sep, seq) Return a string which is the concatenation of the strings in the sequence seq.
ljust(a, width[, fillchar]) Return an array with the elements of a left-justified in a string of length width.
lower(a) Return an array with the elements converted to lowercase.
lstrip(a[, chars]) For each element in a, return a copy with the leading characters removed.
partition(a, sep) Partition each element in a around sep.
replace(a, old, new[, count]) For each element in a, return a copy of the string with all occurrences of substring old replaced by new.
rjust(a, width[, fillchar]) Return an array with the elements of a right-justified in a string of length width.
rpartition(a, sep) Partition (split) each element around the right-most separator.
rsplit(a[, sep, maxsplit]) For each element in a, return a list of the words in the string, using sep as the delimiter string.
rstrip(a[, chars]) For each element in a, return a copy with the trailing characters removed.
split(a[, sep, maxsplit]) For each element in a, return a list of the words in the string, using sep as the delimiter string.
splitlines(a[, keepends]) For each element in a, return a list of the lines in the element, breaking at line boundaries.
strip(a[, chars]) For each element in a, return a copy with the leading and trailing characters removed.

Continued on next page

478 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Table 3.21 – continued from previous page
swapcase(a) Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.
title(a) Return element-wise title cased version of string or unicode.
translate(a, table[, deletechars]) For each element in a, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.
upper(a) Return an array with the elements converted to uppercase.
zfill(a, width) Return the numeric string left-filled with zeros

numpy.core.defchararray.add(x1, x2)
Return element-wise string concatenation for two arrays of str or unicode.

Arrays x1 and x2 must have the same shape.

Parameters
x1 : array_like of str or unicode

Input array.

x2 : array_like of str or unicode

Input array.

Returns
add : ndarray

Output array of string_ or unicode_, depending on input types of the same shape
as x1 and x2.

numpy.core.defchararray.multiply(a, i)
Return (a * i), that is string multiple concatenation, element-wise.

Values in i of less than 0 are treated as 0 (which yields an empty string).

Parameters
a : array_like of str or unicode

i : array_like of ints

Returns
out : ndarray

Output array of str or unicode, depending on input types

numpy.core.defchararray.mod(a, values)
Return (a % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of
str or unicode.

Parameters
a : array_like of str or unicode

values : array_like of values

These values will be element-wise interpolated into the string.

Returns
out : ndarray

Output array of str or unicode, depending on input types

See also:

str.__mod__

3.4. String operations 479

NumPy Reference, Release 1.11.1

numpy.core.defchararray.capitalize(a)
Return a copy of a with only the first character of each element capitalized.

Calls str.capitalize element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Input array of strings to capitalize.

Returns
out : ndarray

Output array of str or unicode, depending on input types

See also:

str.capitalize

Examples

>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'],

dtype='|S4')
>>> np.char.capitalize(c)
array(['A1b2', '1b2a', 'B2a1', '2a1b'],

dtype='|S4')

numpy.core.defchararray.center(a, width, fillchar=’ ‘)
Return a copy of a with its elements centered in a string of length width.

Calls str.center element-wise.

Parameters
a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The padding character to use (default is space).

Returns
out : ndarray

Output array of str or unicode, depending on input types

See also:

str.center

numpy.core.defchararray.decode(a, encoding=None, errors=None)
Calls str.decode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a : array_like of str or unicode

encoding : str, optional

480 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.capitalize
http://docs.python.org/dev/library/stdtypes.html#str.center
http://docs.python.org/dev/library/codecs.html#module-codecs

NumPy Reference, Release 1.11.1

The name of an encoding

errors : str, optional

Specifies how to handle encoding errors

Returns
out : ndarray

See also:

str.decode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.encode(c, encoding='cp037')
array(['\x81\xc1\x81\xc1\x81\xc1', '@@\x81\xc1@@',

'\x81\x82\xc2\xc1\xc2\x82\x81'],
dtype='|S7')

numpy.core.defchararray.encode(a, encoding=None, errors=None)
Calls str.encode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a : array_like of str or unicode

encoding : str, optional

The name of an encoding

errors : str, optional

Specifies how to handle encoding errors

Returns
out : ndarray

See also:

str.encode

Notes

The type of the result will depend on the encoding specified.

numpy.core.defchararray.join(sep, seq)
Return a string which is the concatenation of the strings in the sequence seq.

Calls str.join element-wise.

Parameters
sep : array_like of str or unicode

seq : array_like of str or unicode

3.4. String operations 481

http://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.11.1

Returns
out : ndarray

Output array of str or unicode, depending on input types

See also:

str.join

numpy.core.defchararray.ljust(a, width, fillchar=’ ‘)
Return an array with the elements of a left-justified in a string of length width.

Calls str.ljust element-wise.

Parameters
a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The character to use for padding

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.ljust

numpy.core.defchararray.lower(a)
Return an array with the elements converted to lowercase.

Call str.lower element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like, {str, unicode}

Input array.

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also:

str.lower

Examples

>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
array(['A1B C', '1BCA', 'BCA1'],

dtype='|S5')
>>> np.char.lower(c)
array(['a1b c', '1bca', 'bca1'],

dtype='|S5')

numpy.core.defchararray.lstrip(a, chars=None)
For each element in a, return a copy with the leading characters removed.

482 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.join
http://docs.python.org/dev/library/stdtypes.html#str.ljust
http://docs.python.org/dev/library/stdtypes.html#str.lower

NumPy Reference, Release 1.11.1

Calls str.lstrip element-wise.

Parameters
a : array-like, {str, unicode}

Input array.

chars : {str, unicode}, optional

The chars argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars argument is
not a prefix; rather, all combinations of its values are stripped.

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also:

str.lstrip

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')

The ‘a’ variable is unstripped from c[1] because whitespace leading.

>>> np.char.lstrip(c, 'a')
array(['AaAaA', ' aA ', 'bBABba'],

dtype='|S7')

>>> np.char.lstrip(c, 'A') # leaves c unchanged
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
... # XXX: is this a regression? this line now returns False
... # np.char.lstrip(c,'') does not modify c at all.
True
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
True

numpy.core.defchararray.partition(a, sep)
Partition each element in a around sep.

Calls str.partition element-wise.

For each element in a, split the element as the first occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

Parameters
a : array_like, {str, unicode}

Input array

sep : {str, unicode}

Separator to split each string element in a.

3.4. String operations 483

http://docs.python.org/dev/library/stdtypes.html#str.lstrip

NumPy Reference, Release 1.11.1

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type. The output array will have an
extra dimension with 3 elements per input element.

See also:

str.partition

numpy.core.defchararray.replace(a, old, new, count=None)
For each element in a, return a copy of the string with all occurrences of substring old replaced by new.

Calls str.replace element-wise.

Parameters
a : array-like of str or unicode

old, new : str or unicode

count : int, optional

If the optional argument count is given, only the first count occurrences are replaced.

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.replace

numpy.core.defchararray.rjust(a, width, fillchar=’ ‘)
Return an array with the elements of a right-justified in a string of length width.

Calls str.rjust element-wise.

Parameters
a : array_like of str or unicode

width : int

The length of the resulting strings

fillchar : str or unicode, optional

The character to use for padding

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.rjust

numpy.core.defchararray.rpartition(a, sep)
Partition (split) each element around the right-most separator.

Calls str.rpartition element-wise.

For each element in a, split the element as the last occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

484 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.partition
http://docs.python.org/dev/library/stdtypes.html#str.replace
http://docs.python.org/dev/library/stdtypes.html#str.rjust

NumPy Reference, Release 1.11.1

Parameters
a : array_like of str or unicode

Input array

sep : str or unicode

Right-most separator to split each element in array.

Returns
out : ndarray

Output array of string or unicode, depending on input type. The output array will have
an extra dimension with 3 elements per input element.

See also:

str.rpartition

numpy.core.defchararray.rsplit(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.

Calls str.rsplit element-wise.

Except for splitting from the right, rsplit behaves like split.

Parameters
a : array_like of str or unicode

sep : str or unicode, optional

If sep is not specified or None, any whitespace string is a separator.

maxsplit : int, optional

If maxsplit is given, at most maxsplit splits are done, the rightmost ones.

Returns
out : ndarray

Array of list objects

See also:

str.rsplit, split

numpy.core.defchararray.rstrip(a, chars=None)
For each element in a, return a copy with the trailing characters removed.

Calls str.rstrip element-wise.

Parameters
a : array-like of str or unicode

chars : str or unicode, optional

The chars argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars argument is
not a suffix; rather, all combinations of its values are stripped.

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.rstrip

3.4. String operations 485

http://docs.python.org/dev/library/stdtypes.html#str.rpartition
http://docs.python.org/dev/library/stdtypes.html#str.rsplit
http://docs.python.org/dev/library/stdtypes.html#str.rstrip

NumPy Reference, Release 1.11.1

Examples

>>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
array(['aAaAaA', 'abBABba'],

dtype='|S7')
>>> np.char.rstrip(c, 'a')
array(['aAaAaA', 'abBABb'],

dtype='|S7')
>>> np.char.rstrip(c, 'A')
array(['aAaAa', 'abBABba'],

dtype='|S7')

numpy.core.defchararray.split(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.

Calls str.rsplit element-wise.

Parameters
a : array_like of str or unicode

sep : str or unicode, optional

If sep is not specified or None, any whitespace string is a separator.

maxsplit : int, optional

If maxsplit is given, at most maxsplit splits are done.

Returns
out : ndarray

Array of list objects

See also:

str.split, rsplit

numpy.core.defchararray.splitlines(a, keepends=None)
For each element in a, return a list of the lines in the element, breaking at line boundaries.

Calls str.splitlines element-wise.

Parameters
a : array_like of str or unicode

keepends : bool, optional

Line breaks are not included in the resulting list unless keepends is given and true.

Returns
out : ndarray

Array of list objects

See also:

str.splitlines

numpy.core.defchararray.strip(a, chars=None)
For each element in a, return a copy with the leading and trailing characters removed.

Calls str.rstrip element-wise.

Parameters
a : array-like of str or unicode

chars : str or unicode, optional

486 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.split
http://docs.python.org/dev/library/stdtypes.html#str.splitlines

NumPy Reference, Release 1.11.1

The chars argument is a string specifying the set of characters to be removed. If omitted
or None, the chars argument defaults to removing whitespace. The chars argument is
not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.strip

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.strip(c)
array(['aAaAaA', 'aA', 'abBABba'],

dtype='|S7')
>>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
array(['AaAaA', ' aA ', 'bBABb'],

dtype='|S7')
>>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
array(['aAaAa', ' aA ', 'abBABba'],

dtype='|S7')

numpy.core.defchararray.swapcase(a)
Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.

Calls str.swapcase element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like, {str, unicode}

Input array.

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also:

str.swapcase

Examples

>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],

dtype='|S5')
>>> np.char.swapcase(c)
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],

dtype='|S5')

numpy.core.defchararray.title(a)
Return element-wise title cased version of string or unicode.

Title case words start with uppercase characters, all remaining cased characters are lowercase.

3.4. String operations 487

http://docs.python.org/dev/library/stdtypes.html#str.strip
http://docs.python.org/dev/library/stdtypes.html#str.swapcase

NumPy Reference, Release 1.11.1

Calls str.title element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like, {str, unicode}

Input array.

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.title

Examples

>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],

dtype='|S5')
>>> np.char.title(c)
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],

dtype='|S5')

numpy.core.defchararray.translate(a, table, deletechars=None)
For each element in a, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation table.

Calls str.translate element-wise.

Parameters
a : array-like of str or unicode

table : str of length 256

deletechars : str

Returns
out : ndarray

Output array of str or unicode, depending on input type

See also:

str.translate

numpy.core.defchararray.upper(a)
Return an array with the elements converted to uppercase.

Calls str.upper element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like, {str, unicode}

Input array.

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

488 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.title
http://docs.python.org/dev/library/stdtypes.html#str.translate

NumPy Reference, Release 1.11.1

See also:

str.upper

Examples

>>> c = np.array(['a1b c', '1bca', 'bca1']); c
array(['a1b c', '1bca', 'bca1'],

dtype='|S5')
>>> np.char.upper(c)
array(['A1B C', '1BCA', 'BCA1'],

dtype='|S5')

numpy.core.defchararray.zfill(a, width)
Return the numeric string left-filled with zeros

Calls str.zfill element-wise.

Parameters
a : array_like, {str, unicode}

Input array.

width : int

Width of string to left-fill elements in a.

Returns
out : ndarray, {str, unicode}

Output array of str or unicode, depending on input type

See also:

str.zfill

3.4.2 Comparison

Unlike the standard numpy comparison operators, the ones in the char module strip trailing whitespace characters
before performing the comparison.

equal(x1, x2) Return (x1 == x2) element-wise.
not_equal(x1, x2) Return (x1 != x2) element-wise.
greater_equal(x1, x2) Return (x1 >= x2) element-wise.
less_equal(x1, x2) Return (x1 <= x2) element-wise.
greater(x1, x2) Return (x1 > x2) element-wise.
less(x1, x2) Return (x1 < x2) element-wise.

numpy.core.defchararray.equal(x1, x2)
Return (x1 == x2) element-wise.

Unlike numpy.equal, this comparison is performed by first stripping whitespace characters from the end of
the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns

3.4. String operations 489

http://docs.python.org/dev/library/stdtypes.html#str.upper
http://docs.python.org/dev/library/stdtypes.html#str.zfill

NumPy Reference, Release 1.11.1

out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

numpy.core.defchararray.not_equal(x1, x2)
Return (x1 != x2) element-wise.

Unlike numpy.not_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, greater_equal, less_equal, greater, less

numpy.core.defchararray.greater_equal(x1, x2)
Return (x1 >= x2) element-wise.

Unlike numpy.greater_equal, this comparison is performed by first stripping whitespace characters from
the end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, less_equal, greater, less

numpy.core.defchararray.less_equal(x1, x2)
Return (x1 <= x2) element-wise.

Unlike numpy.less_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, greater, less

490 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.core.defchararray.greater(x1, x2)
Return (x1 > x2) element-wise.

Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, less

numpy.core.defchararray.less(x1, x2)
Return (x1 < x2) element-wise.

Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 : array_like of str or unicode

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, greater

3.4.3 String information

count(a, sub[, start, end]) Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].
find(a, sub[, start, end]) For each element, return the lowest index in the string where substring sub is found.
index(a, sub[, start, end]) Like find, but raises ValueError when the substring is not found.
isalpha(a) Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdecimal(a) For each element, return True if there are only decimal characters in the element.
isdigit(a) Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.
islower(a) Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.
isnumeric(a) For each element, return True if there are only numeric characters in the element.
isspace(a) Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.
istitle(a) Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.
isupper(a) Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.
rfind(a, sub[, start, end]) For each element in a, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].
rindex(a, sub[, start, end]) Like rfind, but raises ValueError when the substring sub is not found.
startswith(a, prefix[, start, end]) Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

numpy.core.defchararray.count(a, sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

3.4. String operations 491

NumPy Reference, Release 1.11.1

Calls str.count element-wise.

Parameters
a : array_like of str or unicode

sub : str or unicode

The substring to search for.

start, end : int, optional

Optional arguments start and end are interpreted as slice notation to specify the range
in which to count.

Returns
out : ndarray

Output array of ints.

See also:

str.count

Examples

>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'],

dtype='|S7')
>>> np.char.count(c, 'A')
array([3, 1, 1])
>>> np.char.count(c, 'aA')
array([3, 1, 0])
>>> np.char.count(c, 'A', start=1, end=4)
array([2, 1, 1])
>>> np.char.count(c, 'A', start=1, end=3)
array([1, 0, 0])

numpy.core.defchararray.find(a, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

Calls str.find element-wise.

For each element, return the lowest index in the string where substring sub is found, such that sub is contained
in the range [start, end].

Parameters
a : array_like of str or unicode

sub : str or unicode

start, end : int, optional

Optional arguments start and end are interpreted as in slice notation.

Returns
out : ndarray or int

Output array of ints. Returns -1 if sub is not found.

See also:

str.find

492 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.count
http://docs.python.org/dev/library/stdtypes.html#str.find

NumPy Reference, Release 1.11.1

numpy.core.defchararray.index(a, sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

Calls str.index element-wise.

Parameters
a : array_like of str or unicode

sub : str or unicode

start, end : int, optional

Returns
out : ndarray

Output array of ints. Returns -1 if sub is not found.

See also:

find, str.find

numpy.core.defchararray.isalpha(a)
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

Calls str.isalpha element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.isalpha

numpy.core.defchararray.isdecimal(a)
For each element, return True if there are only decimal characters in the element.

Calls unicode.isdecimal element-wise.

Decimal characters include digit characters, and all characters that that can be used to form decimal-radix
numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

Parameters
a : array_like, unicode

Input array.

Returns
out : ndarray, bool

Array of booleans identical in shape to a.

See also:

unicode.isdecimal

numpy.core.defchararray.isdigit(a)
Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.

3.4. String operations 493

http://docs.python.org/dev/library/stdtypes.html#str.find
http://docs.python.org/dev/library/stdtypes.html#str.isalpha

NumPy Reference, Release 1.11.1

Calls str.isdigit element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.isdigit

numpy.core.defchararray.islower(a)
Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

Calls str.islower element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.islower

numpy.core.defchararray.isnumeric(a)
For each element, return True if there are only numeric characters in the element.

Calls unicode.isnumeric element-wise.

Numeric characters include digit characters, and all characters that have the Unicode numeric value property,
e.g. U+2155, VULGAR FRACTION ONE FIFTH.

Parameters
a : array_like, unicode

Input array.

Returns
out : ndarray, bool

Array of booleans of same shape as a.

See also:

unicode.isnumeric

numpy.core.defchararray.isspace(a)
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

Calls str.isspace element-wise.

For 8-bit strings, this method is locale-dependent.

494 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.isdigit
http://docs.python.org/dev/library/stdtypes.html#str.islower

NumPy Reference, Release 1.11.1

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.isspace

numpy.core.defchararray.istitle(a)
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

Call str.istitle element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.istitle

numpy.core.defchararray.isupper(a)
Returns true for each element if all cased characters in the string are uppercase and there is at least one character,
false otherwise.

Call str.isupper element-wise.

For 8-bit strings, this method is locale-dependent.

Parameters
a : array_like of str or unicode

Returns
out : ndarray

Output array of bools

See also:

str.isupper

numpy.core.defchararray.rfind(a, sub, start=0, end=None)
For each element in a, return the highest index in the string where substring sub is found, such that sub is
contained within [start, end].

Calls str.rfind element-wise.

Parameters
a : array-like of str or unicode

sub : str or unicode

start, end : int, optional

Optional arguments start and end are interpreted as in slice notation.

3.4. String operations 495

http://docs.python.org/dev/library/stdtypes.html#str.isspace
http://docs.python.org/dev/library/stdtypes.html#str.istitle
http://docs.python.org/dev/library/stdtypes.html#str.isupper

NumPy Reference, Release 1.11.1

Returns
out : ndarray

Output array of ints. Return -1 on failure.

See also:

str.rfind

numpy.core.defchararray.rindex(a, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

Calls str.rindex element-wise.

Parameters
a : array-like of str or unicode

sub : str or unicode

start, end : int, optional

Returns
out : ndarray

Output array of ints.

See also:

rfind, str.rindex

numpy.core.defchararray.startswith(a, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Calls str.startswith element-wise.

Parameters
a : array_like of str or unicode

prefix : str

start, end : int, optional

With optional start, test beginning at that position. With optional end, stop comparing
at that position.

Returns
out : ndarray

Array of booleans

See also:

str.startswith

3.4.4 Convenience class

chararray Provides a convenient view on arrays of string and unicode values.

class numpy.core.defchararray.chararray
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for

496 Chapter 3. Routines

http://docs.python.org/dev/library/stdtypes.html#str.rfind
http://docs.python.org/dev/library/stdtypes.html#str.rindex
http://docs.python.org/dev/library/stdtypes.html#str.startswith

NumPy Reference, Release 1.11.1

new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy.char module for fast
vectorized string operations.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:

1.values automatically have whitespace removed from the end when indexed

2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",
"*", "%")

chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len(shape) >= 2 and
order=’Fortran’, in which case strides is in “Fortran order”.

Parameters
shape : tuple

Shape of the array.

itemsize : int, optional

Length of each array element, in number of characters. Default is 1.

unicode : bool, optional

Are the array elements of type unicode (True) or string (False). Default is False.

buffer : int, optional

Memory address of the start of the array data. Default is None, in which case a new
array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis? Default is 0. Needs to be >=0.

strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description). Default is None.

order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ -> “row major” order (the
default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([['a', 'a', 'a'],

['a', 'a', 'a'],
['a', 'a', 'a']],
dtype='|S1')

>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar

3.4. String operations 497

NumPy Reference, Release 1.11.1

chararray([['abc', 'abc', 'abc'],
['abc', 'abc', 'abc'],
['abc', 'abc', 'abc']],
dtype='|S5')

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.

chararray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

chararray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

498 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> y = x[2:]
>>> y.base is x
True

chararray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the
ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes
below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c : Python object

Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

•data: A pointer to the memory area of the array as a Python integer. This memory area may contain
data that is not aligned, or not in correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected when passing this attribute to arbitrary
C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is
exactly the same as self._array_interface_[’data’][0].

•shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer
corresponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes
array contains the shape of the underlying array.

•strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for
the shape attribute. This ctypes array contains the strides information from the underlying array.
This strides information is important for showing how many bytes must be jumped to get to the next
element in the array.

•data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data
as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

•shape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

•strides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that
is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid
this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to
the array until ct is deleted or re-assigned.

3.4. String operations 499

NumPy Reference, Release 1.11.1

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],

[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

chararray.data
Python buffer object pointing to the start of the array’s data.

chararray.dtype
Data-type of the array’s elements.

Parameters
None

Returns
d : numpy dtype object

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

chararray.flags
Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags[’WRITEABLE’]), or by using low-
ercased attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary
access.

500 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

•UPDATEIFCOPY can only be set False.

•ALIGNED can only be set True if the data is truly aligned.

•WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbi-
trary if arr.shape[dim] == 1 or the array has no elements. It does not generally hold that
self.strides[-1] == self.itemsize for C-style contiguous arrays or self.strides[0]
== self.itemsize for Fortran-style contiguous arrays is true.

Attributes

C_CONTIGUOUS
(C)

The data is in a single, C-style contiguous segment.

F_CONTIGUOUS
(F)

The data is in a single, Fortran-style contiguous segment.

OWN-
DATA
(O)

The array owns the memory it uses or borrows it from another object.

WRITE-
ABLE
(W)

The data area can be written to. Setting this to False locks the data, making it read-only.
A view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a
view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that
already reference it, so under that circumstance it is possible to alter the contents of a
locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED
(A)

The data and all elements are aligned appropriately for the hardware.

UP-
DATEIF-
COPY
(U)

This array is a copy of some other array. When this array is deallocated, the base array
will be updated with the contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED
(B)

ALIGNED and WRITEABLE.

CARRAY
(CA)

BEHAVED and C_CONTIGUOUS.

FARRAY
(FA)

BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

chararray.flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in
iterator object.

See also:

3.4. String operations 501

NumPy Reference, Release 1.11.1

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

chararray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

chararray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

chararray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

502 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

chararray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

chararray.real
The real part of the array.

See also:

numpy.real
equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

chararray.shape
Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of
elements

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):

3.4. String operations 503

NumPy Reference, Release 1.11.1

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

chararray.size
Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

chararray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20
bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

504 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
copy([order]) Return a copy of the array.
count(sub[, start, end]) Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].
decode([encoding, errors]) Calls str.decode element-wise.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
encode([encoding, errors]) Calls str.encode element-wise.
endswith(suffix[, start, end]) Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.
expandtabs([tabsize]) Return a copy of each string element where all tab characters are replaced by one or more spaces.
fill(value) Fill the array with a scalar value.
find(sub[, start, end]) For each element, return the lowest index in the string where substring sub is found.
flatten([order]) Return a copy of the array collapsed into one dimension.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
index(sub[, start, end]) Like find, but raises ValueError when the substring is not found.
isalnum() Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise.
isalpha() Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdecimal() For each element in self, return True if there are only decimal characters in the element.
isdigit() Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise.
islower() Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.
isnumeric() For each element in self, return True if there are only numeric characters in the element.
isspace() Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise.
istitle() Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.
isupper() Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise.
item(*args) Copy an element of an array to a standard Python scalar and return it.
join(seq) Return a string which is the concatenation of the strings in the sequence seq.
ljust(width[, fillchar]) Return an array with the elements of self left-justified in a string of length width.
lower() Return an array with the elements of self converted to lowercase.
lstrip([chars]) For each element in self, return a copy with the leading characters removed.
nonzero() Return the indices of the elements that are non-zero.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
replace(old, new[, count]) For each element in self, return a copy of the string with all occurrences of substring old replaced by new.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
rfind(sub[, start, end]) For each element in self, return the highest index in the string where substring sub is found, such that sub is contained within [start, end].
rindex(sub[, start, end]) Like rfind, but raises ValueError when the substring sub is not found.
rjust(width[, fillchar]) Return an array with the elements of self right-justified in a string of length width.
rsplit([sep, maxsplit]) For each element in self, return a list of the words in the string, using sep as the delimiter string.
rstrip([chars]) For each element in self, return a copy with the trailing characters removed.

Continued on next page

3.4. String operations 505

NumPy Reference, Release 1.11.1

Table 3.26 – continued from previous page
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
split([sep, maxsplit]) For each element in self, return a list of the words in the string, using sep as the delimiter string.
splitlines([keepends]) For each element in self, return a list of the lines in the element, breaking at line boundaries.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
startswith(prefix[, start, end]) Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.
strip([chars]) For each element in self, return a copy with the leading and trailing characters removed.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
swapcase() For each element in self, return a copy of the string with uppercase characters converted to lowercase and vice versa.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
title() For each element in self, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
translate(table[, deletechars]) For each element in self, return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table.
transpose(*axes) Returns a view of the array with axes transposed.
upper() Return an array with the elements of self converted to uppercase.
view([dtype, type]) New view of array with the same data.
zfill(width) Return the numeric string left-filled with zeros in a string of length width.

chararray.astype(dtype, order=’K’, casting=’unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype : str or dtype

Typecode or data-type to which the array is cast.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise,
and ‘K’ means as close to the order the array elements appear in memory as possible.
Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘unsafe’ for backwards com-
patibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok : bool, optional

If True, then sub-classes will be passed-through (default), otherwise the returned array
will be forced to be a base-class array.

copy : bool, optional

506 Chapter 3. Routines

NumPy Reference, Release 1.11.1

By default, astype always returns a newly allocated array. If this is set to false, and the
dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t : ndarray

Unless copy is False and the other conditions for returning the input array are satisfied
(see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string dtype to cast to is not long enough
in ‘safe’ casting mode to hold the max value of integer/float array that is being casted. Previously the
casting was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

chararray.copy(order=’C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the copy. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible. (Note that this function and :func:numpy.copy are very similar, but
have different default values for their order= arguments.)

See also:

numpy.copy , numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

3.4. String operations 507

NumPy Reference, Release 1.11.1

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

chararray.count(sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start,
end].

See also:

char.count

chararray.decode(encoding=None, errors=None)
Calls str.decode element-wise.

See also:

char.decode

chararray.dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

chararray.dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

chararray.encode(encoding=None, errors=None)
Calls str.encode element-wise.

See also:

char.encode

chararray.endswith(suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:

char.endswith

chararray.expandtabs(tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:

char.expandtabs

chararray.fill(value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

508 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

chararray.find(sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

See also:

char.find

chararray.flatten(order=’C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
(Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran con-
tiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the
elements occur in memory. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

chararray.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype

3.4. String operations 509

NumPy Reference, Release 1.11.1

The data type of the view. The dtype size of the view can not be larger than that of the
array itself.

offset : int

Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

chararray.index(sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

See also:

char.index

chararray.isalnum()
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:

char.isalnum

chararray.isalpha()
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:

char.isalpha

chararray.isdecimal()
For each element in self, return True if there are only decimal characters in the element.

See also:

char.isdecimal

chararray.isdigit()
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:

char.isdigit

chararray.islower()
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

510 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

char.islower

chararray.isnumeric()
For each element in self, return True if there are only numeric characters in the element.

See also:

char.isnumeric

chararray.isspace()
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:

char.isspace

chararray.istitle()
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:

char.istitle

chararray.isupper()
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:

char.isupper

chararray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

3.4. String operations 511

NumPy Reference, Release 1.11.1

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],

[2, 8, 3],
[8, 5, 3]])

>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

chararray.join(seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:

char.join

chararray.ljust(width, fillchar=’ ‘)
Return an array with the elements of self left-justified in a string of length width.

See also:

char.ljust

chararray.lower()
Return an array with the elements of self converted to lowercase.

See also:

char.lower

chararray.lstrip(chars=None)
For each element in self, return a copy with the leading characters removed.

See also:

char.lstrip

chararray.nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero
equivalent function

chararray.put(indices, values, mode=’raise’)
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put
equivalent function

512 Chapter 3. Routines

NumPy Reference, Release 1.11.1

chararray.ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

chararray.repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat
equivalent function

chararray.replace(old, new, count=None)
For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:

char.replace

chararray.reshape(shape, order=’C’)
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape
equivalent function

chararray.resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.

refcheck : bool, optional

If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError

3.4. String operations 513

NumPy Reference, Release 1.11.1

If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

514 Chapter 3. Routines

NumPy Reference, Release 1.11.1

chararray.rfind(sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:

char.rfind

chararray.rindex(sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:

char.rindex

chararray.rjust(width, fillchar=’ ‘)
Return an array with the elements of self right-justified in a string of length width.

See also:

char.rjust

chararray.rsplit(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.rsplit

chararray.rstrip(chars=None)
For each element in self, return a copy with the trailing characters removed.

See also:

char.rstrip

chararray.searchsorted(v, side=’left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted
equivalent function

chararray.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a‘s field defined by dtype and beginning offset bytes into the field.

Parameters
val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns
None

3.4. String operations 515

NumPy Reference, Release 1.11.1

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]])

>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],

[1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

chararray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below).
The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The
UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a
string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.

align : bool, optional

Describes whether or not a is aligned properly for its type.

uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITE-
ABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is
deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

516 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set UPDATEIFCOPY flag to True

chararray.sort(axis=-1, kind=’quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

partition
Partial sort.

3.4. String operations 517

NumPy Reference, Release 1.11.1

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],

dtype=[('x', '|S1'), ('y', '<i4')])

chararray.split(sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

char.split

chararray.splitlines(keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:

char.splitlines

chararray.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze
equivalent function

chararray.startswith(prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:

char.startswith

chararray.strip(chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

See also:

char.strip

518 Chapter 3. Routines

NumPy Reference, Release 1.11.1

chararray.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

chararray.swapcase()
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:

char.swapcase

chararray.take(indices, axis=None, out=None, mode=’raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take
equivalent function

chararray.title()
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:

char.title

chararray.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str

Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

3.4. String operations 519

NumPy Reference, Release 1.11.1

chararray.tolist()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

chararray.tostring(order=’C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
s : bytes

Python bytes exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

chararray.translate(table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument

520 Chapter 3. Routines

NumPy Reference, Release 1.11.1

deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:

char.translate

chararray.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D ar-
ray into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape
= (i[n-1], i[n-2], ... i[1], i[0]).

Parameters
axes : None, tuple of ints, or n ints

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See also:

ndarray.T
Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

chararray.upper()
Return an array with the elements of self converted to uppercase.

See also:

char.upper

chararray.view(dtype=None, type=None)
New view of array with the same data.

3.4. String operations 521

NumPy Reference, Release 1.11.1

Parameters
dtype : data-type or ndarray sub-class, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a. This argument can also be specified
as an ndarray sub-class, which then specifies the type of the returned object (this is
equivalent to setting the type parameter).

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print(a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

522 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

chararray.zfill(width)
Return the numeric string left-filled with zeros in a string of length width.

See also:

char.zfill

argsort

3.5 C-Types Foreign Function Interface (numpy.ctypeslib)

numpy.ctypeslib.as_array(obj, shape=None)
Create a numpy array from a ctypes array or a ctypes POINTER. The numpy array shares the memory with the
ctypes object.

The size parameter must be given if converting from a ctypes POINTER. The size parameter is ignored if
converting from a ctypes array

numpy.ctypeslib.as_ctypes(obj)
Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__
is accepted.

numpy.ctypeslib.ctypes_load_library(*args, **kwds)
ctypes_load_library is deprecated, use load_library instead!

It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>]

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. Numpy supplies the load_library function as a convenience.

Parameters
libname : str

3.5. C-Types Foreign Function Interface (numpy.ctypeslib) 523

NumPy Reference, Release 1.11.1

Name of the library, which can have ‘lib’ as a prefix, but without an extension.

loader_path : str

Where the library can be found.

Returns
ctypes.cdll[libpath] : library object

A ctypes library object

Raises
OSError

If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy.ctypeslib.load_library(libname, loader_path)
It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>]

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. Numpy supplies the load_library function as a convenience.

Parameters
libname : str

Name of the library, which can have ‘lib’ as a prefix, but without an extension.

loader_path : str

Where the library can be found.

Returns
ctypes.cdll[libpath] : library object

A ctypes library object

Raises
OSError

If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)
Array-checking restype/argtypes.

An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach
is more flexible than using, for example, POINTER(c_double), since several restrictions can be specified,
which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and
flags. If a given array does not satisfy the specified restrictions, a TypeError is raised.

Parameters
dtype : data-type, optional

Array data-type.

ndim : int, optional

Number of array dimensions.

shape : tuple of ints, optional

Array shape.

flags : str or tuple of str

Array flags; may be one or more of:

524 Chapter 3. Routines

NumPy Reference, Release 1.11.1

• C_CONTIGUOUS / C / CONTIGUOUS

• F_CONTIGUOUS / F / FORTRAN

• OWNDATA / O

• WRITEABLE / W

• ALIGNED / A

• UPDATEIFCOPY / U

Returns
klass : ndpointer type object

A type object, which is an _ndtpr instance containing dtype, ndim, shape and flags
information.

Raises
TypeError

If a given array does not satisfy the specified restrictions.

Examples

>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
...
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
...

3.6 Datetime Support Functions

3.6.1 Business Day Functions

busdaycalendar A business day calendar object that efficiently stores information defining valid days for the busday family of functions.
is_busday(dates[, weekmask, holidays, ...]) Calculates which of the given dates are valid days, and which are not.
busday_offset(dates, offsets[, roll, ...]) First adjusts the date to fall on a valid day according to the roll rule, then applies offsets to the given dates counted in valid days.
busday_count(begindates, enddates[, ...]) Counts the number of valid days between begindates and enddates, not including the day of enddates.

class numpy.busdaycalendar
A business day calendar object that efficiently stores information defining valid days for the busday family of
functions.

The default valid days are Monday through Friday (“business days”). A busdaycalendar object can be specified
with any set of weekly valid days, plus an optional “holiday” dates that always will be invalid.

Once a busdaycalendar object is created, the weekmask and holidays cannot be modified.

New in version 1.7.0.

Parameters
weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are valid days.
May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven
string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-character

3.6. Datetime Support Functions 525

NumPy Reference, Release 1.11.1

abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates, no matter which weekday they fall upon.
Holiday dates may be specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for fast calculations of valid days.

Returns
out : busdaycalendar

A business day calendar object containing the specified weekmask and holidays values.

See also:

is_busday
Returns a boolean array indicating valid days.

busday_offset
Applies an offset counted in valid days.

busday_count
Counts how many valid days are in a half-open date range.

Examples

>>> # Some important days in July
... bdd = np.busdaycalendar(
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
array([True, True, True, True, True, False, False], dtype='bool')
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')

Attributes

weekmask A copy of the seven-element boolean mask indicating valid days.
holidays A copy of the holiday array indicating additional invalid days.

busdaycalendar.weekmask
A copy of the seven-element boolean mask indicating valid days.

busdaycalendar.holidays
A copy of the holiday array indicating additional invalid days.

Note: once a busdaycalendar object is created, you cannot modify the
weekmask or holidays. The attributes return copies of internal data.

numpy.is_busday(dates, weekmask=‘1111100’, holidays=None, busdaycal=None, out=None)
Calculates which of the given dates are valid days, and which are not.

New in version 1.7.0.

Parameters
dates : array_like of datetime64[D]

The array of dates to process.

526 Chapter 3. Routines

NumPy Reference, Release 1.11.1

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are valid days.
May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven
string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-character
abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be specified in any order, and
NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited
for fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this parameter is pro-
vided, neither weekmask nor holidays may be provided.

out : array of bool, optional

If provided, this array is filled with the result.

Returns
out : array of bool

An array with the same shape as dates, containing True for each valid day, and False
for each invalid day.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

busday_offset
Applies an offset counted in valid days.

busday_count
Counts how many valid days are in a half-open date range.

Examples

>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
array([False, False, True], dtype='bool')

numpy.busday_offset(dates, offsets, roll=’raise’, weekmask=‘1111100’, holidays=None, busday-
cal=None, out=None)

First adjusts the date to fall on a valid day according to the roll rule, then applies offsets to the given dates
counted in valid days.

New in version 1.7.0.

Parameters
dates : array_like of datetime64[D]

The array of dates to process.

offsets : array_like of int

The array of offsets, which is broadcast with dates.

3.6. Datetime Support Functions 527

NumPy Reference, Release 1.11.1

roll : {‘raise’, ‘nat’, ‘forward’, ‘following’, ‘backward’, ‘preceding’, ‘modifiedfollowing’,
‘modifiedpreceding’}, optional

How to treat dates that do not fall on a valid day. The default is ‘raise’.

• ‘raise’ means to raise an exception for an invalid day.

• ‘nat’ means to return a NaT (not-a-time) for an invalid day.

• ‘forward’ and ‘following’ mean to take the first valid day later in time.

• ‘backward’ and ‘preceding’ mean to take the first valid day earlier in time.

• ‘modifiedfollowing’ means to take the first valid day later in time unless it is across a
Month boundary, in which case to take the first valid day earlier in time.

• ‘modifiedpreceding’ means to take the first valid day earlier in time unless it is across
a Month boundary, in which case to take the first valid day later in time.

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are valid days.
May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven
string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-character
abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be specified in any order, and
NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited
for fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this parameter is pro-
vided, neither weekmask nor holidays may be provided.

out : array of datetime64[D], optional

If provided, this array is filled with the result.

Returns
out : array of datetime64[D]

An array with a shape from broadcasting dates and offsets together, containing
the dates with offsets applied.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

is_busday
Returns a boolean array indicating valid days.

busday_count
Counts how many valid days are in a half-open date range.

Examples

>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
numpy.datetime64('2011-10-03','D')

528 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
numpy.datetime64('2012-02-29','D')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
numpy.datetime64('2011-01-19','D')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')

>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

numpy.busday_count(begindates, enddates, weekmask=‘1111100’, holidays=[], busdaycal=None,
out=None)

Counts the number of valid days between begindates and enddates, not including the day of enddates.

If enddates specifies a date value that is earlier than the corresponding begindates date value, the count
will be negative.

New in version 1.7.0.

Parameters
begindates : array_like of datetime64[D]

The array of the first dates for counting.

enddates : array_like of datetime64[D]

The array of the end dates for counting, which are excluded from the count themselves.

weekmask : str or array_like of bool, optional

A seven-element array indicating which of Monday through Sunday are valid days.
May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven
string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-character
abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays : array_like of datetime64[D], optional

An array of dates to consider as invalid dates. They may be specified in any order, and
NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited
for fast calculations of valid days.

busdaycal : busdaycalendar, optional

A busdaycalendar object which specifies the valid days. If this parameter is pro-
vided, neither weekmask nor holidays may be provided.

out : array of int, optional

If provided, this array is filled with the result.

3.6. Datetime Support Functions 529

NumPy Reference, Release 1.11.1

Returns
out : array of int

An array with a shape from broadcasting begindates and enddates together, con-
taining the number of valid days between the begin and end dates.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

is_busday
Returns a boolean array indicating valid days.

busday_offset
Applies an offset counted in valid days.

Examples

>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
... np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53

3.7 Data type routines

can_cast(from, totype, casting =) Returns True if cast between data types can occur according to the casting rule.
promote_types(type1, type2) Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast.
min_scalar_type(a) For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value.
result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy type promotion rules to the arguments.
common_type(*arrays) Return a scalar type which is common to the input arrays.
obj2sctype(rep[, default]) Return the scalar dtype or NumPy equivalent of Python type of an object.

numpy.can_cast(from, totype, casting = ‘safe’)
Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array
scalar, also returns True if the scalar value can be cast without overflow or truncation to an integer.

Parameters
from : dtype, dtype specifier, scalar, or array

Data type, scalar, or array to cast from.

totype : dtype or dtype specifier

Data type to cast to.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

530 Chapter 3. Routines

NumPy Reference, Release 1.11.1

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

Returns
out : bool

True if cast can occur according to the casting rule.

See also:

dtype, result_type

Notes

Starting in NumPy 1.9, can_cast function now returns False in ‘safe’ casting mode for integer/float dtype and
string dtype if the string dtype length is not long enough to store the max integer/float value converted to a string.
Previously can_cast in ‘safe’ mode returned True for integer/float dtype and a string dtype of any length.

Examples

Basic examples

>>> np.can_cast(np.int32, np.int64)
True
>>> np.can_cast(np.float64, np.complex)
True
>>> np.can_cast(np.complex, np.float)
False

>>> np.can_cast('i8', 'f8')
True
>>> np.can_cast('i8', 'f4')
False
>>> np.can_cast('i4', 'S4')
False

Casting scalars

>>> np.can_cast(100, 'i1')
True
>>> np.can_cast(150, 'i1')
False
>>> np.can_cast(150, 'u1')
True

>>> np.can_cast(3.5e100, np.float32)
False
>>> np.can_cast(1000.0, np.float32)
True

Array scalar checks the value, array does not

>>> np.can_cast(np.array(1000.0), np.float32)
True
>>> np.can_cast(np.array([1000.0]), np.float32)
False

Using the casting rules

3.7. Data type routines 531

NumPy Reference, Release 1.11.1

>>> np.can_cast('i8', 'i8', 'no')
True
>>> np.can_cast('<i8', '>i8', 'no')
False

>>> np.can_cast('<i8', '>i8', 'equiv')
True
>>> np.can_cast('<i4', '>i8', 'equiv')
False

>>> np.can_cast('<i4', '>i8', 'safe')
True
>>> np.can_cast('<i8', '>i4', 'safe')
False

>>> np.can_cast('<i8', '>i4', 'same_kind')
True
>>> np.can_cast('<i8', '>u4', 'same_kind')
False

>>> np.can_cast('<i8', '>u4', 'unsafe')
True

numpy.promote_types(type1, type2)
Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be
safely cast. The returned data type is always in native byte order.

This function is symmetric and associative.

Parameters
type1 : dtype or dtype specifier

First data type.

type2 : dtype or dtype specifier

Second data type.

Returns
out : dtype

The promoted data type.

See also:

result_type, dtype, can_cast

Notes

New in version 1.6.0.

Starting in NumPy 1.9, promote_types function now returns a valid string length when given an integer or float
dtype as one argument and a string dtype as another argument. Previously it always returned the input string
dtype, even if it wasn’t long enough to store the max integer/float value converted to a string.

Examples

>>> np.promote_types('f4', 'f8')
dtype('float64')

>>> np.promote_types('i8', 'f4')
dtype('float64')

532 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.promote_types('>i8', '<c8')
dtype('complex128')

>>> np.promote_types('i4', 'S8')
dtype('S11')

numpy.min_scalar_type(a)
For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For
non-scalar array a, returns the vector’s dtype unmodified.

Floating point values are not demoted to integers, and complex values are not demoted to floats.

Parameters
a : scalar or array_like

The value whose minimal data type is to be found.

Returns
out : dtype

The minimal data type.

See also:

result_type, promote_types, dtype, can_cast

Notes

New in version 1.6.0.

Examples

>>> np.min_scalar_type(10)
dtype('uint8')

>>> np.min_scalar_type(-260)
dtype('int16')

>>> np.min_scalar_type(3.1)
dtype('float16')

>>> np.min_scalar_type(1e50)
dtype('float64')

>>> np.min_scalar_type(np.arange(4,dtype='f8'))
dtype('float64')

numpy.result_type(*arrays_and_dtypes)
Returns the type that results from applying the NumPy type promotion rules to the arguments.

Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences.
When both scalars and arrays are used, the array’s type takes precedence and the actual value of the scalar is
taken into account.

For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output.
If the 3 is a 32-bit integer, the NumPy rules indicate it can’t convert losslessly into a 32-bit float, so a 64-bit
float should be the result type. By examining the value of the constant, ‘3’, we see that it fits in an 8-bit integer,
which can be cast losslessly into the 32-bit float.

Parameters
arrays_and_dtypes : list of arrays and dtypes

3.7. Data type routines 533

NumPy Reference, Release 1.11.1

The operands of some operation whose result type is needed.

Returns
out : dtype

The result type.

See also:

dtype, promote_types, min_scalar_type, can_cast

Notes

New in version 1.6.0.

The specific algorithm used is as follows.

Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars is higher than the maximum category of the
arrays, the data types are combined with promote_types to produce the return value.

Otherwise, min_scalar_type is called on each array, and the resulting data types are all combined with
promote_types to produce the return value.

The set of int values is not a subset of the uint values for types with the same number of bits, something not
reflected in min_scalar_type, but handled as a special case in result_type.

Examples

>>> np.result_type(3, np.arange(7, dtype='i1'))
dtype('int8')

>>> np.result_type('i4', 'c8')
dtype('complex128')

>>> np.result_type(3.0, -2)
dtype('float64')

numpy.common_type(*arrays)
Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays.
If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point
dtype.

All input arrays can be safely cast to the returned dtype without loss of information.

Parameters
array1, array2, ... : ndarrays

Input arrays.

Returns
out : data type code

Data type code.

See also:

dtype, mintypecode

534 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>

numpy.obj2sctype(rep, default=None)
Return the scalar dtype or NumPy equivalent of Python type of an object.

Parameters
rep : any

The object of which the type is returned.

default : any, optional

If given, this is returned for objects whose types can not be determined. If not given,
None is returned for those objects.

Returns
dtype : dtype or Python type

The data type of rep.

See also:

sctype2char, issctype, issubsctype, issubdtype, maximum_sctype

Examples

>>> np.obj2sctype(np.int32)
<type 'numpy.int32'>
>>> np.obj2sctype(np.array([1., 2.]))
<type 'numpy.float64'>
>>> np.obj2sctype(np.array([1.j]))
<type 'numpy.complex128'>

>>> np.obj2sctype(dict)
<type 'numpy.object_'>
>>> np.obj2sctype('string')
<type 'numpy.string_'>

>>> np.obj2sctype(1, default=list)
<type 'list'>

3.7.1 Creating data types

dtype Create a data type object.
format_parser(formats, names, titles[, ...]) Class to convert formats, names, titles description to a dtype.

class numpy.format_parser(formats, names, titles, aligned=False, byteorder=None)
Class to convert formats, names, titles description to a dtype.

After constructing the format_parser object, the dtype attribute is the converted data-type: dtype =
format_parser(formats, names, titles).dtype

3.7. Data type routines 535

NumPy Reference, Release 1.11.1

Parameters
formats : str or list of str

The format description, either specified as a string with comma-separated format de-
scriptions in the form ’f8, i4, a5’, or a list of format description strings in the
form [’f8’, ’i4’, ’a5’].

names : str or list/tuple of str

The field names, either specified as a comma-separated string in the form ’col1,
col2, col3’, or as a list or tuple of strings in the form [’col1’, ’col2’,
’col3’]. An empty list can be used, in that case default field names (‘f0’, ‘f1’, ...) are
used.

titles : sequence

Sequence of title strings. An empty list can be used to leave titles out.

aligned : bool, optional

If True, align the fields by padding as the C-compiler would. Default is False.

byteorder : str, optional

If specified, all the fields will be changed to the provided byte-order. Oth-
erwise, the default byte-order is used. For all available string specifiers, see
dtype.newbyteorder.

See also:

dtype, typename, sctype2char

Examples

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... ['T1', 'T2', 'T3']).dtype
dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'),

(('T3', 'col3'), '|S5')])

names and/or titles can be empty lists. If titles is an empty list, titles will simply not appear. If names is empty,
default field names will be used.

>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '|S5')])
>>> np.format_parser(['f8', 'i4', 'a5'], [], []).dtype
dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', '|S5')])

Attributes

dtype (dtype) The converted data-type.

3.7.2 Data type information

finfo Machine limits for floating point types.
iinfo(type) Machine limits for integer types.
MachAr([float_conv, int_conv, ...]) Diagnosing machine parameters.

536 Chapter 3. Routines

NumPy Reference, Release 1.11.1

class numpy.finfo
Machine limits for floating point types.

Parameters
dtype : float, dtype, or instance

Kind of floating point data-type about which to get information.

See also:

MachAr
The implementation of the tests that produce this information.

iinfo
The equivalent for integer data types.

Notes

For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters
is expensive and negatively impacts import times. These objects are cached, so calling finfo() repeatedly
inside your functions is not a problem.

Attributes

eps (float) The smallest representable positive number such that 1.0 + eps != 1.0. Type of eps
is an appropriate floating point type.

epsneg (floating point number of the appropriate type) The smallest representable positive number such
that 1.0 - epsneg != 1.0.

iexp (int) The number of bits in the exponent portion of the floating point representation.
machar (MachAr) The object which calculated these parameters and holds more detailed information.
machep (int) The exponent that yields eps.
max (floating point number of the appropriate type) The largest representable number.
max-
exp

(int) The smallest positive power of the base (2) that causes overflow.

min (floating point number of the appropriate type) The smallest representable number, typically
-max.

min-
exp

(int) The most negative power of the base (2) consistent with there being no leading 0’s in the
mantissa.

negep (int) The exponent that yields epsneg.
nexp (int) The number of bits in the exponent including its sign and bias.
nmant (int) The number of bits in the mantissa.
preci-
sion

(int) The approximate number of decimal digits to which this kind of float is precise.

resolu-
tion

(floating point number of the appropriate type) The approximate decimal resolution of this type,
i.e., 10**-precision.

tiny (float) The smallest positive usable number. Type of tiny is an appropriate floating point type.

class numpy.iinfo(type)
Machine limits for integer types.

Parameters
int_type : integer type, dtype, or instance

The kind of integer data type to get information about.

See also:

3.7. Data type routines 537

NumPy Reference, Release 1.11.1

finfo
The equivalent for floating point data types.

Examples

With types:

>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

With instances:

>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

Attributes

min Minimum value of given dtype.
max Maximum value of given dtype.

iinfo.min
Minimum value of given dtype.

iinfo.max
Maximum value of given dtype.

class numpy.MachAr(float_conv=<type ‘float’>, int_conv=<type ‘int’>, float_to_float=<type ‘float’>,
float_to_str=<function <lambda>>, title=’Python floating point number’)

Diagnosing machine parameters.

Parameters
float_conv : function, optional

Function that converts an integer or integer array to a float or float array. Default is
float.

int_conv : function, optional

Function that converts a float or float array to an integer or integer array. Default is int.

float_to_float : function, optional

Function that converts a float array to float. Default is float. Note that this does not
seem to do anything useful in the current implementation.

float_to_str : function, optional

Function that converts a single float to a string. Default is lambda v:’%24.16e’
%v.

538 Chapter 3. Routines

http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#float

NumPy Reference, Release 1.11.1

title : str, optional

Title that is printed in the string representation of MachAr.

See also:

finfo
Machine limits for floating point types.

iinfo
Machine limits for integer types.

References

[R1]

Attributes

ibeta (int) Radix in which numbers are represented.
it (int) Number of base-ibeta digits in the floating point mantissa M.
machep (int) Exponent of the smallest (most negative) power of ibeta that, added to 1.0, gives something

different from 1.0
eps (float) Floating-point number beta**machep (floating point precision)
negep (int) Exponent of the smallest power of ibeta that, substracted from 1.0, gives something

different from 1.0.
epsneg (float) Floating-point number beta**negep.
iexp (int) Number of bits in the exponent (including its sign and bias).
minexp (int) Smallest (most negative) power of ibeta consistent with there being no leading zeros in the

mantissa.
xmin (float) Floating point number beta**minexp (the smallest [in magnitude] usable floating

value).
maxexp (int) Smallest (positive) power of ibeta that causes overflow.
xmax (float) (1-epsneg) * beta**maxexp (the largest [in magnitude] usable floating value).
irnd (int) In range(6), information on what kind of rounding is done in addition, and on how

underflow is handled.
ngrd (int) Number of ‘guard digits’ used when truncating the product of two mantissas to fit the

representation.
epsilon (float) Same as eps.
tiny (float) Same as xmin.
huge (float) Same as xmax.
preci-
sion

(float) - int(-log10(eps))

resolu-
tion

(float) - 10**(-precision)

3.7.3 Data type testing

issctype(rep) Determines whether the given object represents a scalar data-type.
issubdtype(arg1, arg2) Returns True if first argument is a typecode lower/equal in type hierarchy.
issubsctype(arg1, arg2) Determine if the first argument is a subclass of the second argument.
issubclass_(arg1, arg2) Determine if a class is a subclass of a second class.
find_common_type(array_types, scalar_types) Determine common type following standard coercion rules.

3.7. Data type routines 539

NumPy Reference, Release 1.11.1

numpy.issctype(rep)
Determines whether the given object represents a scalar data-type.

Parameters
rep : any

If rep is an instance of a scalar dtype, True is returned. If not, False is returned.

Returns
out : bool

Boolean result of check whether rep is a scalar dtype.

See also:

issubsctype, issubdtype, obj2sctype, sctype2char

Examples

>>> np.issctype(np.int32)
True
>>> np.issctype(list)
False
>>> np.issctype(1.1)
False

Strings are also a scalar type:

>>> np.issctype(np.dtype('str'))
True

numpy.issubdtype(arg1, arg2)
Returns True if first argument is a typecode lower/equal in type hierarchy.

Parameters
arg1, arg2 : dtype_like

dtype or string representing a typecode.

Returns
out : bool

See also:

issubsctype, issubclass_

numpy.core.numerictypes
Overview of numpy type hierarchy.

Examples

>>> np.issubdtype('S1', str)
True
>>> np.issubdtype(np.float64, np.float32)
False

numpy.issubsctype(arg1, arg2)
Determine if the first argument is a subclass of the second argument.

Parameters
arg1, arg2 : dtype or dtype specifier

Data-types.

540 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
out : bool

The result.

See also:

issctype, issubdtype, obj2sctype

Examples

>>> np.issubsctype('S8', str)
True
>>> np.issubsctype(np.array([1]), np.int)
True
>>> np.issubsctype(np.array([1]), np.float)
False

numpy.issubclass_(arg1, arg2)
Determine if a class is a subclass of a second class.

issubclass_ is equivalent to the Python built-in issubclass, except that it returns False instead of raising
a TypeError if one of the arguments is not a class.

Parameters
arg1 : class

Input class. True is returned if arg1 is a subclass of arg2.

arg2 : class or tuple of classes.

Input class. If a tuple of classes, True is returned if arg1 is a subclass of any of the tuple
elements.

Returns
out : bool

Whether arg1 is a subclass of arg2 or not.

See also:

issubsctype, issubdtype, issctype

Examples

>>> np.issubclass_(np.int32, np.int)
True
>>> np.issubclass_(np.int32, np.float)
False

numpy.find_common_type(array_types, scalar_types)
Determine common type following standard coercion rules.

Parameters
array_types : sequence

A list of dtypes or dtype convertible objects representing arrays.

scalar_types : sequence

A list of dtypes or dtype convertible objects representing scalars.

Returns
datatype : dtype

3.7. Data type routines 541

NumPy Reference, Release 1.11.1

The common data type, which is the maximum of array_types ignoring scalar_types,
unless the maximum of scalar_types is of a different kind (dtype.kind). If the kind
is not understood, then None is returned.

See also:

dtype, common_type, can_cast, mintypecode

Examples

>>> np.find_common_type([], [np.int64, np.float32, np.complex])
dtype('complex128')
>>> np.find_common_type([np.int64, np.float32], [])
dtype('float64')

The standard casting rules ensure that a scalar cannot up-cast an array unless the scalar is of a fundamentally
different kind of data (i.e. under a different hierarchy in the data type hierarchy) then the array:

>>> np.find_common_type([np.float32], [np.int64, np.float64])
dtype('float32')

Complex is of a different type, so it up-casts the float in the array_types argument:

>>> np.find_common_type([np.float32], [np.complex])
dtype('complex128')

Type specifier strings are convertible to dtypes and can therefore be used instead of dtypes:

>>> np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
dtype('complex128')

3.7.4 Miscellaneous

typename(char) Return a description for the given data type code.
sctype2char(sctype) Return the string representation of a scalar dtype.
mintypecode(typechars[, typeset, default]) Return the character for the minimum-size type to which given types can be safely cast.

numpy.typename(char)
Return a description for the given data type code.

Parameters
char : str

Data type code.

Returns
out : str

Description of the input data type code.

See also:

dtype, typecodes

Examples

>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
>>> for typechar in typechars:

542 Chapter 3. Routines

NumPy Reference, Release 1.11.1

... print(typechar, ' : ', np.typename(typechar))

...
S1 : character
? : bool
B : unsigned char
D : complex double precision
G : complex long double precision
F : complex single precision
I : unsigned integer
H : unsigned short
L : unsigned long integer
O : object
Q : unsigned long long integer
S : string
U : unicode
V : void
b : signed char
d : double precision
g : long precision
f : single precision
i : integer
h : short
l : long integer
q : long long integer

numpy.sctype2char(sctype)
Return the string representation of a scalar dtype.

Parameters
sctype : scalar dtype or object

If a scalar dtype, the corresponding string character is returned. If an object,
sctype2char tries to infer its scalar type and then return the corresponding string
character.

Returns
typechar : str

The string character corresponding to the scalar type.

Raises
ValueError

If sctype is an object for which the type can not be inferred.

See also:

obj2sctype, issctype, issubsctype, mintypecode

Examples

>>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
... print(np.sctype2char(sctype))
l
d
D
S
O

>>> x = np.array([1., 2-1.j])
>>> np.sctype2char(x)

3.7. Data type routines 543

NumPy Reference, Release 1.11.1

'D'
>>> np.sctype2char(list)
'O'

numpy.mintypecode(typechars, typeset=’GDFgdf’, default=’d’)
Return the character for the minimum-size type to which given types can be safely cast.

The returned type character must represent the smallest size dtype such that an array of the returned type can
handle the data from an array of all types in typechars (or if typechars is an array, then its dtype.char).

Parameters
typechars : list of str or array_like

If a list of strings, each string should represent a dtype. If array_like, the character
representation of the array dtype is used.

typeset : str or list of str, optional

The set of characters that the returned character is chosen from. The default set is
‘GDFgdf’.

default : str, optional

The default character, this is returned if none of the characters in typechars matches a
character in typeset.

Returns
typechar : str

The character representing the minimum-size type that was found.

See also:

dtype, sctype2char, maximum_sctype

Examples

>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'

>>> np.mintypecode('abceh', default='G')
'G'

3.8 Optionally Scipy-accelerated routines (numpy.dual)

Aliases for functions which may be accelerated by Scipy.

Scipy can be built to use accelerated or otherwise improved libraries for FFTs, linear algebra, and special functions.
This module allows developers to transparently support these accelerated functions when scipy is available but still
support users who have only installed Numpy.

3.8.1 Linear algebra

cholesky(a) Cholesky decomposition.
Continued on next page

544 Chapter 3. Routines

http://www.scipy.org

NumPy Reference, Release 1.11.1

Table 3.35 – continued from previous page
det(a) Compute the determinant of an array.
eig(a) Compute the eigenvalues and right eigenvectors of a square array.
eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.
eigvals(a) Compute the eigenvalues of a general matrix.
eigvalsh(a[, UPLO]) Compute the eigenvalues of a Hermitian or real symmetric matrix.
inv(a) Compute the (multiplicative) inverse of a matrix.
lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equation.
norm(x[, ord, axis, keepdims]) Matrix or vector norm.
pinv(a[, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
solve(a, b) Solve a linear matrix equation, or system of linear scalar equations.
svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.

3.8.2 FFT

fft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform.
fft2(a[, s, axes, norm]) Compute the 2-dimensional discrete Fourier Transform
fftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform.
ifft(a[, n, axis, norm]) Compute the one-dimensional inverse discrete Fourier Transform.
ifft2(a[, s, axes, norm]) Compute the 2-dimensional inverse discrete Fourier Transform.
ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse discrete Fourier Transform.

3.8.3 Other

i0(x) Modified Bessel function of the first kind, order 0.

3.9 Mathematical functions with automatic domain (numpy.emath)

Note: numpy.emath is a preferred alias for numpy.lib.scimath, available after numpy is imported.

Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the
input data-type in certain domains of the input.

For example, for functions like log with branch cuts, the versions in this module provide the mathematically valid
answers in the complex plane:

>>> import math
>>> from numpy.lib import scimath
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi)
True

Similarly, sqrt, other base logarithms, power and trig functions are correctly handled. See their respective doc-
strings for specific examples.

3.9. Mathematical functions with automatic domain (numpy.emath) 545

NumPy Reference, Release 1.11.1

3.10 Floating point error handling

3.10.1 Setting and getting error handling

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
geterr() Get the current way of handling floating-point errors.
seterrcall(func) Set the floating-point error callback function or log object.
geterrcall() Return the current callback function used on floating-point errors.
errstate(**kwargs) Context manager for floating-point error handling.

numpy.geterr()
Get the current way of handling floating-point errors.

Returns
res : dict

A dictionary with keys “divide”, “over”, “under”, and “invalid”, whose values are from
the strings “ignore”, “print”, “log”, “warn”, “raise”, and “call”. The keys represent pos-
sible floating-point exceptions, and the values define how these exceptions are handled.

See also:

geterrcall, seterr, seterrcall

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
>>> np.arange(3.) / np.arange(3.)
array([NaN, 1., 1.])

>>> oldsettings = np.seterr(all='warn', over='raise')
>>> np.geterr()
{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
>>> np.arange(3.) / np.arange(3.)
__main__:1: RuntimeWarning: invalid value encountered in divide
array([NaN, 1., 1.])

numpy.geterrcall()
Return the current callback function used on floating-point errors.

When the error handling for a floating-point error (one of “divide”, “over”, “under”, or “invalid”) is set to ‘call’
or ‘log’, the function that is called or the log instance that is written to is returned by geterrcall. This
function or log instance has been set with seterrcall.

Returns
errobj : callable, log instance or None

The current error handler. If no handler was set through seterrcall, None is re-
turned.

See also:

546 Chapter 3. Routines

NumPy Reference, Release 1.11.1

seterrcall, seterr, geterr

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterrcall() # we did not yet set a handler, returns None

>>> oldsettings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
>>> oldhandler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([Inf, Inf, Inf])

>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True

class numpy.errstate(**kwargs)
Context manager for floating-point error handling.

Using an instance of errstate as a context manager allows statements in that context to execute with a known
error handling behavior. Upon entering the context the error handling is set with seterr and seterrcall,
and upon exiting it is reset to what it was before.

Parameters
kwargs : {divide, over, under, invalid}

Keyword arguments. The valid keywords are the possible floating-point exceptions.
Each keyword should have a string value that defines the treatment for the particular
error. Possible values are {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}.

See also:

seterr, geterr, seterrcall, geterrcall

Notes

The with statement was introduced in Python 2.5, and can only be used there by importing it: from
__future__ import with_statement. In earlier Python versions the with statement is not avail-
able.

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> from __future__ import with_statement # use 'with' in Python 2.5
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.

>>> np.arange(3) / 0.
array([NaN, Inf, Inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
...
__main__:2: RuntimeWarning: divide by zero encountered in divide
array([NaN, Inf, Inf])

3.10. Floating point error handling 547

NumPy Reference, Release 1.11.1

>>> np.sqrt(-1)
nan
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

FloatingPointError: invalid value encountered in sqrt

Outside the context the error handling behavior has not changed:

>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}

3.10.2 Internal functions

seterrobj(errobj) Set the object that defines floating-point error handling.
geterrobj() Return the current object that defines floating-point error handling.

numpy.seterrobj(errobj)
Set the object that defines floating-point error handling.

The error object contains all information that defines the error handling behavior in Numpy. seterrobj is
used internally by the other functions that set error handling behavior (seterr, seterrcall).

Parameters
errobj : list

The error object, a list containing three elements: [internal numpy buffer size, error
mask, error callback function].

The error mask is a single integer that holds the treatment information on all four float-
ing point errors. The information for each error type is contained in three bits of the
integer. If we print it in base 8, we can see what treatment is set for “invalid”, “under”,
“over”, and “divide” (in that order). The printed string can be interpreted with

• 0 : ‘ignore’

• 1 : ‘warn’

• 2 : ‘raise’

• 3 : ‘call’

• 4 : ‘print’

• 5 : ‘log’

See also:

geterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

548 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> old_errobj = np.geterrobj() # first get the defaults
>>> old_errobj
[10000, 0, None]

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...
>>> new_errobj = [20000, 12, err_handler]
>>> np.seterrobj(new_errobj)
>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
'14'
>>> np.geterr()
{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
>>> np.geterrcall() is err_handler
True

numpy.geterrobj()
Return the current object that defines floating-point error handling.

The error object contains all information that defines the error handling behavior in Numpy. geterrobj is used
internally by the other functions that get and set error handling behavior (geterr, seterr, geterrcall,
seterrcall).

Returns
errobj : list

The error object, a list containing three elements: [internal numpy buffer size, error
mask, error callback function].

The error mask is a single integer that holds the treatment information on all four float-
ing point errors. The information for each error type is contained in three bits of the
integer. If we print it in base 8, we can see what treatment is set for “invalid”, “under”,
“over”, and “divide” (in that order). The printed string can be interpreted with

• 0 : ‘ignore’

• 1 : ‘warn’

• 2 : ‘raise’

• 3 : ‘call’

• 4 : ‘print’

• 5 : ‘log’

See also:

seterrobj, seterr, geterr, seterrcall, geterrcall, getbufsize, setbufsize

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> np.geterrobj() # first get the defaults
[10000, 0, None]

3.10. Floating point error handling 549

NumPy Reference, Release 1.11.1

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...
>>> old_bufsize = np.setbufsize(20000)
>>> old_err = np.seterr(divide='raise')
>>> old_handler = np.seterrcall(err_handler)
>>> np.geterrobj()
[20000, 2, <function err_handler at 0x91dcaac>]

>>> old_err = np.seterr(all='ignore')
>>> np.base_repr(np.geterrobj()[1], 8)
'0'
>>> old_err = np.seterr(divide='warn', over='log', under='call',

invalid='print')
>>> np.base_repr(np.geterrobj()[1], 8)
'4351'

3.11 Discrete Fourier Transform (numpy.fft)

3.11.1 Standard FFTs

fft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform.
ifft(a[, n, axis, norm]) Compute the one-dimensional inverse discrete Fourier Transform.
fft2(a[, s, axes, norm]) Compute the 2-dimensional discrete Fourier Transform
ifft2(a[, s, axes, norm]) Compute the 2-dimensional inverse discrete Fourier Transform.
fftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform.
ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse discrete Fourier Transform.

numpy.fft.fft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast
Fourier Transform (FFT) algorithm [CT].

Parameters
a : array_like

Input array, can be complex.

n : int, optional

Length of the transformed axis of the output. If n is smaller than the length of the input,
the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the
length of the input along the axis specified by axis is used.

axis : int, optional

Axis over which to compute the FFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

550 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The truncated or zero-padded input, transformed along the axis indicated by axis, or the
last one if axis is not specified.

Raises
IndexError

if axes is larger than the last axis of a.

See also:

numpy.fft
for definition of the DFT and conventions used.

ifft
The inverse of fft.

fft2
The two-dimensional FFT.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

fftfreq
Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,
by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform
is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy.fft
module.

References

[CT]

Examples

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-3.44505240e-16 +1.14383329e-17j,

8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

3.11. Discrete Fourier Transform (numpy.fft) 551

NumPy Reference, Release 1.11.1

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part, as described in the numpy.fft documentation.

numpy.fft.ifft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by
fft. In other words, ifft(fft(a)) == a to within numerical accuracy. For a general description of the
algorithm and definitions, see numpy.fft.

The input should be ordered in the same way as is returned by fft, i.e.,

•a[0] should contain the zero frequency term,

•a[1:n//2] should contain the positive-frequency terms,

•a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, A[n//2] represents the sum of the values at the positive and negative
Nyquist frequencies, as the two are aliased together. See numpy.fft for details.

Parameters
a : array_like

Input array, can be complex.

n : int, optional

Length of the transformed axis of the output. If n is smaller than the length of the input,
the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used. See notes about padding
issues.

axis : int, optional

Axis over which to compute the inverse DFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axis indicated by axis, or the
last one if axis is not specified.

Raises
IndexError

If axes is larger than the last axis of a.

See also:

numpy.fft
An introduction, with definitions and general explanations.

fft
The one-dimensional (forward) FFT, of which ifft is the inverse

ifft2
The two-dimensional inverse FFT.

552 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ifftn
The n-dimensional inverse FFT.

Notes

If the input parameter n is larger than the size of the input, the input is padded by appending zeros at the end.
Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it
must be performed before calling ifft.

Examples

>>> np.fft.ifft([0, 4, 0, 0])
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
>>> s = np.fft.ifft(n)
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
...
>>> plt.legend(('real', 'imaginary'))
...
>>> plt.show()

0 100 200 300 400

0.02

0.01

0.00

0.01

0.02

real
imaginary

numpy.fft.fft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional discrete Fourier Transform

This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array
by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of
the input array, i.e., a 2-dimensional FFT.

Parameters
a : array_like

Input array, can be complex

s : sequence of ints, optional

3.11. Discrete Fourier Transform (numpy.fft) 553

NumPy Reference, Release 1.11.1

Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis
1, etc.). This corresponds to n for fft(x, n). Along each axis, if the given shape is smaller
than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last two axes are used. A repeated
index in axes means the transform over that axis is performed multiple times. A one-
element sequence means that a one-dimensional FFT is performed.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or
the last two axes if axes is not given.

Raises
ValueError

If s and axes have different length, or axes not given and len(s) != 2.

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifft2
The inverse two-dimensional FFT.

fft
The one-dimensional FFT.

fftn
The n-dimensional FFT.

fftshift
Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third
quadrants, and second and fourth quadrants.

Notes

fft2 is just fftn with a different default for axes.

The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle
of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative
frequency.

See fftn for details and a plotting example, and numpy.fft for definitions and conventions used.

554 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j]])

numpy.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a))
== a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the
input array.

The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have
the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half
of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in
the second half of both axes, in order of decreasingly negative frequency.

Parameters
a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each axis) of the output (s[0] refers to axis 0, s[1] to axis 1, etc.).
This corresponds to n for ifft(x, n). Along each axis, if the given shape is smaller
than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified by axes is used. See
notes for issue on ifft zero padding.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last two axes are used. A repeated
index in axes means the transform over that axis is performed multiple times. A one-
element sequence means that a one-dimensional FFT is performed.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or
the last two axes if axes is not given.

Raises
ValueError

If s and axes have different length, or axes not given and len(s) != 2.

3.11. Discrete Fourier Transform (numpy.fft) 555

NumPy Reference, Release 1.11.1

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fft2
The forward 2-dimensional FFT, of which ifft2 is the inverse.

ifftn
The inverse of the n-dimensional FFT.

fft
The one-dimensional FFT.

ifft
The one-dimensional inverse FFT.

Notes

ifft2 is just ifftn with a different default for axes.

See ifftn for details and a plotting example, and numpy.fft for definition and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimen-
sion. Although this is the common approach, it might lead to surprising results. If another form of zero padding
is desired, it must be performed before ifft2 is called.

Examples

>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

numpy.fft.fftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional discrete Fourier Transform.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional array by means of the Fast Fourier Transform (FFT).

Parameters
a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to axis
1, etc.). This corresponds to n for fft(x, n). Along any axis, if the given shape is smaller
than that of the input, the input is cropped. If it is larger, the input is padded with zeros.
if s is not given, the shape of the input along the axes specified by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last len(s) axes are used, or
all axes if s is also not specified. Repeated indices in axes means that the transform over
that axis is performed multiple times.

556 Chapter 3. Routines

NumPy Reference, Release 1.11.1

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or
by a combination of s and a, as explained in the parameters section above.

Raises
ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifftn
The inverse of fftn, the inverse n-dimensional FFT.

fft
The one-dimensional FFT, with definitions and conventions used.

rfftn
The n-dimensional FFT of real input.

fft2
The two-dimensional FFT.

fftshift
Shifts zero-frequency terms to centre of array

Notes

The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the
positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes
and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

See numpy.fft for details, definitions and conventions used.

Examples

>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
array([[[0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],

[[9.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],

[[18.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> np.fft.fftn(a, (2, 2), axes=(0, 1))

3.11. Discrete Fourier Transform (numpy.fft) 557

NumPy Reference, Release 1.11.1

array([[[2.+0.j, 2.+0.j, 2.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],

[[-2.+0.j, -2.+0.j, -2.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
>>> FS = np.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150

0

50

100

150

numpy.fft.ifftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifftn(fftn(a))
== a to within numerical accuracy. For a description of the definitions and conventions used, see numpy.fft.

The input, analogously to ifft, should be ordered in the same way as is returned by fftn, i.e. it should have
the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all
axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second
half of all axes, in order of decreasingly negative frequency.

Parameters
a : array_like

Input array, can be complex.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1] to
axis 1, etc.). This corresponds to n for ifft(x, n). Along any axis, if the given
shape is smaller than that of the input, the input is cropped. If it is larger, the input is
padded with zeros. if s is not given, the shape of the input along the axes specified by
axes is used. See notes for issue on ifft zero padding.

axes : sequence of ints, optional

558 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Axes over which to compute the IFFT. If not given, the last len(s) axes are used,
or all axes if s is also not specified. Repeated indices in axes means that the inverse
transform over that axis is performed multiple times.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or
by a combination of s or a, as explained in the parameters section above.

Raises
ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fftn
The forward n-dimensional FFT, of which ifftn is the inverse.

ifft
The one-dimensional inverse FFT.

ifft2
The two-dimensional inverse FFT.

ifftshift
Undoes fftshift, shifts zero-frequency terms to beginning of array.

Notes

See numpy.fft for definitions and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimen-
sion. Although this is the common approach, it might lead to surprising results. If another form of zero padding
is desired, it must be performed before ifftn is called.

Examples

>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

3.11. Discrete Fourier Transform (numpy.fft) 559

NumPy Reference, Release 1.11.1

>>> import matplotlib.pyplot as plt
>>> n = np.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
>>> im = np.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150

0

50

100

150

3.11.2 Real FFTs

rfft(a[, n, axis, norm]) Compute the one-dimensional discrete Fourier Transform for real input.
irfft(a[, n, axis, norm]) Compute the inverse of the n-point DFT for real input.
rfft2(a[, s, axes, norm]) Compute the 2-dimensional FFT of a real array.
irfft2(a[, s, axes, norm]) Compute the 2-dimensional inverse FFT of a real array.
rfftn(a[, s, axes, norm]) Compute the N-dimensional discrete Fourier Transform for real input.
irfftn(a[, s, axes, norm]) Compute the inverse of the N-dimensional FFT of real input.

numpy.fft.rfft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform for real input.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by
means of an efficient algorithm called the Fast Fourier Transform (FFT).

Parameters
a : array_like

Input array

n : int, optional

Number of points along transformation axis in the input to use. If n is smaller than the
length of the input, the input is cropped. If it is larger, the input is padded with zeros. If
n is not given, the length of the input along the axis specified by axis is used.

axis : int, optional

560 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Axis over which to compute the FFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. If n is even, the length of the transformed axis is
(n/2)+1. If n is odd, the length is (n+1)/2.

Raises
IndexError

If axis is larger than the last axis of a.

See also:

numpy.fft
For definition of the DFT and conventions used.

irfft
The inverse of rfft.

fft
The one-dimensional FFT of general (complex) input.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of
the transformed axis of the output is therefore n//2 + 1.

When A = rfft(a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.

If n is even, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and
-fs/2), and must also be purely real. If n is odd, there is no term at fs/2; A[-1] contains the largest positive
frequency (fs/2*(n-1)/n), and is complex in the general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> np.fft.fft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
>>> np.fft.rfft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j])

Notice how the final element of the fft output is the complex conjugate of the second element, for real input.
For rfft, this symmetry is exploited to compute only the non-negative frequency terms.

3.11. Discrete Fourier Transform (numpy.fft) 561

NumPy Reference, Release 1.11.1

numpy.fft.irfft(a, n=None, axis=-1, norm=None)
Compute the inverse of the n-point DFT for real input.

This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input
computed by rfft. In other words, irfft(rfft(a), len(a)) == a to within numerical accuracy.
(See Notes below for why len(a) is necessary here.)

The input is expected to be in the form returned by rfft, i.e. the real zero-frequency term followed by the
complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of
real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the
corresponding positive frequency terms.

Parameters
a : array_like

The input array.

n : int, optional

Length of the transformed axis of the output. For n output points, n//2+1 input points
are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is
padded with zeros. If n is not given, it is determined from the length of the input along
the axis specified by axis.

axis : int, optional

Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : ndarray

The truncated or zero-padded input, transformed along the axis indicated by axis, or the
last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*(m-1) where m is the length of the transformed axis of the input. To get an
odd number of output points, n must be specified.

Raises
IndexError

If axis is larger than the last axis of a.

See also:

numpy.fft
For definition of the DFT and conventions used.

rfft
The one-dimensional FFT of real input, of which irfft is inverse.

fft
The one-dimensional FFT.

irfft2
The inverse of the two-dimensional FFT of real input.

irfftn
The inverse of the n-dimensional FFT of real input.

562 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative fre-
quency terms of a Hermitian-symmetric sequence. n is the length of the result, not the input.

If you specify an n such that a must be zero-padded or truncated, the extra/removed values will be
added/removed at high frequencies. One can thus resample a series to m points via Fourier interpolation by:
a_resamp = irfft(rfft(a), m).

Examples

>>> np.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
>>> np.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])

Notice how the last term in the input to the ordinary ifft is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling irfft, the negative frequencies are not specified,
and the output array is purely real.

numpy.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional FFT of a real array.

Parameters
a : array

Input array, taken to be real.

s : sequence of ints, optional

Shape of the FFT.

axes : sequence of ints, optional

Axes over which to compute the FFT.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : ndarray

The result of the real 2-D FFT.

See also:

rfftn
Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just rfftn with different default behavior. For more details see rfftn.

numpy.fft.irfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse FFT of a real array.

Parameters
a : array_like

The input array

s : sequence of ints, optional

3.11. Discrete Fourier Transform (numpy.fft) 563

NumPy Reference, Release 1.11.1

Shape of the inverse FFT.

axes : sequence of ints, optional

The axes over which to compute the inverse fft. Default is the last two axes.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : ndarray

The result of the inverse real 2-D FFT.

See also:

irfftn
Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really irfftn with different defaults. For more details see irfftn.

numpy.fft.rfftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed,
with the real transform performed over the last axis, while the remaining transforms are complex.

Parameters
a : array_like

Input array, taken to be real.

s : sequence of ints, optional

Shape (length along each transformed axis) to use from the input. (s[0] refers to axis
0, s[1] to axis 1, etc.). The final element of s corresponds to n for rfft(x, n),
while for the remaining axes, it corresponds to n for fft(x, n). Along any axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger,
the input is padded with zeros. if s is not given, the shape of the input along the axes
specified by axes is used.

axes : sequence of ints, optional

Axes over which to compute the FFT. If not given, the last len(s) axes are used, or
all axes if s is also not specified.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or by
a combination of s and a, as explained in the parameters section above. The length of
the last axis transformed will be s[-1]//2+1, while the remaining transformed axes
will have lengths according to s, or unchanged from the input.

564 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Raises
ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

irfftn
The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input.

fft
The one-dimensional FFT, with definitions and conventions used.

rfft
The one-dimensional FFT of real input.

fftn
The n-dimensional FFT.

rfft2
The two-dimensional FFT of real input.

Notes

The transform for real input is performed over the last transformation axis, as by rfft, then the transform over
the remaining axes is performed as by fftn. The order of the output is as for rfft for the final transformation
axis, and as for fftn for the remaining transformation axes.

See fft for details, definitions and conventions used.

Examples

>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
array([[[8.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

>>> np.fft.rfftn(a, axes=(2, 0))
array([[[4.+0.j, 0.+0.j],

[4.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

numpy.fft.irfftn(a, s=None, axes=None, norm=None)
Compute the inverse of the N-dimensional FFT of real input.

This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any
number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words,
irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like
len(a) is for irfft, and for the same reason.)

The input should be ordered in the same way as is returned by rfftn, i.e. as for irfft for the final transfor-
mation axis, and as for ifftn along all the other axes.

Parameters
a : array_like

3.11. Discrete Fourier Transform (numpy.fft) 565

NumPy Reference, Release 1.11.1

Input array.

s : sequence of ints, optional

Shape (length of each transformed axis) of the output (s[0] refers to axis 0, s[1]
to axis 1, etc.). s is also the number of input points used along this axis, except for
the last axis, where s[-1]//2+1 points of the input are used. Along any axis, if the
shape indicated by s is smaller than that of the input, the input is cropped. If it is larger,
the input is padded with zeros. If s is not given, the shape of the input along the axes
specified by axes is used.

axes : sequence of ints, optional

Axes over which to compute the inverse FFT. If not given, the last len(s) axes are used,
or all axes if s is also not specified. Repeated indices in axes means that the inverse
transform over that axis is performed multiple times.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : ndarray

The truncated or zero-padded input, transformed along the axes indicated by axes, or
by a combination of s or a, as explained in the parameters section above. The length of
each transformed axis is as given by the corresponding element of s, or the length of the
input in every axis except for the last one if s is not given. In the final transformed axis
the length of the output when s is not given is 2*(m-1) where m is the length of the
final transformed axis of the input. To get an odd number of output points in the final
axis, s must be specified.

Raises
ValueError

If s and axes have different length.

IndexError

If an element of axes is larger than than the number of axes of a.

See also:

rfftn
The forward n-dimensional FFT of real input, of which ifftn is the inverse.

fft
The one-dimensional FFT, with definitions and conventions used.

irfft
The inverse of the one-dimensional FFT of real input.

irfft2
The inverse of the two-dimensional FFT of real input.

Notes

See fft for definitions and conventions used.

See rfft for definitions and conventions used for real input.

566 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
array([[[1., 1.],

[1., 1.]],
[[1., 1.],
[1., 1.]],

[[1., 1.],
[1., 1.]]])

3.11.3 Hermitian FFTs

hfft(a[, n, axis, norm]) Compute the FFT of a signal which has Hermitian symmetry (real spectrum).
ihfft(a[, n, axis, norm]) Compute the inverse FFT of a signal which has Hermitian symmetry.

numpy.fft.hfft(a, n=None, axis=-1, norm=None)
Compute the FFT of a signal which has Hermitian symmetry (real spectrum).

Parameters
a : array_like

The input array.

n : int, optional

Length of the transformed axis of the output. For n output points, n//2+1 input points
are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is
padded with zeros. If n is not given, it is determined from the length of the input along
the axis specified by axis.

axis : int, optional

Axis over which to compute the FFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : ndarray

The truncated or zero-padded input, transformed along the axis indicated by axis, or the
last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*(m-1) where m is the length of the transformed axis of the input. To get an
odd number of output points, n must be specified.

Raises
IndexError

If axis is larger than the last axis of a.

See also:

rfft
Compute the one-dimensional FFT for real input.

3.11. Discrete Fourier Transform (numpy.fft) 567

NumPy Reference, Release 1.11.1

ihfft
The inverse of hfft.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd: ihfft(hfft(a), len(a)) == a, within numerical accuracy.

Examples

>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
>>> np.fft.hfft(signal[:4]) # Input first half of signal
array([15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
array([15., -4., 0., -1., 0., -4.])

>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[0.-0.j, 0.+0.j],

[0.+0.j, 0.-0.j]])
>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
array([[1., 1.],

[2., -2.]])

numpy.fft.ihfft(a, n=None, axis=-1, norm=None)
Compute the inverse FFT of a signal which has Hermitian symmetry.

Parameters
a : array_like

Input array.

n : int, optional

Length of the inverse FFT. Number of points along transformation axis in the input to
use. If n is smaller than the length of the input, the input is cropped. If it is larger,
the input is padded with zeros. If n is not given, the length of the input along the axis
specified by axis is used.

axis : int, optional

Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm : {None, “ortho”}, optional

New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns
out : complex ndarray

The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. If n is even, the length of the transformed axis is
(n/2)+1. If n is odd, the length is (n+1)/2.

See also:

hfft, irfft

568 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd: ihfft(hfft(a), len(a)) == a, within numerical accuracy.

Examples

>>> spectrum = np.array([15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
array([1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
>>> np.fft.ihfft(spectrum)
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])

3.11.4 Helper routines

fftfreq(n[, d]) Return the Discrete Fourier Transform sample frequencies.
rfftfreq(n[, d]) Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
fftshift(x[, axes]) Shift the zero-frequency component to the center of the spectrum.
ifftshift(x[, axes]) The inverse of fftshift.

numpy.fft.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters
n : int

Window length.

d : scalar, optional

Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns
f : ndarray

Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

3.11. Discrete Fourier Transform (numpy.fft) 569

NumPy Reference, Release 1.11.1

numpy.fft.rfftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered
to be positive.

Parameters
n : int

Window length.

d : scalar, optional

Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns
f : ndarray

Array of length n//2 + 1 containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., 50.])

numpy.fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component
only if len(x) is even.

Parameters
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to shift. Default is None, which shifts all axes.

Returns
y : ndarray

The shifted array.

See also:

570 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ifftshift
The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

numpy.fft.ifftshift(x, axes=None)
The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-
length x.

Parameters
x : array_like

Input array.

axes : int or shape tuple, optional

Axes over which to calculate. Defaults to None, which shifts all axes.

Returns
y : ndarray

The shifted array.

See also:

fftshift
Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

3.11. Discrete Fourier Transform (numpy.fft) 571

NumPy Reference, Release 1.11.1

3.11.5 Background information

Fourier analysis is fundamentally a method for expressing a function as a sum of periodic components, and for re-
covering the function from those components. When both the function and its Fourier transform are replaced with
discretized counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of nu-
merical computing in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT),
which was known to Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT]. Press et al.
[NR] provide an accessible introduction to Fourier analysis and its applications.

Because the discrete Fourier transform separates its input into components that contribute at discrete frequencies, it
has a great number of applications in digital signal processing, e.g., for filtering, and in this context the discretized
input to the transform is customarily referred to as a signal, which exists in the time domain. The output is called a
spectrum or transform and exists in the frequency domain.

3.11.6 Implementation details

There are many ways to define the DFT, varying in the sign of the exponent, normalization, etc. In this implementation,
the DFT is defined as

𝐴𝑘 =

𝑛−1∑︁
𝑚=0

𝑎𝑚 exp

{︂
−2𝜋𝑖

𝑚𝑘

𝑛

}︂
𝑘 = 0, . . . , 𝑛− 1.

The DFT is in general defined for complex inputs and outputs, and a single-frequency component at linear frequency
𝑓 is represented by a complex exponential 𝑎𝑚 = exp{2𝜋𝑖 𝑓𝑚∆𝑡}, where ∆𝑡 is the sampling interval.

The values in the result follow so-called “standard” order: If A = fft(a, n), then A[0] contains the zero-
frequency term (the sum of the signal), which is always purely real for real inputs. Then A[1:n/2] contains the
positive-frequency terms, and A[n/2+1:] contains the negative-frequency terms, in order of decreasingly negative
frequency. For an even number of input points, A[n/2] represents both positive and negative Nyquist frequency,
and is also purely real for real input. For an odd number of input points, A[(n-1)/2] contains the largest positive
frequency, while A[(n+1)/2] contains the largest negative frequency. The routine np.fft.fftfreq(n) returns
an array giving the frequencies of corresponding elements in the output. The routine np.fft.fftshift(A) shifts
transforms and their frequencies to put the zero-frequency components in the middle, and np.fft.ifftshift(A)
undoes that shift.

When the input a is a time-domain signal and A = fft(a), np.abs(A) is its amplitude spectrum and
np.abs(A)**2 is its power spectrum. The phase spectrum is obtained by np.angle(A).

The inverse DFT is defined as

𝑎𝑚 =
1

𝑛

𝑛−1∑︁
𝑘=0

𝐴𝑘 exp

{︂
2𝜋𝑖

𝑚𝑘

𝑛

}︂
𝑚 = 0, . . . , 𝑛− 1.

It differs from the forward transform by the sign of the exponential argument and the default normalization by 1/𝑛.

3.11.7 Normalization

The default normalization has the direct transforms unscaled and the inverse transforms are scaled by 1/𝑛. It is
possible to obtain unitary transforms by setting the keyword argument norm to "ortho" (default is None) so that
both direct and inverse transforms will be scaled by 1/

√
𝑛.

572 Chapter 3. Routines

NumPy Reference, Release 1.11.1

3.11.8 Real and Hermitian transforms

When the input is purely real, its transform is Hermitian, i.e., the component at frequency 𝑓𝑘 is the complex conjugate
of the component at frequency −𝑓𝑘, which means that for real inputs there is no information in the negative frequency
components that is not already available from the positive frequency components. The family of rfft functions is
designed to operate on real inputs, and exploits this symmetry by computing only the positive frequency components,
up to and including the Nyquist frequency. Thus, n input points produce n/2+1 complex output points. The inverses
of this family assumes the same symmetry of its input, and for an output of n points uses n/2+1 input points.

Correspondingly, when the spectrum is purely real, the signal is Hermitian. The hfft family of functions exploits
this symmetry by using n/2+1 complex points in the input (time) domain for n real points in the frequency domain.

In higher dimensions, FFTs are used, e.g., for image analysis and filtering. The computational efficiency of the FFT
means that it can also be a faster way to compute large convolutions, using the property that a convolution in the time
domain is equivalent to a point-by-point multiplication in the frequency domain.

3.11.9 Higher dimensions

In two dimensions, the DFT is defined as

𝐴𝑘𝑙 =

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑎𝑚𝑛 exp

{︂
−2𝜋𝑖

(︂
𝑚𝑘

𝑀
+

𝑛𝑙

𝑁

)︂}︂
𝑘 = 0, . . . ,𝑀 − 1; 𝑙 = 0, . . . , 𝑁 − 1,

which extends in the obvious way to higher dimensions, and the inverses in higher dimensions also extend in the same
way.

3.11.10 References

3.11.11 Examples

For examples, see the various functions.

3.12 Financial functions

3.12.1 Simple financial functions

fv(rate, nper, pmt, pv[, when]) Compute the future value.
pv(rate, nper, pmt[, fv, when]) Compute the present value.
npv(rate, values) Returns the NPV (Net Present Value) of a cash flow series.
pmt(rate, nper, pv[, fv, when]) Compute the payment against loan principal plus interest.
ppmt(rate, per, nper, pv[, fv, when]) Compute the payment against loan principal.
ipmt(rate, per, nper, pv[, fv, when]) Compute the interest portion of a payment.
irr(values) Return the Internal Rate of Return (IRR).
mirr(values, finance_rate, reinvest_rate) Modified internal rate of return.
nper(rate, pmt, pv[, fv, when]) Compute the number of periodic payments.
rate(nper, pmt, pv, fv[, when, guess, tol, ...]) Compute the rate of interest per period.

numpy.fv(rate, nper, pmt, pv, when=’end’)
Compute the future value.

3.12. Financial functions 573

NumPy Reference, Release 1.11.1

Given:

• a present value, pv

• an interest rate compounded once per period, of which there are

• nper total

• a (fixed) payment, pmt, paid either

• at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period

Return:
the value at the end of the nper periods

Parameters
rate : scalar or array_like of shape(M,)

Rate of interest as decimal (not per cent) per period

nper : scalar or array_like of shape(M,)

Number of compounding periods

pmt : scalar or array_like of shape(M,)

Payment

pv : scalar or array_like of shape(M,)

Present value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0)). Defaults to {‘end’, 0}.

Returns
out : ndarray

Future values. If all input is scalar, returns a scalar float. If any input is array_like,
returns future values for each input element. If multiple inputs are array_like, they all
must have the same shape.

Notes

The future value is computed by solving the equation:

fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

References

[WRW]

574 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume
the interest rate is 5% (annually) compounded monthly?

>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not available today). Thus, saving $100 a
month at 5% annual interest leads to $15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape. Let’s compare different interest rates from the example
above.

>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([15692.92889434, 16569.87435405, 17509.44688102])

numpy.pv(rate, nper, pmt, fv=0.0, when=’end’)
Compute the present value.

Given:

• a future value, fv

• an interest rate compounded once per period, of which there are

• nper total

• a (fixed) payment, pmt, paid either

• at the beginning (when = {‘begin’, 1}) or the end (when = {‘end’, 0}) of each period

Return:
the value now

Parameters
rate : array_like

Rate of interest (per period)

nper : array_like

Number of compounding periods

pmt : array_like

Payment

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

Returns
out : ndarray, float

Present value of a series of payments or investments.

3.12. Financial functions 575

NumPy Reference, Release 1.11.1

Notes

The present value is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when rate = 0:

fv + pv + pmt * nper = 0

for pv , which is then returned.

References

[WRW]

Examples

What is the present value (e.g., the initial investment) of an investment that needs to total $15692.93 after 10
years of saving $100 every month? Assume the interest rate is 5% (annually) compounded monthly.

>>> np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819

By convention, the negative sign represents cash flow out (i.e., money not available today). Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual interest, one’s initial deposit should also be $100.

If any input is array_like, pv returns an array of equal shape. Let’s compare different interest rates in the
example above:

>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
array([-100.00067132, -649.26771385, -1273.78633713])

So, to end up with the same $15692.93 under the same $100 per month “savings plan,” for annual interest rates
of 4% and 3%, one would need initial investments of $649.27 and $1273.79, respectively.

numpy.npv(rate, values)
Returns the NPV (Net Present Value) of a cash flow series.

Parameters
rate : scalar

The discount rate.

values : array_like, shape(M,)

The values of the time series of cash flows. The (fixed) time interval between cash flow
“events” must be the same as that for which rate is given (i.e., if rate is per year, then
precisely a year is understood to elapse between each cash flow event). By convention,
investments or “deposits” are negative, income or “withdrawals” are positive; values
must begin with the initial investment, thus values[0] will typically be negative.

Returns
out : float

The NPV of the input cash flow series values at the discount rate.

576 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

Returns the result of: [G53]

𝑀−1∑︁
𝑡=0

𝑣𝑎𝑙𝑢𝑒𝑠𝑡
(1 + 𝑟𝑎𝑡𝑒)𝑡

References

[G53]

Examples

>>> np.npv(0.281,[-100, 39, 59, 55, 20])
-0.0084785916384548798

(Compare with the Example given for numpy.lib.financial.irr)

numpy.pmt(rate, nper, pv, fv=0, when=’end’)
Compute the payment against loan principal plus interest.

Given:

• a present value, pv (e.g., an amount borrowed)

• a future value, fv (e.g., 0)

• an interest rate compounded once per period, of which there are

• nper total

• and (optional) specification of whether payment is made at the beginning (when = {‘begin’, 1}) or the
end (when = {‘end’, 0}) of each period

Return:
the (fixed) periodic payment.

Parameters
rate : array_like

Rate of interest (per period)

nper : array_like

Number of compounding periods

pv : array_like

Present value

fv : array_like, optional

Future value (default = 0)

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}

When payments are due (‘begin’ (1) or ‘end’ (0))

Returns
out : ndarray

Payment against loan plus interest. If all input is scalar, returns a scalar float. If any
input is array_like, returns payment for each input element. If multiple inputs are ar-
ray_like, they all must have the same shape.

3.12. Financial functions 577

NumPy Reference, Release 1.11.1

Notes

The payment is computed by solving the equation:

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0:

fv + pv + pmt * nper == 0

for pmt.

Note that computing a monthly mortgage payment is only one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified future balance given an initial deposit, a fixed, periodically
compounded interest rate, and the total number of periods.

References

[WRW]

Examples

What is the monthly payment needed to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%?

>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained today, a monthly payment of $1,854.02
would be required. Note that this example illustrates usage of fv having a default value of 0.

numpy.ppmt(rate, per, nper, pv, fv=0.0, when=’end’)
Compute the payment against loan principal.

Parameters
rate : array_like

Rate of interest (per period)

per : array_like, int

Amount paid against the loan changes. The per is the period of interest.

nper : array_like

Number of compounding periods

pv : array_like

Present value

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}

When payments are due (‘begin’ (1) or ‘end’ (0))

See also:

pmt, pv , ipmt

numpy.ipmt(rate, per, nper, pv, fv=0.0, when=’end’)
Compute the interest portion of a payment.

578 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
rate : scalar or array_like of shape(M,)

Rate of interest as decimal (not per cent) per period

per : scalar or array_like of shape(M,)

Interest paid against the loan changes during the life or the loan. The per is the payment
period to calculate the interest amount.

nper : scalar or array_like of shape(M,)

Number of compounding periods

pv : scalar or array_like of shape(M,)

Present value

fv : scalar or array_like of shape(M,), optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0)). Defaults to {‘end’, 0}.

Returns
out : ndarray

Interest portion of payment. If all input is scalar, returns a scalar float. If any input
is array_like, returns interest payment for each input element. If multiple inputs are
array_like, they all must have the same shape.

See also:

ppmt, pmt, pv

Notes

The total payment is made up of payment against principal plus interest.

pmt = ppmt + ipmt

Examples

What is the amortization schedule for a 1 year loan of $2500 at 8.24% interest per year compounded monthly?

>>> principal = 2500.00

The ‘per’ variable represents the periods of the loan. Remember that financial equations start the period count
at 1!

>>> per = np.arange(1*12) + 1
>>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)

Each element of the sum of the ‘ipmt’ and ‘ppmt’ arrays should equal ‘pmt’.

>>> pmt = np.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True

>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
... index = payment - 1

3.12. Financial functions 579

NumPy Reference, Release 1.11.1

... principal = principal + ppmt[index]

... print(fmt.format(payment, ppmt[index], ipmt[index], principal))
1 -200.58 -17.17 2299.42
2 -201.96 -15.79 2097.46
3 -203.35 -14.40 1894.11
4 -204.74 -13.01 1689.37
5 -206.15 -11.60 1483.22
6 -207.56 -10.18 1275.66
7 -208.99 -8.76 1066.67
8 -210.42 -7.32 856.25
9 -211.87 -5.88 644.38
10 -213.32 -4.42 431.05
11 -214.79 -2.96 216.26
12 -216.26 -1.49 -0.00

>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98

numpy.irr(values)
Return the Internal Rate of Return (IRR).

This is the “average” periodically compounded rate of return that gives a net present value of 0.0; for a more
complete explanation, see Notes below.

Parameters
values : array_like, shape(N,)

Input cash flows per time period. By convention, net “deposits” are negative and net
“withdrawals” are positive. Thus, for example, at least the first element of values, which
represents the initial investment, will typically be negative.

Returns
out : float

Internal Rate of Return for periodic input values.

Notes

The IRR is perhaps best understood through an example (illustrated using np.irr in the Examples section below).
Suppose one invests 100 units and then makes the following withdrawals at regular (fixed) intervals: 39, 59, 55,
20. Assuming the ending value is 0, one’s 100 unit investment yields 173 units; however, due to the combi-
nation of compounding and the periodic withdrawals, the “average” rate of return is neither simply 0.73/4 nor
(1.73)^0.25-1. Rather, it is the solution (for 𝑟) of the equation:

−100 +
39

1 + 𝑟
+

59

(1 + 𝑟)2
+

55

(1 + 𝑟)3
+

20

(1 + 𝑟)4
= 0

In general, for values = [𝑣0, 𝑣1, ...𝑣𝑀], irr is the solution of the equation: [G32]

𝑀∑︁
𝑡=0

𝑣𝑡
(1 + 𝑖𝑟𝑟)𝑡

= 0

References

[G32]

580 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> round(irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(irr([-5, 10.5, 1, -8, 1]), 5)
0.0886

(Compare with the Example given for numpy.lib.financial.npv)

numpy.mirr(values, finance_rate, reinvest_rate)
Modified internal rate of return.

Parameters
values : array_like

Cash flows (must contain at least one positive and one negative value) or nan is returned.
The first value is considered a sunk cost at time zero.

finance_rate : scalar

Interest rate paid on the cash flows

reinvest_rate : scalar

Interest rate received on the cash flows upon reinvestment

Returns
out : float

Modified internal rate of return

numpy.nper(rate, pmt, pv, fv=0, when=’end’)
Compute the number of periodic payments.

Parameters
rate : array_like

Rate of interest (per period)

pmt : array_like

Payment

pv : array_like

Present value

fv : array_like, optional

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

Notes

The number of periods nper is computed by solving the equation:

3.12. Financial functions 581

NumPy Reference, Release 1.11.1

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

but if rate = 0 then:

fv + pv + pmt*nper = 0

Examples

If you only had $150/month to pay towards the loan, how long would it take to pay-off a loan of $8,000 at 7%
annual interest?

>>> print(round(np.nper(0.07/12, -150, 8000), 5))
64.07335

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates and/or payments and/or total amounts to
produce an entire table.

>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
array([[[64.07334877, 74.06368256],

[108.07548412, 127.99022654]],
[[66.12443902, 76.87897353],
[114.70165583, 137.90124779]]])

numpy.rate(nper, pmt, pv, fv, when=’end’, guess=0.1, tol=1e-06, maxiter=100)
Compute the rate of interest per period.

Parameters
nper : array_like

Number of compounding periods

pmt : array_like

Payment

pv : array_like

Present value

fv : array_like

Future value

when : {{‘begin’, 1}, {‘end’, 0}}, {string, int}, optional

When payments are due (‘begin’ (1) or ‘end’ (0))

guess : float, optional

Starting guess for solving the rate of interest

tol : float, optional

Required tolerance for the solution

maxiter : int, optional

Maximum iterations in finding the solution

582 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The rate of interest is computed by iteratively solving the (non-linear) equation:

fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

for rate.

References

Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applica-
tions (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-
Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA,
USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-
formula OpenDocument-formula-20090508.odt

3.13 Functional programming

apply_along_axis(func1d, axis, arr, *args, ...) Apply a function to 1-D slices along the given axis.
apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.
vectorize(pyfunc[, otypes, doc, excluded, cache]) Generalized function class.
frompyfunc(func, nin, nout) Takes an arbitrary Python function and returns a Numpy ufunc.
piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.

Parameters
func1d : function

This function should accept 1-D arrays. It is applied to 1-D slices of arr along the
specified axis.

axis : integer

Axis along which arr is sliced.

arr : ndarray

Input array.

args : any

Additional arguments to func1d.

kwargs: any

Additional named arguments to func1d.

New in version 1.9.0.

Returns
apply_along_axis : ndarray

The output array. The shape of outarr is identical to the shape of arr, except along the
axis dimension, where the length of outarr is equal to the size of the return value of
func1d. If func1d returns a scalar outarr will have one fewer dimensions than arr.

3.13. Functional programming 583

http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula

NumPy Reference, Release 1.11.1

See also:

apply_over_axes
Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that doesn’t return a scalar, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

numpy.apply_over_axes(func, a, axes)
Apply a function repeatedly over multiple axes.

func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension
is inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters
func : function

This function must take two arguments, func(a, axis).

a : array_like

Input array.

axes : array_like

Axes over which func is applied; the elements must be integers.

Returns
apply_over_axis : ndarray

The output array. The number of dimensions is the same as a, but the shape can be
different. This depends on whether func changes the shape of its output with respect to
its input.

See also:

apply_along_axis
Apply a function to 1-D slices of an array along the given axis.

Notes

This function is equivalent to tuple axis arguments to reorderable ufuncs with keepdims=True. Tuple axis
arguments to ufuncs have been availabe since version 1.7.0.

584 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

Sum over axes 0 and 2. The result has same number of dimensions as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[60],

[92],
[124]]])

Tuple axis arguments to ufuncs are equivalent:

>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[60],

[92],
[124]]])

class numpy.vectorize(pyfunc, otypes=’‘, doc=None, excluded=None, cache=False)
Generalized function class.

Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a
numpy array as output. The vectorized function evaluates pyfunc over successive tuples of the input arrays like
the python map function, except it uses the broadcasting rules of numpy.

The data type of the output of vectorized is determined by calling the function with the first element of the input.
This can be avoided by specifying the otypes argument.

Parameters
pyfunc : callable

A python function or method.

otypes : str or list of dtypes, optional

The output data type. It must be specified as either a string of typecode characters or a
list of data type specifiers. There should be one data type specifier for each output.

doc : str, optional

The docstring for the function. If None, the docstring will be the pyfunc.__doc__.

excluded : set, optional

Set of strings or integers representing the positional or keyword arguments for which
the function will not be vectorized. These will be passed directly to pyfunc unmodified.

New in version 1.7.0.

cache : bool, optional

If True, then cache the first function call that determines the number of outputs if otypes
is not provided.

New in version 1.7.0.

Returns
vectorized : callable

3.13. Functional programming 585

NumPy Reference, Release 1.11.1

Vectorized function.

Notes

The vectorize function is provided primarily for convenience, not for performance. The implementation is
essentially a for loop.

If otypes is not specified, then a call to the function with the first argument will be used to determine the number
of outputs. The results of this call will be cached if cache is True to prevent calling the function twice. However,
to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only
do this if your function is expensive.

The new keyword argument interface and excluded argument support further degrades performance.

Examples

>>> def myfunc(a, b):
... "Return a-b if a>b, otherwise return a+b"
... if a > b:
... return a - b
... else:
... return a + b

>>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])

The docstring is taken from the input function to vectorize unless it is specified

>>> vfunc.__doc__
'Return a-b if a>b, otherwise return a+b'
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
>>> vfunc.__doc__
'Vectorized `myfunc`'

The output type is determined by evaluating the first element of the input, unless it is specified

>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.int32'>
>>> vfunc = np.vectorize(myfunc, otypes=[np.float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.float64'>

The excluded argument can be used to prevent vectorizing over certain arguments. This can be useful for array-
like arguments of a fixed length such as the coefficients for a polynomial as in polyval:

>>> def mypolyval(p, x):
... _p = list(p)
... res = _p.pop(0)
... while _p:
... res = res*x + _p.pop(0)
... return res
>>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
>>> vpolyval(p=[1, 2, 3], x=[0, 1])
array([3, 6])

Positional arguments may also be excluded by specifying their position:

586 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> vpolyval.excluded.add(0)
>>> vpolyval([1, 2, 3], x=[0, 1])
array([3, 6])

Methods

__call__(*args, **kwargs) Return arrays with the results of pyfunc broadcast (vectorized) over args and kwargs not in excluded.

vectorize.__call__(*args, **kwargs)
Return arrays with the results of pyfunc broadcast (vectorized) over args and kwargs not in excluded.

numpy.frompyfunc(func, nin, nout)
Takes an arbitrary Python function and returns a Numpy ufunc.

Can be used, for example, to add broadcasting to a built-in Python function (see Examples section).

Parameters
func : Python function object

An arbitrary Python function.

nin : int

The number of input arguments.

nout : int

The number of objects returned by func.

Returns
out : ufunc

Returns a Numpy universal function (ufunc) object.

Notes

The returned ufunc always returns PyObject arrays.

Examples

Use frompyfunc to add broadcasting to the Python function oct:

>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],

dtype='|S4')

numpy.piecewise(x, condlist, funclist, *args, **kw)
Evaluate a piecewise-defined function.

Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its
condition is true.

Parameters
x : ndarray

The input domain.

condlist : list of bool arrays

3.13. Functional programming 587

NumPy Reference, Release 1.11.1

Each boolean array corresponds to a function in funclist. Wherever condlist[i] is True,
funclist[i](x) is used as the output value.

Each boolean array in condlist selects a piece of x, and should therefore be of the same
shape as x.

The length of condlist must correspond to that of funclist. If one extra function is given,
i.e. if len(funclist) - len(condlist) == 1, then that extra function is the
default value, used wherever all conditions are false.

funclist : list of callables, f(x,*args,**kw), or scalars

Each function is evaluated over x wherever its corresponding condition is True. It should
take an array as input and give an array or a scalar value as output. If, instead of
a callable, a scalar is provided then a constant function (lambda x: scalar) is
assumed.

args : tuple, optional

Any further arguments given to piecewise are passed to the functions upon execu-
tion, i.e., if called piecewise(..., ..., 1, ’a’), then each function is called
as f(x, 1, ’a’).

kw : dict, optional

Keyword arguments used in calling piecewise are passed to the functions upon ex-
ecution, i.e., if called piecewise(..., ..., lambda=1), then each function is
called as f(x, lambda=1).

Returns
out : ndarray

The output is the same shape and type as x and is found by calling the functions in
funclist on the appropriate portions of x, as defined by the boolean arrays in condlist.
Portions not covered by any condition have a default value of 0.

See also:

choose, select, where

Notes

This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corre-
sponding condition from condlist.

The result is:

|--
|funclist[0](x[condlist[0]])

out = |funclist[1](x[condlist[1]])
|...
funclist[n2](x[condlist[n2]])

Examples

Define the sigma function, which is -1 for x < 0 and +1 for x >= 0.

>>> x = np.linspace(-2.5, 2.5, 6)
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])

Define the absolute value, which is -x for x <0 and x for x >= 0.

588 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5])

3.14 Numpy-specific help functions

3.14.1 Finding help

lookfor(what[, module, import_modules, ...]) Do a keyword search on docstrings.

numpy.lookfor(what, module=None, import_modules=True, regenerate=False, output=None)
Do a keyword search on docstrings.

A list of of objects that matched the search is displayed, sorted by relevance. All given keywords need to be
found in the docstring for it to be returned as a result, but the order does not matter.

Parameters
what : str

String containing words to look for.

module : str or list, optional

Name of module(s) whose docstrings to go through.

import_modules : bool, optional

Whether to import sub-modules in packages. Default is True.

regenerate : bool, optional

Whether to re-generate the docstring cache. Default is False.

output : file-like, optional

File-like object to write the output to. If omitted, use a pager.

See also:

source, info

Notes

Relevance is determined only roughly, by checking if the keywords occur in the function name, at the start of a
docstring, etc.

Examples

>>> np.lookfor('binary representation')
Search results for 'binary representation'
--
numpy.binary_repr

Return the binary representation of the input number as a string.
numpy.core.setup_common.long_double_representation

Given a binary dump as given by GNU od -b, look for long double
numpy.base_repr

Return a string representation of a number in the given base system.
...

3.14. Numpy-specific help functions 589

NumPy Reference, Release 1.11.1

3.14.2 Reading help

info([object, maxwidth, output, toplevel]) Get help information for a function, class, or module.
source(object[, output]) Print or write to a file the source code for a Numpy object.

numpy.info(object=None, maxwidth=76, output=<open file ‘<stdout>’, mode ‘w’>, toplevel=’numpy’)
Get help information for a function, class, or module.

Parameters
object : object or str, optional

Input object or name to get information about. If object is a numpy object, its doc-
string is given. If it is a string, available modules are searched for matching objects. If
None, information about info itself is returned.

maxwidth : int, optional

Printing width.

output : file like object, optional

File like object that the output is written to, default is stdout. The object has to be
opened in ‘w’ or ‘a’ mode.

toplevel : str, optional

Start search at this level.

See also:

source, lookfor

Notes

When used interactively with an object, np.info(obj) is equivalent to help(obj) on the Python prompt
or obj? on the IPython prompt.

Examples

>>> np.info(np.polyval)
polyval(p, x)

Evaluate the polynomial p at x.
...

When using a string for object it is possible to get multiple results.

>>> np.info('fft')

*** Found in numpy ***
Core FFT routines
...

*** Found in numpy.fft ***
fft(a, n=None, axis=-1)
...

*** Repeat reference found in numpy.fft.fftpack ***
*** Total of 3 references found. ***

numpy.source(object, output=<open file ‘<stdout>’, mode ‘w’>)
Print or write to a file the source code for a Numpy object.

The source code is only returned for objects written in Python. Many functions and classes are defined in C and
will therefore not return useful information.

590 Chapter 3. Routines

http://docs.python.org/dev/library/functions.html#object
http://docs.python.org/dev/library/functions.html#object

NumPy Reference, Release 1.11.1

Parameters
object : numpy object

Input object. This can be any object (function, class, module, ...).

output : file object, optional

If output not supplied then source code is printed to screen (sys.stdout). File object must
be created with either write ‘w’ or append ‘a’ modes.

See also:

lookfor, info

Examples

>>> np.source(np.interp)
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
def interp(x, xp, fp, left=None, right=None):

""".... (full docstring printed)"""
if isinstance(x, (float, int, number)):

return compiled_interp([x], xp, fp, left, right).item()
else:

return compiled_interp(x, xp, fp, left, right)

The source code is only returned for objects written in Python.

>>> np.source(np.array)
Not available for this object.

3.15 Indexing routines

See also:

Indexing

3.15.1 Generating index arrays

c_ Translates slice objects to concatenation along the second axis.
r_ Translates slice objects to concatenation along the first axis.
s_ A nicer way to build up index tuples for arrays.
nonzero(a) Return the indices of the elements that are non-zero.
where(condition, [x, y]) Return elements, either from x or y, depending on condition.
indices(dimensions[, dtype]) Return an array representing the indices of a grid.
ix_(*args) Construct an open mesh from multiple sequences.
ogrid nd_grid instance which returns an open multi-dimensional “meshgrid”.
ravel_multi_index(multi_index, dims[, mode, ...]) Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.
unravel_index(indices, dims[, order]) Converts a flat index or array of flat indices into a tuple of coordinate arrays.
diag_indices(n[, ndim]) Return the indices to access the main diagonal of an array.
diag_indices_from(arr) Return the indices to access the main diagonal of an n-dimensional array.
mask_indices(n, mask_func[, k]) Return the indices to access (n, n) arrays, given a masking function.
tril_indices(n[, k, m]) Return the indices for the lower-triangle of an (n, m) array.
tril_indices_from(arr[, k]) Return the indices for the lower-triangle of arr.

Continued on next page

3.15. Indexing routines 591

NumPy Reference, Release 1.11.1

Table 3.49 – continued from previous page
triu_indices(n[, k, m]) Return the indices for the upper-triangle of an (n, m) array.
triu_indices_from(arr[, k]) Return the indices for the upper-triangle of arr.

numpy.c_ = <numpy.lib.index_tricks.CClass object>
Translates slice objects to concatenation along the second axis.

This is short-hand for np.r_[’-1,2,0’, index expression], which is useful because of its common
occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with
1’s post-pended to the shape (column vectors made out of 1-D arrays).

For detailed documentation, see r_.

Examples

>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, 0, 0, 4, 5, 6]])

numpy.r_ = <numpy.lib.index_tricks.RClass object>
Translates slice objects to concatenation along the first axis.

This is a simple way to build up arrays quickly. There are two use cases.

1.If the index expression contains comma separated arrays, then stack them along their first axis.

2.If the index expression contains slice notation or scalars then create a 1-D array with a range indicated by
the slice notation.

If slice notation is used, the syntax start:stop:step is equivalent to np.arange(start, stop,
step) inside of the brackets. However, if step is an imaginary number (i.e. 100j) then its integer
portion is interpreted as a number-of-points desired and the start and stop are inclusive. In other words
start:stop:stepj is interpreted as np.linspace(start, stop, step, endpoint=1) inside
of the brackets. After expansion of slice notation, all comma separated sequences are concatenated together.

Optional character strings placed as the first element of the index expression can be used to change the output.
The strings ‘r’ or ‘c’ result in matrix output. If the result is 1-D and ‘r’ is specified a 1 x N (row) matrix is
produced. If the result is 1-D and ‘c’ is specified, then a N x 1 (column) matrix is produced. If the result is 2-D
then both provide the same matrix result.

A string integer specifies which axis to stack multiple comma separated arrays along. A string of two comma-
separated integers allows indication of the minimum number of dimensions to force each entry into as the second
integer (the axis to concatenate along is still the first integer).

A string with three comma-separated integers allows specification of the axis to concatenate along, the minimum
number of dimensions to force the entries to, and which axis should contain the start of the arrays which are less
than the specified number of dimensions. In other words the third integer allows you to specify where the 1’s
should be placed in the shape of the arrays that have their shapes upgraded. By default, they are placed in the
front of the shape tuple. The third argument allows you to specify where the start of the array should be instead.
Thus, a third argument of ‘0’ would place the 1’s at the end of the array shape. Negative integers specify where
in the new shape tuple the last dimension of upgraded arrays should be placed, so the default is ‘-1’.

Parameters
Not a function, so takes no parameters

Returns
A concatenated ndarray or matrix.

See also:

592 Chapter 3. Routines

NumPy Reference, Release 1.11.1

concatenate
Join a sequence of arrays along an existing axis.

c_
Translates slice objects to concatenation along the second axis.

Examples

>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6.])

String integers specify the axis to concatenate along or the minimum number of dimensions to force entries into.

>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],

[4, 5, 6]])

>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],

[2],
[3],
[4],
[5],
[6]])

>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],

[2, 5],
[3, 6]])

Using ‘r’ or ‘c’ as a first string argument creates a matrix.

>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])

numpy.s_ = <numpy.lib.index_tricks.IndexExpression object>
A nicer way to build up index tuples for arrays.

Note: Use one of the two predefined instances index_exp or s_ rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion, a[indices] is the same as
a[np.index_exp[indices]] for any array a. However, np.index_exp[indices] can be used any-
where in Python code and returns a tuple of slice objects that can be used in the construction of complex index
expressions.

Parameters
maketuple : bool

If True, always returns a tuple.

See also:

index_exp
Predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).

3.15. Indexing routines 593

NumPy Reference, Release 1.11.1

s_
Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False).

Notes

You can do all this with slice() plus a few special objects, but there’s a lot to remember and this version is simpler
because it uses the standard array indexing syntax.

Examples

>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)

>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])

numpy.nonzero(a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension. The values in a are always tested and returned in row-major, C-style order. The corresponding
non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose(nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a : array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.

See also:

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

>>> x = np.eye(3)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

594 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.nonzero(x)
(array([0, 1, 2]), array([0, 1, 2]))

>>> x[np.nonzero(x)]
array([1., 1., 1.])
>>> np.transpose(np.nonzero(x))
array([[0, 0],

[1, 1],
[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
array([[False, False, False],

[True, True, True],
[True, True, True]], dtype=bool)

>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the boolean array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

numpy.where(condition[, x, y])
Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters
condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same shape as condition.

Returns
out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains elements of x where condition is
True, and elements from y elsewhere.

If only condition is given, return the tuple condition.nonzero(), the indices
where condition is True.

See also:

nonzero, choose

Notes

If x and y are given and input arrays are 1-D, where is equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

3.15. Indexing routines 595

NumPy Reference, Release 1.11.1

Examples

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> x = np.arange(9.).reshape(3, 3)
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where(x > 3.0)] # Note: result is 1D.
array([4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[0., 1., 2.],

[3., 4., -1.],
[-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],

[True, True, False],
[False, True, False]], dtype=bool)

>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

numpy.indices(dimensions, dtype=<type ‘int’>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis.

Parameters
dimensions : sequence of ints

The shape of the grid.

dtype : dtype, optional

Data type of the result.

Returns
grid : ndarray

The array of grid indices, grid.shape = (len(dimensions),) +
tuple(dimensions).

See also:

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

596 Chapter 3. Routines

NumPy Reference, Release 1.11.1

grid[k,i0,i1,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

numpy.ix_(*args)
Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in
all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.

Using ix_ one can quickly construct index arrays that will index the cross product.
a[np.ix_([1,3],[2,5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

Parameters
args : 1-D sequences

Returns
out : tuple of ndarrays

N arrays with N dimensions each, with N the number of input sequences. Together
these arrays form an open mesh.

See also:

ogrid, mgrid, meshgrid

Examples

>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],

[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]

3.15. Indexing routines 597

NumPy Reference, Release 1.11.1

array([[2, 4],
[7, 9]])

numpy.ravel_multi_index(multi_index, dims, mode=’raise’, order=’C’)
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

Parameters
multi_index : tuple of array_like

A tuple of integer arrays, one array for each dimension.

dims : tuple of ints

The shape of array into which the indices from multi_index apply.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices are handled. Can specify either one mode or a
tuple of modes, one mode per index.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

In ‘clip’ mode, a negative index which would normally wrap will clip to 0 instead.

order : {‘C’, ‘F’}, optional

Determines whether the multi-index should be viewed as indexing in row-major (C-
style) or column-major (Fortran-style) order.

Returns
raveled_indices : ndarray

An array of indices into the flattened version of an array of dimensions dims.

See also:

unravel_index

Notes

New in version 1.6.0.

Examples

>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])

>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621

numpy.unravel_index(indices, dims, order=’C’)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.

598 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
indices : array_like

An integer array whose elements are indices into the flattened version of an array of
dimensions dims. Before version 1.6.0, this function accepted just one index value.

dims : tuple of ints

The shape of the array to use for unraveling indices.

order : {‘C’, ‘F’}, optional

Determines whether the indices should be viewed as indexing in row-major (C-style) or
column-major (Fortran-style) order.

New in version 1.6.0.

Returns
unraveled_coords : tuple of ndarray

Each array in the tuple has the same shape as the indices array.

See also:

ravel_multi_index

Examples

>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

numpy.diag_indices(n, ndim=2)
Return the indices to access the main diagonal of an array.

This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2
dimensions and shape (n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the
set of indices to access a[i, i, ..., i] for i = [0..n-1].

Parameters
n : int

The size, along each dimension, of the arrays for which the returned indices can be
used.

ndim : int, optional

The number of dimensions.

See also:

diag_indices_from

Notes

New in version 1.4.0.

3.15. Indexing routines 599

NumPy Reference, Release 1.11.1

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],

[4, 100, 6, 7],
[8, 9, 100, 11],
[12, 13, 14, 100]])

Now, we create indices to manipulate a 3-D array:

>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = np.zeros((2, 2, 2), dtype=np.int)
>>> a[d3] = 1
>>> a
array([[[1, 0],

[0, 0]],
[[0, 0],
[0, 1]]])

numpy.diag_indices_from(arr)
Return the indices to access the main diagonal of an n-dimensional array.

See diag_indices for full details.

Parameters
arr : array, at least 2-D

See also:

diag_indices

Notes

New in version 1.4.0.

numpy.mask_indices(n, mask_func, k=0)
Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k,
when called as mask_func(a, k) returns a new array with zeros in certain locations (functions like triu
or tril do precisely this). Then this function returns the indices where the non-zero values would be located.

Parameters
n : int

The returned indices will be valid to access arrays of shape (n, n).

600 Chapter 3. Routines

NumPy Reference, Release 1.11.1

mask_func : callable

A function whose call signature is similar to that of triu, tril. That is,
mask_func(x, k) returns a boolean array, shaped like x. k is an optional argument
to the function.

k : scalar

An optional argument which is passed through to mask_func. Functions like triu,
tril take a second argument that is interpreted as an offset.

Returns
indices : tuple of arrays.

The n arrays of indices corresponding to the locations where
mask_func(np.ones((n, n)), k) is True.

See also:

triu, tril, triu_indices, tril_indices

Notes

New in version 1.4.0.

Examples

These are the indices that would allow you to access the upper triangular part of any 3x3 array:

>>> iu = np.mask_indices(3, np.triu)

For example, if a is a 3x3 array:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> a[iu]
array([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right
of the main one:

>>> iu1 = np.mask_indices(3, np.triu, 1)

with which we now extract only three elements:

>>> a[iu1]
array([1, 2, 5])

numpy.tril_indices(n, k=0, m=None)
Return the indices for the lower-triangle of an (n, m) array.

Parameters
n : int

The row dimension of the arrays for which the returned indices will be valid.

k : int, optional

Diagonal offset (see tril for details).

m : int, optional

3.15. Indexing routines 601

NumPy Reference, Release 1.11.1

New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By
default m is taken equal to n.

Returns
inds : tuple of arrays

The indices for the triangle. The returned tuple contains two arrays, each with the
indices along one dimension of the array.

See also:

triu_indices
similar function, for upper-triangular.

mask_indices
generic function accepting an arbitrary mask function.

tril, triu

Notes

New in version 1.4.0.

Examples

Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> il1 = np.tril_indices(4)
>>> il2 = np.tril_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[il1]
array([0, 4, 5, 8, 9, 10, 12, 13, 14, 15])

And for assigning values:

>>> a[il1] = -1
>>> a
array([[-1, 1, 2, 3],

[-1, -1, 6, 7],
[-1, -1, -1, 11],
[-1, -1, -1, -1]])

These cover almost the whole array (two diagonals right of the main one):

>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 3],

[-10, -10, -10, -10],

602 Chapter 3. Routines

NumPy Reference, Release 1.11.1

[-10, -10, -10, -10],
[-10, -10, -10, -10]])

numpy.tril_indices_from(arr, k=0)
Return the indices for the lower-triangle of arr.

See tril_indices for full details.

Parameters
arr : array_like

The indices will be valid for square arrays whose dimensions are the same as arr.

k : int, optional

Diagonal offset (see tril for details).

See also:

tril_indices, tril

Notes

New in version 1.4.0.

numpy.triu_indices(n, k=0, m=None)
Return the indices for the upper-triangle of an (n, m) array.

Parameters
n : int

The size of the arrays for which the returned indices will be valid.

k : int, optional

Diagonal offset (see triu for details).

m : int, optional

New in version 1.9.0.

The column dimension of the arrays for which the returned arrays will be valid. By
default m is taken equal to n.

Returns
inds : tuple, shape(2) of ndarrays, shape(n)

The indices for the triangle. The returned tuple contains two arrays, each with the
indices along one dimension of the array. Can be used to slice a ndarray of shape(n, n).

See also:

tril_indices
similar function, for lower-triangular.

mask_indices
generic function accepting an arbitrary mask function.

triu, tril

Notes

New in version 1.4.0.

3.15. Indexing routines 603

NumPy Reference, Release 1.11.1

Examples

Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)

Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[iu1]
array([0, 1, 2, 3, 5, 6, 7, 10, 11, 15])

And for assigning values:

>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],

[4, -1, -1, -1],
[8, 9, -1, -1],
[12, 13, 14, -1]])

These cover only a small part of the whole array (two diagonals right of the main one):

>>> a[iu2] = -10
>>> a
array([[-1, -1, -10, -10],

[4, -1, -1, -10],
[8, 9, -1, -1],
[12, 13, 14, -1]])

numpy.triu_indices_from(arr, k=0)
Return the indices for the upper-triangle of arr.

See triu_indices for full details.

Parameters
arr : ndarray, shape(N, N)

The indices will be valid for square arrays.

k : int, optional

Diagonal offset (see triu for details).

Returns
triu_indices_from : tuple, shape(2) of ndarray, shape(N)

Indices for the upper-triangle of arr.

See also:

triu_indices, triu

604 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

New in version 1.4.0.

3.15.2 Indexing-like operations

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays to choose from.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
diag(v[, k]) Extract a diagonal or construct a diagonal array.
diagonal(a[, offset, axis1, axis2]) Return specified diagonals.
select(condlist, choicelist[, default]) Return an array drawn from elements in choicelist, depending on conditions.

numpy.take(a, indices, axis=None, out=None, mode=’raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be easier
to use if you need elements along a given axis.

Parameters
a : array_like

The source array.

indices : array_like

The indices of the values to extract.

New in version 1.8.0.

Also allow scalars for indices.

axis : int, optional

The axis over which to select values. By default, the flattened input array is used.

out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.

See also:

3.15. Indexing routines 605

NumPy Reference, Release 1.11.1

compress
Take elements using a boolean mask

ndarray.take
equivalent method

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

>>> np.take(a, [[0, 1], [2, 3]])
array([[4, 3],

[5, 7]])

numpy.choose(a, choices, out=None, mode=’raise’)
Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less
simple than it might seem from the following code description (below ndi = numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are first
broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1 we have that,
necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with shape Ba.shape is
created as follows:

•if mode=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range [0,
n-1]; now, suppose that i (in that range) is the value at the (j0, j1, ..., jm) position in Ba - then the value at
the same position in the new array is the value in Bchoices[i] at that same position;

•if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to map
integers outside the range [0, n-1] back into that range; and then the new array is constructed as above;

•if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped to 0;
values greater than n-1 are mapped to n-1; and then the new array is constructed as above.

Parameters
a : int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape[0]) is taken as defining the “sequence”.

606 Chapter 3. Routines

NumPy Reference, Release 1.11.1

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’}, optional

Specifies how indices outside [0, n-1] will be treated:

• ‘raise’ : an exception is raised

• ‘wrap’ : value becomes value mod n

• ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch

If a and each choice array are not all broadcastable to the same shape.

See also:

ndarray.choose
equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported, choices
should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be
either a list or a tuple.

Examples

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,
... # 31, etc.
...)
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20, 1, 12, 3])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[10, -10, 10],

[-10, 10, -10],
[10, -10, 10]])

3.15. Indexing routines 607

NumPy Reference, Release 1.11.1

>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1))
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],

[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])

numpy.compress(condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condition
evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a : array_like

Array from which to extract a part.

axis : int, optional

Axis along which to take slices. If None (default), work on the flattened array.

out : ndarray, optional

Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.

See also:

take, choose, diag, diagonal, select

ndarray.compress
Equivalent method in ndarray

np.extract
Equivalent method when working on 1-D arrays

numpy.doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)

608 Chapter 3. Routines

NumPy Reference, Release 1.11.1

array([[3, 4],
[5, 6]])

>>> np.compress([False, True], a, axis=1)
array([[2],

[4],
[6]])

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress([False, True], a)
array([2])

numpy.diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to
determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of
the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting
array will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use
np.diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future
versions of NumPy.

Parameters
a : array_like

Array from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axis1 : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns
array_of_diagonals : ndarray

If a is 2-D and not a matrix, a 1-D array of the same type as a containing the diagonal
is returned. If a is a matrix, a 1-D array containing the diagonal is returned in order

3.15. Indexing routines 609

NumPy Reference, Release 1.11.1

to maintain backward compatibility. If the dimension of a is greater than two, then an
array of diagonals is returned, “packed” from left-most dimension to right-most (e.g., if
a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError

If the dimension of a is less than 2.

See also:

diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],

[5, 7]])

numpy.select(condlist, choicelist, default=0)
Return an array drawn from elements in choicelist, depending on conditions.

Parameters
condlist : list of bool ndarrays

610 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The list of conditions which determine from which array in choicelist the output ele-
ments are taken. When multiple conditions are satisfied, the first one encountered in
condlist is used.

choicelist : list of ndarrays

The list of arrays from which the output elements are taken. It has to be of the same
length as condlist.

default : scalar, optional

The element inserted in output when all conditions evaluate to False.

Returns
output : ndarray

The output at position m is the m-th element of the array in choicelist where the m-th
element of the corresponding array in condlist is True.

See also:

where
Return elements from one of two arrays depending on condition.

take, choose, compress, diag, diagonal

Examples

>>> x = np.arange(10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])

3.15.3 Inserting data into arrays

place(arr, mask, vals) Change elements of an array based on conditional and input values.
put(a, ind, v[, mode]) Replaces specified elements of an array with given values.
putmask(a, mask, values) Changes elements of an array based on conditional and input values.
fill_diagonal(a, val[, wrap]) Fill the main diagonal of the given array of any dimensionality.

numpy.place(arr, mask, vals)
Change elements of an array based on conditional and input values.

Similar to np.copyto(arr, vals, where=mask), the difference is that place uses the first N ele-
ments of vals, where N is the number of True values in mask, while copyto uses the elements where mask is
True.

Note that extract does the exact opposite of place.

Parameters
arr : ndarray

Array to put data into.

mask : array_like

Boolean mask array. Must have the same size as a.

3.15. Indexing routines 611

NumPy Reference, Release 1.11.1

vals : 1-D sequence

Values to put into a. Only the first N elements are used, where N is the number of True
values in mask. If vals is smaller than N it will be repeated.

See also:

copyto, put, take, extract

Examples

>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[0, 1, 2],

[44, 55, 44]])

numpy.put(a, ind, v, mode=’raise’)
Replaces specified elements of an array with given values.

The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.

ind : array_like

Target indices, interpreted as integers.

v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See also:

putmask, place

Examples

>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a
array([-44, 1, -55, 3, 4])

612 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> a
array([0, 1, 2, 3, -5])

numpy.putmask(a, mask, values)
Changes elements of an array based on conditional and input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.

If values is not the same size as a and mask then it will repeat. This gives behavior different from a[mask] =
values.

Parameters
a : array_like

Target array.

mask : array_like

Boolean mask array. It has to be the same shape as a.

values : array_like

Values to put into a where mask is True. If values is smaller than a it will be repeated.

See also:

place, put, take, copyto

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> np.putmask(x, x>2, x**2)
>>> x
array([[0, 1, 2],

[9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = np.arange(5)
>>> np.putmask(x, x>1, [-33, -44])
>>> x
array([0, 1, -33, -44, -33])

numpy.fill_diagonal(a, val, wrap=False)
Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of locations with indices a[i, i, ..., i] all
identical. This function modifies the input array in-place, it does not return a value.

Parameters
a : array, at least 2-D.

Array whose diagonal is to be filled, it gets modified in-place.

val : scalar

Value to be written on the diagonal, its type must be compatible with that of the array a.

wrap : bool

For tall matrices in NumPy version up to 1.6.2, the diagonal “wrapped” after N columns.
You can have this behavior with this option. This affects only tall matrices.

3.15. Indexing routines 613

NumPy Reference, Release 1.11.1

See also:

diag_indices, diag_indices_from

Notes

New in version 1.4.0.

This functionality can be obtained via diag_indices, but internally this version uses a much faster imple-
mentation that never constructs the indices and uses simple slicing.

Examples

>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],

[0, 5, 0],
[0, 0, 5]])

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a[0, 0]
array([[4, 0, 0],

[0, 0, 0],
[0, 0, 0]])

>>> a[1, 1]
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 0]])

>>> a[2, 2]
array([[0, 0, 0],

[0, 0, 0],
[0, 0, 4]])

The wrap option affects only tall matrices:

>>> # tall matrices no wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])

>>> # tall matrices wrap
>>> a = np.zeros((5, 3),int)
>>> fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])

614 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> # wide matrices
>>> a = np.zeros((3, 5),int)
>>> fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],

[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])

3.15.4 Iterating over arrays

nditer Efficient multi-dimensional iterator object to iterate over arrays.
ndenumerate(arr) Multidimensional index iterator.
ndindex(*shape) An N-dimensional iterator object to index arrays.
flatiter Flat iterator object to iterate over arrays.
lib.Arrayterator(var[, buf_size]) Buffered iterator for big arrays.

class numpy.nditer
Efficient multi-dimensional iterator object to iterate over arrays. To get started using this object, see the intro-
ductory guide to array iteration.

Parameters
op : ndarray or sequence of array_like

The array(s) to iterate over.

flags : sequence of str, optional

Flags to control the behavior of the iterator.

• “buffered” enables buffering when required.

• “c_index” causes a C-order index to be tracked.

• “f_index” causes a Fortran-order index to be tracked.

• “multi_index” causes a multi-index, or a tuple of indices with one per iteration di-
mension, to be tracked.

• “common_dtype” causes all the operands to be converted to a common data type,
with copying or buffering as necessary.

• “delay_bufalloc” delays allocation of the buffers until a reset() call is made. Allows
“allocate” operands to be initialized before their values are copied into the buffers.

• “external_loop” causes the values given to be one-dimensional arrays with multiple
values instead of zero-dimensional arrays.

• “grow_inner” allows the value array sizes to be made larger than the buffer size
when both “buffered” and “external_loop” is used.

• “ranged” allows the iterator to be restricted to a sub-range of the iterindex values.

• “refs_ok” enables iteration of reference types, such as object arrays.

• “reduce_ok” enables iteration of “readwrite” operands which are broadcasted, also
known as reduction operands.

• “zerosize_ok” allows itersize to be zero.

op_flags : list of list of str, optional

3.15. Indexing routines 615

NumPy Reference, Release 1.11.1

This is a list of flags for each operand. At minimum, one of “readonly”, “readwrite”, or
“writeonly” must be specified.

• “readonly” indicates the operand will only be read from.

• “readwrite” indicates the operand will be read from and written to.

• “writeonly” indicates the operand will only be written to.

• “no_broadcast” prevents the operand from being broadcasted.

• “contig” forces the operand data to be contiguous.

• “aligned” forces the operand data to be aligned.

• “nbo” forces the operand data to be in native byte order.

• “copy” allows a temporary read-only copy if required.

• “updateifcopy” allows a temporary read-write copy if required.

• “allocate” causes the array to be allocated if it is None in the op parameter.

• “no_subtype” prevents an “allocate” operand from using a subtype.

• “arraymask” indicates that this operand is the mask to use for selecting elements when
writing to operands with the ‘writemasked’ flag set. The iterator does not enforce
this, but when writing from a buffer back to the array, it only copies those elements
indicated by this mask.

• ‘writemasked’ indicates that only elements where the chosen ‘arraymask’ operand is
True will be written to.

op_dtypes : dtype or tuple of dtype(s), optional

The required data type(s) of the operands. If copying or buffering is enabled, the data
will be converted to/from their original types.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the iteration order. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’
order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as
close to the order the array elements appear in memory as possible. This also affects the
element memory order of “allocate” operands, as they are allocated to be compatible
with iteration order. Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur when making a copy or buffering. Setting
this to ‘unsafe’ is not recommended, as it can adversely affect accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

op_axes : list of list of ints, optional

If provided, is a list of ints or None for each operands. The list of axes for an operand
is a mapping from the dimensions of the iterator to the dimensions of the operand. A
value of -1 can be placed for entries, causing that dimension to be treated as “newaxis”.

616 Chapter 3. Routines

NumPy Reference, Release 1.11.1

itershape : tuple of ints, optional

The desired shape of the iterator. This allows “allocate” operands with a dimension
mapped by op_axes not corresponding to a dimension of a different operand to get a
value not equal to 1 for that dimension.

buffersize : int, optional

When buffering is enabled, controls the size of the temporary buffers. Set to 0 for the
default value.

Notes

nditer supersedes flatiter. The iterator implementation behind nditer is also exposed by the Numpy
C API.

The Python exposure supplies two iteration interfaces, one which follows the Python iterator protocol, and
another which mirrors the C-style do-while pattern. The native Python approach is better in most cases, but if
you need the iterator’s coordinates or index, use the C-style pattern.

Examples

Here is how we might write an iter_add function, using the Python iterator protocol:

def iter_add_py(x, y, out=None):
addop = np.add
it = np.nditer([x, y, out], [],

[['readonly'], ['readonly'], ['writeonly','allocate']])
for (a, b, c) in it:

addop(a, b, out=c)
return it.operands[2]

Here is the same function, but following the C-style pattern:

def iter_add(x, y, out=None):
addop = np.add

it = np.nditer([x, y, out], [],
[['readonly'], ['readonly'], ['writeonly','allocate']])

while not it.finished:
addop(it[0], it[1], out=it[2])
it.iternext()

return it.operands[2]

Here is an example outer product function:

def outer_it(x, y, out=None):
mulop = np.multiply

it = np.nditer([x, y, out], ['external_loop'],
[['readonly'], ['readonly'], ['writeonly', 'allocate']],
op_axes=[range(x.ndim)+[-1]*y.ndim,

[-1]*x.ndim+range(y.ndim),
None])

for (a, b, c) in it:
mulop(a, b, out=c)

return it.operands[2]

3.15. Indexing routines 617

NumPy Reference, Release 1.11.1

>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],

[2, 4, 6]])

Here is an example function which operates like a “lambda” ufunc:

def luf(lamdaexpr, *args, **kwargs):
"luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)"
nargs = len(args)
op = (kwargs.get('out',None),) + args
it = np.nditer(op, ['buffered','external_loop'],

[['writeonly','allocate','no_broadcast']] +
[['readonly','nbo','aligned']]*nargs,

order=kwargs.get('order','K'),
casting=kwargs.get('casting','safe'),
buffersize=kwargs.get('buffersize',0))

while not it.finished:
it[0] = lamdaexpr(*it[1:])
it.iternext()

return it.operands[0]

>>> a = np.arange(5)
>>> b = np.ones(5)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([0.5, 1.5, 4.5, 9.5, 16.5])

618 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Attributes

dtypes (tuple of dtype(s)) The data types of the values provided in value. This may be different
from the operand data types if buffering is enabled.

finished (bool) Whether the iteration over the operands is finished or not.
has_delayed_bufalloc(bool) If True, the iterator was created with the “delay_bufalloc” flag, and no reset()

function was called on it yet.
has_index (bool) If True, the iterator was created with either the “c_index” or the “f_index” flag, and

the property index can be used to retrieve it.
has_multi_index(bool) If True, the iterator was created with the “multi_index” flag, and the property

multi_index can be used to retrieve it.
index : When the “c_index” or “f_index” flag was used, this property provides access to the index.

Raises a ValueError if accessed and has_index is False.
itera-
tionneed-
sapi

(bool) Whether iteration requires access to the Python API, for example if one of the
operands is an object array.

iterindex (int) An index which matches the order of iteration.
itersize (int) Size of the iterator.
itviews : Structured view(s) of operands in memory, matching the reordered and optimized iterator

access pattern.
multi_index
:

When the “multi_index” flag was used, this property provides access to the index. Raises a
ValueError if accessed accessed and has_multi_index is False.

ndim (int) The iterator’s dimension.
nop (int) The number of iterator operands.
operands (tuple of operand(s)) The array(s) to be iterated over.
shape (tuple of ints) Shape tuple, the shape of the iterator.
value : Value of operands at current iteration. Normally, this is a tuple of array scalars, but if the

flag “external_loop” is used, it is a tuple of one dimensional arrays.

Methods

copy() Get a copy of the iterator in its current state.
debug_print() Print the current state of the nditer instance and debug info to stdout.
enable_external_loop() When the “external_loop” was not used during construction, but is desired, this modifies the iterator to behave as if the flag was specified.
iternext() Check whether iterations are left, and perform a single internal iteration without returning the result.
next
remove_axis(i) Removes axis i from the iterator.
remove_multi_index() When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be optimized further.
reset() Reset the iterator to its initial state.

nditer.copy()
Get a copy of the iterator in its current state.

Examples

>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
>>> it.next()
(array(0), array(1))
>>> it2 = it.copy()
>>> it2.next()
(array(1), array(2))

3.15. Indexing routines 619

NumPy Reference, Release 1.11.1

nditer.debug_print()
Print the current state of the nditer instance and debug info to stdout.

nditer.enable_external_loop()
When the “external_loop” was not used during construction, but is desired, this modifies the iterator to
behave as if the flag was specified.

nditer.iternext()
Check whether iterations are left, and perform a single internal iteration without returning the result. Used
in the C-style pattern do-while pattern. For an example, see nditer.

Returns
iternext : bool

Whether or not there are iterations left.

nditer.next

nditer.remove_axis(i)
Removes axis i from the iterator. Requires that the flag “multi_index” be enabled.

nditer.remove_multi_index()
When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be
optimized further.

nditer.reset()
Reset the iterator to its initial state.

class numpy.ndindex(*shape)
An N-dimensional iterator object to index arrays.

Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each
iteration a tuple of indices is returned, the last dimension is iterated over first.

Parameters
‘*args‘ : ints

The size of each dimension of the array.

See also:

ndenumerate, flatiter

Examples

>>> for index in np.ndindex(3, 2, 1):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

Methods

ndincr() Increment the multi-dimensional index by one.
next() Standard iterator method, updates the index and returns the index tuple.

620 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ndindex.ndincr()
Increment the multi-dimensional index by one.

This method is for backward compatibility only: do not use.

ndindex.next()
Standard iterator method, updates the index and returns the index tuple.

Returns
val : tuple of ints

Returns a tuple containing the indices of the current iteration.

class numpy.flatiter
Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x.flat for any array x. It allows iterating over the array as if it were a
1-D array, either in a for-loop or by calling its next method.

Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed
using basic slicing or advanced indexing.

See also:

ndarray.flat
Return a flat iterator over an array.

ndarray.flatten
Returns a flattened copy of an array.

Notes

A flatiter iterator can not be constructed directly from Python code by calling the flatiter constructor.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
<type 'numpy.flatiter'>
>>> for item in fl:
... print(item)
...
0
1
2
3
4
5

>>> fl[2:4]
array([2, 3])

Attributes

coords An N-dimensional tuple of current coordinates.

flatiter.coords
An N-dimensional tuple of current coordinates.

3.15. Indexing routines 621

NumPy Reference, Release 1.11.1

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.coords
(0, 0)
>>> fl.next()
0
>>> fl.coords
(0, 1)

Methods

copy() Get a copy of the iterator as a 1-D array.
next

flatiter.copy()
Get a copy of the iterator as a 1-D array.

Examples

>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> fl = x.flat
>>> fl.copy()
array([0, 1, 2, 3, 4, 5])

flatiter.next

class numpy.lib.Arrayterator(var, buf_size=None)
Buffered iterator for big arrays.

Arrayterator creates a buffered iterator for reading big arrays in small contiguous blocks. The class is
useful for objects stored in the file system. It allows iteration over the object without reading everything in
memory; instead, small blocks are read and iterated over.

Arrayterator can be used with any object that supports multidimensional slices. This includes NumPy
arrays, but also variables from Scientific.IO.NetCDF or pynetcdf for example.

Parameters
var : array_like

The object to iterate over.

buf_size : int, optional

The buffer size. If buf_size is supplied, the maximum amount of data that will be read
into memory is buf_size elements. Default is None, which will read as many element as
possible into memory.

See also:

ndenumerate
Multidimensional array iterator.

flatiter
Flat array iterator.

622 Chapter 3. Routines

NumPy Reference, Release 1.11.1

memmap
Create a memory-map to an array stored in a binary file on disk.

Notes

The algorithm works by first finding a “running dimension”, along which the blocks will be extracted. Given
an array of dimensions (d1, d2, ..., dn), e.g. if buf_size is smaller than d1, the first dimension will
be used. If, on the other hand, d1 < buf_size < d1*d2 the second dimension will be used, and so on.
Blocks are extracted along this dimension, and when the last block is returned the process continues from the
next dimension, until all elements have been read.

Examples

>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)
>>> a_itor.shape
(3, 4, 5, 6)

Now we can iterate over a_itor, and it will return arrays of size two. Since buf_size was smaller than any
dimension, the first dimension will be iterated over first:

>>> for subarr in a_itor:
... if not subarr.all():
... print(subarr, subarr.shape)
...
[[[[0 1]]]] (1, 1, 1, 2)

Attributes

shape The shape of the array to be iterated over.
flat A 1-D flat iterator for Arrayterator objects.

Arrayterator.shape
The shape of the array to be iterated over.

For an example, see Arrayterator.

Arrayterator.flat
A 1-D flat iterator for Arrayterator objects.

This iterator returns elements of the array to be iterated over in Arrayterator one by one. It is similar
to flatiter.

See also:

Arrayterator, flatiter

Examples

>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)

>>> for subarr in a_itor.flat:
... if not subarr:
... print(subarr, type(subarr))
...
0 <type 'numpy.int32'>

3.15. Indexing routines 623

NumPy Reference, Release 1.11.1

var
buf_size
start
stop
step

3.16 Input and output

3.16.1 Numpy binary files (NPY, NPZ)

load(file[, mmap_mode, allow_pickle, ...]) Load arrays or pickled objects from .npy, .npz or pickled files.
save(file, arr[, allow_pickle, fix_imports]) Save an array to a binary file in NumPy .npy format.
savez(file, *args, **kwds) Save several arrays into a single file in uncompressed .npz format.
savez_compressed(file, *args, **kwds) Save several arrays into a single file in compressed .npz format.

numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding=’ASCII’)
Load arrays or pickled objects from .npy, .npz or pickled files.

Parameters
file : file-like object or string

The file to read. File-like objects must support the seek() and read() methods.
Pickled files require that the file-like object support the readline() method as well.

mmap_mode : {None, ‘r+’, ‘r’, ‘w+’, ‘c’}, optional

If not None, then memory-map the file, using the given mode (see numpy.memmap for
a detailed description of the modes). A memory-mapped array is kept on disk. However,
it can be accessed and sliced like any ndarray. Memory mapping is especially useful for
accessing small fragments of large files without reading the entire file into memory.

allow_pickle : bool, optional

Allow loading pickled object arrays stored in npy files. Reasons for disallowing pick-
les include security, as loading pickled data can execute arbitrary code. If pickles are
disallowed, loading object arrays will fail. Default: True

fix_imports : bool, optional

Only useful when loading Python 2 generated pickled files on Python 3, which includes
npy/npz files containing object arrays. If fix_imports is True, pickle will try to map the
old Python 2 names to the new names used in Python 3.

encoding : str, optional

What encoding to use when reading Python 2 strings. Only useful when loading Python
2 generated pickled files on Python 3, which includes npy/npz files containing object
arrays. Values other than ‘latin1’, ‘ASCII’, and ‘bytes’ are not allowed, as they can
corrupt numerical data. Default: ‘ASCII’

Returns
result : array, tuple, dict, etc.

Data stored in the file. For .npz files, the returned instance of NpzFile class must be
closed to avoid leaking file descriptors.

624 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Raises
IOError

If the input file does not exist or cannot be read.

ValueError

The file contains an object array, but allow_pickle=False given.

See also:

save, savez, savez_compressed, loadtxt

memmap
Create a memory-map to an array stored in a file on disk.

Notes

•If the file contains pickle data, then whatever object is stored in the pickle is returned.

•If the file is a .npy file, then a single array is returned.

•If the file is a .npz file, then a dictionary-like object is returned, containing {filename: array}
key-value pairs, one for each file in the archive.

•If the file is a .npz file, the returned value supports the context manager protocol in a similar fashion to
the open function:

with load('foo.npz') as data:
a = data['a']

The underlying file descriptor is closed when exiting the ‘with’ block.

Examples

Store data to disk, and load it again:

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],

[4, 5, 6]])

Store compressed data to disk, and load it again:

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],

[4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

Mem-map the stored array, and then access the second row directly from disk:

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])

numpy.save(file, arr, allow_pickle=True, fix_imports=True)
Save an array to a binary file in NumPy .npy format.

3.16. Input and output 625

NumPy Reference, Release 1.11.1

Parameters
file : file or str

File or filename to which the data is saved. If file is a file-object, then the filename is
unchanged. If file is a string, a .npy extension will be appended to the file name if it
does not already have one.

allow_pickle : bool, optional

Allow saving object arrays using Python pickles. Reasons for disallowing pickles in-
clude security (loading pickled data can execute arbitrary code) and portability (pickled
objects may not be loadable on different Python installations, for example if the stored
objects require libraries that are not available, and not all pickled data is compatible
between Python 2 and Python 3). Default: True

fix_imports : bool, optional

Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2
compatible way. If fix_imports is True, pickle will try to map the new Python 3 names
to the old module names used in Python 2, so that the pickle data stream is readable
with Python 2.

arr : array_like

Array data to be saved.

See also:

savez
Save several arrays into a .npz archive

savetxt, load

Notes

For a description of the .npy format, see the module docstring of numpy.lib.format or the Numpy En-
hancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()

>>> x = np.arange(10)
>>> np.save(outfile, x)

>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

numpy.savez(file, *args, **kwds)
Save several arrays into a single file in uncompressed .npz format.

If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are ‘arr_0’,
‘arr_1’, etc. If keyword arguments are given, the corresponding variable names, in the .npz file will match the
keyword names.

Parameters
file : str or file

626 Chapter 3. Routines

http://docs.scipy.org/doc/numpy/neps/npy-format.html

NumPy Reference, Release 1.11.1

Either the file name (string) or an open file (file-like object) where the data will be saved.
If file is a string, the .npz extension will be appended to the file name if it is not already
there.

args : Arguments, optional

Arrays to save to the file. Since it is not possible for Python to know the names of the
arrays outside savez, the arrays will be saved with names “arr_0”, “arr_1”, and so on.
These arguments can be any expression.

kwds : Keyword arguments, optional

Arrays to save to the file. Arrays will be saved in the file with the keyword names.

Returns
None

See also:

save
Save a single array to a binary file in NumPy format.

savetxt
Save an array to a file as plain text.

savez_compressed
Save several arrays into a compressed .npz archive

Notes

The .npz file format is a zipped archive of files named after the variables they contain. The archive is not com-
pressed and each file in the archive contains one variable in .npy format. For a description of the .npy format,
see numpy.lib.format or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-
format.html

When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object
which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves.

Examples

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> x = np.arange(10)
>>> y = np.sin(x)

Using savez with *args, the arrays are saved with default names.

>>> np.savez(outfile, x, y)
>>> outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> npzfile = np.load(outfile)
>>> npzfile.files
['arr_1', 'arr_0']
>>> npzfile['arr_0']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Using savez with **kwds, the arrays are saved with the keyword names.

>>> outfile = TemporaryFile()
>>> np.savez(outfile, x=x, y=y)
>>> outfile.seek(0)
>>> npzfile = np.load(outfile)

3.16. Input and output 627

http://docs.scipy.org/doc/numpy/neps/npy-format.html
http://docs.scipy.org/doc/numpy/neps/npy-format.html

NumPy Reference, Release 1.11.1

>>> npzfile.files
['y', 'x']
>>> npzfile['x']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

numpy.savez_compressed(file, *args, **kwds)
Save several arrays into a single file in compressed .npz format.

If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with
no keywords, then stored file names are arr_0, arr_1, etc.

Parameters
file : str

File name of .npz file.

args : Arguments

Function arguments.

kwds : Keyword arguments

Keywords.

See also:

numpy.savez
Save several arrays into an uncompressed .npz file format

numpy.load
Load the files created by savez_compressed.

The format of these binary file types is documented in http://docs.scipy.org/doc/numpy/neps/npy-format.html

3.16.2 Text files

loadtxt(fname[, dtype, comments, delimiter, ...]) Load data from a text file.
savetxt(fname, X[, fmt, delimiter, newline, ...]) Save an array to a text file.
genfromtxt(fname[, dtype, comments, ...]) Load data from a text file, with missing values handled as specified.
fromregex(file, regexp, dtype) Construct an array from a text file, using regular expression parsing.
fromstring(string[, dtype, count, sep]) A new 1-D array initialized from raw binary or text data in a string.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.tolist() Return the array as a (possibly nested) list.

numpy.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ‘, newline=’\n’, header=’‘, footer=’‘, comments=’#
‘)

Save an array to a text file.

Parameters
fname : filename or file handle

If the filename ends in .gz, the file is automatically saved in compressed gzip format.
loadtxt understands gzipped files transparently.

X : array_like

Data to be saved to a text file.

fmt : str or sequence of strs, optional

628 Chapter 3. Routines

http://docs.scipy.org/doc/numpy/neps/npy-format.html

NumPy Reference, Release 1.11.1

A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. ‘Iteration
%d – %10.5f’, in which case delimiter is ignored. For complex X, the legal options for
fmt are:

1. a single specifier, fmt=’%.4e’, resulting in numbers formatted
like ‘ (%s+%sj)’ % (fmt, fmt)

2. a full string specifying every real and imaginary part, e.g.
‘ %.4e %+.4j %.4e %+.4j %.4e %+.4j’ for 3 columns

3. a list of specifiers, one per column - in this case, the real
and imaginary part must have separate specifiers, e.g. [’%.3e + %.3ej’,
‘(%.15e%+.15ej)’] for 2 columns

delimiter : str, optional

String or character separating columns.

newline : str, optional

String or character separating lines.

New in version 1.5.0.

header : str, optional

String that will be written at the beginning of the file.

New in version 1.7.0.

footer : str, optional

String that will be written at the end of the file.

New in version 1.7.0.

comments : str, optional

String that will be prepended to the header and footer strings, to mark them as
comments. Default: ‘# ‘, as expected by e.g. numpy.loadtxt.

New in version 1.7.0.

See also:

save
Save an array to a binary file in NumPy .npy format

savez
Save several arrays into an uncompressed .npz archive

savez_compressed
Save several arrays into a compressed .npz archive

Notes

Further explanation of the fmt parameter (%[flag]width[.precision]specifier):

flags:
- : left justify

+ : Forces to precede result with + or -.

0 : Left pad the number with zeros instead of space (see width).

3.16. Input and output 629

NumPy Reference, Release 1.11.1

width:
Minimum number of characters to be printed. The value is not truncated if it has more characters.

precision:

• For integer specifiers (eg. d,i,o,x), the minimum number of digits.

• For e, E and f specifiers, the number of digits to print after the decimal point.

• For g and G, the maximum number of significant digits.

• For s, the maximum number of characters.

specifiers:
c : character

d or i : signed decimal integer

e or E : scientific notation with e or E.

f : decimal floating point

g,G : use the shorter of e,E or f

o : signed octal

s : string of characters

u : unsigned decimal integer

x,X : unsigned hexadecimal integer

This explanation of fmt is not complete, for an exhaustive specification see [R280].

References

[R280]

Examples

>>> x = y = z = np.arange(0.0,5.0,1.0)
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation

numpy.genfromtxt(fname, dtype=<type ‘float’>, comments=’#’, delimiter=None, skip_header=0,
skip_footer=0, converters=None, missing_values=None, filling_values=None, usec-
ols=None, names=None, excludelist=None, deletechars=None, replace_space=’_’,
autostrip=False, case_sensitive=True, defaultfmt=’f%i’, unpack=None, use-
mask=False, loose=True, invalid_raise=True, max_rows=None)

Load data from a text file, with missing values handled as specified.

Each line past the first skip_header lines is split at the delimiter character, and characters following the comments
character are discarded.

Parameters
fname : file, str, list of str, generator

File, filename, list, or generator to read. If the filename extension is gz or bz2, the file
is first decompressed. Mote that generators must return byte strings in Python 3k. The
strings in a list or produced by a generator are treated as lines.

dtype : dtype, optional

630 Chapter 3. Routines

http://docs.python.org/dev/library/bz2.html#module-bz2

NumPy Reference, Release 1.11.1

Data type of the resulting array. If None, the dtypes will be determined by the contents
of each column, individually.

comments : str, optional

The character used to indicate the start of a comment. All the characters occurring on a
line after a comment are discarded

delimiter : str, int, or sequence, optional

The string used to separate values. By default, any consecutive whitespaces act as
delimiter. An integer or sequence of integers can also be provided as width(s) of each
field.

skiprows : int, optional

skiprows was removed in numpy 1.10. Please use skip_header instead.

skip_header : int, optional

The number of lines to skip at the beginning of the file.

skip_footer : int, optional

The number of lines to skip at the end of the file.

converters : variable, optional

The set of functions that convert the data of a column to a value. The converters can also
be used to provide a default value for missing data: converters = {3: lambda
s: float(s or 0)}.

missing : variable, optional

missing was removed in numpy 1.10. Please use missing_values instead.

missing_values : variable, optional

The set of strings corresponding to missing data.

filling_values : variable, optional

The set of values to be used as default when the data are missing.

usecols : sequence, optional

Which columns to read, with 0 being the first. For example, usecols = (1, 4,
5) will extract the 2nd, 5th and 6th columns.

names : {None, True, str, sequence}, optional

If names is True, the field names are read from the first valid line after the first
skip_header lines. If names is a sequence or a single-string of comma-separated names,
the names will be used to define the field names in a structured dtype. If names is None,
the names of the dtype fields will be used, if any.

excludelist : sequence, optional

A list of names to exclude. This list is appended to the default list [’return’,’file’,’print’].
Excluded names are appended an underscore: for example, file would become file_.

deletechars : str, optional

A string combining invalid characters that must be deleted from the names.

defaultfmt : str, optional

A format used to define default field names, such as “f%i” or “f_%02i”.

3.16. Input and output 631

NumPy Reference, Release 1.11.1

autostrip : bool, optional

Whether to automatically strip white spaces from the variables.

replace_space : char, optional

Character(s) used in replacement of white spaces in the variables names. By default,
use a ‘_’.

case_sensitive : {True, False, ‘upper’, ‘lower’}, optional

If True, field names are case sensitive. If False or ‘upper’, field names are converted to
upper case. If ‘lower’, field names are converted to lower case.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be unpacked using x,
y, z = loadtxt(...)

usemask : bool, optional

If True, return a masked array. If False, return a regular array.

loose : bool, optional

If True, do not raise errors for invalid values.

invalid_raise : bool, optional

If True, an exception is raised if an inconsistency is detected in the number of columns.
If False, a warning is emitted and the offending lines are skipped.

max_rows : int, optional

The maximum number of rows to read. Must not be used with skip_footer at the same
time. If given, the value must be at least 1. Default is to read the entire file.

New in version 1.10.0.

Returns
out : ndarray

Data read from the text file. If usemask is True, this is a masked array.

See also:

numpy.loadtxt
equivalent function when no data is missing.

Notes

•When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any
missing data between two fields.

•When the variables are named (either by a flexible dtype or with names, there must not be any header in
the file (else a ValueError exception is raised).

•Individual values are not stripped of spaces by default. When using a custom converter, make sure the
function does remove spaces.

References

[R20]

632 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from io import StringIO
>>> import numpy as np

Comma delimited file with mixed dtype

>>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Using dtype = None

>>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Specifying dtype and names

>>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

An example with fixed-width columns

>>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),

dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])

numpy.fromregex(file, regexp, dtype)
Construct an array from a text file, using regular expression parsing.

The returned array is always a structured array, and is constructed from all matches of the regular expression in
the file. Groups in the regular expression are converted to fields of the structured array.

Parameters
file : str or file

File name or file object to read.

regexp : str or regexp

Regular expression used to parse the file. Groups in the regular expression correspond
to fields in the dtype.

dtype : dtype or list of dtypes

Dtype for the structured array.

Returns
output : ndarray

3.16. Input and output 633

NumPy Reference, Release 1.11.1

The output array, containing the part of the content of file that was matched by regexp.
output is always a structured array.

Raises
TypeError

When dtype is not a valid dtype for a structured array.

See also:

fromstring, loadtxt

Notes

Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and
field name. For details see doc.structured_arrays.

Examples

>>> f = open('test.dat', 'w')
>>> f.write("1312 foo\n1534 bar\n444 qux")
>>> f.close()

>>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
>>> output = np.fromregex('test.dat', regexp,
... [('num', np.int64), ('key', 'S3')])
>>> output
array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],

dtype=[('num', '<i8'), ('key', '|S3')])
>>> output['num']
array([1312, 1534, 444], dtype=int64)

3.16.3 Raw binary files

fromfile(file[, dtype, count, sep]) Construct an array from data in a text or binary file.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).

3.16.4 String formatting

array2string(a[, max_line_width, precision, ...]) Return a string representation of an array.
array_repr(arr[, max_line_width, precision, ...]) Return the string representation of an array.
array_str(a[, max_line_width, precision, ...]) Return a string representation of the data in an array.

numpy.array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=’ ‘,
prefix=’‘, style=<built-in function repr>, formatter=None)

Return a string representation of an array.

Parameters
a : ndarray

Input array.

max_line_width : int, optional

The maximum number of columns the string should span. Newline characters splits the
string appropriately after array elements.

634 Chapter 3. Routines

NumPy Reference, Release 1.11.1

precision : int, optional

Floating point precision. Default is the current printing precision (usually 8), which can
be altered using set_printoptions.

suppress_small : bool, optional

Represent very small numbers as zero. A number is “very small” if it is smaller than
the current printing precision.

separator : str, optional

Inserted between elements.

prefix : str, optional

An array is typically printed as:

'prefix(' + array2string(a) + ')'

The length of the prefix string is used to align the output correctly.

style : function, optional

A function that accepts an ndarray and returns a string. Used only when the shape of a
is equal to (), i.e. for 0-D arrays.

formatter : dict of callables, optional

If not None, the keys should indicate the type(s) that the respective formatting function
applies to. Callables should return a string. Types that are not specified (by their cor-
responding keys) are handled by the default formatters. Individual types for which a
formatter can be set are:

- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpy_str' : types `numpy.string_` and `numpy.unicode_`
- 'str' : all other strings

Other keys that can be used to set a group of types at once are:

- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'str' and 'numpystr'

Returns
array_str : str

String representation of the array.

Raises
TypeError

if a callable in formatter does not return a string.

3.16. Input and output 635

http://docs.python.org/dev/library/formatter.html#module-formatter

NumPy Reference, Release 1.11.1

See also:

array_str, array_repr, set_printoptions, get_printoptions

Notes

If a formatter is specified for a certain type, the precision keyword is ignored for that type.

This is a very flexible function; array_repr and array_str are using array2string internally so
keywords with the same name should work identically in all three functions.

Examples

>>> x = np.array([1e-16,1,2,3])
>>> print(np.array2string(x, precision=2, separator=',',
... suppress_small=True))
[0., 1., 2., 3.]

>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'

>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0L 0x1L 0x2L]'

numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
Return the string representation of an array.

Parameters
arr : ndarray

Input array.

max_line_width : int, optional

The maximum number of columns the string should span. Newline characters split the
string appropriately after array elements.

precision : int, optional

Floating point precision. Default is the current printing precision (usually 8), which can
be altered using set_printoptions.

suppress_small : bool, optional

Represent very small numbers as zero, default is False. Very small is defined by preci-
sion, if the precision is 8 then numbers smaller than 5e-9 are represented as zero.

Returns
string : str

The string representation of an array.

See also:

array_str, array2string, set_printoptions

Examples

>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([0.])'

636 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'

>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([0.000001, 0. , 2. , 3.])'

numpy.array_str(a, max_line_width=None, precision=None, suppress_small=None)
Return a string representation of the data in an array.

The data in the array is returned as a single string. This function is similar to array_repr, the difference
being that array_repr also returns information on the kind of array and its data type.

Parameters
a : ndarray

Input array.

max_line_width : int, optional

Inserts newlines if text is longer than max_line_width. The default is, indirectly, 75.

precision : int, optional

Floating point precision. Default is the current printing precision (usually 8), which can
be altered using set_printoptions.

suppress_small : bool, optional

Represent numbers “very close” to zero as zero; default is False. Very close is defined
by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9
are represented as zero.

See also:

array2string, array_repr, set_printoptions

Examples

>>> np.array_str(np.arange(3))
'[0 1 2]'

3.16.5 Memory mapping files

memmap Create a memory-map to an array stored in a binary file on disk.

3.16.6 Text formatting options

set_printoptions([precision, threshold, ...]) Set printing options.
get_printoptions() Return the current print options.
set_string_function(f[, repr]) Set a Python function to be used when pretty printing arrays.

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, sup-
press=None, nanstr=None, infstr=None, formatter=None)

Set printing options.

These options determine the way floating point numbers, arrays and other NumPy objects are displayed.

3.16. Input and output 637

NumPy Reference, Release 1.11.1

Parameters
precision : int, optional

Number of digits of precision for floating point output (default 8).

threshold : int, optional

Total number of array elements which trigger summarization rather than full repr (de-
fault 1000).

edgeitems : int, optional

Number of array items in summary at beginning and end of each dimension (default 3).

linewidth : int, optional

The number of characters per line for the purpose of inserting line breaks (default 75).

suppress : bool, optional

Whether or not suppress printing of small floating point values using scientific notation
(default False).

nanstr : str, optional

String representation of floating point not-a-number (default nan).

infstr : str, optional

String representation of floating point infinity (default inf).

formatter : dict of callables, optional

If not None, the keys should indicate the type(s) that the respective formatting function
applies to. Callables should return a string. Types that are not specified (by their cor-
responding keys) are handled by the default formatters. Individual types for which a
formatter can be set are:

- 'bool'
- 'int'
- 'timedelta' : a `numpy.timedelta64`
- 'datetime' : a `numpy.datetime64`
- 'float'
- 'longfloat' : 128-bit floats
- 'complexfloat'
- 'longcomplexfloat' : composed of two 128-bit floats
- 'numpy_str' : types `numpy.string_` and `numpy.unicode_`
- 'str' : all other strings

Other keys that can be used to set a group of types at once are:

- 'all' : sets all types
- 'int_kind' : sets 'int'
- 'float_kind' : sets 'float' and 'longfloat'
- 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
- 'str_kind' : sets 'str' and 'numpystr'

See also:

get_printoptions, set_string_function, array2string

Notes

formatter is always reset with a call to set_printoptions.

638 Chapter 3. Routines

http://docs.python.org/dev/library/formatter.html#module-formatter

NumPy Reference, Release 1.11.1

Examples

Floating point precision can be set:

>>> np.set_printoptions(precision=4)
>>> print(np.array([1.123456789]))
[1.1235]

Long arrays can be summarised:

>>> np.set_printoptions(threshold=5)
>>> print(np.arange(10))
[0 1 2 ..., 7 8 9]

Small results can be suppressed:

>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])

A custom formatter can be used to display array elements as desired:

>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])

To put back the default options, you can use:

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

numpy.get_printoptions()
Return the current print options.

Returns
print_opts : dict

Dictionary of current print options with keys

• precision : int

• threshold : int

• edgeitems : int

• linewidth : int

• suppress : bool

• nanstr : str

• infstr : str

• formatter : dict of callables

For a full description of these options, see set_printoptions.

3.16. Input and output 639

NumPy Reference, Release 1.11.1

See also:

set_printoptions, set_string_function

numpy.set_string_function(f, repr=True)
Set a Python function to be used when pretty printing arrays.

Parameters
f : function or None

Function to be used to pretty print arrays. The function should expect a single array
argument and return a string of the representation of the array. If None, the function is
reset to the default NumPy function to print arrays.

repr : bool, optional

If True (default), the function for pretty printing (__repr__) is set, if False the func-
tion that returns the default string representation (__str__) is set.

See also:

set_printoptions, get_printoptions

Examples

>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print(a)
[0 1 2 3 4 5 6 7 8 9]

We can reset the function to the default:

>>> np.set_string_function(None)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

repr affects either pretty printing or normal string representation. Note that __repr__ is still affected by
setting __str__ because the width of each array element in the returned string becomes equal to the length of
the result of __str__().

>>> x = np.arange(4)
>>> np.set_string_function(lambda x:'random', repr=False)
>>> x.__str__()
'random'
>>> x.__repr__()
'array([0, 1, 2, 3])'

3.16.7 Base-n representations

binary_repr(num[, width]) Return the binary representation of the input number as a string.
base_repr(number[, base, padding]) Return a string representation of a number in the given base system.

640 Chapter 3. Routines

http://docs.python.org/dev/library/functions.html#repr

NumPy Reference, Release 1.11.1

numpy.base_repr(number, base=2, padding=0)
Return a string representation of a number in the given base system.

Parameters
number : int

The value to convert. Only positive values are handled.

base : int, optional

Convert number to the base number system. The valid range is 2-36, the default value
is 2.

padding : int, optional

Number of zeros padded on the left. Default is 0 (no padding).

Returns
out : str

String representation of number in base system.

See also:

binary_repr
Faster version of base_repr for base 2.

Examples

>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'

>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'

3.16.8 Data sources

DataSource([destpath]) A generic data source file (file, http, ftp, ...).

class numpy.DataSource(destpath=’.’)
A generic data source file (file, http, ftp, ...).

DataSources can be local files or remote files/URLs. The files may also be compressed or uncompressed.
DataSource hides some of the low-level details of downloading the file, allowing you to simply pass in a valid
file path (or URL) and obtain a file object.

Parameters
destpath : str or None, optional

Path to the directory where the source file gets downloaded to for use. If destpath is
None, a temporary directory will be created. The default path is the current directory.

3.16. Input and output 641

NumPy Reference, Release 1.11.1

Notes

URLs require a scheme string (http://) to be used, without it they will fail:

>>> repos = DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
True

Temporary directories are deleted when the DataSource is deleted.

Examples

>>> ds = DataSource('/home/guido')
>>> urlname = 'http://www.google.com/index.html'
>>> gfile = ds.open('http://www.google.com/index.html') # remote file
>>> ds.abspath(urlname)
'/home/guido/www.google.com/site/index.html'

>>> ds = DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
'/tmp/tmpy4pgsP/home/guido/foobar.txt'

Methods

abspath(path) Return absolute path of file in the DataSource directory.
exists(path) Test if path exists.
open(path[, mode]) Open and return file-like object.

DataSource.abspath(path)
Return absolute path of file in the DataSource directory.

If path is an URL, then abspath will return either the location the file exists locally or the location it
would exist when opened using the open method.

Parameters
path : str

Can be a local file or a remote URL.

Returns
out : str

Complete path, including the DataSource destination directory.

Notes

The functionality is based on os.path.abspath.

DataSource.exists(path)
Test if path exists.

Test if path exists as (and in this order):

•a local file.

•a remote URL that has been downloaded and stored locally in the DataSource directory.

642 Chapter 3. Routines

http://docs.python.org/dev/library/os.path.html#os.path.abspath

NumPy Reference, Release 1.11.1

•a remote URL that has not been downloaded, but is valid and accessible.

Parameters
path : str

Can be a local file or a remote URL.

Returns
out : bool

True if path exists.

Notes

When path is an URL, exists will return True if it’s either stored locally in the DataSource direc-
tory, or is a valid remote URL. DataSource does not discriminate between the two, the file is accessible
if it exists in either location.

DataSource.open(path, mode=’r’)
Open and return file-like object.

If path is an URL, it will be downloaded, stored in the DataSource directory and opened from there.

Parameters
path : str

Local file path or URL to open.

mode : {‘r’, ‘w’, ‘a’}, optional

Mode to open path. Mode ‘r’ for reading, ‘w’ for writing, ‘a’ to append. Available
modes depend on the type of object specified by path. Default is ‘r’.

Returns
out : file object

File object.

3.17 Linear algebra (numpy.linalg)

3.17.1 Matrix and vector products

dot(a, b[, out]) Dot product of two arrays.
vdot(a, b) Return the dot product of two vectors.
inner(a, b) Inner product of two arrays.
outer(a, b[, out]) Compute the outer product of two vectors.
matmul(a, b[, out]) Matrix product of two arrays.
tensordot(a, b[, axes]) Compute tensor dot product along specified axes for arrays >= 1-D.
einsum(subscripts, *operands[, out, dtype, ...]) Evaluates the Einstein summation convention on the operands.
linalg.matrix_power(M, n) Raise a square matrix to the (integer) power n.
kron(a, b) Kronecker product of two arrays.

numpy.dot(a, b, out=None)
Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without
complex conjugation). For N dimensions it is a sum product over the last axis of a and the second-to-last of b:

3.17. Linear algebra (numpy.linalg) 643

NumPy Reference, Release 1.11.1

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters
a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns
output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError

If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:

vdot
Complex-conjugating dot product.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

matmul
‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],

[2, 2]])

644 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

numpy.vdot(a, b)
Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than dot(a, b). If the first argument is complex the
complex conjugate of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional arrays differently than dot: it does not perform a matrix product,
but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors.

Parameters
a : array_like

If a is complex the complex conjugate is taken before calculation of the dot product.

b : array_like

Second argument to the dot product.

Returns
output : ndarray

Dot product of a and b. Can be an int, float, or complex depending on the types of a
and b.

See also:

dot
Return the dot product without using the complex conjugate of the first argument.

Examples

>>> a = np.array([1+2j,3+4j])
>>> b = np.array([5+6j,7+8j])
>>> np.vdot(a, b)
(70-8j)
>>> np.vdot(b, a)
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30

numpy.inner(a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

3.17. Linear algebra (numpy.linalg) 645

NumPy Reference, Release 1.11.1

Parameters
a, b : array_like

If a and b are nonscalar, their last dimensions must match.

Returns
out : ndarray

out.shape = a.shape[:-1] + b.shape[:-1]

Raises
ValueError

If the last dimension of a and b has different size.

See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

einsum
Einstein summation convention.

Notes

For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

A multidimensional example:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[14, 38, 62],

[86, 110, 134]])

An example where b is a scalar:

646 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

numpy.outer(a, b, out=None)
Compute the outer product of two vectors.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [R55]
is:

[[a0*b0 a0*b1 ... a0*bN]
[a1*b0 .
[... .
[aM*b0 aM*bN]]

Parameters
a : (M,) array_like

First input vector. Input is flattened if not already 1-dimensional.

b : (N,) array_like

Second input vector. Input is flattened if not already 1-dimensional.

out : (M, N) ndarray, optional

A location where the result is stored

New in version 1.9.0.

Returns
out : (M, N) ndarray

out[i, j] = a[i] * b[j]

See also:

inner, einsum

References

[R55]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im

3.17. Linear algebra (numpy.linalg) 647

NumPy Reference, Release 1.11.1

>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

numpy.matmul(a, b, out=None)
Matrix product of two arrays.

The behavior depends on the arguments in the following way.

•If both arguments are 2-D they are multiplied like conventional matrices.

•If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and
broadcast accordingly.

•If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix
multiplication the prepended 1 is removed.

•If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix
multiplication the appended 1 is removed.

Multiplication by a scalar is not allowed, use * instead. Note that multiplying a stack of matrices with a vector
will result in a stack of vectors, but matmul will not recognize it as such.

matmul differs from dot in two important ways.

•Multiplication by scalars is not allowed.

•Stacks of matrices are broadcast together as if the matrices were elements.

Warning: This function is preliminary and included in Numpy 1.10 for testing and documentation. Its
semantics will not change, but the number and order of the optional arguments will.

New in version 1.10.0.

Parameters
a : array_like

First argument.

b : array_like

Second argument.

out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

648 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
output : ndarray

Returns the dot product of a and b. If a and b are both 1-D arrays then a scalar is
returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError

If the last dimension of a is not the same size as the second-to-last dimension of b.

If scalar value is passed.

See also:

vdot
Complex-conjugating dot product.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

dot
alternative matrix product with different broadcasting rules.

Notes

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465.

Examples

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.matmul(a, b)
array([[4, 1],

[2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = [[1, 0], [0, 1]]
>>> b = [1, 2]
>>> np.matmul(a, b)
array([1, 2])
>>> np.matmul(b, a)
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2*2*4).reshape((2,2,4))
>>> b = np.arange(2*2*4).reshape((2,4,2))
>>> np.matmul(a,b).shape
(2, 2, 2)
>>> np.matmul(a,b)[0,1,1]
98
>>> sum(a[0,1,:] * b[0,:,1])
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

3.17. Linear algebra (numpy.linalg) 649

NumPy Reference, Release 1.11.1

>>> np.matmul([2j, 3j], [2j, 3j])
(-13+0j)

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: Scalar operands are not allowed, use '*' instead

numpy.tensordot(a, b, axes=2)
Compute tensor dot product along specified axes for arrays >= 1-D.

Given two tensors (arrays of dimension greater than or equal to one), a and b, and an array_like object containing
two array_like objects, (a_axes, b_axes), sum the products of a‘s and b‘s elements (components) over the
axes specified by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar,
N; if it is such, then the last N dimensions of a and the first N dimensions of b are summed over.

Parameters
a, b : array_like, len(shape) >= 1

Tensors to “dot”.

axes : int or (2,) array_like

• integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The
sizes of the corresponding axes must match.

• (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to
b. Both elements array_like must be of the same length.

See also:

dot, einsum

Notes

Three common use cases are:
axes = 0 : tensor product $aotimes b$ axes = 1 : tensor dot product $acdot b$ axes = 2 : (de-
fault) tensor double contraction $a:b$

When axes is integer_like, the sequence for evaluation will be: first the -Nth axis in a and 0th axis in b, and the
-1th axis in a and Nth axis in b last.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences,
the second axis second, and so forth.

Examples

A “traditional” example:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],

650 Chapter 3. Routines

NumPy Reference, Release 1.11.1

[4796., 5162.],
[4928., 5306.]])

>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[True, True],

[True, True],
[True, True],
[True, True],
[True, True]], dtype=bool)

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],

[3, 4]],
[[5, 6],
[7, 8]]])

array([[a, b],
[c, d]], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, 1)
array([[[acc, bdd],

[aaacccc, bbbdddd]],
[[aaaaacccccc, bbbbbdddddd],
[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
array([[[[[a, b],

[c, d]],
...

>>> np.tensordot(a, A, (0, 1))
array([[[abbbbb, cddddd],

[aabbbbbb, ccdddddd]],
[[aaabbbbbbb, cccddddddd],
[aaaabbbbbbbb, ccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, (2, 1))
array([[[abb, cdd],

[aaabbbb, cccdddd]],
[[aaaaabbbbbb, cccccdddddd],
[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)

3.17. Linear algebra (numpy.linalg) 651

NumPy Reference, Release 1.11.1

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

numpy.einsum(subscripts, *operands, out=None, dtype=None, order=’K’, casting=’safe’)
Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional array operations can be represented
in a simple fashion. This function provides a way to compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy functions can be implemented
as calls to einsum.

Parameters
subscripts : str

Specifies the subscripts for summation.

operands : list of array_like

These are the arrays for the operation.

out : ndarray, optional

If provided, the calculation is done into this array.

dtype : data-type, optional

If provided, forces the calculation to use the data type specified. Note that you may
have to also give a more liberal casting parameter to allow the conversions.

order : {‘C’, ‘F’, ‘A’, ‘K’}, optional

Controls the memory layout of the output. ‘C’ means it should be C contiguous. ‘F’
means it should be Fortran contiguous, ‘A’ means it should be ‘F’ if the inputs are all
‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as the inputs as is
possible, including arbitrarily permuted axes. Default is ‘K’.

casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Setting this to ‘unsafe’ is not recom-
mended, as it can adversely affect accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

Returns
output : ndarray

The calculation based on the Einstein summation convention.

See also:

dot, inner, outer, tensordot

652 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

New in version 1.6.0.

The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension
of the corresponding operand. Repeated subscripts labels in one operand take the diagonal. For example,
np.einsum(’ii’, a) is equivalent to np.trace(a).

Whenever a label is repeated, it is summed, so np.einsum(’i,i’, a, b) is equivalent to
np.inner(a,b). If a label appears only once, it is not summed, so np.einsum(’i’, a) produces a
view of a with no changes.

The order of labels in the output is by default alphabetical. This means that np.einsum(’ij’, a) doesn’t
affect a 2D array, while np.einsum(’ji’, a) takes its transpose.

The output can be controlled by specifying output subscript labels as well. This specifies the label order,
and allows summing to be disallowed or forced when desired. The call np.einsum(’i->’, a) is like
np.sum(a, axis=-1), and np.einsum(’ii->i’, a) is like np.diag(a). The difference is that
einsum does not allow broadcasting by default.

To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an
ellipsis to the left of each term, like np.einsum(’...ii->...i’, a). To take the trace along the first
and last axes, you can do np.einsum(’i...i’, a), or to do a matrix-matrix product with the left-most
indices instead of rightmost, you can do np.einsum(’ij...,jk...->ik...’, a, b).

When there is only one operand, no axes are summed, and no output parameter is provided, a view into the
operand is returned instead of a new array. Thus, taking the diagonal as np.einsum(’ii->i’, a) produces
a view.

An alternative way to provide the subscripts and operands is as einsum(op0, sublist0, op1,
sublist1, ..., [sublistout]). The examples below have corresponding einsum calls with the
two parameter methods.

New in version 1.10.0.

Views returned from einsum are now writeable whenever the input array is writeable. For example,
np.einsum(’ijk...->kji...’, a) will now have the same effect as np.swapaxes(a, 0, 2)
and np.einsum(’ii->i’, a) will return a writeable view of the diagonal of a 2D array.

Examples

>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)

>>> np.einsum('ii', a)
60
>>> np.einsum(a, [0,0])
60
>>> np.trace(a)
60

>>> np.einsum('ii->i', a)
array([0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0])
array([0, 6, 12, 18, 24])
>>> np.diag(a)
array([0, 6, 12, 18, 24])

>>> np.einsum('ij,j', a, b)
array([30, 80, 130, 180, 230])

3.17. Linear algebra (numpy.linalg) 653

NumPy Reference, Release 1.11.1

>>> np.einsum(a, [0,1], b, [1])
array([30, 80, 130, 180, 230])
>>> np.dot(a, b)
array([30, 80, 130, 180, 230])
>>> np.einsum('...j,j', a, b)
array([30, 80, 130, 180, 230])

>>> np.einsum('ji', c)
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum(c, [1,0])
array([[0, 3],

[1, 4],
[2, 5]])

>>> c.T
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum('..., ...', 3, c)
array([[0, 3, 6],

[9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[0, 3, 6],

[9, 12, 15]])
>>> np.multiply(3, c)
array([[0, 3, 6],

[9, 12, 15]])

>>> np.einsum('i,i', b, b)
30
>>> np.einsum(b, [0], b, [0])
30
>>> np.inner(b,b)
30

>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1])
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])

>>> np.einsum('i...->...', a)
array([50, 55, 60, 65, 70])
>>> np.einsum(a, [0,Ellipsis], [Ellipsis])
array([50, 55, 60, 65, 70])
>>> np.sum(a, axis=0)
array([50, 55, 60, 65, 70])

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[4400., 4730.],

654 Chapter 3. Routines

NumPy Reference, Release 1.11.1

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])

>>> # since version 1.10.0
>>> a = np.zeros((3, 3))
>>> np.einsum('ii->i', a)[:] = 1
>>> a
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

numpy.linalg.matrix_power(M, n)
Raise a square matrix to the (integer) power n.

For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n ==
0, the identity matrix of the same shape as M is returned. If n < 0, the inverse is computed and then raised to
the abs(n).

Parameters
M : ndarray or matrix object

Matrix to be “powered.” Must be square, i.e. M.shape == (m, m), with m a posi-
tive integer.

n : int

The exponent can be any integer or long integer, positive, negative, or zero.

Returns
M**n : ndarray or matrix object

The return value is the same shape and type as M; if the exponent is positive or zero
then the type of the elements is the same as those of M. If the exponent is negative the
elements are floating-point.

3.17. Linear algebra (numpy.linalg) 655

NumPy Reference, Release 1.11.1

Raises
LinAlgError

If the matrix is not numerically invertible.

See also:

matrix
Provides an equivalent function as the exponentiation operator (**, not ^).

Examples

>>> from numpy import linalg as LA
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> LA.matrix_power(i, 3) # should = -i
array([[0, -1],

[1, 0]])
>>> LA.matrix_power(np.matrix(i), 3) # matrix arg returns matrix
matrix([[0, -1],

[1, 0]])
>>> LA.matrix_power(i, 0)
array([[1, 0],

[0, 1]])
>>> LA.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[0., 1.],

[-1., 0.]])

Somewhat more sophisticated example

>>> q = np.zeros((4, 4))
>>> q[0:2, 0:2] = -i
>>> q[2:4, 2:4] = i
>>> q # one of the three quarternion units not equal to 1
array([[0., -1., 0., 0.],

[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., -1., 0.]])

>>> LA.matrix_power(q, 2) # = -np.eye(4)
array([[-1., 0., 0., 0.],

[0., -1., 0., 0.],
[0., 0., -1., 0.],
[0., 0., 0., -1.]])

numpy.kron(a, b)
Kronecker product of two arrays.

Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.

Parameters
a, b : array_like

Returns
out : ndarray

See also:

outer
The outer product

656 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The function assumes that the number of dimensions of a and b are the same, if necessary prepending the
smallest with ones. If a.shape = (r0,r1,..,rN) and b.shape = (s0,s1,...,sN), the Kronecker product has shape
(r0*s0, r1*s1, ..., rN*SN). The elements are products of elements from a and b, organized explicitly by:

kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

where:

kt = it * st + jt, t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized:

[[a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b],
[... ...],
[a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b]]

Examples

>>> np.kron([1,10,100], [5,6,7])
array([5, 6, 7, 50, 60, 70, 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([5, 50, 500, 6, 60, 600, 7, 70, 700])

>>> np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],

[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])

>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True

3.17.2 Decompositions

linalg.cholesky(a) Cholesky decomposition.
linalg.qr(a[, mode]) Compute the qr factorization of a matrix.
linalg.svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.

numpy.linalg.cholesky(a)
Cholesky decomposition.

Return the Cholesky decomposition, L * L.H, of the square matrix a, where L is lower-triangular and .H is
the conjugate transpose operator (which is the ordinary transpose if a is real-valued). a must be Hermitian
(symmetric if real-valued) and positive-definite. Only L is actually returned.

3.17. Linear algebra (numpy.linalg) 657

NumPy Reference, Release 1.11.1

Parameters
a : (..., M, M) array_like

Hermitian (symmetric if all elements are real), positive-definite input matrix.

Returns
L : (..., M, M) array_like

Upper or lower-triangular Cholesky factor of a. Returns a matrix object if a is a matrix
object.

Raises
LinAlgError

If the decomposition fails, for example, if a is not positive-definite.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The Cholesky decomposition is often used as a fast way of solving

𝐴x = b

(when A is both Hermitian/symmetric and positive-definite).

First, we solve for y in

𝐿y = b,

and then for x in

𝐿.𝐻x = y.

Examples

>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
>>> LA.cholesky(np.matrix(A))
matrix([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])

numpy.linalg.qr(a, mode=’reduced’)
Compute the qr factorization of a matrix.

Factor the matrix a as qr, where q is orthonormal and r is upper-triangular.

658 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
a : array_like, shape (M, N)

Matrix to be factored.

mode : {‘reduced’, ‘complete’, ‘r’, ‘raw’, ‘full’, ‘economic’}, optional

If K = min(M, N), then

‘reduced’ : returns q, r with dimensions (M, K), (K, N) (default) ‘complete’ : returns
q, r with dimensions (M, M), (M, N) ‘r’ : returns r only with dimensions (K, N) ‘raw’
: returns h, tau with dimensions (N, M), (K,) ‘full’ : alias of ‘reduced’, deprecated
‘economic’ : returns h from ‘raw’, deprecated.

The options ‘reduced’, ‘complete, and ‘raw’ are new in numpy 1.8, see the notes for
more information. The default is ‘reduced’ and to maintain backward compatibility
with earlier versions of numpy both it and the old default ‘full’ can be omitted. Note
that array h returned in ‘raw’ mode is transposed for calling Fortran. The ‘economic’
mode is deprecated. The modes ‘full’ and ‘economic’ may be passed using only the
first letter for backwards compatibility, but all others must be spelled out. See the Notes
for more explanation.

Returns
q : ndarray of float or complex, optional

A matrix with orthonormal columns. When mode = ‘complete’ the result is an orthogo-
nal/unitary matrix depending on whether or not a is real/complex. The determinant may
be either +/- 1 in that case.

r : ndarray of float or complex, optional

The upper-triangular matrix.

(h, tau) : ndarrays of np.double or np.cdouble, optional

The array h contains the Householder reflectors that generate q along with r. The tau
array contains scaling factors for the reflectors. In the deprecated ‘economic’ mode only
h is returned.

Raises
LinAlgError

If factoring fails.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.

For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization

Subclasses of ndarray are preserved except for the ‘raw’ mode. So if a is of type matrix, all the return values
will be matrices too.

New ‘reduced’, ‘complete’, and ‘raw’ options for mode were added in Numpy 1.8 and the old option ‘full’
was made an alias of ‘reduced’. In addition the options ‘full’ and ‘economic’ were deprecated. Because ‘full’
was the previous default and ‘reduced’ is the new default, backward compatibility can be maintained by letting
mode default. The ‘raw’ option was added so that LAPACK routines that can multiply arrays by q using the
Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble
and the h array is transposed to be FORTRAN compatible. No routines using the ‘raw’ return are currently
exposed by numpy, but some are available in lapack_lite and just await the necessary work.

3.17. Linear algebra (numpy.linalg) 659

http://en.wikipedia.org/wiki/QR_factorization

NumPy Reference, Release 1.11.1

Examples

>>> a = np.random.randn(9, 6)
>>> q, r = np.linalg.qr(a)
>>> np.allclose(a, np.dot(q, r)) # a does equal qr
True
>>> r2 = np.linalg.qr(a, mode='r')
>>> r3 = np.linalg.qr(a, mode='economic')
>>> np.allclose(r, r2) # mode='r' returns the same r as mode='full'
True
>>> # But only triu parts are guaranteed equal when mode='economic'
>>> np.allclose(r, np.triu(r3[:6,:6], k=0))
True

Example illustrating a common use of qr: solving of least squares problems

What are the least-squares-best m and y0 in y = y0 + mx for the following data: {(0,1), (1,0), (1,2), (2,1)}.
(Graph the points and you’ll see that it should be y0 = 0, m = 1.) The answer is provided by solving the
over-determined matrix equation Ax = b, where:

A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
x = array([[y0], [m]])
b = array([[1], [0], [2], [1]])

If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then x = inv(r) *
(q.T) * b. (In numpy practice, however, we simply use lstsq .)

>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
>>> A
array([[0, 1],

[1, 1],
[1, 1],
[2, 1]])

>>> b = np.array([1, 0, 2, 1])
>>> q, r = LA.qr(A)
>>> p = np.dot(q.T, b)
>>> np.dot(LA.inv(r), p)
array([1.1e-16, 1.0e+00])

numpy.linalg.svd(a, full_matrices=1, compute_uv=1)
Singular Value Decomposition.

Factors the matrix a as u * np.diag(s) * v, where u and v are unitary and s is a 1-d array of a‘s singular
values.

Parameters
a : (..., M, N) array_like

A real or complex matrix of shape (M, N) .

full_matrices : bool, optional

If True (default), u and v have the shapes (M, M) and (N, N), respectively. Otherwise,
the shapes are (M, K) and (K, N), respectively, where K = min(M, N).

compute_uv : bool, optional

Whether or not to compute u and v in addition to s. True by default.

Returns
u : { (..., M, M), (..., M, K) } array

660 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Unitary matrices. The actual shape depends on the value of full_matrices. Only
returned when compute_uv is True.

s : (..., K) array

The singular values for every matrix, sorted in descending order.

v : { (..., N, N), (..., K, N) } array

Unitary matrices. The actual shape depends on the value of full_matrices. Only
returned when compute_uv is True.

Raises
LinAlgError

If SVD computation does not converge.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The decomposition is performed using LAPACK routine _gesdd

The SVD is commonly written as a = U S V.H. The v returned by this function is V.H and u = U.

If U is a unitary matrix, it means that it satisfies U.H = inv(U).

The rows of v are the eigenvectors of a.H a. The columns of u are the eigenvectors of a a.H. For row i in v
and column i in u, the corresponding eigenvalue is s[i]**2.

If a is a matrix object (as opposed to an ndarray), then so are all the return values.

Examples

>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)

Reconstruction based on full SVD:

>>> U, s, V = np.linalg.svd(a, full_matrices=True)
>>> U.shape, V.shape, s.shape
((9, 9), (6, 6), (6,))
>>> S = np.zeros((9, 6), dtype=complex)
>>> S[:6, :6] = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True

Reconstruction based on reduced SVD:

>>> U, s, V = np.linalg.svd(a, full_matrices=False)
>>> U.shape, V.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, V)))
True

3.17.3 Matrix eigenvalues

linalg.eig(a) Compute the eigenvalues and right eigenvectors of a square array.
Continued on next page

3.17. Linear algebra (numpy.linalg) 661

NumPy Reference, Release 1.11.1

Table 3.69 – continued from previous page
linalg.eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.
linalg.eigvals(a) Compute the eigenvalues of a general matrix.
linalg.eigvalsh(a[, UPLO]) Compute the eigenvalues of a Hermitian or real symmetric matrix.

numpy.linalg.eig(a)
Compute the eigenvalues and right eigenvectors of a square array.

Parameters
a : (..., M, M) array

Matrices for which the eigenvalues and right eigenvectors will be computed

Returns
w : (..., M) array

The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not
necessarily ordered. The resulting array will be of complex type, unless the imaginary
part is zero in which case it will be cast to a real type. When a is real the resulting
eigenvalues will be real (0 imaginary part) or occur in conjugate pairs

v : (..., M, M) array

The normalized (unit “length”) eigenvectors, such that the column v[:,i] is the eigen-
vector corresponding to the eigenvalue w[i].

Raises
LinAlgError

If the eigenvalue computation does not converge.

See also:

eigvals
eigenvalues of a non-symmetric array.

eigh
eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array.

eigvalsh
eigenvalues of a symmetric or Hermitian (conjugate symmetric) array.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

The number w is an eigenvalue of a if there exists a vector v such that dot(a,v) = w * v. Thus, the arrays
a, w, and v satisfy the equations dot(a[:,:], v[:,i]) = w[i] * v[:,i] for 𝑖 ∈ {0, ...,𝑀 − 1}.

The array v of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly depen-
dent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the
eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors v is unitary if the
matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a), where a.H denotes the conjugate transpose of
a.

662 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Finally, it is emphasized that v consists of the right (as in right-hand side) eigenvectors of a. A vector y satisfying
dot(y.T, a) = z * y.T for some number z is called a left eigenvector of a, and, in general, the left and
right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp.

Examples

>>> from numpy import linalg as LA

(Almost) trivial example with real e-values and e-vectors.

>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([1., 2., 3.])
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each
other.

>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([1. + 1.j, 1. - 1.j])
array([[0.70710678+0.j , 0.70710678+0.j],

[0.00000000-0.70710678j, 0.00000000+0.70710678j]])

Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is
Hermitian.

>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}
array([[0.00000000+0.70710678j, 0.70710678+0.j],

[0.70710678+0.j , 0.00000000+0.70710678j]])

Be careful about round-off error!

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([1., 1.])
array([[1., 0.],

[0., 1.]])

numpy.linalg.eigh(a, UPLO=’L’)
Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending
on the input type) of the corresponding eigenvectors (in columns).

Parameters
a : (..., M, M) array

Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed.

UPLO : {‘L’, ‘U’}, optional

3.17. Linear algebra (numpy.linalg) 663

NumPy Reference, Release 1.11.1

Specifies whether the calculation is done with the lower triangular part of a (‘L’, default)
or the upper triangular part (‘U’).

Returns
w : (..., M) ndarray

The eigenvalues in ascending order, each repeated according to its multiplicity.

v : {(..., M, M) ndarray, (..., M, M) matrix}

The column v[:, i] is the normalized eigenvector corresponding to the eigenvalue
w[i]. Will return a matrix object if a is a matrix object.

Raises
LinAlgError

If the eigenvalue computation does not converge.

See also:

eigvalsh
eigenvalues of symmetric or Hermitian arrays.

eig
eigenvalues and right eigenvectors for non-symmetric arrays.

eigvals
eigenvalues of non-symmetric arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd

The eigenvalues of real symmetric or complex Hermitian matrices are always real. [R38] The array v of (column)
eigenvectors is unitary and a, w, and v satisfy the equations dot(a, v[:, i]) = w[i] * v[:, i].

References

[R38]

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> a
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(a)
>>> w; v
array([0.17157288, 5.82842712])
array([[-0.92387953+0.j , -0.38268343+0.j],

[0.00000000+0.38268343j, 0.00000000-0.92387953j]])

>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j])
>>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
array([0.+0.j, 0.+0.j])

664 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> A = np.matrix(a) # what happens if input is a matrix object
>>> A
matrix([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(A)
>>> w; v
array([0.17157288, 5.82842712])
matrix([[-0.92387953+0.j , -0.38268343+0.j],

[0.00000000+0.38268343j, 0.00000000-0.92387953j]])

numpy.linalg.eigvals(a)
Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren’t returned.

Parameters
a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues will be computed.

Returns
w : (..., M,) ndarray

The eigenvalues, each repeated according to its multiplicity. They are not necessarily
ordered, nor are they necessarily real for real matrices.

Raises
LinAlgError

If the eigenvalue computation does not converge.

See also:

eig
eigenvalues and right eigenvectors of general arrays

eigvalsh
eigenvalues of symmetric or Hermitian arrays.

eigh
eigenvalues and eigenvectors of symmetric/Hermitian arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

Examples

Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying
a matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the
eigenvalues of the “middle” matrix. In other words, if Q is orthogonal, then Q * A * Q.T has the same
eigenvalues as A:

>>> from numpy import linalg as LA
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])

3.17. Linear algebra (numpy.linalg) 665

NumPy Reference, Release 1.11.1

>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)

Now multiply a diagonal matrix by Q on one side and by Q.T on the other:

>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
array([-1., 1.])
>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
array([1., -1.])

numpy.linalg.eigvalsh(a, UPLO=’L’)
Compute the eigenvalues of a Hermitian or real symmetric matrix.

Main difference from eigh: the eigenvectors are not computed.

Parameters
a : (..., M, M) array_like

A complex- or real-valued matrix whose eigenvalues are to be computed.

UPLO : {‘L’, ‘U’}, optional

Same as lower, with ‘L’ for lower and ‘U’ for upper triangular. Deprecated.

Returns
w : (..., M,) ndarray

The eigenvalues in ascending order, each repeated according to its multiplicity.

Raises
LinAlgError

If the eigenvalue computation does not converge.

See also:

eigh
eigenvalues and eigenvectors of symmetric/Hermitian arrays.

eigvals
eigenvalues of general real or complex arrays.

eig
eigenvalues and right eigenvectors of general real or complex arrays.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The eigenvalues are computed using LAPACK routines _syevd, _heevd

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> LA.eigvalsh(a)
array([0.17157288, 5.82842712])

666 Chapter 3. Routines

NumPy Reference, Release 1.11.1

3.17.4 Norms and other numbers

linalg.norm(x[, ord, axis, keepdims]) Matrix or vector norm.
linalg.cond(x[, p]) Compute the condition number of a matrix.
linalg.det(a) Compute the determinant of an array.
linalg.matrix_rank(M[, tol]) Return matrix rank of array using SVD method
linalg.slogdet(a) Compute the sign and (natural) logarithm of the determinant of an array.
trace(a[, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.

numpy.linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters
x : array_like

Input array. If axis is None, x must be 1-D or 2-D.

ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional

Order of the norm (see table under Notes). inf means numpy’s inf object.

axis : {int, 2-tuple of ints, None}, optional

If axis is an integer, it specifies the axis of x along which to compute the vector norms.
If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of
these matrices are computed. If axis is None then either a vector norm (when x is 1-D)
or a matrix norm (when x is 2-D) is returned.

keepdims : bool, optional

If this is set to True, the axes which are normed over are left in the result as dimensions
with size one. With this option the result will broadcast correctly against the original x.

New in version 1.10.0.

Returns
n : float or ndarray

Norm of the matrix or vector(s).

Notes

For values of ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful
for various numerical purposes.

The following norms can be calculated:

3.17. Linear algebra (numpy.linalg) 667

NumPy Reference, Release 1.11.1

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
‘nuc’ nuclear norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [R41]:

||𝐴||𝐹 = [
∑︀

𝑖,𝑗 𝑎𝑏𝑠(𝑎𝑖,𝑗)
2]1/2

The nuclear norm is the sum of the singular values.

References

[R41]

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[2, 3, 4]])

>>> LA.norm(a)
7.745966692414834
>>> LA.norm(b)
7.745966692414834
>>> LA.norm(b, 'fro')
7.745966692414834
>>> LA.norm(a, np.inf)
4.0
>>> LA.norm(b, np.inf)
9.0
>>> LA.norm(a, -np.inf)
0.0
>>> LA.norm(b, -np.inf)
2.0

>>> LA.norm(a, 1)
20.0
>>> LA.norm(b, 1)
7.0
>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6.0
>>> LA.norm(a, 2)

668 Chapter 3. Routines

NumPy Reference, Release 1.11.1

7.745966692414834
>>> LA.norm(b, 2)
7.3484692283495345

>>> LA.norm(a, -2)
nan
>>> LA.norm(b, -2)
1.8570331885190563e-016
>>> LA.norm(a, 3)
5.8480354764257312
>>> LA.norm(a, -3)
nan

Using the axis argument to compute vector norms:

>>> c = np.array([[1, 2, 3],
... [-1, 1, 4]])
>>> LA.norm(c, axis=0)
array([1.41421356, 2.23606798, 5.])
>>> LA.norm(c, axis=1)
array([3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1)
array([6., 6.])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2)
>>> LA.norm(m, axis=(1,2))
array([3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
(3.7416573867739413, 11.224972160321824)

numpy.linalg.cond(x, p=None)
Compute the condition number of a matrix.

This function is capable of returning the condition number using one of seven different norms, depending on the
value of p (see Parameters below).

Parameters
x : (..., M, N) array_like

The matrix whose condition number is sought.

p : {None, 1, -1, 2, -2, inf, -inf, ‘fro’}, optional

Order of the norm:

p norm for matrices
None 2-norm, computed directly using the SVD
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 2-norm (largest sing. value)
-2 smallest singular value

inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares
norm.

3.17. Linear algebra (numpy.linalg) 669

NumPy Reference, Release 1.11.1

Returns
c : {float, inf}

The condition number of the matrix. May be infinite.

See also:

numpy.linalg.norm

Notes

The condition number of x is defined as the norm of x times the norm of the inverse of x [R37]; the norm can be
the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms.

References

[R37]

Examples

>>> from numpy import linalg as LA
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
>>> a
array([[1, 0, -1],

[0, 1, 0],
[1, 0, 1]])

>>> LA.cond(a)
1.4142135623730951
>>> LA.cond(a, 'fro')
3.1622776601683795
>>> LA.cond(a, np.inf)
2.0
>>> LA.cond(a, -np.inf)
1.0
>>> LA.cond(a, 1)
2.0
>>> LA.cond(a, -1)
1.0
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, -2)
0.70710678118654746
>>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0))
0.70710678118654746

numpy.linalg.det(a)
Compute the determinant of an array.

Parameters
a : (..., M, M) array_like

Input array to compute determinants for.

Returns
det : (...) array_like

Determinant of a.

See also:

slogdet
Another way to representing the determinant, more suitable for large matrices where underflow/overflow

670 Chapter 3. Routines

NumPy Reference, Release 1.11.1

may occur.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
-2.0

Computing determinants for a stack of matrices:

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(3, 2, 2)
>>> np.linalg.det(a)
array([-2., -3., -8.])

numpy.linalg.matrix_rank(M, tol=None)
Return matrix rank of array using SVD method

Rank of the array is the number of SVD singular values of the array that are greater than tol.

Parameters
M : {(M,), (M, N)} array_like

array of <=2 dimensions

tol : {None, float}, optional

threshold below which SVD values are considered zero. If tol is None, and S is an array
with singular values for M, and eps is the epsilon value for datatype of S, then tol is
set to S.max() * max(M.shape) * eps.

Notes

The default threshold to detect rank deficiency is a test on the magnitude of the singular values of M. By default,
we identify singular values less than S.max() * max(M.shape) * eps as indicating rank deficiency
(with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in Numerical recipes
in the discussion of SVD solutions for linear least squares [2].

This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD
computation. Imagine that there is a column in M that is an exact (in floating point) linear combination of
other columns in M. Computing the SVD on M will not produce a singular value exactly equal to 0 in general:
any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of
the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default
threshold will detect such numerical rank deficiency. The threshold may declare a matrix M rank deficient even
if the linear combination of some columns of M is not exactly equal to another column of M but only numerically
very close to another column of M.

We chose our default threshold because it is in wide use. Other thresholds are possible. For exam-
ple, elsewhere in the 2007 edition of Numerical recipes there is an alternative threshold of S.max() *
np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.). The authors describe this threshold
as being based on “expected roundoff error” (p 71).

3.17. Linear algebra (numpy.linalg) 671

NumPy Reference, Release 1.11.1

The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may
have more information about the sources of error in M that would make you consider other tolerance values to
detect effective rank deficiency. The most useful measure of the tolerance depends on the operations you intend
to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater
than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be
absolute if the uncertainties are absolute rather than relative.

References

[R39], [R40]

Examples

>>> from numpy.linalg import matrix_rank
>>> matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> matrix_rank(I)
3
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> matrix_rank(np.zeros((4,)))
0

numpy.linalg.slogdet(a)
Compute the sign and (natural) logarithm of the determinant of an array.

If an array has a very small or very large determinant, then a call to det may overflow or underflow. This
routine is more robust against such issues, because it computes the logarithm of the determinant rather than the
determinant itself.

Parameters
a : (..., M, M) array_like

Input array, has to be a square 2-D array.

Returns
sign : (...) array_like

A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1.
For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the
unit circle), or else 0.

logdet : (...) array_like

The natural log of the absolute value of the determinant.

If the determinant is zero, then sign will be 0 and logdet will be

-Inf. In all cases, the determinant is equal to sign * np.exp(logdet).

See also:

det

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

New in version 1.6.0..

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

672 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logdet) = np.linalg.slogdet(a)
>>> (sign, logdet)
(-1, 0.69314718055994529)
>>> sign * np.exp(logdet)
-2.0

Computing log-determinants for a stack of matrices:

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(3, 2, 2)
>>> sign, logdet = np.linalg.slogdet(a)
>>> (sign, logdet)
(array([-1., -1., -1.]), array([0.69314718, 1.09861229, 2.07944154]))
>>> sign * np.exp(logdet)
array([-2., -3., -8.])

This routine succeeds where ordinary det does not:

>>> np.linalg.det(np.eye(500) * 0.1)
0.0
>>> np.linalg.slogdet(np.eye(500) * 0.1)
(1, -1151.2925464970228)

numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
a[i,i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D
sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis1 and
axis2 removed.

Parameters
a : array_like

Input array, from which the diagonals are taken.

offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

3.17. Linear algebra (numpy.linalg) 673

NumPy Reference, Release 1.11.1

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See also:

diag, diagonal, diagflat

Examples

>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

3.17.5 Solving equations and inverting matrices

linalg.solve(a, b) Solve a linear matrix equation, or system of linear scalar equations.
linalg.tensorsolve(a, b[, axes]) Solve the tensor equation a x = b for x.
linalg.lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equation.
linalg.inv(a) Compute the (multiplicative) inverse of a matrix.
linalg.pinv(a[, rcond]) Compute the (Moore-Penrose) pseudo-inverse of a matrix.
linalg.tensorinv(a[, ind]) Compute the ‘inverse’ of an N-dimensional array.

numpy.linalg.solve(a, b)
Solve a linear matrix equation, or system of linear scalar equations.

Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters
a : (..., M, M) array_like

Coefficient matrix.

b : {(..., M,), (..., M, K)}, array_like

Ordinate or “dependent variable” values.

Returns
x : {(..., M,), (..., M, K)} ndarray

Solution to the system a x = b. Returned shape is identical to b.

Raises
LinAlgError

If a is singular or not square.

674 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

The solutions are computed using LAPACK routine _gesv

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either
is not true, use lstsq for the least-squares best “solution” of the system/equation.

References

[R43]

Examples

Solve the system of equations 3 * x0 + x1 = 9 and x0 + 2 * x1 = 8:

>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([2., 3.])

Check that the solution is correct:

>>> np.allclose(np.dot(a, x), b)
True

numpy.linalg.tensorsolve(a, b, axes=None)
Solve the tensor equation a x = b for x.

It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is
done in, for example, tensordot(a, x, axes=len(b.shape)).

Parameters
a : array_like

Coefficient tensor, of shape b.shape + Q. Q, a tuple, equals the shape of that sub-
tensor of a consisting of the appropriate number of its rightmost indices, and must be
such that prod(Q) == prod(b.shape) (in which sense a is said to be ‘square’).

b : array_like

Right-hand tensor, which can be of any shape.

axes : tuple of ints, optional

Axes in a to reorder to the right, before inversion. If None (default), no reordering is
done.

Returns
x : ndarray, shape Q

Raises
LinAlgError

If a is singular or not ‘square’ (in the above sense).

See also:

tensordot, tensorinv , einsum

3.17. Linear algebra (numpy.linalg) 675

NumPy Reference, Release 1.11.1

Examples

>>> a = np.eye(2*3*4)
>>> a.shape = (2*3, 4, 2, 3, 4)
>>> b = np.random.randn(2*3, 4)
>>> x = np.linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
>>> np.allclose(np.tensordot(a, x, axes=3), b)
True

numpy.linalg.lstsq(a, b, rcond=-1)
Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that minimizes the Euclidean 2-norm || b - a x ||^2. The
equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of a can be
less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation.

Parameters
a : (M, N) array_like

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float, optional

Cut-off ratio for small singular values of a. Singular values are set to zero if they are
smaller than rcond times the largest singular value of a.

Returns
x : {(N,), (N, K)} ndarray

Least-squares solution. If b is two-dimensional, the solutions are in the K columns of x.

residuals : {(), (1,), (K,)} ndarray

Sums of residuals; squared Euclidean 2-norm for each column in b - a*x. If the rank
of a is < N or M <= N, this is an empty array. If b is 1-dimensional, this is a (1,) shape
array. Otherwise the shape is (K,).

rank : int

Rank of matrix a.

s : (min(M, N),) ndarray

Singular values of a.

Raises
LinAlgError

If computation does not converge.

Notes

If b is a matrix, then all array results are returned as matrices.

676 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

Fit a line, y = mx + c, through some noisy data-points:

>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at,
more or less, -1.

We can rewrite the line equation as y = Ap, where A = [[x 1]] and p = [[m], [c]]. Now use
lstsq to solve for p:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[0., 1.],

[1., 1.],
[2., 1.],
[3., 1.]])

>>> m, c = np.linalg.lstsq(A, y)[0]
>>> print(m, c)
1.0 -0.95

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> plt.legend()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Original data
Fitted line

numpy.linalg.inv(a)
Compute the (multiplicative) inverse of a matrix.

Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) =
eye(a.shape[0]).

Parameters
a : (..., M, M) array_like

3.17. Linear algebra (numpy.linalg) 677

NumPy Reference, Release 1.11.1

Matrix to be inverted.

Returns
ainv : (..., M, M) ndarray or matrix

(Multiplicative) inverse of the matrix a.

Raises
LinAlgError

If a is not square or inversion fails.

Notes

New in version 1.8.0.

Broadcasting rules apply, see the numpy.linalg documentation for details.

Examples

>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(2))
True
>>> np.allclose(np.dot(ainv, a), np.eye(2))
True

If a is a matrix object, then the return value is a matrix as well:

>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1.],

[1.5, -0.5]])

Inverses of several matrices can be computed at once:

>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1.],

[1.5, -0.5]],
[[-5. , 2.],
[3. , -1.]]])

numpy.linalg.pinv(a, rcond=1e-15)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all
large singular values.

Parameters
a : (M, N) array_like

Matrix to be pseudo-inverted.

rcond : float

Cutoff for small singular values. Singular values smaller (in modulus) than rcond *
largest_singular_value (again, in modulus) are set to zero.

Returns
B : (N, M) ndarray

The pseudo-inverse of a. If a is a matrix instance, then so is B.

678 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Raises
LinAlgError

If the SVD computation does not converge.

Notes

The pseudo-inverse of a matrix A, denoted 𝐴+, is defined as: “the matrix that ‘solves’ [the least-squares prob-
lem] 𝐴𝑥 = 𝑏,” i.e., if 𝑥̄ is said solution, then 𝐴+ is that matrix such that 𝑥̄ = 𝐴+𝑏.

It can be shown that if 𝑄1Σ𝑄𝑇
2 = 𝐴 is the singular value decomposition of A, then 𝐴+ = 𝑄2Σ+𝑄𝑇

1 , where
𝑄1,2 are orthogonal matrices, Σ is a diagonal matrix consisting of A’s so-called singular values, (followed,
typically, by zeros), and then Σ+ is simply the diagonal matrix consisting of the reciprocals of A’s singular
values (again, followed by zeros). [R42]

References

[R42]

Examples

The following example checks that a * a+ * a == a and a+ * a * a+ == a+:

>>> a = np.random.randn(9, 6)
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

numpy.linalg.tensorinv(a, ind=2)
Compute the ‘inverse’ of an N-dimensional array.

The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to
floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot
operation.

Parameters
a : array_like

Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind]) ==
prod(a.shape[ind:]).

ind : int, optional

Number of first indices that are involved in the inverse sum. Must be a positive integer,
default is 2.

Returns
b : ndarray

a‘s tensordot inverse, shape a.shape[ind:] + a.shape[:ind].

Raises
LinAlgError

If a is singular or not ‘square’ (in the above sense).

See also:

tensordot, tensorsolve

3.17. Linear algebra (numpy.linalg) 679

NumPy Reference, Release 1.11.1

Examples

>>> a = np.eye(4*6)
>>> a.shape = (4, 6, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
>>> b = np.random.randn(4, 6)
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True

>>> a = np.eye(4*6)
>>> a.shape = (24, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
>>> b = np.random.randn(24)
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
True

3.17.6 Exceptions

linalg.LinAlgError Generic Python-exception-derived object raised by linalg functions.

exception numpy.linalg.LinAlgError
Generic Python-exception-derived object raised by linalg functions.

General purpose exception class, derived from Python’s exception.Exception class, programmatically raised in
linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters
None

Examples

>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "...linalg.py", line 350,

in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
File "...linalg.py", line 249,

in solve
raise LinAlgError('Singular matrix')

numpy.linalg.LinAlgError: Singular matrix

3.17.7 Linear algebra on several matrices at once

New in version 1.8.0.

Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are
stacked into the same array.

This is indicated in the documentation via input parameter specifications such as a : (..., M, M)
array_like. This means that if for instance given an input array a.shape == (N, M, M), it is interpreted

680 Chapter 3. Routines

NumPy Reference, Release 1.11.1

as a “stack” of N matrices, each of size M-by-M. Similar specification applies to return values, for instance the
determinant has det : (...) and will in this case return an array of shape det(a).shape == (N,). This
generalizes to linear algebra operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional
array are interpreted as vectors or matrices, as appropriate for each operation.

3.18 Logic functions

3.18.1 Truth value testing

all(a[, axis, out, keepdims]) Test whether all array elements along a given axis evaluate to True.
any(a[, axis, out, keepdims]) Test whether any array element along a given axis evaluates to True.

numpy.all(a, axis=None, out=None, keepdims=False)
Test whether all array elements along a given axis evaluate to True.

Parameters
a : array_like

Input array or object that can be converted to an array.

axis : None or int or tuple of ints, optional

Axis or axes along which a logical AND reduction is performed. The default (axis =
None) is to perform a logical AND over all the dimensions of the input array. axis may
be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single
axis or all the axes as before.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if dtype(out) is float, the result will
consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for more
details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
all : ndarray, bool

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See also:

ndarray.all
equivalent method

any
Test whether any element along a given axis evaluates to True.

3.18. Logic functions 681

NumPy Reference, Release 1.11.1

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z
(28293632, 28293632, array([True], dtype=bool))

numpy.any(a, axis=None, out=None, keepdims=False)
Test whether any array element along a given axis evaluates to True.

Returns single boolean unless axis is not None

Parameters
a : array_like

Input array or object that can be converted to an array.

axis : None or int or tuple of ints, optional

Axis or axes along which a logical OR reduction is performed. The default (axis =
None) is to perform a logical OR over all the dimensions of the input array. axis may be
negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single
axis or all the axes as before.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain so,
returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments”) for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
any : bool or ndarray

A new boolean or ndarray is returned unless out is specified, in which case a refer-
ence to out is returned.

See also:

682 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ndarray.any
equivalent method

all
Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.any([[True, False], [True, True]])
True

>>> np.any([[True, False], [False, False]], axis=0)
array([True, False], dtype=bool)

>>> np.any([-1, 0, 5])
True

>>> np.any(np.nan)
True

>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array([True], dtype=bool), array([True], dtype=bool))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o
(191614240, 191614240)

3.18.2 Array contents

isfinite(x[, out]) Test element-wise for finiteness (not infinity or not Not a Number).
isinf(x[, out]) Test element-wise for positive or negative infinity.
isnan(x[, out]) Test element-wise for NaN and return result as a boolean array.
isneginf(x[, y]) Test element-wise for negative infinity, return result as bool array.
isposinf(x[, y]) Test element-wise for positive infinity, return result as bool array.

numpy.isfinite(x[, out]) = <ufunc ‘isfinite’>
Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean array.

Parameters
x : array_like

Input values.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

3.18. Logic functions 683

NumPy Reference, Release 1.11.1

Returns
y : ndarray, bool

For scalar input, the result is a new boolean with value True if the input is finite; oth-
erwise the value is False (input is either positive infinity, negative infinity or Not a
Number).

For array input, the result is a boolean array with the same dimensions as the input and
the values are True if the corresponding element of the input is finite; otherwise the
values are False (element is either positive infinity, negative infinity or Not a Number).

See also:

isinf, isneginf, isposinf, isnan

Notes

Not a Number, positive infinity and negative infinity are considered to be non-finite.

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input,
or if first and second arguments have different shapes.

Examples

>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False, True, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])

numpy.isinf(x[, out]) = <ufunc ‘isinf’>
Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.

Parameters
x : array_like

Input values

out : array_like, optional

An array with the same shape as x to store the result.

Returns
y : bool (scalar) or boolean ndarray

684 Chapter 3. Routines

NumPy Reference, Release 1.11.1

For scalar input, the result is a new boolean with value True if the input is positive or
negative infinity; otherwise the value is False.

For array input, the result is a boolean array with the same shape as the input and the
values are True where the corresponding element of the input is positive or negative
infinity; elsewhere the values are False. If a second argument was supplied the result is
stored there. If the type of that array is a numeric type the result is represented as zeros
and ones, if the type is boolean then as False and True, respectively. The return value y
is then a reference to that array.

See also:

isneginf, isposinf, isnan, isfinite

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second
arguments have different shapes.

Examples

>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([True, True, False, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isinf(x, y)
array([1, 0, 1])
>>> y
array([1, 0, 1])

numpy.isnan(x[, out]) = <ufunc ‘isnan’>
Test element-wise for NaN and return result as a boolean array.

Parameters
x : array_like

Input array.

Returns
y : ndarray or bool

For scalar input, the result is a new boolean with value True if the input is NaN; other-
wise the value is False.

For array input, the result is a boolean array of the same dimensions as the input and the
values are True if the corresponding element of the input is NaN; otherwise the values
are False.

See also:

isinf, isneginf, isposinf, isfinite

3.18. Logic functions 685

NumPy Reference, Release 1.11.1

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([True, False, False], dtype=bool)

numpy.isneginf(x, y=None)
Test element-wise for negative infinity, return result as bool array.

Parameters
x : array_like

The input array.

y : array_like, optional

A boolean array with the same shape and type as x to store the result.

Returns
y : ndarray

A boolean array with the same dimensions as the input. If second argument is not sup-
plied then a numpy boolean array is returned with values True where the corresponding
element of the input is negative infinity and values False where the element of the input
is not negative infinity.

If a second argument is supplied the result is stored there. If the type of that array is a
numeric type the result is represented as zeros and ones, if the type is boolean then as
False and True. The return value y is then a reference to that array.

See also:

isinf, isposinf, isnan, isfinite

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments
have different shapes.

Examples

>>> np.isneginf(np.NINF)
array(True, dtype=bool)
>>> np.isneginf(np.inf)
array(False, dtype=bool)
>>> np.isneginf(np.PINF)
array(False, dtype=bool)
>>> np.isneginf([-np.inf, 0., np.inf])
array([True, False, False], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])

686 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

numpy.isposinf(x, y=None)
Test element-wise for positive infinity, return result as bool array.

Parameters
x : array_like

The input array.

y : array_like, optional

A boolean array with the same shape as x to store the result.

Returns
y : ndarray

A boolean array with the same dimensions as the input. If second argument is not
supplied then a boolean array is returned with values True where the corresponding
element of the input is positive infinity and values False where the element of the input
is not positive infinity.

If a second argument is supplied the result is stored there. If the type of that array is a
numeric type the result is represented as zeros and ones, if the type is boolean then as
False and True. The return value y is then a reference to that array.

See also:

isinf, isneginf, isfinite, isnan

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments
have different shapes.

Examples

>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])

3.18.3 Array type testing

3.18. Logic functions 687

NumPy Reference, Release 1.11.1

iscomplex(x) Returns a bool array, where True if input element is complex.
iscomplexobj(x) Check for a complex type or an array of complex numbers.
isfortran(a) Returns True if the array is Fortran contiguous but not C contiguous.
isreal(x) Returns a bool array, where True if input element is real.
isrealobj(x) Return True if x is a not complex type or an array of complex numbers.
isscalar(num) Returns True if the type of num is a scalar type.

numpy.iscomplex(x)
Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.

Parameters
x : array_like

Input array.

Returns
out : ndarray of bools

Output array.

See also:

isreal

iscomplexobj
Return True if x is a complex type or an array of complex numbers.

Examples

>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([True, False, False, False, False, True], dtype=bool)

numpy.iscomplexobj(x)
Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero,
iscomplexobj evaluates to True.

Parameters
x : any

The input can be of any type and shape.

Returns
iscomplexobj : bool

The return value, True if x is of a complex type or has at least one complex element.

See also:

isrealobj, iscomplex

Examples

>>> np.iscomplexobj(1)
False
>>> np.iscomplexobj(1+0j)
True
>>> np.iscomplexobj([3, 1+0j, True])
True

688 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.isfortran(a)
Returns True if the array is Fortran contiguous but not C contiguous.

This function is obsolete and, because of changes due to relaxed stride checking, its return value for the same
array may differ for versions of Numpy >= 1.10 and previous versions. If you only want to check if an array is
Fortran contiguous use a.flags.f_contiguous instead.

Parameters
a : ndarray

Input array.

Examples

np.array allows to specify whether the array is written in C-contiguous order (last index varies the fastest), or
FORTRAN-contiguous order in memory (first index varies the fastest).

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False

>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN')
>>> b
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],

[2, 5],
[3, 6]])

>>> np.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> np.isfortran(np.array([1, 2], order='FORTRAN'))
False

numpy.isreal(x)
Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value for that element is True.

Parameters
x : array_like

Input array.

3.18. Logic functions 689

NumPy Reference, Release 1.11.1

Returns
out : ndarray, bool

Boolean array of same shape as x.

See also:

iscomplex

isrealobj
Return True if x is not a complex type.

Examples

>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([False, True, True, True, True, False], dtype=bool)

numpy.isrealobj(x)
Return True if x is a not complex type or an array of complex numbers.

The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero,
isrealobj evaluates to False if the data type is complex.

Parameters
x : any

The input can be of any type and shape.

Returns
y : bool

The return value, False if x is of a complex type.

See also:

iscomplexobj, isreal

Examples

>>> np.isrealobj(1)
True
>>> np.isrealobj(1+0j)
False
>>> np.isrealobj([3, 1+0j, True])
False

numpy.isscalar(num)
Returns True if the type of num is a scalar type.

Parameters
num : any

Input argument, can be of any type and shape.

Returns
val : bool

True if num is a scalar type, False if it is not.

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])

690 Chapter 3. Routines

NumPy Reference, Release 1.11.1

False
>>> np.isscalar(False)
True

3.18.4 Logical operations

logical_and(x1, x2[, out]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2[, out]) Compute the truth value of x1 OR x2 element-wise.
logical_not(x[, out]) Compute the truth value of NOT x element-wise.
logical_xor(x1, x2[, out]) Compute the truth value of x1 XOR x2, element-wise.

numpy.logical_and(x1, x2[, out]) = <ufunc ‘logical_and’>
Compute the truth value of x1 AND x2 element-wise.

Parameters
x1, x2 : array_like

Input arrays. x1 and x2 must be of the same shape.

Returns
y : ndarray or bool

Boolean result with the same shape as x1 and x2 of the logical AND operation on cor-
responding elements of x1 and x2.

See also:

logical_or, logical_not, logical_xor, bitwise_and

Examples

>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False, True, True, False], dtype=bool)

numpy.logical_or(x1, x2[, out]) = <ufunc ‘logical_or’>
Compute the truth value of x1 OR x2 element-wise.

Parameters
x1, x2 : array_like

Logical OR is applied to the elements of x1 and x2. They have to be of the same shape.

Returns
y : ndarray or bool

Boolean result with the same shape as x1 and x2 of the logical OR operation on elements
of x1 and x2.

See also:

logical_and, logical_not, logical_xor, bitwise_or

3.18. Logic functions 691

NumPy Reference, Release 1.11.1

Examples

>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([True, False, False, False, True], dtype=bool)

numpy.logical_not(x[, out]) = <ufunc ‘logical_not’>
Compute the truth value of NOT x element-wise.

Parameters
x : array_like

Logical NOT is applied to the elements of x.

Returns
y : bool or ndarray of bool

Boolean result with the same shape as x of the NOT operation on elements of x.

See also:

logical_and, logical_or, logical_xor

Examples

>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False, True, True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True], dtype=bool)

numpy.logical_xor(x1, x2[, out]) = <ufunc ‘logical_xor’>
Compute the truth value of x1 XOR x2, element-wise.

Parameters
x1, x2 : array_like

Logical XOR is applied to the elements of x1 and x2. They must be broadcastable to
the same shape.

Returns
y : bool or ndarray of bool

Boolean result of the logical XOR operation applied to the elements of x1 and x2; the
shape is determined by whether or not broadcasting of one or both arrays was required.

See also:

logical_and, logical_or, logical_not, bitwise_xor

Examples

>>> np.logical_xor(True, False)
True

692 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False, True, True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([True, False, False, False, True], dtype=bool)

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2))
array([[True, False],

[False, True]], dtype=bool)

3.18.5 Comparison

allclose(a, b[, rtol, atol, equal_nan]) Returns True if two arrays are element-wise equal within a tolerance.
isclose(a, b[, rtol, atol, equal_nan]) Returns a boolean array where two arrays are element-wise equal within a tolerance.
array_equal(a1, a2) True if two arrays have the same shape and elements, False otherwise.
array_equiv(a1, a2) Returns True if input arrays are shape consistent and all elements equal.

numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns True if two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same
place and of the same sign in both arrays.

Parameters
a, b : array_like

Input arrays to compare.

rtol : float

The relative tolerance parameter (see Notes).

atol : float

The absolute tolerance parameter (see Notes).

equal_nan : bool

Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to
NaN’s in b in the output array.

New in version 1.10.0.

Returns
allclose : bool

Returns True if the two arrays are equal within the given tolerance; False otherwise.

See also:

isclose, all, any

3.18. Logic functions 693

NumPy Reference, Release 1.11.1

Notes

If the following equation is element-wise True, then allclose returns True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that allclose(a, b) might be different from allclose(b, a) in
some rare cases.

Examples

>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
True

numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns a boolean array where two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

Parameters
a, b : array_like

Input arrays to compare.

rtol : float

The relative tolerance parameter (see Notes).

atol : float

The absolute tolerance parameter (see Notes).

equal_nan : bool

Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to
NaN’s in b in the output array.

Returns
y : array_like

Returns a boolean array of where a and b are equal within the given tolerance. If both a
and b are scalars, returns a single boolean value.

See also:

allclose

Notes

New in version 1.7.0.

For finite values, isclose uses the following equation to test whether two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that isclose(a, b) might be different from isclose(b, a) in
some rare cases.

694 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])

numpy.array_equal(a1, a2)
True if two arrays have the same shape and elements, False otherwise.

Parameters
a1, a2 : array_like

Input arrays.

Returns
b : bool

Returns True if the arrays are equal.

See also:

allclose
Returns True if two arrays are element-wise equal within a tolerance.

array_equiv
Returns True if input arrays are shape consistent and all elements equal.

Examples

>>> np.array_equal([1, 2], [1, 2])
True
>>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
>>> np.array_equal([1, 2], [1, 2, 3])
False
>>> np.array_equal([1, 2], [1, 4])
False

numpy.array_equiv(a1, a2)
Returns True if input arrays are shape consistent and all elements equal.

Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same
shape as the other one.

Parameters
a1, a2 : array_like

Input arrays.

Returns
out : bool

True if equivalent, False otherwise.

3.18. Logic functions 695

NumPy Reference, Release 1.11.1

Examples

>>> np.array_equiv([1, 2], [1, 2])
True
>>> np.array_equiv([1, 2], [1, 3])
False

Showing the shape equivalence:

>>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
True
>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
False

>>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
False

greater(x1, x2[, out]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2[, out]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2[, out]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2[, out]) Return the truth value of (x1 =< x2) element-wise.
equal(x1, x2[, out]) Return (x1 == x2) element-wise.
not_equal(x1, x2[, out]) Return (x1 != x2) element-wise.

numpy.greater(x1, x2[, out]) = <ufunc ‘greater’>
Return the truth value of (x1 > x2) element-wise.

Parameters
x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common
shape (which may be the shape of one or the other).

Returns
out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also:

greater_equal, less, less_equal, equal, not_equal

Examples

>>> np.greater([4,2],[2,2])
array([True, False], dtype=bool)

If the inputs are ndarrays, then np.greater is equivalent to ‘>’.

>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
array([True, False], dtype=bool)

numpy.greater_equal(x1, x2[, out]) = <ufunc ‘greater_equal’>
Return the truth value of (x1 >= x2) element-wise.

Parameters
x1, x2 : array_like

696 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common
shape (which may be the shape of one or the other).

Returns
out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also:

greater, less, less_equal, equal, not_equal

Examples

>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([True, True, False], dtype=bool)

numpy.less(x1, x2[, out]) = <ufunc ‘less’>
Return the truth value of (x1 < x2) element-wise.

Parameters
x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common
shape (which may be the shape of one or the other).

Returns
out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also:

greater, less_equal, greater_equal, equal, not_equal

Examples

>>> np.less([1, 2], [2, 2])
array([True, False], dtype=bool)

numpy.less_equal(x1, x2[, out]) = <ufunc ‘less_equal’>
Return the truth value of (x1 =< x2) element-wise.

Parameters
x1, x2 : array_like

Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common
shape (which may be the shape of one or the other).

Returns
out : bool or ndarray of bool

Array of bools, or a single bool if x1 and x2 are scalars.

See also:

greater, less, greater_equal, equal, not_equal

Examples

>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True], dtype=bool)

3.18. Logic functions 697

NumPy Reference, Release 1.11.1

numpy.equal(x1, x2[, out]) = <ufunc ‘equal’>
Return (x1 == x2) element-wise.

Parameters
x1, x2 : array_like

Input arrays of the same shape.

Returns
out : ndarray or bool

Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

Examples

>>> np.equal([0, 1, 3], np.arange(3))
array([True, True, False], dtype=bool)

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1))
array([True], dtype=bool)

numpy.not_equal(x1, x2[, out]) = <ufunc ‘not_equal’>
Return (x1 != x2) element-wise.

Parameters
x1, x2 : array_like

Input arrays.

out : ndarray, optional

A placeholder the same shape as x1 to store the result. See doc.ufuncs (Section
“Output arguments”) for more details.

Returns
not_equal : ndarray bool, scalar bool

For each element in x1, x2, return True if x1 is not equal to x2 and False otherwise.

See also:

equal, greater, greater_equal, less, less_equal

Examples

>>> np.not_equal([1.,2.], [1., 3.])
array([False, True], dtype=bool)
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],

[False, True]], dtype=bool)

3.19 Mathematical functions

3.19.1 Trigonometric functions

698 Chapter 3. Routines

NumPy Reference, Release 1.11.1

sin(x[, out]) Trigonometric sine, element-wise.
cos(x[, out]) Cosine element-wise.
tan(x[, out]) Compute tangent element-wise.
arcsin(x[, out]) Inverse sine, element-wise.
arccos(x[, out]) Trigonometric inverse cosine, element-wise.
arctan(x[, out]) Trigonometric inverse tangent, element-wise.
hypot(x1, x2[, out]) Given the “legs” of a right triangle, return its hypotenuse.
arctan2(x1, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
degrees(x[, out]) Convert angles from radians to degrees.
radians(x[, out]) Convert angles from degrees to radians.
unwrap(p[, discont, axis]) Unwrap by changing deltas between values to 2*pi complement.
deg2rad(x[, out]) Convert angles from degrees to radians.
rad2deg(x[, out]) Convert angles from radians to degrees.

numpy.sin(x[, out]) = <ufunc ‘sin’>
Trigonometric sine, element-wise.

Parameters
x : array_like

Angle, in radians (2𝜋 rad equals 360 degrees).

Returns
y : array_like

The sine of each element of x.

See also:

arcsin, sinh, cos

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider
a circle of radius 1 centered on the origin. A ray comes in from the +𝑥 axis, makes an angle at the origin
(measured counter-clockwise from that axis), and departs from the origin. The 𝑦 coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It ranges from -1 for 𝑥 = 3𝜋/2 to +1 for 𝜋/2.
The function has zeroes where the angle is a multiple of 𝜋. Sines of angles between 𝜋 and 2𝜋 are negative. The
numerous properties of the sine and related functions are included in any standard trigonometry text.

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')

3.19. Mathematical functions 699

NumPy Reference, Release 1.11.1

>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

3 2 1 0 1 2 3
Angle [rad]

1.0

0.5

0.0

0.5

1.0

sin
(x

)

numpy.cos(x[, out]) = <ufunc ‘cos’>
Cosine element-wise.

Parameters
x : array_like

Input array in radians.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray

The corresponding cosine values.

Raises
ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1)

700 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.tan(x[, out]) = <ufunc ‘tan’>
Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters
x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray

The corresponding tangent values.

Raises
ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.arcsin(x[, out]) = <ufunc ‘arcsin’>
Inverse sine, element-wise.

3.19. Mathematical functions 701

NumPy Reference, Release 1.11.1

Parameters
x : array_like

y-coordinate on the unit circle.

out : ndarray, optional

Array of the same shape as x, in which to store the results. See doc.ufuncs (Section
“Output arguments”) for more details.

Returns
angle : ndarray

The inverse sine of each element in x, in radians and in the closed interval [-pi/2,
pi/2]. If x is a scalar, a scalar is returned, otherwise an array.

See also:

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

Notes

arcsin is a multivalued function: for each x there are infinitely many numbers z such that 𝑠𝑖𝑛(𝑧) = 𝑥. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

numpy.arccos(x[, out]) = <ufunc ‘arccos’>
Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

Parameters
x : array_like

x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].

out : ndarray, optional

Array of the same shape as a, to store results in. See doc.ufuncs (Section “Output
arguments”) for more details.

Returns
angle : ndarray

702 Chapter 3. Routines

http://www.math.sfu.ca/~cbm/aands/

NumPy Reference, Release 1.11.1

The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0,
pi]. If x is a scalar then a scalar is returned, otherwise an array of the same shape as x is
returned.

See also:

cos, arctan, arcsin, emath.arccos

Notes

arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The
convention is to return the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that has branch cuts [-inf, -1] and [1, inf]
and is continuous from above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79.
http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

1.0 0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.19. Mathematical functions 703

http://www.math.sfu.ca/~cbm/aands/

NumPy Reference, Release 1.11.1

numpy.arctan(x[, out]) = <ufunc ‘arctan’>
Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters
x : array_like

Input values. arctan is applied to each element of x.

Returns
out : ndarray

Out has the same shape as x. Its real part is in [-pi/2, pi/2] (arctan(+/-inf)
returns +/-pi/2). It is a scalar if x is a scalar.

See also:

arctan2
The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle
Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that has [1j, infj] and [-1j, -infj] as branch
cuts, and is continuous from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

704 Chapter 3. Routines

http://www.math.sfu.ca/~cbm/aands/

NumPy Reference, Release 1.11.1

10 5 0 5 10

1.5

1.0

0.5

0.0

0.5

1.0

1.5

numpy.hypot(x1, x2[, out]) = <ufunc ‘hypot’>
Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or x2 is scalar_like (i.e., unambiguously cast-
able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples)

Parameters
x1, x2 : array_like

Leg of the triangle(s).

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
z : ndarray

The hypotenuse of the triangle(s).

Examples

>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> np.hypot(3*np.ones((3, 3)), [4])
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

numpy.arctan2(x1, x2[, out]) = <ufunc ‘arctan2’>
Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the
ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through
the point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate”

3.19. Mathematical functions 705

NumPy Reference, Release 1.11.1

is the second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 =
+/-inf (see Notes for specific values).

This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle.

Parameters
x1 : array_like, real-valued

y-coordinates.

x2 : array_like, real-valued

x-coordinates. x2 must be broadcastable to match the shape of x1 or vice versa.

Returns
angle : ndarray

Array of angles in radians, in the range [-pi, pi].

See also:

arctan, tan, angle

Notes

arctan2 is identical to the atan2 function of the underlying C library. The following special values are defined
in the C standard: [R6]

x1 x2 arctan2(x1,x2)
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf.

References

[R6]

Examples

Consider four points in different quadrants:

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0 and at several other special points,
obtaining values in the range [-pi, pi]:

>>> np.arctan2([1., -1.], [0., 0.])
array([1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([0. , 3.14159265, 0.78539816])

numpy.degrees(x[, out]) = <ufunc ‘degrees’>
Convert angles from radians to degrees.

706 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
x : array_like

Input array in radians.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray of floats

The corresponding degree values; if out was supplied this is a reference to it.

See also:

rad2deg
equivalent function

Examples

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = degrees(rad, out)
>>> np.all(r == out)
True

numpy.radians(x[, out]) = <ufunc ‘radians’>
Convert angles from degrees to radians.

Parameters
x : array_like

Input array in degrees.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray

The corresponding radian values.

See also:

deg2rad
equivalent function

Examples

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

3.19. Mathematical functions 707

NumPy Reference, Release 1.11.1

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

numpy.unwrap(p, discont=3.141592653589793, axis=-1)
Unwrap by changing deltas between values to 2*pi complement.

Unwrap radian phase p by changing absolute jumps greater than discont to their 2*pi complement along the
given axis.

Parameters
p : array_like

Input array.

discont : float, optional

Maximum discontinuity between values, default is pi.

axis : int, optional

Axis along which unwrap will operate, default is the last axis.

Returns
out : ndarray

Output array.

See also:

rad2deg, deg2rad

Notes

If the discontinuity in p is smaller than pi, but larger than discont, no unwrapping is done because taking the
2*pi complement would only make the discontinuity larger.

Examples

>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([0. , 0.78539816, 1.57079633, -0.78539816, 0.])

numpy.deg2rad(x[, out]) = <ufunc ‘deg2rad’>
Convert angles from degrees to radians.

Parameters
x : array_like

Angles in degrees.

Returns
y : ndarray

The corresponding angle in radians.

See also:

708 Chapter 3. Routines

NumPy Reference, Release 1.11.1

rad2deg
Convert angles from radians to degrees.

unwrap
Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

deg2rad(x) is x * pi / 180.

Examples

>>> np.deg2rad(180)
3.1415926535897931

numpy.rad2deg(x[, out]) = <ufunc ‘rad2deg’>
Convert angles from radians to degrees.

Parameters
x : array_like

Angle in radians.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
y : ndarray

The corresponding angle in degrees.

See also:

deg2rad
Convert angles from degrees to radians.

unwrap
Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

rad2deg(x) is 180 * x / pi.

Examples

>>> np.rad2deg(np.pi/2)
90.0

3.19.2 Hyperbolic functions

sinh(x[, out]) Hyperbolic sine, element-wise.
cosh(x[, out]) Hyperbolic cosine, element-wise.
tanh(x[, out]) Compute hyperbolic tangent element-wise.

Continued on next page

3.19. Mathematical functions 709

NumPy Reference, Release 1.11.1

Table 3.80 – continued from previous page
arcsinh(x[, out]) Inverse hyperbolic sine element-wise.
arccosh(x[, out]) Inverse hyperbolic cosine, element-wise.
arctanh(x[, out]) Inverse hyperbolic tangent element-wise.

numpy.sinh(x[, out]) = <ufunc ‘sinh’>
Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters
x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray

The corresponding hyperbolic sine values.

Raises
ValueError: invalid return array shape

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples

>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.cosh(x[, out]) = <ufunc ‘cosh’>
Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

710 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
x : array_like

Input array.

Returns
out : ndarray

Output array of same shape as x.

Examples

>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

4 3 2 1 0 1 2 3 4
0

5

10

15

20

25

numpy.tanh(x[, out]) = <ufunc ‘tanh’>
Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters
x : array_like

Input array.

out : ndarray, optional

Output array of same shape as x.

Returns
y : ndarray

The corresponding hyperbolic tangent values.

Raises
ValueError: invalid return array shape

3.19. Mathematical functions 711

NumPy Reference, Release 1.11.1

if out is provided and out.shape != x.shape (See Examples)

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

[R284], [R285]

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid return array shape

numpy.arcsinh(x[, out]) = <ufunc ‘arcsinh’>
Inverse hyperbolic sine element-wise.

Parameters
x : array_like

Input array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
out : ndarray

Array of of the same shape as x.

Notes

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed
as a real number or infinity, it returns nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytical function that has branch cuts [1j, infj] and [-1j,
-infj] and is continuous from the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[R4], [R5]

712 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

numpy.arccosh(x[, out]) = <ufunc ‘arccosh’>
Inverse hyperbolic cosine, element-wise.

Parameters
x : array_like

Input array.

out : ndarray, optional

Array of the same shape as x, to store results in. See doc.ufuncs (Section “Output
arguments”) for details.

Returns
arccosh : ndarray

Array of the same shape as x.

See also:

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].

For real-valued input data types, arccosh always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that has a branch cut [-inf, 1] and is
continuous from above on it.

References

[R2], [R3]

Examples

>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

numpy.arctanh(x[, out]) = <ufunc ‘arctanh’>
Inverse hyperbolic tangent element-wise.

Parameters
x : array_like

Input array.

Returns
out : ndarray

Array of the same shape as x.

See also:

emath.arctanh

3.19. Mathematical functions 713

NumPy Reference, Release 1.11.1

Notes

arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed
as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function that has branch cuts [-1, -inf] and [1, inf]
and is continuous from above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

[R7], [R8]

Examples

>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

3.19.3 Rounding

around(a[, decimals, out]) Evenly round to the given number of decimals.
round_(a[, decimals, out]) Round an array to the given number of decimals.
rint(x[, out]) Round elements of the array to the nearest integer.
fix(x[, y]) Round to nearest integer towards zero.
floor(x[, out]) Return the floor of the input, element-wise.
ceil(x[, out]) Return the ceiling of the input, element-wise.
trunc(x[, out]) Return the truncated value of the input, element-wise.

numpy.around(a, decimals=0, out=None)
Evenly round to the given number of decimals.

Parameters
a : array_like

Input data.

decimals : int, optional

Number of decimal places to round to (default: 0). If decimals is negative, it specifies
the number of positions to the left of the decimal point.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as
the expected output, but the type of the output values will be cast if necessary. See
doc.ufuncs (Section “Output arguments”) for details.

Returns
rounded_array : ndarray

An array of the same type as a, containing the rounded values. Unless out was specified,
a new array is created. A reference to the result is returned.

The real and imaginary parts of complex numbers are rounded separately. The result of
rounding a float is a float.

714 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

ndarray.round
equivalent method

ceil, fix, floor, rint, trunc

Notes

For values exactly halfway between rounded decimal values, Numpy rounds to the nearest even value. Thus
1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in the IEEE floating point standard [R9] and errors introduced when scaling
by powers of ten.

References

[R9], [R10]

Examples

>>> np.around([0.37, 1.64])
array([0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([0, 0, 0, 10])

numpy.round_(a, decimals=0, out=None)
Round an array to the given number of decimals.

Refer to around for full documentation.

See also:

around
equivalent function

numpy.rint(x[, out]) = <ufunc ‘rint’>
Round elements of the array to the nearest integer.

Parameters
x : array_like

Input array.

Returns
out : ndarray or scalar

Output array is same shape and type as x.

See also:

ceil, floor, trunc

3.19. Mathematical functions 715

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 2., 2., 2.])

numpy.fix(x, y=None)
Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats.

Parameters
x : array_like

An array of floats to be rounded

y : ndarray, optional

Output array

Returns
out : ndarray of floats

The array of rounded numbers

See also:

trunc, floor, ceil

around
Round to given number of decimals

Examples

>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([2., 2., -2., -2.])

numpy.floor(x[, out]) = <ufunc ‘floor’>
Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that i <= x. It is often denoted as ⌊𝑥⌋.

Parameters
x : array_like

Input data.

Returns
y : ndarray or scalar

The floor of each element in x.

See also:

ceil, trunc, rint

Notes

Some spreadsheet programs calculate the “floor-towards-zero”, in other words floor(-2.5) == -2.
NumPy instead uses the definition of floor where floor(-2.5) == -3.

716 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])

numpy.ceil(x[, out]) = <ufunc ‘ceil’>
Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that i >= x. It is often denoted as ⌈𝑥⌉.

Parameters
x : array_like

Input data.

Returns
y : ndarray or scalar

The ceiling of each element in x, with float dtype.

See also:

floor, trunc, rint

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])

numpy.trunc(x[, out]) = <ufunc ‘trunc’>
Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional
part of the signed number x is discarded.

Parameters
x : array_like

Input data.

Returns
y : ndarray or scalar

The truncated value of each element in x.

See also:

ceil, floor, rint

Notes

New in version 1.3.0.

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])

3.19. Mathematical functions 717

http://docs.python.org/dev/library/functions.html#float

NumPy Reference, Release 1.11.1

3.19.4 Sums, products, differences

718 Chapter 3. Routines

NumPy Reference, Release 1.11.1

prod(a[, axis, dtype, out, keepdims]) Return the product of array elements over a given axis.
sum(a[, axis, dtype, out, keepdims]) Sum of array elements over a given axis.
nansum(a[, axis, dtype, out, keepdims]) Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.
cumprod(a[, axis, dtype, out]) Return the cumulative product of elements along a given axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given axis.
diff(a[, n, axis]) Calculate the n-th discrete difference along given axis.
ediff1d(ary[, to_end, to_begin]) The differences between consecutive elements of an array.
gradient(f, *varargs, **kwargs) Return the gradient of an N-dimensional array.
cross(a, b[, axisa, axisb, axisc, axis]) Return the cross product of two (arrays of) vectors.
trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trapezoidal rule.

numpy.prod(a, axis=None, dtype=None, out=None, keepdims=False)
Return the product of array elements over a given axis.

Parameters
a : array_like

Input data.

axis : None or int or tuple of ints, optional

Axis or axes along which a product is performed. The default, axis=None, will calculate
the product of all the elements in the input array. If axis is negative it counts from the
last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

dtype : dtype, optional

The type of the returned array, as well as of the accumulator in which the elements
are multiplied. The dtype of a is used by default unless a has an integer dtype of less
precision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as
the platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the input array.

Returns
product_along_axis : ndarray, see dtype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

See also:

ndarray.prod
equivalent method

3.19. Mathematical functions 719

NumPy Reference, Release 1.11.1

numpy.doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit
platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

The product of an empty array is the neutral element 1:

>>> np.prod([])
1.0

Examples

By default, calculate the product of all elements:

>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.]])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == np.int
True

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)
Sum of array elements over a given axis.

Parameters
a : array_like

Elements to sum.

axis : None or int or tuple of ints, optional

Axis or axes along which a sum is performed. The default, axis=None, will sum all of
the elements of the input array. If axis is negative it counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a sum is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

720 Chapter 3. Routines

NumPy Reference, Release 1.11.1

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are
summed. The dtype of a is used by default unless a has an integer dtype of less pre-
cision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as
the platform integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the input array.

Returns
sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out
is returned.

See also:

ndarray.sum
Equivalent method.

cumsum
Cumulative sum of array elements.

trapz
Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

The sum of an empty array is the neutral element 0:

>>> np.sum([])
0.0

Examples

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

If the accumulator is too small, overflow occurs:

3.19. Mathematical functions 721

NumPy Reference, Release 1.11.1

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

numpy.nansum(a, axis=None, dtype=None, out=None, keepdims=0)
Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.

In Numpy versions <= 1.8 Nan is returned for slices that are all-NaN or empty. In later versions zero is returned.

Parameters
a : array_like

Array containing numbers whose sum is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the sum is computed. The default is to compute the sum of the
flattened array.

dtype : data-type, optional

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact
inputs, dtype must be inexact.

New in version 1.8.0.

out : ndarray, optional

Alternate output array in which to place the result. The default is None. If provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details. The casting of NaN to integer can yield unexpected
results.

New in version 1.8.0.

keepdims : bool, optional

If True, the axes which are reduced are left in the result as dimensions with size one.
With this option, the result will broadcast correctly against the original arr.

New in version 1.8.0.

Returns
y : ndarray or numpy scalar

See also:

numpy.sum
Sum across array propagating NaNs.

isnan
Show which elements are NaN.

isfinite
Show which elements are not NaN or +/-inf.

Notes

If both positive and negative infinity are present, the sum will be Not A Number (NaN).

722 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Numpy integer arithmetic is modular. If the size of a sum exceeds the size of an integer accumulator, its value
will wrap around and the result will be incorrect. Specifying dtype=double can alleviate that problem.

Examples

>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan

numpy.cumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters
a : array_like

Input array.

axis : int, optional

Axis along which the cumulative product is computed. By default the input is flattened.

dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if
necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

See also:

numpy.doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

3.19. Mathematical functions 723

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 3],

[4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array([[1, 2, 6],

[4, 20, 120]])

numpy.cumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a : array_like

Input array.

axis : int, optional

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape
and buffer length as the expected output but the type will be cast if necessary. See
doc.ufuncs (Section “Output arguments”) for more details.

Returns
cumsum_along_axis : ndarray.

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See also:

sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

724 Chapter 3. Routines

NumPy Reference, Release 1.11.1

diff
Calculate the n-th discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.cumsum(a)
array([1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],

[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[1, 3, 6],

[4, 9, 15]])

numpy.diff(a, n=1, axis=-1)

Calculate the n-th discrete difference along given axis.

The first difference is given by out[n] = a[n+1] - a[n] along the given axis, higher differ-
ences are calculated by using diff recursively.

Parameters
a : array_like

Input array

n
[int, optional] The number of times values are differenced.

axis
[int, optional] The axis along which the difference is taken, default is the last axis.

Returns
diff : ndarray

The n-th differences. The shape of the output is the same as a except along axis where
the dimension is smaller by n.

.

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([1, 2, 3, -7])
>>> np.diff(x, n=2)
array([1, 1, -10])

3.19. Mathematical functions 725

NumPy Reference, Release 1.11.1

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],

[5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1, 2, 0, -2]])

numpy.ediff1d(ary, to_end=None, to_begin=None)
The differences between consecutive elements of an array.

Parameters
ary : array_like

If necessary, will be flattened before the differences are taken.

to_end : array_like, optional

Number(s) to append at the end of the returned differences.

to_begin : array_like, optional

Number(s) to prepend at the beginning of the returned differences.

Returns
ediff1d : ndarray

The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

See also:

diff, gradient

Notes

When applied to masked arrays, this function drops the mask information if the to_begin and/or to_end param-
eters are used.

Examples

>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([1, 2, 3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, 3, -7, 88, 99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([1, 2, -3, 5, 18])

numpy.gradient(f, *varargs, **kwargs)
Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences in the interior and either first differ-
ences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned
gradient hence has the same shape as the input array.

Parameters
f : array_like

An N-dimensional array containing samples of a scalar function.

726 Chapter 3. Routines

NumPy Reference, Release 1.11.1

varargs : scalar or list of scalar, optional

N scalars specifying the sample distances for each dimension, i.e. dx, dy, dz, ... Default
distance: 1. single scalar specifies sample distance for all dimensions. if axis is given,
the number of varargs must equal the number of axes.

edge_order : {1, 2}, optional

Gradient is calculated using Nth order accurate differences at the boundaries. Default:
1.

New in version 1.9.1.

axis : None or int or tuple of ints, optional

Gradient is calculated only along the given axis or axes The default (axis = None) is to
calculate the gradient for all the axes of the input array. axis may be negative, in which
case it counts from the last to the first axis.

New in version 1.11.0.

Returns
gradient : list of ndarray

Each element of list has the same shape as f giving the derivative of f with respect to
each dimension.

Examples

>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(x)
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])
>>> np.gradient(x, 2)
array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5])

For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands
for the gradient in rows and the second one in columns direction:

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
[array([[2., 2., -1.],

[2., 2., -1.]]), array([[1. , 2.5, 4.],
[1. , 1. , 1.]])]

>>> x = np.array([0, 1, 2, 3, 4])
>>> dx = np.gradient(x)
>>> y = x**2
>>> np.gradient(y, dx, edge_order=2)
array([-0., 2., 4., 6., 8.])

The axis keyword can be used to specify a subset of axes of which the gradient is calculated >>>
np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), axis=0) array([[2., 2., -1.],

[2., 2., -1.]])

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
Return the cross product of two (arrays of) vectors.

The cross product of a and b in 𝑅3 is a vector perpendicular to both a and b. If a and b are arrays of vectors,
the vectors are defined by the last axis of a and b by default, and these axes can have dimensions 2 or 3. Where
the dimension of either a or b is 2, the third component of the input vector is assumed to be zero and the cross
product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the
cross product is returned.

3.19. Mathematical functions 727

NumPy Reference, Release 1.11.1

Parameters
a : array_like

Components of the first vector(s).

b : array_like

Components of the second vector(s).

axisa : int, optional

Axis of a that defines the vector(s). By default, the last axis.

axisb : int, optional

Axis of b that defines the vector(s). By default, the last axis.

axisc : int, optional

Axis of c containing the cross product vector(s). Ignored if both input vectors have
dimension 2, as the return is scalar. By default, the last axis.

axis : int, optional

If defined, the axis of a, b and c that defines the vector(s) and cross product(s). Overrides
axisa, axisb and axisc.

Returns
c : ndarray

Vector cross product(s).

Raises
ValueError

When the dimension of the vector(s) in a and/or b does not equal 2 or 3.

See also:

inner
Inner product

outer
Outer product.

ix_
Construct index arrays.

Notes

New in version 1.9.0.

Supports full broadcasting of the inputs.

Examples

Vector cross-product.

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([-3, 6, -3])

One vector with dimension 2.

728 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x = [1, 2]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Equivalently:

>>> x = [1, 2, 0]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Both vectors with dimension 2.

>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
-3

Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand
rule.

>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-3, 6, -3],

[3, -6, 3]])

The orientation of c can be changed using the axisc keyword.

>>> np.cross(x, y, axisc=0)
array([[-3, 3],

[6, -6],
[-3, 3]])

Change the vector definition of x and y using axisa and axisb.

>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-6, 12, -6],

[0, 0, 0],
[6, -12, 6]])

>>> np.cross(x, y, axisa=0, axisb=0)
array([[-24, 48, -24],

[-30, 60, -30],
[-36, 72, -36]])

numpy.trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

Parameters
y : array_like

Input array to integrate.

x : array_like, optional

The sample points corresponding to the y values. If x is None, the sample points are
assumed to be evenly spaced dx apart. The default is None.

3.19. Mathematical functions 729

NumPy Reference, Release 1.11.1

dx : scalar, optional

The spacing between sample points when x is None. The default is 1.

axis : int, optional

The axis along which to integrate.

Returns
trapz : float

Definite integral as approximated by trapezoidal rule.

See also:

sum, cumsum

Notes

Image [R287] illustrates trapezoidal rule – y-axis locations of points will be taken from y array, by default x-axis
distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return
value will be equal to combined area under the red lines.

References

[R286], [R287]

Examples

>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.trapz(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([2., 8.])

3.19.5 Exponents and logarithms

exp(x[, out]) Calculate the exponential of all elements in the input array.
expm1(x[, out]) Calculate exp(x) - 1 for all elements in the array.
exp2(x[, out]) Calculate 2**p for all p in the input array.
log(x[, out]) Natural logarithm, element-wise.
log10(x[, out]) Return the base 10 logarithm of the input array, element-wise.
log2(x[, out]) Base-2 logarithm of x.
log1p(x[, out]) Return the natural logarithm of one plus the input array, element-wise.
logaddexp(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs in base-2.

numpy.exp(x[, out]) = <ufunc ‘exp’>
Calculate the exponential of all elements in the input array.

730 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
x : array_like

Input values.

Returns
out : ndarray

Output array, element-wise exponential of x.

See also:

expm1
Calculate exp(x) - 1 for all elements in the array.

exp2
Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if 𝑥 = ln 𝑦 = log𝑒 𝑦, then 𝑒𝑥 = 𝑦. For real input, exp(x) is always
positive.

For complex arguments, x = a + ib, we can write 𝑒𝑥 = 𝑒𝑎𝑒𝑖𝑏. The first term, 𝑒𝑎, is already known (it is
the real argument, described above). The second term, 𝑒𝑖𝑏, is cos 𝑏 + 𝑖 sin 𝑏, a function with magnitude 1 and a
periodic phase.

References

[R18], [R19]

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

3.19. Mathematical functions 731

NumPy Reference, Release 1.11.1

5 0 5

5

0

5

Magnitude of exp(x)

5 0 5

5

0

5

Phase (angle) of exp(x)

numpy.expm1(x[, out]) = <ufunc ‘expm1’>
Calculate exp(x) - 1 for all elements in the array.

Parameters
x : array_like

Input values.

Returns
out : ndarray

Element-wise exponential minus one: out = exp(x) - 1.

See also:

log1p
log(1 + x), the inverse of expm1.

Notes

This function provides greater precision than exp(x) - 1 for small values of x.

Examples

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to about 32 significant digits. This example
shows the superiority of expm1 in this case.

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

numpy.exp2(x[, out]) = <ufunc ‘exp2’>
Calculate 2**p for all p in the input array.

Parameters
x : array_like

Input values.

out : ndarray, optional

732 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Array to insert results into.

Returns
out : ndarray

Element-wise 2 to the power x.

See also:

power

Notes

New in version 1.3.0.

Examples

>>> np.exp2([2, 3])
array([4., 8.])

numpy.log(x[, out]) = <ufunc ‘log’>
Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural
logarithm is logarithm in base e.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The natural logarithm of x, element-wise.

See also:

log10, log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

References

[R44], [R45]

Examples

>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -Inf])

numpy.log10(x[, out]) = <ufunc ‘log10’>
Return the base 10 logarithm of the input array, element-wise.

3.19. Mathematical functions 733

NumPy Reference, Release 1.11.1

Parameters
x : array_like

Input values.

Returns
y : ndarray

The logarithm to the base 10 of x, element-wise. NaNs are returned where x is negative.

See also:

emath.log10

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that 10**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that has a branch cut [-inf, 0] and is con-
tinuous from above on it. log10 handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[R46], [R47]

Examples

>>> np.log10([1e-15, -3.])
array([-15., NaN])

numpy.log2(x[, out]) = <ufunc ‘log2’>
Base-2 logarithm of x.

Parameters
x : array_like

Input values.

Returns
y : ndarray

Base-2 logarithm of x.

See also:

log, log10, log1p, emath.log2

Notes

New in version 1.3.0.

Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

734 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-Inf, 0., 1., 4.])

>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
>>> np.log2(xi)
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

numpy.log1p(x[, out]) = <ufunc ‘log1p’>
Return the natural logarithm of one plus the input array, element-wise.

Calculates log(1 + x).

Parameters
x : array_like

Input values.

Returns
y : ndarray

Natural logarithm of 1 + x, element-wise.

See also:

expm1
exp(x) - 1, the inverse of log1p.

Notes

For real-valued input, log1p is accurate also for x so small that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = 1 + x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that has a branch cut [-inf, -1] and is con-
tinuous from above on it. log1p handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[R48], [R49]

Examples

>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0

numpy.logaddexp(x1, x2[, out]) = <ufunc ‘logaddexp’>
Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in statistics where the calculated proba-
bilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a
fashion.

3.19. Mathematical functions 735

NumPy Reference, Release 1.11.1

Parameters
x1, x2 : array_like

Input values.

Returns
result : ndarray

Logarithm of exp(x1) + exp(x2).

See also:

logaddexp2
Logarithm of the sum of exponentiations of inputs in base 2.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log(1e-50)
>>> prob2 = np.log(2.5e-50)
>>> prob12 = np.logaddexp(prob1, prob2)
>>> prob12
-113.87649168120691
>>> np.exp(prob12)
3.5000000000000057e-50

numpy.logaddexp2(x1, x2[, out]) = <ufunc ‘logaddexp2’>
Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine learning when the calculated prob-
abilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities
stored in such a fashion.

Parameters
x1, x2 : array_like

Input values.

out : ndarray, optional

Array to store results in.

Returns
result : ndarray

Base-2 logarithm of 2**x1 + 2**x2.

See also:

logaddexp
Logarithm of the sum of exponentiations of the inputs.

Notes

New in version 1.3.0.

736 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> prob1 = np.log2(1e-50)
>>> prob2 = np.log2(2.5e-50)
>>> prob12 = np.logaddexp2(prob1, prob2)
>>> prob1, prob2, prob12
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12
3.4999999999999914e-50

3.19.6 Other special functions

i0(x) Modified Bessel function of the first kind, order 0.
sinc(x) Return the sinc function.

numpy.i0(x)
Modified Bessel function of the first kind, order 0.

Usually denoted 𝐼0. This function does broadcast, but will not “up-cast” int dtype arguments unless accompa-
nied by at least one float or complex dtype argument (see Raises below).

Parameters
x : array_like, dtype float or complex

Argument of the Bessel function.

Returns
out : ndarray, shape = x.shape, dtype = x.dtype

The modified Bessel function evaluated at each of the elements of x.

Raises
TypeError: array cannot be safely cast to required type

If argument consists exclusively of int dtypes.

See also:

scipy.special.iv, scipy.special.ive

Notes

We use the algorithm published by Clenshaw [R29] and referenced by Abramowitz and Stegun [R30], for which
the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions
are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [R31]
as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

References

[R29], [R30], [R31]

Examples

>>> np.i0([0.])
array(1.0)
>>> np.i0([0., 1. + 2j])
array([1.00000000+0.j , 0.18785373+0.64616944j])

3.19. Mathematical functions 737

NumPy Reference, Release 1.11.1

numpy.sinc(x)
Return the sinc function.

The sinc function is sin(𝜋𝑥)/(𝜋𝑥).

Parameters
x : ndarray

Array (possibly multi-dimensional) of values for which to to calculate sinc(x).

Returns
out : ndarray

sinc(x), which has the same shape as the input.

Notes

sinc(0) is the limit value 1.

The name sinc is short for “sine cardinal” or “sinus cardinalis”.

The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction
of a Lanczos resampling filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc
function.

References

[R282], [R283]

Examples

>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02,

-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
8.50444803e-02, -3.89804309e-17, -1.03943254e-01,

-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89804309e-17, -1.55914881e-01,

-2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
1.16434881e-01, 6.68206631e-02, 3.89804309e-17,

-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])

>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("X")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

It works in 2-D as well:

738 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x = np.linspace(-4, 4, 401)
>>> xx = np.outer(x, x)
>>> plt.imshow(np.sinc(xx))
<matplotlib.image.AxesImage object at 0x...>

3.19.7 Floating point routines

signbit(x[, out]) Returns element-wise True where signbit is set (less than zero).
copysign(x1, x2[, out]) Change the sign of x1 to that of x2, element-wise.
frexp(x[, out1, out2]) Decompose the elements of x into mantissa and twos exponent.
ldexp(x1, x2[, out]) Returns x1 * 2**x2, element-wise.

numpy.signbit(x[, out]) = <ufunc ‘signbit’>
Returns element-wise True where signbit is set (less than zero).

Parameters
x : array_like

The input value(s).

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
result : ndarray of bool

Output array, or reference to out if that was supplied.

Examples

>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False, True, False], dtype=bool)

numpy.copysign(x1, x2[, out]) = <ufunc ‘copysign’>
Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same length. If x2 is a scalar, its sign will be
copied to all elements of x1.

Parameters
x1 : array_like

Values to change the sign of.

x2 : array_like

The sign of x2 is copied to x1.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
out : array_like

3.19. Mathematical functions 739

NumPy Reference, Release 1.11.1

The values of x1 with the sign of x2.

Examples

>>> np.copysign(1.3, -1)
-1.3
>>> 1/np.copysign(0, 1)
inf
>>> 1/np.copysign(0, -1)
-inf

>>> np.copysign([-1, 0, 1], -1.1)
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1)
array([-1., 0., 1.])

numpy.frexp(x[, out1, out2]) = <ufunc ‘frexp’>
Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent‘. The mantissa is lies in the open interval(-1,
1), while the twos exponent is a signed integer.

Parameters
x : array_like

Array of numbers to be decomposed.

out1 : ndarray, optional

Output array for the mantissa. Must have the same shape as x.

out2 : ndarray, optional

Output array for the exponent. Must have the same shape as x.

Returns
(mantissa, exponent) : tuple of ndarrays, (float, int)

mantissa is a float array with values between -1 and 1. exponent is an int array which
represents the exponent of 2.

See also:

ldexp
Compute y = x1 * 2**x2, the inverse of frexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

Examples

>>> x = np.arange(9)
>>> y1, y2 = np.frexp(x)
>>> y1
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,

0.5])
>>> y2
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> y1 * 2**y2
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

740 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.ldexp(x1, x2[, out]) = <ufunc ‘ldexp’>
Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters
x1 : array_like

Array of multipliers.

x2 : array_like, int

Array of twos exponents.

out : ndarray, optional

Output array for the result.

Returns
y : ndarray or scalar

The result of x1 * 2**x2.

See also:

frexp
Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 *
2**x2.

Examples

>>> np.ldexp(5, np.arange(4))
array([5., 10., 20., 40.], dtype=float32)

>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([0., 1., 2., 3., 4., 5.])

3.19.8 Arithmetic operations

add(x1, x2[, out]) Add arguments element-wise.
reciprocal(x[, out]) Return the reciprocal of the argument, element-wise.
negative(x[, out]) Numerical negative, element-wise.
multiply(x1, x2[, out]) Multiply arguments element-wise.
divide(x1, x2[, out]) Divide arguments element-wise.
power(x1, x2[, out]) First array elements raised to powers from second array, element-wise.
subtract(x1, x2[, out]) Subtract arguments, element-wise.
true_divide(x1, x2[, out]) Returns a true division of the inputs, element-wise.
floor_divide(x1, x2[, out]) Return the largest integer smaller or equal to the division of the inputs.
fmod(x1, x2[, out]) Return the element-wise remainder of division.
mod(x1, x2[, out]) Return element-wise remainder of division.

Continued on next page

3.19. Mathematical functions 741

NumPy Reference, Release 1.11.1

Table 3.86 – continued from previous page
modf(x[, out1, out2]) Return the fractional and integral parts of an array, element-wise.
remainder(x1, x2[, out]) Return element-wise remainder of division.

numpy.add(x1, x2[, out]) = <ufunc ‘add’>
Add arguments element-wise.

Parameters
x1, x2 : array_like

The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which may be the shape of one or the other).

Returns
add : ndarray or scalar

The sum of x1 and x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

numpy.reciprocal(x[, out]) = <ufunc ‘reciprocal’>
Return the reciprocal of the argument, element-wise.

Calculates 1/x.

Parameters
x : array_like

Input array.

Returns
y : ndarray

Return array.

Notes

Note: This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is always zero because of the way Python
handles integer division. For integer zero the result is an overflow.

Examples

742 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.reciprocal(2.)
0.5
>>> np.reciprocal([1, 2., 3.33])
array([1. , 0.5 , 0.3003003])

numpy.negative(x[, out]) = <ufunc ‘negative’>
Numerical negative, element-wise.

Parameters
x : array_like or scalar

Input array.

Returns
y : ndarray or scalar

Returned array or scalar: y = -x.

Examples

>>> np.negative([1.,-1.])
array([-1., 1.])

numpy.multiply(x1, x2[, out]) = <ufunc ‘multiply’>
Multiply arguments element-wise.

Parameters
x1, x2 : array_like

Input arrays to be multiplied.

Returns
y : ndarray

The product of x1 and x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 * x2 in terms of array broadcasting.

Examples

>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[0., 1., 4.],

[0., 4., 10.],
[0., 7., 16.]])

numpy.divide(x1, x2[, out]) = <ufunc ‘divide’>
Divide arguments element-wise.

Parameters
x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

3.19. Mathematical functions 743

NumPy Reference, Release 1.11.1

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
y : ndarray or scalar

The quotient x1/x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

See also:

seterr
Set whether to raise or warn on overflow, underflow and division by zero.

Notes

Equivalent to x1 / x2 in terms of array-broadcasting.

Behavior on division by zero can be changed using seterr.

In Python 2, when both x1 and x2 are of an integer type, divide will behave like floor_divide. In
Python 3, it behaves like true_divide.

Examples

>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[NaN, 1. , 1.],

[Inf, 4. , 2.5],
[Inf, 7. , 4.]])

Note the behavior with integer types (Python 2 only):

>>> np.divide(2, 4)
0
>>> np.divide(2, 4.)
0.5

Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception
or a warning:

>>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
array([0, 0])

Division by zero can, however, be caught using seterr:

>>> old_err_state = np.seterr(divide='raise')
>>> np.divide(1, 0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FloatingPointError: divide by zero encountered in divide

>>> ignored_states = np.seterr(**old_err_state)
>>> np.divide(1, 0)
0

numpy.power(x1, x2[, out]) = <ufunc ‘power’>
First array elements raised to powers from second array, element-wise.

744 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the
same shape.

Parameters
x1 : array_like

The bases.

x2 : array_like

The exponents.

Returns
y : ndarray

The bases in x1 raised to the exponents in x2.

Examples

Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[0, 1, 8, 27, 16, 5],

[0, 1, 8, 27, 16, 5]])

numpy.subtract(x1, x2[, out]) = <ufunc ‘subtract’>
Subtract arguments, element-wise.

Parameters
x1, x2 : array_like

The arrays to be subtracted from each other.

Returns
y : ndarray

The difference of x1 and x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 - x2 in terms of array broadcasting.

3.19. Mathematical functions 745

NumPy Reference, Release 1.11.1

Examples

>>> np.subtract(1.0, 4.0)
-3.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[0., 0., 0.],

[3., 3., 3.],
[6., 6., 6.]])

numpy.true_divide(x1, x2[, out]) = <ufunc ‘true_divide’>
Returns a true division of the inputs, element-wise.

Instead of the Python traditional ‘floor division’, this returns a true division. True division adjusts the output
type to present the best answer, regardless of input types.

Parameters
x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

Returns
out : ndarray

Result is scalar if both inputs are scalar, ndarray otherwise.

Notes

The floor division operator // was added in Python 2.2 making // and / equivalent operators. The default floor
division operation of / can be replaced by true division with from __future__ import division.

In Python 3.0, // is the floor division operator and / the true division operator. The true_divide(x1,
x2) function is equivalent to true division in Python.

Examples

>>> x = np.arange(5)
>>> np.true_divide(x, 4)
array([0. , 0.25, 0.5 , 0.75, 1.])

>>> x/4
array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])

>>> from __future__ import division
>>> x/4
array([0. , 0.25, 0.5 , 0.75, 1.])
>>> x//4
array([0, 0, 0, 0, 1])

numpy.floor_divide(x1, x2[, out]) = <ufunc ‘floor_divide’>
Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python //
operator and pairs with the Python % (remainder), function so that b = a % b + b * (a // b) up to
roundoff.

746 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
x1 : array_like

Numerator.

x2 : array_like

Denominator.

Returns
y : ndarray

y = floor(x1/x2)

See also:

remainder
Remainder complementary to floor_divide.

divide
Standard division.

floor
Round a number to the nearest integer toward minus infinity.

ceil
Round a number to the nearest integer toward infinity.

Examples

>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([0., 0., 1., 1.])

numpy.fmod(x1, x2[, out]) = <ufunc ‘fmod’>
Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the
dividend x1. It is equivalent to the Matlab(TM) rem function and should not be confused with the Python
modulus operator x1 % x2.

Parameters
x1 : array_like

Dividend.

x2 : array_like

Divisor.

Returns
y : array_like

The remainder of the division of x1 by x2.

See also:

remainder
Equivalent to the Python % operator.

divide

3.19. Mathematical functions 747

NumPy Reference, Release 1.11.1

Notes

The result of the modulo operation for negative dividend and divisors is bound by conventions. For fmod, the
sign of result is the sign of the dividend, while for remainder the sign of the result is the sign of the divisor.
The fmod function is equivalent to the Matlab(TM) rem function.

Examples

>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])

>>> np.fmod([5, 3], [2, 2.])
array([1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],

[-1, 0],
[1, 2]])

>>> np.fmod(a, [2,2])
array([[-1, 0],

[-1, 0],
[1, 0]])

numpy.mod(x1, x2[, out]) = <ufunc ‘remainder’>
Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is equivalent to the Python modu-
lus operator‘‘x1 % x2‘‘ and has the same sign as the divisor x2. It should not be confused with the Matlab(TM)
rem function.

Parameters
x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
y : ndarray

The element-wise remainder of the quotient floor_divide(x1, x2). Returns a
scalar if both x1 and x2 are scalars.

See also:

floor_divide
Equivalent of Python // operator.

fmod
Equivalent of the Matlab(TM) rem function.

divide, floor

748 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

numpy.modf(x[, out1, out2]) = <ufunc ‘modf’>
Return the fractional and integral parts of an array, element-wise.

The fractional and integral parts are negative if the given number is negative.

Parameters
x : array_like

Input array.

Returns
y1 : ndarray

Fractional part of x.

y2 : ndarray

Integral part of x.

Notes

For integer input the return values are floats.

Examples

>>> np.modf([0, 3.5])
(array([0. , 0.5]), array([0., 3.]))
>>> np.modf(-0.5)
(-0.5, -0)

numpy.remainder(x1, x2[, out]) = <ufunc ‘remainder’>
Return element-wise remainder of division.

Computes the remainder complementary to the floor_divide function. It is equivalent to the Python modu-
lus operator‘‘x1 % x2‘‘ and has the same sign as the divisor x2. It should not be confused with the Matlab(TM)
rem function.

Parameters
x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
y : ndarray

3.19. Mathematical functions 749

NumPy Reference, Release 1.11.1

The element-wise remainder of the quotient floor_divide(x1, x2). Returns a
scalar if both x1 and x2 are scalars.

See also:

floor_divide
Equivalent of Python // operator.

fmod
Equivalent of the Matlab(TM) rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers.

Examples

>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

3.19.9 Handling complex numbers

angle(z[, deg]) Return the angle of the complex argument.
real(val) Return the real part of the elements of the array.
imag(val) Return the imaginary part of the elements of the array.
conj(x[, out]) Return the complex conjugate, element-wise.

numpy.angle(z, deg=0)
Return the angle of the complex argument.

Parameters
z : array_like

A complex number or sequence of complex numbers.

deg : bool, optional

Return angle in degrees if True, radians if False (default).

Returns
angle : ndarray or scalar

The counterclockwise angle from the positive real axis on the complex plane, with dtype
as numpy.float64.

See also:

arctan2, absolute

Examples

>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
array([0. , 1.57079633, 0.78539816])

750 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.angle(1+1j, deg=True) # in degrees
45.0

numpy.real(val)
Return the real part of the elements of the array.

Parameters
val : array_like

Input array.

Returns
out : ndarray

Output array. If val is real, the type of val is used for the output. If val has complex
elements, the returned type is float.

See also:

real_if_close, imag, angle

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([1., 3., 5.])
>>> a.real = 9
>>> a
array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
array([9.+2.j, 8.+4.j, 7.+6.j])

numpy.imag(val)
Return the imaginary part of the elements of the array.

Parameters
val : array_like

Input array.

Returns
out : ndarray

Output array. If val is real, the type of val is used for the output. If val has complex
elements, the returned type is float.

See also:

real, angle, real_if_close

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([1. +8.j, 3.+10.j, 5.+12.j])

numpy.conj(x[, out]) = <ufunc ‘conjugate’>
Return the complex conjugate, element-wise.

3.19. Mathematical functions 751

NumPy Reference, Release 1.11.1

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

3.19.10 Miscellaneous

convolve(a, v[, mode]) Returns the discrete, linear convolution of two one-dimensional sequences.
clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.
sqrt(x[, out]) Return the positive square-root of an array, element-wise.
square(x[, out]) Return the element-wise square of the input.
absolute(x[, out]) Calculate the absolute value element-wise.
fabs(x[, out]) Compute the absolute values element-wise.
sign(x[, out]) Returns an element-wise indication of the sign of a number.
maximum(x1, x2[, out]) Element-wise maximum of array elements.
minimum(x1, x2[, out]) Element-wise minimum of array elements.
fmax(x1, x2[, out]) Element-wise maximum of array elements.
fmin(x1, x2[, out]) Element-wise minimum of array elements.
nan_to_num(x) Replace nan with zero and inf with finite numbers.
real_if_close(a[, tol]) If complex input returns a real array if complex parts are close to zero.
interp(x, xp, fp[, left, right, period]) One-dimensional linear interpolation.

numpy.convolve(a, v, mode=’full’)
Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it models the effect of a linear time-invariant
system on a signal [R17]. In probability theory, the sum of two independent random variables is distributed
according to the convolution of their individual distributions.

If v is longer than a, the arrays are swapped before computation.

Parameters
a : (N,) array_like

First one-dimensional input array.

v : (M,) array_like

Second one-dimensional input array.

752 Chapter 3. Routines

NumPy Reference, Release 1.11.1

mode : {‘full’, ‘valid’, ‘same’}, optional

‘full’:
By default, mode is ‘full’. This returns the convolution at each point of overlap, with
an output shape of (N+M-1,). At the end-points of the convolution, the signals do not
overlap completely, and boundary effects may be seen.

‘same’:
Mode ‘same’ returns output of length max(M, N). Boundary effects are still visible.

‘valid’:
Mode ‘valid’ returns output of length max(M, N) - min(M, N) + 1. The
convolution product is only given for points where the signals overlap completely.
Values outside the signal boundary have no effect.

Returns
out : ndarray

Discrete, linear convolution of a and v.

See also:

scipy.signal.fftconvolve
Convolve two arrays using the Fast Fourier Transform.

scipy.linalg.toeplitz
Used to construct the convolution operator.

polymul
Polynomial multiplication. Same output as convolve, but also accepts poly1d objects as input.

Notes

The discrete convolution operation is defined as

(𝑎 * 𝑣)[𝑛] =

∞∑︁
𝑚=−∞

𝑎[𝑚]𝑣[𝑛−𝑚]

It can be shown that a convolution 𝑥(𝑡) * 𝑦(𝑡) in time/space is equivalent to the multiplication 𝑋(𝑓)𝑌 (𝑓) in the
Fourier domain, after appropriate padding (padding is necessary to prevent circular convolution). Since mul-
tiplication is more efficient (faster) than convolution, the function scipy.signal.fftconvolve exploits
the FFT to calculate the convolution of large data-sets.

References

[R17]

Examples

Note how the convolution operator flips the second array before “sliding” the two across one another:

>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([0. , 1. , 2.5, 4. , 1.5])

Only return the middle values of the convolution. Contains boundary effects, where zeros are taken into account:

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([1. , 2.5, 4.])

The two arrays are of the same length, so there is only one position where they completely overlap:

3.19. Mathematical functions 753

NumPy Reference, Release 1.11.1

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([2.5])

numpy.clip(a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters
a : array_like

Array containing elements to clip.

a_min : scalar or array_like

Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See also:

numpy.doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy.sqrt(x[, out]) = <ufunc ‘sqrt’>
Return the positive square-root of an array, element-wise.

Parameters
x : array_like

The values whose square-roots are required.

out : ndarray, optional

754 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Alternate array object in which to put the result; if provided, it must have the same
shape as x

Returns
y : ndarray

An array of the same shape as x, containing the positive square-root of each element in
x. If any element in x is complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in x are real, so is y, with negative
elements returning nan. If out was provided, y is a reference to it.

See also:

lib.scimath.sqrt
A version which returns complex numbers when given negative reals.

Notes

sqrt has–consistent with common convention–as its branch cut the real “interval” [-inf, 0), and is continuous
from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to
be continuous.

Examples

>>> np.sqrt([1,4,9])
array([1., 2., 3.])

>>> np.sqrt([4, -1, -3+4J])
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> np.sqrt([4, -1, numpy.inf])
array([2., NaN, Inf])

numpy.square(x[, out]) = <ufunc ‘square’>
Return the element-wise square of the input.

Parameters
x : array_like

Input data.

Returns
out : ndarray

Element-wise x*x, of the same shape and dtype as x. Returns scalar if x is a scalar.

See also:

numpy.linalg.matrix_power, sqrt, power

Examples

>>> np.square([-1j, 1])
array([-1.-0.j, 1.+0.j])

numpy.absolute(x[, out]) = <ufunc ‘absolute’>
Calculate the absolute value element-wise.

Parameters
x : array_like

Input array.

3.19. Mathematical functions 755

NumPy Reference, Release 1.11.1

Returns
absolute : ndarray

An ndarray containing the absolute value of each element in x. For complex input, a +
ib, the absolute value is

√
𝑎2 + 𝑏2.

Examples

>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([1.2, 1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over [-10, 10]:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

10 5 0 5 10

0

2

4

6

8

10

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
>>> plt.show()

756 Chapter 3. Routines

NumPy Reference, Release 1.11.1

10 5 0 5 10
10

5

0

5

10

numpy.fabs(x[, out]) = <ufunc ‘fabs’>
Compute the absolute values element-wise.

This function returns the absolute values (positive magnitude) of the data in x. Complex values are not handled,
use absolute to find the absolute values of complex data.

Parameters
x : array_like

The array of numbers for which the absolute values are required. If x is a scalar, the
result y will also be a scalar.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output. See doc.ufuncs.

Returns
y : ndarray or scalar

The absolute values of x, the returned values are always floats.

See also:

absolute
Absolute values including complex types.

Examples

>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([1.2, 1.2])

numpy.sign(x[, out]) = <ufunc ‘sign’>
Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs.

For complex inputs, the sign function returns sign(x.real) + 0j if x.real != 0 else
sign(x.imag) + 0j.

3.19. Mathematical functions 757

http://docs.python.org/dev/library/functions.html#complex

NumPy Reference, Release 1.11.1

complex(nan, 0) is returned for complex nan inputs.

Parameters
x : array_like

Input values.

Returns
y : ndarray

The sign of x.

Notes

There is more than one definition of sign in common use for complex numbers. The definition used here is
equivalent to 𝑥/

√
𝑥 * 𝑥 which is different from a common alternative, 𝑥/|𝑥|.

Examples

>>> np.sign([-5., 4.5])
array([-1., 1.])
>>> np.sign(0)
0
>>> np.sign(5-2j)
(1+0j)

numpy.maximum(x1, x2[, out]) = <ufunc ‘maximum’>
Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters
x1, x2 : array_like

The arrays holding the elements to be compared. They must have the same shape, or
shapes that can be broadcast to a single shape.

Returns
y : ndarray or scalar

The maximum of x1 and x2, element-wise. Returns scalar if both x1 and x2 are scalars.

See also:

minimum
Element-wise minimum of two arrays, propagates NaNs.

fmax
Element-wise maximum of two arrays, ignores NaNs.

amax
The maximum value of an array along a given axis, propagates NaNs.

nanmax
The maximum value of an array along a given axis, ignores NaNs.

fmin, amin, nanmin

758 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The maximum is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are nans, but it is
faster and does proper broadcasting.

Examples

>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
array([[1. , 2.],

[0.5, 2.]])

>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
array([NaN, NaN, NaN])
>>> np.maximum(np.Inf, 1)
inf

numpy.minimum(x1, x2[, out]) = <ufunc ‘minimum’>
Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters
x1, x2 : array_like

The arrays holding the elements to be compared. They must have the same shape, or
shapes that can be broadcast to a single shape.

Returns
y : ndarray or scalar

The minimum of x1 and x2, element-wise. Returns scalar if both x1 and x2 are scalars.

See also:

maximum
Element-wise maximum of two arrays, propagates NaNs.

fmin
Element-wise minimum of two arrays, ignores NaNs.

amin
The minimum value of an array along a given axis, propagates NaNs.

nanmin
The minimum value of an array along a given axis, ignores NaNs.

fmax, amax, nanmax

Notes

The minimum is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it
is faster and does proper broadcasting.

3.19. Mathematical functions 759

NumPy Reference, Release 1.11.1

Examples

>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[0.5, 0.],

[0. , 1.]])

>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([NaN, NaN, NaN])
>>> np.minimum(-np.Inf, 1)
-inf

numpy.fmax(x1, x2[, out]) = <ufunc ‘fmax’>
Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters
x1, x2 : array_like

The arrays holding the elements to be compared. They must have the same shape.

Returns
y : ndarray or scalar

The maximum of x1 and x2, element-wise. Returns scalar if both x1 and x2 are scalars.

See also:

fmin
Element-wise minimum of two arrays, ignores NaNs.

maximum
Element-wise maximum of two arrays, propagates NaNs.

amax
The maximum value of an array along a given axis, propagates NaNs.

nanmax
The maximum value of an array along a given axis, ignores NaNs.

minimum, amin, nanmin

Notes

New in version 1.3.0.

The fmax is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

Examples

>>> np.fmax([2, 3, 4], [1, 5, 2])
array([2., 5., 4.])

760 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.fmax(np.eye(2), [0.5, 2])
array([[1. , 2.],

[0.5, 2.]])

>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., NaN])

numpy.fmin(x1, x2[, out]) = <ufunc ‘fmin’>
Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters
x1, x2 : array_like

The arrays holding the elements to be compared. They must have the same shape.

Returns
y : ndarray or scalar

The minimum of x1 and x2, element-wise. Returns scalar if both x1 and x2 are scalars.

See also:

fmax
Element-wise maximum of two arrays, ignores NaNs.

minimum
Element-wise minimum of two arrays, propagates NaNs.

amin
The minimum value of an array along a given axis, propagates NaNs.

nanmin
The minimum value of an array along a given axis, ignores NaNs.

maximum, amax, nanmax

Notes

New in version 1.3.0.

The fmin is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

Examples

>>> np.fmin([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.fmin(np.eye(2), [0.5, 2])
array([[1. , 2.],

[0.5, 2.]])

>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., NaN])

3.19. Mathematical functions 761

NumPy Reference, Release 1.11.1

numpy.nan_to_num(x)
Replace nan with zero and inf with finite numbers.

Returns an array or scalar replacing Not a Number (NaN) with zero, (positive) infinity with a very large number
and negative infinity with a very small (or negative) number.

Parameters
x : array_like

Input data.

Returns
out : ndarray

New Array with the same shape as x and dtype of the element in x with the greatest
precision. If x is inexact, then NaN is replaced by zero, and infinity (-infinity) is replaced
by the largest (smallest or most negative) floating point value that fits in the output dtype.
If x is not inexact, then a copy of x is returned.

See also:

isinf
Shows which elements are negative or negative infinity.

isneginf
Shows which elements are negative infinity.

isposinf
Shows which elements are positive infinity.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are finite (not NaN, not infinity)

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> np.set_printoptions(precision=8)
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000,

-1.28000000e+002, 1.28000000e+002])

numpy.real_if_close(a, tol=100)
If complex input returns a real array if complex parts are close to zero.

“Close to zero” is defined as tol * (machine epsilon of the type for a).

Parameters
a : array_like

Input array.

tol : float

Tolerance in machine epsilons for the complex part of the elements in the array.

762 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
out : ndarray

If a is real, the type of a is used for the output. If a has complex elements, the returned
type is float.

See also:

real, imag, angle

Notes

Machine epsilon varies from machine to machine and between data types but Python floats on most platforms
have a machine epsilon equal to 2.2204460492503131e-16. You can use ‘np.finfo(np.float).eps’ to print out the
machine epsilon for floats.

Examples

>>> np.finfo(np.float).eps
2.2204460492503131e-16

>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([2.1 +4.00000000e-13j])

numpy.interp(x, xp, fp, left=None, right=None, period=None)
One-dimensional linear interpolation.

Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points.

Parameters
x : array_like

The x-coordinates of the interpolated values.

xp : 1-D sequence of floats

The x-coordinates of the data points, must be increasing if argument period is not spec-
ified. Otherwise, xp is internally sorted after normalizing the periodic boundaries with
xp = xp % period.

fp : 1-D sequence of floats

The y-coordinates of the data points, same length as xp.

left : float, optional

Value to return for x < xp[0], default is fp[0].

right : float, optional

Value to return for x > xp[-1], default is fp[-1].

period : None or float, optional

A period for the x-coordinates. This parameter allows the proper interpolation of angu-
lar x-coordinates. Parameters left and right are ignored if period is specified.

New in version 1.10.0.

Returns
y : float or ndarray

The interpolated values, same shape as x.

3.19. Mathematical functions 763

NumPy Reference, Release 1.11.1

Raises
ValueError

If xp and fp have different length If xp or fp are not 1-D sequences If period == 0

Notes

Does not check that the x-coordinate sequence xp is increasing. If xp is not increasing, the results are nonsense.
A simple check for increasing is:

np.all(np.diff(xp) > 0)

Examples

>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([3. , 3. , 2.5 , 0.56, 0.])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

Interpolation with periodic x-coordinates:

764 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75])

3.20 Matrix library (numpy.matlib)

This module contains all functions in the numpy namespace, with the following replacement functions that return
matrices instead of ndarrays.

Functions that are also in the numpy namespace and return matrices

mat(data[, dtype]) Interpret the input as a matrix.
matrix Returns a matrix from an array-like object, or from a string of data.
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or array.

Replacement functions in matlib

empty(shape[, dtype, order]) Return a new matrix of given shape and type, without initializing entries.
zeros(shape[, dtype, order]) Return a matrix of given shape and type, filled with zeros.
ones(shape[, dtype, order]) Matrix of ones.
eye(n[, M, k, dtype]) Return a matrix with ones on the diagonal and zeros elsewhere.
identity(n[, dtype]) Returns the square identity matrix of given size.
repmat(a, m, n) Repeat a 0-D to 2-D array or matrix MxN times.
rand(*args) Return a matrix of random values with given shape.
randn(*args) Return a random matrix with data from the “standard normal” distribution.

numpy.matlib.empty(shape, dtype=None, order=’C’)
Return a new matrix of given shape and type, without initializing entries.

Parameters
shape : int or tuple of int

Shape of the empty matrix.

dtype : data-type, optional

Desired output data-type.

order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in row-major (C-style) or column-major
(Fortran-style) order in memory.

See also:

empty_like, zeros

Notes

empty , unlike zeros, does not set the matrix values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

3.20. Matrix library (numpy.matlib) 765

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.matlib
>>> np.matlib.empty((2, 2)) # filled with random data
matrix([[6.76425276e-320, 9.79033856e-307],

[7.39337286e-309, 3.22135945e-309]]) #random
>>> np.matlib.empty((2, 2), dtype=int)
matrix([[6600475, 0],

[6586976, 22740995]]) #random

numpy.matlib.zeros(shape, dtype=None, order=’C’)
Return a matrix of given shape and type, filled with zeros.

Parameters
shape : int or sequence of ints

Shape of the matrix

dtype : data-type, optional

The desired data-type for the matrix, default is float.

order : {‘C’, ‘F’}, optional

Whether to store the result in C- or Fortran-contiguous order, default is ‘C’.

Returns
out : matrix

Zero matrix of given shape, dtype, and order.

See also:

numpy.zeros
Equivalent array function.

matlib.ones
Return a matrix of ones.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

Examples

>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
matrix([[0., 0., 0.],

[0., 0., 0.]])

>>> np.matlib.zeros(2)
matrix([[0., 0.]])

numpy.matlib.ones(shape, dtype=None, order=’C’)
Matrix of ones.

Return a matrix of given shape and type, filled with ones.

Parameters
shape : {sequence of ints, int}

Shape of the matrix

dtype : data-type, optional

766 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The desired data-type for the matrix, default is np.float64.

order : {‘C’, ‘F’}, optional

Whether to store matrix in C- or Fortran-contiguous order, default is ‘C’.

Returns
out : matrix

Matrix of ones of given shape, dtype, and order.

See also:

ones
Array of ones.

matlib.zeros
Zero matrix.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

Examples

>>> np.matlib.ones((2,3))
matrix([[1., 1., 1.],

[1., 1., 1.]])

>>> np.matlib.ones(2)
matrix([[1., 1.]])

numpy.matlib.eye(n, M=None, k=0, dtype=<type ‘float’>)
Return a matrix with ones on the diagonal and zeros elsewhere.

Parameters
n : int

Number of rows in the output.

M : int, optional

Number of columns in the output, defaults to n.

k : int, optional

Index of the diagonal: 0 refers to the main diagonal, a positive value refers to an upper
diagonal, and a negative value to a lower diagonal.

dtype : dtype, optional

Data-type of the returned matrix.

Returns
I : matrix

A n x M matrix where all elements are equal to zero, except for the k-th diagonal, whose
values are equal to one.

See also:

numpy.eye
Equivalent array function.

3.20. Matrix library (numpy.matlib) 767

NumPy Reference, Release 1.11.1

identity
Square identity matrix.

Examples

>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
matrix([[0., 1., 0.],

[0., 0., 1.],
[0., 0., 0.]])

numpy.matlib.identity(n, dtype=None)
Returns the square identity matrix of given size.

Parameters
n : int

Size of the returned identity matrix.

dtype : data-type, optional

Data-type of the output. Defaults to float.

Returns
out : matrix

n x n matrix with its main diagonal set to one, and all other elements zero.

See also:

numpy.identity
Equivalent array function.

matlib.eye
More general matrix identity function.

Examples

>>> import numpy.matlib
>>> np.matlib.identity(3, dtype=int)
matrix([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

numpy.matlib.repmat(a, m, n)
Repeat a 0-D to 2-D array or matrix MxN times.

Parameters
a : array_like

The array or matrix to be repeated.

m, n : int

The number of times a is repeated along the first and second axes.

Returns
out : ndarray

The result of repeating a.

768 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> import numpy.matlib
>>> a0 = np.array(1)
>>> np.matlib.repmat(a0, 2, 3)
array([[1, 1, 1],

[1, 1, 1]])

>>> a1 = np.arange(4)
>>> np.matlib.repmat(a1, 2, 2)
array([[0, 1, 2, 3, 0, 1, 2, 3],

[0, 1, 2, 3, 0, 1, 2, 3]])

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
>>> np.matlib.repmat(a2, 2, 3)
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5, 3, 4, 5],
[0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5]])

numpy.matlib.rand(*args)
Return a matrix of random values with given shape.

Create a matrix of the given shape and propagate it with random samples from a uniform distribution over [0,
1).

Parameters
*args : Arguments

Shape of the output. If given as N integers, each integer specifies the size of one dimen-
sion. If given as a tuple, this tuple gives the complete shape.

Returns
out : ndarray

The matrix of random values with shape given by *args.

See also:

randn, numpy.random.rand

Examples

>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
matrix([[0.68340382, 0.67926887, 0.83271405],

[0.00793551, 0.20468222, 0.95253525]]) #random
>>> np.matlib.rand((2, 3))
matrix([[0.84682055, 0.73626594, 0.11308016],

[0.85429008, 0.3294825 , 0.89139555]]) #random

If the first argument is a tuple, other arguments are ignored:

>>> np.matlib.rand((2, 3), 4)
matrix([[0.46898646, 0.15163588, 0.95188261],

[0.59208621, 0.09561818, 0.00583606]]) #random

numpy.matlib.randn(*args)
Return a random matrix with data from the “standard normal” distribution.

randn generates a matrix filled with random floats sampled from a univariate “normal” (Gaussian) distribution
of mean 0 and variance 1.

3.20. Matrix library (numpy.matlib) 769

NumPy Reference, Release 1.11.1

Parameters
*args : Arguments

Shape of the output. If given as N integers, each integer specifies the size of one dimen-
sion. If given as a tuple, this tuple gives the complete shape.

Returns
Z : matrix of floats

A matrix of floating-point samples drawn from the standard normal distribution.

See also:

rand, random.randn

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.matlib.randn(...) + mu

Examples

>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-0.09542833]]) #random
>>> np.matlib.randn(1, 2, 3)
matrix([[0.16198284, 0.0194571 , 0.18312985],

[-0.7509172 , 1.61055 , 0.45298599]]) #random

Two-by-four matrix of samples from 𝑁(3, 6.25):

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[4.74085004, 8.89381862, 4.09042411, 4.83721922],

[7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random

3.21 Miscellaneous routines

3.21.1 Buffer objects

getbuffer(obj [,offset[, size]]) Create a buffer object from the given object referencing a slice of length size starting at offset.
newbuffer(size) Return a new uninitialized buffer object.

numpy.getbuffer(obj[, offset[, size]])
Create a buffer object from the given object referencing a slice of length size starting at offset.

Default is the entire buffer. A read-write buffer is attempted followed by a read-only buffer.

Parameters
obj : object

offset : int, optional

size : int, optional

Returns
buffer_obj : buffer

770 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> buf = np.getbuffer(np.ones(5), 1, 3)
>>> len(buf)
3
>>> buf[0]
'\x00'
>>> buf
<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0>

numpy.newbuffer(size)
Return a new uninitialized buffer object.

Parameters
size : int

Size in bytes of returned buffer object.

Returns
newbuffer : buffer object

Returned, uninitialized buffer object of size bytes.

3.21.2 Performance tuning

alterdot() Change dot, vdot, and inner to use accelerated BLAS functions.
restoredot() Restore dot, vdot, and innerproduct to the default non-BLAS implementations.
setbufsize(size) Set the size of the buffer used in ufuncs.
getbufsize() Return the size of the buffer used in ufuncs.

numpy.alterdot()
Change dot, vdot, and inner to use accelerated BLAS functions.

Typically, as a user of Numpy, you do not explicitly call this function. If Numpy is built with an accelerated
BLAS, this function is automatically called when Numpy is imported.

When Numpy is built with an accelerated BLAS like ATLAS, these functions are replaced to make use of the
faster implementations. The faster implementations only affect float32, float64, complex64, and complex128
arrays. Furthermore, the BLAS API only includes matrix-matrix, matrix-vector, and vector-vector products.
Products of arrays with larger dimensionalities use the built in functions and are not accelerated.

Note: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and
alterdot now longer does anything. It will be removed in Numpy 1.11.0.

See also:

restoredot
restoredot undoes the effects of alterdot.

numpy.restoredot()
Restore dot, vdot, and innerproduct to the default non-BLAS implementations.

Typically, the user will only need to call this when troubleshooting and installation problem, reproducing the
conditions of a build without an accelerated BLAS, or when being very careful about benchmarking linear
algebra operations.

3.21. Miscellaneous routines 771

NumPy Reference, Release 1.11.1

Note: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and
restoredot now longer does anything. It will be removed in Numpy 1.11.0.

See also:

alterdot
restoredot undoes the effects of alterdot.

numpy.getbufsize()
Return the size of the buffer used in ufuncs.

Returns
getbufsize : int

Size of ufunc buffer in bytes.

3.21.3 Memory ranges

shares_memory(a, b[, max_work]) Determine if two arrays share memory
may_share_memory(a, b[, max_work]) Determine if two arrays might share memory

numpy.shares_memory(a, b, max_work=None)
Determine if two arrays share memory

Parameters
a, b : ndarray

Input arrays

max_work : int, optional

Effort to spend on solving the overlap problem (maximum number of candidate solu-
tions to consider). The following special values are recognized:

max_work=MAY_SHARE_EXACT (default)
The problem is solved exactly. In this case, the function returns True only if there is
an element shared between the arrays.

max_work=MAY_SHARE_BOUNDS
Only the memory bounds of a and b are checked.

Returns
out : bool

Raises
numpy.TooHardError

Exceeded max_work.

See also:

may_share_memory

Examples

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False

772 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.may_share_memory(a, b, max_work=None)
Determine if two arrays might share memory

A return of True does not necessarily mean that the two arrays share any element. It just means that they might.

Only the memory bounds of a and b are checked by default.

Parameters
a, b : ndarray

Input arrays

max_work : int, optional

Effort to spend on solving the overlap problem. See shares_memory for details.
Default for may_share_memory is to do a bounds check.

Returns
out : bool

See also:

shares_memory

Examples

>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False
>>> x = np.zeros([3, 4])
>>> np.may_share_memory(x[:,0], x[:,1])
True

3.21.4 Numpy version comparison

lib.NumpyVersion(vstring) Parse and compare numpy version strings.

class numpy.lib.NumpyVersion(vstring)
Parse and compare numpy version strings.

Numpy has the following versioning scheme (numbers given are examples; they can be > 9) in principle):

•Released version: ‘1.8.0’, ‘1.8.1’, etc.

•Alpha: ‘1.8.0a1’, ‘1.8.0a2’, etc.

•Beta: ‘1.8.0b1’, ‘1.8.0b2’, etc.

•Release candidates: ‘1.8.0rc1’, ‘1.8.0rc2’, etc.

•Development versions: ‘1.8.0.dev-f1234afa’ (git commit hash appended)

•Development versions after a1: ‘1.8.0a1.dev-f1234afa’,
‘1.8.0b2.dev-f1234afa’, ‘1.8.1rc1.dev-f1234afa’, etc.

•Development versions (no git hash available): ‘1.8.0.dev-Unknown’

Comparing needs to be done against a valid version string or other NumpyVersion instance. Note that all
development versions of the same (pre-)release compare equal.

New in version 1.9.0.

3.21. Miscellaneous routines 773

NumPy Reference, Release 1.11.1

Parameters
vstring : str

Numpy version string (np.__version__).

Examples

>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.7.0'):
... print('skip')
skip

>>> NumpyVersion('1.7') # raises ValueError, add ".0"

3.22 Padding Arrays

pad(array, pad_width, mode, **kwargs) Pads an array.

numpy.pad(array, pad_width, mode, **kwargs)
Pads an array.

Parameters
array : array_like of rank N

Input array

pad_width : {sequence, array_like, int}

Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N,
after_N)) unique pad widths for each axis. ((before, after),) yields same before and after
pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes.

mode : str or function

One of the following string values or a user supplied function.

‘constant’
Pads with a constant value.

‘edge’
Pads with the edge values of array.

‘linear_ramp’
Pads with the linear ramp between end_value and the array edge value.

‘maximum’
Pads with the maximum value of all or part of the vector along each axis.

‘mean’
Pads with the mean value of all or part of the vector along each axis.

‘median’
Pads with the median value of all or part of the vector along each axis.

‘minimum’
Pads with the minimum value of all or part of the vector along each axis.

774 Chapter 3. Routines

NumPy Reference, Release 1.11.1

‘reflect’
Pads with the reflection of the vector mirrored on the first and last values of the vector
along each axis.

‘symmetric’
Pads with the reflection of the vector mirrored along the edge of the array.

‘wrap’
Pads with the wrap of the vector along the axis. The first values are used to pad the
end and the end values are used to pad the beginning.

<function>
Padding function, see Notes.

stat_length : sequence or int, optional

Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’. Number of values at edge of
each axis used to calculate the statistic value.

((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis.

((before, after),) yields same before and after statistic lengths for each axis.

(stat_length,) or int is a shortcut for before = after = statistic length for all axes.

Default is None, to use the entire axis.

constant_values : sequence or int, optional

Used in ‘constant’. The values to set the padded values for each axis.

((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis.

((before, after),) yields same before and after constants for each axis.

(constant,) or int is a shortcut for before = after = constant for all axes.

Default is 0.

end_values : sequence or int, optional

Used in ‘linear_ramp’. The values used for the ending value of the linear_ramp and that
will form the edge of the padded array.

((before_1, after_1), ... (before_N, after_N)) unique end values for each axis.

((before, after),) yields same before and after end values for each axis.

(constant,) or int is a shortcut for before = after = end value for all axes.

Default is 0.

reflect_type : {‘even’, ‘odd’}, optional

Used in ‘reflect’, and ‘symmetric’. The ‘even’ style is the default with an unaltered
reflection around the edge value. For the ‘odd’ style, the extented part of the array is
created by subtracting the reflected values from two times the edge value.

Returns
pad : ndarray

Padded array of rank equal to array with shape increased according to pad_width.

3.22. Padding Arrays 775

NumPy Reference, Release 1.11.1

Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous
axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by
using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded
values replaced. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, **kwargs)

where

vector
[ndarray] A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple[0]]
and vector[-pad_tuple[1]:].

iaxis_pad_width
[tuple] A 2-tuple of ints, iaxis_pad_width[0] represents the number of values padded at the
beginning of vector where iaxis_pad_width[1] represents the number of values padded at the
end of vector.

iaxis
[int] The axis currently being calculated.

kwargs
[misc] Any keyword arguments the function requires.

Examples

>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.lib.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.lib.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.lib.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.lib.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.lib.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]]
>>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],

[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

776 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> a = [1, 2, 3, 4, 5]
>>> np.lib.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.lib.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.lib.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.lib.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.lib.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def padwithtens(vector, pad_width, iaxis, kwargs):
... vector[:pad_width[0]] = 10
... vector[-pad_width[1]:] = 10
... return vector

>>> a = np.arange(6)
>>> a = a.reshape((2, 3))

>>> np.lib.pad(a, 2, padwithtens)
array([[10, 10, 10, 10, 10, 10, 10],

[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])

3.23 Polynomials

Polynomials in NumPy can be created, manipulated, and even fitted using the Using the Convenience Classes of the
numpy.polynomial package, introduced in NumPy 1.4.

Prior to NumPy 1.4, numpy.poly1d was the class of choice and it is still available in order to maintain backward
compatibility. However, the newer Polynomial package is more complete than numpy.poly1d and its convenience
classes are better behaved in the numpy environment. Therefore Polynomial is recommended for new coding.

3.23.1 Transition notice

The various routines in the Polynomial package all deal with series whose coefficients go from degree zero upward,
which is the reverse order of the Poly1d convention. The easy way to remember this is that indexes correspond to
degree, i.e., coef[i] is the coefficient of the term of degree i.

Polynomial Package

New in version 1.4.0.

3.23. Polynomials 777

NumPy Reference, Release 1.11.1

Using the Convenience Classes

The convenience classes provided by the polynomial package are:

Name Provides
Polynomial Power series
Chebyshev Chebyshev series
Legendre Legendre series
Laguerre Laguerre series
Hermite Hermite series
HermiteE HermiteE series

The series in this context are finite sums of the corresponding polynomial basis functions multiplied by coefficients.
For instance, a power series looks like

𝑝(𝑥) = 1 + 2𝑥 + 3𝑥2

and has coefficients [1, 2, 3]. The Chebyshev series with the same coefficients looks like

𝑝(𝑥) = 1𝑇0(𝑥) + 2𝑇1(𝑥) + 3𝑇2(𝑥)

and more generally

𝑝(𝑥) =

𝑛∑︁
𝑖=0

𝑐𝑖𝑇𝑖(𝑥)

where in this case the 𝑇𝑛 are the Chebyshev functions of degree 𝑛, but could just as easily be the basis functions of
any of the other classes. The convention for all the classes is that the coefficient 𝑐[𝑖] goes with the basis function of
degree i.

All of the classes have the same methods, and especially they implement the Python numeric operators +, -, *, //, %,
divmod, **, ==, and !=. The last two can be a bit problematic due to floating point roundoff errors. We now give a
quick demonstration of the various operations using Numpy version 1.7.0.

Basics First we need a polynomial class and a polynomial instance to play with. The classes can be imported directly
from the polynomial package or from the module of the relevant type. Here we import from the package and use the
conventional Polynomial class because of its familiarity:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
Polynomial([1., 2., 3.], [-1., 1.], [-1., 1.])

Note that there are three parts to the long version of the printout. The first is the coefficients, the second is the domain,
and the third is the window:

>>> p.coef
array([1., 2., 3.])
>>> p.domain
array([-1., 1.])
>>> p.window
array([-1., 1.])

Printing a polynomial yields a shorter form without the domain and window:

>>> print p
poly([1. 2. 3.])

778 Chapter 3. Routines

NumPy Reference, Release 1.11.1

We will deal with the domain and window when we get to fitting, for the moment we ignore them and run through the
basic algebraic and arithmetic operations.

Addition and Subtraction:

>>> p + p
Polynomial([2., 4., 6.], [-1., 1.], [-1., 1.])
>>> p - p
Polynomial([0.], [-1., 1.], [-1., 1.])

Multiplication:

>>> p * p
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])

Powers:

>>> p**2
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])

Division:

Floor division, ‘//’, is the division operator for the polynomial classes, polynomials are treated like integers in this
regard. For Python versions < 3.x the ‘/’ operator maps to ‘//’, as it does for Python, for later versions the ‘/’ will only
work for division by scalars. At some point it will be deprecated:

>>> p // P([-1, 1])
Polynomial([5., 3.], [-1., 1.], [-1., 1.])

Remainder:

>>> p % P([-1, 1])
Polynomial([6.], [-1., 1.], [-1., 1.])

Divmod:

>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
Polynomial([5., 3.], [-1., 1.], [-1., 1.])
>>> rem
Polynomial([6.], [-1., 1.], [-1., 1.])

Evaluation:

>>> x = np.arange(5)
>>> p(x)
array([1., 6., 17., 34., 57.])
>>> x = np.arange(6).reshape(3,2)
>>> p(x)
array([[1., 6.],

[17., 34.],
[57., 86.]])

Substitution:

Substitute a polynomial for x and expand the result. Here we substitute p in itself leading to a new polynomial of
degree 4 after expansion. If the polynomials are regarded as functions this is composition of functions:

>>> p(p)
Polynomial([6., 16., 36., 36., 27.], [-1., 1.], [-1., 1.])

Roots:

3.23. Polynomials 779

NumPy Reference, Release 1.11.1

>>> p.roots()
array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

It isn’t always convenient to explicitly use Polynomial instances, so tuples, lists, arrays, and scalars are automatically
cast in the arithmetic operations:

>>> p + [1, 2, 3]
Polynomial([2., 4., 6.], [-1., 1.], [-1., 1.])
>>> [1, 2, 3] * p
Polynomial([1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])
>>> p / 2
Polynomial([0.5, 1. , 1.5], [-1., 1.], [-1., 1.])

Polynomials that differ in domain, window, or class can’t be mixed in arithmetic:

>>> from numpy.polynomial import Chebyshev as T
>>> p + P([1], domain=[0,1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 213, in __add__

TypeError: Domains differ
>>> p + P([1], window=[0,1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 215, in __add__

TypeError: Windows differ
>>> p + T([1])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 211, in __add__

TypeError: Polynomial types differ

But different types can be used for substitution. In fact, this is how conversion of Polynomial classes among themselves
is done for type, domain, and window casting:

>>> p(T([0, 1]))
Chebyshev([2.5, 2. , 1.5], [-1., 1.], [-1., 1.])

Which gives the polynomial p in Chebyshev form. This works because 𝑇1(𝑥) = 𝑥 and substituting 𝑥 for 𝑥 doesn’t
change the original polynomial. However, all the multiplications and divisions will be done using Chebyshev series,
hence the type of the result.

Calculus Polynomial instances can be integrated and differentiated.:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
Polynomial([0., 2., 3.], [-1., 1.], [-1., 1.])
>>> p.integ(2)
Polynomial([0., 0., 1., 1.], [-1., 1.], [-1., 1.])

The first example integrates p once, the second example integrates it twice. By default, the lower bound of the
integration and the integration constant are 0, but both can be specified.:

>>> p.integ(lbnd=-1)
Polynomial([-1., 2., 3.], [-1., 1.], [-1., 1.])
>>> p.integ(lbnd=-1, k=1)
Polynomial([0., 2., 3.], [-1., 1.], [-1., 1.])

780 Chapter 3. Routines

NumPy Reference, Release 1.11.1

In the first case the lower bound of the integration is set to -1 and the integration constant is 0. In the second the
constant of integration is set to 1 as well. Differentiation is simpler since the only option is the number of times the
polynomial is differentiated:

>>> p = P([1, 2, 3])
>>> p.deriv(1)
Polynomial([2., 6.], [-1., 1.], [-1., 1.])
>>> p.deriv(2)
Polynomial([6.], [-1., 1.], [-1., 1.])

Other Polynomial Constructors Constructing polynomials by specifying coefficients is just one way of obtaining
a polynomial instance, they may also be created by specifying their roots, by conversion from other polynomial types,
and by least squares fits. Fitting is discussed in its own section, the other methods are demonstrated below:

>>> from numpy.polynomial import Polynomial as P
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
Polynomial([-6., 11., -6., 1.], [-1., 1.], [-1., 1.])
>>> p.convert(kind=T)
Chebyshev([-9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])

The convert method can also convert domain and window:

>>> p.convert(kind=T, domain=[0, 1])
Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], [0., 1.], [-1., 1.])
>>> p.convert(kind=P, domain=[0, 1])
Polynomial([-1.875, 2.875, -1.125, 0.125], [0., 1.], [-1., 1.])

In numpy versions >= 1.7.0 the basis and cast class methods are also available. The cast method works like the convert
method while the basis method returns the basis polynomial of given degree:

>>> P.basis(3)
Polynomial([0., 0., 0., 1.], [-1., 1.], [-1., 1.])
>>> T.cast(p)
Chebyshev([-9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])

Conversions between types can be useful, but it is not recommended for routine use. The loss of numerical precision
in passing from a Chebyshev series of degree 50 to a Polynomial series of the same degree can make the results of
numerical evaluation essentially random.

Fitting Fitting is the reason that the domain and window attributes are part of the convenience classes. To illustrate
the problem, the values of the Chebyshev polynomials up to degree 5 are plotted below.

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-1, 1, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="upper left")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

3.23. Polynomials 781

NumPy Reference, Release 1.11.1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0 T0
T1
T2
T3
T4
T5

In the range -1 <= x <= 1 they are nice, equiripple functions lying between +/- 1. The same plots over the range -2 <=
x <= 2 look very different:

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(6): ax = plt.plot(x, T.basis(i)(x), lw=2, label="$T_%d$"%i)
...
>>> plt.legend(loc="lower right")
<matplotlib.legend.Legend object at 0x3b3ee10>
>>> plt.show()

2 1 0 1 2

300

200

100

0

100

200

300

T0
T1
T2
T3
T4
T5

As can be seen, the “good” parts have shrunk to insignificance. In using Chebyshev polynomials for fitting we want
to use the region where x is between -1 and 1 and that is what the window specifies. However, it is unlikely that the
data to be fit has all its data points in that interval, so we use domain to specify the interval where the data points lie.
When the fit is done, the domain is first mapped to the window by a linear transformation and the usual least squares
fit is done using the mapped data points. The window and domain of the fit are part of the returned series and are
automatically used when computing values, derivatives, and such. If they aren’t specified in the call the fitting routine

782 Chapter 3. Routines

NumPy Reference, Release 1.11.1

will use the default window and the smallest domain that holds all the data points. This is illustrated below for a fit to
a noisy sine curve.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> np.random.seed(11)
>>> x = np.linspace(0, 2*np.pi, 20)
>>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape)
>>> p = T.fit(x, y, 5)
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x2136c10>]
>>> xx, yy = p.linspace()
>>> plt.plot(xx, yy, lw=2)
[<matplotlib.lines.Line2D object at 0x1cf2890>]
>>> p.domain
array([0. , 6.28318531])
>>> p.window
array([-1., 1.])
>>> plt.show()

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

Polynomial Module (numpy.polynomial.polynomial)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for dealing with Polynomial series, including
a Polynomial class that encapsulates the usual arithmetic operations. (General information on how this module
represents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Polynomial(coef[, domain, window]) A power series class.

Polynomial Class
class numpy.polynomial.polynomial.Polynomial(coef, domain=None, window=None)

A power series class.

The Polynomial class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’,
and ‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

3.23. Polynomials 783

NumPy Reference, Release 1.11.1

Parameters
coef : array_like

Polynomial coefficients in order of increasing degree, i.e., (1, 2, 3) give 1 + 2*x
+ 3*x**2.

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Polynomial.__call__(arg)

Polynomial.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

784 Chapter 3. Routines

NumPy Reference, Release 1.11.1

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

Polynomial.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

Polynomial.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

3.23. Polynomials 785

NumPy Reference, Release 1.11.1

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Polynomial.copy()
Return a copy.

Returns
new_series : series

Copy of self.

Polynomial.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

Polynomial.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

Polynomial.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

786 Chapter 3. Routines

NumPy Reference, Release 1.11.1

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

Polynomial.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

3.23. Polynomials 787

NumPy Reference, Release 1.11.1

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Polynomial.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

Polynomial.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

Polynomial.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

788 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Polynomial.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

Polynomial.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

Returns
bool : boolean

True if the windows are the same, False otherwise.

Polynomial.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

Polynomial.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

3.23. Polynomials 789

NumPy Reference, Release 1.11.1

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

Polynomial.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

Polynomial.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Polynomial.roots()
Return the roots of the series polynomial.

790 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

Polynomial.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol : non-negative number.

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

Polynomial.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

Returns
new_series : series

New instance of series with truncated coefficients.

polyval(x, c[, tensor]) Evaluate a polynomial at points x.
polyval2d(x, y, c) Evaluate a 2-D polynomial at points (x, y).
polyval3d(x, y, z, c) Evaluate a 3-D polynomial at points (x, y, z).
polygrid2d(x, y, c) Evaluate a 2-D polynomial on the Cartesian product of x and y.
polygrid3d(x, y, z, c) Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
polyroots(c) Compute the roots of a polynomial.
polyfromroots(roots) Generate a monic polynomial with given roots.

Basics
numpy.polynomial.polynomial.polyval(x, c, tensor=True)

Evaluate a polynomial at points x.

If c is of length n + 1, this function returns the value

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑐𝑛 * 𝑥𝑛

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In

3.23. Polynomials 791

NumPy Reference, Release 1.11.1

either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and
treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, compatible object

The shape of the returned array is described above.

See also:

polyval2d, polygrid2d, polyval3d, polygrid3d

Notes

The evaluation uses Horner’s method.

Examples

>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> polyval(a, [1,2,3])
array([[1., 6.],

[17., 34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],

792 Chapter 3. Routines

NumPy Reference, Release 1.11.1

[2, 3]])
>>> polyval([1,2], coef, tensor=True)
array([[2., 4.],

[4., 7.]])
>>> polyval([1,2], coef, tensor=False)
array([2., 7.])

numpy.polynomial.polynomial.polyval2d(x, y, c)
Evaluate a 2-D polynomial at points (x, y).

This function returns the value

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑥𝑖 * 𝑦𝑗

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with pairs of corre-
sponding values from x and y.

See also:

polyval, polygrid2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polyval3d(x, y, z, c)
Evaluate a 3-D polynomial at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑥𝑖 * 𝑦𝑗 * 𝑧𝑘

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

3.23. Polynomials 793

NumPy Reference, Release 1.11.1

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

polyval, polyval2d, polygrid2d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polygrid2d(x, y, c)
Evaluate a 2-D polynomial on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑎𝑖 * 𝑏𝑗

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

794 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

polyval, polyval2d, polyval3d, polygrid3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polygrid3d(x, y, z, c)
Evaluate a 3-D polynomial on the Cartesian product of x, y and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑎𝑖 * 𝑏𝑗 * 𝑐𝑘

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

polyval, polyval2d, polygrid2d, polyval3d

Notes

New in version 1.7.0.

numpy.polynomial.polynomial.polyroots(c)
Compute the roots of a polynomial.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝑥𝑖.

Parameters
c : 1-D array_like

1-D array of polynomial coefficients.

3.23. Polynomials 795

NumPy Reference, Release 1.11.1

Returns
out : ndarray

Array of the roots of the polynomial. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the power series for such values. Roots
with multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

Examples

>>> import numpy.polynomial.polynomial as poly
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
array([0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j])

numpy.polynomial.polynomial.polyfromroots(roots)
Generate a monic polynomial with given roots.

Return the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like
[2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑥𝑛

The coefficient of the last term is 1 for monic polynomials in this form.

Parameters
roots : array_like

Sequence containing the roots.

Returns
out : ndarray

1-D array of the polynomial’s coefficients If all the roots are real, then out is also real,
otherwise it is complex. (see Examples below).

See also:

chebfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots

796 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The coefficients are determined by multiplying together linear factors of the form (x - r_i), i.e.

𝑝(𝑥) = (𝑥− 𝑟0)(𝑥− 𝑟1)...(𝑥− 𝑟𝑛)

where n == len(roots) - 1; note that this implies that 1 is always returned for 𝑎𝑛.

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([1.+0.j, 0.+0.j, 1.+0.j])

polyfit(x, y, deg[, rcond, full, w]) Least-squares fit of a polynomial to data.
polyvander(x, deg) Vandermonde matrix of given degree.
polyvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
polyvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.polynomial.polyfit(x, y, deg, rcond=None, full=False, w=None)

Least-squares fit of a polynomial to data.

Return the coefficients of a polynomial of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥 + ... + 𝑐𝑛 * 𝑥𝑛,

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample (data) points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several sets of sample points sharing the same x-
coordinates can be (independently) fit with one call to polyfit by passing in for y a
2-D array that contains one data set per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than rcond, relative to the
largest singular value, will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the platform’s float type, about 2e-16 in most cases.

full : bool, optional

3.23. Polynomials 797

NumPy Reference, Release 1.11.1

Switch determining the nature of the return value. When False (the default) just the
coefficients are returned; when True, diagnostic information from the singular value
decomposition (used to solve the fit’s matrix equation) is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns
coef : ndarray, shape (deg + 1,) or (deg + 1, K)

Polynomial coefficients ordered from low to high. If y was 2-D, the coefficients in
column k of coef represent the polynomial fit to the data in y‘s k-th column.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Raises
RankWarning

Raised if the matrix in the least-squares fit is rank deficient. The warning is only raised
if full == False. The warnings can be turned off by:

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, lagfit, hermfit, hermefit

polyval
Evaluates a polynomial.

polyvander
Vandermonde matrix for powers.

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution is the coefficients of the polynomial p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) over-determined matrix
equation:

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

798 Chapter 3. Routines

NumPy Reference, Release 1.11.1

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected (and full == False), a RankWarning will
be raised. This means that the coefficient values may be poorly determined. Fitting to a lower order polynomial
will usually get rid of the warning (but may not be what you want, of course; if you have independent reason(s)
for choosing the degree which isn’t working, you may have to: a) reconsider those reasons, and/or b) reconsider
the quality of your data). The rcond parameter can also be set to a value smaller than its default, but the resulting
fit may be spurious and have large contributions from roundoff error.

Polynomial fits using double precision tend to “fail” at about (polynomial) degree 20. Fits using Chebyshev or
Legendre series are generally better conditioned, but much can still depend on the distribution of the sample
points and the smoothness of the data. If the quality of the fit is inadequate, splines may be a good alternative.

Examples

>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
array([0.01909725, -1.30598256, -0.00577963, 1.02644286])
>>> stats # note the large SSR, explaining the rather poor results
[array([38.06116253]), 4, array([1.38446749, 1.32119158, 0.50443316,
0.28853036]), 1.1324274851176597e-014]

Same thing without the added noise

>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
array([-1.73362882e-17, -1.00000000e+00, -2.67471909e-16,

1.00000000e+00])
>>> stats # note the minuscule SSR
[array([7.46346754e-31]), 4, array([1.38446749, 1.32119158,
0.50443316, 0.28853036]), 1.1324274851176597e-014]

numpy.polynomial.polynomial.polyvander(x, deg)
Vandermonde matrix of given degree.

Returns the Vandermonde matrix of degree deg and sample points x. The Vandermonde matrix is defined by

𝑉 [..., 𝑖] = 𝑥𝑖,

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the power of x.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = polyvander(x, n), then
np.dot(V, c) and polyval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of polynomials of the same degree and sample points.

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns
vander : ndarray.

3.23. Polynomials 799

NumPy Reference, Release 1.11.1

The Vandermonde matrix. The shape of the returned matrix is x.shape + (deg +
1,), where the last index is the power of x. The dtype will be the same as the converted
x.

See also:

polyvander2d, polyvander3d

numpy.polynomial.polynomial.polyvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝑥𝑖 * 𝑦𝑗 ,

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the powers of x and y.

If V = polyvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and polyval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D polynomials of the same
degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

See also:

polyvander, polyvander3d., polyval3d

numpy.polynomial.polynomial.polyvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝑥𝑖 * 𝑦𝑗 * 𝑧𝑘,

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the powers of x, y, and z.

If V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

800 Chapter 3. Routines

NumPy Reference, Release 1.11.1

and np.dot(V, c.flat) and polyval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D polynomials of the
same degrees and sample points.

Parameters
x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

polyvander, polyvander3d., polyval3d

Notes

New in version 1.7.0.

polyder(c[, m, scl, axis]) Differentiate a polynomial.
polyint(c[, m, k, lbnd, scl, axis]) Integrate a polynomial.

Calculus
numpy.polynomial.polynomial.polyder(c, m=1, scl=1, axis=0)

Differentiate a polynomial.

Returns the polynomial coefficients c differentiated m times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients
from low to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2 while
[[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of polynomial coefficients. If c is multidimensional the different axis correspond
to different variables with the degree in each axis given by the corresponding index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

3.23. Polynomials 801

NumPy Reference, Release 1.11.1

Returns
der : ndarray

Polynomial coefficients of the derivative.

See also:

polyint

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
array([2., 6., 12.])
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
array([24.])
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
array([-2., -6., -12.])
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
array([6., 24.])

numpy.polynomial.polynomial.polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a polynomial.

Returns the polynomial coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear
change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the
reciprocal of what one might expect; for more information, see the Notes section below.) The argument c is an
array of coefficients, from low to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x
+ 3*x**2 while [[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters
c : array_like

1-D array of polynomial coefficients, ordered from low to high.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at zero is the first value in the
list, the value of the second integral at zero is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns
S : ndarray

802 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Coefficient array of the integral.

Raises
ValueError

If m < 1, len(k) > m.

See also:

polyder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎 - perhaps not what one would have first thought.

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
array([0., 1., 1., 1.])
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([0. , 0. , 0. , 0.16666667, 0.08333333,

0.05])
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
array([3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
array([6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([0., -2., -2., -2.])

polyadd(c1, c2) Add one polynomial to another.
polysub(c1, c2) Subtract one polynomial from another.
polymul(c1, c2) Multiply one polynomial by another.
polymulx(c) Multiply a polynomial by x.
polydiv(c1, c2) Divide one polynomial by another.
polypow(c, pow[, maxpower]) Raise a polynomial to a power.

Algebra
numpy.polynomial.polynomial.polyadd(c1, c2)

Add one polynomial to another.

Returns the sum of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order
term to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to high.

Returns
out : ndarray

The coefficient array representing their sum.

See also:

3.23. Polynomials 803

NumPy Reference, Release 1.11.1

polysub, polymul, polydiv , polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
array([4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0

numpy.polynomial.polynomial.polysub(c1, c2)
Subtract one polynomial from another.

Returns the difference of two polynomials c1 - c2. The arguments are sequences of coefficients from lowest
order term to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to high.

Returns
out : ndarray

Of coefficients representing their difference.

See also:

polyadd, polymul, polydiv , polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
array([2., 0., -2.])

numpy.polynomial.polynomial.polymul(c1, c2)
Multiply one polynomial by another.

Returns the product of two polynomials c1 * c2. The arguments are sequences of coefficients, from lowest order
term to highest, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2 : array_like

1-D arrays of coefficients representing a polynomial, relative to the “standard” basis,
and ordered from lowest order term to highest.

Returns
out : ndarray

Of the coefficients of their product.

See also:

polyadd, polysub, polydiv , polypow

804 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polymul(c1,c2)
array([3., 8., 14., 8., 3.])

numpy.polynomial.polynomial.polymulx(c)
Multiply a polynomial by x.

Multiply the polynomial c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of polynomial coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

New in version 1.5.0.

numpy.polynomial.polynomial.polydiv(c1, c2)
Divide one polynomial by another.

Returns the quotient-with-remainder of two polynomials c1 / c2. The arguments are sequences of coefficients,
from lowest order term to highest, e.g., [1,2,3] represents 1 + 2*x + 3*x**2.

Parameters
c1, c2 : array_like

1-D arrays of polynomial coefficients ordered from low to high.

Returns
[quo, rem] : ndarrays

Of coefficient series representing the quotient and remainder.

See also:

polyadd, polysub, polymul, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
(array([3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
(array([0.33333333]), array([2.66666667, 1.33333333]))

numpy.polynomial.polynomial.polypow(c, pow, maxpower=None)
Raise a polynomial to a power.

Returns the polynomial c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series 1 + 2*x + 3*x**2.

3.23. Polynomials 805

NumPy Reference, Release 1.11.1

Parameters
c : array_like

1-D array of array of series coefficients ordered from low to high degree.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

Power series of power.

See also:

polyadd, polysub, polymul, polydiv

polycompanion(c) Return the companion matrix of c.
polydomain
polyzero
polyone
polyx
polytrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
polyline(off, scl) Returns an array representing a linear polynomial.

Miscellaneous
numpy.polynomial.polynomial.polycompanion(c)

Return the companion matrix of c.

The companion matrix for power series cannot be made symmetric by scaling the basis, so this function differs
from those for the orthogonal polynomials.

Parameters
c : array_like

1-D array of polynomial coefficients ordered from low to high degree.

Returns
mat : ndarray

Companion matrix of dimensions (deg, deg).

Notes

New in version 1.7.0.
numpy.polynomial.polynomial.polydomain = array([-1, 1])

numpy.polynomial.polynomial.polyzero = array([0])

numpy.polynomial.polynomial.polyone = array([1])

806 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.polynomial.polynomial.polyx = array([0, 1])

numpy.polynomial.polynomial.polytrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.polynomial.polyline(off, scl)
Returns an array representing a linear polynomial.

Parameters
off, scl : scalars

The “y-intercept” and “slope” of the line, respectively.

Returns
y : ndarray

This module’s representation of the linear polynomial off + scl*x.

See also:

chebline

3.23. Polynomials 807

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyline(1,-1)
array([1, -1])
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
0.0

Chebyshev Module (numpy.polynomial.chebyshev)

New in version 1.4.0.

This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including
a Chebyshev class that encapsulates the usual arithmetic operations. (General information on how this module
represents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Chebyshev(coef[, domain, window]) A Chebyshev series class.

Chebyshev Class
class numpy.polynomial.chebyshev.Chebyshev(coef, domain=None, window=None)

A Chebyshev series class.

The Chebyshev class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the methods listed below.

Parameters
coef : array_like

Chebyshev coefficients in order of increasing degree, i.e., (1, 2, 3) gives
1*T_0(x) + 2*T_1(x) + 3*T_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.

Continued on next page

808 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Table 3.104 – continued from previous page
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Chebyshev.__call__(arg)

Chebyshev.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

Chebyshev.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

3.23. Polynomials 809

NumPy Reference, Release 1.11.1

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

Chebyshev.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Chebyshev.copy()
Return a copy.

Returns
new_series : series

Copy of self.

Chebyshev.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

810 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

Chebyshev.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

Chebyshev.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

Chebyshev.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

3.23. Polynomials 811

NumPy Reference, Release 1.11.1

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Chebyshev.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

812 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Chebyshev.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

Chebyshev.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

Chebyshev.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

Chebyshev.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

Returns
bool : boolean

True if the windows are the same, False otherwise.

Chebyshev.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

3.23. Polynomials 813

NumPy Reference, Release 1.11.1

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

Chebyshev.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

Chebyshev.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

814 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Chebyshev.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Chebyshev.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

Chebyshev.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol : non-negative number.

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

Chebyshev.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

3.23. Polynomials 815

NumPy Reference, Release 1.11.1

Returns
new_series : series

New instance of series with truncated coefficients.

chebval(x, c[, tensor]) Evaluate a Chebyshev series at points x.
chebval2d(x, y, c) Evaluate a 2-D Chebyshev series at points (x, y).
chebval3d(x, y, z, c) Evaluate a 3-D Chebyshev series at points (x, y, z).
chebgrid2d(x, y, c) Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
chebgrid3d(x, y, z, c) Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
chebroots(c) Compute the roots of a Chebyshev series.
chebfromroots(roots) Generate a Chebyshev series with given roots.

Basics
numpy.polynomial.chebyshev.chebval(x, c, tensor=True)

Evaluate a Chebyshev series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝑇0(𝑥) + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and
treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, algebra_like

816 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The shape of the return value is described above.

See also:

chebval2d, chebgrid2d, chebval3d, chebgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.
numpy.polynomial.chebyshev.chebval2d(x, y, c)

Evaluate a 2-D Chebyshev series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is con-
tained in c[i,j]. If c has dimension greater than 2 the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points formed from pairs of
corresponding values from x and y.

See also:

chebval, chebgrid2d, chebval3d, chebgrid3d

Notes

numpy.polynomial.chebyshev.chebval3d(x, y, z, c)
Evaluate a 3-D Chebyshev series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦) * 𝑇𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

3.23. Polynomials 817

NumPy Reference, Release 1.11.1

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

chebval, chebval2d, chebgrid2d, chebgrid3d

Notes

numpy.polynomial.chebyshev.chebgrid2d(x, y, c)
Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝑇𝑖(𝑎) * 𝑇𝑗(𝑏),

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the Cartesian product
of x and y.

See also:

chebval, chebval2d, chebval3d, chebgrid3d

818 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

numpy.polynomial.chebyshev.chebgrid3d(x, y, z, c)
Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝑇𝑖(𝑎) * 𝑇𝑗(𝑏) * 𝑇𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

chebval, chebval2d, chebgrid2d, chebval3d

Notes

numpy.polynomial.chebyshev.chebroots(c)
Compute the roots of a Chebyshev series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝑇𝑖(𝑥).

Parameters
c : 1-D array_like

1-D array of coefficients.

Returns
out : ndarray

Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

3.23. Polynomials 819

NumPy Reference, Release 1.11.1

See also:

polyroots, legroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Chebyshev series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.chebyshev as cheb
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
array([-5.00000000e-01, 2.60860684e-17, 1.00000000e+00])

numpy.polynomial.chebyshev.chebfromroots(roots)
Generate a Chebyshev series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Chebyshev form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must
appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then
roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Chebyshev form.

Parameters
roots : array_like

Sequence containing the roots.

Returns
out : ndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots
are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots.

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.5+0.j, 0.0+0.j, 0.5+0.j])

820 Chapter 3. Routines

NumPy Reference, Release 1.11.1

chebfit(x, y, deg[, rcond, full, w]) Least squares fit of Chebyshev series to data.
chebvander(x, deg) Pseudo-Vandermonde matrix of given degree.
chebvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
chebvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.chebyshev.chebfit(x, y, deg, rcond=None, full=False, w=None)

Least squares fit of Chebyshev series to data.

Return the coefficients of a Legendre series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑇1(𝑥) + ... + 𝑐𝑛 * 𝑇𝑛(𝑥),

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns
coef : ndarray, shape (M,) or (M, K)

Chebyshev coefficients ordered from low to high. If y was 2-D, the coefficients for the
data in column k of y are in column k.

3.23. Polynomials 821

NumPy Reference, Release 1.11.1

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

polyfit, legfit, lagfit, hermfit, hermefit

chebval
Evaluates a Chebyshev series.

chebvander
Vandermonde matrix of Chebyshev series.

chebweight
Chebyshev weight function.

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution is the coefficients of the Chebyshev series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Chebyshev series are usually better conditioned than fits using power series, but much can depend on
the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines
may be a good alternative.

822 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R60]
numpy.polynomial.chebyshev.chebvander(x, deg)

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝑇𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Chebyshev polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then
np.dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample
points.

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns
vander : ndarray

The pseudo Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Chebyshev
polynomial. The dtype will be the same as the converted x.

numpy.polynomial.chebyshev.chebvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Chebyshev polynomials.

If V = chebvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and chebval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Chebyshev series of the
same degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

3.23. Polynomials 823

NumPy Reference, Release 1.11.1

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

See also:

chebvander, chebvander3d., chebval3d

Notes

numpy.polynomial.chebyshev.chebvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝑇𝑖(𝑥) * 𝑇𝑗(𝑦) * 𝑇𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Chebyshev polynomials.

If V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and chebval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D Chebyshev series
of the same degrees and sample points.

Parameters
x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

chebvander, chebvander3d., chebval3d

Notes

chebder(c[, m, scl, axis]) Differentiate a Chebyshev series.
chebint(c[, m, k, lbnd, scl, axis]) Integrate a Chebyshev series.

824 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Calculus
numpy.polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)

Differentiate a Chebyshev series.

Returns the Chebyshev series coefficients c differentiated m times along axis. At each iteration the re-
sult is multiplied by scl (the scaling factor is for use in a linear change of variable). The argument c
is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
1*T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y)
+ 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Chebyshev series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns
der : ndarray

Chebyshev series of the derivative.

See also:

chebint

Notes

In general, the result of differentiating a C-series needs to be “reprojected” onto the C-series basis set. Thus,
typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3,4)
>>> C.chebder(c)
array([14., 12., 24.])
>>> C.chebder(c,3)
array([96.])
>>> C.chebder(c,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(c,2,-1)
array([12., 96.])

numpy.polynomial.chebyshev.chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Chebyshev series.

Returns the Chebyshev series coefficients c integrated m times from lbnd along axis. At each iteration the
resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use

3.23. Polynomials 825

NumPy Reference, Release 1.11.1

in a linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want
scl to be the reciprocal of what one might expect; for more information, see the Notes section below.) The
argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Chebyshev series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at zero is the first value in the
list, the value of the second integral at zero is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns
S : ndarray

C-series coefficients of the integral.

Raises
ValueError

If m < 1, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also:

chebder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎- perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

826 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3)
>>> C.chebint(c)
array([0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
array([0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,

0.00625])
>>> C.chebint(c, k=3)
array([3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)
array([8.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,scl=-2)
array([-1., 1., -1., -1.])

chebadd(c1, c2) Add one Chebyshev series to another.
chebsub(c1, c2) Subtract one Chebyshev series from another.
chebmul(c1, c2) Multiply one Chebyshev series by another.
chebmulx(c) Multiply a Chebyshev series by x.
chebdiv(c1, c2) Divide one Chebyshev series by another.
chebpow(c, pow[, maxpower]) Raise a Chebyshev series to a power.

Algebra
numpy.polynomial.chebyshev.chebadd(c1, c2)

Add one Chebyshev series to another.

Returns the sum of two Chebyshev series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the Chebyshev series of their sum.

See also:

chebsub, chebmul, chebdiv , chebpow

Notes

Unlike multiplication, division, etc., the sum of two Chebyshev series is a Chebyshev series (without having
to “reproject” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([4., 4., 4.])

3.23. Polynomials 827

NumPy Reference, Release 1.11.1

numpy.polynomial.chebyshev.chebsub(c1, c2)
Subtract one Chebyshev series from another.

Returns the difference of two Chebyshev series c1 - c2. The sequences of coefficients are from lowest order
term to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns
out : ndarray

Of Chebyshev series coefficients representing their difference.

See also:

chebadd, chebmul, chebdiv , chebpow

Notes

Unlike multiplication, division, etc., the difference of two Chebyshev series is a Chebyshev series (without
having to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is
simply “component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([2., 0., -2.])

numpy.polynomial.chebyshev.chebmul(c1, c2)
Multiply one Chebyshev series by another.

Returns the product of two Chebyshev series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns
out : ndarray

Of Chebyshev series coefficients representing their product.

See also:

chebadd, chebsub, chebdiv , chebpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Chebyshev polynomial
basis set. Thus, to express the product as a C-series, it is typically necessary to “reproject” the product onto said
basis set, which typically produces “unintuitive live” (but correct) results; see Examples section below.

828 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([6.5, 12. , 12. , 4. , 1.5])

numpy.polynomial.chebyshev.chebmulx(c)
Multiply a Chebyshev series by x.

Multiply the polynomial c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of Chebyshev series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

New in version 1.5.0.

numpy.polynomial.chebyshev.chebdiv(c1, c2)
Divide one Chebyshev series by another.

Returns the quotient-with-remainder of two Chebyshev series c1 / c2. The arguments are sequences of coeffi-
cients from lowest order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2 : array_like

1-D arrays of Chebyshev series coefficients ordered from low to high.

Returns
[quo, rem] : ndarrays

Of Chebyshev series coefficients representing the quotient and remainder.

See also:

chebadd, chebsub, chebmul, chebpow

Notes

In general, the (polynomial) division of one C-series by another results in quotient and remainder terms that are
not in the Chebyshev polynomial basis set. Thus, to express these results as C-series, it is typically necessary
to “reproject” the results onto said basis set, which typically produces “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([0., 2.]), array([-2., -4.]))

3.23. Polynomials 829

NumPy Reference, Release 1.11.1

numpy.polynomial.chebyshev.chebpow(c, pow, maxpower=16)
Raise a Chebyshev series to a power.

Returns the Chebyshev series c raised to the power pow. The argument c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series T_0 + 2*T_1 + 3*T_2.

Parameters
c : array_like

1-D array of Chebyshev series coefficients ordered from low to high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

Chebyshev series of power.

See also:

chebadd, chebsub, chebmul, chebdiv

chebgauss(deg) Gauss-Chebyshev quadrature.
chebweight(x) The weight function of the Chebyshev polynomials.

Quadrature
numpy.polynomial.chebyshev.chebgauss(deg)

Gauss-Chebyshev quadrature.

Computes the sample points and weights for Gauss-Chebyshev quadrature. These sample points and weights
will correctly integrate polynomials of degree 2*𝑑𝑒𝑔−1 or less over the interval [−1, 1] with the weight function
𝑓(𝑥) = 1/

√
1 − 𝑥2.

Parameters
deg : int

Number of sample points and weights. It must be >= 1.

Returns
x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

New in version 1.7.0.

The results have only been tested up to degree 100, higher degrees may be problematic. For Gauss-Chebyshev

830 Chapter 3. Routines

NumPy Reference, Release 1.11.1

there are closed form solutions for the sample points and weights. If n = deg, then

𝑥𝑖 = cos(𝜋(2𝑖− 1)/(2𝑛))

𝑤𝑖 = 𝜋/𝑛

numpy.polynomial.chebyshev.chebweight(x)
The weight function of the Chebyshev polynomials.

The weight function is 1/
√

1 − 𝑥2 and the interval of integration is [−1, 1]. The Chebyshev polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters
x : array_like

Values at which the weight function will be computed.

Returns
w : ndarray

The weight function at x.

Notes

New in version 1.7.0.

chebcompanion(c) Return the scaled companion matrix of c.
chebdomain
chebzero
chebone
chebx
chebtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
chebline(off, scl) Chebyshev series whose graph is a straight line.
cheb2poly(c) Convert a Chebyshev series to a polynomial.
poly2cheb(pol) Convert a polynomial to a Chebyshev series.

Miscellaneous
numpy.polynomial.chebyshev.chebcompanion(c)

Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is a Chebyshev basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c : array_like

1-D array of Chebyshev series coefficients ordered from low to high degree.

Returns
mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes
numpy.polynomial.chebyshev.chebdomain = array([-1, 1])

3.23. Polynomials 831

NumPy Reference, Release 1.11.1

numpy.polynomial.chebyshev.chebzero = array([0])

numpy.polynomial.chebyshev.chebone = array([1])

numpy.polynomial.chebyshev.chebx = array([0, 1])

numpy.polynomial.chebyshev.chebtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.chebyshev.chebline(off, scl)
Chebyshev series whose graph is a straight line.

Parameters
off, scl : scalars

The specified line is given by off + scl*x.

Returns
y : ndarray

This module’s representation of the Chebyshev series for off + scl*x.

832 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

polyline

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0

numpy.polynomial.chebyshev.cheb2poly(c)
Convert a Chebyshev series to a polynomial.

Convert an array representing the coefficients of a Chebyshev series, ordered from lowest degree to highest, to
an array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest
to highest degree.

Parameters
c : array_like

1-D array containing the Chebyshev series coefficients, ordered from lowest order term
to highest.

Returns
pol : ndarray

1-D array containing the coefficients of the equivalent polynomial (relative to the “stan-
dard” basis) ordered from lowest order term to highest.

See also:

poly2cheb

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
Chebyshev([0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-2., -8., 4., 12.], [-1., 1.])
>>> P.cheb2poly(range(4))
array([-2., -8., 4., 12.])

numpy.polynomial.chebyshev.poly2cheb(pol)
Convert a polynomial to a Chebyshev series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Chebyshev series, ordered from lowest
to highest degree.

Parameters
pol : array_like

1-D array containing the polynomial coefficients

3.23. Polynomials 833

NumPy Reference, Release 1.11.1

Returns
c : ndarray

1-D array containing the coefficients of the equivalent Chebyshev series.

See also:

cheb2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
Polynomial([0., 1., 2., 3.], [-1., 1.])
>>> c = p.convert(kind=P.Chebyshev)
>>> c
Chebyshev([1. , 3.25, 1. , 0.75], [-1., 1.])
>>> P.poly2cheb(range(4))
array([1. , 3.25, 1. , 0.75])

Legendre Module (numpy.polynomial.legendre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Legendre series, including a
Legendre class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Legendre(coef[, domain, window]) A Legendre series class.

Legendre Class
class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)

A Legendre series class.

The Legendre class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters
coef : array_like

Legendre coefficients in order of increasing degree, i.e., (1, 2, 3) gives 1*P_0(x)
+ 2*P_1(x) + 3*P_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

834 Chapter 3. Routines

NumPy Reference, Release 1.11.1

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Legendre.__call__(arg)

Legendre.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

Legendre.cast(series, domain=None, window=None)
Convert series to series of this class.

3.23. Polynomials 835

NumPy Reference, Release 1.11.1

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

Legendre.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Legendre.copy()
Return a copy.

836 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
new_series : series

Copy of self.

Legendre.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

Legendre.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

Legendre.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

Legendre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

3.23. Polynomials 837

NumPy Reference, Release 1.11.1

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Legendre.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

838 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

Legendre.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

Legendre.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

Legendre.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

Legendre.has_samewindow(other)
Check if windows match.

3.23. Polynomials 839

NumPy Reference, Release 1.11.1

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

Returns
bool : boolean

True if the windows are the same, False otherwise.

Legendre.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

Legendre.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

Legendre.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

840 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

Legendre.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Legendre.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

Legendre.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol : non-negative number.

3.23. Polynomials 841

NumPy Reference, Release 1.11.1

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

Legendre.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

Returns
new_series : series

New instance of series with truncated coefficients.

legval(x, c[, tensor]) Evaluate a Legendre series at points x.
legval2d(x, y, c) Evaluate a 2-D Legendre series at points (x, y).
legval3d(x, y, z, c) Evaluate a 3-D Legendre series at points (x, y, z).
leggrid2d(x, y, c) Evaluate a 2-D Legendre series on the Cartesian product of x and y.
leggrid3d(x, y, z, c) Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.
legroots(c) Compute the roots of a Legendre series.
legfromroots(roots) Generate a Legendre series with given roots.

Basics
numpy.polynomial.legendre.legval(x, c, tensor=True)

Evaluate a Legendre series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝐿0(𝑥) + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and
treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

842 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, algebra_like

The shape of the return value is described above.

See also:

legval2d, leggrid2d, legval3d, leggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.
numpy.polynomial.legendre.legval2d(x, y, c)

Evaluate a 2-D Legendre series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is con-
tained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional Legendre series at points formed from pairs of cor-
responding values from x and y.

See also:

legval, leggrid2d, legval3d, leggrid3d

3.23. Polynomials 843

NumPy Reference, Release 1.11.1

Notes

numpy.polynomial.legendre.legval3d(x, y, z, c)
Evaluate a 3-D Legendre series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

legval, legval2d, leggrid2d, leggrid3d

Notes

numpy.polynomial.legendre.leggrid2d(x, y, c)
Evaluate a 2-D Legendre series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y : array_like, compatible objects

844 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the Cartesian product
of x and y.

See also:

legval, legval2d, legval3d, leggrid3d

Notes

numpy.polynomial.legendre.leggrid3d(x, y, z, c)
Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏) * 𝐿𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

legval, legval2d, leggrid2d, legval3d

3.23. Polynomials 845

NumPy Reference, Release 1.11.1

Notes

numpy.polynomial.legendre.legroots(c)
Compute the roots of a Legendre series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝐿𝑖(𝑥).

Parameters
c : 1-D array_like

1-D array of coefficients.

Returns
out : ndarray

Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

polyroots, chebroots, lagroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Legendre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.legendre as leg
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
array([-0.85099543, -0.11407192, 0.51506735])

numpy.polynomial.legendre.legfromroots(roots)
Generate a Legendre series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Legendre form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Legendre form.

Parameters
roots : array_like

Sequence containing the roots.

846 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
out : ndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots
are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

polyfromroots, chebfromroots, lagfromroots, hermfromroots, hermefromroots.

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.4, 0. , 0.4])
>>> j = complex(0,1)
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])

legfit(x, y, deg[, rcond, full, w]) Least squares fit of Legendre series to data.
legvander(x, deg) Pseudo-Vandermonde matrix of given degree.
legvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
legvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.legendre.legfit(x, y, deg, rcond=None, full=False, w=None)

Least squares fit of Legendre series to data.

Return the coefficients of a Legendre series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥),

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

3.23. Polynomials 847

NumPy Reference, Release 1.11.1

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

Returns
coef : ndarray, shape (M,) or (M, K)

Legendre coefficients ordered from low to high. If y was 2-D, the coefficients for the
data in column k of y are in column k. If deg is specified as a list, coefficients for terms
not included in the fit are set equal to zero in the returned coef.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, polyfit, lagfit, hermfit, hermefit

legval
Evaluates a Legendre series.

legvander
Vandermonde matrix of Legendre series.

legweight
Legendre weight function (= 1).

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

848 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The solution is the coefficients of the Legendre series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Legendre series are usually better conditioned than fits using power series, but much can depend on
the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines
may be a good alternative.

References

[R64]
numpy.polynomial.legendre.legvander(x, deg)

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐿𝑖(𝑥)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Legendre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = legvander(x, n), then
np.dot(V, c) and legval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Legendre series of the same degree and sample points.

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns
vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Legendre poly-
nomial. The dtype will be the same as the converted x.

numpy.polynomial.legendre.legvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

3.23. Polynomials 849

NumPy Reference, Release 1.11.1

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Legendre polynomials.

If V = legvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and legval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Legendre series of the
same degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

See also:

legvander, legvander3d., legval3d

Notes

numpy.polynomial.legendre.legvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Legendre polynomials.

If V = legvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and legval3d(x, y, z, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 3-D Legendre series of
the same degrees and sample points.

Parameters
x, y, z : array_like

850 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

legvander, legvander3d., legval3d

Notes

legder(c[, m, scl, axis]) Differentiate a Legendre series.
legint(c[, m, k, lbnd, scl, axis]) Integrate a Legendre series.

Calculus
numpy.polynomial.legendre.legder(c, m=1, scl=1, axis=0)

Differentiate a Legendre series.

Returns the Legendre series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-
cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Legendre series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns
der : ndarray

Legendre series of the derivative.

See also:

3.23. Polynomials 851

NumPy Reference, Release 1.11.1

legint

Notes

In general, the result of differentiating a Legendre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3,4)
>>> L.legder(c)
array([6., 9., 20.])
>>> L.legder(c, 3)
array([60.])
>>> L.legder(c, scl=-1)
array([-6., -9., -20.])
>>> L.legder(c, 2,-1)
array([9., 60.])

numpy.polynomial.legendre.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Legendre series.

Returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Legendre series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at lbnd is the first value in the
list, the value of the second integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

852 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
S : ndarray

Legendre series coefficient array of the integral.

Raises
ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also:

legder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([0.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, 3)
array([1.66666667e-02, -1.78571429e-02, 4.76190476e-02,

-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
array([3.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, lbnd=-2)
array([7.33333333, 0.4 , 0.66666667, 0.6])
>>> L.legint(c, scl=2)
array([0.66666667, 0.8 , 1.33333333, 1.2])

legadd(c1, c2) Add one Legendre series to another.
legsub(c1, c2) Subtract one Legendre series from another.
legmul(c1, c2) Multiply one Legendre series by another.
legmulx(c) Multiply a Legendre series by x.
legdiv(c1, c2) Divide one Legendre series by another.
legpow(c, pow[, maxpower]) Raise a Legendre series to a power.

Algebra
numpy.polynomial.legendre.legadd(c1, c2)

Add one Legendre series to another.

Returns the sum of two Legendre series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to high.

3.23. Polynomials 853

NumPy Reference, Release 1.11.1

Returns
out : ndarray

Array representing the Legendre series of their sum.

See also:

legsub, legmul, legdiv , legpow

Notes

Unlike multiplication, division, etc., the sum of two Legendre series is a Legendre series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legadd(c1,c2)
array([4., 4., 4.])

numpy.polynomial.legendre.legsub(c1, c2)
Subtract one Legendre series from another.

Returns the difference of two Legendre series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to high.

Returns
out : ndarray

Of Legendre series coefficients representing their difference.

See also:

legadd, legmul, legdiv , legpow

Notes

Unlike multiplication, division, etc., the difference of two Legendre series is a Legendre series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legsub(c1,c2)
array([-2., 0., 2.])
>>> L.legsub(c2,c1) # -C.legsub(c1,c2)
array([2., 0., -2.])

numpy.polynomial.legendre.legmul(c1, c2)
Multiply one Legendre series by another.

Returns the product of two Legendre series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

854 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to high.

Returns
out : ndarray

Of Legendre series coefficients representing their product.

See also:

legadd, legsub, legdiv , legpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Legendre polynomial
basis set. Thus, to express the product as a Legendre series, it is necessary to “reproject” the product onto said
basis set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2)
>>> P.legmul(c1,c2) # multiplication requires "reprojection"
array([4.33333333, 10.4 , 11.66666667, 3.6])

numpy.polynomial.legendre.legmulx(c)
Multiply a Legendre series by x.

Multiply the Legendre series c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of Legendre series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Legendre polynomials in the form

𝑥𝑃𝑖(𝑥) = ((𝑖 + 1) * 𝑃𝑖+1(𝑥) + 𝑖 * 𝑃𝑖−1(𝑥))/(2𝑖 + 1)

numpy.polynomial.legendre.legdiv(c1, c2)
Divide one Legendre series by another.

Returns the quotient-with-remainder of two Legendre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Legendre series coefficients ordered from low to high.

Returns
quo, rem : ndarrays

Of Legendre series coefficients representing the quotient and remainder.

3.23. Polynomials 855

NumPy Reference, Release 1.11.1

See also:

legadd, legsub, legmul, legpow

Notes

In general, the (polynomial) division of one Legendre series by another results in quotient and remainder terms
that are not in the Legendre polynomial basis set. Thus, to express these results as a Legendre series, it is
necessary to “reproject” the results onto the Legendre basis set, which may produce “unintuitive” (but correct)
results; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> L.legdiv(c2,c1) # neither "intuitive"
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852]))

numpy.polynomial.legendre.legpow(c, pow, maxpower=16)
Raise a Legendre series to a power.

Returns the Legendre series c raised to the power pow. The arguement c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c : array_like

1-D array of Legendre series coefficients ordered from low to high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

Legendre series of power.

See also:

legadd, legsub, legmul, legdiv

leggauss(deg) Gauss-Legendre quadrature.
legweight(x) Weight function of the Legendre polynomials.

Quadrature
numpy.polynomial.legendre.leggauss(deg)

Gauss-Legendre quadrature.

Computes the sample points and weights for Gauss-Legendre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [−1, 1] with the weight function
𝑓(𝑥) = 1.

856 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
deg : int

Number of sample points and weights. It must be >= 1.

Returns
x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐿′
𝑛(𝑥𝑘) * 𝐿𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐿𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.legendre.legweight(x)
Weight function of the Legendre polynomials.

The weight function is 1 and the interval of integration is [−1, 1]. The Legendre polynomials are orthogonal,
but not normalized, with respect to this weight function.

Parameters
x : array_like

Values at which the weight function will be computed.

Returns
w : ndarray

The weight function at x.

Notes

legcompanion(c) Return the scaled companion matrix of c.
legdomain
legzero
legone
legx
legtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
legline(off, scl) Legendre series whose graph is a straight line.
leg2poly(c) Convert a Legendre series to a polynomial.
poly2leg(pol) Convert a polynomial to a Legendre series.

Miscellaneous
numpy.polynomial.legendre.legcompanion(c)

Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is an Legendre basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters

3.23. Polynomials 857

NumPy Reference, Release 1.11.1

c : array_like

1-D array of Legendre series coefficients ordered from low to high degree.

Returns
mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes
numpy.polynomial.legendre.legdomain = array([-1, 1])

numpy.polynomial.legendre.legzero = array([0])

numpy.polynomial.legendre.legone = array([1])

numpy.polynomial.legendre.legx = array([0, 1])

numpy.polynomial.legendre.legtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

858 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.polynomial.legendre.legline(off, scl)
Legendre series whose graph is a straight line.

Parameters
off, scl : scalars

The specified line is given by off + scl*x.

Returns
y : ndarray

This module’s representation of the Legendre series for off + scl*x.

See also:

polyline, chebline

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legline(3,2)
array([3, 2])
>>> L.legval(-3, L.legline(3,2)) # should be -3
-3.0

numpy.polynomial.legendre.leg2poly(c)
Convert a Legendre series to a polynomial.

Convert an array representing the coefficients of a Legendre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c : array_like

1-D array containing the Legendre series coefficients, ordered from lowest order term
to highest.

Returns
pol : ndarray

1-D array containing the coefficients of the equivalent polynomial (relative to the “stan-
dard” basis) ordered from lowest order term to highest.

See also:

poly2leg

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> c = P.Legendre(range(4))
>>> c
Legendre([0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-1. , -3.5, 3. , 7.5], [-1., 1.])
>>> P.leg2poly(range(4))
array([-1. , -3.5, 3. , 7.5])

3.23. Polynomials 859

NumPy Reference, Release 1.11.1

numpy.polynomial.legendre.poly2leg(pol)
Convert a polynomial to a Legendre series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest
to highest degree.

Parameters
pol : array_like

1-D array containing the polynomial coefficients

Returns
c : ndarray

1-D array containing the coefficients of the equivalent Legendre series.

See also:

leg2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
Polynomial([0., 1., 2., 3.], [-1., 1.])
>>> c = P.Legendre(P.poly2leg(p.coef))
>>> c
Legendre([1. , 3.25, 1. , 0.75], [-1., 1.])

Laguerre Module (numpy.polynomial.laguerre)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Laguerre series, including a
Laguerre class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Laguerre(coef[, domain, window]) A Laguerre series class.

Laguerre Class
class numpy.polynomial.laguerre.Laguerre(coef, domain=None, window=None)

A Laguerre series class.

The Laguerre class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters
coef : array_like

Laguerre coefficients in order of increasing degree, i.e, (1, 2, 3) gives 1*L_0(x)
+ 2*L_1(X) + 3*L_2(x).

domain : (2,) array_like, optional

860 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [0, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [0, 1].

New in version 1.6.0.

Methods

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Laguerre.__call__(arg)

Laguerre.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

3.23. Polynomials 861

NumPy Reference, Release 1.11.1

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

Laguerre.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

Laguerre.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

862 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

Conversion between domains and class types can result in numerically ill defined series.

Laguerre.copy()
Return a copy.

Returns
new_series : series

Copy of self.

Laguerre.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

Laguerre.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

Laguerre.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

Laguerre.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

3.23. Polynomials 863

NumPy Reference, Release 1.11.1

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Laguerre.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

864 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

Laguerre.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

Laguerre.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

Laguerre.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

3.23. Polynomials 865

NumPy Reference, Release 1.11.1

Laguerre.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

Returns
bool : boolean

True if the windows are the same, False otherwise.

Laguerre.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

Laguerre.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

866 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Laguerre.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

Laguerre.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

Laguerre.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

Laguerre.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

3.23. Polynomials 867

NumPy Reference, Release 1.11.1

Parameters
tol : non-negative number.

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

Laguerre.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

Returns
new_series : series

New instance of series with truncated coefficients.

lagval(x, c[, tensor]) Evaluate a Laguerre series at points x.
lagval2d(x, y, c) Evaluate a 2-D Laguerre series at points (x, y).
lagval3d(x, y, z, c) Evaluate a 3-D Laguerre series at points (x, y, z).
laggrid2d(x, y, c) Evaluate a 2-D Laguerre series on the Cartesian product of x and y.
laggrid3d(x, y, z, c) Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.
lagroots(c) Compute the roots of a Laguerre series.
lagfromroots(roots) Generate a Laguerre series with given roots.

Basics
numpy.polynomial.laguerre.lagval(x, c, tensor=True)

Evaluate a Laguerre series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 * 𝐿0(𝑥) + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and

868 Chapter 3. Routines

NumPy Reference, Release 1.11.1

treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, algebra_like

The shape of the return value is described above.

See also:

lagval2d, laggrid2d, lagval3d, laggrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.laguerre import lagval
>>> coef = [1,2,3]
>>> lagval(1, coef)
-0.5
>>> lagval([[1,2],[3,4]], coef)
array([[-0.5, -4.],

[-4.5, -2.]])

numpy.polynomial.laguerre.lagval2d(x, y, c)
Evaluate a 2-D Laguerre series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and if it isn’t an ndarray it is treated as a scalar.

3.23. Polynomials 869

NumPy Reference, Release 1.11.1

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is con-
tained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with pairs of corre-
sponding values from x and y.

See also:

lagval, laggrid2d, lagval3d, laggrid3d

Notes

numpy.polynomial.laguerre.lagval3d(x, y, z, c)
Evaluate a 3-D Laguerre series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimension polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

lagval, lagval2d, laggrid2d, laggrid3d

Notes

numpy.polynomial.laguerre.laggrid2d(x, y, c)
Evaluate a 2-D Laguerre series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏)

870 Chapter 3. Routines

NumPy Reference, Release 1.11.1

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional Chebyshev series at points in the Cartesian product
of x and y.

See also:

lagval, lagval2d, lagval3d, laggrid3d

Notes

numpy.polynomial.laguerre.laggrid3d(x, y, z, c)
Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 * 𝐿𝑖(𝑎) * 𝐿𝑗(𝑏) * 𝐿𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

3.23. Polynomials 871

NumPy Reference, Release 1.11.1

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

lagval, lagval2d, laggrid2d, lagval3d

Notes

numpy.polynomial.laguerre.lagroots(c)
Compute the roots of a Laguerre series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] * 𝐿𝑖(𝑥).

Parameters
c : 1-D array_like

1-D array of coefficients.

Returns
out : ndarray

Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

polyroots, legroots, chebroots, hermroots, hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Laguerre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.laguerre import lagroots, lagfromroots
>>> coef = lagfromroots([0, 1, 2])
>>> coef
array([2., -8., 12., -6.])
>>> lagroots(coef)
array([-4.44089210e-16, 1.00000000e+00, 2.00000000e+00])

numpy.polynomial.laguerre.lagfromroots(roots)
Generate a Laguerre series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

872 Chapter 3. Routines

NumPy Reference, Release 1.11.1

in Laguerre form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Laguerre form.

Parameters
roots : array_like

Sequence containing the roots.

Returns
out : ndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots
are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

polyfromroots, legfromroots, chebfromroots, hermfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

lagfit(x, y, deg[, rcond, full, w]) Least squares fit of Laguerre series to data.
lagvander(x, deg) Pseudo-Vandermonde matrix of given degree.
lagvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
lagvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.laguerre.lagfit(x, y, deg, rcond=None, full=False, w=None)

Least squares fit of Laguerre series to data.

Return the coefficients of a Laguerre series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝐿1(𝑥) + ... + 𝑐𝑛 * 𝐿𝑛(𝑥),

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

3.23. Polynomials 873

NumPy Reference, Release 1.11.1

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

Returns
coef : ndarray, shape (M,) or (M, K)

Laguerre coefficients ordered from low to high. If y was 2-D, the coefficients for the
data in column k of y are in column k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, polyfit, hermfit, hermefit

lagval
Evaluates a Laguerre series.

lagvander
pseudo Vandermonde matrix of Laguerre series.

874 Chapter 3. Routines

NumPy Reference, Release 1.11.1

lagweight
Laguerre weight function.

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution is the coefficients of the Laguerre series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up as the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, and y are the observed values. This equation is then solved using the singular value decomposition of
V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Laguerre series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the Laguerre weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as lagweight.

References

[R63]

Examples

>>> from numpy.polynomial.laguerre import lagfit, lagval
>>> x = np.linspace(0, 10)
>>> err = np.random.randn(len(x))/10
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
array([0.96971004, 2.00193749, 3.00288744])

numpy.polynomial.laguerre.lagvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐿𝑖(𝑥)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Laguerre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = lagvander(x, n), then
np.dot(V, c) and lagval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Laguerre series of the same degree and sample points.

3.23. Polynomials 875

NumPy Reference, Release 1.11.1

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns
vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Laguerre poly-
nomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[1. , 1. , 1. , 1.],

[1. , 0. , -0.5 , -0.66666667],
[1. , -1. , -1. , -0.33333333]])

numpy.polynomial.laguerre.lagvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Laguerre polynomials.

If V = lagvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and lagval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Laguerre series of the
same degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

876 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

lagvander, lagvander3d., lagval3d

Notes

numpy.polynomial.laguerre.lagvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐿𝑖(𝑥) * 𝐿𝑗(𝑦) * 𝐿𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Laguerre polynomials.

If V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and lagval3d(x, y, z, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 3-D Laguerre series of
the same degrees and sample points.

Parameters
x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

lagvander, lagvander3d., lagval3d

Notes

lagder(c[, m, scl, axis]) Differentiate a Laguerre series.
lagint(c[, m, k, lbnd, scl, axis]) Integrate a Laguerre series.

Calculus
numpy.polynomial.laguerre.lagder(c, m=1, scl=1, axis=0)

Differentiate a Laguerre series.

Returns the Laguerre series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-
cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2

3.23. Polynomials 877

NumPy Reference, Release 1.11.1

while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Laguerre series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns
der : ndarray

Laguerre series of the derivative.

See also:

lagint

Notes

In general, the result of differentiating a Laguerre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagder
>>> lagder([1., 1., 1., -3.])
array([1., 2., 3.])
>>> lagder([1., 0., 0., -4., 3.], m=2)
array([1., 2., 3.])

numpy.polynomial.laguerre.lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Laguerre series.

Returns the Laguerre series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Laguerre series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

878 Chapter 3. Routines

NumPy Reference, Release 1.11.1

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at lbnd is the first value in the
list, the value of the second integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns
S : ndarray

Laguerre series coefficients of the integral.

Raises
ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also:

lagder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagint
>>> lagint([1,2,3])
array([1., 1., 1., -3.])
>>> lagint([1,2,3], m=2)
array([1., 0., 0., -4., 3.])
>>> lagint([1,2,3], k=1)
array([2., 1., 1., -3.])
>>> lagint([1,2,3], lbnd=-1)
array([11.5, 1. , 1. , -3.])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
array([11.16666667, -5. , -3. , 2.])

3.23. Polynomials 879

NumPy Reference, Release 1.11.1

lagadd(c1, c2) Add one Laguerre series to another.
lagsub(c1, c2) Subtract one Laguerre series from another.
lagmul(c1, c2) Multiply one Laguerre series by another.
lagmulx(c) Multiply a Laguerre series by x.
lagdiv(c1, c2) Divide one Laguerre series by another.
lagpow(c, pow[, maxpower]) Raise a Laguerre series to a power.

Algebra
numpy.polynomial.laguerre.lagadd(c1, c2)

Add one Laguerre series to another.

Returns the sum of two Laguerre series c1 + c2. The arguments are sequences of coefficients ordered from
lowest order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the Laguerre series of their sum.

See also:

lagsub, lagmul, lagdiv , lagpow

Notes

Unlike multiplication, division, etc., the sum of two Laguerre series is a Laguerre series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

numpy.polynomial.laguerre.lagsub(c1, c2)
Subtract one Laguerre series from another.

Returns the difference of two Laguerre series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to high.

Returns
out : ndarray

Of Laguerre series coefficients representing their difference.

See also:

lagadd, lagmul, lagdiv , lagpow

880 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

Unlike multiplication, division, etc., the difference of two Laguerre series is a Laguerre series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

numpy.polynomial.laguerre.lagmul(c1, c2)
Multiply one Laguerre series by another.

Returns the product of two Laguerre series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to high.

Returns
out : ndarray

Of Laguerre series coefficients representing their product.

See also:

lagadd, lagsub, lagdiv , lagpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Laguerre polynomial
basis set. Thus, to express the product as a Laguerre series, it is necessary to “reproject” the product onto said
basis set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagmul
>>> lagmul([1, 2, 3], [0, 1, 2])
array([8., -13., 38., -51., 36.])

numpy.polynomial.laguerre.lagmulx(c)
Multiply a Laguerre series by x.

Multiply the Laguerre series c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of Laguerre series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Laguerre polynomials in the form

xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))

3.23. Polynomials 881

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
array([-1., -1., 11., -9.])

numpy.polynomial.laguerre.lagdiv(c1, c2)
Divide one Laguerre series by another.

Returns the quotient-with-remainder of two Laguerre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Laguerre series coefficients ordered from low to high.

Returns
[quo, rem] : ndarrays

Of Laguerre series coefficients representing the quotient and remainder.

See also:

lagadd, lagsub, lagmul, lagpow

Notes

In general, the (polynomial) division of one Laguerre series by another results in quotient and remainder terms
that are not in the Laguerre polynomial basis set. Thus, to express these results as a Laguerre series, it is
necessary to “reproject” the results onto the Laguerre basis set, which may produce “unintuitive” (but correct)
results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([8., -13., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> lagdiv([9., -12., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

numpy.polynomial.laguerre.lagpow(c, pow, maxpower=16)
Raise a Laguerre series to a power.

Returns the Laguerre series c raised to the power pow. The argument c is a sequence of coefficients ordered
from low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c : array_like

1-D array of Laguerre series coefficients ordered from low to high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

882 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Laguerre series of power.

See also:

lagadd, lagsub, lagmul, lagdiv

Examples

>>> from numpy.polynomial.laguerre import lagpow
>>> lagpow([1, 2, 3], 2)
array([14., -16., 56., -72., 54.])

laggauss(deg) Gauss-Laguerre quadrature.
lagweight(x) Weight function of the Laguerre polynomials.

Quadrature
numpy.polynomial.laguerre.laggauss(deg)

Gauss-Laguerre quadrature.

Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [0, inf] with the weight function
𝑓(𝑥) = exp(−𝑥).

Parameters
deg : int

Number of sample points and weights. It must be >= 1.

Returns
x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100 higher degrees may be problematic. The weights are deter-
mined by using the fact that

𝑤𝑘 = 𝑐/(𝐿′
𝑛(𝑥𝑘) * 𝐿𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐿𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.laguerre.lagweight(x)
Weight function of the Laguerre polynomials.

The weight function is 𝑒𝑥𝑝(−𝑥) and the interval of integration is [0, inf]. The Laguerre polynomials are orthog-
onal, but not normalized, with respect to this weight function.

Parameters
x : array_like

Values at which the weight function will be computed.

Returns
w : ndarray

The weight function at x.

3.23. Polynomials 883

NumPy Reference, Release 1.11.1

Notes

lagcompanion(c) Return the companion matrix of c.
lagdomain
lagzero
lagone
lagx
lagtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
lagline(off, scl) Laguerre series whose graph is a straight line.
lag2poly(c) Convert a Laguerre series to a polynomial.
poly2lag(pol) Convert a polynomial to a Laguerre series.

Miscellaneous
numpy.polynomial.laguerre.lagcompanion(c)

Return the companion matrix of c.

The usual companion matrix of the Laguerre polynomials is already symmetric when c is a basis Laguerre
polynomial, so no scaling is applied.

Parameters
c : array_like

1-D array of Laguerre series coefficients ordered from low to high degree.

Returns
mat : ndarray

Companion matrix of dimensions (deg, deg).

Notes
numpy.polynomial.laguerre.lagdomain = array([0, 1])

numpy.polynomial.laguerre.lagzero = array([0])

numpy.polynomial.laguerre.lagone = array([1])

numpy.polynomial.laguerre.lagx = array([1, -1])

numpy.polynomial.laguerre.lagtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

884 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.laguerre.lagline(off, scl)
Laguerre series whose graph is a straight line.

Parameters
off, scl : scalars

The specified line is given by off + scl*x.

Returns
y : ndarray

This module’s representation of the Laguerre series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.laguerre import lagline, lagval
>>> lagval(0,lagline(3, 2))
3.0
>>> lagval(1,lagline(3, 2))
5.0

numpy.polynomial.laguerre.lag2poly(c)
Convert a Laguerre series to a polynomial.

Convert an array representing the coefficients of a Laguerre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c : array_like

1-D array containing the Laguerre series coefficients, ordered from lowest order term to
highest.

3.23. Polynomials 885

NumPy Reference, Release 1.11.1

Returns
pol : ndarray

1-D array containing the coefficients of the equivalent polynomial (relative to the “stan-
dard” basis) ordered from lowest order term to highest.

See also:

poly2lag

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([23., -63., 58., -18.])
array([0., 1., 2., 3.])

numpy.polynomial.laguerre.poly2lag(pol)
Convert a polynomial to a Laguerre series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Laguerre series, ordered from lowest to
highest degree.

Parameters
pol : array_like

1-D array containing the polynomial coefficients

Returns
c : ndarray

1-D array containing the coefficients of the equivalent Laguerre series.

See also:

lag2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([23., -63., 58., -18.])

Hermite Module, “Physicists”’ (numpy.polynomial.hermite)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with Hermite series, including a
Hermite class that encapsulates the usual arithmetic operations. (General information on how this module represents
and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Hermite(coef[, domain, window]) An Hermite series class.

886 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Hermite Class
class numpy.polynomial.hermite.Hermite(coef, domain=None, window=None)

An Hermite series class.

The Hermite class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters
coef : array_like

Hermite coefficients in order of increasing degree, i.e, (1, 2, 3) gives 1*H_0(x)
+ 2*H_1(X) + 3*H_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

Hermite.__call__(arg)

Hermite.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

3.23. Polynomials 887

NumPy Reference, Release 1.11.1

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

Hermite.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

Hermite.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

888 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

Hermite.copy()
Return a copy.

Returns
new_series : series

Copy of self.

Hermite.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

Hermite.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

Hermite.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

3.23. Polynomials 889

NumPy Reference, Release 1.11.1

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

Hermite.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

890 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Hermite.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

Hermite.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

Hermite.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

3.23. Polynomials 891

NumPy Reference, Release 1.11.1

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

Hermite.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

Hermite.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

Returns
bool : boolean

True if the windows are the same, False otherwise.

Hermite.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

Hermite.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

892 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

Hermite.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

Hermite.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

3.23. Polynomials 893

NumPy Reference, Release 1.11.1

L(l1) = l2
L(r1) = r2

Hermite.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

Hermite.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol : non-negative number.

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

Hermite.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

Returns
new_series : series

New instance of series with truncated coefficients.

hermval(x, c[, tensor]) Evaluate an Hermite series at points x.
hermval2d(x, y, c) Evaluate a 2-D Hermite series at points (x, y).
hermval3d(x, y, z, c) Evaluate a 3-D Hermite series at points (x, y, z).
hermgrid2d(x, y, c) Evaluate a 2-D Hermite series on the Cartesian product of x and y.
hermgrid3d(x, y, z, c) Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.
hermroots(c) Compute the roots of a Hermite series.
hermfromroots(roots) Generate a Hermite series with given roots.

Basics
numpy.polynomial.hermite.hermval(x, c, tensor=True)

Evaluate an Hermite series at points x.

894 Chapter 3. Routines

NumPy Reference, Release 1.11.1

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 *𝐻0(𝑥) + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and
treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, algebra_like

The shape of the return value is described above.

See also:

hermval2d, hermgrid2d, hermval3d, hermgrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite import hermval
>>> coef = [1,2,3]
>>> hermval(1, coef)
11.0
>>> hermval([[1,2],[3,4]], coef)
array([[11., 51.],

[115., 203.]])

3.23. Polynomials 895

NumPy Reference, Release 1.11.1

numpy.polynomial.hermite.hermval2d(x, y, c)
Evaluate a 2-D Hermite series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑥) *𝐻𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is con-
tained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points formed with pairs of corre-
sponding values from x and y.

See also:

hermval, hermgrid2d, hermval3d, hermgrid3d

Notes

numpy.polynomial.hermite.hermval3d(x, y, z, c)
Evaluate a 3-D Hermite series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑖(𝑥) *𝐻𝑗(𝑦) *𝐻𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

896 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

hermval, hermval2d, hermgrid2d, hermgrid3d

Notes

numpy.polynomial.hermite.hermgrid2d(x, y, c)
Evaluate a 2-D Hermite series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

hermval, hermval2d, hermval3d, hermgrid3d

Notes

numpy.polynomial.hermite.hermgrid3d(x, y, z, c)
Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.

3.23. Polynomials 897

NumPy Reference, Release 1.11.1

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏) *𝐻𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

hermval, hermval2d, hermgrid2d, hermval3d

Notes

numpy.polynomial.hermite.hermroots(c)
Compute the roots of a Hermite series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] *𝐻𝑖(𝑥).

Parameters
c : 1-D array_like

1-D array of coefficients.

Returns
out : ndarray

Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

polyroots, legroots, lagroots, chebroots, hermeroots

898 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The Hermite series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite import hermroots, hermfromroots
>>> coef = hermfromroots([-1, 0, 1])
>>> coef
array([0. , 0.25 , 0. , 0.125])
>>> hermroots(coef)
array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])

numpy.polynomial.hermite.hermfromroots(roots)
Generate a Hermite series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in Hermite form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in Hermite form.

Parameters
roots : array_like

Sequence containing the roots.

Returns
out : ndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots
are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, chebfromroots, hermefromroots.

Examples

>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

3.23. Polynomials 899

NumPy Reference, Release 1.11.1

hermfit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermvander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.hermite.hermfit(x, y, deg, rcond=None, full=False, w=None)

Least squares fit of Hermite series to data.

Return the coefficients of a Hermite series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻1(𝑥) + ... + 𝑐𝑛 *𝐻𝑛(𝑥),

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

Returns
coef : ndarray, shape (M,) or (M, K)

Hermite coefficients ordered from low to high. If y was 2-D, the coefficients for the data
in column k of y are in column k.

[residuals, rank, singular_values, rcond] : list

900 Chapter 3. Routines

NumPy Reference, Release 1.11.1

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, lagfit, polyfit, hermefit

hermval
Evaluates a Hermite series.

hermvander
Vandermonde matrix of Hermite series.

hermweight
Hermite weight function

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution is the coefficients of the Hermite series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the
weights, y are the observed values. This equation is then solved using the singular value decomposition of V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using Hermite series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the Hermite weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as hermweight.

References

[R61]

3.23. Polynomials 901

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.hermite import hermfit, hermval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermval(x, [1, 2, 3]) + err
>>> hermfit(x, y, 2)
array([0.97902637, 1.99849131, 3.00006])

numpy.polynomial.hermite.hermvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐻𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Hermite polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermvander(x, n), then
np.dot(V, c) and hermval(x, c) are the same up to roundoff. This equivalence is useful both for
least squares fitting and for the evaluation of a large number of Hermite series of the same degree and sample
points.

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns
vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Hermite poly-
nomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.hermite import hermvander
>>> x = np.array([-1, 0, 1])
>>> hermvander(x, 3)
array([[1., -2., 2., 4.],

[1., 0., -2., -0.],
[1., 2., 2., -4.]])

numpy.polynomial.hermite.hermvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝐻𝑖(𝑥) *𝐻𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the Hermite polynomials.

902 Chapter 3. Routines

NumPy Reference, Release 1.11.1

If V = hermvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and hermval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Hermite series of the same
degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

See also:

hermvander, hermvander3d., hermval3d

Notes

numpy.polynomial.hermite.hermvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐻𝑖(𝑥) *𝐻𝑗(𝑦) *𝐻𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the Hermite polynomials.

If V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and hermval3d(x, y, z, c) will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D Hermite series of
the same degrees and sample points.

Parameters
x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

3.23. Polynomials 903

NumPy Reference, Release 1.11.1

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

hermvander, hermvander3d., hermval3d

Notes

hermder(c[, m, scl, axis]) Differentiate a Hermite series.
hermint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite series.

Calculus
numpy.polynomial.hermite.hermder(c, m=1, scl=1, axis=0)

Differentiate a Hermite series.

Returns the Hermite series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coeffi-
cients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Hermite series coefficients. If c is multidimensional the different axis corre-
spond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns
der : ndarray

Hermite series of the derivative.

See also:

hermint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

904 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.hermite import hermder
>>> hermder([1. , 0.5, 0.5, 0.5])
array([1., 2., 3.])
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
array([1., 2., 3.])

numpy.polynomial.hermite.hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite series.

Returns the Hermite series coefficients c integrated m times from lbnd along axis. At each iteration the re-
sulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a
linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to
be the reciprocal of what one might expect; for more information, see the Notes section below.) The argu-
ment c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Hermite series coefficients. If c is multidimensional the different axis corre-
spond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at lbnd is the first value in the
list, the value of the second integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns
S : ndarray

Hermite series coefficients of the integral.

Raises
ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also:

3.23. Polynomials 905

NumPy Reference, Release 1.11.1

hermder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermint
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
array([1. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625])
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
array([2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
array([-2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
array([1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625])

hermadd(c1, c2) Add one Hermite series to another.
hermsub(c1, c2) Subtract one Hermite series from another.
hermmul(c1, c2) Multiply one Hermite series by another.
hermmulx(c) Multiply a Hermite series by x.
hermdiv(c1, c2) Divide one Hermite series by another.
hermpow(c, pow[, maxpower]) Raise a Hermite series to a power.

Algebra
numpy.polynomial.hermite.hermadd(c1, c2)

Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the Hermite series of their sum.

See also:

hermsub, hermmul, hermdiv , hermpow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

906 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.hermite import hermadd
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

numpy.polynomial.hermite.hermsub(c1, c2)
Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Of Hermite series coefficients representing their difference.

See also:

hermadd, hermmul, hermdiv , hermpow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.hermite import hermsub
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

numpy.polynomial.hermite.hermmul(c1, c2)
Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Of Hermite series coefficients representing their product.

See also:

hermadd, hermsub, hermdiv , hermpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis
set, which may produce “unintuitive” (but correct) results; see Examples section below.

3.23. Polynomials 907

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.hermite import hermmul
>>> hermmul([1, 2, 3], [0, 1, 2])
array([52., 29., 52., 7., 6.])

numpy.polynomial.hermite.hermmulx(c)
Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))

Examples

>>> from numpy.polynomial.hermite import hermmulx
>>> hermmulx([1, 2, 3])
array([2. , 6.5, 1. , 1.5])

numpy.polynomial.hermite.hermdiv(c1, c2)
Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
[quo, rem] : ndarrays

Of Hermite series coefficients representing the quotient and remainder.

See also:

hermadd, hermsub, hermmul, hermpow

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms
that are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

908 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> from numpy.polynomial.hermite import hermdiv
>>> hermdiv([52., 29., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermdiv([54., 31., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([2., 2.]))
>>> hermdiv([53., 30., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

numpy.polynomial.hermite.hermpow(c, pow, maxpower=16)
Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c : array_like

1-D array of Hermite series coefficients ordered from low to high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

Hermite series of power.

See also:

hermadd, hermsub, hermmul, hermdiv

Examples

>>> from numpy.polynomial.hermite import hermpow
>>> hermpow([1, 2, 3], 2)
array([81., 52., 82., 12., 9.])

hermgauss(deg) Gauss-Hermite quadrature.
hermweight(x) Weight function of the Hermite polynomials.

Quadrature
numpy.polynomial.hermite.hermgauss(deg)

Gauss-Hermite quadrature.

Computes the sample points and weights for Gauss-Hermite quadrature. These sample points and weights will
correctly integrate polynomials of degree 2*𝑑𝑒𝑔−1 or less over the interval [− inf, inf] with the weight function
𝑓(𝑥) = exp(−𝑥2).

Parameters
deg : int

Number of sample points and weights. It must be >= 1.

3.23. Polynomials 909

NumPy Reference, Release 1.11.1

Returns
x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐻 ′
𝑛(𝑥𝑘) *𝐻𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐻𝑛, and then scaling the results to get the right
value when integrating 1.

numpy.polynomial.hermite.hermweight(x)
Weight function of the Hermite polynomials.

The weight function is exp(−𝑥2) and the interval of integration is [− inf, inf]. the Hermite polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters
x : array_like

Values at which the weight function will be computed.

Returns
w : ndarray

The weight function at x.

Notes

hermcompanion(c) Return the scaled companion matrix of c.
hermdomain
hermzero
hermone
hermx
hermtrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.
hermline(off, scl) Hermite series whose graph is a straight line.
herm2poly(c) Convert a Hermite series to a polynomial.
poly2herm(pol) Convert a polynomial to a Hermite series.

Miscellaneous
numpy.polynomial.hermite.hermcompanion(c)

Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is an Hermite basis polyno-
mial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues
are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c : array_like

1-D array of Hermite series coefficients ordered from low to high degree.

Returns

910 Chapter 3. Routines

NumPy Reference, Release 1.11.1

mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes
numpy.polynomial.hermite.hermdomain = array([-1, 1])

numpy.polynomial.hermite.hermzero = array([0])

numpy.polynomial.hermite.hermone = array([1])

numpy.polynomial.hermite.hermx = array([0. , 0.5])

numpy.polynomial.hermite.hermtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.hermite.hermline(off, scl)
Hermite series whose graph is a straight line.

3.23. Polynomials 911

NumPy Reference, Release 1.11.1

Parameters
off, scl : scalars

The specified line is given by off + scl*x.

Returns
y : ndarray

This module’s representation of the Hermite series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.hermite import hermline, hermval
>>> hermval(0,hermline(3, 2))
3.0
>>> hermval(1,hermline(3, 2))
5.0

numpy.polynomial.hermite.herm2poly(c)
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c : array_like

1-D array containing the Hermite series coefficients, ordered from lowest order term to
highest.

Returns
pol : ndarray

1-D array containing the coefficients of the equivalent polynomial (relative to the “stan-
dard” basis) ordered from lowest order term to highest.

See also:

poly2herm

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([1. , 2.75 , 0.5 , 0.375])
array([0., 1., 2., 3.])

numpy.polynomial.hermite.poly2herm(pol)
Convert a polynomial to a Hermite series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to
highest degree.

Parameters
pol : array_like

912 Chapter 3. Routines

NumPy Reference, Release 1.11.1

1-D array containing the polynomial coefficients

Returns
c : ndarray

1-D array containing the coefficients of the equivalent Hermite series.

See also:

herm2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import poly2herm
>>> poly2herm(np.arange(4))
array([1. , 2.75 , 0.5 , 0.375])

HermiteE Module, “Probabilists”’ (numpy.polynomial.hermite_e)

New in version 1.6.0.

This module provides a number of objects (mostly functions) useful for dealing with HermiteE series, including a
HermiteE class that encapsulates the usual arithmetic operations. (General information on how this module repre-
sents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

HermiteE(coef[, domain, window]) An HermiteE series class.

HermiteE Class
class numpy.polynomial.hermite_e.HermiteE(coef, domain=None, window=None)

An HermiteE series class.

The HermiteE class provides the standard Python numerical methods ‘+’, ‘-‘, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and
‘()’ as well as the attributes and methods listed in the ABCPolyBase documentation.

Parameters
coef : array_like

HermiteE coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*He_0(x) + 2*He_1(X) + 3*He_2(x).

domain : (2,) array_like, optional

Domain to use. The interval [domain[0], domain[1]] is mapped to the interval
[window[0], window[1]] by shifting and scaling. The default value is [-1, 1].

window : (2,) array_like, optional

Window, see domain for its use. The default value is [-1, 1].

New in version 1.6.0.

Methods

__call__(arg)
basis(deg[, domain, window]) Series basis polynomial of degree deg.

Continued on next page

3.23. Polynomials 913

NumPy Reference, Release 1.11.1

Table 3.136 – continued from previous page
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, window]) Least squares fit to data.
fromroots(roots[, domain, window]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

HermiteE.__call__(arg)

HermiteE.basis(deg, domain=None, window=None)
Series basis polynomial of degree deg.

Returns the series representing the basis polynomial of degree deg.

New in version 1.7.0.

Parameters
deg : int

Degree of the basis polynomial for the series. Must be >= 0.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series with the coefficient of the deg term set to one and all others zero.

HermiteE.cast(series, domain=None, window=None)
Convert series to series of this class.

The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

New in version 1.7.0.

914 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
series : series

The series instance to be converted.

domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

HermiteE.convert(domain=None, kind=None, window=None)
Convert series to a different kind and/or domain and/or window.

Parameters
domain : array_like, optional

The domain of the converted series. If the value is None, the default domain of kind is
used.

kind : class, optional

The polynomial series type class to which the current instance should be converted. If
kind is None, then the class of the current instance is used.

window : array_like, optional

The window of the converted series. If the value is None, the default window of kind is
used.

Returns
new_series : series

The returned class can be of different type than the current instance and/or have a dif-
ferent domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.

HermiteE.copy()
Return a copy.

Returns
new_series : series

Copy of self.

3.23. Polynomials 915

NumPy Reference, Release 1.11.1

HermiteE.cutdeg(deg)
Truncate series to the given degree.

Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

New in version 1.5.0.

Parameters
deg : non-negative int

The series is reduced to degree deg by discarding the high order terms. The value of deg
must be a non-negative integer.

Returns
new_series : series

New instance of series with reduced degree.

HermiteE.degree()
The degree of the series.

New in version 1.5.0.

Returns
degree : int

Degree of the series, one less than the number of coefficients.

HermiteE.deriv(m=1)
Differentiate.

Return a series instance of that is the derivative of the current series.

Parameters
m : non-negative int

Find the derivative of order m.

Returns
new_series : series

A new series representing the derivative. The domain is the same as the domain of the
differentiated series.

HermiteE.fit(x, y, deg, domain=None, rcond=None, full=False, w=None, window=None)
Least squares fit to data.

Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

916 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

domain : {None, [beg, end], []}, optional

Domain to use for the returned series. If None, then a minimal domain that covers the
points x is chosen. If [] the class domain is used. The default value was the class
domain in NumPy 1.4 and None in later versions. The [] option was added in numpy
1.5.0.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

New in version 1.5.0.

window : {[beg, end]}, optional

Window to use for the returned series. The default value is the default class domain

New in version 1.6.0.

Returns
new_series : series

A series that represents the least squares fit to the data and has the domain specified in
the call.

[resid, rank, sv, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

HermiteE.fromroots(roots, domain=[], window=None)
Return series instance that has the specified roots.

Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots : array_like

List of roots.

domain : {[], None, array_like}, optional

3.23. Polynomials 917

NumPy Reference, Release 1.11.1

Domain for the resulting series. If None the domain is the interval from the smallest
root to the largest. If [] the domain is the class domain. The default is [].

window : {None, array_like}, optional

Window for the returned series. If None the class window is used. The default is None.

Returns
new_series : series

Series with the specified roots.

HermiteE.has_samecoef(other)
Check if coefficients match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the coef attribute.

Returns
bool : boolean

True if the coefficients are the same, False otherwise.

HermiteE.has_samedomain(other)
Check if domains match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the domain attribute.

Returns
bool : boolean

True if the domains are the same, False otherwise.

HermiteE.has_sametype(other)
Check if types match.

New in version 1.7.0.

Parameters
other : object

Class instance.

Returns
bool : boolean

True if other is same class as self

HermiteE.has_samewindow(other)
Check if windows match.

New in version 1.6.0.

Parameters
other : class instance

The other class must have the window attribute.

918 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
bool : boolean

True if the windows are the same, False otherwise.

HermiteE.identity(domain=None, window=None)
Identity function.

If p is the returned series, then p(x) == x for all values of x.

Parameters
domain : {None, array_like}, optional

If given, the array must be of the form [beg, end], where beg and end are the
endpoints of the domain. If None is given then the class domain is used. The default is
None.

window : {None, array_like}, optional

If given, the resulting array must be if the form [beg, end], where beg and end
are the endpoints of the window. If None is given then the class window is used. The
default is None.

Returns
new_series : series

Series of representing the identity.

HermiteE.integ(m=1, k=[], lbnd=None)
Integrate.

Return a series instance that is the definite integral of the current series.

Parameters
m : non-negative int

The number of integrations to perform.

k : array_like

Integration constants. The first constant is applied to the first integration, the second to
the second, and so on. The list of values must less than or equal to m in length and any
missing values are set to zero.

lbnd : Scalar

The lower bound of the definite integral.

Returns
new_series : series

A new series representing the integral. The domain is the same as the domain of the
integrated series.

HermiteE.linspace(n=100, domain=None)
Return x, y values at equally spaced points in domain.

Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial
at the points x. By default the domain is the same as that of the series instance. This method is intended
mostly as a plotting aid.

New in version 1.5.0.

Parameters
n : int, optional

3.23. Polynomials 919

NumPy Reference, Release 1.11.1

Number of point pairs to return. The default value is 100.

domain : {None, array_like}, optional

If not None, the specified domain is used instead of that of the calling instance. It should
be of the form [beg,end]. The default is None which case the class domain is used.

Returns
x, y : ndarray

x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated at
element of x.

HermiteE.mapparms()
Return the mapping parameters.

The returned values define a linear map off + scl*x that is applied to the input arguments before
the series is evaluated. The map depends on the domain and window; if the current domain is equal
to the window the resulting map is the identity. If the coefficients of the series instance are to be used
by themselves outside this class, then the linear function must be substituted for the x in the standard
representation of the base polynomials.

Returns
off, scl : float or complex

The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

HermiteE.roots()
Return the roots of the series polynomial.

Compute the roots for the series. Note that the accuracy of the roots decrease the further outside the domain
they lie.

Returns
roots : ndarray

Array containing the roots of the series.

HermiteE.trim(tol=0)
Remove trailing coefficients

Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the
beginning of the series is reached. If all the coefficients would be removed the series is set to [0]. A new
series instance is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol : non-negative number.

All trailing coefficients less than tol will be removed.

Returns
new_series : series

Contains the new set of coefficients.

920 Chapter 3. Routines

NumPy Reference, Release 1.11.1

HermiteE.truncate(size)
Truncate series to length size.

Reduce the series to length size by discarding the high degree terms. The value of size must be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very
small.

Parameters
size : positive int

The series is reduced to length size by discarding the high degree terms. The value of
size must be a positive integer.

Returns
new_series : series

New instance of series with truncated coefficients.

hermeval(x, c[, tensor]) Evaluate an HermiteE series at points x.
hermeval2d(x, y, c) Evaluate a 2-D HermiteE series at points (x, y).
hermeval3d(x, y, z, c) Evaluate a 3-D Hermite_e series at points (x, y, z).
hermegrid2d(x, y, c) Evaluate a 2-D HermiteE series on the Cartesian product of x and y.
hermegrid3d(x, y, z, c) Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.
hermeroots(c) Compute the roots of a HermiteE series.
hermefromroots(roots) Generate a HermiteE series with given roots.

Basics
numpy.polynomial.hermite_e.hermeval(x, c, tensor=True)

Evaluate an HermiteE series at points x.

If c is of length n + 1, this function returns the value:

𝑝(𝑥) = 𝑐0 *𝐻𝑒0(𝑥) + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In
either case, either x or its elements must support multiplication and addition both with themselves and with the
elements of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a
concern.

Parameters
x : array_like, compatible object

If x is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and
treated as a scalar. In either case, x or its elements must support addition and multipli-
cation with with themselves and with the elements of c.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree n are contained
in c[n]. If c is multidimensional the remaining indices enumerate multiple polynomials.
In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

3.23. Polynomials 921

NumPy Reference, Release 1.11.1

tensor : boolean, optional

If True, the shape of the coefficient array is extended with ones on the right, one for each
dimension of x. Scalars have dimension 0 for this action. The result is that every column
of coefficients in c is evaluated for every element of x. If False, x is broadcast over the
columns of c for the evaluation. This keyword is useful when c is multidimensional.
The default value is True.

New in version 1.7.0.

Returns
values : ndarray, algebra_like

The shape of the return value is described above.

See also:

hermeval2d, hermegrid2d, hermeval3d, hermegrid3d

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite_e import hermeval
>>> coef = [1,2,3]
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
array([[3., 14.],

[31., 54.]])

numpy.polynomial.hermite_e.hermeval2d(x, y, c)
Evaluate a 2-D HermiteE series at points (x, y).

This function returns the values:

𝑝(𝑥, 𝑦) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.

If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be
c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points (x, y), where x and y must have the
same shape. If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is con-
tained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values : ndarray, compatible object

922 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The values of the two dimensional polynomial at points formed with pairs of corre-
sponding values from x and y.

See also:

hermeval, hermegrid2d, hermeval3d, hermegrid3d

Notes

numpy.polynomial.hermite_e.hermeval3d(x, y, z, c)
Evaluate a 3-D Hermite_e series at points (x, y, z).

This function returns the values:

𝑝(𝑥, 𝑦, 𝑧) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦) *𝐻𝑒𝑘(𝑧)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements
must support multiplication and addition both with themselves and with the elements of c.

If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape.

Parameters
x, y, z : array_like, compatible object

The three dimensional series is evaluated at the points (x, y, z), where x, y, and z must
have the same shape. If any of x, y, or z is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k
is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the multidimensional polynomial on points formed with triples of corre-
sponding values from x, y, and z.

See also:

hermeval, hermeval2d, hermegrid2d, hermegrid3d

Notes

numpy.polynomial.hermite_e.hermegrid2d(x, y, c)
Evaluate a 2-D HermiteE series on the Cartesian product of x and y.

This function returns the values:

𝑝(𝑎, 𝑏) =
∑︁
𝑖,𝑗

𝑐𝑖,𝑗 *𝐻𝑖(𝑎) *𝐻𝑗(𝑏)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x and y or their elements must support multiplication and addition both with
themselves and with the elements of c.

3.23. Polynomials 923

NumPy Reference, Release 1.11.1

If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the
result will be c.shape[2:] + x.shape.

Parameters
x, y : array_like, compatible objects

The two dimensional series is evaluated at the points in the Cartesian product of x and y.
If x or y is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged
and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

See also:

hermeval, hermeval2d, hermeval3d, hermegrid3d

Notes

numpy.polynomial.hermite_e.hermegrid3d(x, y, z, c)
Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.

This function returns the values:

𝑝(𝑎, 𝑏, 𝑐) =
∑︁
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘 *𝐻𝑒𝑖(𝑎) *𝐻𝑒𝑗(𝑏) *𝐻𝑒𝑘(𝑐)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.

If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z : array_like, compatible objects

The three dimensional series is evaluated at the points in the Cartesian product of x, y,
and z. If x,‘y‘, or z is a list or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c : array_like

Array of coefficients ordered so that the coefficients for terms of degree i,j are contained
in c[i,j]. If c has dimension greater than two the remaining indices enumerate mul-
tiple sets of coefficients.

Returns
values : ndarray, compatible object

The values of the two dimensional polynomial at points in the Cartesian product of x
and y.

924 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

hermeval, hermeval2d, hermegrid2d, hermeval3d

Notes

numpy.polynomial.hermite_e.hermeroots(c)
Compute the roots of a HermiteE series.

Return the roots (a.k.a. “zeros”) of the polynomial

𝑝(𝑥) =
∑︁
𝑖

𝑐[𝑖] *𝐻𝑒𝑖(𝑥).

Parameters
c : 1-D array_like

1-D array of coefficients.

Returns
out : ndarray

Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

polyroots, legroots, lagroots, hermroots, chebroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the series for such values. Roots with
multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

The HermiteE series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
array([0., 2., 0., 1.])
>>> hermeroots(coef)
array([-1., 0., 1.])

numpy.polynomial.hermite_e.hermefromroots(roots)
Generate a HermiteE series with given roots.

The function returns the coefficients of the polynomial

𝑝(𝑥) = (𝑥− 𝑟0) * (𝑥− 𝑟1) * ... * (𝑥− 𝑟𝑛),

in HermiteE form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks
something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥)

The coefficient of the last term is not generally 1 for monic polynomials in HermiteE form.

3.23. Polynomials 925

NumPy Reference, Release 1.11.1

Parameters
roots : array_like

Sequence containing the roots.

Returns
out : ndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots
are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

polyfromroots, legfromroots, lagfromroots, hermfromroots, chebfromroots.

Examples

>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

hermefit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermevander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermevander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermevander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.

Fitting
numpy.polynomial.hermite_e.hermefit(x, y, deg, rcond=None, full=False, w=None)

Least squares fit of Hermite series to data.

Return the coefficients of a HermiteE series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

𝑝(𝑥) = 𝑐0 + 𝑐1 *𝐻𝑒1(𝑥) + ... + 𝑐𝑛 *𝐻𝑒𝑛(𝑥),

where n is deg.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If deg is a single integer all terms up to and includ-
ing the deg‘th term are included in the fit. For Numpy versions >= 1.11 a list of integers
specifying the degrees of the terms to include may be used instead.

926 Chapter 3. Routines

NumPy Reference, Release 1.11.1

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights. If not None, the contribution of each point (x[i],y[i]) to the fit is
weighted by w[i]. Ideally the weights are chosen so that the errors of the products
w[i]*y[i] all have the same variance. The default value is None.

Returns
coef : ndarray, shape (M,) or (M, K)

Hermite coefficients ordered from low to high. If y was 2-D, the coefficients for the data
in column k of y are in column k.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full = True

resid – sum of squared residuals of the least squares fit rank – the numerical rank of
the scaled Vandermonde matrix sv – singular values of the scaled Vandermonde matrix
rcond – value of rcond.

For more details, see linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)

See also:

chebfit, legfit, polyfit, hermfit, polyfit

hermeval
Evaluates a Hermite series.

hermevander
pseudo Vandermonde matrix of Hermite series.

hermeweight
HermiteE weight function.

linalg.lstsq
Computes a least-squares fit from the matrix.

scipy.interpolate.UnivariateSpline
Computes spline fits.

3.23. Polynomials 927

NumPy Reference, Release 1.11.1

Notes

The solution is the coefficients of the HermiteE series p that minimizes the sum of the weighted squared errors

𝐸 =
∑︁
𝑗

𝑤2
𝑗 * |𝑦𝑗 − 𝑝(𝑥𝑗)|2,

where the 𝑤𝑗 are the weights. This problem is solved by setting up the (typically) overdetermined matrix
equation

𝑉 (𝑥) * 𝑐 = 𝑤 * 𝑦,

where V is the pseudo Vandermonde matrix of x, the elements of c are the coefficients to be solved for, and the
elements of y are the observed values. This equation is then solved using the singular value decomposition of V.

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued. This
means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the
warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.

Fits using HermiteE series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the HermiteE weight. In that case the weight sqrt(w(x[i]) should be used together
with data values y[i]/sqrt(w(x[i]). The weight function is available as hermeweight.

References

[R62]

Examples

>>> from numpy.polynomial.hermite_e import hermefik, hermeval
>>> x = np.linspace(-10, 10)
>>> err = np.random.randn(len(x))/10
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
array([1.01690445, 1.99951418, 2.99948696])

numpy.polynomial.hermite_e.hermevander(x, deg)
Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix
is defined by

𝑉 [..., 𝑖] = 𝐻𝑒𝑖(𝑥),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
HermiteE polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermevander(x, n), then
np.dot(V, c) and hermeval(x, c) are the same up to roundoff. This equivalence is useful both for
least squares fitting and for the evaluation of a large number of HermiteE series of the same degree and sample
points.

Parameters
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether
any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

928 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
vander : ndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding HermiteE poly-
nomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[1., -1., 0., 2.],

[1., 0., -1., -0.],
[1., 1., 0., -2.]])

numpy.polynomial.hermite_e.hermevander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

𝑉 [..., 𝑑𝑒𝑔[1] * 𝑖 + 𝑗] = 𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y) and the last
index encodes the degrees of the HermiteE polynomials.

If V = hermevander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of
a 2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

𝑐00, 𝑐01, 𝑐02..., 𝑐10, 𝑐11, 𝑐12...

and np.dot(V, c.flat) and hermeval2d(x, y, c) will be the same up to roundoff. This equiva-
lence is useful both for least squares fitting and for the evaluation of a large number of 2-D HermiteE series of
the same degrees and sample points.

Parameters
x, y : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1). The dtype will be the same as the converted x and y.

See also:

hermevander, hermevander3d., hermeval3d

Notes

numpy.polynomial.hermite_e.hermevander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.

3.23. Polynomials 929

NumPy Reference, Release 1.11.1

Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then Hehe pseudo-Vandermonde matrix is defined by

𝑉 [..., (𝑚 + 1)(𝑛 + 1)𝑖 + (𝑛 + 1)𝑗 + 𝑘] = 𝐻𝑒𝑖(𝑥) *𝐻𝑒𝑗(𝑦) *𝐻𝑒𝑘(𝑧),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x, y, z) and the
last index encodes the degrees of the HermiteE polynomials.

If V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to
the elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

𝑐000, 𝑐001, 𝑐002, ..., 𝑐010, 𝑐011, 𝑐012, ...

and np.dot(V, c.flat) and hermeval3d(x, y, z, c)will be the same up to roundoff. This equiv-
alence is useful both for least squares fitting and for the evaluation of a large number of 3-D HermiteE series of
the same degrees and sample points.

Parameters
x, y, z : array_like

Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex.
Scalars are converted to 1-D arrays.

deg : list of ints

List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d : ndarray

The shape of the returned matrix is x.shape + (order,), where 𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑒𝑔[0] + 1) * (𝑑𝑒𝑔([1] + 1) * (𝑑𝑒𝑔[2] + 1). The dtype will be the same as the con-
verted x, y, and z.

See also:

hermevander, hermevander3d., hermeval3d

Notes

hermeder(c[, m, scl, axis]) Differentiate a Hermite_e series.
hermeint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite_e series.

Calculus
numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)

Differentiate a Hermite_e series.

Returns the series coefficients c differentiated m times along axis. At each iteration the result is mul-
tiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an ar-
ray of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*He_0 +
2*He_1 + 3*He_2 while [[1,2],[1,2]] represents 1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) +
2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Hermite_e series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

930 Chapter 3. Routines

NumPy Reference, Release 1.11.1

m : int, optional

Number of derivatives taken, must be non-negative. (Default: 1)

scl : scalar, optional

Each differentiation is multiplied by scl. The end result is multiplication by scl**m.
This is for use in a linear change of variable. (Default: 1)

axis : int, optional

Axis over which the derivative is taken. (Default: 0).

New in version 1.7.0.

Returns
der : ndarray

Hermite series of the derivative.

See also:

hermeint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([1., 1., 1., 1.])
array([1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4], m=2)
array([1., 2., 3.])

numpy.polynomial.hermite_e.hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite_e series.

Returns the Hermite_e series coefficients c integrated m times from lbnd along axis. At each iteration the
resulting series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use
in a linear change of variable. (“Buyer beware”: note that, depending on what one is doing, one may want
scl to be the reciprocal of what one might expect; for more information, see the Notes section below.) The
argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series
H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters
c : array_like

Array of Hermite_e series coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding
index.

m : int, optional

Order of integration, must be positive. (Default: 1)

k : {[], list, scalar}, optional

Integration constant(s). The value of the first integral at lbnd is the first value in the
list, the value of the second integral at lbnd is the second value, etc. If k == [] (the
default), all constants are set to zero. If m == 1, a single scalar can be given instead of
a list.

3.23. Polynomials 931

NumPy Reference, Release 1.11.1

lbnd : scalar, optional

The lower bound of the integral. (Default: 0)

scl : scalar, optional

Following each integration the result is multiplied by scl before the integration constant
is added. (Default: 1)

axis : int, optional

Axis over which the integral is taken. (Default: 0).

New in version 1.7.0.

Returns
S : ndarray

Hermite_e series coefficients of the integral.

Raises
ValueError

If m < 0, len(k) > m, np.isscalar(lbnd) == False, or
np.isscalar(scl) == False.

See also:

hermeder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable 𝑢 = 𝑎𝑥+ 𝑏 in an integral relative to x. Then .. math::dx = du/a, so one will need to set
scl equal to 1/𝑎 - perhaps not what one would have first thought.

Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis
set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
array([1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25])
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
array([2., 1., 1., 1.])
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
array([1.83333333, 0. , 0.5 , 0.33333333, 0.25])

hermeadd(c1, c2) Add one Hermite series to another.
hermesub(c1, c2) Subtract one Hermite series from another.
hermemul(c1, c2) Multiply one Hermite series by another.
hermemulx(c) Multiply a Hermite series by x.
hermediv(c1, c2) Divide one Hermite series by another.
hermepow(c, pow[, maxpower]) Raise a Hermite series to a power.

932 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Algebra
numpy.polynomial.hermite_e.hermeadd(c1, c2)

Add one Hermite series to another.

Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the Hermite series of their sum.

See also:

hermesub, hermemul, hermediv , hermepow

Notes

Unlike multiplication, division, etc., the sum of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

numpy.polynomial.hermite_e.hermesub(c1, c2)
Subtract one Hermite series from another.

Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Of Hermite series coefficients representing their difference.

See also:

hermeadd, hermemul, hermediv , hermepow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

3.23. Polynomials 933

NumPy Reference, Release 1.11.1

numpy.polynomial.hermite_e.hermemul(c1, c2)
Multiply one Hermite series by another.

Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Of Hermite series coefficients representing their product.

See also:

hermeadd, hermesub, hermediv , hermepow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis
set, which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
array([14., 15., 28., 7., 6.])

numpy.polynomial.hermite_e.hermemulx(c)
Multiply a Hermite series by x.

Multiply the Hermite series c by x, where x is the independent variable.

Parameters
c : array_like

1-D array of Hermite series coefficients ordered from low to high.

Returns
out : ndarray

Array representing the result of the multiplication.

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x)))

Examples

>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
array([2., 7., 2., 3.])

numpy.polynomial.hermite_e.hermediv(c1, c2)
Divide one Hermite series by another.

Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

934 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
c1, c2 : array_like

1-D arrays of Hermite series coefficients ordered from low to high.

Returns
[quo, rem] : ndarrays

Of Hermite series coefficients representing the quotient and remainder.

See also:

hermeadd, hermesub, hermemul, hermepow

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms
that are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([14., 15., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermediv([15., 17., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 2.]))

numpy.polynomial.hermite_e.hermepow(c, pow, maxpower=16)
Raise a Hermite series to a power.

Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c : array_like

1-D array of Hermite series coefficients ordered from low to high.

pow : integer

Power to which the series will be raised

maxpower : integer, optional

Maximum power allowed. This is mainly to limit growth of the series to unmanageable
size. Default is 16

Returns
coef : ndarray

Hermite series of power.

See also:

hermeadd, hermesub, hermemul, hermediv

Examples

>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
array([23., 28., 46., 12., 9.])

3.23. Polynomials 935

NumPy Reference, Release 1.11.1

hermegauss(deg) Gauss-HermiteE quadrature.
hermeweight(x) Weight function of the Hermite_e polynomials.

Quadrature
numpy.polynomial.hermite_e.hermegauss(deg)

Gauss-HermiteE quadrature.

Computes the sample points and weights for Gauss-HermiteE quadrature. These sample points and weights
will correctly integrate polynomials of degree 2 * 𝑑𝑒𝑔 − 1 or less over the interval [− inf, inf] with the weight
function 𝑓(𝑥) = exp(−𝑥2/2).

Parameters
deg : int

Number of sample points and weights. It must be >= 1.

Returns
x : ndarray

1-D ndarray containing the sample points.

y : ndarray

1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are
determined by using the fact that

𝑤𝑘 = 𝑐/(𝐻𝑒′𝑛(𝑥𝑘) *𝐻𝑒𝑛−1(𝑥𝑘))

where 𝑐 is a constant independent of 𝑘 and 𝑥𝑘 is the k’th root of 𝐻𝑒𝑛, and then scaling the results to get the
right value when integrating 1.

numpy.polynomial.hermite_e.hermeweight(x)
Weight function of the Hermite_e polynomials.

The weight function is exp(−𝑥2/2) and the interval of integration is [− inf, inf]. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters
x : array_like

Values at which the weight function will be computed.

Returns
w : ndarray

The weight function at x.

Notes

hermecompanion(c) Return the scaled companion matrix of c.
hermedomain
hermezero
hermeone
hermex
hermetrim(c[, tol]) Remove “small” “trailing” coefficients from a polynomial.

Continued on next page

936 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Table 3.142 – continued from previous page
hermeline(off, scl) Hermite series whose graph is a straight line.
herme2poly(c) Convert a Hermite series to a polynomial.
poly2herme(pol) Convert a polynomial to a Hermite series.

Miscellaneous
numpy.polynomial.hermite_e.hermecompanion(c)

Return the scaled companion matrix of c.

The basis polynomials are scaled so that the companion matrix is symmetric when c is an HermiteE basis
polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the
eigenvalues are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c : array_like

1-D array of HermiteE series coefficients ordered from low to high degree.

Returns
mat : ndarray

Scaled companion matrix of dimensions (deg, deg).

Notes
numpy.polynomial.hermite_e.hermedomain = array([-1, 1])

numpy.polynomial.hermite_e.hermezero = array([0])

numpy.polynomial.hermite_e.hermeone = array([1])

numpy.polynomial.hermite_e.hermex = array([0, 1])

numpy.polynomial.hermite_e.hermetrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.

“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4)
both the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c : array_like

1-d array of coefficients, ordered from lowest order to highest.

tol : number, optional

Trailing (i.e., highest order) elements with absolute value less than or equal to tol (de-
fault value is zero) are removed.

Returns
trimmed : ndarray

1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

3.23. Polynomials 937

NumPy Reference, Release 1.11.1

If tol < 0

See also:

trimseq

Examples

>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.0010-0.001j])

numpy.polynomial.hermite_e.hermeline(off, scl)
Hermite series whose graph is a straight line.

Parameters
off, scl : scalars

The specified line is given by off + scl*x.

Returns
y : ndarray

This module’s representation of the Hermite series for off + scl*x.

See also:

polyline, chebline

Examples

>>> from numpy.polynomial.hermite_e import hermeline
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
>>> hermeval(0,hermeline(3, 2))
3.0
>>> hermeval(1,hermeline(3, 2))
5.0

numpy.polynomial.hermite_e.herme2poly(c)
Convert a Hermite series to a polynomial.

Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c : array_like

1-D array containing the Hermite series coefficients, ordered from lowest order term to
highest.

Returns
pol : ndarray

1-D array containing the coefficients of the equivalent polynomial (relative to the “stan-
dard” basis) ordered from lowest order term to highest.

938 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

poly2herme

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([2., 10., 2., 3.])
array([0., 1., 2., 3.])

numpy.polynomial.hermite_e.poly2herme(pol)
Convert a polynomial to a Hermite series.

Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from
lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to
highest degree.

Parameters
pol : array_like

1-D array containing the polynomial coefficients

Returns
c : ndarray

1-D array containing the coefficients of the equivalent Hermite series.

See also:

herme2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import poly2herme
>>> poly2herme(np.arange(4))
array([2., 10., 2., 3.])

Poly1d

Basics

poly1d(c_or_r[, r, variable]) A one-dimensional polynomial class.
polyval(p, x) Evaluate a polynomial at specific values.
poly(seq_of_zeros) Find the coefficients of a polynomial with the given sequence of roots.
roots(p) Return the roots of a polynomial with coefficients given in p.

class numpy.poly1d(c_or_r, r=0, variable=None)
A one-dimensional polynomial class.

A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take
on their customary form in code (see Examples).

3.23. Polynomials 939

NumPy Reference, Release 1.11.1

Parameters
c_or_r : array_like

The polynomial’s coefficients, in decreasing powers, or if the value of the second param-
eter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For
example, poly1d([1, 2, 3]) returns an object that represents 𝑥2+2𝑥+3, whereas
poly1d([1, 2, 3], True) returns one that represents (𝑥− 1)(𝑥− 2)(𝑥− 3) =
𝑥3 − 6𝑥2 + 11𝑥− 6.

r : bool, optional

If True, c_or_r specifies the polynomial’s roots; the default is False.

variable : str, optional

Changes the variable used when printing p from x to variable (see Examples).

Examples

Construct the polynomial 𝑥2 + 2𝑥 + 3:

>>> p = np.poly1d([1, 2, 3])
>>> print(np.poly1d(p))

2
1 x + 2 x + 3

Evaluate the polynomial at 𝑥 = 0.5:

>>> p(0.5)
4.25

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
array([-4.44089210e-16+0.j, -4.44089210e-16+0.j])

These numbers in the previous line represent (0, 0) to machine precision

Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial (which is equivalent to p.c[-(i+1)]):

>>> p[1]
2

Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):

>>> p * p
poly1d([1, 4, 10, 12, 9])

>>> (p**3 + 4) / p
(poly1d([1., 4., 10., 12., 9.]), poly1d([4.]))

940 Chapter 3. Routines

NumPy Reference, Release 1.11.1

asarray(p) gives the coefficient array, so polynomials can be used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([1, 4, 10, 12, 9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of p can be modified, using the variable parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print(p)

2
1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([1, -3, 2])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([1, -3, 2])

Attributes

coeffs
order
variable

Methods

__call__(val)
deriv([m]) Return a derivative of this polynomial.
integ([m, k]) Return an antiderivative (indefinite integral) of this polynomial.

poly1d.__call__(val)

poly1d.deriv(m=1)
Return a derivative of this polynomial.

Refer to polyder for full documentation.

See also:

polyder
equivalent function

poly1d.integ(m=1, k=0)
Return an antiderivative (indefinite integral) of this polynomial.

Refer to polyint for full documentation.

See also:

polyint
equivalent function

3.23. Polynomials 941

NumPy Reference, Release 1.11.1

numpy.polyval(p, x)
Evaluate a polynomial at specific values.

If p is of length N, this function returns the value:

p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite
polynomial p(x(t)) is returned.

Parameters
p : array_like or poly1d object

1D array of polynomial coefficients (including coefficients equal to zero) from highest
degree to the constant term, or an instance of poly1d.

x : array_like or poly1d object

A number, an array of numbers, or an instance of poly1d, at which to evaluate p.

Returns
values : ndarray or poly1d

If x is a poly1d instance, the result is the composition of the two polynomials, i.e., x
is “substituted” in p and the simplified result is returned. In addition, the type of x -
array_like or poly1d - governs the type of the output: x array_like => values array_like,
x a poly1d object => values is also.

See also:

poly1d
A polynomial class.

Notes

Horner’s scheme [R65] is used to evaluate the polynomial. Even so, for polynomials of high degree the values
may be inaccurate due to rounding errors. Use carefully.

References

[R65]

Examples

>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
poly1d([76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([76.])

numpy.poly(seq_of_zeros)
Find the coefficients of a polynomial with the given sequence of roots.

Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros
(multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square
matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the
characteristic polynomial of the matrix are returned.

942 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
seq_of_zeros : array_like, shape (N,) or (N, N)

A sequence of polynomial roots, or a square array or matrix object.

Returns
c : ndarray

1D array of polynomial coefficients from highest to lowest degree:

c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]
where c[0] always equals 1.

Raises
ValueError

If input is the wrong shape (the input must be a 1-D or square 2-D array).

See also:

polyval
Compute polynomial values.

roots
Return the roots of a polynomial.

polyfit
Least squares polynomial fit.

poly1d
A one-dimensional polynomial class.

Notes

Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined
leading coefficient. [R56] In the case of this function, that coefficient - the first one in the returned array - is
always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage
that information is to use polyfit.)

The characteristic polynomial, 𝑝𝑎(𝑡), of an n-by-n matrix A is given by

𝑝𝑎(𝑡) = det(𝑡 I−A),

where I is the n-by-n identity matrix. [R57]

References

[R56], [R57]

Examples

Given a sequence of a polynomial’s zeros:

>>> np.poly((0, 0, 0)) # Multiple root example
array([1, 0, 0, 0])

The line above represents z**3 + 0*z**2 + 0*z + 0.

>>> np.poly((-1./2, 0, 1./2))
array([1. , 0. , -0.25, 0.])

The line above represents z**3 - z/4

3.23. Polynomials 943

NumPy Reference, Release 1.11.1

>>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0]))
array([1. , -0.77086955, 0.08618131, 0.]) #random

Given a square array object:

>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
array([1. , 0. , 0.16666667])

Or a square matrix object:

>>> np.poly(np.matrix(P))
array([1. , 0. , 0.16666667])

Note how in all cases the leading coefficient is always 1.

numpy.roots(p)
Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array p are coefficients of a polynomial. If the length of p is n+1 then the polynomial
is described by:

p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]

Parameters
p : array_like

Rank-1 array of polynomial coefficients.

Returns
out : ndarray

An array containing the complex roots of the polynomial.

Raises
ValueError

When p cannot be converted to a rank-1 array.

See also:

poly
Find the coefficients of a polynomial with a given sequence of roots.

polyval
Compute polynomial values.

polyfit
Least squares polynomial fit.

poly1d
A one-dimensional polynomial class.

Notes

The algorithm relies on computing the eigenvalues of the companion matrix [R279].

References

[R279]

944 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])

Fitting

polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[i], y[i]).

y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int

Degree of the fitting polynomial

rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

w : array_like, shape (M,), optional

Weights to apply to the y-coordinates of the sample points. For gaussian uncertainties,
use 1/sigma (not 1/sigma**2).

cov : bool, optional

Return the estimate and the covariance matrix of the estimate If full is True, then cov is
not returned.

Returns
p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the coefficients for k-th data
set are in p[:,k].

residuals, rank, singular_values, rcond :

3.23. Polynomials 945

NumPy Reference, Release 1.11.1

Present only if full = True. Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde coefficient matrix, its singular values, and the specified value of
rcond. For more details, see linalg.lstsq .

V : ndarray, shape (M,M) or (M,M,K)

Present only if full = False and cov‘=True. The covariance matrix of the polynomial
coefficient estimates. The diagonal of this matrix are the variance estimates for each
coefficient. If y is a 2-D array, then the covariance matrix for the ‘k-th data set are in
V[:,:,k]

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

See also:

polyval
Compute polynomial values.

linalg.lstsq
Computes a least-squares fit.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution minimizes the squared error

𝐸 =

𝑘∑︁
𝑗=0

|𝑝(𝑥𝑗) − 𝑦𝑗 |2

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best
fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree
or by replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the
resulting fit may be spurious: including contributions from the small singular values can add numerical noise to
the result.

Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is
large or the interval of sample points is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good alternative.

946 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R58], [R59]

Examples

>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

3.23. Polynomials 947

NumPy Reference, Release 1.11.1

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Calculus

polyder(p[, m]) Return the derivative of the specified order of a polynomial.
polyint(p[, m, k]) Return an antiderivative (indefinite integral) of a polynomial.

numpy.polyder(p, m=1)
Return the derivative of the specified order of a polynomial.

Parameters
p : poly1d or sequence

Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see
poly1d.

m : int, optional

Order of differentiation (default: 1)

Returns
der : poly1d

A new polynomial representing the derivative.

See also:

polyint
Anti-derivative of a polynomial.

poly1d
Class for one-dimensional polynomials.

Examples

The derivative of the polynomial 𝑥3 + 𝑥2 + 𝑥1 + 1 is:

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])

948 Chapter 3. Routines

NumPy Reference, Release 1.11.1

which evaluates to:

>>> p2(2.)
17.0

We can verify this, approximating the derivative with (f(x + h) - f(x))/h:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([0.])

numpy.polyint(p, m=1, k=None)
Return an antiderivative (indefinite integral) of a polynomial.

The returned order m antiderivative P of polynomial p satisfies 𝑑𝑚

𝑑𝑥𝑚𝑃 (𝑥) = 𝑝(𝑥) and is defined up to m - 1
integration constants k. The constants determine the low-order polynomial part

𝑘𝑚−1

0!
𝑥0 + . . . +

𝑘0
(𝑚− 1)!

𝑥𝑚−1

of P so that 𝑃 (𝑗)(0) = 𝑘𝑚−𝑗−1.

Parameters
p : array_like or poly1d

Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see
poly1d.

m : int, optional

Order of the antiderivative. (Default: 1)

k : list of m scalars or scalar, optional

Integration constants. They are given in the order of integration: those corresponding
to highest-order terms come first.

If None (default), all constants are assumed to be zero. If m = 1, a single scalar can be
given instead of a list.

See also:

polyder
derivative of a polynomial

poly1d.integ
equivalent method

Examples

The defining property of the antiderivative:

3.23. Polynomials 949

NumPy Reference, Release 1.11.1

>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
poly1d([0.33333333, 0.5 , 1. , 0.])
>>> np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
poly1d([0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3.])

Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order
polynomial term comes first:

>>> np.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
5.0
>>> P(0)
3.0

Arithmetic

polyadd(a1, a2) Find the sum of two polynomials.
polydiv(u, v) Returns the quotient and remainder of polynomial division.
polymul(a1, a2) Find the product of two polynomials.
polysub(a1, a2) Difference (subtraction) of two polynomials.

numpy.polyadd(a1, a2)
Find the sum of two polynomials.

Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d
object or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters
a1, a2 : array_like or poly1d object

Input polynomials.

Returns
out : ndarray or poly1d object

The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d
object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest
degree.

See also:

poly1d

950 Chapter 3. Routines

NumPy Reference, Release 1.11.1

A one-dimensional polynomial class.

poly , polyadd, polyder, polydiv , polyfit, polyint, polysub, polyval

Examples

>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print(p1)
1 x + 2
>>> print(p2)

2
9 x + 5 x + 4
>>> print(np.polyadd(p1, p2))

2
9 x + 6 x + 6

numpy.polydiv(u, v)
Returns the quotient and remainder of polynomial division.

The input arrays are the coefficients (including any coefficients equal to zero) of the “numerator” (dividend) and
“denominator” (divisor) polynomials, respectively.

Parameters
u : array_like or poly1d

Dividend polynomial’s coefficients.

v : array_like or poly1d

Divisor polynomial’s coefficients.

Returns
q : ndarray

Coefficients, including those equal to zero, of the quotient.

r : ndarray

Coefficients, including those equal to zero, of the remainder.

See also:

poly , polyadd, polyder, polydiv , polyfit, polyint, polymul, polysub, polyval

Notes

Both u and v must be 0-d or 1-d (ndim = 0 or 1), but u.ndim need not equal v.ndim. In other words, all four
possible combinations - u.ndim = v.ndim = 0, u.ndim = v.ndim = 1, u.ndim = 1, v.ndim
= 0, and u.ndim = 0, v.ndim = 1 - work.

Examples

3𝑥2 + 5𝑥 + 2

2𝑥 + 1
= 1.5𝑥 + 1.75, 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟0.25

3.23. Polynomials 951

NumPy Reference, Release 1.11.1

>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
(array([1.5 , 1.75]), array([0.25]))

numpy.polymul(a1, a2)
Find the product of two polynomials.

Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either
a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters
a1, a2 : array_like or poly1d object

Input polynomials.

Returns
out : ndarray or poly1d object

The polynomial resulting from the multiplication of the inputs. If either inputs is a
poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of
polynomial coefficients from highest to lowest degree.

See also:

poly1d
A one-dimensional polynomial class.

poly , polyadd, polyder, polydiv , polyfit, polyint, polysub, polyval

convolve
Array convolution. Same output as polymul, but has parameter for overlap mode.

Examples

>>> np.polymul([1, 2, 3], [9, 5, 1])
array([9, 23, 38, 17, 3])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2, 3])
>>> p2 = np.poly1d([9, 5, 1])
>>> print(p1)

2
1 x + 2 x + 3
>>> print(p2)

2
9 x + 5 x + 1
>>> print(np.polymul(p1, p2))

4 3 2
9 x + 23 x + 38 x + 17 x + 3

numpy.polysub(a1, a2)
Difference (subtraction) of two polynomials.

Given two polynomials a1 and a2, returns a1 - a2. a1 and a2 can be either array_like sequences of the
polynomials’ coefficients (including coefficients equal to zero), or poly1d objects.

Parameters
a1, a2 : array_like or poly1d

952 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Minuend and subtrahend polynomials, respectively.

Returns
out : ndarray or poly1d

Array or poly1d object of the difference polynomial’s coefficients.

See also:

polyval, polydiv , polymul, polyadd

Examples

(2𝑥2 + 10𝑥− 2) − (3𝑥2 + 10𝑥− 4) = (−𝑥2 + 2)

>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])

Warnings

RankWarning Issued by polyfit when the Vandermonde matrix is rank deficient.

exception numpy.RankWarning
Issued by polyfit when the Vandermonde matrix is rank deficient.

For more information, a way to suppress the warning, and an example of RankWarning being issued, see
polyfit.

3.24 Random sampling (numpy.random)

3.24.1 Simple random data

rand(d0, d1, ..., dn) Random values in a given shape.
randn(d0, d1, ..., dn) Return a sample (or samples) from the “standard normal” distribution.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).
random_integers(low[, high, size]) Random integers of type np.int between low and high, inclusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
random([size]) Return random floats in the half-open interval [0.0, 1.0).
ranf([size]) Return random floats in the half-open interval [0.0, 1.0).
sample([size]) Return random floats in the half-open interval [0.0, 1.0).
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
bytes(length) Return random bytes.

numpy.random.rand(d0, d1, ..., dn)
Random values in a given shape.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0,
1).

Parameters
d0, d1, ..., dn : int, optional

3.24. Random sampling (numpy.random) 953

NumPy Reference, Release 1.11.1

The dimensions of the returned array, should all be positive. If no argument is given a
single Python float is returned.

Returns
out : ndarray, shape (d0, d1, ..., dn)

Random values.

See also:

random

Notes

This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to
np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random

[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

numpy.random.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided, randn generates an array of shape (d0, d1,
..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and
variance 1 (if any of the 𝑑𝑖 are floats, they are first converted to integers by truncation). A single float randomly
sampled from the distribution is returned if no argument is provided.

This is a convenience function. If you want an interface that takes a tuple as the first argument, use
numpy.random.standard_normal instead.

Parameters
d0, d1, ..., dn : int, optional

The dimensions of the returned array, should be all positive. If no argument is given a
single Python float is returned.

Returns
Z : ndarray or float

A (d0, d1, ..., dn)-shaped array of floating-point samples from the standard
normal distribution, or a single such float if no parameters were supplied.

See also:

random.standard_normal
Similar, but takes a tuple as its argument.

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

954 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

numpy.random.randint(low, high=None, size=None, dtype=’l’)
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Parameters
low : int

Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high : int, optional

If provided, one above the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

dtype : dtype, optional

Desired dtype of the result. All dtypes are determined by their name, i.e., ‘int64’, ‘int’,
etc, so byteorder is not available and a specific precision may have different C types
depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns
out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such
random int if size not provided.

See also:

random.random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
In particular, this other one is the one to use to generate uniformly distributed discrete non-integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],

[3, 2, 2, 0]])

numpy.random.random_integers(low, high=None, size=None)
Random integers of type np.int between low and high, inclusive.

3.24. Random sampling (numpy.random) 955

NumPy Reference, Release 1.11.1

Return random integers of type np.int from the “discrete uniform” distribution in the closed interval [low, high].
If high is None (the default), then results are from [1, low]. The np.int type translates to the C long type used by
Python 2 for “short” integers and its precision is platform dependent.

This function has been deprecated. Use randint instead.

Deprecated since version 1.11.0.

Parameters
low : int

Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high : int, optional

If provided, the largest (signed) integer to be drawn from the distribution (see above for
behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such
random int if size not provided.

See also:

random.randint
Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if
high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],

[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5])

Roll two six sided dice 1000 times and sum the results:

956 Chapter 3. Routines

http://docs.python.org/dev/library/random.html#random.randint

NumPy Reference, Release 1.11.1

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()

2 4 6 8 10 12
0.00

0.05

0.10

0.15

numpy.random.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which case a single float
is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

3.24. Random sampling (numpy.random) 957

NumPy Reference, Release 1.11.1

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.random(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which case a single float
is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.ranf(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray of floats

958 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Array of random floats of shape size (unless size=None, in which case a single float
is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which case a single float
is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

numpy.random.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

New in version 1.7.0.

3.24. Random sampling (numpy.random) 959

NumPy Reference, Release 1.11.1

Parameters
a : 1-D array-like or int

If an ndarray, a random sample is generated from its elements. If an int, the random
sample is generated as if a was np.arange(n)

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

replace : boolean, optional

Whether the sample is with or without replacement

p : 1-D array-like, optional

The probabilities associated with each entry in a. If not given the sample assumes a
uniform distribution over all entries in a.

Returns
samples : 1-D ndarray, shape (size,)

The generated random samples

Raises
ValueError

If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like
of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population size

See also:

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

960 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],

dtype='|S11')

numpy.random.bytes(length)
Return random bytes.

Parameters
length : int

Number of random bytes.

Returns
out : str

String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

3.24.2 Permutations

shuffle(x) Modify a sequence in-place by shuffling its contents.
permutation(x) Randomly permute a sequence, or return a permuted range.

numpy.random.shuffle(x)
Modify a sequence in-place by shuffling its contents.

Parameters
x : array_like

The array or list to be shuffled.

Returns
None

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],

[6, 7, 8],
[0, 1, 2]])

numpy.random.permutation(x)
Randomly permute a sequence, or return a permuted range.

3.24. Random sampling (numpy.random) 961

NumPy Reference, Release 1.11.1

If x is a multi-dimensional array, it is only shuffled along its first index.

Parameters
x : int or array_like

If x is an integer, randomly permute np.arange(x). If x is an array, make a copy
and shuffle the elements randomly.

Returns
out : ndarray

Permuted sequence or array range.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],

[0, 1, 2],
[3, 4, 5]])

3.24.3 Distributions

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
chisquare(df[, size]) Draw samples from a chi-square distribution.
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).
logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distribution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with specified shape.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.

Continued on next page

962 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Table 3.151 – continued from previous page
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution (mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student’s t distribution with df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution.
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distribution.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

numpy.random.beta(a, b, size=None)
Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It
has the probability distribution function

𝑓(𝑥; 𝑎, 𝑏) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,

where the normalisation, B, is the beta function,

𝐵(𝛼, 𝛽) =

∫︁ 1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

It is often seen in Bayesian inference and order statistics.

Parameters
a : float

Alpha, non-negative.

b : float

Beta, non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Array of the given shape, containing values drawn from a Beta distribution.

numpy.random.binomial(n, p, size=None)
Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer
in use)

Parameters
n : float (but truncated to an integer)

parameter, >= 0.

p : float

3.24. Random sampling (numpy.random) 963

NumPy Reference, Release 1.11.1

parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.binom
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the binomial distribution is

𝑃 (𝑁) =

(︂
𝑛

𝑁

)︂
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 ,

where 𝑛 is the number of trials, 𝑝 is the probability of success, and 𝑁 is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal
distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number
of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows
4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial
distribution should be used in this case.

References

[R208], [R209], [R210], [R211], [R212]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

numpy.random.chisquare(df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are
squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in
hypothesis testing.

Parameters
df : int

Number of degrees of freedom.

964 Chapter 3. Routines

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
output : ndarray

Samples drawn from the distribution, packed in a size-shaped array.

Raises
ValueError

When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random vari-
ables:

𝑄 =

df∑︁
𝑖=0

𝑋2
𝑖

is chi-square distributed, denoted

𝑄 ∼ 𝜒2
𝑘.

The probability density function of the chi-squared distribution is

𝑝(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2,

where Γ is the gamma function,

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡.

References

[R213]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

numpy.random.dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be
seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a multinomial
in Bayesian inference.

Parameters
alpha : array

Parameter of the distribution (k dimension for sample of dimension k).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

3.24. Random sampling (numpy.random) 965

NumPy Reference, Release 1.11.1

Returns
samples : ndarray,

The drawn samples, of shape (size, alpha.ndim).

Notes

𝑋 ≈
𝑘∏︁

𝑖=1

𝑥𝛼𝑖−1
𝑖

Uses the following property for computation: for each dimension, draw a random sample y_i from a standard
gamma generator of shape alpha_i, then 𝑋 = 1∑︀𝑘

𝑖=1 𝑦𝑖
(𝑦1, . . . , 𝑦𝑛) is Dirichlet distributed.

References

[R214], [R215]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length,
but allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

numpy.random.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.

Its probability density function is

𝑓(𝑥;
1

𝛽
) =

1

𝛽
exp(−𝑥

𝛽
),

for x > 0 and 0 elsewhere. 𝛽 is the scale parameter, which is the inverse of the rate parameter 𝜆 = 1/𝛽. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [R218].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [R216], or the time between page
requests to Wikipedia [R217].

Parameters
scale : float

The scale parameter, 𝛽 = 1/𝜆.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

References

[R216], [R217], [R218]

966 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.random.f(dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters should be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability
distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters
dfnum : float

Degrees of freedom in numerator. Should be greater than zero.

dfden : float

Degrees of freedom in denominator. Should be greater than zero.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

Samples from the Fisher distribution.

See also:

scipy.stats.distributions.f
probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The
variable dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the
within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

[R219], [R220]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data
gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

3.24. Random sampling (numpy.random) 967

NumPy Reference, Release 1.11.1

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

numpy.random.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale (sometimes designated “theta”), where both parameters are > 0.

Parameters
shape : scalar > 0

The shape of the gamma distribution.

scale : scalar > 0, optional

The scale of the gamma distribution. Default is equal to 1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray, float

Returns one sample unless size parameter is specified.

See also:

scipy.stats.distributions.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[R221], [R222]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean and dispersion
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

968 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0 5 10 15
0.00

0.05

0.10

0.15

numpy.random.geometric(p, size=None)
Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

𝑓(𝑘) = (1 − 𝑝)𝑘−1𝑝

where p is the probability of success of an individual trial.

Parameters
p : float

The probability of success of an individual trial.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Samples from the geometric distribution, shaped according to size.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

3.24. Random sampling (numpy.random) 969

NumPy Reference, Release 1.11.1

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

numpy.random.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the
Gumbel distribution, see Notes and References below.

Parameters
loc : float

The location of the mode of the distribution.

scale : float

The scale parameter of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

See also:

scipy.stats.gumbel_l, scipy.stats.gumbel_r, scipy.stats.genextreme, weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-
like” tails.

The probability density for the Gumbel distribution is

𝑝(𝑥) =
𝑒−(𝑥−𝜇)/𝛽

𝛽
𝑒−𝑒−(𝑥−𝜇)/𝛽

,

where 𝜇 is the mode, a location parameter, and 𝛽 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology
literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and
rainfall rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger
than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially
modeled as a Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which
also includes the Weibull and Frechet.

The function has a mean of 𝜇 + 0.57721𝛽 and a variance of 𝜋2

6 𝛽2.

References

[R223], [R224]

970 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

3.24. Random sampling (numpy.random) 971

NumPy Reference, Release 1.11.1

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

numpy.random.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is less than or
equal to the sum ngood + nbad.

Parameters
ngood : int or array_like

Number of ways to make a good selection. Must be nonnegative.

nbad : int or array_like

Number of ways to make a bad selection. Must be nonnegative.

nsample : int or array_like

Number of items sampled. Must be at least 1 and at most ngood + nbad.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The values are all integers in [0, n].

See also:

scipy.stats.distributions.hypergeom
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

𝑃 (𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ ,

972 Chapter 3. Routines

NumPy Reference, Release 1.11.1

where 0 ≤ 𝑥 ≤ 𝑚 and 𝑛 + 𝑚−𝑁 ≤ 𝑥 ≤ 𝑛

for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples.

Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw nsample
balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the
drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

References

[R225], [R226], [R227]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is
it that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

numpy.random.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Parameters
loc : float, optional

The position, 𝜇, of the distribution peak.

scale : float, optional

𝜆, the exponential decay.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or float

Notes

It has the probability density function

𝑓(𝑥;𝜇, 𝜆) =
1

2𝜆
exp

(︂
−|𝑥− 𝜇|

𝜆

)︂
.

3.24. Random sampling (numpy.random) 973

NumPy Reference, Release 1.11.1

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential
function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems
in economics and health sciences, this distribution seems to model the data better than the standard Gaussian
distribution.

References

[R228], [R229], [R230], [R231]

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

numpy.random.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median),
and scale (>0).

Parameters
loc : float

scale : float > 0.

974 Chapter 3. Routines

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.logistic
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

𝑃 (𝑥) = 𝑃 (𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
,

where 𝜇 = location and 𝑠 = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distribu-
tions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system,
assuming the performance of each player is a logistically distributed random variable.

References

[R232], [R233], [R234]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

numpy.random.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Parameters
mean : float

Mean value of the underlying normal distribution

sigma : float, > 0.

Standard deviation of the underlying normal distribution

3.24. Random sampling (numpy.random) 975

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or float

The desired samples. An array of the same shape as size if given, if size is None a float
is returned.

See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for
the log-normal distribution is:

𝑝(𝑥) =
1

𝜎𝑥
√

2𝜋
𝑒(−

(𝑙𝑛(𝑥)−𝜇)2

2𝜎2)

where 𝜇 is the mean and 𝜎 is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[R235], [R236]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

976 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-
normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, normed=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

3.24. Random sampling (numpy.random) 977

NumPy Reference, Release 1.11.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

numpy.random.logseries(p, size=None)
Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

Parameters
loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.logser
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

𝑃 (𝑘) =
−𝑝𝑘

𝑘 ln(1 − 𝑝)
,

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by
Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars
[3].

References

[R237], [R238], [R239], [R240]

978 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/

logseries(bins, a).max(), 'r')
>>> plt.show()

numpy.random.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experiment
with one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome
can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i =
[X_0, X_1, ..., X_p], represent the number of times the outcome was i.

Parameters
n : int

Number of experiments.

pvals : sequence of floats, length p

Probabilities of each of the p different outcomes. These should sum to 1 (however,
the last element is always assumed to account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],

[2, 4, 3, 4, 0, 7]])

3.24. Random sampling (numpy.random) 979

NumPy Reference, Release 1.11.1

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26])

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored
and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has
twice as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62])

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
array([100, 0])

numpy.random.multivariate_normal(mean, cov[, size])
Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared)
of the one-dimensional normal distribution.

Parameters
mean : 1-D array_like, of length N

Mean of the N-dimensional distribution.

cov : 2-D array_like, of shape (N, N)

Covariance matrix of the distribution. It must be symmetric and positive-semidefinite
for proper sampling.

size : int or tuple of ints, optional

Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in
an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape
is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

Returns
out : ndarray

The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely
to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal
distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution,
we draw N-dimensional samples, 𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁]. The covariance matrix element 𝐶𝑖𝑗 is the covariance of
𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖 is the variance of 𝑥𝑖 (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

•Spherical covariance (cov is a multiple of the identity matrix)

980 Chapter 3. Routines

NumPy Reference, Release 1.11.1

•Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the
behavior of this method is undefined and backwards compatibility is not guaranteed.

References

[R241], [R242]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True]

numpy.random.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n trials and p probability of
success where n is an integer > 0 and p is in the interval [0, 1].

Parameters
n : int

Parameter, > 0.

p : float

Parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : int or ndarray of ints

Drawn samples.

3.24. Random sampling (numpy.random) 981

NumPy Reference, Release 1.11.1

Notes

The probability density for the negative binomial distribution is

𝑃 (𝑁 ;𝑛, 𝑝) =

(︂
𝑁 + 𝑛− 1

𝑛− 1

)︂
𝑝𝑛(1 − 𝑝)𝑁 ,

where 𝑛− 1 is the number of successes, 𝑝 is the probability of success, and 𝑁 + 𝑛− 1 is the number of trials.
The negative binomial distribution gives the probability of n-1 successes and N failures in N+n-1 trials, and
success on the (N+n)th trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number
of non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[R243], [R244]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. What is the probability of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

numpy.random.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.

The noncentral 𝜒2 distribution is a generalisation of the 𝜒2 distribution.

Parameters
df : int

Degrees of freedom, should be > 0 as of Numpy 1.10, should be > 1 for earlier versions.

nonc : float

Non-centrality, should be non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Notes

The probability density function for the noncentral Chi-square distribution is

𝑃 (𝑥; 𝑑𝑓, 𝑛𝑜𝑛𝑐) =

∞∑︁
𝑖=0

𝑒−𝑛𝑜𝑛𝑐/2(𝑛𝑜𝑛𝑐/2)𝑖

𝑖!
¶𝑌𝑑𝑓+2𝑖

(𝑥),

where 𝑌𝑞 is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the
probability of killing the point target given by the noncentral chi-squared distribution.

982 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R245], [R246]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

3.24. Random sampling (numpy.random) 983

NumPy Reference, Release 1.11.1

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

numpy.random.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Parameters
dfnum : int

Parameter, should be > 1.

dfden : int

984 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameter, should be > 1.

nonc : float

Parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

Drawn samples.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a
specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the
F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F
statistic.

References

[R247], [R248]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, normed=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

numpy.random.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by
both Gauss and Laplace independently [R250], is often called the bell curve because of its characteristic shape
(see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution
of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution
[R250].

Parameters
loc : float

Mean (“centre”) of the distribution.

scale : float

Standard deviation (spread or “width”) of the distribution.

3.24. Random sampling (numpy.random) 985

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

See also:

scipy.stats.distributions.norm
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ,

where 𝜇 is the mean and 𝜎 the standard deviation. The square of the standard deviation, 𝜎2, is called the
variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function
reaches 0.607 times its maximum at 𝑥+ 𝜎 and 𝑥− 𝜎 [R250]). This implies that numpy.random.normal is
more likely to return samples lying close to the mean, rather than those far away.

References

[R249], [R250]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

986 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

numpy.random.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The
smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the
standard Pareto distribution has location mu = 1. Lomax can also be considered as a simplified version of the
Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Parameters
shape : float, > 0.

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

See also:

scipy.stats.distributions.lomax.pdf
probability density function, distribution or cumulative density function, etc.

scipy.stats.distributions.genpareto.pdf
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Pareto distribution is

𝑝(𝑥) =
𝑎𝑚𝑎

𝑥𝑎+1

where 𝑎 is the shape and 𝑚 the scale.

3.24. Random sampling (numpy.random) 987

NumPy Reference, Release 1.11.1

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has
also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the
download frequency for projects in Sourceforge [R251]. It is one of the so-called “fat-tailed” distributions.

References

[R251], [R252], [R253], [R254]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, normed=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

numpy.random.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Parameters
lam : float or sequence of float

Expectation of interval, should be >= 0. A sequence of expectation intervals must be
broadcastable over the requested size.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

988 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
samples : ndarray or scalar

The drawn samples, of shape size, if it was provided.

Notes

The Poisson distribution

𝑓(𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!

For events with an expected separation 𝜆 the Poisson distribution 𝑓(𝑘;𝜆) describes the probability of 𝑘 events
occurring within the observed interval 𝜆.

Because the output is limited to the range of the C long type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

References

[R255], [R256]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, normed=True)
>>> plt.show()

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

numpy.random.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

3.24. Random sampling (numpy.random) 989

NumPy Reference, Release 1.11.1

Also known as the power function distribution.

Parameters
a : float

parameter, > 0

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The returned samples lie in [0, 1].

Raises
ValueError

If a < 1.

Notes

The probability density function is

𝑃 (𝑥; 𝑎) = 𝑎𝑥𝑎−1, 0 ≤ 𝑥 ≤ 1, 𝑎 > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special
case of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

[R257], [R258]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

990 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

3.24. Random sampling (numpy.random) 991

NumPy Reference, Release 1.11.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

992 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

numpy.random.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.

The 𝜒 and Weibull distributions are generalizations of the Rayleigh.

Parameters
scale : scalar

Scale, also equals the mode. Should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Notes

The probability density function for the Rayleigh distribution is

𝑃 (𝑥; 𝑠𝑐𝑎𝑙𝑒) =
𝑥

𝑠𝑐𝑎𝑙𝑒2
𝑒

−𝑥2

2·𝑠𝑐𝑎𝑙𝑒2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[R259], [R260]

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves
are likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

3.24. Random sampling (numpy.random) 993

NumPy Reference, Release 1.11.1

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

numpy.random.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

𝑃 (𝑥;𝑥0, 𝛾) =
1

𝜋𝛾
[︀
1 + (𝑥−𝑥0

𝛾)2
]︀

and the Standard Cauchy distribution just sets 𝑥0 = 0 and 𝛾 = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes
spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will
cut the x axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy
distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very
much like a Gaussian distribution, but with heavier tails.

References

[R262], [R263], [R264]

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

numpy.random.standard_exponential(size=None)
Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray

994 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

numpy.random.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale=1.

Parameters
shape : float

Parameter, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The drawn samples.

See also:

scipy.stats.distributions.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[R265], [R266]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \

3.24. Random sampling (numpy.random) 995

NumPy Reference, Release 1.11.1

... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

numpy.random.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray

Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random

-0.38672696, -0.4685006]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

numpy.random.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Parameters
df : int

Degrees of freedom, should be > 0.

996 Chapter 3. Routines

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

Drawn samples.

Notes

The probability density function for the t distribution is

𝑃 (𝑥, 𝑑𝑓) =
Γ(𝑑𝑓+1

2)
√
𝜋𝑑𝑓Γ(𝑑𝑓

2)

(︁
1 +

𝑥2

𝑑𝑓

)︁−(𝑑𝑓+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gisset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

[R267], [R268]

Examples

From Dalgaard page 83 [R267], suppose the daily energy intake for 11 women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation
will be degrees of freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, normed=True)

For a one-sided t-test, how far out in the distribution does the t statistic appear?

>>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true.

3.24. Random sampling (numpy.random) 997

NumPy Reference, Release 1.11.1

8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

numpy.random.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution.

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters
left : scalar

Lower limit.

mode : scalar

The value where the peak of the distribution occurs. The value should fulfill the condi-
tion left <= mode <= right.

right : scalar

Upper limit, should be larger than left.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The returned samples all lie in the interval [left, right].

Notes

The probability density function for the triangular distribution is

𝑃 (𝑥; 𝑙,𝑚, 𝑟) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known,
but some knowledge of the limits and mode exists. Often it is used in simulations.

998 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R269]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... normed=True)
>>> plt.show()

2 0 2 4 6 8
0.00

0.05

0.10

0.15

numpy.random.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters
low : float, optional

Lower boundary of the output interval. All values generated will be greater than or
equal to low. The default value is 0.

high : float

Upper boundary of the output interval. All values generated will be less than high. The
default value is 1.0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Drawn samples, with shape size.

See also:

3.24. Random sampling (numpy.random) 999

NumPy Reference, Release 1.11.1

randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [low, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array
of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

𝑝(𝑥) =
1

𝑏− 𝑎

anywhere within the interval [a, b), and zero elsewhere.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

1000 Chapter 3. Routines

NumPy Reference, Release 1.11.1

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribu-
tion on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters
mu : float

Mode (“center”) of the distribution.

kappa : float

Dispersion of the distribution, has to be >=0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

The returned samples, which are in the interval [-pi, pi].

See also:

scipy.stats.distributions.vonmises
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

𝑝(𝑥) =
𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇)

2𝜋𝐼0(𝜅)
,

where 𝜇 is the mode and 𝜅 the dispersion, and 𝐼0(𝜅) is the modified Bessel function of order 0.

3.24. Random sampling (numpy.random) 1001

NumPy Reference, Release 1.11.1

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability
theory, aerodynamics, fluid mechanics, and philosophy of science.

References

[R270], [R271]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, normed=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Parameters
mean : scalar

Distribution mean, should be > 0.

scale : scalar

1002 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Scale parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

Drawn sample, all greater than zero.

Notes

The probability density function for the Wald distribution is

𝑃 (𝑥;𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒) =

√︂
𝑠𝑐𝑎𝑙𝑒

2𝜋𝑥3
𝑒

−𝑠𝑐𝑎𝑙𝑒(𝑥−𝑚𝑒𝑎𝑛)2

2·𝑚𝑒𝑎𝑛2𝑥

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

[R272], [R273], [R274]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

numpy.random.weibull(a, size=None)
Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

𝑋 = (−𝑙𝑛(𝑈))1/𝑎

Here, U is drawn from the uniform distribution over (0,1].

3.24. Random sampling (numpy.random) 1003

NumPy Reference, Release 1.11.1

The more common 2-parameter Weibull, including a scale parameter 𝜆 is just 𝑋 = 𝜆(−𝑙𝑛(𝑈))1/𝑎.

Parameters
a : float

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray

See also:

scipy.stats.distributions.weibull_max, scipy.stats.distributions.weibull_min,
scipy.stats.distributions.genextreme, gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

𝑝(𝑥) =
𝑎

𝜆
(
𝑥

𝜆
)𝑎−1𝑒−(𝑥/𝜆)𝑎 ,

where 𝑎 is the shape and 𝜆 the scale.

The function has its peak (the mode) at 𝜆(𝑎−1
𝑎)1/𝑎.

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[R275], [R276], [R277]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

1004 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

numpy.random.zipf(a, size=None)
Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies
Zipf’s law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters
a : float > 1

Distribution parameter.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

The returned samples are greater than or equal to one.

See also:

scipy.stats.distributions.zipf
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

𝑝(𝑥) =
𝑥−𝑎

𝜁(𝑎)
,

where 𝜁 is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a
sample of a language is inversely proportional to its rank in the frequency table.

3.24. Random sampling (numpy.random) 1005

NumPy Reference, Release 1.11.1

References

[R278]

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
Truncate s values at 50 so plot is interesting
>>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a)/sps.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

3.24.4 Random generator

RandomState Container for the Mersenne Twister pseudo-random number generator.
seed([seed]) Seed the generator.
get_state() Return a tuple representing the internal state of the generator.
set_state(state) Set the internal state of the generator from a tuple.

class numpy.random.RandomState
Container for the Mersenne Twister pseudo-random number generator.

RandomState exposes a number of methods for generating random numbers drawn from a variety of proba-
bility distributions. In addition to the distribution-specific arguments, each method takes a keyword argument
size that defaults to None. If size is None, then a single value is generated and returned. If size is an integer,
then a 1-D array filled with generated values is returned. If size is a tuple, then an array with that shape is filled

1006 Chapter 3. Routines

NumPy Reference, Release 1.11.1

and returned.

Compatibility Guarantee A fixed seed and a fixed series of calls to ‘RandomState’ methods using the same
parameters will always produce the same results up to roundoff error except when the values were incorrect.
Incorrect values will be fixed and the NumPy version in which the fix was made will be noted in the relevant
docstring. Extension of existing parameter ranges and the addition of new parameters is allowed as long the
previous behavior remains unchanged.

Parameters
seed : {None, int, array_like}, optional

Random seed initializing the pseudo-random number generator. Can be an integer, an
array (or other sequence) of integers of any length, or None (the default). If seed
is None, then RandomState will try to read data from /dev/urandom (or the
Windows analogue) if available or seed from the clock otherwise.

Notes

The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator with
a number of methods that are similar to the ones available in RandomState. RandomState, besides being
NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose
from.

Methods

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
bytes(length) Return random bytes.
chisquare(df[, size]) Draw samples from a chi-square distribution.
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
get_state() Return a tuple representing the internal state of the generator.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).
logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distribution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with specified shape.
permutation(x) Randomly permute a sequence, or return a permuted range.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
rand(d0, d1, ..., dn) Random values in a given shape.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (exclusive).

Continued on next page

3.24. Random sampling (numpy.random) 1007

NumPy Reference, Release 1.11.1

Table 3.153 – continued from previous page
randn(d0, d1, ..., dn) Return a sample (or samples) from the “standard normal” distribution.
random_integers(low[, high, size]) Random integers of type np.int between low and high, inclusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
seed([seed]) Seed the generator.
set_state(state) Set the internal state of the generator from a tuple.
shuffle(x) Modify a sequence in-place by shuffling its contents.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution (mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student’s t distribution with df degrees of freedom.
tomaxint([size]) Random integers between 0 and sys.maxint, inclusive.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution.
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distribution.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

RandomState.beta(a, b, size=None)
Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution.
It has the probability distribution function

𝑓(𝑥; 𝑎, 𝑏) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,

where the normalisation, B, is the beta function,

𝐵(𝛼, 𝛽) =

∫︁ 1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

It is often seen in Bayesian inference and order statistics.

Parameters
a : float

Alpha, non-negative.

b : float

Beta, non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Array of the given shape, containing values drawn from a Beta distribution.

RandomState.binomial(n, p, size=None)
Draw samples from a binomial distribution.

1008 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of
success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated
to an integer in use)

Parameters
n : float (but truncated to an integer)

parameter, >= 0.

p : float

parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.binom
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the binomial distribution is

𝑃 (𝑁) =

(︂
𝑛

𝑁

)︂
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 ,

where 𝑛 is the number of trials, 𝑝 is the probability of success, and 𝑁 is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal
distribution works well unless the product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used instead. For example, a sample of 15
people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so
the binomial distribution should be used in this case.

References

[R137], [R138], [R139], [R140], [R141]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

3.24. Random sampling (numpy.random) 1009

NumPy Reference, Release 1.11.1

RandomState.bytes(length)
Return random bytes.

Parameters
length : int

Number of random bytes.

Returns
out : str

String of length length.

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

RandomState.chisquare(df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are
squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in
hypothesis testing.

Parameters
df : int

Number of degrees of freedom.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
output : ndarray

Samples drawn from the distribution, packed in a size-shaped array.

Raises
ValueError

When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random
variables:

𝑄 =

df∑︁
𝑖=0

𝑋2
𝑖

is chi-square distributed, denoted

𝑄 ∼ 𝜒2
𝑘.

The probability density function of the chi-squared distribution is

𝑝(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2,

1010 Chapter 3. Routines

NumPy Reference, Release 1.11.1

where Γ is the gamma function,

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡.

References

[R142]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

RandomState.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

New in version 1.7.0.

Parameters
a : 1-D array-like or int

If an ndarray, a random sample is generated from its elements. If an int, the random
sample is generated as if a was np.arange(n)

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

replace : boolean, optional

Whether the sample is with or without replacement

p : 1-D array-like, optional

The probabilities associated with each entry in a. If not given the sample assumes a
uniform distribution over all entries in a.

Returns
samples : 1-D ndarray, shape (size,)

The generated random samples

Raises
ValueError

If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like
of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population size

See also:

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

3.24. Random sampling (numpy.random) 1011

NumPy Reference, Release 1.11.1

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],

dtype='|S11')

RandomState.dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable
can be seen as a multivariate generalization of a Beta distribution. Dirichlet pdf is the conjugate prior of a
multinomial in Bayesian inference.

Parameters
alpha : array

Parameter of the distribution (k dimension for sample of dimension k).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray,

The drawn samples, of shape (size, alpha.ndim).

Notes

𝑋 ≈
𝑘∏︁

𝑖=1

𝑥𝛼𝑖−1
𝑖

Uses the following property for computation: for each dimension, draw a random sample y_i from a
standard gamma generator of shape alpha_i, then 𝑋 = 1∑︀𝑘

𝑖=1 𝑦𝑖
(𝑦1, . . . , 𝑦𝑛) is Dirichlet distributed.

References

[R143], [R144]

1012 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of
initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

RandomState.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.

Its probability density function is

𝑓(𝑥;
1

𝛽
) =

1

𝛽
exp(−𝑥

𝛽
),

for x > 0 and 0 elsewhere. 𝛽 is the scale parameter, which is the inverse of the rate parameter 𝜆 = 1/𝛽.
The rate parameter is an alternative, widely used parameterization of the exponential distribution [R147].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many
common situations, such as the size of raindrops measured over many rainstorms [R145], or the time
between page requests to Wikipedia [R146].

Parameters
scale : float

The scale parameter, 𝛽 = 1/𝜆.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

References

[R145], [R146], [R147]

RandomState.f(dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in nu-
merator) and dfden (degrees of freedom in denominator), where both parameters should be greater than
zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability
distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters
dfnum : float

Degrees of freedom in numerator. Should be greater than zero.

dfden : float

Degrees of freedom in denominator. Should be greater than zero.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

3.24. Random sampling (numpy.random) 1013

NumPy Reference, Release 1.11.1

Returns
samples : ndarray or scalar

Samples from the Fisher distribution.

See also:

scipy.stats.distributions.f
probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribu-
tion depends on the sampling, and so it is a function of the respective degrees of freedom in the problem.
The variable dfnum is the number of samples minus one, the between-groups degrees of freedom, while
dfden is the within-groups degrees of freedom, the sum of the number of samples in each group minus the
number of groups.

References

[R148], [R149]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls).
Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value
of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null
hypothesis that the parents diabetic status does not affect their children’s blood glucose levels? Calculating
the F statistic from the data gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10]
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null
hypothesis is rejected at the 1% level.

RandomState.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
“k”) and scale (sometimes designated “theta”), where both parameters are > 0.

Parameters
shape : scalar > 0

The shape of the gamma distribution.

scale : scalar > 0, optional

The scale of the gamma distribution. Default is equal to 1.

size : int or tuple of ints, optional

1014 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray, float

Returns one sample unless size parameter is specified.

See also:

scipy.stats.distributions.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises
naturally in processes for which the waiting times between Poisson distributed events are relevant.

References

[R150], [R151]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean and dispersion
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

3.24. Random sampling (numpy.random) 1015

NumPy Reference, Release 1.11.1

0 5 10 15
0.00

0.05

0.10

0.15

RandomState.geometric(p, size=None)
Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an
experiment is flipping a coin). The geometric distribution models the number of trials that must be run in
order to achieve success. It is therefore supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

𝑓(𝑘) = (1 − 𝑝)𝑘−1𝑝

where p is the probability of success of an individual trial.

Parameters
p : float

The probability of success of an individual trial.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Samples from the geometric distribution, shaped according to size.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success
equal to 0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

RandomState.get_state()
Return a tuple representing the internal state of the generator.

1016 Chapter 3. Routines

NumPy Reference, Release 1.11.1

For more details, see set_state.

Returns
out : tuple(str, ndarray of 624 uints, int, int, float)

The returned tuple has the following items:

1. the string ‘MT19937’.

2. a 1-D array of 624 unsigned integer keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If
the internal state is manually altered, the user should know exactly what he/she is doing.

RandomState.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the
Gumbel distribution, see Notes and References below.

Parameters
loc : float

The location of the mode of the distribution.

scale : float

The scale parameter of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

See also:

scipy.stats.gumbel_l, scipy.stats.gumbel_r, scipy.stats.genextreme,
weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one
of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems.
The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions
with “exponential-like” tails.

The probability density for the Gumbel distribution is

𝑝(𝑥) =
𝑒−(𝑥−𝜇)/𝛽

𝛽
𝑒−𝑒−(𝑥−𝜇)/𝛽

,

3.24. Random sampling (numpy.random) 1017

NumPy Reference, Release 1.11.1

where 𝜇 is the mode, a location parameter, and 𝛽 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology
literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed
and rainfall rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is
larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods
were initially modeled as a Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions,
which also includes the Weibull and Frechet.

The function has a mean of 𝜇 + 0.57721𝛽 and a variance of 𝜋2

6 𝛽2.

References

[R152], [R153]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())

1018 Chapter 3. Routines

NumPy Reference, Release 1.11.1

... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

RandomState.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a
good selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is
less than or equal to the sum ngood + nbad.

Parameters
ngood : int or array_like

Number of ways to make a good selection. Must be nonnegative.

nbad : int or array_like

Number of ways to make a bad selection. Must be nonnegative.

nsample : int or array_like

Number of items sampled. Must be at least 1 and at most ngood + nbad.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The values are all integers in [0, n].

3.24. Random sampling (numpy.random) 1019

NumPy Reference, Release 1.11.1

See also:

scipy.stats.distributions.hypergeom
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

𝑃 (𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ ,

where 0 ≤ 𝑥 ≤ 𝑚 and 𝑛 + 𝑚−𝑁 ≤ 𝑥 ≤ 𝑛

for P(x) the probability of x successes, n = ngood, m = nbad, and N = number of samples.

Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black
balls in the drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are
drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the
sample space is infinite). As the sample space becomes large, this distribution approaches the binomial.

References

[R154], [R155], [R156]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how
likely is it that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

RandomState.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and
scale (decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and
has fatter tails. It represents the difference between two independent, identically distributed exponential
random variables.

Parameters
loc : float, optional

The position, 𝜇, of the distribution peak.

scale : float, optional

𝜆, the exponential decay.

1020 Chapter 3. Routines

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or float

Notes

It has the probability density function

𝑓(𝑥;𝜇, 𝜆) =
1

2𝜆
exp

(︂
−|𝑥− 𝜇|

𝜆

)︂
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential
function of the absolute magnitude of the error, which leads to the Laplace distribution. For many prob-
lems in economics and health sciences, this distribution seems to model the data better than the standard
Gaussian distribution.

References

[R157], [R158], [R159], [R160]

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

3.24. Random sampling (numpy.random) 1021

NumPy Reference, Release 1.11.1

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

RandomState.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also
median), and scale (>0).

Parameters
loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.logistic
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

𝑃 (𝑥) = 𝑃 (𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
,

where 𝜇 = location and 𝑠 = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel
distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo
ranking system, assuming the performance of each player is a logistically distributed random variable.

References

[R161], [R162], [R163]

1022 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\
... logist(bins, loc, scale).max())
>>> plt.show()

RandomState.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape.
Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying
normal distribution it is derived from.

Parameters
mean : float

Mean value of the underlying normal distribution

sigma : float, > 0.

Standard deviation of the underlying normal distribution

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or float

The desired samples. An array of the same shape as size if given, if size is None a float
is returned.

See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function
for the log-normal distribution is:

𝑝(𝑥) =
1

𝜎𝑥
√

2𝜋
𝑒(−

(𝑙𝑛(𝑥)−𝜇)2

2𝜎2)

where 𝜇 is the mean and 𝜎 is the standard deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the product of a large number of independent,
identically-distributed variables in the same way that a normal distribution results if the variable is the sum
of a large number of independent, identically-distributed variables.

3.24. Random sampling (numpy.random) 1023

NumPy Reference, Release 1.11.1

References

[R164], [R165]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a
log-normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, normed=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

1024 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

RandomState.logseries(p, size=None)
Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

Parameters
loc : float

scale : float > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

where the values are all integers in [0, n].

See also:

scipy.stats.distributions.logser
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

𝑃 (𝑘) =
−𝑝𝑘

𝑘 ln(1 − 𝑝)
,

where p = probability.

3.24. Random sampling (numpy.random) 1025

NumPy Reference, Release 1.11.1

The log series distribution is frequently used to represent species richness and occurrence, first proposed
by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen
in cars [3].

References

[R166], [R167], [R168], [R169]

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/

logseries(bins, a).max(), 'r')
>>> plt.show()

RandomState.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the binomial distribution. Take an experi-
ment with one of p possible outcomes. An example of such an experiment is throwing a dice, where the
outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments. Its
values, X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome was i.

Parameters
n : int

Number of experiments.

pvals : sequence of floats, length p

Probabilities of each of the p different outcomes. These should sum to 1 (however,
the last element is always assumed to account for the remaining probability, as long as
sum(pvals[:-1]) <= 1).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])

1026 Chapter 3. Routines

NumPy Reference, Release 1.11.1

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],

[2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26])

The probability inputs should be normalized. As an implementation detail, the value of the last entry is
ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased
coin which has twice as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62])

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
array([100, 0])

RandomState.multivariate_normal(mean, cov[, size])
Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional
normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance
matrix. These parameters are analogous to the mean (average or “center”) and variance (standard deviation,
or “width,” squared) of the one-dimensional normal distribution.

Parameters
mean : 1-D array_like, of length N

Mean of the N-dimensional distribution.

cov : 2-D array_like, of shape (N, N)

Covariance matrix of the distribution. It must be symmetric and positive-semidefinite
for proper sampling.

size : int or tuple of ints, optional

Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in
an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape
is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

Returns
out : ndarray

The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from
the distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most
likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate
normal distribution.

3.24. Random sampling (numpy.random) 1027

NumPy Reference, Release 1.11.1

Covariance indicates the level to which two variables vary together. From the multivariate normal distri-
bution, we draw N-dimensional samples, 𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁]. The covariance matrix element 𝐶𝑖𝑗 is the
covariance of 𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖 is the variance of 𝑥𝑖 (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

•Spherical covariance (cov is a multiple of the identity matrix)

•Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the
behavior of this method is undefined and backwards compatibility is not guaranteed.

References

[R170], [R171]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True]

RandomState.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n trials and p proba-
bility of success where n is an integer > 0 and p is in the interval [0, 1].

Parameters
n : int

Parameter, > 0.

p : float

Parameter, >= 0 and <=1.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

1028 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
samples : int or ndarray of ints

Drawn samples.

Notes

The probability density for the negative binomial distribution is

𝑃 (𝑁 ;𝑛, 𝑝) =

(︂
𝑁 + 𝑛− 1

𝑛− 1

)︂
𝑝𝑛(1 − 𝑝)𝑁 ,

where 𝑛 − 1 is the number of successes, 𝑝 is the probability of success, and 𝑁 + 𝑛 − 1 is the number of
trials. The negative binomial distribution gives the probability of n-1 successes and N failures in N+n-1
trials, and success on the (N+n)th trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the
number of non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[R172], [R173]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. What is the probability of having one success for each successive well, that is what is
the probability of a single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

RandomState.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.

The noncentral 𝜒2 distribution is a generalisation of the 𝜒2 distribution.

Parameters
df : int

Degrees of freedom, should be > 0 as of Numpy 1.10, should be > 1 for earlier versions.

nonc : float

Non-centrality, should be non-negative.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Notes

The probability density function for the noncentral Chi-square distribution is

𝑃 (𝑥; 𝑑𝑓, 𝑛𝑜𝑛𝑐) =

∞∑︁
𝑖=0

𝑒−𝑛𝑜𝑛𝑐/2(𝑛𝑜𝑛𝑐/2)𝑖

𝑖!
¶𝑌𝑑𝑓+2𝑖

(𝑥),

where 𝑌𝑞 is the Chi-square with q degrees of freedom.

3.24. Random sampling (numpy.random) 1029

NumPy Reference, Release 1.11.1

In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the
probability of killing the point target given by the noncentral chi-squared distribution.

References

[R174], [R175]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

1030 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

RandomState.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numer-
ator) and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality
parameter.

Parameters
dfnum : int

Parameter, should be > 1.

3.24. Random sampling (numpy.random) 1031

NumPy Reference, Release 1.11.1

dfden : int

Parameter, should be > 1.

nonc : float

Parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

Drawn samples.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when
a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a
non-central F statistic.

References

[R176], [R177]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribu-
tion. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution
for the null hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, normed=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

RandomState.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later
by both Gauss and Laplace independently [R179], is often called the bell curve because of its characteristic
shape (see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring dis-
tribution of samples influenced by a large number of tiny, random disturbances, each with its own unique
distribution [R179].

Parameters
loc : float

Mean (“centre”) of the distribution.

scale : float

1032 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Standard deviation (spread or “width”) of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

See also:

scipy.stats.distributions.norm
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ,

where 𝜇 is the mean and 𝜎 the standard deviation. The square of the standard deviation, 𝜎2, is called the
variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function
reaches 0.607 times its maximum at 𝑥+𝜎 and 𝑥−𝜎 [R179]). This implies that numpy.random.normal
is more likely to return samples lying close to the mean, rather than those far away.

References

[R178], [R179]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

3.24. Random sampling (numpy.random) 1033

NumPy Reference, Release 1.11.1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

RandomState.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes).
The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu,
where the standard Pareto distribution has location mu = 1. Lomax can also be considered as a simplified
version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location
set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20
rule”. In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the
other 20 percent fill the remaining 80 percent of the range.

Parameters
shape : float, > 0.

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

See also:

scipy.stats.distributions.lomax.pdf
probability density function, distribution or cumulative density function, etc.

scipy.stats.distributions.genpareto.pdf
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Pareto distribution is

𝑝(𝑥) =
𝑎𝑚𝑎

𝑥𝑎+1

where 𝑎 is the shape and 𝑚 the scale.

1034 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability
distribution useful in many real world problems. Outside the field of economics it is generally referred to
as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an
economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other
problems, including the download frequency for projects in Sourceforge [R180]. It is one of the so-called
“fat-tailed” distributions.

References

[R180], [R181], [R182], [R183]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, normed=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

RandomState.permutation(x)
Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its first index.

Parameters
x : int or array_like

If x is an integer, randomly permute np.arange(x). If x is an array, make a copy and
shuffle the elements randomly.

Returns
out : ndarray

Permuted sequence or array range.

3.24. Random sampling (numpy.random) 1035

NumPy Reference, Release 1.11.1

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],

[0, 1, 2],
[3, 4, 5]])

RandomState.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Parameters
lam : float or sequence of float

Expectation of interval, should be >= 0. A sequence of expectation intervals must be
broadcastable over the requested size.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The drawn samples, of shape size, if it was provided.

Notes

The Poisson distribution

𝑓(𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!

For events with an expected separation 𝜆 the Poisson distribution 𝑓(𝑘;𝜆) describes the probability of 𝑘
events occurring within the observed interval 𝜆.

Because the output is limited to the range of the C long type, a ValueError is raised when lam is within 10
sigma of the maximum representable value.

References

[R184], [R185]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, normed=True)
>>> plt.show()

1036 Chapter 3. Routines

NumPy Reference, Release 1.11.1

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

RandomState.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Parameters
a : float

parameter, > 0

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The returned samples lie in [0, 1].

Raises
ValueError

If a < 1.

Notes

The probability density function is

𝑃 (𝑥; 𝑎) = 𝑎𝑥𝑎−1, 0 ≤ 𝑥 ≤ 1, 𝑎 > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special
case of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

[R186], [R187]

3.24. Random sampling (numpy.random) 1037

NumPy Reference, Release 1.11.1

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')

1038 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> plt.title('inverse of stats.pareto(5)')

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

3.24. Random sampling (numpy.random) 1039

NumPy Reference, Release 1.11.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

RandomState.rand(d0, d1, ..., dn)
Random values in a given shape.

Create an array of the given shape and populate it with random samples from a uniform distribution over
[0, 1).

Parameters
d0, d1, ..., dn : int, optional

The dimensions of the returned array, should all be positive. If no argument is given a
single Python float is returned.

Returns
out : ndarray, shape (d0, d1, ..., dn)

Random values.

See also:

random

Notes

This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer
to np.random.random_sample .

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random

[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

RandomState.randint(low, high=None, size=None, dtype=’l’)
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open”
interval [low, high). If high is None (the default), then results are from [0, low).

Parameters
low : int

1040 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high : int, optional

If provided, one above the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

dtype : dtype, optional

Desired dtype of the result. All dtypes are determined by their name, i.e., ‘int64’, ‘int’,
etc, so byteorder is not available and a specific precision may have different C types
depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns
out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such
random int if size not provided.

See also:

random.random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is
omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-
integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],

[3, 2, 2, 0]])

RandomState.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution.

If positive, int_like or int-convertible arguments are provided, randn generates an array of shape (d0,
d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution
of mean 0 and variance 1 (if any of the 𝑑𝑖 are floats, they are first converted to integers by truncation). A
single float randomly sampled from the distribution is returned if no argument is provided.

This is a convenience function. If you want an interface that takes a tuple as the first argument, use
numpy.random.standard_normal instead.

Parameters
d0, d1, ..., dn : int, optional

The dimensions of the returned array, should be all positive. If no argument is given a
single Python float is returned.

3.24. Random sampling (numpy.random) 1041

NumPy Reference, Release 1.11.1

Returns
Z : ndarray or float

A (d0, d1, ..., dn)-shaped array of floating-point samples from the standard
normal distribution, or a single such float if no parameters were supplied.

See also:

random.standard_normal
Similar, but takes a tuple as its argument.

Notes

For random samples from 𝑁(𝜇, 𝜎2), use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

RandomState.random_integers(low, high=None, size=None)
Random integers of type np.int between low and high, inclusive.

Return random integers of type np.int from the “discrete uniform” distribution in the closed interval [low,
high]. If high is None (the default), then results are from [1, low]. The np.int type translates to the C long
type used by Python 2 for “short” integers and its precision is platform dependent.

This function has been deprecated. Use randint instead.

Deprecated since version 1.11.0.

Parameters
low : int

Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is the highest such integer).

high : int, optional

If provided, the largest (signed) integer to be drawn from the distribution (see above for
behavior if high=None).

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : int or ndarray of ints

size-shaped array of random integers from the appropriate distribution, or a single such
random int if size not provided.

See also:

1042 Chapter 3. Routines

NumPy Reference, Release 1.11.1

random.randint
Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value
if high is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],

[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e.,
from the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()

2 4 6 8 10 12
0.00

0.05

0.10

0.15

3.24. Random sampling (numpy.random) 1043

http://docs.python.org/dev/library/random.html#random.randint

NumPy Reference, Release 1.11.1

RandomState.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 >
𝑎 multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray of floats

Array of random floats of shape size (unless size=None, in which case a single float
is returned).

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

RandomState.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.

The 𝜒 and Weibull distributions are generalizations of the Rayleigh.

Parameters
scale : scalar

Scale, also equals the mode. Should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Notes

The probability density function for the Rayleigh distribution is

𝑃 (𝑥; 𝑠𝑐𝑎𝑙𝑒) =
𝑥

𝑠𝑐𝑎𝑙𝑒2
𝑒

−𝑥2

2·𝑠𝑐𝑎𝑙𝑒2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity
had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

1044 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R188], [R189]

Examples

Draw values from the distribution and plot the histogram

>>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of
waves are likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003

RandomState.seed(seed=None)
Seed the generator.

This method is called when RandomState is initialized. It can be called again to re-seed the generator.
For details, see RandomState.

Parameters
seed : int or array_like, optional

Seed for RandomState. Must be convertible to 32 bit unsigned integers.

See also:

RandomState

RandomState.set_state(state)
Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the “Mersenne Twister”[R190] pseudo-
random number generating algorithm.

Parameters
state : tuple(str, ndarray of 624 uints, int, int, float)

The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

Returns
out : None

Returns ‘None’ on success.

See also:

get_state

3.24. Random sampling (numpy.random) 1045

NumPy Reference, Release 1.11.1

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If
the internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing
some information about the cached Gaussian value: state = (’MT19937’, keys, pos).

References

[R190]

RandomState.shuffle(x)
Modify a sequence in-place by shuffling its contents.

Parameters
x : array_like

The array or list to be shuffled.

Returns
None

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],

[6, 7, 8],
[0, 1, 2]])

RandomState.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

𝑃 (𝑥;𝑥0, 𝛾) =
1

𝜋𝛾
[︀
1 + (𝑥−𝑥0

𝛾)2
]︀

and the Standard Cauchy distribution just sets 𝑥0 = 0 and 𝛾 = 1

1046 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes
spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle
will cut the x axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy
distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.

References

[R191], [R192], [R193]

Examples

Draw samples and plot the distribution:

>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

RandomState.standard_exponential(size=None)
Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray

Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

RandomState.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
“k”) and scale=1.

Parameters
shape : float

Parameter, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The drawn samples.

3.24. Random sampling (numpy.random) 1047

NumPy Reference, Release 1.11.1

See also:

scipy.stats.distributions.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises
naturally in processes for which the waiting times between Poisson distributed events are relevant.

References

[R194], [R195]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RandomState.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

1048 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : float or ndarray

Drawn samples.

Examples

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random

-0.38672696, -0.4685006]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

RandomState.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard
normal distribution (standard_normal).

Parameters
df : int

Degrees of freedom, should be > 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

Drawn samples.

Notes

The probability density function for the t distribution is

𝑃 (𝑥, 𝑑𝑓) =
Γ(𝑑𝑓+1

2)
√
𝜋𝑑𝑓Γ(𝑑𝑓

2)

(︁
1 +

𝑥2

𝑑𝑓

)︁−(𝑑𝑓+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a
way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the
true mean.

The derivation of the t-distribution was first published in 1908 by William Gisset while working for the
Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he
used the name Student.

References

[R196], [R197]

3.24. Random sampling (numpy.random) 1049

NumPy Reference, Release 1.11.1

Examples

From Dalgaard page 83 [R196], suppose the daily energy intake for 11 women in Kj is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value?

>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard
deviation will be degrees of freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, normed=True)

For a one-sided t-test, how far out in the distribution does the t statistic appear?

>>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true.

8 6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

RandomState.tomaxint(size=None)
Random integers between 0 and sys.maxint, inclusive.

Return a sample of uniformly distributed random integers in the interval [0, sys.maxint].

Parameters
size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

1050 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Returns
out : ndarray

Drawn samples, with shape size.

See also:

randint
Uniform sampling over a given half-open interval of integers.

random_integers
Uniform sampling over a given closed interval of integers.

Examples

>>> RS = np.random.mtrand.RandomState() # need a RandomState object
>>> RS.tomaxint((2,2,2))
array([[[1170048599, 1600360186],

[739731006, 1947757578]],
[[1871712945, 752307660],
[1601631370, 1479324245]]])

>>> import sys
>>> sys.maxint
2147483647
>>> RS.tomaxint((2,2,2)) < sys.maxint
array([[[True, True],

[True, True]],
[[True, True],
[True, True]]], dtype=bool)

RandomState.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution.

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and
upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters
left : scalar

Lower limit.

mode : scalar

The value where the peak of the distribution occurs. The value should fulfill the condi-
tion left <= mode <= right.

right : scalar

Upper limit, should be larger than left.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

The returned samples all lie in the interval [left, right].

3.24. Random sampling (numpy.random) 1051

NumPy Reference, Release 1.11.1

Notes

The probability density function for the triangular distribution is

𝑃 (𝑥; 𝑙,𝑚, 𝑟) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not
known, but some knowledge of the limits and mode exists. Often it is used in simulations.

References

[R198]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... normed=True)
>>> plt.show()

2 0 2 4 6 8
0.00

0.05

0.10

0.15

RandomState.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes
high). In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters
low : float, optional

Lower boundary of the output interval. All values generated will be greater than or
equal to low. The default value is 0.

high : float

Upper boundary of the output interval. All values generated will be less than high. The
default value is 1.0.

1052 Chapter 3. Routines

NumPy Reference, Release 1.11.1

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
out : ndarray

Drawn samples, with shape size.

See also:

randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [low, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2
array of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

𝑝(𝑥) =
1

𝑏− 𝑎

anywhere within the interval [a, b), and zero elsewhere.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

3.24. Random sampling (numpy.random) 1053

NumPy Reference, Release 1.11.1

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

RandomState.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability
distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters
mu : float

Mode (“center”) of the distribution.

kappa : float

Dispersion of the distribution, has to be >=0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

The returned samples, which are in the interval [-pi, pi].

See also:

scipy.stats.distributions.vonmises
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

𝑝(𝑥) =
𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇)

2𝜋𝐼0(𝜅)
,

where 𝜇 is the mode and 𝜅 the dispersion, and 𝐼0(𝜅) is the modified Bessel function of order 0.

1054 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now
the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of science.

References

[R199], [R200]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, normed=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

RandomState.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim
that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K.
Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover
a unit distance and distance covered in unit time.

Parameters
mean : scalar

Distribution mean, should be > 0.

scale : scalar

3.24. Random sampling (numpy.random) 1055

NumPy Reference, Release 1.11.1

Scale parameter, should be >= 0.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray or scalar

Drawn sample, all greater than zero.

Notes

The probability density function for the Wald distribution is

𝑃 (𝑥;𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒) =

√︂
𝑠𝑐𝑎𝑙𝑒

2𝜋𝑥3
𝑒

−𝑠𝑐𝑎𝑙𝑒(𝑥−𝑚𝑒𝑎𝑛)2

2·𝑚𝑒𝑎𝑛2𝑥

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It
is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest
rate processes.

References

[R201], [R202], [R203]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

RandomState.weibull(a, size=None)
Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

𝑋 = (−𝑙𝑛(𝑈))1/𝑎

1056 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter 𝜆 is just 𝑋 = 𝜆(−𝑙𝑛(𝑈))1/𝑎.

Parameters
a : float

Shape of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : ndarray

See also:

scipy.stats.distributions.weibull_max, scipy.stats.distributions.weibull_min,
scipy.stats.distributions.genextreme, gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or
Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in
modeling extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

𝑝(𝑥) =
𝑎

𝜆
(
𝑥

𝜆
)𝑎−1𝑒−(𝑥/𝜆)𝑎 ,

where 𝑎 is the shape and 𝜆 the scale.

The function has its peak (the mode) at 𝜆(𝑎−1
𝑎)1/𝑎.

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[R204], [R205], [R206]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

3.24. Random sampling (numpy.random) 1057

NumPy Reference, Release 1.11.1

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

RandomState.zipf(a, size=None)
Draw samples from a Zipf distribution.

Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that
satisfies Zipf’s law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters
a : float > 1

Distribution parameter.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are
drawn. Default is None, in which case a single value is returned.

Returns
samples : scalar or ndarray

The returned samples are greater than or equal to one.

See also:

scipy.stats.distributions.zipf
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the Zipf distribution is

𝑝(𝑥) =
𝑥−𝑎

𝜁(𝑎)
,

where 𝜁 is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in
a sample of a language is inversely proportional to its rank in the frequency table.

1058 Chapter 3. Routines

NumPy Reference, Release 1.11.1

References

[R207]

Examples

Draw samples from the distribution:

>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
Truncate s values at 50 so plot is interesting
>>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a)/sps.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

numpy.random.seed(seed=None)
Seed the generator.

This method is called when RandomState is initialized. It can be called again to re-seed the generator. For
details, see RandomState.

Parameters
seed : int or array_like, optional

Seed for RandomState. Must be convertible to 32 bit unsigned integers.

See also:

RandomState

numpy.random.get_state()
Return a tuple representing the internal state of the generator.

For more details, see set_state.

3.24. Random sampling (numpy.random) 1059

NumPy Reference, Release 1.11.1

Returns
out : tuple(str, ndarray of 624 uints, int, int, float)

The returned tuple has the following items:

1. the string ‘MT19937’.

2. a 1-D array of 624 unsigned integer keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

numpy.random.set_state(state)
Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the “Mersenne Twister”[R261] pseudo-random
number generating algorithm.

Parameters
state : tuple(str, ndarray of 624 uints, int, int, float)

The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

3. an integer pos.

4. an integer has_gauss.

5. a float cached_gaussian.

Returns
out : None

Returns ‘None’ on success.

See also:

get_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = (’MT19937’, keys, pos).

References

[R261]

1060 Chapter 3. Routines

NumPy Reference, Release 1.11.1

3.25 Set routines

3.25.1 Making proper sets

unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.

3.25.2 Boolean operations

in1d(ar1, ar2[, assume_unique, invert]) Test whether each element of a 1-D array is also present in a second array.
intersect1d(ar1, ar2[, assume_unique]) Find the intersection of two arrays.
setdiff1d(ar1, ar2[, assume_unique]) Find the set difference of two arrays.
setxor1d(ar1, ar2[, assume_unique]) Find the set exclusive-or of two arrays.
union1d(ar1, ar2) Find the union of two arrays.

numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
Test whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True where an element of ar1 is in ar2 and False otherwise.

Parameters
ar1 : (M,) array_like

Input array.

ar2 : array_like

The values against which to test each value of ar1.

assume_unique : bool, optional

If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

invert : bool, optional

If True, the values in the returned array are inverted (that is, False where an ele-
ment of ar1 is in ar2 and True otherwise). Default is False. np.in1d(a, b,
invert=True) is equivalent to (but is faster than) np.invert(in1d(a, b)).

New in version 1.8.0.

Returns
in1d : (M,) ndarray, bool

The values ar1[in1d] are in ar2.

See also:

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Notes

in1d can be considered as an element-wise function version of the python keyword in, for 1-D sequences.
in1d(a, b) is roughly equivalent to np.array([item in b for item in a]). However, this
idea fails if ar2 is a set, or similar (non-sequence) container: As ar2 is converted to an array, in those cases
asarray(ar2) is an object array rather than the expected array of contained values.

3.25. Set routines 1061

NumPy Reference, Release 1.11.1

New in version 1.4.0.

Examples

>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([True, False, True, False, True], dtype=bool)
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False], dtype=bool)
>>> test[mask]
array([1, 5])

numpy.intersect1d(ar1, ar2, assume_unique=False)
Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

Parameters
ar1, ar2 : array_like

Input arrays.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

Returns
intersect1d : ndarray

Sorted 1D array of common and unique elements.

See also:

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

To intersect more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])

numpy.setdiff1d(ar1, ar2, assume_unique=False)
Find the set difference of two arrays.

Return the sorted, unique values in ar1 that are not in ar2.

Parameters
ar1 : array_like

Input array.

1062 Chapter 3. Routines

NumPy Reference, Release 1.11.1

ar2 : array_like

Input comparison array.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

Returns
setdiff1d : ndarray

Sorted 1D array of values in ar1 that are not in ar2.

See also:

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])

numpy.setxor1d(ar1, ar2, assume_unique=False)
Find the set exclusive-or of two arrays.

Return the sorted, unique values that are in only one (not both) of the input arrays.

Parameters
ar1, ar2 : array_like

Input arrays.

assume_unique : bool

If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

Returns
setxor1d : ndarray

Sorted 1D array of unique values that are in only one of the input arrays.

Examples

>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])

numpy.union1d(ar1, ar2)
Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two input arrays.

Parameters
ar1, ar2 : array_like

Input arrays. They are flattened if they are not already 1D.

3.25. Set routines 1063

NumPy Reference, Release 1.11.1

Returns
union1d : ndarray

Unique, sorted union of the input arrays.

See also:

numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.

Examples

>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])

To find the union of more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])

3.26 Sorting, searching, and counting

3.26.1 Sorting

sort(a[, axis, kind, order]) Return a sorted copy of an array.
lexsort(keys[, axis]) Perform an indirect sort using a sequence of keys.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
ndarray.sort([axis, kind, order]) Sort an array, in-place.
msort(a) Return a copy of an array sorted along the first axis.
sort_complex(a) Sort a complex array using the real part first, then the imaginary part.
partition(a, kth[, axis, kind, order]) Return a partitioned copy of an array.
argpartition(a, kth[, axis, kind, order]) Perform an indirect partition along the given axis using the algorithm specified by the kind keyword.

numpy.sort(a, axis=-1, kind=’quicksort’, order=None)
Return a sorted copy of an array.

Parameters
a : array_like

Array to be sorted.

axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be

1064 Chapter 3. Routines

NumPy Reference, Release 1.11.1

specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

partition
Partial sort.

Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work space
size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The
three available algorithms have the following properties:

kind speed worst case work space stable
‘quicksort’ 1 O(n^2) 0 no
‘mergesort’ 2 O(n*log(n)) ~n/2 yes
‘heapsort’ 3 O(n*log(n)) 0 no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Consequently,
sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In
numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

•Real: [R, nan]

•Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to the
non-nan part if it exists. Non-nan values are sorted as before.

Examples

>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],

[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis

3.26. Sorting, searching, and counting 1065

NumPy Reference, Release 1.11.1

array([[1, 1],
[3, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height')
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),

('Lancelot', 1.8999999999999999, 38)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age', 'height'])
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),

('Arthur', 1.8, 41)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

numpy.lexsort(keys, axis=-1)
Perform an indirect sort using a sequence of keys.

Given multiple sorting keys, which can be interpreted as columns in a spreadsheet, lexsort returns an array of
integer indices that describes the sort order by multiple columns. The last key in the sequence is used for the
primary sort order, the second-to-last key for the secondary sort order, and so on. The keys argument must be
a sequence of objects that can be converted to arrays of the same shape. If a 2D array is provided for the keys
argument, it’s rows are interpreted as the sorting keys and sorting is according to the last row, second last row
etc.

Parameters
keys : (k, N) array or tuple containing k (N,)-shaped sequences

The k different “columns” to be sorted. The last column (or row if keys is a 2D array) is
the primary sort key.

axis : int, optional

Axis to be indirectly sorted. By default, sort over the last axis.

Returns
indices : (N,) ndarray of ints

Array of indices that sort the keys along the specified axis.

See also:

argsort
Indirect sort.

ndarray.sort
In-place sort.

sort
Return a sorted copy of an array.

Examples

Sort names: first by surname, then by name.

1066 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])

>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']

Sort two columns of numbers:

>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
>>> print(ind)
[2 0 4 6 5 3 1]

>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]

Note that sorting is first according to the elements of a. Secondary sorting is according to the elements of b.

A normal argsort would have yielded:

>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]

Structured arrays are sorted lexically by argsort:

>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
... dtype=np.dtype([('x', int), ('y', int)]))

>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])

numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an
array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a : array_like

Array to sort.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

3.26. Sorting, searching, and counting 1067

NumPy Reference, Release 1.11.1

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. If a is one-dimensional,
a[index_array] yields a sorted a.

See also:

sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

argpartition
Indirect partial sort.

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order
is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],

[2, 2]])

>>> np.argsort(x, axis=0)
array([[0, 1],

[1, 0]])

>>> np.argsort(x, axis=1)
array([[0, 1],

[0, 1]])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],

dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

1068 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.argsort(x, order=('y','x'))
array([0, 1])

numpy.msort(a)
Return a copy of an array sorted along the first axis.

Parameters
a : array_like

Array to be sorted.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See also:

sort

Notes

np.msort(a) is equivalent to np.sort(a, axis=0).

numpy.sort_complex(a)
Sort a complex array using the real part first, then the imaginary part.

Parameters
a : array_like

Input array

Returns
out : complex ndarray

Always returns a sorted complex array.

Examples

>>> np.sort_complex([5, 3, 6, 2, 1])
array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])

>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])

numpy.partition(a, kth, axis=-1, kind=’introselect’, order=None)
Return a partitioned copy of an array.

Creates a copy of the array with its elements rearranged in such a way that the value of the element in kth position
is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
a : array_like

Array to be sorted.

kth : int or sequence of ints

3.26. Sorting, searching, and counting 1069

NumPy Reference, Release 1.11.1

Element index to partition by. The kth value of the element will be in its final sorted
position and all smaller elements will be moved before it and all equal or greater ele-
ments behind it. The order all elements in the partitions is undefined. If provided with
a sequence of kth it will partition all elements indexed by kth of them into their sorted
position at once.

axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string. Not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

Returns
partitioned_array : ndarray

Array of the same type and shape as a.

See also:

ndarray.partition
Method to sort an array in-place.

argpartition
Indirect partition.

sort
Full sorting

Notes

The various selection algorithms are characterized by their average speed, worst case performance, work space
size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The
available algorithms have the following properties:

kind speed worst case work space stable
‘introselect’ 1 O(n) 0 no

All the partition algorithms make temporary copies of the data when partitioning along any but the last axis.
Consequently, partitioning along the last axis is faster and uses less space than partitioning along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> np.partition(a, 3)
array([2, 1, 3, 4])

>>> np.partition(a, (1, 3))
array([1, 2, 3, 4])

1070 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.argpartition(a, kth, axis=-1, kind=’introselect’, order=None)
Perform an indirect partition along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in partitioned order.

New in version 1.8.0.

Parameters
a : array_like

Array to sort.

kth : int or sequence of ints

Element index to partition by. The kth element will be in its final sorted position and all
smaller elements will be moved before it and all larger elements behind it. The order
all elements in the partitions is undefined. If provided with a sequence of kth it will
partition all of them into their sorted position at once.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘introselect’}, optional

Selection algorithm. Default is ‘introselect’

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. A single field can be specified as a string, and not all fields need be
specified, but unspecified fields will still be used, in the order in which they come up in
the dtype, to break ties.

Returns
index_array : ndarray, int

Array of indices that partition a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

partition
Describes partition algorithms used.

ndarray.partition
Inplace partition.

argsort
Full indirect sort

Notes

See partition for notes on the different selection algorithms.

Examples

One dimensional array:

>>> x = np.array([3, 4, 2, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4])
>>> x[np.argpartition(x, (1, 3))]
array([1, 2, 3, 4])

3.26. Sorting, searching, and counting 1071

NumPy Reference, Release 1.11.1

>>> x = [3, 4, 2, 1]
>>> np.array(x)[np.argpartition(x, 3)]
array([2, 1, 3, 4])

3.26.2 Searching

argmax(a[, axis, out]) Returns the indices of the maximum values along an axis.
nanargmax(a[, axis]) Return the indices of the maximum values in the specified axis ignoring NaNs.
argmin(a[, axis, out]) Returns the indices of the minimum values along an axis.
nanargmin(a[, axis]) Return the indices of the minimum values in the specified axis ignoring NaNs.
argwhere(a) Find the indices of array elements that are non-zero, grouped by element.
nonzero(a) Return the indices of the elements that are non-zero.
flatnonzero(a) Return indices that are non-zero in the flattened version of a.
where(condition, [x, y]) Return elements, either from x or y, depending on condition.
searchsorted(a, v[, side, sorter]) Find indices where elements should be inserted to maintain order.
extract(condition, arr) Return the elements of an array that satisfy some condition.

numpy.argmax(a, axis=None, out=None)
Returns the indices of the maximum values along an axis.

Parameters
a : array_like

Input array.

axis : int, optional

By default, the index is into the flattened array, otherwise along the specified axis.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See also:

ndarray.argmax, argmin

amax
The maximum value along a given axis.

unravel_index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are
returned.

1072 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1

numpy.nanargmax(a, axis=None)
Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and -Infs.

Parameters
a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default flattened input is used.

Returns
index_array : ndarray

An array of indices or a single index value.

See also:

argmax, nanargmin

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 0])
>>> np.nanargmax(a, axis=1)
array([1, 1])

numpy.argmin(a, axis=None, out=None)
Returns the indices of the minimum values along an axis.

Parameters
a : array_like

Input array.

axis : int, optional

3.26. Sorting, searching, and counting 1073

NumPy Reference, Release 1.11.1

By default, the index is into the flattened array, otherwise along the specified axis.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See also:

ndarray.argmin, argmax

amin
The minimum value along a given axis.

unravel_index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argmin(a)
0
>>> np.argmin(a, axis=0)
array([0, 0, 0])
>>> np.argmin(a, axis=1)
array([0, 0])

>>> b = np.arange(6)
>>> b[4] = 0
>>> b
array([0, 1, 2, 3, 0, 5])
>>> np.argmin(b) # Only the first occurrence is returned.
0

numpy.nanargmin(a, axis=None)
Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and Infs.

Parameters
a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default flattened input is used.

Returns
index_array : ndarray

1074 Chapter 3. Routines

NumPy Reference, Release 1.11.1

An array of indices or a single index value.

See also:

argmin, nanargmax

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])

numpy.argwhere(a)
Find the indices of array elements that are non-zero, grouped by element.

Parameters
a : array_like

Input data.

Returns
index_array : ndarray

Indices of elements that are non-zero. Indices are grouped by element.

See also:

where, nonzero

Notes

np.argwhere(a) is the same as np.transpose(np.nonzero(a)).

The output of argwhere is not suitable for indexing arrays. For this purpose use where(a) instead.

Examples

>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],

[1, 0],
[1, 1],
[1, 2]])

numpy.flatnonzero(a)
Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

Parameters
a : ndarray

Input array.

3.26. Sorting, searching, and counting 1075

NumPy Reference, Release 1.11.1

Returns
res : ndarray

Output array, containing the indices of the elements of a.ravel() that are non-zero.

See also:

nonzero
Return the indices of the non-zero elements of the input array.

ravel
Return a 1-D array containing the elements of the input array.

Examples

>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract these elements:

>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])

numpy.searchsorted(a, v, side=’left’, sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a : 1-D array_like

Input array. If sorter is None, then it must be sorted in ascending order, otherwise sorter
must be an array of indices that sort it.

v : array_like

Values to insert into a.

side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either 0 or N (where N is the length of
a).

sorter : 1-D array_like, optional

Optional array of integer indices that sort array a into ascending order. They are typi-
cally the result of argsort.

New in version 1.7.0.

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See also:

sort
Return a sorted copy of an array.

1076 Chapter 3. Routines

NumPy Reference, Release 1.11.1

histogram
Produce histogram from 1-D data.

Notes

Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

Examples

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

numpy.extract(condition, arr)
Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)). If condition is boolean
np.extract is equivalent to arr[condition].

Note that place does the exact opposite of extract.

Parameters
condition : array_like

An array whose nonzero or True entries indicate the elements of arr to extract.

arr : array_like

Input array of the same size as condition.

Returns
extract : ndarray

Rank 1 array of values from arr where condition is True.

See also:

take, put, copyto, compress, place

Examples

>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> condition = np.mod(arr, 3)==0
>>> condition
array([[True, False, False, True],

[False, False, True, False],
[False, True, False, False]], dtype=bool)

>>> np.extract(condition, arr)
array([0, 3, 6, 9])

If condition is boolean:

3.26. Sorting, searching, and counting 1077

NumPy Reference, Release 1.11.1

>>> arr[condition]
array([0, 3, 6, 9])

3.26.3 Counting

count_nonzero(a) Counts the number of non-zero values in the array a.

numpy.count_nonzero(a)
Counts the number of non-zero values in the array a.

Parameters
a : array_like

The array for which to count non-zeros.

Returns
count : int or array of int

Number of non-zero values in the array.

See also:

nonzero
Return the coordinates of all the non-zero values.

Examples

>>> np.count_nonzero(np.eye(4))
4
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
5

3.27 Statistics

3.27.1 Order statistics

amin(a[, axis, out, keepdims]) Return the minimum of an array or minimum along an axis.
amax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an axis.
nanmin(a[, axis, out, keepdims]) Return minimum of an array or minimum along an axis, ignoring any NaNs.
nanmax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an axis, ignoring any NaNs.
ptp(a[, axis, out]) Range of values (maximum - minimum) along an axis.
percentile(a, q[, axis, out, ...]) Compute the qth percentile of the data along the specified axis.
nanpercentile(a, q[, axis, out, ...]) Compute the qth percentile of the data along the specified axis, while ignoring nan values.

numpy.amin(a, axis=None, out=None, keepdims=False)
Return the minimum of an array or minimum along an axis.

Parameters
a : array_like

Input data.

1078 Chapter 3. Routines

NumPy Reference, Release 1.11.1

axis : None or int or tuple of ints, optional

Axis or axes along which to operate. By default, flattened input is used.

If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single
axis or all the axes as before.

out : ndarray, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output. See doc.ufuncs (Section “Output arguments”)
for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
amin : ndarray or scalar

Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is
an array of dimension a.ndim - 1.

See also:

amax
The maximum value of an array along a given axis, propagating any NaNs.

nanmin
The minimum value of an array along a given axis, ignoring any NaNs.

minimum
Element-wise minimum of two arrays, propagating any NaNs.

fmin
Element-wise minimum of two arrays, ignoring any NaNs.

argmin
Return the indices of the minimum values.

nanmax, maximum, fmax

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding min value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmin.

Don’t use amin for element-wise comparison of 2 arrays; when a.shape[0] is 2, minimum(a[0],
a[1]) is faster than amin(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amin(a) # Minimum of the flattened array
0
>>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])

3.27. Statistics 1079

NumPy Reference, Release 1.11.1

>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amin(b)
nan
>>> np.nanmin(b)
0.0

numpy.amax(a, axis=None, out=None, keepdims=False)
Return the maximum of an array or maximum along an axis.

Parameters
a : array_like

Input data.

axis : None or int or tuple of ints, optional

Axis or axes along which to operate. By default, flattened input is used.

If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single
axis or all the axes as before.

out : ndarray, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output. See doc.ufuncs (Section “Output arguments”)
for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
amax : ndarray or scalar

Maximum of a. If axis is None, the result is a scalar value. If axis is given, the result is
an array of dimension a.ndim - 1.

See also:

amin
The minimum value of an array along a given axis, propagating any NaNs.

nanmax
The maximum value of an array along a given axis, ignoring any NaNs.

maximum
Element-wise maximum of two arrays, propagating any NaNs.

fmax
Element-wise maximum of two arrays, ignoring any NaNs.

argmax
Return the indices of the maximum values.

nanmin, minimum, fmin

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmax.

1080 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Don’t use amax for element-wise comparison of 2 arrays; when a.shape[0] is 2, maximum(a[0],
a[1]) is faster than amax(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amax(a) # Maximum of the flattened array
3
>>> np.amax(a, axis=0) # Maxima along the first axis
array([2, 3])
>>> np.amax(a, axis=1) # Maxima along the second axis
array([1, 3])

>>> b = np.arange(5, dtype=np.float)
>>> b[2] = np.NaN
>>> np.amax(b)
nan
>>> np.nanmax(b)
4.0

numpy.nanmin(a, axis=None, out=None, keepdims=False)
Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encoun-
tered a RuntimeWarning is raised and Nan is returned for that slice.

Parameters
a : array_like

Array containing numbers whose minimum is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the minimum is computed. The default is to compute the minimum
of the flattened array.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

New in version 1.8.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original a.

New in version 1.8.0.

Returns
nanmin : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmax
The maximum value of an array along a given axis, ignoring any NaNs.

3.27. Statistics 1081

NumPy Reference, Release 1.11.1

amin
The minimum value of an array along a given axis, propagating any NaNs.

fmin
Element-wise minimum of two arrays, ignoring any NaNs.

minimum
Element-wise minimum of two arrays, propagating any NaNs.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.min.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([1., 2.])
>>> np.nanmin(a, axis=1)
array([1., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf

numpy.nanmax(a, axis=None, out=None, keepdims=False)
Return the maximum of an array or maximum along an axis, ignoring any NaNs. When all-NaN slices are
encountered a RuntimeWarning is raised and NaN is returned for that slice.

Parameters
a : array_like

Array containing numbers whose maximum is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the maximum is computed. The default is to compute the maximum
of the flattened array.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

1082 Chapter 3. Routines

NumPy Reference, Release 1.11.1

New in version 1.8.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original a.

New in version 1.8.0.

Returns
nanmax : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmin
The minimum value of an array along a given axis, ignoring any NaNs.

amax
The maximum value of an array along a given axis, propagating any NaNs.

fmax
Element-wise maximum of two arrays, ignoring any NaNs.

maximum
Element-wise maximum of two arrays, propagating any NaNs.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

Notes

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.max.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([3., 2.])
>>> np.nanmax(a, axis=1)
array([2., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

3.27. Statistics 1083

NumPy Reference, Release 1.11.1

numpy.ptp(a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a : array_like

Input values.

axis : int, optional

Axis along which to find the peaks. By default, flatten the array.

out : array_like

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Examples

>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],

[2, 3]])

>>> np.ptp(x, axis=0)
array([2, 2])

>>> np.ptp(x, axis=1)
array([1, 1])

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’, keep-
dims=False)

Compute the qth percentile of the data along the specified axis.

Returns the qth percentile(s) of the array elements.

Parameters
a : array_like

Input array or object that can be converted to an array.

q : float in range of [0,100] (or sequence of floats)

Percentile to compute, which must be between 0 and 100 inclusive.

axis : {int, sequence of int, None}, optional

Axis or axes along which the percentiles are computed. The default is to compute the
percentile(s) along a flattened version of the array. A sequence of axes is supported
since version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type (of the output) will be cast if necessary.

1084 Chapter 3. Routines

NumPy Reference, Release 1.11.1

overwrite_input : bool, optional

If True, then allow use of memory of input array a calculations. The input array will
be modified by the call to percentile. This will save memory when you do not
need to preserve the contents of the input array. In this case you should not make any
assumptions about the contents of the input a after this function completes – treat it
as undefined. Default is False. If a is not already an array, this parameter will have
no effect as a will be converted to an array internally regardless of the value of this
parameter.

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

This optional parameter specifies the interpolation method to use when the desired quan-
tile lies between two data points i < j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of
the index surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j, whichever is nearest.

• midpoint: (i + j) / 2.

New in version 1.9.0.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original array
a.

New in version 1.9.0.

Returns
percentile : scalar or ndarray

If q is a single percentile and axis=None, then the result is a scalar. If multiple per-
centiles are given, first axis of the result corresponds to the percentiles. The other axes
are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-
type is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, median, nanpercentile

Notes

Given a vector V of length N, the q-th percentile of V is the value q/100 of the way from the mimumum to
the maximum in in a sorted copy of V. The values and distances of the two nearest neighbors as well as the
interpolation parameter will determine the percentile if the normalized ranking does not match the location of
q exactly. This function is the same as the median if q=50, the same as the minimum if q=0 and the same as
the maximum if q=100.

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[3, 2, 1]])

3.27. Statistics 1085

NumPy Reference, Release 1.11.1

>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([[6.5, 4.5, 2.5]])
>>> np.percentile(a, 50, axis=1)
array([7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[7.],

[2.]])

>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([[6.5, 4.5, 2.5]])
>>> m
array([[6.5, 4.5, 2.5]])

>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)

numpy.nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation=’linear’,
keepdims=False)

Compute the qth percentile of the data along the specified axis, while ignoring nan values.

Returns the qth percentile(s) of the array elements.

New in version 1.9.0.

Parameters
a : array_like

Input array or object that can be converted to an array.

q : float in range of [0,100] (or sequence of floats)

Percentile to compute, which must be between 0 and 100 inclusive.

axis : {int, sequence of int, None}, optional

Axis or axes along which the percentiles are computed. The default is to compute the
percentile(s) along a flattened version of the array. A sequence of axes is supported
since version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type (of the output) will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array a for calculations. The input array
will be modified by the call to percentile. This will save memory when you do
not need to preserve the contents of the input array. In this case you should not make
any assumptions about the contents of the input a after this function completes – treat
it as undefined. Default is False. If a is not already an array, this parameter will have
no effect as a will be converted to an array internally regardless of the value of this
parameter.

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

1086 Chapter 3. Routines

NumPy Reference, Release 1.11.1

This optional parameter specifies the interpolation method to use when the desired quan-
tile lies between two data points i < j:

• linear: i + (j - i) * fraction, where fraction is the fractional part of
the index surrounded by i and j.

• lower: i.

• higher: j.

• nearest: i or j, whichever is nearest.

• midpoint: (i + j) / 2.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original array
a.

Returns
percentile : scalar or ndarray

If q is a single percentile and axis=None, then the result is a scalar. If multiple per-
centiles are given, first axis of the result corresponds to the percentiles. The other axes
are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-
type is the same as that of the input. If out is specified, that array is returned instead.

See also:

nanmean, nanmedian, percentile, median, mean

Notes

Given a vector V of length N, the q-th percentile of V is the value q/100 of the way from the mimumum to
the maximum in in a sorted copy of V. The values and distances of the two nearest neighbors as well as the
interpolation parameter will determine the percentile if the normalized ranking does not match the location of
q exactly. This function is the same as the median if q=50, the same as the minimum if q=0 and the same as
the maximum if q=100.

Examples

>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],

[3., 2., 1.]])
>>> np.percentile(a, 50)
nan
>>> np.nanpercentile(a, 50)
3.5
>>> np.nanpercentile(a, 50, axis=0)
array([6.5, 2., 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
array([[7.],

[2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
array([6.5, 2., 2.5])

3.27. Statistics 1087

NumPy Reference, Release 1.11.1

>>> m
array([6.5, 2. , 2.5])

>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)

3.27.2 Averages and variances

median(a[, axis, out, overwrite_input, keepdims]) Compute the median along the specified axis.
average(a[, axis, weights, returned]) Compute the weighted average along the specified axis.
mean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
std(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis.
var(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.
nanmedian(a[, axis, out, overwrite_input, ...]) Compute the median along the specified axis, while ignoring NaNs.
nanmean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis, ignoring NaNs.
nanstd(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis, while ignoring NaNs.
nanvar(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis, while ignoring NaNs.

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
a : array_like

Input array or object that can be converted to an array.

axis : {int, sequence of int, None}, optional

Axis or axes along which the medians are computed. The default is to compute the
median along a flattened version of the array. A sequence of axes is supported since
version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type (of the output) will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array a for calculations. The input array will
be modified by the call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. If overwrite_input is True and a is not
already an ndarray , an error will be raised.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

New in version 1.9.0.

Returns
median : ndarray

1088 Chapter 3. Routines

NumPy Reference, Release 1.11.1

A new array holding the result. If the input contains integers or floats smaller than
float64, then the output data-type is np.float64. Otherwise, the data-type of the
output is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i e.,
V_sorted[(N-1)/2], when N is odd, and the average of the two middle values of V_sorted when N is
even.

Examples

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)

numpy.average(a, axis=None, weights=None, returned=False)
Compute the weighted average along the specified axis.

Parameters
a : array_like

Array containing data to be averaged. If a is not an array, a conversion is attempted.

axis : int, optional

Axis along which to average a. If None, averaging is done over the flattened array.

weights : array_like, optional

An array of weights associated with the values in a. Each value in a contributes to the
average according to its associated weight. The weights array can either be 1-D (in
which case its length must be the size of a along the given axis) or of the same shape as
a. If weights=None, then all data in a are assumed to have a weight equal to one.

returned : bool, optional

3.27. Statistics 1089

NumPy Reference, Release 1.11.1

Default is False. If True, the tuple (average, sum_of_weights) is returned, otherwise
only the average is returned. If weights=None, sum_of_weights is equivalent to the
number of elements over which the average is taken.

Returns
average, [sum_of_weights] : array_type or double

Return the average along the specified axis. When returned is True, return a tuple with
the average as the first element and the sum of the weights as the second element.
The return type is Float if a is of integer type, otherwise it is of the same type as a.
sum_of_weights is of the same type as average.

Raises
ZeroDivisionError

When all weights along axis are zero. See numpy.ma.average for a version robust
to this type of error.

TypeError

When the length of 1D weights is not the same as the shape of a along axis.

See also:

mean

ma.average
average for masked arrays – useful if your data contains “missing” values

Examples

>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0

>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

1090 Chapter 3. Routines

NumPy Reference, Release 1.11.1

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean
of the flattened array.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for
floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See also:

average
Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875

3.27. Statistics 1091

NumPy Reference, Release 1.11.1

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Calculate the standard deviation of these values.

axis : None or int or tuple of ints, optional

Axis or axes along which the standard deviation is computed. The default is to compute
the standard deviation of the flattened array.

If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of
a single axis or all the axes as before.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate

1092 Chapter 3. Routines

NumPy Reference, Release 1.11.1

of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177

numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the variance is computed. The default is to compute the
variance of the flattened array.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single
axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

3.27. Statistics 1093

NumPy Reference, Release 1.11.1

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x -
x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying
a higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759

1094 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

numpy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis, while ignoring NaNs.

Returns the median of the array elements.

New in version 1.9.0.

Parameters
a : array_like

Input array or object that can be converted to an array.

axis : {int, sequence of int, None}, optional

Axis or axes along which the medians are computed. The default is to compute the
median along a flattened version of the array. A sequence of axes is supported since
version 1.9.0.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type (of the output) will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array a for calculations. The input array will
be modified by the call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. If overwrite_input is True and a is not
already an ndarray , an error will be raised.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
median : ndarray

A new array holding the result. If the input contains integers or floats smaller than
float64, then the output data-type is np.float64. Otherwise, the data-type of the
output is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, median, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i.e.,
V_sorted[(N-1)/2], when N is odd and the average of the two middle values of V_sorted when N is
even.

Examples

>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
array([[10., nan, 4.],

[3., 2., 1.]])

3.27. Statistics 1095

NumPy Reference, Release 1.11.1

>>> np.median(a)
nan
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
array([6.5, 2., 2.5])
>>> np.median(a, axis=1)
array([7., 2.])
>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
3.0
>>> assert not np.all(a==b)

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)
Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters
a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for
inexact inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned. Nan is returned for slices that contain only NaNs.

See also:

1096 Chapter 3. Routines

NumPy Reference, Release 1.11.1

average
Weighted average

mean
Arithmetic mean taken while not ignoring NaNs

var, nanvar

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN
elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision
accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([2., 4.])
>>> np.nanmean(a, axis=1)
array([1., 3.5])

numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Compute the standard deviation along the specified axis, while ignoring NaNs.

Returns the standard deviation, a measure of the spread of a distribution, of the non-NaN array elements. The
standard deviation is computed for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters
a : array_like

Calculate the standard deviation of the non-NaN values.

axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of non-NaN elements. By default ddof is zero.

keepdims : bool, optional

3.27. Statistics 1097

NumPy Reference, Release 1.11.1

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array. If ddof is >= the number of non-NaN elements in a slice
or the slice contains only NaNs, then the result for that slice is NaN.

See also:

var, mean, std, nanvar, nanmean

numpy.doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean: std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([1., 0.])
>>> np.nanstd(a, axis=1)
array([0., 0.5])

numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Compute the variance along the specified axis, while ignoring NaNs.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

1098 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of non-NaN elements. By default ddof is zero.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

Returns
variance : ndarray, see dtype parameter above

If out is None, return a new array containing the variance, otherwise return a reference
to the output array. If ddof is >= the number of non-NaN elements in a slice or the slice
contains only NaNs, then the result for that slice is NaN.

See also:

std
Standard deviation

mean
Average

var
Variance while not ignoring NaNs

nanstd, nanmean

numpy.doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x -
x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying
a higher-accuracy accumulator using the dtype keyword can alleviate this issue.

3.27. Statistics 1099

NumPy Reference, Release 1.11.1

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.var(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([1., 0.])
>>> np.nanvar(a, axis=1)
array([0., 0.25])

3.27.3 Correlating

corrcoef(x[, y, rowvar, bias, ddof]) Return Pearson product-moment correlation coefficients.
correlate(a, v[, mode]) Cross-correlation of two 1-dimensional sequences.
cov(m[, y, rowvar, bias, ddof, fweights, ...]) Estimate a covariance matrix, given data and weights.

numpy.corrcoef(x, y=None, rowvar=1, bias=<class numpy._NoValue>, ddof=<class
numpy._NoValue>)

Return Pearson product-moment correlation coefficients.

Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient
matrix, R, and the covariance matrix, C, is

𝑅𝑖𝑗 =
𝐶𝑖𝑗√︀

𝐶𝑖𝑖 * 𝐶𝑗𝑗

The values of R are between -1 and 1, inclusive.

Parameters
x : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row of x
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same shape as x.

rowvar : int, optional

If rowvar is non-zero (default), then each row represents a variable, with observations
in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias : _NoValue, optional

Has no effect, do not use.

Deprecated since version 1.10.0.

ddof : _NoValue, optional

Has no effect, do not use.

Deprecated since version 1.10.0.

Returns
R : ndarray

The correlation coefficient matrix of the variables.

1100 Chapter 3. Routines

NumPy Reference, Release 1.11.1

See also:

cov
Covariance matrix

Notes

Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1,
and the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1, 1] in an attempt to improve on that situation but is not much help in the complex case.

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

numpy.correlate(a, v, mode=’valid’)
Cross-correlation of two 1-dimensional sequences.

This function computes the correlation as generally defined in signal processing texts:

c_{av}[k] = sum_n a[n+k] * conj(v[n])

with a and v sequences being zero-padded where necessary and conj being the conjugate.

Parameters
a, v : array_like

Input sequences.

mode : {‘valid’, ‘same’, ‘full’}, optional

Refer to the convolve docstring. Note that the default is ‘valid’, unlike convolve,
which uses ‘full’.

old_behavior : bool

old_behavior was removed in NumPy 1.10. If you need the old behavior, use multiar-
ray.correlate.

Returns
out : ndarray

Discrete cross-correlation of a and v.

See also:

convolve
Discrete, linear convolution of two one-dimensional sequences.

multiarray.correlate
Old, no conjugate, version of correlate.

Notes

The definition of correlation above is not unique and sometimes correlation may be defined differently. Another
common definition is:

c'_{av}[k] = sum_n a[n] conj(v[n+k])

which is related to c_{av}[k] by c’_{av}[k] = c_{av}[-k].

3.27. Statistics 1101

NumPy Reference, Release 1.11.1

Examples

>>> np.correlate([1, 2, 3], [0, 1, 0.5])
array([3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([2. , 3.5, 3.])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([0.5, 2. , 3.5, 3. , 0.])

Using complex sequences:

>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j])

Note that you get the time reversed, complex conjugated result when the two input sequences change places,
i.e., c_{va}[k] = c^{*}_{av}[-k]:

>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)
Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples,
𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁]𝑇 , then the covariance matrix element 𝐶𝑖𝑗 is the covariance of 𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖

is the variance of 𝑥𝑖.

See the notes for an outline of the algorithm.

Parameters
m : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row of m
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same form as that of m.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed: each column represents a variable,
while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N - 1), where N is the number of observations
given (unbiased estimate). If bias is True, then normalization is by N. These values can
be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof : int, optional

If not None the default value implied by bias is overridden. Note that ddof=1 will
return the unbiased estimate, even if both fweights and aweights are specified, and
ddof=0 will return the simple average. See the notes for the details. The default
value is None.

New in version 1.5.

fweights : array_like, int, optional

1102 Chapter 3. Routines

NumPy Reference, Release 1.11.1

1-D array of integer freguency weights; the number of times each observation vector
should be repeated.

New in version 1.10.

aweights : array_like, optional

1-D array of observation vector weights. These relative weights are typically large
for observations considered “important” and smaller for observations considered less
“important”. If ddof=0 the array of weights can be used to assign probabilities to
observation vectors.

New in version 1.10.

Returns
out : ndarray

The covariance matrix of the variables.

See also:

corrcoef
Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a =
aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 /
(np.sum(f) - ddof) as it should.

Examples

Consider two variables, 𝑥0 and 𝑥1, which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],

[2, 1, 0]])

Note how 𝑥0 increases while 𝑥1 decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[1., -1.],

[-1., 1.]])

Note that element 𝐶0,1, which shows the correlation between 𝑥0 and 𝑥1, is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.vstack((x,y))
>>> print(np.cov(X))
[[11.71 -4.286]

3.27. Statistics 1103

NumPy Reference, Release 1.11.1

[-4.286 2.14413333]]
>>> print(np.cov(x, y))
[[11.71 -4.286]
[-4.286 2.14413333]]
>>> print(np.cov(x))
11.71

3.27.4 Histograms

histogram(a[, bins, range, normed, weights, ...]) Compute the histogram of a set of data.
histogram2d(x, y[, bins, range, normed, weights]) Compute the bi-dimensional histogram of two data samples.
histogramdd(sample[, bins, range, normed, ...]) Compute the multidimensional histogram of some data.
bincount(x[, weights, minlength]) Count number of occurrences of each value in array of non-negative ints.
digitize(x, bins[, right]) Return the indices of the bins to which each value in input array belongs.

numpy.histogram(a, bins=10, range=None, normed=False, weights=None, density=None)
Compute the histogram of a set of data.

Parameters
a : array_like

Input data. The histogram is computed over the flattened array.

bins : int or sequence of scalars or str, optional

If bins is an int, it defines the number of equal-width bins in the given range (10, by
default). If bins is a sequence, it defines the bin edges, including the rightmost edge,
allowing for non-uniform bin widths.

New in version 1.11.0.

If bins is a string from the list below, histogram will use the method chosen to
calculate the optimal bin width and consequently the number of bins (see Notes for
more detail on the estimators) from the data that falls within the requested range. While
the bin width will be optimal for the actual data in the range, the number of bins will be
computed to fill the entire range, including the empty portions. For visualisation, using
the ‘auto’ option is suggested. Weighted data is not supported for automated bin size
selection.

‘auto’
Maximum of the ‘sturges’ and ‘fd’ estimators. Provides good all round performance

‘fd’ (Freedman Diaconis Estimator)
Robust (resilient to outliers) estimator that takes into account data variability and data
size .

‘doane’
An improved version of Sturges’ estimator that works better with non-normal
datasets.

‘scott’
Less robust estimator that that takes into account data variability and data size.

‘rice’
Estimator does not take variability into account, only data size. Commonly overesti-
mates number of bins required.

1104 Chapter 3. Routines

NumPy Reference, Release 1.11.1

‘sturges’
R’s default method, only accounts for data size. Only optimal for gaussian data and
underestimates number of bins for large non-gaussian datasets.

‘sqrt’
Square root (of data size) estimator, used by Excel and other programs for its speed
and simplicity.

range : (float, float), optional

The lower and upper range of the bins. If not provided, range is simply (a.min(),
a.max()). Values outside the range are ignored. The first element of the range must
be less than or equal to the second. range affects the automatic bin computation as well.
While bin width is computed to be optimal based on the actual data within range, the
bin count will fill the entire range including portions containing no data.

normed : bool, optional

This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will
be removed in Numpy 2.0. Use the density keyword instead. If False, the result
will contain the number of samples in each bin. If True, the result is the value of the
probability density function at the bin, normalized such that the integral over the range
is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use
density instead.

weights : array_like, optional

An array of weights, of the same shape as a. Each value in a only contributes its
associated weight towards the bin count (instead of 1). If density is True, the weights
are normalized, so that the integral of the density over the range remains 1.

density : bool, optional

If False, the result will contain the number of samples in each bin. If True, the
result is the value of the probability density function at the bin, normalized such that the
integral over the range is 1. Note that the sum of the histogram values will not be equal
to 1 unless bins of unity width are chosen; it is not a probability mass function.

Overrides the normed keyword if given.

Returns
hist : array

The values of the histogram. See density and weights for a description of the possible
semantics.

bin_edges : array of dtype float

Return the bin edges (length(hist)+1).

See also:

histogramdd, bincount, searchsorted, digitize

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is
[3, 4], which includes 4.

New in version 1.11.0.

3.27. Statistics 1105

NumPy Reference, Release 1.11.1

The methods to estimate the optimal number of bins are well founded in literature, and are inspired by the
choices R provides for histogram visualisation. Note that having the number of bins proportional to 𝑛1/3 is
asymptotically optimal, which is why it appears in most estimators. These are simply plug-in methods that give
good starting points for number of bins. In the equations below, ℎ is the binwidth and 𝑛ℎ is the number of bins.
All estimators that compute bin counts are recast to bin width using the ptp of the data. The final bin count is
obtained from ‘‘np.round(np.ceil(range / h))‘.

‘Auto’ (maximum of the ‘Sturges’ and ‘FD’ estimators)
A compromise to get a good value. For small datasets the Sturges value will usually be chosen, while
larger datasets will usually default to FD. Avoids the overly conservative behaviour of FD and Sturges for
small and large datasets respectively. Switchover point is usually 𝑎.𝑠𝑖𝑧𝑒 ≈ 1000.

‘FD’ (Freedman Diaconis Estimator)

ℎ = 2
𝐼𝑄𝑅

𝑛1/3

The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of
a.size. Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very
robust to outliers.

‘Scott’

ℎ = 𝜎
3

√︂
24 *

√
𝜋

𝑛

The binwidth is proportional to the standard deviation of the data and inversely proportional to cube root
of x.size. Can be too conservative for small datasets, but is quite good for large datasets. The standard
deviation is not very robust to outliers. Values are very similar to the Freedman-Diaconis estimator in the
absence of outliers.

‘Rice’

𝑛ℎ = 2𝑛1/3

The number of bins is only proportional to cube root of a.size. It tends to overestimate the number of
bins and it does not take into account data variability.

‘Sturges’

𝑛ℎ = log2 𝑛 + 1

The number of bins is the base 2 log of a.size. This estimator assumes normality of data and is too
conservative for larger, non-normal datasets. This is the default method in R’s hist method.

‘Doane’

𝑛ℎ = 1 + log2(𝑛) + log2(1 +
|𝑔1|
𝜎𝑔1)

𝑔1 = 𝑚𝑒𝑎𝑛[(
𝑥− 𝜇

𝜎
)3]

𝜎𝑔1 =

√︃
6(𝑛− 2)

(𝑛 + 1)(𝑛 + 3)

An improved version of Sturges’ formula that produces better estimates for non-normal datasets. This
estimator attempts to account for the skew of the data.

1106 Chapter 3. Routines

NumPy Reference, Release 1.11.1

‘Sqrt’

𝑛ℎ =
√
𝑛

The simplest and fastest estimator. Only takes into account the data size.

Examples

>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist*np.diff(bin_edges))
1.0

New in version 1.11.0.

Automated Bin Selection Methods example, using 2 peak random data with 2000 points:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
>>> plt.hist(a, bins='auto') # plt.hist passes it's arguments to np.histogram
>>> plt.title("Histogram with 'auto' bins")
>>> plt.show()

2 0 2 4 6 8 10
0

50

100

150

200

250

300

Histogram with 'auto' bins

numpy.histogram2d(x, y, bins=10, range=None, normed=False, weights=None)
Compute the bi-dimensional histogram of two data samples.

3.27. Statistics 1107

NumPy Reference, Release 1.11.1

Parameters
x : array_like, shape (N,)

An array containing the x coordinates of the points to be histogrammed.

y : array_like, shape (N,)

An array containing the y coordinates of the points to be histogrammed.

bins : int or array_like or [int, int] or [array, array], optional

The bin specification:

• If int, the number of bins for the two dimensions (nx=ny=bins).

• If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

• If [int, int], the number of bins in each dimension (nx, ny = bins).

• If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).

• A combination [int, array] or [array, int], where int is the number of bins and array is
the bin edges.

range : array_like, shape(2,2), optional

The leftmost and rightmost edges of the bins along each dimension (if not specified ex-
plicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values
outside of this range will be considered outliers and not tallied in the histogram.

normed : bool, optional

If False, returns the number of samples in each bin. If True, returns the bin density
bin_count / sample_count / bin_area.

weights : array_like, shape(N,), optional

An array of values w_i weighing each sample (x_i, y_i). Weights are normalized
to 1 if normed is True. If normed is False, the values of the returned histogram are equal
to the sum of the weights belonging to the samples falling into each bin.

Returns
H : ndarray, shape(nx, ny)

The bi-dimensional histogram of samples x and y. Values in x are histogrammed along
the first dimension and values in y are histogrammed along the second dimension.

xedges : ndarray, shape(nx,)

The bin edges along the first dimension.

yedges : ndarray, shape(ny,)

The bin edges along the second dimension.

See also:

histogram
1D histogram

histogramdd
Multidimensional histogram

1108 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Notes

When normed is True, then the returned histogram is the sample density, defined such that the sum over bins of
the product bin_value * bin_area is 1.

Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and
y values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y
along the second dimension of the array (horizontal). This ensures compatibility with histogramdd.

Examples

>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

Construct a 2D-histogram with variable bin width. First define the bin edges:

>>> xedges = [0, 1, 1.5, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]

Next we create a histogram H with random bin content:

>>> x = np.random.normal(3, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))

Or we fill the histogram H with a determined bin content:

>>> H = np.ones((4, 4)).cumsum().reshape(4, 4)
>>> print(H[::-1]) # This shows the bin content in the order as plotted
[[13. 14. 15. 16.]
[9. 10. 11. 12.]
[5. 6. 7. 8.]
[1. 2. 3. 4.]]

Imshow can only do an equidistant representation of bins:

>>> fig = plt.figure(figsize=(7, 3))
>>> ax = fig.add_subplot(131)
>>> ax.set_title('imshow: equidistant')
>>> im = plt.imshow(H, interpolation='nearest', origin='low',

extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])

pcolormesh can display exact bin edges:

>>> ax = fig.add_subplot(132)
>>> ax.set_title('pcolormesh: exact bin edges')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
>>> ax.set_aspect('equal')

NonUniformImage displays exact bin edges with interpolation:

>>> ax = fig.add_subplot(133)
>>> ax.set_title('NonUniformImage: interpolated')
>>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
>>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1])
>>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1])
>>> im.set_data(xcenters, ycenters, H)
>>> ax.images.append(im)
>>> ax.set_xlim(xedges[0], xedges[-1])
>>> ax.set_ylim(yedges[0], yedges[-1])

3.27. Statistics 1109

NumPy Reference, Release 1.11.1

>>> ax.set_aspect('equal')
>>> plt.show()

numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)
Compute the multidimensional histogram of some data.

Parameters
sample : array_like

The data to be histogrammed. It must be an (N,D) array or data that can be converted to
such. The rows of the resulting array are the coordinates of points in a D dimensional
polytope.

bins : sequence or int, optional

The bin specification:

• A sequence of arrays describing the bin edges along each dimension.

• The number of bins for each dimension (nx, ny, ... =bins)

• The number of bins for all dimensions (nx=ny=...=bins).

range : sequence, optional

A sequence of lower and upper bin edges to be used if the edges are not given explicitly
in bins. Defaults to the minimum and maximum values along each dimension.

normed : bool, optional

If False, returns the number of samples in each bin. If True, returns the bin density
bin_count / sample_count / bin_volume.

weights : (N,) array_like, optional

An array of values w_i weighing each sample (x_i, y_i, z_i, ...). Weights are normalized
to 1 if normed is True. If normed is False, the values of the returned histogram are equal
to the sum of the weights belonging to the samples falling into each bin.

Returns
H : ndarray

The multidimensional histogram of sample x. See normed and weights for the different
possible semantics.

edges : list

A list of D arrays describing the bin edges for each dimension.

See also:

histogram
1-D histogram

histogram2d
2-D histogram

Examples

>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)

1110 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.bincount(x, weights=None, minlength=None)
Count number of occurrences of each value in array of non-negative ints.

The number of bins (of size 1) is one larger than the largest value in x. If minlength is specified, there will be
at least this number of bins in the output array (though it will be longer if necessary, depending on the contents
of x). Each bin gives the number of occurrences of its index value in x. If weights is specified the input array is
weighted by it, i.e. if a value n is found at position i, out[n] += weight[i] instead of out[n] += 1.

Parameters
x : array_like, 1 dimension, nonnegative ints

Input array.

weights : array_like, optional

Weights, array of the same shape as x.

minlength : int, optional

A minimum number of bins for the output array.

New in version 1.6.0.

Returns
out : ndarray of ints

The result of binning the input array. The length of out is equal to np.amax(x)+1.

Raises
ValueError

If the input is not 1-dimensional, or contains elements with negative values, or if min-
length is non-positive.

TypeError

If the type of the input is float or complex.

See also:

histogram, digitize, unique

Examples

>>> np.bincount(np.arange(5))
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
array([1, 3, 1, 1, 0, 0, 0, 1])

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
>>> np.bincount(x).size == np.amax(x)+1
True

The input array needs to be of integer dtype, otherwise a TypeError is raised:

>>> np.bincount(np.arange(5, dtype=np.float))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: array cannot be safely cast to required type

A possible use of bincount is to perform sums over variable-size chunks of an array, using the weights
keyword.

3.27. Statistics 1111

NumPy Reference, Release 1.11.1

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
>>> x = np.array([0, 1, 1, 2, 2, 2])
>>> np.bincount(x, weights=w)
array([0.3, 0.7, 1.1])

numpy.digitize(x, bins, right=False)
Return the indices of the bins to which each value in input array belongs.

Each index i returned is such that bins[i-1] <= x < bins[i] if bins is monotonically increasing, or
bins[i-1] > x >= bins[i] if bins is monotonically decreasing. If values in x are beyond the bounds of
bins, 0 or len(bins) is returned as appropriate. If right is True, then the right bin is closed so that the index i
is such that bins[i-1] < x <= bins[i] or bins[i-1] >= x > bins[i]‘‘ if bins is monotonically increasing
or decreasing, respectively.

Parameters
x : array_like

Input array to be binned. Prior to Numpy 1.10.0, this array had to be 1-dimensional, but
can now have any shape.

bins : array_like

Array of bins. It has to be 1-dimensional and monotonic.

right : bool, optional

Indicating whether the intervals include the right or the left bin edge. Default behavior
is (right==False) indicating that the interval does not include the right edge. The left
bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

Returns
out : ndarray of ints

Output array of indices, of same shape as x.

Raises
ValueError

If bins is not monotonic.

TypeError

If the type of the input is complex.

See also:

bincount, histogram, unique

Notes

If values in x are such that they fall outside the bin range, attempting to index bins with the indices that
digitize returns will result in an IndexError.

New in version 1.10.0.

np.digitize is implemented in terms of np.searchsorted. This means that a binary search is used to bin the
values, which scales much better for larger number of bins than the previous linear search. It also removes the
requirement for the input array to be 1-dimensional.

1112 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Examples

>>> x = np.array([0.2, 6.4, 3.0, 1.6])
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = np.digitize(x, bins)
>>> inds
array([1, 4, 3, 2])
>>> for n in range(x.size):
... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = np.array([0, 5, 10, 15, 20])
>>> np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
>>> np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])

3.28 Test Support (numpy.testing)

Common test support for all numpy test scripts.

This single module should provide all the common functionality for numpy tests in a single location, so that test scripts
can just import it and work right away.

3.28.1 Asserts

assert_almost_equal(actual, desired[, ...]) Raises an AssertionError if two items are not equal up to desired precision.
assert_approx_equal(actual, desired[, ...]) Raises an AssertionError if two items are not equal up to significant digits.
assert_array_almost_equal(x, y[, decimal, ...]) Raises an AssertionError if two objects are not equal up to desired precision.
assert_allclose(actual, desired[, rtol, ...]) Raises an AssertionError if two objects are not equal up to desired tolerance.
assert_array_almost_equal_nulp(x, y[, nulp]) Compare two arrays relatively to their spacing.
assert_array_max_ulp(a, b[, maxulp, dtype]) Check that all items of arrays differ in at most N Units in the Last Place.
assert_array_equal(x, y[, err_msg, verbose]) Raises an AssertionError if two array_like objects are not equal.
assert_array_less(x, y[, err_msg, verbose]) Raises an AssertionError if two array_like objects are not ordered by less than.
assert_equal(actual, desired[, err_msg, verbose]) Raises an AssertionError if two objects are not equal.
assert_raises(exception_class, callable, ...) Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and keyword arguments kwargs.
assert_raises_regex(exception_class, ...[, ...]) Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs.
assert_warns(warning_class, *args, **kwargs) Fail unless the given callable throws the specified warning.
assert_string_equal(actual, desired) Test if two strings are equal.

numpy.testing.assert_almost_equal(actual, desired, decimal=7, err_msg=’‘, verbose=True)
Raises an AssertionError if two items are not equal up to desired precision.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

3.28. Test Support (numpy.testing) 1113

NumPy Reference, Release 1.11.1

The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal).

Given two objects (numbers or ndarrays), check that all elements of these objects are almost equal. An exception
is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal

Parameters
actual : array_like

The object to check.

desired : array_like

The expected object.

decimal : int, optional

Desired precision, default is 7.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
ACTUAL: 2.3333333333333002
DESIRED: 2.3333333399999998

>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal

(mismatch 50.0%)
x: array([1. , 2.33333333])
y: array([1. , 2.33333334])

numpy.testing.assert_approx_equal(actual, desired, significant=7, err_msg=’‘, verbose=True)
Raises an AssertionError if two items are not equal up to significant digits.

1114 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of
significant digits that agree.

Parameters
actual : scalar

The object to check.

desired : scalar

The expected object.

significant : int, optional

Desired precision, default is 7.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,

significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,

significant=8)
...
<type 'exceptions.AssertionError'>:
Items are not equal to 8 significant digits:
ACTUAL: 1.234567e-021
DESIRED: 1.2345672000000001e-021

the evaluated condition that raises the exception is

>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True

numpy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg=’‘, verbose=True)
Raises an AssertionError if two objects are not equal up to desired precision.

3.28. Test Support (numpy.testing) 1115

NumPy Reference, Release 1.11.1

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

The test verifies identical shapes and verifies values with abs(desired-actual) < 0.5 *
10**(-decimal).

Given two array_like objects, check that the shape is equal and all elements of these objects are almost equal.
An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy,
NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.

Parameters
x : array_like

The actual object to check.

y : array_like

The desired, expected object.

decimal : int, optional

Desired precision, default is 6.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

the first assert does not raise an exception

>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
[1.0,2.333,np.nan])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
...
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal

(mismatch 50.0%)
x: array([1. , 2.33333, NaN])
y: array([1. , 2.33339, NaN])

1116 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
<type 'exceptions.ValueError'>:
ValueError:
Arrays are not almost equal
x: array([1. , 2.33333, NaN])
y: array([1. , 2.33333, 5.])

numpy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, equal_nan=False,
err_msg=’‘, verbose=True)

Raises an AssertionError if two objects are not equal up to desired tolerance.

The test is equivalent to allclose(actual, desired, rtol, atol). It compares the difference
between actual and desired to atol + rtol * abs(desired).

New in version 1.5.0.

Parameters
actual : array_like

Array obtained.

desired : array_like

Array desired.

rtol : float, optional

Relative tolerance.

atol : float, optional

Absolute tolerance.

equal_nan : bool, optional.

If True, NaNs will compare equal.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired are not equal up to specified precision.

See also:

assert_array_almost_equal_nulp, assert_array_max_ulp

Examples

>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)

numpy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)
Compare two arrays relatively to their spacing.

This is a relatively robust method to compare two arrays whose amplitude is variable.

3.28. Test Support (numpy.testing) 1117

NumPy Reference, Release 1.11.1

Parameters
x, y : array_like

Input arrays.

nulp : int, optional

The maximum number of unit in the last place for tolerance (see Notes). Default is 1.

Returns
None

Raises
AssertionError

If the spacing between x and y for one or more elements is larger than nulp.

See also:

assert_array_max_ulp
Check that all items of arrays differ in at most N Units in the Last Place.

spacing
Return the distance between x and the nearest adjacent number.

Notes

An assertion is raised if the following condition is not met:

abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y)))

Examples

>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
Traceback (most recent call last):
...

AssertionError: X and Y are not equal to 1 ULP (max is 2)

numpy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)
Check that all items of arrays differ in at most N Units in the Last Place.

Parameters
a, b : array_like

Input arrays to be compared.

maxulp : int, optional

The maximum number of units in the last place that elements of a and b can differ.
Default is 1.

dtype : dtype, optional

Data-type to convert a and b to if given. Default is None.

Returns
ret : ndarray

Array containing number of representable floating point numbers between items in a
and b.

1118 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Raises
AssertionError

If one or more elements differ by more than maxulp.

See also:

assert_array_almost_equal_nulp
Compare two arrays relatively to their spacing.

Examples

>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))

numpy.testing.assert_array_equal(x, y, err_msg=’‘, verbose=True)
Raises an AssertionError if two array_like objects are not equal.

Given two array_like objects, check that the shape is equal and all elements of these objects are equal. An
exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs
are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.

The usual caution for verifying equality with floating point numbers is advised.

Parameters
x : array_like

The actual object to check.

y : array_like

The desired, expected object.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired objects are not equal.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

The first assert does not raise an exception:

>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])

Assert fails with numerical inprecision with floats:

3.28. Test Support (numpy.testing) 1119

NumPy Reference, Release 1.11.1

>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
...
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal

(mismatch 50.0%)
x: array([1. , 3.14159265, NaN])
y: array([1. , 3.14159265, NaN])

Use assert_allclose or one of the nulp (number of floating point values) functions for these cases instead:

>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)

numpy.testing.assert_array_less(x, y, err_msg=’‘, verbose=True)
Raises an AssertionError if two array_like objects are not ordered by less than.

Given two array_like objects, check that the shape is equal and all elements of the first object are strictly smaller
than those of the second object. An exception is raised at shape mismatch or incorrectly ordered values. Shape
mismatch does not raise if an object has zero dimension. In contrast to the standard usage in numpy, NaNs are
compared, no assertion is raised if both objects have NaNs in the same positions.

Parameters
x : array_like

The smaller object to check.

y : array_like

The larger object to compare.

err_msg : string

The error message to be printed in case of failure.

verbose : bool

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired objects are not equal.

See also:

assert_array_equal
tests objects for equality

assert_array_almost_equal
test objects for equality up to precision

Examples

>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered

1120 Chapter 3. Routines

NumPy Reference, Release 1.11.1

(mismatch 50.0%)
x: array([1., 1., NaN])
y: array([1., 2., NaN])

>>> np.testing.assert_array_less([1.0, 4.0], 3)
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([1., 4.])
y: array(3)

>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(shapes (3,), (1,) mismatch)
x: array([1., 2., 3.])
y: array([4])

numpy.testing.assert_equal(actual, desired, err_msg=’‘, verbose=True)
Raises an AssertionError if two objects are not equal.

Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), check that all elements of these objects
are equal. An exception is raised at the first conflicting values.

Parameters
actual : array_like

The object to check.

desired : array_like

The expected object.

err_msg : str, optional

The error message to be printed in case of failure.

verbose : bool, optional

If True, the conflicting values are appended to the error message.

Raises
AssertionError

If actual and desired are not equal.

Examples

>>> np.testing.assert_equal([4,5], [4,6])
...
<type 'exceptions.AssertionError'>:
Items are not equal:
item=1
ACTUAL: 5
DESIRED: 6

numpy.testing.assert_raises(exception_class, callable, *args, **kwargs)
Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and
keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case
will be deemed to have suffered an error, exactly as for an unexpected exception.

3.28. Test Support (numpy.testing) 1121

NumPy Reference, Release 1.11.1

Alternatively, assert_raises can be used as a context manager:

>>> from numpy.testing import assert_raises
>>> with assert_raises(ZeroDivisionError):
... 1 / 0

is equivalent to

>>> def div(x, y):
... return x / y
>>> assert_raises(ZeroDivisionError, div, 1, 0)

numpy.testing.assert_raises_regex(exception_class, expected_regexp, callable_obj=None,
*args, **kwargs)

Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by
callable when invoked with arguments args and keyword arguments kwargs.

Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6.

numpy.testing.assert_warns(warning_class, *args, **kwargs)
Fail unless the given callable throws the specified warning.

A warning of class warning_class should be thrown by the callable when invoked with arguments args and
keyword arguments kwargs. If a different type of warning is thrown, it will not be caught, and the test case will
be deemed to have suffered an error.

If called with all arguments other than the warning class omitted, may be used as a context manager:

with assert_warns(SomeWarning):
do_something()

The ability to be used as a context manager is new in NumPy v1.11.0.

New in version 1.4.0.

Parameters
warning_class : class

The class defining the warning that func is expected to throw.

func : callable

The callable to test.

*args : Arguments

Arguments passed to func.

**kwargs : Kwargs

Keyword arguments passed to func.

Returns
The value returned by func.

numpy.testing.assert_string_equal(actual, desired)
Test if two strings are equal.

If the given strings are equal, assert_string_equal does nothing. If they are not equal, an AssertionError
is raised, and the diff between the strings is shown.

Parameters
actual : str

The string to test for equality against the expected string.

1122 Chapter 3. Routines

NumPy Reference, Release 1.11.1

desired : str

The expected string.

Examples

>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

...
AssertionError: Differences in strings:
- abc+ abcd? +

3.28.2 Decorators

decorators.deprecated([conditional]) Filter deprecation warnings while running the test suite.
decorators.knownfailureif(fail_condition[, msg]) Make function raise KnownFailureException exception if given condition is true.
decorators.setastest([tf]) Signals to nose that this function is or is not a test.
decorators.skipif(skip_condition[, msg]) Make function raise SkipTest exception if a given condition is true.
decorators.slow(t) Label a test as ‘slow’.
decorate_methods(cls, decorator[, testmatch]) Apply a decorator to all methods in a class matching a regular expression.

numpy.testing.decorators.deprecated(conditional=True)
Filter deprecation warnings while running the test suite.

This decorator can be used to filter DeprecationWarning’s, to avoid printing them during the test suite run, while
checking that the test actually raises a DeprecationWarning.

Parameters
conditional : bool or callable, optional

Flag to determine whether to mark test as deprecated or not. If the condition is a callable,
it is used at runtime to dynamically make the decision. Default is True.

Returns
decorator : function

The deprecated decorator itself.

Notes

New in version 1.4.0.

numpy.testing.decorators.knownfailureif(fail_condition, msg=None)
Make function raise KnownFailureException exception if given condition is true.

If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that
may require costly imports, to delay the cost until the test suite is actually executed.

Parameters
fail_condition : bool or callable

Flag to determine whether to mark the decorated test as a known failure (if True) or not
(if False).

msg : str, optional

Message to give on raising a KnownFailureException exception. Default is None.

3.28. Test Support (numpy.testing) 1123

NumPy Reference, Release 1.11.1

Returns
decorator : function

Decorator, which, when applied to a function, causes KnownFailureException to be
raised when fail_condition is True, and the function to be called normally otherwise.

Notes

The decorator itself is decorated with the nose.tools.make_decorator function in order to transmit
function name, and various other metadata.

numpy.testing.decorators.setastest(tf=True)
Signals to nose that this function is or is not a test.

Parameters
tf : bool

If True, specifies that the decorated callable is a test. If False, specifies that the decorated
callable is not a test. Default is True.

Notes

This decorator can’t use the nose namespace, because it can be called from a non-test module. See also istest
and nottest in nose.tools.

Examples

setastest can be used in the following way:

from numpy.testing.decorators import setastest

@setastest(False)
def func_with_test_in_name(arg1, arg2):

pass

numpy.testing.decorators.skipif(skip_condition, msg=None)
Make function raise SkipTest exception if a given condition is true.

If the condition is a callable, it is used at runtime to dynamically make the decision. This is useful for tests that
may require costly imports, to delay the cost until the test suite is actually executed.

Parameters
skip_condition : bool or callable

Flag to determine whether to skip the decorated test.

msg : str, optional

Message to give on raising a SkipTest exception. Default is None.

Returns
decorator : function

Decorator which, when applied to a function, causes SkipTest to be raised when
skip_condition is True, and the function to be called normally otherwise.

Notes

The decorator itself is decorated with the nose.tools.make_decorator function in order to transmit
function name, and various other metadata.

numpy.testing.decorators.slow(t)
Label a test as ‘slow’.

1124 Chapter 3. Routines

NumPy Reference, Release 1.11.1

The exact definition of a slow test is obviously both subjective and hardware-dependent, but in general any
individual test that requires more than a second or two should be labeled as slow (the whole suite consits of
thousands of tests, so even a second is significant).

Parameters
t : callable

The test to label as slow.

Returns
t : callable

The decorated test t.

Examples

The numpy.testing module includes import decorators as dec. A test can be decorated as slow
like this:

from numpy.testing import *

@dec.slow
def test_big(self):

print('Big, slow test')

numpy.testing.decorate_methods(cls, decorator, testmatch=None)
Apply a decorator to all methods in a class matching a regular expression.

The given decorator is applied to all public methods of cls that are matched by the regular expression testmatch
(testmatch.search(methodname)). Methods that are private, i.e. start with an underscore, are ignored.

Parameters
cls : class

Class whose methods to decorate.

decorator : function

Decorator to apply to methods

testmatch : compiled regexp or str, optional

The regular expression. Default value is None, in which case the nose default
(re.compile(r’(?:^|[\b_\.%s-])[Tt]est’ % os.sep)) is used. If
testmatch is a string, it is compiled to a regular expression first.

3.28.3 Test Running

Tester alias of NoseTester
run_module_suite([file_to_run, argv]) Run a test module.
rundocs([filename, raise_on_error]) Run doctests found in the given file.

numpy.testing.Tester
alias of NoseTester

numpy.testing.run_module_suite(file_to_run=None, argv=None)
Run a test module.

Equivalent to calling $ nosetests <argv> <file_to_run> from the command line

3.28. Test Support (numpy.testing) 1125

NumPy Reference, Release 1.11.1

Parameters
file_to_run : str, optional

Path to test module, or None. By default, run the module from which this function is
called.

argv : list of strings

Arguments to be passed to the nose test runner. argv[0] is ignored. All command line
arguments accepted by nosetests will work. If it is the default value None, sys.argv
is used.

New in version 1.9.0.

Examples

Adding the following:

if __name__ == "__main__" :
run_module_suite(argv=sys.argv)

at the end of a test module will run the tests when that module is called in the python interpreter.

Alternatively, calling:

>>> run_module_suite(file_to_run="numpy/tests/test_matlib.py")

from an interpreter will run all the test routine in ‘test_matlib.py’.

numpy.testing.rundocs(filename=None, raise_on_error=True)
Run doctests found in the given file.

By default rundocs raises an AssertionError on failure.

Parameters
filename : str

The path to the file for which the doctests are run.

raise_on_error : bool

Whether to raise an AssertionError when a doctest fails. Default is True.

Notes

The doctests can be run by the user/developer by adding the doctests argument to the test() call. For
example, to run all tests (including doctests) for numpy.lib:

>>> np.lib.test(doctests=True)

3.29 Window functions

3.29.1 Various windows

bartlett(M) Return the Bartlett window.
blackman(M) Return the Blackman window.
hamming(M) Return the Hamming window.
hanning(M) Return the Hanning window.
kaiser(M, beta) Return the Kaiser window.

1126 Chapter 3. Routines

NumPy Reference, Release 1.11.1

numpy.bartlett(M)
Return the Bartlett window.

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often
used in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters
M : int

Number of points in the output window. If zero or less, an empty array is returned.

Returns
out : array

The triangular window, with the maximum value normalized to one (the value one ap-
pears only if the number of samples is odd), with the first and last samples equal to
zero.

See also:

blackman, hamming, hanning, kaiser

Notes

The Bartlett window is defined as

𝑤(𝑛) =
2

𝑀 − 1

(︂
𝑀 − 1

2
−
⃒⃒⃒⃒
𝑛− 𝑀 − 1

2

⃒⃒⃒⃒)︂
Most references to the Bartlett window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. Note that convolution with this window produces linear in-
terpolation. It is also known as an apodization (which means”removing the foot”, i.e. smoothing discontinuities
at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the
product of two sinc functions. Note the excellent discussion in Kanasewich.

References

[R11], [R12], [R13], [R14], [R15]

Examples

>>> np.bartlett(12)
array([0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,

0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0.])

Plot the window and its frequency response (requires SciPy and matplotlib):

>>> from numpy.fft import fft, fftshift
>>> window = np.bartlett(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

3.29. Window functions 1127

NumPy Reference, Release 1.11.1

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.blackman(M)
Return the Blackman window.

The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed
to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window.

Parameters
M : int

Number of points in the output window. If zero or less, an empty array is returned.

Returns
out : ndarray

The window, with the maximum value normalized to one (the value one appears only if
the number of samples is odd).

See also:

bartlett, hamming, hanning, kaiser

Notes

The Blackman window is defined as

𝑤(𝑛) = 0.42 − 0.5 cos(2𝜋𝑛/𝑀) + 0.08 cos(4𝜋𝑛/𝑀)

Most references to the Blackman window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It
is known as a “near optimal” tapering function, almost as good (by some measures) as the kaiser window.

References

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall,
1999, pp. 468-471.

Examples

1128 Chapter 3. Routines

NumPy Reference, Release 1.11.1

>>> np.blackman(12)
array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01,

4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
1.59903635e-01, 3.26064346e-02, -1.38777878e-17])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.blackman(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.hamming(M)
Return the Hamming window.

The Hamming window is a taper formed by using a weighted cosine.

Parameters
M : int

Number of points in the output window. If zero or less, an empty array is returned.

Returns
out : ndarray

The window, with the maximum value normalized to one (the value one appears only if
the number of samples is odd).

See also:

bartlett, blackman, hanning, kaiser

3.29. Window functions 1129

NumPy Reference, Release 1.11.1

Notes

The Hamming window is defined as

𝑤(𝑛) = 0.54 − 0.46𝑐𝑜𝑠

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and
Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most
references to the Hamming window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R21], [R22], [R23], [R24]

Examples

>>> np.hamming(12)
array([0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594,

0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
0.15302337, 0.08])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hamming(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.hanning(M)
Return the Hanning window.

The Hanning window is a taper formed by using a weighted cosine.

1130 Chapter 3. Routines

NumPy Reference, Release 1.11.1

Parameters
M : int

Number of points in the output window. If zero or less, an empty array is returned.

Returns
out : ndarray, shape(M,)

The window, with the maximum value normalized to one (the value one appears only if
M is odd).

See also:

bartlett, blackman, hamming, kaiser

Notes

The Hanning window is defined as

𝑤(𝑛) = 0.5 − 0.5𝑐𝑜𝑠

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell.
Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming
window.

Most references to the Hanning window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R25], [R26], [R27], [R28]

Examples

>>> np.hanning(12)
array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,

0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
0.07937323, 0.])

Plot the window and its frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.hanning(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)

3.29. Window functions 1131

NumPy Reference, Release 1.11.1

>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of the Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

numpy.kaiser(M, beta)
Return the Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

Parameters
M : int

Number of points in the output window. If zero or less, an empty array is returned.

beta : float

Shape parameter for window.

Returns
out : array

The window, with the maximum value normalized to one (the value one appears only if
the number of samples is odd).

See also:

bartlett, blackman, hamming, hanning

Notes

The Kaiser window is defined as

𝑤(𝑛) = 𝐼0

(︃
𝛽

√︃
1 − 4𝑛2

(𝑀 − 1)2

)︃
/𝐼0(𝛽)

with

−𝑀 − 1

2
≤ 𝑛 ≤ 𝑀 − 1

2
,

where 𝐼0 is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on
Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence,
or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative
to total energy.

The Kaiser can approximate many other windows by varying the beta parameter.

beta Window shape
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hanning
8.6 Similar to a Blackman

1132 Chapter 3. Routines

NumPy Reference, Release 1.11.1

A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so
the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.

Most references to the Kaiser window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[R34], [R35], [R36]

Examples

>>> np.kaiser(12, 14)
array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02,

2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
4.65200189e-02, 3.46009194e-03, 7.72686684e-06])

Plot the window and the frequency response:

>>> from numpy.fft import fft, fftshift
>>> window = np.kaiser(51, 14)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()

>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()

3.29. Window functions 1133

NumPy Reference, Release 1.11.1

1134 Chapter 3. Routines

CHAPTER

FOUR

PACKAGING (NUMPY.DISTUTILS)

NumPy provides enhanced distutils functionality to make it easier to build and install sub-packages, auto-generate
code, and extension modules that use Fortran-compiled libraries. To use features of NumPy distutils, use the
setup command from numpy.distutils.core. A useful Configuration class is also provided in
numpy.distutils.misc_util that can make it easier to construct keyword arguments to pass to the setup
function (by passing the dictionary obtained from the todict() method of the class). More information is available in
the NumPy Distutils Users Guide in <site-packages>/numpy/doc/DISTUTILS.txt.

4.1 Modules in numpy.distutils

4.1.1 misc_util

get_numpy_include_dirs()
dict_append(d, **kws)
appendpath(prefix, path)
allpath(name) Convert a /-separated pathname to one using the OS’s path separator.
dot_join(*args)
generate_config_py(target) Generate config.py file containing system_info information used during building the package.
get_cmd(cmdname[, _cache])
terminal_has_colors()
red_text(s)
green_text(s)
yellow_text(s)
blue_text(s)
cyan_text(s)
cyg2win32(path)
all_strings(lst) Return True if all items in lst are string objects.
has_f_sources(sources) Return True if sources contains Fortran files
has_cxx_sources(sources) Return True if sources contains C++ files
filter_sources(sources) Return four lists of filenames containing C, C++, Fortran, and Fortran 90 module sources, respectively.
get_dependencies(sources)
is_local_src_dir(directory) Return true if directory is local directory.
get_ext_source_files(ext)
get_script_files(scripts)

numpy.distutils.misc_util.get_numpy_include_dirs()

numpy.distutils.misc_util.dict_append(d, **kws)

1135

NumPy Reference, Release 1.11.1

numpy.distutils.misc_util.appendpath(prefix, path)

numpy.distutils.misc_util.allpath(name)
Convert a /-separated pathname to one using the OS’s path separator.

numpy.distutils.misc_util.dot_join(*args)

numpy.distutils.misc_util.generate_config_py(target)
Generate config.py file containing system_info information used during building the package.

Usage:
config[’py_modules’].append((packagename, ‘__config__’,generate_config_py))

numpy.distutils.misc_util.get_cmd(cmdname, _cache={})

numpy.distutils.misc_util.terminal_has_colors()

numpy.distutils.misc_util.red_text(s)

numpy.distutils.misc_util.green_text(s)

numpy.distutils.misc_util.yellow_text(s)

numpy.distutils.misc_util.blue_text(s)

numpy.distutils.misc_util.cyan_text(s)

numpy.distutils.misc_util.cyg2win32(path)

numpy.distutils.misc_util.all_strings(lst)
Return True if all items in lst are string objects.

numpy.distutils.misc_util.has_f_sources(sources)
Return True if sources contains Fortran files

numpy.distutils.misc_util.has_cxx_sources(sources)
Return True if sources contains C++ files

numpy.distutils.misc_util.filter_sources(sources)
Return four lists of filenames containing C, C++, Fortran, and Fortran 90 module sources, respectively.

numpy.distutils.misc_util.get_dependencies(sources)

numpy.distutils.misc_util.is_local_src_dir(directory)
Return true if directory is local directory.

numpy.distutils.misc_util.get_ext_source_files(ext)

numpy.distutils.misc_util.get_script_files(scripts)

1136 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

class numpy.distutils.misc_util.Configuration(package_name=None, parent_name=None,
top_path=None, package_path=None, **at-
trs)

Construct a configuration instance for the given package name. If parent_name is not None, then construct the
package as a sub-package of the parent_name package. If top_path and package_path are None then they are
assumed equal to the path of the file this instance was created in. The setup.py files in the numpy distribution
are good examples of how to use the Configuration instance.

todict()
Return a dictionary compatible with the keyword arguments of distutils setup function.

Examples

>>> setup(**config.todict())

get_distribution()
Return the distutils distribution object for self.

get_subpackage(subpackage_name, subpackage_path=None, parent_name=None, caller_level=1)
Return list of subpackage configurations.

Parameters
subpackage_name : str or None

Name of the subpackage to get the configuration. ‘*’ in subpackage_name is handled
as a wildcard.

subpackage_path : str

If None, then the path is assumed to be the local path plus the subpackage_name. If a
setup.py file is not found in the subpackage_path, then a default configuration is used.

parent_name : str

Parent name.

add_subpackage(subpackage_name, subpackage_path=None, standalone=False)
Add a sub-package to the current Configuration instance.

This is useful in a setup.py script for adding sub-packages to a package.

Parameters
subpackage_name : str

name of the subpackage

subpackage_path : str

if given, the subpackage path such as the subpackage is in subpackage_path / subpack-
age_name. If None,the subpackage is assumed to be located in the local path / subpack-
age_name.

standalone : bool

add_data_files(*files)
Add data files to configuration data_files.

Parameters
files : sequence

Argument(s) can be either

• 2-sequence (<datadir prefix>,<path to data file(s)>)

• paths to data files where python datadir prefix defaults to package dir.

4.1. Modules in numpy.distutils 1137

NumPy Reference, Release 1.11.1

Notes

The form of each element of the files sequence is very flexible allowing many combinations of where to
get the files from the package and where they should ultimately be installed on the system. The most basic
usage is for an element of the files argument sequence to be a simple filename. This will cause that file
from the local path to be installed to the installation path of the self.name package (package path). The file
argument can also be a relative path in which case the entire relative path will be installed into the package
directory. Finally, the file can be an absolute path name in which case the file will be found at the absolute
path name but installed to the package path.

This basic behavior can be augmented by passing a 2-tuple in as the file argument. The first element of the
tuple should specify the relative path (under the package install directory) where the remaining sequence
of files should be installed to (it has nothing to do with the file-names in the source distribution). The
second element of the tuple is the sequence of files that should be installed. The files in this sequence can
be filenames, relative paths, or absolute paths. For absolute paths the file will be installed in the top-level
package installation directory (regardless of the first argument). Filenames and relative path names will be
installed in the package install directory under the path name given as the first element of the tuple.

Rules for installation paths:

1.file.txt -> (., file.txt)-> parent/file.txt

2.foo/file.txt -> (foo, foo/file.txt) -> parent/foo/file.txt

3./foo/bar/file.txt -> (., /foo/bar/file.txt) -> parent/file.txt

4.*.txt -> parent/a.txt, parent/b.txt

5.foo/*.txt -> parent/foo/a.txt, parent/foo/b.txt

6./.txt -> (, */.txt) -> parent/c/a.txt, parent/d/b.txt

7.(sun, file.txt) -> parent/sun/file.txt

8.(sun, bar/file.txt) -> parent/sun/file.txt

9.(sun, /foo/bar/file.txt) -> parent/sun/file.txt

10.(sun, *.txt) -> parent/sun/a.txt, parent/sun/b.txt

11.(sun, bar/*.txt) -> parent/sun/a.txt, parent/sun/b.txt

12.(sun/, */.txt) -> parent/sun/c/a.txt, parent/d/b.txt

An additional feature is that the path to a data-file can actually be a function that takes no arguments and
returns the actual path(s) to the data-files. This is useful when the data files are generated while building
the package.

Examples

Add files to the list of data_files to be included with the package.

>>> self.add_data_files('foo.dat',
... ('fun', ['gun.dat', 'nun/pun.dat', '/tmp/sun.dat']),
... 'bar/cat.dat',
... '/full/path/to/can.dat')

will install these data files to:

<package install directory>/
foo.dat
fun/
gun.dat
nun/

1138 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

pun.dat
sun.dat
bar/
car.dat

can.dat

where <package install directory> is the package (or sub-package) directory such as
‘/usr/lib/python2.4/site-packages/mypackage’ (‘C: Python2.4 Lib site-packages mypackage’) or
‘/usr/lib/python2.4/site- packages/mypackage/mysubpackage’ (‘C: Python2.4 Lib site-packages my-
package mysubpackage’).

add_data_dir(data_path)
Recursively add files under data_path to data_files list.

Recursively add files under data_path to the list of data_files to be installed (and distributed). The data_path
can be either a relative path-name, or an absolute path-name, or a 2-tuple where the first argument shows
where in the install directory the data directory should be installed to.

Parameters
data_path : seq or str

Argument can be either

• 2-sequence (<datadir suffix>, <path to data directory>)

• path to data directory where python datadir suffix defaults to package dir.

Notes

Rules for installation paths:
foo/bar -> (foo/bar, foo/bar) -> parent/foo/bar (gun, foo/bar) -> parent/gun foo/* -> (foo/a, foo/a),
(foo/b, foo/b) -> parent/foo/a, parent/foo/b (gun, foo/) -> (gun, foo/a), (gun, foo/b) -> gun (gun/, foo/)
-> parent/gun/a, parent/gun/b /foo/bar -> (bar, /foo/bar) -> parent/bar (gun, /foo/bar) -> parent/gun
(fun/ /gun/*, sun/foo/bar) -> parent/fun/foo/gun/bar

Examples

For example suppose the source directory contains fun/foo.dat and fun/bar/car.dat:

>>> self.add_data_dir('fun')
>>> self.add_data_dir(('sun', 'fun'))
>>> self.add_data_dir(('gun', '/full/path/to/fun'))

Will install data-files to the locations:

<package install directory>/
fun/
foo.dat
bar/
car.dat

sun/
foo.dat
bar/
car.dat

gun/
foo.dat
car.dat

add_include_dirs(*paths)
Add paths to configuration include directories.

4.1. Modules in numpy.distutils 1139

NumPy Reference, Release 1.11.1

Add the given sequence of paths to the beginning of the include_dirs list. This list will be visible to all
extension modules of the current package.

add_headers(*files)
Add installable headers to configuration.

Add the given sequence of files to the beginning of the headers list. By default, headers will be installed
under <python- include>/<self.name.replace(‘.’,’/’)>/ directory. If an item of files is a tuple, then its first
argument specifies the actual installation location relative to the <python-include> path.

Parameters
files : str or seq

Argument(s) can be either:

• 2-sequence (<includedir suffix>,<path to header file(s)>)

• path(s) to header file(s) where python includedir suffix will default to package name.

add_extension(name, sources, **kw)
Add extension to configuration.

Create and add an Extension instance to the ext_modules list. This method also takes the following optional
keyword arguments that are passed on to the Extension constructor.

Parameters
name : str

name of the extension

sources : seq

list of the sources. The list of sources may contain functions (called source generators)
which must take an extension instance and a build directory as inputs and return a source
file or list of source files or None. If None is returned then no sources are generated.
If the Extension instance has no sources after processing all source generators, then no
extension module is built.

include_dirs :

define_macros :

undef_macros :

library_dirs :

libraries :

runtime_library_dirs :

extra_objects :

extra_compile_args :

extra_link_args :

extra_f77_compile_args :

extra_f90_compile_args :

export_symbols :

swig_opts :

depends :

1140 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

The depends list contains paths to files or directories that the sources of the extension
module depend on. If any path in the depends list is newer than the extension module,
then the module will be rebuilt.

language :

f2py_options :

module_dirs :

extra_info : dict or list

dict or list of dict of keywords to be appended to keywords.

Notes

The self.paths(...) method is applied to all lists that may contain paths.

add_library(name, sources, **build_info)
Add library to configuration.

Parameters
name : str

Name of the extension.

sources : sequence

List of the sources. The list of sources may contain functions (called source generators)
which must take an extension instance and a build directory as inputs and return a source
file or list of source files or None. If None is returned then no sources are generated.
If the Extension instance has no sources after processing all source generators, then no
extension module is built.

build_info : dict, optional

The following keys are allowed:

• depends

• macros

• include_dirs

• extra_compiler_args

• extra_f77_compiler_args

• extra_f90_compiler_args

• f2py_options

• language

add_scripts(*files)
Add scripts to configuration.

Add the sequence of files to the beginning of the scripts list. Scripts will be installed under the <prefix>/bin/
directory.

add_installed_library(name, sources, install_dir, build_info=None)
Similar to add_library, but the specified library is installed.

Most C libraries used with distutils are only used to build python extensions, but libraries built
through this method will be installed so that they can be reused by third-party packages.

4.1. Modules in numpy.distutils 1141

http://docs.python.org/dev/library/distutils.html#module-distutils

NumPy Reference, Release 1.11.1

Parameters
name : str

Name of the installed library.

sources : sequence

List of the library’s source files. See add_library for details.

install_dir : str

Path to install the library, relative to the current sub-package.

build_info : dict, optional

The following keys are allowed:

• depends

• macros

• include_dirs

• extra_compiler_args

• extra_f77_compiler_args

• extra_f90_compiler_args

• f2py_options

• language

Returns
None

See also:

add_library , add_npy_pkg_config, get_info

Notes

The best way to encode the options required to link against the specified C libraries is to use a “libname.ini”
file, and use get_info to retrieve the required options (see add_npy_pkg_config for more infor-
mation).

add_npy_pkg_config(template, install_dir, subst_dict=None)
Generate and install a npy-pkg config file from a template.

The config file generated from template is installed in the given install directory, using subst_dict for
variable substitution.

Parameters
template : str

The path of the template, relatively to the current package path.

install_dir : str

Where to install the npy-pkg config file, relatively to the current package path.

subst_dict : dict, optional

If given, any string of the form @key@ will be replaced by subst_dict[key] in the
template file when installed. The install prefix is always available through the variable
@prefix@, since the install prefix is not easy to get reliably from setup.py.

1142 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

See also:

add_installed_library , get_info

Notes

This works for both standard installs and in-place builds, i.e. the @prefix@ refer to the source directory
for in-place builds.

Examples

config.add_npy_pkg_config('foo.ini.in', 'lib', {'foo': bar})

Assuming the foo.ini.in file has the following content:

[meta]
Name=@foo@
Version=1.0
Description=dummy description

[default]
Cflags=-I@prefix@/include
Libs=

The generated file will have the following content:

[meta]
Name=bar
Version=1.0
Description=dummy description

[default]
Cflags=-Iprefix_dir/include
Libs=

and will be installed as foo.ini in the ‘lib’ subpath.

paths(*paths, **kws)
Apply glob to paths and prepend local_path if needed.

Applies glob.glob(...) to each path in the sequence (if needed) and pre-pends the local_path if needed.
Because this is called on all source lists, this allows wildcard characters to be specified in lists of sources
for extension modules and libraries and scripts and allows path-names be relative to the source directory.

get_config_cmd()
Returns the numpy.distutils config command instance.

get_build_temp_dir()
Return a path to a temporary directory where temporary files should be placed.

have_f77c()
Check for availability of Fortran 77 compiler.

Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 77 compiler is available (because a simple Fortran 77 code was able to be compiled
successfully).

have_f90c()
Check for availability of Fortran 90 compiler.

4.1. Modules in numpy.distutils 1143

NumPy Reference, Release 1.11.1

Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 90 compiler is available (because a simple Fortran 90 code was able to be compiled
successfully)

get_version(version_file=None, version_variable=None)
Try to get version string of a package.

Return a version string of the current package or None if the version information could not be detected.

Notes

This method scans files named __version__.py, <packagename>_version.py, version.py, and
__svn_version__.py for string variables version, __version__, and <packagename>_version, until a ver-
sion number is found.

make_svn_version_py(delete=True)
Appends a data function to the data_files list that will generate __svn_version__.py file to the current
package directory.

Generate package __svn_version__.py file from SVN revision number, it will be removed after python
exits but will be available when sdist, etc commands are executed.

Notes

If __svn_version__.py existed before, nothing is done.

This is intended for working with source directories that are in an SVN repository.

make_config_py(name=’__config__’)
Generate package __config__.py file containing system_info information used during building the pack-
age.

This file is installed to the package installation directory.

get_info(*names)
Get resources information.

Return information (from system_info.get_info) for all of the names in the argument list in a single dictio-
nary.

4.1.2 Other modules

system_info.get_info(name[, notfound_action]) notfound_action:
system_info.get_standard_file(fname) Returns a list of files named ‘fname’ from
cpuinfo.cpu
log.set_verbosity(v[, force])
exec_command exec_command

numpy.distutils.system_info.get_info(name, notfound_action=0)

notfound_action:
0 - do nothing 1 - display warning message 2 - raise error

numpy.distutils.system_info.get_standard_file(fname)
Returns a list of files named ‘fname’ from 1) System-wide directory (directory-location of this module) 2)

1144 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

Users HOME directory (os.environ[’HOME’]) 3) Local directory

numpy.distutils.cpuinfo.cpu = <numpy.distutils.cpuinfo.LinuxCPUInfo object>

numpy.distutils.log.set_verbosity(v, force=False)

exec_command

Implements exec_command function that is (almost) equivalent to commands.getstatusoutput function but on NT,
DOS systems the returned status is actually correct (though, the returned status values may be different by a factor).
In addition, exec_command takes keyword arguments for (re-)defining environment variables.

Provides functions:

exec_command — execute command in a specified directory and
in the modified environment.

find_executable — locate a command using info from environment
variable PATH. Equivalent to posix which command.

Author: Pearu Peterson <pearu@cens.ioc.ee> Created: 11 January 2003

Requires: Python 2.x

Succesfully tested on:

os.namesys.platformcomments
posix linux2 Debian (sid) Linux, Python 2.1.3+, 2.2.3+, 2.3.3 PyCrust 0.9.3, Idle 1.0.2
posix linux2 Red Hat 9 Linux, Python 2.1.3, 2.2.2, 2.3.2
posix sunos5 SunOS 5.9, Python 2.2, 2.3.2
posix darwin Darwin 7.2.0, Python 2.3
nt win32 Windows Me Python 2.3(EE), Idle 1.0, PyCrust 0.7.2 Python 2.1.1 Idle 0.8
nt win32 Windows 98, Python 2.1.1. Idle 0.8
nt win32 Cygwin 98-4.10, Python 2.1.1(MSC) - echo tests fail i.e. redefining environment variables

may not work. FIXED: don’t use cygwin echo! Comment: also cmd /c echo will not work but
redefining environment variables do work.

posix cygwin Cygwin 98-4.10, Python 2.3.3(cygming special)
nt win32 Windows XP, Python 2.3.3

Known bugs:

• Tests, that send messages to stderr, fail when executed from MSYS prompt because the messages are lost at
some point.

Functions

exec_command(command[, execute_in, ...]) Return (status,output) of executed command.
find_executable(exe[, path, _cache]) Return full path of a executable or None.
get_exception()
get_pythonexe()
is_sequence(seq)
make_temp_file([suffix, prefix, text])
open_latin1(filename[, mode])
quote_arg(arg)
temp_file_name()
test(**kws)
test_cl(**kws)

Continued on next page

4.1. Modules in numpy.distutils 1145

mailto:pearu@cens.ioc.ee

NumPy Reference, Release 1.11.1

Table 4.3 – continued from previous page
test_execute_in(**kws)
test_nt(**kws)
test_posix(**kws)
test_svn(**kws)

4.2 Building Installable C libraries

Conventional C libraries (installed through add_library) are not installed, and are just used during the build (they
are statically linked). An installable C library is a pure C library, which does not depend on the python C runtime,
and is installed such that it may be used by third-party packages. To build and install the C library, you just use
the method add_installed_library instead of add_library, which takes the same arguments except for an additional
install_dir argument:

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')

4.2.1 npy-pkg-config files

To make the necessary build options available to third parties, you could use the npy-pkg-config mechanism imple-
mented in numpy.distutils. This mechanism is based on a .ini file which contains all the options. A .ini file is
very similar to .pc files as used by the pkg-config unix utility:

[meta]
Name: foo
Version: 1.0
Description: foo library

[variables]
prefix = /home/user/local
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

Generally, the file needs to be generated during the build, since it needs some information known at build time only
(e.g. prefix). This is mostly automatic if one uses the Configuration method add_npy_pkg_config. Assuming we have
a template file foo.ini.in as follows:

[meta]
Name: foo
Version: @version@
Description: foo library

[variables]
prefix = @prefix@
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

and the following code in setup.py:

1146 Chapter 4. Packaging (numpy.distutils)

NumPy Reference, Release 1.11.1

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')
>>> subst = {'version': '1.0'}
>>> config.add_npy_pkg_config('foo.ini.in', 'lib', subst_dict=subst)

This will install the file foo.ini into the directory package_dir/lib, and the foo.ini file will be generated from foo.ini.in,
where each @version@ will be replaced by subst_dict[’version’]. The dictionary has an additional prefix
substitution rule automatically added, which contains the install prefix (since this is not easy to get from setup.py).
npy-pkg-config files can also be installed at the same location as used for numpy, using the path returned from
get_npy_pkg_dir function.

4.2.2 Reusing a C library from another package

Info are easily retrieved from the get_info function in numpy.distutils.misc_util:

>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=**info)

An additional list of paths to look for .ini files can be given to get_info.

4.3 Conversion of .src files

NumPy distutils supports automatic conversion of source files named <somefile>.src. This facility can be used to
maintain very similar code blocks requiring only simple changes between blocks. During the build phase of setup, if
a template file named <somefile>.src is encountered, a new file named <somefile> is constructed from the template
and placed in the build directory to be used instead. Two forms of template conversion are supported. The first form
occurs for files named named <file>.ext.src where ext is a recognized Fortran extension (f, f90, f95, f77, for, ftn, pyf).
The second form is used for all other cases.

4.3.1 Fortran files

This template converter will replicate all function and subroutine blocks in the file with names that contain ‘<...>’
according to the rules in ‘<...>’. The number of comma-separated words in ‘<...>’ determines the number of times
the block is repeated. What these words are indicates what that repeat rule, ‘<...>’, should be replaced with in each
block. All of the repeat rules in a block must contain the same number of comma-separated words indicating the
number of times that block should be repeated. If the word in the repeat rule needs a comma, leftarrow, or rightarrow,
then prepend it with a backslash ‘ ‘. If a word in the repeat rule matches ‘ \<index>’ then it will be replaced with the
<index>-th word in the same repeat specification. There are two forms for the repeat rule: named and short.

Named repeat rule

A named repeat rule is useful when the same set of repeats must be used several times in a block. It is specified using
<rule1=item1, item2, item3,..., itemN>, where N is the number of times the block should be repeated. On each repeat
of the block, the entire expression, ‘<...>’ will be replaced first with item1, and then with item2, and so forth until N
repeats are accomplished. Once a named repeat specification has been introduced, the same repeat rule may be used
in the current block by referring only to the name (i.e. <rule1>.

Short repeat rule

A short repeat rule looks like <item1, item2, item3, ..., itemN>. The rule specifies that the entire expression, ‘<...>’
should be replaced first with item1, and then with item2, and so forth until N repeats are accomplished.

4.3. Conversion of .src files 1147

NumPy Reference, Release 1.11.1

Pre-defined names

The following predefined named repeat rules are available:

• <prefix=s,d,c,z>

• <_c=s,d,c,z>

• <_t=real, double precision, complex, double complex>

• <ftype=real, double precision, complex, double complex>

• <ctype=float, double, complex_float, complex_double>

• <ftypereal=float, double precision, \0, \1>

• <ctypereal=float, double, \0, \1>

4.3.2 Other files

Non-Fortran files use a separate syntax for defining template blocks that should be repeated using a variable expansion
similar to the named repeat rules of the Fortran-specific repeats. The template rules for these files are:

1. “/**begin repeat “on a line by itself marks the beginning of a segment that should be repeated.

2. Named variable expansions are defined using #name=item1, item2, item3, ..., itemN# and placed on successive
lines. These variables are replaced in each repeat block with corresponding word. All named variables in the
same repeat block must define the same number of words.

3. In specifying the repeat rule for a named variable, item*N is short- hand for item, item, ..., item repeated N
times. In addition, parenthesis in combination with *N can be used for grouping several items that should be
repeated. Thus, #name=(item1, item2)*4# is equivalent to #name=item1, item2, item1, item2, item1, item2,
item1, item2#

4. “*/ “on a line by itself marks the end of the the variable expansion naming. The next line is the first line that
will be repeated using the named rules.

5. Inside the block to be repeated, the variables that should be expanded are specified as @name@.

6. “/**end repeat**/ “on a line by itself marks the previous line as the last line of the block to be repeated.

1148 Chapter 4. Packaging (numpy.distutils)

CHAPTER

FIVE

NUMPY C-API

Beware of the man who won’t be bothered with details.
— William Feather, Sr.

The truth is out there.
— Chris Carter, The X Files

NumPy provides a C-API to enable users to extend the system and get access to the array object for use in other
routines. The best way to truly understand the C-API is to read the source code. If you are unfamiliar with (C) source
code, however, this can be a daunting experience at first. Be assured that the task becomes easier with practice, and
you may be surprised at how simple the C-code can be to understand. Even if you don’t think you can write C-code
from scratch, it is much easier to understand and modify already-written source code then create it de novo.

Python extensions are especially straightforward to understand because they all have a very similar structure. Admit-
tedly, NumPy is not a trivial extension to Python, and may take a little more snooping to grasp. This is especially true
because of the code-generation techniques, which simplify maintenance of very similar code, but can make the code a
little less readable to beginners. Still, with a little persistence, the code can be opened to your understanding. It is my
hope, that this guide to the C-API can assist in the process of becoming familiar with the compiled-level work that can
be done with NumPy in order to squeeze that last bit of necessary speed out of your code.

5.1 Python Types and C-Structures

Several new types are defined in the C-code. Most of these are accessible from Python, but a few are not exposed due
to their limited use. Every new Python type has an associated PyObject * with an internal structure that includes
a pointer to a “method table” that defines how the new object behaves in Python. When you receive a Python object
into C code, you always get a pointer to a PyObject structure. Because a PyObject structure is very generic and
defines only PyObject_HEAD, by itself it is not very interesting. However, different objects contain more details
after the PyObject_HEAD (but you have to cast to the correct type to access them — or use accessor functions or
macros).

5.1.1 New Python Types Defined

Python types are the functional equivalent in C of classes in Python. By constructing a new Python type you make
available a new object for Python. The ndarray object is an example of a new type defined in C. New types are defined
in C by two basic steps:

1. creating a C-structure (usually named Py{Name}Object) that is binary- compatible with the PyObject
structure itself but holds the additional information needed for that particular object;

1149

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
http://docs.python.org/dev/c-api/structures.html#c.PyObject_HEAD
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

2. populating the PyTypeObject table (pointed to by the ob_type member of the PyObject structure) with
pointers to functions that implement the desired behavior for the type.

Instead of special method names which define behavior for Python classes, there are “function tables” which point to
functions that implement the desired results. Since Python 2.2, the PyTypeObject itself has become dynamic which
allows C types that can be “sub-typed “from other C-types in C, and sub-classed in Python. The children types inherit
the attributes and methods from their parent(s).

There are two major new types: the ndarray (PyArray_Type) and the ufunc (PyUFunc_Type). Ad-
ditional types play a supportive role: the PyArrayIter_Type, the PyArrayMultiIter_Type, and the
PyArrayDescr_Type . The PyArrayIter_Type is the type for a flat iterator for an ndarray (the object that
is returned when getting the flat attribute). The PyArrayMultiIter_Type is the type of the object returned
when calling broadcast (). It handles iteration and broadcasting over a collection of nested sequences. Also, the
PyArrayDescr_Type is the data-type-descriptor type whose instances describe the data. Finally, there are 21 new
scalar-array types which are new Python scalars corresponding to each of the fundamental data types available for
arrays. An additional 10 other types are place holders that allow the array scalars to fit into a hierarchy of actual
Python types.

PyArray_Type

PyArrayObject
The PyArrayObject C-structure contains all of the required information for an array. All instances of an
ndarray (and its subclasses) will have this structure. For future compatibility, these structure members should
normally be accessed using the provided macros. If you need a shorter name, then you can make use of
NPY_AO which is defined to be equivalent to PyArrayObject.

typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;

} PyArrayObject;

char *PyArrayObject.data
A pointer to the first element of the array. This pointer can (and normally should) be recast to the data type of
the array.

int PyArrayObject.nd
An integer providing the number of dimensions for this array. When nd is 0, the array is sometimes called a
rank-0 array. Such arrays have undefined dimensions and strides and cannot be accessed. NPY_MAXDIMS is
the largest number of dimensions for any array.

npy_intp PyArrayObject.dimensions
An array of integers providing the shape in each dimension as long as nd ≥ 1. The integer is always large
enough to hold a pointer on the platform, so the dimension size is only limited by memory.

npy_intp *PyArrayObject.strides
An array of integers providing for each dimension the number of bytes that must be skipped to get to the next
element in that dimension.

PyObject *PyArrayObject.base
This member is used to hold a pointer to another Python object that is related to this array. There are two use
cases: 1) If this array does not own its own memory, then base points to the Python object that owns it (perhaps

1150 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/type.html#c.PyTypeObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

another array object), 2) If this array has the NPY_ARRAY_UPDATEIFCOPY flag set, then this array is a
working copy of a “misbehaved” array. As soon as this array is deleted, the array pointed to by base will be
updated with the contents of this array.

PyArray_Descr *PyArrayObject.descr
A pointer to a data-type descriptor object (see below). The data-type descriptor object is an instance of a new
built-in type which allows a generic description of memory. There is a descriptor structure for each data type
supported. This descriptor structure contains useful information about the type as well as a pointer to a table of
function pointers to implement specific functionality.

int PyArrayObject.flags
Flags indicating how the memory pointed to by data is to be interpreted. Possible flags
are NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, and NPY_ARRAY_UPDATEIFCOPY .

PyObject *PyArrayObject.weakreflist
This member allows array objects to have weak references (using the weakref module).

PyArrayDescr_Type

PyArray_Descr
The format of the PyArray_Descr structure that lies at the heart of the PyArrayDescr_Type is

typedef struct {
PyObject_HEAD
PyTypeObject *typeobj;
char kind;
char type;
char byteorder;
char unused;
int flags;
int type_num;
int elsize;
int alignment;
PyArray_ArrayDescr *subarray;
PyObject *fields;
PyArray_ArrFuncs *f;

} PyArray_Descr;

PyTypeObject *PyArray_Descr.typeobj
Pointer to a typeobject that is the corresponding Python type for the elements of this array. For the builtin
types, this points to the corresponding array scalar. For user-defined types, this should point to a user-defined
typeobject. This typeobject can either inherit from array scalars or not. If it does not inherit from array scalars,
then the NPY_USE_GETITEM and NPY_USE_SETITEM flags should be set in the flags member.

char PyArray_Descr.kind
A character code indicating the kind of array (using the array interface typestring notation). A ‘b’ represents
Boolean, a ‘i’ represents signed integer, a ‘u’ represents unsigned integer, ‘f’ represents floating point, ‘c’
represents complex floating point, ‘S’ represents 8-bit character string, ‘U’ represents 32-bit/character unicode
string, and ‘V’ repesents arbitrary.

char PyArray_Descr.type
A traditional character code indicating the data type.

char PyArray_Descr.byteorder
A character indicating the byte-order: ‘>’ (big-endian), ‘<’ (little- endian), ‘=’ (native), ‘|’ (irrelevant, ignore).
All builtin data- types have byteorder ‘=’.

5.1. Python Types and C-Structures 1151

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 1.11.1

int PyArray_Descr.flags
A data-type bit-flag that determines if the data-type exhibits object- array like behavior. Each bit in this member
is a flag which are named as:

PyDataType_FLAGCHK(PyArray_Descr *dtype, int flags)
Return true if all the given flags are set for the data-type object.

PyDataType_REFCHK(PyArray_Descr *dtype)
Equivalent to PyDataType_FLAGCHK (dtype, NPY_ITEM_REFCOUNT).

int PyArray_Descr.type_num
A number that uniquely identifies the data type. For new data-types, this number is assigned when the data-type
is registered.

int PyArray_Descr.elsize
For data types that are always the same size (such as long), this holds the size of the data type. For flexible data
types where different arrays can have a different elementsize, this should be 0.

int PyArray_Descr.alignment
A number providing alignment information for this data type. Specifically, it shows how far from the start
of a 2-element structure (whose first element is a char), the compiler places an item of this type:
offsetof(struct {char c; type v;}, v)

PyArray_ArrayDescr *PyArray_Descr.subarray
If this is non- NULL, then this data-type descriptor is a C-style contiguous array of another data-type descriptor.
In other-words, each element that this descriptor describes is actually an array of some other base descriptor.
This is most useful as the data-type descriptor for a field in another data-type descriptor. The fields member
should be NULL if this is non- NULL (the fields member of the base descriptor can be non- NULL however).
The PyArray_ArrayDescr structure is defined using

typedef struct {
PyArray_Descr *base;
PyObject *shape;

} PyArray_ArrayDescr;

The elements of this structure are:

PyArray_Descr *PyArray_ArrayDescr.base
The data-type-descriptor object of the base-type.

PyObject *PyArray_ArrayDescr.shape
The shape (always C-style contiguous) of the sub-array as a Python tuple.

PyObject *PyArray_Descr.fields
If this is non-NULL, then this data-type-descriptor has fields described by a Python dictionary whose keys
are names (and also titles if given) and whose values are tuples that describe the fields. Recall that a
data-type-descriptor always describes a fixed-length set of bytes. A field is a named sub-region of that total,
fixed-length collection. A field is described by a tuple composed of another data- type-descriptor and a byte
offset. Optionally, the tuple may contain a title which is normally a Python string. These tuples are placed in
this dictionary keyed by name (and also title if given).

PyArray_ArrFuncs *PyArray_Descr.f
A pointer to a structure containing functions that the type needs to implement internal features. These functions
are not the same thing as the universal functions (ufuncs) described later. Their signatures can vary arbitrarily.

PyArray_ArrFuncs
Functions implementing internal features. Not all of these function pointers must be defined for a given type.
The required members are nonzero, copyswap, copyswapn, setitem, getitem, and cast. These
are assumed to be non- NULL and NULL entries will cause a program crash. The other functions may be NULL

1152 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

which will just mean reduced functionality for that data-type. (Also, the nonzero function will be filled in with
a default function if it is NULL when you register a user-defined data-type).

typedef struct {
PyArray_VectorUnaryFunc *cast[NPY_NTYPES];
PyArray_GetItemFunc *getitem;
PyArray_SetItemFunc *setitem;
PyArray_CopySwapNFunc *copyswapn;
PyArray_CopySwapFunc *copyswap;
PyArray_CompareFunc *compare;
PyArray_ArgFunc *argmax;
PyArray_DotFunc *dotfunc;
PyArray_ScanFunc *scanfunc;
PyArray_FromStrFunc *fromstr;
PyArray_NonzeroFunc *nonzero;
PyArray_FillFunc *fill;
PyArray_FillWithScalarFunc *fillwithscalar;
PyArray_SortFunc *sort[NPY_NSORTS];
PyArray_ArgSortFunc *argsort[NPY_NSORTS];
PyObject *castdict;
PyArray_ScalarKindFunc *scalarkind;
int **cancastscalarkindto;
int *cancastto;
PyArray_FastClipFunc *fastclip;
PyArray_FastPutmaskFunc *fastputmask;
PyArray_FastTakeFunc *fasttake;
PyArray_ArgFunc *argmin;

} PyArray_ArrFuncs;

The concept of a behaved segment is used in the description of the function pointers. A behaved segment is one
that is aligned and in native machine byte-order for the data-type. The nonzero, copyswap, copyswapn,
getitem, and setitem functions can (and must) deal with mis-behaved arrays. The other functions require
behaved memory segments.

void cast(void *from, void *to, npy_intp n, void *fromarr, void *toarr)
An array of function pointers to cast from the current type to all of the other builtin types. Each function
casts a contiguous, aligned, and notswapped buffer pointed at by from to a contiguous, aligned, and
notswapped buffer pointed at by to The number of items to cast is given by n, and the arguments fromarr
and toarr are interpreted as PyArrayObjects for flexible arrays to get itemsize information.

PyObject *getitem(void *data, void *arr)
A pointer to a function that returns a standard Python object from a single element of the array object arr
pointed to by data. This function must be able to deal with “misbehaved “(misaligned and/or swapped)
arrays correctly.

int setitem(PyObject *item, void *data, void *arr)
A pointer to a function that sets the Python object item into the array, arr, at the position pointed to by data
. This function deals with “misbehaved” arrays. If successful, a zero is returned, otherwise, a negative one
is returned (and a Python error set).

void copyswapn(void *dest, npy_intp dstride, void *src, npy_intp sstride, npy_intp n, int swap,
void *arr)

void copyswap(void *dest, void *src, int swap, void *arr)
These members are both pointers to functions to copy data from src to dest and swap if indicated. The
value of arr is only used for flexible (NPY_STRING, NPY_UNICODE, and NPY_VOID) arrays (and
is obtained from arr->descr->elsize). The second function copies a single value, while the first
loops over n values with the provided strides. These functions can deal with misbehaved src data. If src is
NULL then no copy is performed. If swap is 0, then no byteswapping occurs. It is assumed that dest and

5.1. Python Types and C-Structures 1153

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

src do not overlap. If they overlap, then use memmove (...) first followed by copyswap(n) with NULL
valued src.

int compare(const void* d1, const void* d2, void* arr)
A pointer to a function that compares two elements of the array, arr, pointed to by d1 and d2. This
function requires behaved (aligned and not swapped) arrays. The return value is 1 if * d1 > * d2, 0 if *
d1 == * d2, and -1 if * d1 < * d2. The array object arr is used to retrieve itemsize and field information
for flexible arrays.

int argmax(void* data, npy_intp n, npy_intp* max_ind, void* arr)
A pointer to a function that retrieves the index of the largest of n elements in arr beginning at the element
pointed to by data. This function requires that the memory segment be contiguous and behaved. The
return value is always 0. The index of the largest element is returned in max_ind.

void dotfunc(void* ip1, npy_intp is1, void* ip2, npy_intp is2, void* op, npy_intp n, void* arr)
A pointer to a function that multiplies two n -length sequences together, adds them, and places the result
in element pointed to by op of arr. The start of the two sequences are pointed to by ip1 and ip2.
To get to the next element in each sequence requires a jump of is1 and is2 bytes, respectively. This
function requires behaved (though not necessarily contiguous) memory.

int scanfunc(FILE* fd, void* ip, void* sep, void* arr)
A pointer to a function that scans (scanf style) one element of the corresponding type from the file de-
scriptor fd into the array memory pointed to by ip. The array is assumed to be behaved. If sep is not
NULL, then a separator string is also scanned from the file before returning. The last argument arr is the
array to be scanned into. A 0 is returned if the scan is successful. A negative number indicates something
went wrong: -1 means the end of file was reached before the separator string could be scanned, -4 means
that the end of file was reached before the element could be scanned, and -3 means that the element could
not be interpreted from the format string. Requires a behaved array.

int fromstr(char* str, void* ip, char** endptr, void* arr)
A pointer to a function that converts the string pointed to by str to one element of the corresponding
type and places it in the memory location pointed to by ip. After the conversion is completed, *endptr
points to the rest of the string. The last argument arr is the array into which ip points (needed for
variable-size data- types). Returns 0 on success or -1 on failure. Requires a behaved array.

Bool nonzero(void* data, void* arr)
A pointer to a function that returns TRUE if the item of arr pointed to by data is nonzero. This function
can deal with misbehaved arrays.

void fill(void* data, npy_intp length, void* arr)
A pointer to a function that fills a contiguous array of given length with data. The first two elements of
the array must already be filled- in. From these two values, a delta will be computed and the values from
item 3 to the end will be computed by repeatedly adding this computed delta. The data buffer must be
well-behaved.

void fillwithscalar(void* buffer, npy_intp length, void* value, void* arr)
A pointer to a function that fills a contiguous buffer of the given length with a single scalar value
whose address is given. The final argument is the array which is needed to get the itemsize for
variable-length arrays.

int sort(void* start, npy_intp length, void* arr)
An array of function pointers to a particular sorting algorithms. A particular sorting algorithm is obtained
using a key (so far NPY_QUICKSORT, :data‘NPY_HEAPSORT‘, and NPY_MERGESORT are defined).
These sorts are done in-place assuming contiguous and aligned data.

int argsort(void* start, npy_intp* result, npy_intp length, void *arr)
An array of function pointers to sorting algorithms for this data type. The same sorting algorithms as for
sort are available. The indices producing the sort are returned in result (which must be initialized with
indices 0 to length-1 inclusive).

1154 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

PyObject *castdict
Either NULL or a dictionary containing low-level casting functions for user- defined data-types. Each
function is wrapped in a PyCObject * and keyed by the data-type number.

NPY_SCALARKIND scalarkind(PyArrayObject* arr)
A function to determine how scalars of this type should be interpreted. The argument is NULL or a
0-dimensional array containing the data (if that is needed to determine the kind of scalar). The return
value must be of type NPY_SCALARKIND.

int **cancastscalarkindto
Either NULL or an array of NPY_NSCALARKINDS pointers. These pointers should each be either NULL
or a pointer to an array of integers (terminated by NPY_NOTYPE) indicating data-types that a scalar of
this data-type of the specified kind can be cast to safely (this usually means without losing precision).

int *cancastto
Either NULL or an array of integers (terminated by NPY_NOTYPE) indicated data-types that this data-type
can be cast to safely (this usually means without losing precision).

void fastclip(void *in, npy_intp n_in, void *min, void *max, void *out)
A function that reads n_in items from in, and writes to out the read value if it is within the limits
pointed to by min and max, or the corresponding limit if outside. The memory segments must be
contiguous and behaved, and either min or max may be NULL, but not both.

void fastputmask(void *in, void *mask, npy_intp n_in, void *values, npy_intp nv)
A function that takes a pointer in to an array of n_in items, a pointer mask to an array of n_in boolean
values, and a pointer vals to an array of nv items. Items from vals are copied into in wherever the
value in mask is non-zero, tiling vals as needed if nv < n_in. All arrays must be contiguous and
behaved.

void fasttake(void *dest, void *src, npy_intp *indarray, npy_intp nindarray, npy_intp n_outer,
npy_intp m_middle, npy_intp nelem, NPY_CLIPMODE clipmode)

A function that takes a pointer src to a C contiguous, behaved segment, interpreted as a 3-dimensional
array of shape (n_outer, nindarray, nelem), a pointer indarray to a contiguous, behaved
segment of m_middle integer indices, and a pointer dest to a C contiguous, behaved segment,
interpreted as a 3-dimensional array of shape (n_outer, m_middle, nelem). The indices in
indarray are used to index src along the second dimension, and copy the corresponding chunks
of nelem items into dest. clipmode (which can take on the values NPY_RAISE, NPY_WRAP or
NPY_CLIP) determines how will indices smaller than 0 or larger than nindarray will be handled.

int argmin(void* data, npy_intp n, npy_intp* min_ind, void* arr)
A pointer to a function that retrieves the index of the smallest of n elements in arr beginning at the
element pointed to by data. This function requires that the memory segment be contiguous and behaved.
The return value is always 0. The index of the smallest element is returned in min_ind.

The PyArray_Type typeobject implements many of the features of Python objects including the tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer interfaces. The rich comparison (tp_richcompare) is also used
along with new-style attribute lookup for methods (tp_methods) and properties (tp_getset). The PyArray_Type can
also be sub-typed.

Tip: The tp_as_number methods use a generic approach to call whatever function has been registered for handling
the operation. The function PyNumeric_SetOps(..) can be used to register functions to handle particular mathematical
operations (for all arrays). When the umath module is imported, it sets the numeric operations for all arrays to the
corresponding ufuncs. The tp_str and tp_repr methods can also be altered using PyString_SetStringFunction(...).

5.1. Python Types and C-Structures 1155

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyUFunc_Type

PyUFuncObject
The core of the ufunc is the PyUFuncObject which contains all the information needed to call the underlying
C-code loops that perform the actual work. It has the following structure:

typedef struct {
PyObject_HEAD
int nin;
int nout;
int nargs;
int identity;
PyUFuncGenericFunction *functions;
void **data;
int ntypes;
int reserved1;
const char *name;
char *types;
const char *doc;
void *ptr;
PyObject *obj;
PyObject *userloops;
npy_uint32 *op_flags;
npy_uint32 *iter_flags;

} PyUFuncObject;

int PyUFuncObject.nin
The number of input arguments.

int PyUFuncObject.nout
The number of output arguments.

int PyUFuncObject.nargs
The total number of arguments (nin + nout). This must be less than NPY_MAXARGS.

int PyUFuncObject.identity
Either PyUFunc_One, PyUFunc_Zero, or PyUFunc_None to indicate the identity for this operation.
It is only used for a reduce-like call on an empty array.

void PyUFuncObject.functions(char** args, npy_intp* dims,

npy_intp* steps, void* extradata)
An array of function pointers — one for each data type supported by the ufunc. This is the vector loop
that is called to implement the underlying function dims [0] times. The first argument, args, is an array of
nargs pointers to behaved memory. Pointers to the data for the input arguments are first, followed by the
pointers to the data for the output arguments. How many bytes must be skipped to get to the next element
in the sequence is specified by the corresponding entry in the steps array. The last argument allows the
loop to receive extra information. This is commonly used so that a single, generic vector loop can be used
for multiple functions. In this case, the actual scalar function to call is passed in as extradata. The size of
this function pointer array is ntypes.

void **PyUFuncObject.data
Extra data to be passed to the 1-d vector loops or NULL if no extra-data is needed. This C-array must be
the same size (i.e. ntypes) as the functions array. NULL is used if extra_data is not needed. Several C-API
calls for UFuncs are just 1-d vector loops that make use of this extra data to receive a pointer to the actual
function to call.

int PyUFuncObject.ntypes
The number of supported data types for the ufunc. This number specifies how many different 1-d loops

1156 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

(of the builtin data types) are available.

char *PyUFuncObject.name
A string name for the ufunc. This is used dynamically to build the __doc__ attribute of ufuncs.

char *PyUFuncObject.types
An array of nargs × ntypes 8-bit type_numbers which contains the type signature for the function for
each of the supported (builtin) data types. For each of the ntypes functions, the corresponding set of type
numbers in this array shows how the args argument should be interpreted in the 1-d vector loop. These
type numbers do not have to be the same type and mixed-type ufuncs are supported.

char *PyUFuncObject.doc
Documentation for the ufunc. Should not contain the function signature as this is generated dynamically
when __doc__ is retrieved.

void *PyUFuncObject.ptr
Any dynamically allocated memory. Currently, this is used for dynamic ufuncs created from a python
function to store room for the types, data, and name members.

PyObject *PyUFuncObject.obj
For ufuncs dynamically created from python functions, this member holds a reference to the underlying
Python function.

PyObject *PyUFuncObject.userloops
A dictionary of user-defined 1-d vector loops (stored as CObject ptrs) for user-defined types. A loop may
be registered by the user for any user-defined type. It is retrieved by type number. User defined type
numbers are always larger than NPY_USERDEF.

npy_uint32 PyUFuncObject.op_flags
Override the default operand flags for each ufunc operand.

npy_uint32 PyUFuncObject.iter_flags
Override the default nditer flags for the ufunc.

PyArrayIter_Type

PyArrayIterObject
The C-structure corresponding to an object of PyArrayIter_Type is the PyArrayIterObject. The
PyArrayIterObject is used to keep track of a pointer into an N-dimensional array. It contains associated
information used to quickly march through the array. The pointer can be adjusted in three basic ways:
1) advance to the “next” position in the array in a C-style contiguous fashion, 2) advance to an arbitrary
N-dimensional coordinate in the array, and 3) advance to an arbitrary one-dimensional index into the array. The
members of the PyArrayIterObject structure are used in these calculations. Iterator objects keep their
own dimension and strides information about an array. This can be adjusted as needed for “broadcasting,” or to
loop over only specific dimensions.

typedef struct {
PyObject_HEAD
int nd_m1;
npy_intp index;
npy_intp size;
npy_intp coordinates[NPY_MAXDIMS];
npy_intp dims_m1[NPY_MAXDIMS];
npy_intp strides[NPY_MAXDIMS];
npy_intp backstrides[NPY_MAXDIMS];
npy_intp factors[NPY_MAXDIMS];
PyArrayObject *ao;
char *dataptr;

5.1. Python Types and C-Structures 1157

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

Bool contiguous;
} PyArrayIterObject;

int PyArrayIterObject.nd_m1
𝑁 − 1 where 𝑁 is the number of dimensions in the underlying array.

npy_intp PyArrayIterObject.index
The current 1-d index into the array.

npy_intp PyArrayIterObject.size
The total size of the underlying array.

npy_intp *PyArrayIterObject.coordinates
An 𝑁 -dimensional index into the array.

npy_intp *PyArrayIterObject.dims_m1
The size of the array minus 1 in each dimension.

npy_intp *PyArrayIterObject.strides
The strides of the array. How many bytes needed to jump to the next element in each dimension.

npy_intp *PyArrayIterObject.backstrides
How many bytes needed to jump from the end of a dimension back to its beginning. Note that backstrides
[k]= strides [k]*d ims_m1 [k], but it is stored here as an optimization.

npy_intp *PyArrayIterObject.factors
This array is used in computing an N-d index from a 1-d index. It contains needed products of the dimen-
sions.

PyArrayObject *PyArrayIterObject.ao
A pointer to the underlying ndarray this iterator was created to represent.

char *PyArrayIterObject.dataptr
This member points to an element in the ndarray indicated by the index.

Bool PyArrayIterObject.contiguous
This flag is true if the underlying array is NPY_ARRAY_C_CONTIGUOUS. It is used to simplify calcula-
tions when possible.

How to use an array iterator on a C-level is explained more fully in later sections. Typically, you do not need to
concern yourself with the internal structure of the iterator object, and merely interact with it through the use of the
macros PyArray_ITER_NEXT (it), PyArray_ITER_GOTO (it, dest), or PyArray_ITER_GOTO1D (it, index).
All of these macros require the argument it to be a PyArrayIterObject *.

PyArrayMultiIter_Type

PyArrayMultiIterObject

typedef struct {
PyObject_HEAD
int numiter;
npy_intp size;
npy_intp index;
int nd;
npy_intp dimensions[NPY_MAXDIMS];
PyArrayIterObject *iters[NPY_MAXDIMS];

} PyArrayMultiIterObject;

1158 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

int PyArrayMultiIterObject.numiter
The number of arrays that need to be broadcast to the same shape.

npy_intp PyArrayMultiIterObject.size
The total broadcasted size.

npy_intp PyArrayMultiIterObject.index
The current (1-d) index into the broadcasted result.

int PyArrayMultiIterObject.nd
The number of dimensions in the broadcasted result.

npy_intp *PyArrayMultiIterObject.dimensions
The shape of the broadcasted result (only nd slots are used).

PyArrayIterObject **PyArrayMultiIterObject.iters
An array of iterator objects that holds the iterators for the arrays to be broadcast together. On return, the
iterators are adjusted for broadcasting.

PyArrayNeighborhoodIter_Type

PyArrayNeighborhoodIterObject
The C-structure corresponding to an object of PyArrayNeighborhoodIter_Type is the
PyArrayNeighborhoodIterObject.

PyArrayFlags_Type

ScalarArrayTypes

There is a Python type for each of the different built-in data types that can be present in the array Most of these are sim-
ple wrappers around the corresponding data type in C. The C-names for these types are Py{TYPE}ArrType_Type
where {TYPE} can be

Bool, Byte, Short, Int, Long, LongLong, UByte, UShort, UInt, ULong, ULongLong, Half, Float,
Double, LongDouble, CFloat, CDouble, CLongDouble, String, Unicode, Void, and Object.

These type names are part of the C-API and can therefore be created in extension C-code. There is also a
PyIntpArrType_Type and a PyUIntpArrType_Type that are simple substitutes for one of the integer types
that can hold a pointer on the platform. The structure of these scalar objects is not exposed to C-code. The function
PyArray_ScalarAsCtype (..) can be used to extract the C-type value from the array scalar and the function
PyArray_Scalar (...) can be used to construct an array scalar from a C-value.

5.1.2 Other C-Structures

A few new C-structures were found to be useful in the development of NumPy. These C-structures are used in at least
one C-API call and are therefore documented here. The main reason these structures were defined is to make it easy
to use the Python ParseTuple C-API to convert from Python objects to a useful C-Object.

PyArray_Dims

PyArray_Dims
This structure is very useful when shape and/or strides information is supposed to be interpreted. The structure
is:

5.1. Python Types and C-Structures 1159

NumPy Reference, Release 1.11.1

typedef struct {
npy_intp *ptr;
int len;

} PyArray_Dims;

The members of this structure are

npy_intp *PyArray_Dims.ptr
A pointer to a list of (npy_intp) integers which usually represent array shape or array strides.

int PyArray_Dims.len
The length of the list of integers. It is assumed safe to access ptr [0] to ptr [len-1].

PyArray_Chunk

PyArray_Chunk
This is equivalent to the buffer object structure in Python up to the ptr member. On 32-bit platforms (i.e. if
NPY_SIZEOF_INT == NPY_SIZEOF_INTP), the len member also matches an equivalent member of the
buffer object. It is useful to represent a generic single-segment chunk of memory.

typedef struct {
PyObject_HEAD
PyObject *base;
void *ptr;
npy_intp len;
int flags;

} PyArray_Chunk;

The members are

PyObject *PyArray_Chunk.base
The Python object this chunk of memory comes from. Needed so that memory can be accounted for
properly.

void *PyArray_Chunk.ptr
A pointer to the start of the single-segment chunk of memory.

npy_intp PyArray_Chunk.len
The length of the segment in bytes.

int PyArray_Chunk.flags
Any data flags (e.g. NPY_ARRAY_WRITEABLE) that should be used to interpret the memory.

PyArrayInterface

See also:

The Array Interface

PyArrayInterface
The PyArrayInterface structure is defined so that NumPy and other extension modules can use the rapid
array interface protocol. The __array_struct__ method of an object that supports the rapid array interface
protocol should return a PyCObject that contains a pointer to a PyArrayInterface structure with the
relevant details of the array. After the new array is created, the attribute should be DECREF‘d which will
free the PyArrayInterface structure. Remember to INCREF the object (whose __array_struct__
attribute was retrieved) and point the base member of the new PyArrayObject to this same object. In this
way the memory for the array will be managed correctly.

1160 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

typedef struct {
int two;
int nd;
char typekind;
int itemsize;
int flags;
npy_intp *shape;
npy_intp *strides;
void *data;
PyObject *descr;

} PyArrayInterface;

int PyArrayInterface.two
the integer 2 as a sanity check.

int PyArrayInterface.nd
the number of dimensions in the array.

char PyArrayInterface.typekind
A character indicating what kind of array is present according to the typestring convention with ‘t’ ->
bitfield, ‘b’ -> Boolean, ‘i’ -> signed integer, ‘u’ -> unsigned integer, ‘f’ -> floating point, ‘c’ -> complex
floating point, ‘O’ -> object, ‘S’ -> (byte-)string, ‘U’ -> unicode, ‘V’ -> void.

int PyArrayInterface.itemsize
The number of bytes each item in the array requires.

int PyArrayInterface.flags
Any of the bits NPY_ARRAY_C_CONTIGUOUS (1), NPY_ARRAY_F_CONTIGUOUS
(2), NPY_ARRAY_ALIGNED (0x100), NPY_ARRAY_NOTSWAPPED (0x200), or
NPY_ARRAY_WRITEABLE (0x400) to indicate something about the data. The NPY_ARRAY_ALIGNED,
NPY_ARRAY_C_CONTIGUOUS, and NPY_ARRAY_F_CONTIGUOUS flags can actually be determined
from the other parameters. The flag NPY_ARR_HAS_DESCR (0x800) can also be set to indicate to
objects consuming the version 3 array interface that the descr member of the structure is present (it will
be ignored by objects consuming version 2 of the array interface).

npy_intp *PyArrayInterface.shape
An array containing the size of the array in each dimension.

npy_intp *PyArrayInterface.strides
An array containing the number of bytes to jump to get to the next element in each dimension.

void *PyArrayInterface.data
A pointer to the first element of the array.

PyObject *PyArrayInterface.descr
A Python object describing the data-type in more detail (same as the descr key in
__array_interface__). This can be NULL if typekind and itemsize provide enough informa-
tion. This field is also ignored unless ARR_HAS_DESCR flag is on in flags.

Internally used structures

Internally, the code uses some additional Python objects primarily for memory management. These types are not
accessible directly from Python, and are not exposed to the C-API. They are included here only for completeness and
assistance in understanding the code.

PyUFuncLoopObject
A loose wrapper for a C-structure that contains the information needed for looping. This is useful if you are

5.1. Python Types and C-Structures 1161

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

trying to understand the ufunc looping code. The PyUFuncLoopObject is the associated C-structure. It is
defined in the ufuncobject.h header.

PyUFuncReduceObject
A loose wrapper for the C-structure that contains the information needed for reduce-like methods of
ufuncs. This is useful if you are trying to understand the reduce, accumulate, and reduce-at code. The
PyUFuncReduceObject is the associated C-structure. It is defined in the ufuncobject.h header.

PyUFunc_Loop1d
A simple linked-list of C-structures containing the information needed to define a 1-d loop for a ufunc for every
defined signature of a user-defined data-type.

5.2 System configuration

When NumPy is built, information about system configuration is recorded, and is made available for extension modules
using Numpy’s C API. These are mostly defined in numpyconfig.h (included in ndarrayobject.h). The
public symbols are prefixed by NPY_*. Numpy also offers some functions for querying information about the platform
in use.

For private use, Numpy also constructs a config.h in the NumPy include directory, which is not exported by Numpy
(that is a python extension which use the numpy C API will not see those symbols), to avoid namespace pollution.

5.2.1 Data type sizes

The NPY_SIZEOF_{CTYPE} constants are defined so that sizeof information is available to the pre-processor.

NPY_SIZEOF_SHORT

NPY_SIZEOF_INT

NPY_SIZEOF_LONG

NPY_SIZEOF_LONGLONG
sizeof(longlong) where longlong is defined appropriately on the platform.

NPY_SIZEOF_PY_LONG_LONG

NPY_SIZEOF_FLOAT

NPY_SIZEOF_DOUBLE

NPY_SIZEOF_LONG_DOUBLE

NPY_SIZEOF_PY_INTPTR_T
Size of a pointer on this platform (sizeof(void *)) (A macro defines NPY_SIZEOF_INTP as well.)

5.2.2 Platform information

NPY_CPU_X86

1162 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

NPY_CPU_AMD64

NPY_CPU_IA64

NPY_CPU_PPC

NPY_CPU_PPC64

NPY_CPU_SPARC

NPY_CPU_SPARC64

NPY_CPU_S390

NPY_CPU_PARISC
New in version 1.3.0.

CPU architecture of the platform; only one of the above is defined.

Defined in numpy/npy_cpu.h

NPY_LITTLE_ENDIAN

NPY_BIG_ENDIAN

NPY_BYTE_ORDER
New in version 1.3.0.

Portable alternatives to the endian.h macros of GNU Libc. If big endian, NPY_BYTE_ORDER ==
NPY_BIG_ENDIAN , and similarly for little endian architectures.

Defined in numpy/npy_endian.h.

PyArray_GetEndianness()
New in version 1.3.0.

Returns the endianness of the current platform. One of NPY_CPU_BIG, NPY_CPU_LITTLE, or
NPY_CPU_UNKNOWN_ENDIAN.

5.3 Data Type API

The standard array can have 24 different data types (and has some support for adding your own types). These data
types all have an enumerated type, an enumerated type-character, and a corresponding array scalar Python type object
(placed in a hierarchy). There are also standard C typedefs to make it easier to manipulate elements of the given data
type. For the numeric types, there are also bit-width equivalent C typedefs and named typenumbers that make it easier
to select the precision desired.

Warning: The names for the types in c code follows c naming conventions more closely. The Python names for
these types follow Python conventions. Thus, NPY_FLOAT picks up a 32-bit float in C, but numpy.float_ in
Python corresponds to a 64-bit double. The bit-width names can be used in both Python and C for clarity.

5.3. Data Type API 1163

NumPy Reference, Release 1.11.1

5.3.1 Enumerated Types

There is a list of enumerated types defined providing the basic 24 data types plus some useful generic names. Whenever
the code requires a type number, one of these enumerated types is requested. The types are all called NPY_{NAME}:

NPY_BOOL
The enumeration value for the boolean type, stored as one byte. It may only be set to the values 0 and 1.

NPY_BYTE

NPY_INT8
The enumeration value for an 8-bit/1-byte signed integer.

NPY_SHORT

NPY_INT16
The enumeration value for a 16-bit/2-byte signed integer.

NPY_INT

NPY_INT32
The enumeration value for a 32-bit/4-byte signed integer.

NPY_LONG
Equivalent to either NPY_INT or NPY_LONGLONG, depending on the platform.

NPY_LONGLONG

NPY_INT64
The enumeration value for a 64-bit/8-byte signed integer.

NPY_UBYTE

NPY_UINT8
The enumeration value for an 8-bit/1-byte unsigned integer.

NPY_USHORT

NPY_UINT16
The enumeration value for a 16-bit/2-byte unsigned integer.

NPY_UINT

NPY_UINT32
The enumeration value for a 32-bit/4-byte unsigned integer.

NPY_ULONG
Equivalent to either NPY_UINT or NPY_ULONGLONG, depending on the platform.

NPY_ULONGLONG

NPY_UINT64
The enumeration value for a 64-bit/8-byte unsigned integer.

NPY_HALF

1164 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

NPY_FLOAT16
The enumeration value for a 16-bit/2-byte IEEE 754-2008 compatible floating point type.

NPY_FLOAT

NPY_FLOAT32
The enumeration value for a 32-bit/4-byte IEEE 754 compatible floating point type.

NPY_DOUBLE

NPY_FLOAT64
The enumeration value for a 64-bit/8-byte IEEE 754 compatible floating point type.

NPY_LONGDOUBLE
The enumeration value for a platform-specific floating point type which is at least as large as NPY_DOUBLE,
but larger on many platforms.

NPY_CFLOAT

NPY_COMPLEX64
The enumeration value for a 64-bit/8-byte complex type made up of two NPY_FLOAT values.

NPY_CDOUBLE

NPY_COMPLEX128
The enumeration value for a 128-bit/16-byte complex type made up of two NPY_DOUBLE values.

NPY_CLONGDOUBLE
The enumeration value for a platform-specific complex floating point type which is made up of two
NPY_LONGDOUBLE values.

NPY_DATETIME
The enumeration value for a data type which holds dates or datetimes with a precision based on selectable date
or time units.

NPY_TIMEDELTA
The enumeration value for a data type which holds lengths of times in integers of selectable date or time units.

NPY_STRING
The enumeration value for ASCII strings of a selectable size. The strings have a fixed maximum size within a
given array.

NPY_UNICODE
The enumeration value for UCS4 strings of a selectable size. The strings have a fixed maximum size within a
given array.

NPY_OBJECT
The enumeration value for references to arbitrary Python objects.

NPY_VOID
Primarily used to hold struct dtypes, but can contain arbitrary binary data.

Some useful aliases of the above types are

NPY_INTP
The enumeration value for a signed integer type which is the same size as a (void *) pointer. This is the type
used by all arrays of indices.

5.3. Data Type API 1165

NumPy Reference, Release 1.11.1

NPY_UINTP
The enumeration value for an unsigned integer type which is the same size as a (void *) pointer.

NPY_MASK
The enumeration value of the type used for masks, such as with the NPY_ITER_ARRAYMASK iterator flag.
This is equivalent to NPY_UINT8.

NPY_DEFAULT_TYPE
The default type to use when no dtype is explicitly specified, for example when calling np.zero(shape). This is
equivalent to NPY_DOUBLE.

Other useful related constants are

NPY_NTYPES
The total number of built-in NumPy types. The enumeration covers the range from 0 to NPY_NTYPES-1.

NPY_NOTYPE
A signal value guaranteed not to be a valid type enumeration number.

NPY_USERDEF
The start of type numbers used for Custom Data types.

The various character codes indicating certain types are also part of an enumerated list. References to type characters
(should they be needed at all) should always use these enumerations. The form of them is NPY_{NAME}LTR where
{NAME} can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG, ULONG, LONGLONG, ULON-
GLONG, HALF, FLOAT, DOUBLE, LONGDOUBLE, CFLOAT, CDOUBLE, CLONGDOUBLE,
DATETIME, TIMEDELTA, OBJECT, STRING, VOID

INTP, UINTP

GENBOOL, SIGNED, UNSIGNED, FLOATING, COMPLEX

The latter group of {NAME}s corresponds to letters used in the array interface typestring specification.

5.3.2 Defines

Max and min values for integers

NPY_MAX_INT{bits}

NPY_MAX_UINT{bits}

NPY_MIN_INT{bits}
These are defined for {bits} = 8, 16, 32, 64, 128, and 256 and provide the maximum (minimum) value of the
corresponding (unsigned) integer type. Note: the actual integer type may not be available on all platforms (i.e.
128-bit and 256-bit integers are rare).

NPY_MIN_{type}
This is defined for {type} = BYTE, SHORT, INT, LONG, LONGLONG, INTP

NPY_MAX_{type}
This is defined for all defined for {type} = BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG,
ULONG, LONGLONG, ULONGLONG, INTP, UINTP

1166 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

Number of bits in data types

All NPY_SIZEOF_{CTYPE} constants have corresponding NPY_BITSOF_{CTYPE} constants defined. The
NPY_BITSOF_{CTYPE} constants provide the number of bits in the data type. Specifically, the available
{CTYPE}s are

BOOL, CHAR, SHORT, INT, LONG, LONGLONG, FLOAT, DOUBLE, LONGDOUBLE

Bit-width references to enumerated typenums

All of the numeric data types (integer, floating point, and complex) have constants that are defined to be a specific
enumerated type number. Exactly which enumerated type a bit-width type refers to is platform dependent. In partic-
ular, the constants available are PyArray_{NAME}{BITS} where {NAME} is INT, UINT, FLOAT, COMPLEX
and {BITS} can be 8, 16, 32, 64, 80, 96, 128, 160, 192, 256, and 512. Obviously not all bit-widths are available on
all platforms for all the kinds of numeric types. Commonly 8-, 16-, 32-, 64-bit integers; 32-, 64-bit floats; and 64-,
128-bit complex types are available.

Integer that can hold a pointer

The constants NPY_INTP and NPY_UINTP refer to an enumerated integer type that is large enough to hold a pointer
on the platform. Index arrays should always be converted to NPY_INTP , because the dimension of the array is of
type npy_intp.

5.3.3 C-type names

There are standard variable types for each of the numeric data types and the bool data type. Some of these are already
available in the C-specification. You can create variables in extension code with these types.

Boolean

npy_bool
unsigned char; The constants NPY_FALSE and NPY_TRUE are also defined.

(Un)Signed Integer

Unsigned versions of the integers can be defined by pre-pending a ‘u’ to the front of the integer name.

npy_(u)byte
(unsigned) char

npy_(u)short
(unsigned) short

npy_(u)int
(unsigned) int

npy_(u)long
(unsigned) long int

npy_(u)longlong
(unsigned long long int)

npy_(u)intp
(unsigned) Py_intptr_t (an integer that is the size of a pointer on the platform).

5.3. Data Type API 1167

NumPy Reference, Release 1.11.1

(Complex) Floating point

npy_(c)float
float

npy_(c)double
double

npy_(c)longdouble
long double

complex types are structures with .real and .imag members (in that order).

Bit-width names

There are also typedefs for signed integers, unsigned integers, floating point, and complex floating point types of
specific bit- widths. The available type names are

npy_int{bits}, npy_uint{bits}, npy_float{bits}, and npy_complex{bits}

where {bits} is the number of bits in the type and can be 8, 16, 32, 64, 128, and 256 for integer types; 16, 32 , 64,
80, 96, 128, and 256 for floating-point types; and 32, 64, 128, 160, 192, and 512 for complex-valued types. Which
bit-widths are available is platform dependent. The bolded bit-widths are usually available on all platforms.

5.3.4 Printf Formatting

For help in printing, the following strings are defined as the correct format specifier in printf and related commands.

NPY_LONGLONG_FMT, NPY_ULONGLONG_FMT, NPY_INTP_FMT, NPY_UINTP_FMT,
NPY_LONGDOUBLE_FMT

5.4 Array API

The test of a first-rate intelligence is the ability to hold two
opposed ideas in the mind at the same time, and still retain the
ability to function.
— F. Scott Fitzgerald

For a successful technology, reality must take precedence over public
relations, for Nature cannot be fooled.
— Richard P. Feynman

5.4.1 Array structure and data access

These macros all access the PyArrayObject structure members. The input argument, arr, can be any PyObject
* that is directly interpretable as a PyArrayObject * (any instance of the PyArray_Type and its sub-types).

int PyArray_NDIM(PyArrayObject *arr)
The number of dimensions in the array.

1168 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

npy_intp *PyArray_DIMS(PyArrayObject *arr)
Returns a pointer to the dimensions/shape of the array. The number of elements matches the number of dimen-
sions of the array.

npy_intp *PyArray_SHAPE(PyArrayObject *arr)
New in version 1.7.

A synonym for PyArray_DIMS, named to be consistent with the ‘shape’ usage within Python.

void *PyArray_DATA(PyArrayObject *arr)

char *PyArray_BYTES(PyArrayObject *arr)
These two macros are similar and obtain the pointer to the data-buffer for the array. The first macro can (and
should be) assigned to a particular pointer where the second is for generic processing. If you have not
guaranteed a contiguous and/or aligned array then be sure you understand how to access the data in the array to
avoid memory and/or alignment problems.

npy_intp *PyArray_STRIDES(PyArrayObject* arr)
Returns a pointer to the strides of the array. The number of elements matches the number of dimensions of the
array.

npy_intp PyArray_DIM(PyArrayObject* arr, int n)
Return the shape in the n th dimension.

npy_intp PyArray_STRIDE(PyArrayObject* arr, int n)
Return the stride in the n th dimension.

PyObject *PyArray_BASE(PyArrayObject* arr)
This returns the base object of the array. In most cases, this means the object which owns the memory the array
is pointing at.

If you are constructing an array using the C API, and specifying your own memory, you should use the function
PyArray_SetBaseObject to set the base to an object which owns the memory.

If the NPY_ARRAY_UPDATEIFCOPY flag is set, it has a different meaning, namely base is the array into which
the current array will be copied upon destruction. This overloading of the base property for two functions is
likely to change in a future version of NumPy.

PyArray_Descr *PyArray_DESCR(PyArrayObject* arr)
Returns a borrowed reference to the dtype property of the array.

PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr)
New in version 1.7.

A synonym for PyArray_DESCR, named to be consistent with the ‘dtype’ usage within Python.

void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags)
New in version 1.7.

Enables the specified array flags. This function does no validation, and assumes that you know what you’re
doing.

void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags)
New in version 1.7.

Clears the specified array flags. This function does no validation, and assumes that you know what you’re doing.

int PyArray_FLAGS(PyArrayObject* arr)

npy_intp PyArray_ITEMSIZE(PyArrayObject* arr)
Return the itemsize for the elements of this array.

5.4. Array API 1169

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

Note that, in the old API that was deprecated in version 1.7, this function had the return type int.

int PyArray_TYPE(PyArrayObject* arr)
Return the (builtin) typenumber for the elements of this array.

PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr)
Get a Python object from the ndarray, arr, at the location pointed to by itemptr. Return NULL on failure.

int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj)
Convert obj and place it in the ndarray, arr, at the place pointed to by itemptr. Return -1 if an error occurs or 0
on success.

npy_intp PyArray_SIZE(PyArrayObject* arr)
Returns the total size (in number of elements) of the array.

npy_intp PyArray_Size(PyArrayObject* obj)
Returns 0 if obj is not a sub-class of bigndarray. Otherwise, returns the total number of elements in the array.
Safer version of PyArray_SIZE (obj).

npy_intp PyArray_NBYTES(PyArrayObject* arr)
Returns the total number of bytes consumed by the array.

Data access

These functions and macros provide easy access to elements of the ndarray from C. These work for all arrays. You
may need to take care when accessing the data in the array, however, if it is not in machine byte-order, misaligned, or
not writeable. In other words, be sure to respect the state of the flags unless you know what you are doing, or have
previously guaranteed an array that is writeable, aligned, and in machine byte-order using PyArray_FromAny . If
you wish to handle all types of arrays, the copyswap function for each type is useful for handling misbehaved arrays.
Some platforms (e.g. Solaris) do not like misaligned data and will crash if you de-reference a misaligned pointer.
Other platforms (e.g. x86 Linux) will just work more slowly with misaligned data.

void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind)
Return a pointer to the data of the ndarray, aobj, at the N-dimensional index given by the c-array, ind, (which
must be at least aobj ->nd in size). You may want to typecast the returned pointer to the data type of the ndarray.

void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i)

void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j)

void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k)

void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
Quick, inline access to the element at the given coordinates in the ndarray, obj, which must have respectively 1,
2, 3, or 4 dimensions (this is not checked). The corresponding i, j, k, and l coordinates can be any integer but
will be interpreted as npy_intp. You may want to typecast the returned pointer to the data type of the ndarray.

5.4.2 Creating arrays

From scratch

PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd,
npy_intp* dims, npy_intp* strides, void* data, int flags, Py-
Object* obj)

This function steals a reference to descr.

1170 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/type.html#c.PyTypeObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

This is the main array creation function. Most new arrays are created with this flexible function.

The returned object is an object of Python-type subtype, which must be a subtype of PyArray_Type. The
array has nd dimensions, described by dims. The data-type descriptor of the new array is descr.

If subtype is of an array subclass instead of the base &PyArray_Type, then obj is the object to pass to the
__array_finalize__ method of the subclass.

If data is NULL, then new memory will be allocated and flags can be non-zero to indicate a Fortran-style
contiguous array. If data is not NULL, then it is assumed to point to the memory to be used for the ar-
ray and the flags argument is used as the new flags for the array (except the state of NPY_OWNDATA and
NPY_ARRAY_UPDATEIFCOPY flags of the new array will be reset).

In addition, if data is non-NULL, then strides can also be provided. If strides is NULL, then the array strides are
computed as C-style contiguous (default) or Fortran-style contiguous (flags is nonzero for data = NULL or flags
& NPY_ARRAY_F_CONTIGUOUS is nonzero non-NULL data). Any provided dims and strides are copied into
newly allocated dimension and strides arrays for the new array object.

PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order,
PyArray_Descr* descr, int subok)

New in version 1.6.

This function steals a reference to descr if it is not NULL.

This array creation routine allows for the convenient creation of a new array matching an existing array’s shapes
and memory layout, possibly changing the layout and/or data type.

When order is NPY_ANYORDER, the result order is NPY_FORTRANORDER if prototype is a fortran array,
NPY_CORDER otherwise. When order is NPY_KEEPORDER, the result order matches that of prototype, even
when the axes of prototype aren’t in C or Fortran order.

If descr is NULL, the data type of prototype is used.

If subok is 1, the newly created array will use the sub-type of prototype to create the new array, otherwise it will
create a base-class array.

PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides,
void* data, int itemsize, int flags, PyObject* obj)

This is similar to PyArray_DescrNew (...) except you specify the data-type descriptor with type_num and
itemsize, where type_num corresponds to a builtin (or user-defined) type. If the type always has the same
number of bytes, then itemsize is ignored. Otherwise, itemsize specifies the particular size of this array.

Warning: If data is passed to PyArray_NewFromDescr or PyArray_New , this memory must not be deallo-
cated until the new array is deleted. If this data came from another Python object, this can be accomplished using
Py_INCREF on that object and setting the base member of the new array to point to that object. If strides are
passed in they must be consistent with the dimensions, the itemsize, and the data of the array.

PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
Create a new unitialized array of type, typenum, whose size in each of nd dimensions is given by the integer
array, dims. This function cannot be used to create a flexible-type array (no itemsize given).

PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
Create an array wrapper around data pointed to by the given pointer. The array flags will have a default that the
data area is well-behaved and C-style contiguous. The shape of the array is given by the dims c-array of length
nd. The data-type of the array is indicated by typenum.

PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr)
This function steals a reference to descr if it is not NULL.

Create a new array with the provided data-type descriptor, descr , of the shape determined by nd and dims.

5.4. Array API 1171

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/type.html#c.PyTypeObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/refcounting.html#c.Py_INCREF
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyArray_FILLWBYTE(PyObject* obj, int val)
Fill the array pointed to by obj —which must be a (subclass of) bigndarray—with the contents of val (evaluated
as a byte). This macro calls memset, so obj must be contiguous.

PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is
non-zero, then a Fortran-order array is created, otherwise a C-order array is created. Fill the memory with zeros
(or the 0 object if dtype corresponds to NPY_OBJECT).

PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran)
Macro form of PyArray_Zeros which takes a type-number instead of a data-type object.

PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is
non-zero, then a Fortran-order array is created, otherwise a C-order array is created. The array is uninitialized
unless the data type corresponds to NPY_OBJECT in which case the array is filled with Py_None.

PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran)
Macro form of PyArray_Empty which takes a type-number, typenum, instead of a data-type object.

PyObject* PyArray_Arange(double start, double stop, double step, int typenum)
Construct a new 1-dimensional array of data-type, typenum, that ranges from start to stop (exclusive) in incre-
ments of step . Equivalent to arange (start, stop, step, dtype).

PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* de-
scr)

Construct a new 1-dimensional array of data-type determined by descr, that ranges from start to stop
(exclusive) in increments of step. Equivalent to arange(start, stop, step, typenum).

int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj)
New in version 1.7.

This function steals a reference to obj and sets it as the base property of arr.

If you construct an array by passing in your own memory buffer as a parameter, you need to set the array’s base
property to ensure the lifetime of the memory buffer is appropriate.

The return value is 0 on success, -1 on failure.

If the object provided is an array, this function traverses the chain of base pointers so that each array points to
the owner of the memory directly. Once the base is set, it may not be changed to another value.

From other objects

PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int re-
quirements, PyObject* context)

This is the main function used to obtain an array from any nested sequence, or object that exposes the array
interface, op. The parameters allow specification of the required dtype, the minimum (min_depth) and maximum
(max_depth) number of dimensions acceptable, and other requirements for the array. The dtype argument needs
to be a PyArray_Descr structure indicating the desired data-type (including required byteorder). The dtype
argument may be NULL, indicating that any data-type (and byteorder) is acceptable. Unless FORCECAST is
present in flags, this call will generate an error if the data type cannot be safely obtained from the object. If
you want to use NULL for the dtype and ensure the array is notswapped then use PyArray_CheckFromAny .
A value of 0 for either of the depth parameters causes the parameter to be ignored. Any of the following
array flags can be added (e.g. using |) to get the requirements argument. If your code can handle general (e.g.
strided, byte-swapped, or unaligned arrays) then requirements may be 0. Also, if op is not already an array (or
does not expose the array interface), then a new array will be created (and filled from op using the sequence
protocol). The new array will have NPY_DEFAULT as its flags member. The context argument is passed to the

1172 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/none.html#c.Py_None
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

__array__ method of op and is only used if the array is constructed that way. Almost always this parameter
is NULL.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them.
That form of the constant names is deprecated in 1.7.

NPY_ARRAY_C_CONTIGUOUS
Make sure the returned array is C-style contiguous

NPY_ARRAY_F_CONTIGUOUS
Make sure the returned array is Fortran-style contiguous.

NPY_ARRAY_ALIGNED
Make sure the returned array is aligned on proper boundaries for its data type. An aligned array has the
data pointer and every strides factor as a multiple of the alignment factor for the data-type- descriptor.

NPY_ARRAY_WRITEABLE
Make sure the returned array can be written to.

NPY_ARRAY_ENSURECOPY
Make sure a copy is made of op. If this flag is not present, data is not copied if it can be avoided.

NPY_ARRAY_ENSUREARRAY
Make sure the result is a base-class ndarray or bigndarray. By default, if op is an instance of a subclass of
the bigndarray, an instance of that same subclass is returned. If this flag is set, an ndarray object will be
returned instead.

NPY_ARRAY_FORCECAST
Force a cast to the output type even if it cannot be done safely. Without this flag, a data cast will occur
only if it can be done safely, otherwise an error is reaised.

NPY_ARRAY_UPDATEIFCOPY
If op is already an array, but does not satisfy the requirements, then a copy is made (which will satisfy
the requirements). If this flag is present and a copy (of an object that is already an array) must be made,
then the corresponding NPY_ARRAY_UPDATEIFCOPY flag is set in the returned copy and op is made
to be read-only. When the returned copy is deleted (presumably after your calculations are complete), its
contents will be copied back into op and the op array will be made writeable again. If op is not writeable
to begin with, then an error is raised. If op is not already an array, then this flag has no effect.

NPY_ARRAY_BEHAVED
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

NPY_ARRAY_CARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_CARRAY_RO
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_FARRAY_RO
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_DEFAULT
NPY_ARRAY_CARRAY

NPY_ARRAY_IN_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_IN_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

5.4. Array API 1173

NumPy Reference, Release 1.11.1

NPY_OUT_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED

NPY_ARRAY_OUT_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED

NPY_ARRAY_INOUT_ARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_UPDATEIFCOPY

NPY_ARRAY_INOUT_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_UPDATEIFCOPY

int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype,
npy_bool writeable, PyArray_Descr** out_dtype,
int* out_ndim, npy_intp* out_dims, PyArrayOb-
ject** out_arr, PyObject* context)

New in version 1.6.

Retrieves the array parameters for viewing/converting an arbitrary PyObject* to a NumPy array. This allows
the “innate type and shape” of Python list-of-lists to be discovered without actually converting to an array.
PyArray_FromAny calls this function to analyze its input.

In some cases, such as structured arrays and the __array__ interface, a data type needs to be used to make
sense of the object. When this is needed, provide a Descr for ‘requested_dtype’, otherwise provide NULL. This
reference is not stolen. Also, if the requested dtype doesn’t modify the interpretation of the input, out_dtype
will still get the “innate” dtype of the object, not the dtype passed in ‘requested_dtype’.

If writing to the value in ‘op’ is desired, set the boolean ‘writeable’ to 1. This raises an error when ‘op’ is
a scalar, list of lists, or other non-writeable ‘op’. This differs from passing NPY_ARRAY_WRITEABLE to
PyArray_FromAny, where the writeable array may be a copy of the input.

When success (0 return value) is returned, either out_arr is filled with a non-NULL PyArrayObject and the rest
of the parameters are untouched, or out_arr is filled with NULL, and the rest of the parameters are filled.

Typical usage:

PyArrayObject *arr = NULL;
PyArray_Descr *dtype = NULL;
int ndim = 0;
npy_intp dims[NPY_MAXDIMS];

if (PyArray_GetArrayParamsFromObject(op, NULL, 1, &dtype,
&ndim, &dims, &arr, NULL) < 0) {

return NULL;
}
if (arr == NULL) {

... validate/change dtype, validate flags, ndim, etc ...
// Could make custom strides here too
arr = PyArray_NewFromDescr(&PyArray_Type, dtype, ndim,

dims, NULL,
fortran ? NPY_ARRAY_F_CONTIGUOUS : 0,
NULL);

if (arr == NULL) {
return NULL;

}
if (PyArray_CopyObject(arr, op) < 0) {

Py_DECREF(arr);
return NULL;

}

1174 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

}
else {

... in this case the other parameters weren't filled, just
validate and possibly copy arr itself ...

}
... use arr ...

PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth,
int requirements, PyObject* context)

Nearly identical to PyArray_FromAny (...) except requirements can contain NPY_ARRAY_NOTSWAPPED
(over-riding the specification in dtype) and NPY_ARRAY_ELEMENTSTRIDES which indicates that the array
should be aligned in the sense that the strides are multiples of the element size.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them.
That form of the constant names is deprecated in 1.7.

NPY_ARRAY_NOTSWAPPED
Make sure the returned array has a data-type descriptor that is in machine byte-order, over-riding any specifi-
cation in the dtype argument. Normally, the byte-order requirement is determined by the dtype argument. If
this flag is set and the dtype argument does not indicate a machine byte-order descriptor (or is NULL and the
object is already an array with a data-type descriptor that is not in machine byte- order), then a new data-type
descriptor is created and used with its byte-order field set to native.

NPY_ARRAY_BEHAVED_NS
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

NPY_ARRAY_ELEMENTSTRIDES
Make sure the returned array has strides that are multiples of the element size.

PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements)
Special case of PyArray_FromAny for when op is already an array but it needs to be of a specific newtype
(including byte-order) or has certain requirements.

PyObject* PyArray_FromStructInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the __array_struct__ attribute and fol-
lows the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject* PyArray_FromInterface(PyObject* op)
Returns an ndarray object from a Python object that exposes the __array_interface__ attribute fol-
lowing the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context)
Return an ndarray object from a Python object that exposes the __array__ method. The __array__
method can take 0, 1, or 2 arguments ([dtype, context]) where context is used to pass information about where
the __array__ method is being called from (currently only used in ufuncs).

PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth)
This function returns a (C-style) contiguous and behaved function array from any nested sequence or array
interface exporting object, op, of (non-flexible) type given by the enumerated typenum, of minimum depth
min_depth, and of maximum depth max_depth. Equivalent to a call to PyArray_FromAny with requirements
set to NPY_DEFAULT and the type_num member of the type argument set to typenum.

PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth)
Return an aligned and in native-byteorder array from any nested sequence or array-interface exporting object,
op, of a type given by the enumerated typenum. The minimum number of dimensions the array can have is
given by min_depth while the maximum is max_depth. This is equivalent to a call to PyArray_FromAny
with requirements set to BEHAVED.

5.4. Array API 1175

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject* PyArray_EnsureArray(PyObject* op)
This function steals a reference to op and makes sure that op is a base-class ndarray. It special cases array
scalars, but otherwise calls PyArray_FromAny (op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY).

PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num,
char* sep)

Construct a one-dimensional ndarray of a single type from a binary or (ASCII) text string of length slen.
The data-type of the array to-be-created is given by dtype. If num is -1, then copy the entire string and return
an appropriately sized array, otherwise, num is the number of items to copy from the string. If sep is NULL
(or “”), then interpret the string as bytes of binary data, otherwise convert the sub-strings separated by sep to
items of data-type dtype. Some data-types may not be readable in text mode and an error will be raised if that
occurs. All errors return NULL.

PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep)
Construct a one-dimensional ndarray of a single type from a binary or text file. The open file pointer is fp, the
data-type of the array to be created is given by dtype. This must match the data in the file. If num is -1, then
read until the end of the file and return an appropriately sized array, otherwise, num is the number of items to
read. If sep is NULL (or “”), then read from the file in binary mode, otherwise read from the file in text mode
with sep providing the item separator. Some array types cannot be read in text mode in which case an error is
raised.

PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp off-
set)

Construct a one-dimensional ndarray of a single type from an object, buf, that exports the (single-segment)
buffer protocol (or has an attribute __buffer__ that returns an object that exports the buffer protocol). A
writeable buffer will be tried first followed by a read- only buffer. The NPY_ARRAY_WRITEABLE flag of the
returned array will reflect which one was successful. The data is assumed to start at offset bytes from the
start of the memory location for the object. The type of the data in the buffer will be interpreted depending on
the data- type descriptor, dtype. If count is negative then it will be determined from the size of the buffer
and the requested itemsize, otherwise, count represents how many elements should be converted from the
buffer.

int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src)
Copy from the source array, src, into the destination array, dest, performing a data-type conversion if neces-
sary. If an error occurs return -1 (otherwise 0). The shape of src must be broadcastable to the shape of dest.
The data areas of dest and src must not overlap.

int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src)
Move data from the source array, src, into the destination array, dest, performing a data-type conversion if
necessary. If an error occurs return -1 (otherwise 0). The shape of src must be broadcastable to the shape of
dest. The data areas of dest and src may overlap.

PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)
If op is already (C-style) contiguous and well-behaved then just return a reference, otherwise return a (contigu-
ous and well-behaved) copy of the array. The parameter op must be a (sub-class of an) ndarray and no checking
for that is done.

PyObject* PyArray_FROM_O(PyObject* obj)
Convert obj to an ndarray. The argument can be any nested sequence or object that exports the array interface.
This is a macro form of PyArray_FromAny using NULL, 0, 0, 0 for the other arguments. Your code must be
able to handle any data-type descriptor and any combination of data-flags to use this macro.

PyObject* PyArray_FROM_OF(PyObject* obj, int requirements)
Similar to PyArray_FROM_O except it can take an argument of requirements indicating properties the result-
ing array must have. Available requirements that can be enforced are NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE,
NPY_ARRAY_NOTSWAPPED, NPY_ARRAY_ENSURECOPY, NPY_ARRAY_UPDATEIFCOPY ,
NPY_ARRAY_FORCECAST, and NPY_ARRAY_ENSUREARRAY. Standard combinations of flags can

1176 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

also be used:

PyObject* PyArray_FROM_OT(PyObject* obj, int typenum)
Similar to PyArray_FROM_O except it can take an argument of typenum specifying the type-number the
returned array.

PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements)
Combination of PyArray_FROM_OF and PyArray_FROM_OT allowing both a typenum and a flags argu-
ment to be provided..

PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements)
Similar to PyArray_FromAny except the data-type is specified using a typenumber.
PyArray_DescrFromType (typenum) is passed directly to PyArray_FromAny . This macro also
adds NPY_DEFAULT to requirements if NPY_ARRAY_ENSURECOPY is passed in as requirements.

PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements)
Encapsulate the functionality of functions and methods that take the axis= keyword and work properly with
None as the axis argument. The input array is obj, while *axis is a converted integer (so that >=MAXDIMS
is the None value), and requirements gives the needed properties of obj. The output is a converted version
of the input so that requirements are met and if needed a flattening has occurred. On output negative values of
*axis are converted and the new value is checked to ensure consistency with the shape of obj.

5.4.3 Dealing with types

General check of Python Type

PyArray_Check(op)
Evaluates true if op is a Python object whose type is a sub-type of PyArray_Type.

PyArray_CheckExact(op)
Evaluates true if op is a Python object with type PyArray_Type.

PyArray_HasArrayInterface(op, out)
If op implements any part of the array interface, then out will contain a new reference to the newly created
ndarray using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will
contain a borrowed reference to Py_NotImplemented and no error condition is set.

PyArray_HasArrayInterfaceType(op, type, context, out)
If op implements any part of the array interface, then out will contain a new reference to the newly created
ndarray using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will
contain a borrowed reference to Py_NotImplemented and no error condition is set. This version allows setting
of the type and context in the part of the array interface that looks for the __array__ attribute.

PyArray_IsZeroDim(op)
Evaluates true if op is an instance of (a subclass of) PyArray_Type and has 0 dimensions.

PyArray_IsScalar(op, cls)
Evaluates true if op is an instance of Py{cls}ArrType_Type.

PyArray_CheckScalar(op)
Evaluates true if op is either an array scalar (an instance of a sub-type of PyGenericArr_Type), or an
instance of (a sub-class of) PyArray_Type whose dimensionality is 0.

PyArray_IsPythonNumber(op)
Evaluates true if op is an instance of a builtin numeric type (int, float, complex, long, bool)

PyArray_IsPythonScalar(op)
Evaluates true if op is a builtin Python scalar object (int, float, complex, str, unicode, long, bool).

5.4. Array API 1177

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/object.html#c.Py_NotImplemented

NumPy Reference, Release 1.11.1

PyArray_IsAnyScalar(op)
Evaluates true if op is either a Python scalar object (see PyArray_IsPythonScalar) or an array scalar (an
instance of a sub- type of PyGenericArr_Type).

PyArray_CheckAnyScalar(op)
Evaluates true if op is a Python scalar object (see PyArray_IsPythonScalar), an array scalar (an in-
stance of a sub-type of PyGenericArr_Type) or an instance of a sub-type of PyArray_Type whose
dimensionality is 0.

Data-type checking

For the typenum macros, the argument is an integer representing an enumerated array data type. For the array type
checking macros the argument must be a PyObject * that can be directly interpreted as a PyArrayObject *.

PyTypeNum_ISUNSIGNED(num)

PyDataType_ISUNSIGNED(descr)

PyArray_ISUNSIGNED(obj)
Type represents an unsigned integer.

PyTypeNum_ISSIGNED(num)

PyDataType_ISSIGNED(descr)

PyArray_ISSIGNED(obj)
Type represents a signed integer.

PyTypeNum_ISINTEGER(num)

PyDataType_ISINTEGER(descr)

PyArray_ISINTEGER(obj)
Type represents any integer.

PyTypeNum_ISFLOAT(num)

PyDataType_ISFLOAT(descr)

PyArray_ISFLOAT(obj)
Type represents any floating point number.

PyTypeNum_ISCOMPLEX(num)

PyDataType_ISCOMPLEX(descr)

PyArray_ISCOMPLEX(obj)
Type represents any complex floating point number.

PyTypeNum_ISNUMBER(num)

1178 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

PyDataType_ISNUMBER(descr)

PyArray_ISNUMBER(obj)
Type represents any integer, floating point, or complex floating point number.

PyTypeNum_ISSTRING(num)

PyDataType_ISSTRING(descr)

PyArray_ISSTRING(obj)
Type represents a string data type.

PyTypeNum_ISPYTHON(num)

PyDataType_ISPYTHON(descr)

PyArray_ISPYTHON(obj)
Type represents an enumerated type corresponding to one of the standard Python scalar (bool, int, float, or
complex).

PyTypeNum_ISFLEXIBLE(num)

PyDataType_ISFLEXIBLE(descr)

PyArray_ISFLEXIBLE(obj)
Type represents one of the flexible array types (NPY_STRING, NPY_UNICODE, or NPY_VOID).

PyTypeNum_ISUSERDEF(num)

PyDataType_ISUSERDEF(descr)

PyArray_ISUSERDEF(obj)
Type represents a user-defined type.

PyTypeNum_ISEXTENDED(num)

PyDataType_ISEXTENDED(descr)

PyArray_ISEXTENDED(obj)
Type is either flexible or user-defined.

PyTypeNum_ISOBJECT(num)

PyDataType_ISOBJECT(descr)

PyArray_ISOBJECT(obj)
Type represents object data type.

PyTypeNum_ISBOOL(num)

5.4. Array API 1179

NumPy Reference, Release 1.11.1

PyDataType_ISBOOL(descr)

PyArray_ISBOOL(obj)
Type represents Boolean data type.

PyDataType_HASFIELDS(descr)

PyArray_HASFIELDS(obj)
Type has fields associated with it.

PyArray_ISNOTSWAPPED(m)
Evaluates true if the data area of the ndarray m is in machine byte-order according to the array’s data-type
descriptor.

PyArray_ISBYTESWAPPED(m)
Evaluates true if the data area of the ndarray m is not in machine byte-order according to the array’s data-type
descriptor.

Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2)
Return NPY_TRUE if type1 and type2 actually represent equivalent types for this platform (the fortran member
of each type is ignored). For example, on 32-bit platforms, NPY_LONG and NPY_INT are equivalent.
Otherwise return NPY_FALSE.

Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2)
Return NPY_TRUE if a1 and a2 are arrays with equivalent types for this platform.

Bool PyArray_EquivTypenums(int typenum1, int typenum2)
Special case of PyArray_EquivTypes (...) that does not accept flexible data types but may be easier to call.

int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2)
True if byteorder characters (NPY_LITTLE, NPY_BIG, NPY_NATIVE, NPY_IGNORE) are either equal or
equivalent as to their specification of a native byte order. Thus, on a little-endian machine NPY_LITTLE and
NPY_NATIVE are equivalent where they are not equivalent on a big-endian machine.

Converting data types

PyObject* PyArray_Cast(PyArrayObject* arr, int typenum)
Mainly for backwards compatibility to the Numeric C-API and for simple casts to non-flexible types. Return a
new array object with the elements of arr cast to the data-type typenum which must be one of the enumerated
types and not a flexible type.

PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran)
Return a new array of the type specified, casting the elements of arr as appropriate. The fortran argument
specifies the ordering of the output array.

int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in)
As of 1.6, this function simply calls PyArray_CopyInto, which handles the casting.

Cast the elements of the array in into the array out. The output array should be writeable, have an integer-
multiple of the number of elements in the input array (more than one copy can be placed in out), and have a data
type that is one of the builtin types. Returns 0 on success and -1 if an error occurs.

PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype)
Return the low-level casting function to cast from the given descriptor to the builtin type number. If no casting
function exists return NULL and set an error. Using this function instead of direct access to from ->f->cast will
allow support of any user-defined casting functions added to a descriptors casting dictionary.

1180 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

int PyArray_CanCastSafely(int fromtype, int totype)
Returns non-zero if an array of data type fromtype can be cast to an array of data type totype without losing
information. An exception is that 64-bit integers are allowed to be cast to 64-bit floating point values even
though this can lose precision on large integers so as not to proliferate the use of long doubles without explict
requests. Flexible array types are not checked according to their lengths with this function.

int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype)
PyArray_CanCastTypeTo supercedes this function in NumPy 1.6 and later.

Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).

int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING cast-
ing)

New in version 1.6.

Returns non-zero if an array of data type fromtype (which can include flexible types) can be cast safely to an
array of data type totype (which can include flexible types) according to the casting rule casting. For simple
types with NPY_SAFE_CASTING, this is basically a wrapper around PyArray_CanCastSafely , but for
flexible types such as strings or unicode, it produces results taking into account their sizes. Integer and float
types can only be cast to a string or unicode type using NPY_SAFE_CASTING if the string or unicode type is
big enough to hold the max value of the integer/float type being cast from.

int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting)
New in version 1.6.

Returns non-zero if arr can be cast to totype according to the casting rule given in casting. If arr is an array
scalar, its value is taken into account, and non-zero is also returned when the value will not overflow or be
truncated to an integer when converting to a smaller type.

This is almost the same as the result of PyArray_CanCastTypeTo(PyArray_MinScalarType(arr), totype, casting),
but it also handles a special case arising because the set of uint values is not a subset of the int values for types
with the same number of bits.

PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr)
New in version 1.6.

If arr is an array, returns its data type descriptor, but if arr is an array scalar (has 0 dimensions), it finds the data
type of smallest size to which the value may be converted without overflow or truncation to an integer.

This function will not demote complex to float or anything to boolean, but will demote a signed integer to an
unsigned integer when the scalar value is positive.

PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2)
New in version 1.6.

Finds the data type of smallest size and kind to which type1 and type2 may be safely converted. This function
is symmetric and associative. A string or unicode result will be the proper size for storing the max value of the
input types converted to a string or unicode.

PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes,
PyArray_Descr**dtypes)

New in version 1.6.

This applies type promotion to all the inputs, using the NumPy rules for combining scalars and arrays, to
determine the output type of a set of operands. This is the same result type that ufuncs produce. The specific
algorithm used is as follows.

Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars is higher than the maximum category of the
arrays, the data types are combined with PyArray_PromoteTypes to produce the return value.

5.4. Array API 1181

NumPy Reference, Release 1.11.1

Otherwise, PyArray_MinScalarType is called on each array, and the resulting data types are all combined with
PyArray_PromoteTypes to produce the return value.

The set of int values is not a subset of the uint values for types with the same number of bits, something not
reflected in PyArray_MinScalarType, but handled as a special case in PyArray_ResultType.

int PyArray_ObjectType(PyObject* op, int mintype)
This function is superceded by PyArray_MinScalarType and/or PyArray_ResultType.

This function is useful for determining a common type that two or more arrays can be converted to. It only
works for non-flexible array types as no itemsize information is passed. The mintype argument represents the
minimum type acceptable, and op represents the object that will be converted to an array. The return value is
the enumerated typenumber that represents the data-type that op should have.

void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype)
This function is superceded by PyArray_ResultType.

This function works similarly to PyArray_ObjectType (...) except it handles flexible arrays. The mintype
argument can have an itemsize member and the outtype argument will have an itemsize member at least as big
but perhaps bigger depending on the object op.

PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n)
The functionality this provides is largely superceded by iterator NpyIter introduced in 1.6, with flag
NPY_ITER_COMMON_DTYPE or with the same dtype parameter for all operands.

Convert a sequence of Python objects contained in op to an array of ndarrays each having the same data type.
The type is selected based on the typenumber (larger type number is chosen over a smaller one) ignoring objects
that are only scalars. The length of the sequence is returned in n, and an n -length array of PyArrayObject
pointers is the return value (or NULL if an error occurs). The returned array must be freed by the caller of this
routine (using PyDataMem_FREE) and all the array objects in it DECREF ‘d or a memory-leak will occur.
The example template-code below shows a typically usage:

mps = PyArray_ConvertToCommonType(obj, &n);
if (mps==NULL) return NULL;
{code}
<before return>
for (i=0; i<n; i++) Py_DECREF(mps[i]);
PyDataMem_FREE(mps);
{return}

char* PyArray_Zero(PyArrayObject* arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 0 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

char* PyArray_One(PyArrayObject* arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 1 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

int PyArray_ValidType(int typenum)
Returns NPY_TRUE if typenum represents a valid type-number (builtin or user-defined or character code).
Otherwise, this function returns NPY_FALSE.

New data types

void PyArray_InitArrFuncs(PyArray_ArrFuncs* f)
Initialize all function pointers and members to NULL.

int PyArray_RegisterDataType(PyArray_Descr* dtype)
Register a data-type as a new user-defined data type for arrays. The type must have most of its entries filled

1182 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

in. This is not always checked and errors can produce segfaults. In particular, the typeobj member of the
dtype structure must be filled with a Python type that has a fixed-size element-size that corresponds to the
elsize member of dtype. Also the f member must have the required functions: nonzero, copyswap, copyswapn,
getitem, setitem, and cast (some of the cast functions may be NULL if no support is desired). To avoid
confusion, you should choose a unique character typecode but this is not enforced and not relied on internally.

A user-defined type number is returned that uniquely identifies the type. A pointer to the new structure can then
be obtained from PyArray_DescrFromType using the returned type number. A -1 is returned if an error
occurs. If this dtype has already been registered (checked only by the address of the pointer), then return the
previously-assigned type-number.

int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* cast-
func)

Register a low-level casting function, castfunc, to convert from the data-type, descr, to the given data-type
number, totype. Any old casting function is over-written. A 0 is returned on success or a -1 on failure.

int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar)
Register the data-type number, totype, as castable from data-type object, descr, of the given scalar kind. Use
scalar = NPY_NOSCALAR to register that an array of data-type descr can be cast safely to a data-type whose
type_number is totype.

Special functions for NPY_OBJECT

int PyArray_INCREF(PyArrayObject* op)
Used for an array, op, that contains any Python objects. It increments the reference count of every object in the
array according to the data-type of op. A -1 is returned if an error occurs, otherwise 0 is returned.

void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype)
A function to INCREF all the objects at the location ptr according to the data-type dtype. If ptr is the start of
a structured type with an object at any offset, then this will (recursively) increment the reference count of all
object-like items in the structured type.

int PyArray_XDECREF(PyArrayObject* op)
Used for an array, op, that contains any Python objects. It decrements the reference count of every object in the
array according to the data-type of op. Normal return value is 0. A -1 is returned if an error occurs.

void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype)
A function to XDECREF all the object-like items at the location ptr as recorded in the data-type, dtype. This
works recursively so that if dtype itself has fields with data-types that contain object-like items, all the
object-like fields will be XDECREF ’d.

void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj)
Fill a newly created array with a single value obj at all locations in the structure with object data-types. No
checking is performed but arr must be of data-type NPY_OBJECT and be single-segment and uninitialized
(no previous objects in position). Use PyArray_DECREF (arr) if you need to decrement all the items in the
object array prior to calling this function.

5.4.4 Array flags

The flags attribute of the PyArrayObject structure contains important information about the memory used by
the array (pointed to by the data member) This flag information must be kept accurate or strange results and even
segfaults may result.

There are 6 (binary) flags that describe the memory area used by the data buffer. These constants are defined in
arrayobject.h and determine the bit-position of the flag. Python exposes a nice attribute- based interface as well
as a dictionary-like interface for getting (and, if appropriate, setting) these flags.

5.4. Array API 1183

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

Memory areas of all kinds can be pointed to by an ndarray, necessitating these flags. If you get an arbitrary
PyArrayObject in C-code, you need to be aware of the flags that are set. If you need to guarantee a certain
kind of array (like NPY_ARRAY_C_CONTIGUOUS and NPY_ARRAY_BEHAVED), then pass these requirements into
the PyArray_FromAny function.

Basic Array Flags

An ndarray can have a data segment that is not a simple contiguous chunk of well-behaved memory you can manip-
ulate. It may not be aligned with word boundaries (very important on some platforms). It might have its data in a
different byte-order than the machine recognizes. It might not be writeable. It might be in Fortan-contiguous order.
The array flags are used to indicate what can be said about data associated with an array.

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them. That
form of the constant names is deprecated in 1.7.

NPY_ARRAY_C_CONTIGUOUS
The data area is in C-style contiguous order (last index varies the fastest).

NPY_ARRAY_F_CONTIGUOUS
The data area is in Fortran-style contiguous order (first index varies the fastest).

Note: Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if
arr.shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true. The correct way to access the itemsize of an array from the C API is
PyArray_ITEMSIZE(arr).

See also:

Internal memory layout of an ndarray

NPY_ARRAY_OWNDATA
The data area is owned by this array.

NPY_ARRAY_ALIGNED
The data area and all array elements are aligned appropriately.

NPY_ARRAY_WRITEABLE
The data area can be written to.

Notice that the above 3 flags are are defined so that a new, well- behaved array has these flags defined as true.

NPY_ARRAY_UPDATEIFCOPY
The data area represents a (well-behaved) copy whose information should be transferred back to the original
when this array is deleted.

This is a special flag that is set if this array represents a copy made because a user required certain flags in
PyArray_FromAny and a copy had to be made of some other array (and the user asked for this flag to be set
in such a situation). The base attribute then points to the “misbehaved” array (which is set read_only). When
the array with this flag set is deallocated, it will copy its contents back to the “misbehaved” array (casting if
necessary) and will reset the “misbehaved” array to NPY_ARRAY_WRITEABLE. If the “misbehaved” array
was not NPY_ARRAY_WRITEABLE to begin with then PyArray_FromAny would have returned an error
because NPY_ARRAY_UPDATEIFCOPY would not have been possible.

1184 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

PyArray_UpdateFlags (obj, flags) will update the obj->flags for flags which can be
any of NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, or
NPY_ARRAY_WRITEABLE.

Combinations of array flags

NPY_ARRAY_BEHAVED
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE

NPY_ARRAY_CARRAY
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_CARRAY_RO
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_FARRAY
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED

NPY_ARRAY_FARRAY_RO
NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

NPY_ARRAY_DEFAULT
NPY_ARRAY_CARRAY

NPY_ARRAY_UPDATE_ALL
NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

Flag-like constants

These constants are used in PyArray_FromAny (and its macro forms) to specify desired properties of the new array.

NPY_ARRAY_FORCECAST
Cast to the desired type, even if it can’t be done without losing information.

NPY_ARRAY_ENSURECOPY
Make sure the resulting array is a copy of the original.

NPY_ARRAY_ENSUREARRAY
Make sure the resulting object is an actual ndarray (or bigndarray), and not a sub-class.

NPY_ARRAY_NOTSWAPPED
Only used in PyArray_CheckFromAny to over-ride the byteorder of the data-type object passed in.

NPY_ARRAY_BEHAVED_NS
NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED

Flag checking

For all of these macros arr must be an instance of a (subclass of) PyArray_Type, but no checking is done.

PyArray_CHKFLAGS(arr, flags)
The first parameter, arr, must be an ndarray or subclass. The parameter, flags, should
be an integer consisting of bitwise combinations of the possible flags an array can have:
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_UPDATEIFCOPY .

5.4. Array API 1185

NumPy Reference, Release 1.11.1

PyArray_IS_C_CONTIGUOUS(arr)
Evaluates true if arr is C-style contiguous.

PyArray_IS_F_CONTIGUOUS(arr)
Evaluates true if arr is Fortran-style contiguous.

PyArray_ISFORTRAN(arr)
Evaluates true if arr is Fortran-style contiguous and not C-style contiguous. PyArray_IS_F_CONTIGUOUS
is the correct way to test for Fortran-style contiguity.

PyArray_ISWRITEABLE(arr)
Evaluates true if the data area of arr can be written to

PyArray_ISALIGNED(arr)
Evaluates true if the data area of arr is properly aligned on the machine.

PyArray_ISBEHAVED(arr)
Evalutes true if the data area of arr is aligned and writeable and in machine byte-order according to its descriptor.

PyArray_ISBEHAVED_RO(arr)
Evaluates true if the data area of arr is aligned and in machine byte-order.

PyArray_ISCARRAY(arr)
Evaluates true if the data area of arr is C-style contiguous, and PyArray_ISBEHAVED (arr) is true.

PyArray_ISFARRAY(arr)
Evaluates true if the data area of arr is Fortran-style contiguous and PyArray_ISBEHAVED (arr) is true.

PyArray_ISCARRAY_RO(arr)
Evaluates true if the data area of arr is C-style contiguous, aligned, and in machine byte-order.

PyArray_ISFARRAY_RO(arr)
Evaluates true if the data area of arr is Fortran-style contiguous, aligned, and in machine byte-order .

PyArray_ISONESEGMENT(arr)
Evaluates true if the data area of arr consists of a single (C-style or Fortran-style) contiguous segment.

void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask)
The NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_ALIGNED, and NPY_ARRAY_F_CONTIGUOUS array
flags can be “calculated” from the array object itself. This routine updates one or more of these flags of arr as
specified in flagmask by performing the required calculation.

Warning: It is important to keep the flags updated (using PyArray_UpdateFlags can help) whenever a
manipulation with an array is performed that might cause them to change. Later calculations in NumPy that rely
on the state of these flags do not repeat the calculation to update them.

5.4.5 Array method alternative API

Conversion

PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset)
Equivalent to ndarray.getfield (self, dtype, offset). Return a new array of the given dtype using the data
in the current array at a specified offset in bytes. The offset plus the itemsize of the new array type must be
less than self ->descr->elsize or an error is raised. The same shape and strides as the original array are used.
Therefore, this function has the effect of returning a field from a structured array. But, it can also be used to
select specific bytes or groups of bytes from any array type.

1186 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val)
Equivalent to ndarray.setfield (self, val, dtype, offset). Set the field starting at offset in bytes and of the
given dtype to val. The offset plus dtype ->elsize must be less than self ->descr->elsize or an error is raised.
Otherwise, the val argument is converted to an array and copied into the field pointed to. If necessary, the
elements of val are repeated to fill the destination array, But, the number of elements in the destination must be
an integer multiple of the number of elements in val.

PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace)
Equivalent to ndarray.byteswap (self, inplace). Return an array whose data area is byteswapped. If in-
place is non-zero, then do the byteswap inplace and return a reference to self. Otherwise, create a byteswapped
copy and leave self unchanged.

PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order)
Equivalent to ndarray.copy (self, fortran). Make a copy of the old array. The returned array is always
aligned and writeable with data interpreted the same as the old array. If order is NPY_CORDER, then a C-style
contiguous array is returned. If order is NPY_FORTRANORDER, then a Fortran-style contiguous array is
returned. If order is NPY_ANYORDER, then the array returned is Fortran-style contiguous only if the old one is;
otherwise, it is C-style contiguous.

PyObject* PyArray_ToList(PyArrayObject* self)
Equivalent to ndarray.tolist (self). Return a nested Python list from self.

PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order)
Equivalent to ndarray.tobytes (self, order). Return the bytes of this array in a Python string.

PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format)
Write the contents of self to the file pointer fp in C-style contiguous fashion. Write the data as binary bytes
if sep is the string “”or NULL. Otherwise, write the contents of self as text using the sep string as the item
separator. Each item will be printed to the file. If the format string is not NULL or “”, then it is a Python print
statement format string showing how the items are to be written.

int PyArray_Dump(PyObject* self, PyObject* file, int protocol)
Pickle the object in self to the given file (either a string or a Python file object). If file is a Python string it is
considered to be the name of a file which is then opened in binary mode. The given protocol is used (if protocol
is negative, or the highest available is used). This is a simple wrapper around cPickle.dump(self, file, protocol).

PyObject* PyArray_Dumps(PyObject* self, int protocol)
Pickle the object in self to a Python string and return it. Use the Pickle protocol provided (or the highest
available if protocol is negative).

int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj)
Fill the array, arr, with the given scalar object, obj. The object is first converted to the data type of arr, and then
copied into every location. A -1 is returned if an error occurs, otherwise 0 is returned.

PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype)
Equivalent to ndarray.view (self, dtype). Return a new view of the array self as possibly a different data-
type, dtype, and different array subclass ptype.

If dtype is NULL, then the returned array will have the same data type as self. The new data-type must be
consistent with the size of self. Either the itemsizes must be identical, or self must be single-segment and the
total number of bytes must be the same. In the latter case the dimensions of the returned array will be altered in
the last (or first for Fortran-style contiguous arrays) dimension. The data area of the returned array and self is
exactly the same.

Shape Manipulation

PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order)
Result will be a new array (pointing to the same memory location as self if possible), but having a shape given

5.4. Array API 1187

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/type.html#c.PyTypeObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

by newshape. If the new shape is not compatible with the strides of self, then a copy of the array with the new
specified shape will be returned.

PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape)
Equivalent to ndarray.reshape (self, shape) where shape is a sequence. Converts shape to a
PyArray_Dims structure and calls PyArray_Newshape internally. For back-ward compatability –
Not recommended

PyObject* PyArray_Squeeze(PyArrayObject* self)
Equivalent to ndarray.squeeze (self). Return a new view of self with all of the dimensions of length 1
removed from the shape.

Warning: matrix objects are always 2-dimensional. Therefore, PyArray_Squeeze has no effect on arrays of
matrix sub-class.

PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2)
Equivalent to ndarray.swapaxes (self, a1, a2). The returned array is a new view of the data in self with
the given axes, a1 and a2, swapped.

PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck,
NPY_ORDER fortran)

Equivalent to ndarray.resize (self, newshape, refcheck = refcheck, order= fortran). This function only
works on single-segment arrays. It changes the shape of self inplace and will reallocate the memory for self
if newshape has a different total number of elements then the old shape. If reallocation is necessary, then self
must own its data, have self - >base==NULL, have self - >weakrefs==NULL, and (unless refcheck is 0)
not be referenced by any other array. A reference to the new array is returned. The fortran argument can be
NPY_ANYORDER, NPY_CORDER, or NPY_FORTRANORDER. It currently has no effect. Eventually it could be
used to determine how the resize operation should view the data when constructing a differently-dimensioned
array.

PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute)
Equivalent to ndarray.transpose (self, permute). Permute the axes of the ndarray object self according
to the data structure permute and return the result. If permute is NULL, then the resulting array has its axes
reversed. For example if self has shape 10 × 20 × 30, and permute .ptr is (0,2,1) the shape of the result is
10 × 30 × 20. If permute is NULL, the shape of the result is 30 × 20 × 10.

PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order)
Equivalent to ndarray.flatten (self, order). Return a 1-d copy of the array. If order is
NPY_FORTRANORDER the elements are scanned out in Fortran order (first-dimension varies the fastest).
If order is NPY_CORDER, the elements of self are scanned in C-order (last dimension varies the fastest). If
order NPY_ANYORDER, then the result of PyArray_ISFORTRAN (self) is used to determine which order to
flatten.

PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order)
Equivalent to self.ravel(order). Same basic functionality as PyArray_Flatten (self, order) except if order
is 0 and self is C-style contiguous, the shape is altered but no copy is performed.

Item selection and manipulation

PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret,
NPY_CLIPMODE clipmode)

Equivalent to ndarray.take (self, indices, axis, ret, clipmode) except axis =None in Python is obtained by
setting axis = NPY_MAXDIMS in C. Extract the items from self indicated by the integer-valued indices along
the given axis. The clipmode argument can be NPY_RAISE, NPY_WRAP, or NPY_CLIP to indicate what to
do with out-of-bound indices. The ret argument can specify an output array rather than having one created
internally.

1188 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices,
NPY_CLIPMODE clipmode)

Equivalent to self.put(values, indices, clipmode). Put values into self at the corresponding (flattened) indices.
If values is too small it will be repeated as necessary.

PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask)
Place the values in self wherever corresponding positions (using a flattened context) in mask are true. The
mask and self arrays must have the same total number of elements. If values is too small, it will be repeated as
necessary.

PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis)
Equivalent to ndarray.repeat (self, op, axis). Copy the elements of self, op times along the given axis.
Either op is a scalar integer or a sequence of length self ->dimensions[axis] indicating how many times to
repeat each item along the axis.

PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret,
NPY_CLIPMODE clipmode)

Equivalent to ndarray.choose (self, op, ret, clipmode). Create a new array by selecting elements from the
sequence of arrays in op based on the integer values in self. The arrays must all be broadcastable to the same
shape and the entries in self should be between 0 and len(op). The output is placed in ret unless it is NULL in
which case a new output is created. The clipmode argument determines behavior for when entries in self are
not between 0 and len(op).

NPY_RAISE
raise a ValueError;

NPY_WRAP
wrap values < 0 by adding len(op) and values >=len(op) by subtracting len(op) until they are in range;

NPY_CLIP
all values are clipped to the region [0, len(op)).

PyObject* PyArray_Sort(PyArrayObject* self, int axis)
Equivalent to ndarray.sort (self, axis). Return an array with the items of self sorted along axis.

PyObject* PyArray_ArgSort(PyArrayObject* self, int axis)
Equivalent to ndarray.argsort (self, axis). Return an array of indices such that selection of these indices
along the given axis would return a sorted version of self. If self ->descr is a data-type with fields defined,
then self->descr->names is used to determine the sort order. A comparison where the first field is equal will use
the second field and so on. To alter the sort order of a structured array, create a new data-type with a different
order of names and construct a view of the array with that new data-type.

PyObject* PyArray_LexSort(PyObject* sort_keys, int axis)
Given a sequence of arrays (sort_keys) of the same shape, return an array of indices (similar to
PyArray_ArgSort (...)) that would sort the arrays lexicographically. A lexicographic sort specifies
that when two keys are found to be equal, the order is based on comparison of subsequent keys. A merge
sort (which leaves equal entries unmoved) is required to be defined for the types. The sort is accomplished
by sorting the indices first using the first sort_key and then using the second sort_key and so forth. This is
equivalent to the lexsort(sort_keys, axis) Python command. Because of the way the merge-sort works, be sure
to understand the order the sort_keys must be in (reversed from the order you would use when comparing two
elements).

If these arrays are all collected in a structured array, then PyArray_Sort (...) can also be used to sort the
array directly.

PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side,
PyObject* perm)

Equivalent to ndarray.searchsorted (self, values, side, perm). Assuming self is a 1-d array in ascending
order, then the output is an array of indices the same shape as values such that, if the elements in values were

5.4. Array API 1189

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

inserted before the indices, the order of self would be preserved. No checking is done on whether or not self is
in ascending order.

The side argument indicates whether the index returned should be that of the first suitable location (if
NPY_SEARCHLEFT) or of the last (if NPY_SEARCHRIGHT).

The sorter argument, if not NULL, must be a 1D array of integer indices the same length as self, that sorts it into
ascending order. This is typically the result of a call to PyArray_ArgSort (...) Binary search is used to find
the required insertion points.

int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis,
NPY_SELECTKIND which)

Equivalent to ndarray.partition (self, ktharray, axis, kind). Partitions the array so that the values of the
element indexed by ktharray are in the positions they would be if the array is fully sorted and places all elements
smaller than the kth before and all elements equal or greater after the kth element. The ordering of all elements
within the partitions is undefined. If self ->descr is a data-type with fields defined, then self->descr->names is
used to determine the sort order. A comparison where the first field is equal will use the second field and so on.
To alter the sort order of a structured array, create a new data-type with a different order of names and construct
a view of the array with that new data-type. Returns zero on success and -1 on failure.

PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis,
NPY_SELECTKIND which)

Equivalent to ndarray.argpartition (self, ktharray, axis, kind). Return an array of indices such that
selection of these indices along the given axis would return a partitioned version of self.

PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2)
Equivalent to ndarray.diagonal (self, offset, axis1, axis2). Return the offset diagonals of the 2-d arrays
defined by axis1 and axis2.

npy_intp PyArray_CountNonzero(PyArrayObject* self)
New in version 1.6.

Counts the number of non-zero elements in the array object self.

PyObject* PyArray_Nonzero(PyArrayObject* self)
Equivalent to ndarray.nonzero (self). Returns a tuple of index arrays that select elements of self that are
nonzero. If (nd= PyArray_NDIM (self))==1, then a single index array is returned. The index arrays have
data type NPY_INTP. If a tuple is returned (nd ̸= 1), then its length is nd.

PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out)
Equivalent to ndarray.compress (self, condition, axis). Return the elements along axis corresponding to
elements of condition that are true.

Calculation

Tip: Pass in NPY_MAXDIMS for axis in order to achieve the same effect that is obtained by passing in axis = None
in Python (treating the array as a 1-d array).

PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.argmax (self, axis). Return the index of the largest element of self along axis.

PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.argmin (self, axis). Return the index of the smallest element of self along axis.

Note: The out argument specifies where to place the result. If out is NULL, then the output array is created,
otherwise the output is placed in out which must be the correct size and type. A new reference to the output array

1190 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

is always returned even when out is not NULL. The caller of the routine has the responsibility to DECREF out if not
NULL or a memory-leak will occur.

PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.max (self, axis). Return the largest element of self along the given axis.

PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.min (self, axis). Return the smallest element of self along the given axis.

PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.ptp (self, axis). Return the difference between the largest element of self along axis
and the smallest element of self along axis.

Note: The rtype argument specifies the data-type the reduction should take place over. This is important if the data-
type of the array is not “large” enough to handle the output. By default, all integer data-types are made at least as large
as NPY_LONG for the “add” and “multiply” ufuncs (which form the basis for mean, sum, cumsum, prod, and cumprod
functions).

PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.mean (self, axis, rtype). Returns the mean of the elements along the given axis, using
the enumerated type rtype as the data type to sum in. Default sum behavior is obtained using NPY_NOTYPE
for rtype.

PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayOb-
ject* out)

Equivalent to ndarray.trace (self, offset, axis1, axis2, rtype). Return the sum (using rtype as the data
type of summation) over the offset diagonal elements of the 2-d arrays defined by axis1 and axis2 variables. A
positive offset chooses diagonals above the main diagonal. A negative offset selects diagonals below the main
diagonal.

PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max)
Equivalent to ndarray.clip (self, min, max). Clip an array, self, so that values larger than max are fixed to
max and values less than min are fixed to min.

PyObject* PyArray_Conjugate(PyArrayObject* self)
Equivalent to ndarray.conjugate (self). Return the complex conjugate of self. If self is not of complex
data type, then return self with an reference.

PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out)
Equivalent to ndarray.round (self, decimals, out). Returns the array with elements rounded to the nearest
decimal place. The decimal place is defined as the 10−decimals digit so that negative decimals cause rounding to
the nearest 10’s, 100’s, etc. If out is NULL, then the output array is created, otherwise the output is placed in out
which must be the correct size and type.

PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.std (self, axis, rtype). Return the standard deviation using data along axis converted
to data type rtype.

PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.sum (self, axis, rtype). Return 1-d vector sums of elements in self along axis. Perform
the sum after converting data to data type rtype.

PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.cumsum (self, axis, rtype). Return cumulative 1-d sums of elements in self along
axis. Perform the sum after converting data to data type rtype.

5.4. Array API 1191

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.prod (self, axis, rtype). Return 1-d products of elements in self along axis. Perform
the product after converting data to data type rtype.

PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
Equivalent to ndarray.cumprod (self, axis, rtype). Return 1-d cumulative products of elements in self
along axis. Perform the product after converting data to data type rtype.

PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.all (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which all the elements are True.

PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out)
Equivalent to ndarray.any (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which any of the elements are True.

5.4.6 Functions

Array Functions

int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize)
Sometimes it is useful to access a multidimensional array as a C-style multi-dimensional array so that algorithms
can be implemented using C’s a[i][j][k] syntax. This routine returns a pointer, ptr, that simulates this kind of
C-style array, for 1-, 2-, and 3-d ndarrays.

Parameters

• op – The address to any Python object. This Python object will be replaced with an equiv-
alent well-behaved, C-style contiguous, ndarray of the given data type specified by the last
two arguments. Be sure that stealing a reference in this way to the input object is justified.

• ptr – The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d) variable where
ctype is the equivalent C-type for the data type. On return, ptr will be addressable as a 1-d,
2-d, or 3-d array.

• dims – An output array that contains the shape of the array object. This array gives bound-
aries on any looping that will take place.

• nd – The dimensionality of the array (1, 2, or 3).

• typenum – The expected data type of the array.

• itemsize – This argument is only needed when typenum represents a flexible array. Oth-
erwise it should be 0.

Note: The simulation of a C-style array is not complete for 2-d and 3-d arrays. For example, the simulated arrays of
pointers cannot be passed to subroutines expecting specific, statically-defined 2-d and 3-d arrays. To pass to functions
requiring those kind of inputs, you must statically define the required array and copy data.

int PyArray_Free(PyObject* op, void* ptr)
Must be called with the same objects and memory locations returned from PyArray_AsCArray (...). This
function cleans up memory that otherwise would get leaked.

PyObject* PyArray_Concatenate(PyObject* obj, int axis)
Join the sequence of objects in obj together along axis into a single array. If the dimensions or types are not
compatible an error is raised.

1192 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2)
Compute a product-sum over the last dimensions of obj1 and obj2. Neither array is conjugated.

PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj)
Compute a product-sum over the last dimension of obj1 and the second-to-last dimension of obj2. For 2-d
arrays this is a matrix-product. Neither array is conjugated.

PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyObject* out)
New in version 1.6.

Same as PyArray_MatrixProduct, but store the result in out. The output array must have the correct shape, type,
and be C-contiguous, or an exception is raised.

PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in,
PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting,
PyArrayObject* out)

New in version 1.6.

Applies the Einstein summation convention to the array operands provided, returning a new array or placing the
result in out. The string in subscripts is a comma separated list of index letters. The number of operands is in
nop, and op_in is an array containing those operands. The data type of the output can be forced with dtype,
the output order can be forced with order (NPY_KEEPORDER is recommended), and when dtype is specified,
casting indicates how permissive the data conversion should be.

See the einsum function for more details.

PyObject* PyArray_CopyAndTranspose(PyObject * op)
A specialized copy and transpose function that works only for 2-d arrays. The returned array is a transposed
copy of op.

PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode)
Compute the 1-d correlation of the 1-d arrays op1 and op2 . The correlation is computed at each output point
by multiplying op1 by a shifted version of op2 and summing the result. As a result of the shift, needed values
outside of the defined range of op1 and op2 are interpreted as zero. The mode determines how many shifts to
return: 0 - return only shifts that did not need to assume zero- values; 1 - return an object that is the same size
as op1, 2 - return all possible shifts (any overlap at all is accepted).

Notes

This does not compute the usual correlation: if op2 is larger than op1, the arguments are swapped, and the
conjugate is never taken for complex arrays. See PyArray_Correlate2 for the usual signal processing correlation.

PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode)
Updated version of PyArray_Correlate, which uses the usual definition of correlation for 1d arrays. The corre-
lation is computed at each output point by multiplying op1 by a shifted version of op2 and summing the result.
As a result of the shift, needed values outside of the defined range of op1 and op2 are interpreted as zero. The
mode determines how many shifts to return: 0 - return only shifts that did not need to assume zero- values; 1 -
return an object that is the same size as op1, 2 - return all possible shifts (any overlap at all is accepted).

Notes

Compute z as follows:

z[k] = sum_n op1[n] * conj(op2[n+k])

PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y)
If both x and y are NULL, then return PyArray_Nonzero (condition). Otherwise, both x and y must be given
and the object returned is shaped like condition and has elements of x and y where condition is respectively
True or False.

5.4. Array API 1193

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

Other functions

Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* new-
strides)

Determine if newstrides is a strides array consistent with the memory of an nd -dimensional array with shape
dims and element-size, elsize. The newstrides array is checked to see if jumping by the provided number of
bytes in each direction will ever mean jumping more than numbytes which is the assumed size of the available
memory segment. If numbytes is 0, then an equivalent numbytes is computed assuming nd, dims, and elsize
refer to a single-segment array. Return NPY_TRUE if newstrides is acceptable, otherwise return NPY_FALSE.

npy_intp PyArray_MultiplyList(npy_intp* seq, int n)

int PyArray_MultiplyIntList(int* seq, int n)
Both of these routines multiply an n -length array, seq, of integers and return the result. No overflow checking
is performed.

int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n)
Given two n -length arrays of integers, l1, and l2, return 1 if the lists are identical; otherwise, return 0.

5.4.7 Auxiliary Data With Object Semantics

New in version 1.7.0.

NpyAuxData

When working with more complex dtypes which are composed of other dtypes, such as the struct dtype, creating inner
loops that manipulate the dtypes requires carrying along additional data. NumPy supports this idea through a struct
NpyAuxData, mandating a few conventions so that it is possible to do this.

Defining an NpyAuxData is similar to defining a class in C++, but the object semantics have to be tracked manually
since the API is in C. Here’s an example for a function which doubles up an element using an element copier function
as a primitive.:

typedef struct {
NpyAuxData base;
ElementCopier_Func *func;
NpyAuxData *funcdata;

} eldoubler_aux_data;

void free_element_doubler_aux_data(NpyAuxData *data)
{

eldoubler_aux_data *d = (eldoubler_aux_data *)data;
/* Free the memory owned by this auxadata */
NPY_AUXDATA_FREE(d->funcdata);
PyArray_free(d);

}

NpyAuxData *clone_element_doubler_aux_data(NpyAuxData *data)
{

eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

return NULL;
}

/* Raw copy of all data */
memcpy(ret, data, sizeof(eldoubler_aux_data));

1194 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

/* Fix up the owned auxdata so we have our own copy */
ret->funcdata = NPY_AUXDATA_CLONE(ret->funcdata);
if (ret->funcdata == NULL) {

PyArray_free(ret);
return NULL;

}

return (NpyAuxData *)ret;
}

NpyAuxData *create_element_doubler_aux_data(
ElementCopier_Func *func,
NpyAuxData *funcdata)

{
eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

PyErr_NoMemory();
return NULL;

}
memset(&ret, 0, sizeof(eldoubler_aux_data));
ret->base->free = &free_element_doubler_aux_data;
ret->base->clone = &clone_element_doubler_aux_data;
ret->func = func;
ret->funcdata = funcdata;

return (NpyAuxData *)ret;
}

NpyAuxData_FreeFunc
The function pointer type for NpyAuxData free functions.

NpyAuxData_CloneFunc
The function pointer type for NpyAuxData clone functions. These functions should never set the Python excep-
tion on error, because they may be called from a multi-threaded context.

NPY_AUXDATA_FREE(auxdata)
A macro which calls the auxdata’s free function appropriately, does nothing if auxdata is NULL.

NPY_AUXDATA_CLONE(auxdata)
A macro which calls the auxdata’s clone function appropriately, returning a deep copy of the auxiliary data.

5.4.8 Array Iterators

As of Numpy 1.6, these array iterators are superceded by the new array iterator, NpyIter.

An array iterator is a simple way to access the elements of an N-dimensional array quickly and efficiently. Section 2
provides more description and examples of this useful approach to looping over an array.

PyObject* PyArray_IterNew(PyObject* arr)
Return an array iterator object from the array, arr. This is equivalent to arr. flat. The array iterator object
makes it easy to loop over an N-dimensional non-contiguous array in C-style contiguous fashion.

PyObject* PyArray_IterAllButAxis(PyObject* arr, int *axis)
Return an array iterator that will iterate over all axes but the one provided in *axis. The returned iterator cannot
be used with PyArray_ITER_GOTO1D. This iterator could be used to write something similar to what ufuncs
do wherein the loop over the largest axis is done by a separate sub-routine. If *axis is negative then *axis will
be set to the axis having the smallest stride and that axis will be used.

5.4. Array API 1195

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd)
Return an array iterator that is broadcast to iterate as an array of the shape provided by dimensions and nd.

int PyArrayIter_Check(PyObject* op)
Evaluates true if op is an array iterator (or instance of a subclass of the array iterator type).

void PyArray_ITER_RESET(PyObject* iterator)
Reset an iterator to the beginning of the array.

void PyArray_ITER_NEXT(PyObject* iterator)
Incremement the index and the dataptr members of the iterator to point to the next element of the array. If the
array is not (C-style) contiguous, also increment the N-dimensional coordinates array.

void *PyArray_ITER_DATA(PyObject* iterator)
A pointer to the current element of the array.

void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination)
Set the iterator index, dataptr, and coordinates members to the location in the array indicated by the
N-dimensional c-array, destination, which must have size at least iterator ->nd_m1+1.

PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index)
Set the iterator index and dataptr to the location in the array indicated by the integer index which points to an
element in the C-styled flattened array.

int PyArray_ITER_NOTDONE(PyObject* iterator)
Evaluates TRUE as long as the iterator has not looped through all of the elements, otherwise it evaluates FALSE.

5.4.9 Broadcasting (multi-iterators)

PyObject* PyArray_MultiIterNew(int num, ...)
A simplified interface to broadcasting. This function takes the number of arrays to broadcast and then num
extra (PyObject *) arguments. These arguments are converted to arrays and iterators are created.
PyArray_Broadcast is then called on the resulting multi-iterator object. The resulting, broadcasted
mult-iterator object is then returned. A broadcasted operation can then be performed using a single loop and
using PyArray_MultiIter_NEXT (..)

void PyArray_MultiIter_RESET(PyObject* multi)
Reset all the iterators to the beginning in a multi-iterator object, multi.

void PyArray_MultiIter_NEXT(PyObject* multi)
Advance each iterator in a multi-iterator object, multi, to its next (broadcasted) element.

void *PyArray_MultiIter_DATA(PyObject* multi, int i)
Return the data-pointer of the i th iterator in a multi-iterator object.

void PyArray_MultiIter_NEXTi(PyObject* multi, int i)
Advance the pointer of only the i th iterator.

void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination)
Advance each iterator in a multi-iterator object, multi, to the given 𝑁 -dimensional destination where 𝑁 is the
number of dimensions in the broadcasted array.

void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index)
Advance each iterator in a multi-iterator object, multi, to the corresponding location of the index into the flat-
tened broadcasted array.

int PyArray_MultiIter_NOTDONE(PyObject* multi)
Evaluates TRUE as long as the multi-iterator has not looped through all of the elements (of the broadcasted
result), otherwise it evaluates FALSE.

1196 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

int PyArray_Broadcast(PyArrayMultiIterObject* mit)
This function encapsulates the broadcasting rules. The mit container should already contain iterators for all
the arrays that need to be broadcast. On return, these iterators will be adjusted so that iteration over each
simultaneously will accomplish the broadcasting. A negative number is returned if an error occurs.

int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit)
This function takes a multi-iterator object that has been previously “broadcasted,” finds the dimension with
the smallest “sum of strides” in the broadcasted result and adapts all the iterators so as not to iterate over
that dimension (by effectively making them of length-1 in that dimension). The corresponding dimension is
returned unless mit ->nd is 0, then -1 is returned. This function is useful for constructing ufunc-like routines
that broadcast their inputs correctly and then call a strided 1-d version of the routine as the inner-loop. This 1-d
version is usually optimized for speed and for this reason the loop should be performed over the axis that won’t
require large stride jumps.

5.4.10 Neighborhood iterator

New in version 1.4.0.

Neighborhood iterators are subclasses of the iterator object, and can be used to iter over a neighborhood of a point. For
example, you may want to iterate over every voxel of a 3d image, and for every such voxel, iterate over an hypercube.
Neighborhood iterator automatically handle boundaries, thus making this kind of code much easier to write than
manual boundaries handling, at the cost of a slight overhead.

PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode,
PyArrayObject* fill_value)

This function creates a new neighborhood iterator from an existing iterator. The neighborhood will be computed
relatively to the position currently pointed by iter, the bounds define the shape of the neighborhood iterator, and
the mode argument the boundaries handling mode.

The bounds argument is expected to be a (2 * iter->ao->nd) arrays, such as the range bound[2*i]->bounds[2*i+1]
defines the range where to walk for dimension i (both bounds are included in the walked coordinates). The
bounds should be ordered for each dimension (bounds[2*i] <= bounds[2*i+1]).

The mode should be one of:

•NPY_NEIGHBORHOOD_ITER_ZERO_PADDING: zero padding. Outside bounds values will be 0.

•NPY_NEIGHBORHOOD_ITER_ONE_PADDING: one padding, Outside bounds values will be 1.

•NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING: constant padding. Outside bounds values
will be the same as the first item in fill_value.

•NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING: mirror padding. Outside bounds values will be
as if the array items were mirrored. For example, for the array [1, 2, 3, 4], x[-2] will be 2, x[-2] will be 1,
x[4] will be 4, x[5] will be 1, etc...

•NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING: circular padding. Outside bounds values will
be as if the array was repeated. For example, for the array [1, 2, 3, 4], x[-2] will be 3, x[-2] will be 4, x[4]
will be 1, x[5] will be 2, etc...

If the mode is constant filling (NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING), fill_value should
point to an array object which holds the filling value (the first item will be the filling value if the array contains
more than one item). For other cases, fill_value may be NULL.

•The iterator holds a reference to iter

•Return NULL on failure (in which case the reference count of iter is not changed)

•iter itself can be a Neighborhood iterator: this can be useful for .e.g automatic boundaries handling

•the object returned by this function should be safe to use as a normal iterator

5.4. Array API 1197

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

•If the position of iter is changed, any subsequent call to PyArrayNeighborhoodIter_Next is undefined
behavior, and PyArrayNeighborhoodIter_Reset must be called.

PyArrayIterObject *iter;
PyArrayNeighborhoodIterObject *neigh_iter;
iter = PyArray_IterNew(x);

//For a 3x3 kernel
bounds = {-1, 1, -1, 1};
neigh_iter = (PyArrayNeighborhoodIterObject*)PyArrayNeighborhoodIter_New(

iter, bounds, NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, NULL);

for(i = 0; i < iter->size; ++i) {
for (j = 0; j < neigh_iter->size; ++j) {

// Walk around the item currently pointed by iter->dataptr
PyArrayNeighborhoodIter_Next(neigh_iter);

}

// Move to the next point of iter
PyArrayIter_Next(iter);
PyArrayNeighborhoodIter_Reset(neigh_iter);

}

int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
Reset the iterator position to the first point of the neighborhood. This should be called whenever the iter argu-
ment given at PyArray_NeighborhoodIterObject is changed (see example)

int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
After this call, iter->dataptr points to the next point of the neighborhood. Calling this function after every point
of the neighborhood has been visited is undefined.

5.4.11 Array Scalars

PyObject* PyArray_Return(PyArrayObject* arr)
This function steals a reference to arr.

This function checks to see if arr is a 0-dimensional array and, if so, returns the appropriate array scalar. It
should be used whenever 0-dimensional arrays could be returned to Python.

PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize)
Return an array scalar object of the given enumerated typenum and itemsize by copying from memory pointed
to by data . If swap is nonzero then this function will byteswap the data if appropriate to the data-type because
array scalars are always in correct machine-byte order.

PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr)
Return an array scalar object of the type and itemsize indicated by the array object arr copied from the memory
pointed to by data and swapping if the data in arr is not in machine byte-order.

PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode)
Return a 0-dimensional array of type determined by outcode from scalar which should be an array-scalar
object. If outcode is NULL, then the type is determined from scalar.

void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr)
Return in ctypeptr a pointer to the actual value in an array scalar. There is no error checking so scalar must be
an array-scalar object, and ctypeptr must have enough space to hold the correct type. For flexible-sized types, a
pointer to the data is copied into the memory of ctypeptr, for all other types, the actual data is copied into the
address pointed to by ctypeptr.

1198 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode)
Return the data (cast to the data type indicated by outcode) from the array-scalar, scalar, into the memory
pointed to by ctypeptr (which must be large enough to handle the incoming memory).

PyObject* PyArray_TypeObjectFromType(int type)
Returns a scalar type-object from a type-number, type . Equivalent to PyArray_DescrFromType (type)-
>typeobj except for reference counting and error-checking. Returns a new reference to the typeobject on
success or NULL on failure.

NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr)
See the function PyArray_MinScalarType for an alternative mechanism introduced in NumPy 1.6.0.

Return the kind of scalar represented by typenum and the array in *arr (if arr is not NULL). The array is assumed
to be rank-0 and only used if typenum represents a signed integer. If arr is not NULL and the first element is neg-
ative then NPY_INTNEG_SCALAR is returned, otherwise NPY_INTPOS_SCALAR is returned. The possible
return values are NPY_{kind}_SCALAR where {kind} can be INTPOS, INTNEG, FLOAT, COMPLEX,
BOOL, or OBJECT. NPY_NOSCALAR is also an enumerated value NPY_SCALARKIND variables can take
on.

int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar)
See the function PyArray_ResultType for details of NumPy type promotion, updated in NumPy 1.6.0.

Implements the rules for scalar coercion. Scalars are only silently coerced from thistype to needed-
type if this function returns nonzero. If scalar is NPY_NOSCALAR, then this function is equivalent to
PyArray_CanCastSafely . The rule is that scalars of the same KIND can be coerced into arrays of the
same KIND. This rule means that high-precision scalars will never cause low-precision arrays of the same
KIND to be upcast.

5.4.12 Data-type descriptors

Warning: Data-type objects must be reference counted so be aware of the action on the data-type reference
of different C-API calls. The standard rule is that when a data-type object is returned it is a new reference.
Functions that take PyArray_Descr * objects and return arrays steal references to the data-type their inputs
unless otherwise noted. Therefore, you must own a reference to any data-type object used as input to such a
function.

int PyArray_DescrCheck(PyObject* obj)
Evaluates as true if obj is a data-type object (PyArray_Descr *).

PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj)
Return a new data-type object copied from obj (the fields reference is just updated so that the new object points
to the same fields dictionary if any).

PyArray_Descr* PyArray_DescrNewFromType(int typenum)
Create a new data-type object from the built-in (or user-registered) data-type indicated by typenum. All builtin
types should not have any of their fields changed. This creates a new copy of the PyArray_Descr structure
so that you can fill it in as appropriate. This function is especially needed for flexible data-types which need to
have a new elsize member in order to be meaningful in array construction.

PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian)
Create a new data-type object with the byteorder set according to newendian. All referenced data-type objects
(in subdescr and fields members of the data-type object) are also changed (recursively). If a byteorder of
NPY_IGNORE is encountered it is left alone. If newendian is NPY_SWAP, then all byte-orders are swapped.
Other valid newendian values are NPY_NATIVE, NPY_LITTLE, and NPY_BIG which all cause the returned
data-typed descriptor (and all it’s referenced data-type descriptors) to have the corresponding byte- order.

5.4. Array API 1199

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype)
Determine an appropriate data-type object from the object op (which should be a “nested” sequence object) and
the minimum data-type descriptor mintype (which can be NULL). Similar in behavior to array(op).dtype. Don’t
confuse this function with PyArray_DescrConverter. This function essentially looks at all the objects in
the (nested) sequence and determines the data-type from the elements it finds.

PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar)
Return a data-type object from an array-scalar object. No checking is done to be sure that scalar is an array
scalar. If no suitable data-type can be determined, then a data-type of NPY_OBJECT is returned by default.

PyArray_Descr* PyArray_DescrFromType(int typenum)
Returns a data-type object corresponding to typenum. The typenum can be one of the enumerated types, a
character code for one of the enumerated types, or a user-defined type.

int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. A large number of Python objects
can be converted to data-type objects. See Data type objects (dtype) for a complete description. This version of
the converter converts None objects to a NPY_DEFAULT_TYPE data-type object. This function can be used
with the “O&” character code in PyArg_ParseTuple processing.

int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. This version of the converter converts
None objects so that the returned data-type is NULL. This function can also be used with the “O&” character in
PyArg_ParseTuple processing.

int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype)
Like PyArray_DescrConverter except it aligns C-struct-like objects on word-boundaries as the compiler
would.

int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype)
Like PyArray_DescrConverter2 except it aligns C-struct-like objects on word-boundaries as the com-
piler would.

PyObject *PyArray_FieldNames(PyObject* dict)
Take the fields dictionary, dict, such as the one attached to a data-type object and construct an ordered-list of
field names such as is stored in the names field of the PyArray_Descr object.

5.4.13 Conversion Utilities

For use with PyArg_ParseTuple

All of these functions can be used in PyArg_ParseTuple (...) with the “O&” format specifier to automatically
convert any Python object to the required C-object. All of these functions return NPY_SUCCEED if successful and
NPY_FAIL if not. The first argument to all of these function is a Python object. The second argument is the address
of the C-type to convert the Python object to.

Warning: Be sure to understand what steps you should take to manage the memory when using these conversion
functions. These functions can require freeing memory, and/or altering the reference counts of specific objects
based on your use.

int PyArray_Converter(PyObject* obj, PyObject** address)
Convert any Python object to a PyArrayObject. If PyArray_Check (obj) is TRUE then its reference
count is incremented and a reference placed in address. If obj is not an array, then convert it to an array using
PyArray_FromAny . No matter what is returned, you must DECREF the object returned by this routine in
address when you are done with it.

1200 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address)
This is a default converter for output arrays given to functions. If obj is Py_None or NULL, then *address will
be NULL but the call will succeed. If PyArray_Check (obj) is TRUE then it is returned in *address without
incrementing its reference count.

int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq)
Convert any Python sequence, obj, smaller than NPY_MAXDIMS to a C-array of npy_intp. The Python
object could also be a single number. The seq variable is a pointer to a structure with members ptr and len.
On successful return, seq ->ptr contains a pointer to memory that must be freed to avoid a memory leak.
The restriction on memory size allows this converter to be conveniently used for sequences intended to be
interpreted as array shapes.

int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf)
Convert any Python object, obj, with a (single-segment) buffer interface to a variable with members that detail
the object’s use of its chunk of memory. The buf variable is a pointer to a structure with base, ptr, len, and
flags members. The PyArray_Chunk structure is binary compatible with the Python’s buffer object (through
its len member on 32-bit platforms and its ptr member on 64-bit platforms or in Python 2.5). On return, the
base member is set to obj (or its base if obj is already a buffer object pointing to another object). If you
need to hold on to the memory be sure to INCREF the base member. The chunk of memory is pointed to
by buf ->ptr member and has length buf ->len. The flags member of buf is NPY_BEHAVED_RO with the
NPY_ARRAY_WRITEABLE flag set if obj has a writeable buffer interface.

int PyArray_AxisConverter(PyObject * obj, int* axis)
Convert a Python object, obj, representing an axis argument to the proper value for passing to the functions that
take an integer axis. Specifically, if obj is None, axis is set to NPY_MAXDIMS which is interpreted correctly by
the C-API functions that take axis arguments.

int PyArray_BoolConverter(PyObject* obj, Bool* value)
Convert any Python object, obj, to NPY_TRUE or NPY_FALSE, and place the result in value.

int PyArray_ByteorderConverter(PyObject* obj, char* endian)
Convert Python strings into the corresponding byte-order character: ‘>’, ‘<’, ‘s’, ‘=’, or ‘|’.

int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort)
Convert Python strings into one of NPY_QUICKSORT (starts with ‘q’ or ‘Q’) , NPY_HEAPSORT (starts with
‘h’ or ‘H’), or NPY_MERGESORT (starts with ‘m’ or ‘M’).

int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side)
Convert Python strings into one of NPY_SEARCHLEFT (starts with ‘l’ or ‘L’), or NPY_SEARCHRIGHT (starts
with ‘r’ or ‘R’).

int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
Convert the Python strings ‘C’, ‘F’, ‘A’, and ‘K’ into the NPY_ORDER enumeration NPY_CORDER,
NPY_FORTRANORDER, NPY_ANYORDER, and NPY_KEEPORDER.

int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting)
Convert the Python strings ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, and ‘unsafe’ into the NPY_CASTING enumera-
tion NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING,
and NPY_UNSAFE_CASTING.

int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val)
Convert the Python strings ‘clip’, ‘wrap’, and ‘raise’ into the NPY_CLIPMODE enumeration NPY_CLIP,
NPY_WRAP, and NPY_RAISE.

int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n)
Converts either a sequence of clipmodes or a single clipmode into a C array of NPY_CLIPMODE values. The
number of clipmodes n must be known before calling this function. This function is provided to help functions
allow a different clipmode for each dimension.

5.4. Array API 1201

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/none.html#c.Py_None
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

Other conversions

int PyArray_PyIntAsInt(PyObject* op)
Convert all kinds of Python objects (including arrays and array scalars) to a standard integer. On error, -1 is
returned and an exception set. You may find useful the macro:

#define error_converting(x) (((x) == -1) && PyErr_Occurred()

npy_intp PyArray_PyIntAsIntp(PyObject* op)
Convert all kinds of Python objects (including arrays and array scalars) to a (platform-pointer-sized) integer.
On error, -1 is returned and an exception set.

int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals)
Convert any Python sequence (or single Python number) passed in as seq to (up to) maxvals pointer-sized
integers and place them in the vals array. The sequence can be smaller then maxvals as the number of converted
objects is returned.

int PyArray_TypestrConvert(int itemsize, int gentype)
Convert typestring characters (with itemsize) to basic enumerated data types. The typestring character cor-
responding to signed and unsigned integers, floating point numbers, and complex-floating point numbers are
recognized and converted. Other values of gentype are returned. This function can be used to convert, for
example, the string ‘f4’ to NPY_FLOAT32.

5.4.14 Miscellaneous

Importing the API

In order to make use of the C-API from another extension module, the import_array () command must be used.
If the extension module is self-contained in a single .c file, then that is all that needs to be done. If, however, the
extension module involves multiple files where the C-API is needed then some additional steps must be taken.

void import_array(void)
This function must be called in the initialization section of a module that will make use of the C-API. It imports
the module where the function-pointer table is stored and points the correct variable to it.

PY_ARRAY_UNIQUE_SYMBOL

NO_IMPORT_ARRAY
Using these #defines you can use the C-API in multiple files for a single extension module. In each file you
must define PY_ARRAY_UNIQUE_SYMBOL to some name that will hold the C-API (e.g. myexten-
sion_ARRAY_API). This must be done before including the numpy/arrayobject.h file. In the module
initialization routine you call import_array (). In addition, in the files that do not have the module
initialization sub_routine define NO_IMPORT_ARRAY prior to including numpy/arrayobject.h.

Suppose I have two files coolmodule.c and coolhelper.c which need to be compiled and linked into a single
extension module. Suppose coolmodule.c contains the required initcool module initialization function (with the
import_array() function called). Then, coolmodule.c would have at the top:

#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

On the other hand, coolhelper.c would contain at the top:

#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include numpy/arrayobject.h

1202 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

You can also put the common two last lines into an extension-local header file as long as you make sure that
NO_IMPORT_ARRAY is #defined before #including that file.

Checking the API Version

Because python extensions are not used in the same way as usual libraries on most platforms, some errors cannot
be automatically detected at build time or even runtime. For example, if you build an extension using a function
available only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you will not get an import error
(but almost certainly a segmentation fault when calling the function). That’s why several functions are provided to
check for numpy versions. The macros NPY_VERSION and NPY_FEATURE_VERSION corresponds to the numpy
version used to build the extension, whereas the versions returned by the functions PyArray_GetNDArrayCVersion
and PyArray_GetNDArrayCFeatureVersion corresponds to the runtime numpy’s version.

The rules for ABI and API compatibilities can be summarized as follows:

• Whenever NPY_VERSION != PyArray_GetNDArrayCVersion, the extension has to be recompiled (ABI incom-
patibility).

• NPY_VERSION == PyArray_GetNDArrayCVersion and NPY_FEATURE_VERSION <=
PyArray_GetNDArrayCFeatureVersion means backward compatible changes.

ABI incompatibility is automatically detected in every numpy’s version. API incompatibility detection was added in
numpy 1.4.0. If you want to supported many different numpy versions with one extension binary, you have to build
your extension with the lowest NPY_FEATURE_VERSION as possible.

unsigned int PyArray_GetNDArrayCVersion(void)
This just returns the value NPY_VERSION . NPY_VERSION changes whenever a backward incompatible
change at the ABI level. Because it is in the C-API, however, comparing the output of this function from the
value defined in the current header gives a way to test if the C-API has changed thus requiring a re-compilation
of extension modules that use the C-API. This is automatically checked in the function import_array.

unsigned int PyArray_GetNDArrayCFeatureVersion(void)
New in version 1.4.0.

This just returns the value NPY_FEATURE_VERSION. NPY_FEATURE_VERSION changes whenever the API
changes (e.g. a function is added). A changed value does not always require a recompile.

Internal Flexibility

int PyArray_SetNumericOps(PyObject* dict)
NumPy stores an internal table of Python callable objects that are used to implement arithmetic operations for
arrays as well as certain array calculation methods. This function allows the user to replace any or all of these
Python objects with their own versions. The keys of the dictionary, dict, are the named functions to replace and
the paired value is the Python callable object to use. Care should be taken that the function used to replace an
internal array operation does not itself call back to that internal array operation (unless you have designed the
function to handle that), or an unchecked infinite recursion can result (possibly causing program crash). The
key names that represent operations that can be replaced are:

add, subtract, multiply, divide, remainder, power, square, reciprocal, ones_like, sqrt, negative,
absolute, invert, left_shift, right_shift, bitwise_and, bitwise_xor, bitwise_or, less, less_equal,
equal, not_equal, greater, greater_equal, floor_divide, true_divide, logical_or, logical_and,
floor, ceil, maximum, minimum, rint.

These functions are included here because they are used at least once in the array object’s methods. The function
returns -1 (without setting a Python Error) if one of the objects being assigned is not callable.

5.4. Array API 1203

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

PyObject* PyArray_GetNumericOps(void)
Return a Python dictionary containing the callable Python objects stored in the the internal arithmetic operation
table. The keys of this dictionary are given in the explanation for PyArray_SetNumericOps.

void PyArray_SetStringFunction(PyObject* op, int repr)
This function allows you to alter the tp_str and tp_repr methods of the array object to any Python function. Thus
you can alter what happens for all arrays when str(arr) or repr(arr) is called from Python. The function to be
called is passed in as op. If repr is non-zero, then this function will be called in response to repr(arr), otherwise
the function will be called in response to str(arr). No check on whether or not op is callable is performed. The
callable passed in to op should expect an array argument and should return a string to be printed.

Memory management

char* PyDataMem_NEW(size_t nbytes)

PyDataMem_FREE(char* ptr)

char* PyDataMem_RENEW(void * ptr, size_t newbytes)
Macros to allocate, free, and reallocate memory. These macros are used internally to create arrays.

npy_intp* PyDimMem_NEW(nd)

PyDimMem_FREE(npy_intp* ptr)

npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd)
Macros to allocate, free, and reallocate dimension and strides memory.

PyArray_malloc(nbytes)

PyArray_free(ptr)

PyArray_realloc(ptr, nbytes)
These macros use different memory allocators, depending on the constant NPY_USE_PYMEM. The system
malloc is used when NPY_USE_PYMEM is 0, if NPY_USE_PYMEM is 1, then the Python memory allocator is
used.

Threading support

These macros are only meaningful if NPY_ALLOW_THREADS evaluates True during compilation of the extension
module. Otherwise, these macros are equivalent to whitespace. Python uses a single Global Interpreter Lock (GIL)
for each Python process so that only a single thread may execute at a time (even on multi-cpu machines). When
calling out to a compiled function that may take time to compute (and does not have side-effects for other threads like
updated global variables), the GIL should be released so that other Python threads can run while the time-consuming
calculations are performed. This can be accomplished using two groups of macros. Typically, if one macro in a group
is used in a code block, all of them must be used in the same code block. Currently, NPY_ALLOW_THREADS is
defined to the python-defined WITH_THREADS constant unless the environment variable NPY_NOSMP is set in which
case NPY_ALLOW_THREADS is defined to be 0.

Group 1

This group is used to call code that may take some time but does not use any Python C-API calls. Thus,
the GIL should be released during its calculation.

1204 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

NPY_BEGIN_ALLOW_THREADS
Equivalent to Py_BEGIN_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine
if the macro if replaced with white-space or not.

NPY_END_ALLOW_THREADS
Equivalent to Py_END_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine if
the macro if replaced with white-space or not.

NPY_BEGIN_THREADS_DEF
Place in the variable declaration area. This macro sets up the variable needed for storing the Python
state.

NPY_BEGIN_THREADS
Place right before code that does not need the Python interpreter (no Python C-API calls). This
macro saves the Python state and releases the GIL.

NPY_END_THREADS
Place right after code that does not need the Python interpreter. This macro acquires the GIL and
restores the Python state from the saved variable.

NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
Useful to release the GIL only if dtype does not contain arbitrary Python objects which may need
the Python interpreter during execution of the loop. Equivalent to

NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
Useful to regain the GIL in situations where it was released using the BEGIN form of this macro.

NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
Useful to release the GIL only if loop_size exceeds a minimum threshold, currently set to 500.
Should be matched with a .. c:macro::NPY_END_THREADS to regain the GIL.

Group 2

This group is used to re-acquire the Python GIL after it has been released. For example, suppose the
GIL has been released (using the previous calls), and then some path in the code (perhaps in a different
subroutine) requires use of the Python C-API, then these macros are useful to acquire the GIL. These
macros accomplish essentially a reverse of the previous three (acquire the LOCK saving what state it had)
and then re-release it with the saved state.

NPY_ALLOW_C_API_DEF
Place in the variable declaration area to set up the necessary variable.

NPY_ALLOW_C_API
Place before code that needs to call the Python C-API (when it is known that the GIL has already
been released).

NPY_DISABLE_C_API
Place after code that needs to call the Python C-API (to re-release the GIL).

Tip: Never use semicolons after the threading support macros.

Priority

NPY_PRIORITY
Default priority for arrays.

NPY_SUBTYPE_PRIORITY
Default subtype priority.

5.4. Array API 1205

http://docs.python.org/dev/c-api/init.html#c.Py_BEGIN_ALLOW_THREADS
http://docs.python.org/dev/c-api/init.html#c.Py_END_ALLOW_THREADS

NumPy Reference, Release 1.11.1

NPY_SCALAR_PRIORITY
Default scalar priority (very small)

double PyArray_GetPriority(PyObject* obj, double def)
Return the __array_priority__ attribute (converted to a double) of obj or def if no attribute of that name
exists. Fast returns that avoid the attribute lookup are provided for objects of type PyArray_Type.

Default buffers

NPY_BUFSIZE
Default size of the user-settable internal buffers.

NPY_MIN_BUFSIZE
Smallest size of user-settable internal buffers.

NPY_MAX_BUFSIZE
Largest size allowed for the user-settable buffers.

Other constants

NPY_NUM_FLOATTYPE
The number of floating-point types

NPY_MAXDIMS
The maximum number of dimensions allowed in arrays.

NPY_VERSION
The current version of the ndarray object (check to see if this variable is defined to guarantee the
numpy/arrayobject.h header is being used).

NPY_FALSE
Defined as 0 for use with Bool.

NPY_TRUE
Defined as 1 for use with Bool.

NPY_FAIL
The return value of failed converter functions which are called using the “O&” syntax in
PyArg_ParseTuple-like functions.

NPY_SUCCEED
The return value of successful converter functions which are called using the “O&” syntax in
PyArg_ParseTuple-like functions.

Miscellaneous Macros

PyArray_SAMESHAPE(a1, a2)
Evaluates as True if arrays a1 and a2 have the same shape.

PyArray_MAX(a, b)
Returns the maximum of a and b. If (a) or (b) are expressions they are evaluated twice.

PyArray_MIN(a, b)
Returns the minimum of a and b. If (a) or (b) are expressions they are evaluated twice.

PyArray_CLT(a, b)

1206 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple
http://docs.python.org/dev/c-api/arg.html#c.PyArg_ParseTuple

NumPy Reference, Release 1.11.1

PyArray_CGT(a, b)

PyArray_CLE(a, b)

PyArray_CGE(a, b)

PyArray_CEQ(a, b)

PyArray_CNE(a, b)
Implements the complex comparisons between two complex numbers (structures with a real and imag member)
using NumPy’s definition of the ordering which is lexicographic: comparing the real parts first and then the
complex parts if the real parts are equal.

PyArray_REFCOUNT(PyObject* op)
Returns the reference count of any Python object.

PyArray_XDECREF_ERR(PyObject *obj)
DECREF’s an array object which may have the NPY_ARRAY_UPDATEIFCOPY flag set without causing the
contents to be copied back into the original array. Resets the NPY_ARRAY_WRITEABLE flag on the base
object. This is useful for recovering from an error condition when NPY_ARRAY_UPDATEIFCOPY is used.

Enumerated Types

NPY_SORTKIND
A special variable-type which can take on the values NPY_{KIND} where {KIND} is

QUICKSORT, HEAPSORT, MERGESORT

NPY_NSORTS
Defined to be the number of sorts.

NPY_SCALARKIND
A special variable type indicating the number of “kinds” of scalars distinguished in determining scalar-coercion
rules. This variable can take on the values NPY_{KIND} where {KIND} can be

NOSCALAR, BOOL_SCALAR, INTPOS_SCALAR, INTNEG_SCALAR, FLOAT_SCALAR,
COMPLEX_SCALAR, OBJECT_SCALAR

NPY_NSCALARKINDS
Defined to be the number of scalar kinds (not including NPY_NOSCALAR).

NPY_ORDER
An enumeration type indicating the element order that an array should be interpreted in. When a brand new
array is created, generally only NPY_CORDER and NPY_FORTRANORDER are used, whereas when one
or more inputs are provided, the order can be based on them.

NPY_ANYORDER
Fortran order if all the inputs are Fortran, C otherwise.

NPY_CORDER
C order.

NPY_FORTRANORDER
Fortran order.

NPY_KEEPORDER
An order as close to the order of the inputs as possible, even if the input is in neither C nor Fortran order.

5.4. Array API 1207

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

NPY_CLIPMODE
A variable type indicating the kind of clipping that should be applied in certain functions.

NPY_RAISE
The default for most operations, raises an exception if an index is out of bounds.

NPY_CLIP
Clips an index to the valid range if it is out of bounds.

NPY_WRAP
Wraps an index to the valid range if it is out of bounds.

NPY_CASTING
New in version 1.6.

An enumeration type indicating how permissive data conversions should be. This is used by the iterator added
in NumPy 1.6, and is intended to be used more broadly in a future version.

NPY_NO_CASTING
Only allow identical types.

NPY_EQUIV_CASTING
Allow identical and casts involving byte swapping.

NPY_SAFE_CASTING
Only allow casts which will not cause values to be rounded, truncated, or otherwise changed.

NPY_SAME_KIND_CASTING
Allow any safe casts, and casts between types of the same kind. For example, float64 -> float32 is permitted
with this rule.

NPY_UNSAFE_CASTING
Allow any cast, no matter what kind of data loss may occur.

5.5 Array Iterator API

New in version 1.6.

5.5.1 Array Iterator

The array iterator encapsulates many of the key features in ufuncs, allowing user code to support features like output
parameters, preservation of memory layouts, and buffering of data with the wrong alignment or type, without requiring
difficult coding.

This page documents the API for the iterator. The iterator is named NpyIter and functions are named NpyIter_*.

There is an introductory guide to array iteration which may be of interest for those using this C API. In many instances,
testing out ideas by creating the iterator in Python is a good idea before writing the C iteration code.

5.5.2 Simple Iteration Example

The best way to become familiar with the iterator is to look at its usage within the NumPy codebase itself. For example,
here is a slightly tweaked version of the code for PyArray_CountNonzero, which counts the number of non-zero
elements in an array.

1208 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

npy_intp PyArray_CountNonzero(PyArrayObject* self)
{

/* Nonzero boolean function */
PyArray_NonzeroFunc* nonzero = PyArray_DESCR(self)->f->nonzero;

NpyIter* iter;
NpyIter_IterNextFunc *iternext;
char** dataptr;
npy_intp nonzero_count;
npy_intp* strideptr,* innersizeptr;

/* Handle zero-sized arrays specially */
if (PyArray_SIZE(self) == 0) {

return 0;
}

/*
* Create and use an iterator to count the nonzeros.

* flag NPY_ITER_READONLY

* - The array is never written to.

* flag NPY_ITER_EXTERNAL_LOOP

* - Inner loop is done outside the iterator for efficiency.

* flag NPY_ITER_NPY_ITER_REFS_OK

* - Reference types are acceptable.

* order NPY_KEEPORDER

* - Visit elements in memory order, regardless of strides.

* This is good for performance when the specific order

* elements are visited is unimportant.

* casting NPY_NO_CASTING

* - No casting is required for this operation.

*/
iter = NpyIter_New(self, NPY_ITER_READONLY|

NPY_ITER_EXTERNAL_LOOP|
NPY_ITER_REFS_OK,

NPY_KEEPORDER, NPY_NO_CASTING,
NULL);

if (iter == NULL) {
return -1;

}

/*
* The iternext function gets stored in a local variable

* so it can be called repeatedly in an efficient manner.

*/
iternext = NpyIter_GetIterNext(iter, NULL);
if (iternext == NULL) {

NpyIter_Deallocate(iter);
return -1;

}
/* The location of the data pointer which the iterator may update */
dataptr = NpyIter_GetDataPtrArray(iter);
/* The location of the stride which the iterator may update */
strideptr = NpyIter_GetInnerStrideArray(iter);
/* The location of the inner loop size which the iterator may update */
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);

nonzero_count = 0;
do {

5.5. Array Iterator API 1209

NumPy Reference, Release 1.11.1

/* Get the inner loop data/stride/count values */
char* data = *dataptr;
npy_intp stride = *strideptr;
npy_intp count = *innersizeptr;

/* This is a typical inner loop for NPY_ITER_EXTERNAL_LOOP */
while (count--) {

if (nonzero(data, self)) {
++nonzero_count;

}
data += stride;

}

/* Increment the iterator to the next inner loop */
} while(iternext(iter));

NpyIter_Deallocate(iter);

return nonzero_count;
}

5.5.3 Simple Multi-Iteration Example

Here is a simple copy function using the iterator. The order parameter is used to control the memory layout of the
allocated result, typically NPY_KEEPORDER is desired.

PyObject *CopyArray(PyObject *arr, NPY_ORDER order)
{

NpyIter *iter;
NpyIter_IterNextFunc *iternext;
PyObject *op[2], *ret;
npy_uint32 flags;
npy_uint32 op_flags[2];
npy_intp itemsize, *innersizeptr, innerstride;
char **dataptrarray;

/*
* No inner iteration - inner loop is handled by CopyArray code

*/
flags = NPY_ITER_EXTERNAL_LOOP;
/*
* Tell the constructor to automatically allocate the output.

* The data type of the output will match that of the input.

*/
op[0] = arr;
op[1] = NULL;
op_flags[0] = NPY_ITER_READONLY;
op_flags[1] = NPY_ITER_WRITEONLY | NPY_ITER_ALLOCATE;

/* Construct the iterator */
iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING,

op_flags, NULL);
if (iter == NULL) {

return NULL;
}

/*

1210 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

* Make a copy of the iternext function pointer and

* a few other variables the inner loop needs.

*/
iternext = NpyIter_GetIterNext(iter, NULL);
innerstride = NpyIter_GetInnerStrideArray(iter)[0];
itemsize = NpyIter_GetDescrArray(iter)[0]->elsize;
/*
* The inner loop size and data pointers may change during the

* loop, so just cache the addresses.

*/
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);
dataptrarray = NpyIter_GetDataPtrArray(iter);

/*
* Note that because the iterator allocated the output,

* it matches the iteration order and is packed tightly,

* so we don't need to check it like the input.

*/
if (innerstride == itemsize) {

do {
memcpy(dataptrarray[1], dataptrarray[0],

itemsize * (*innersizeptr));
} while (iternext(iter));

} else {
/* For efficiency, should specialize this based on item size... */
npy_intp i;
do {

npy_intp size = *innersizeptr;
char *src = dataptrarray[0], *dst = dataptrarray[1];
for(i = 0; i < size; i++, src += innerstride, dst += itemsize) {

memcpy(dst, src, itemsize);
}

} while (iternext(iter));
}

/* Get the result from the iterator object array */
ret = NpyIter_GetOperandArray(iter)[1];
Py_INCREF(ret);

if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
Py_DECREF(ret);
return NULL;

}

return ret;
}

5.5.4 Iterator Data Types

The iterator layout is an internal detail, and user code only sees an incomplete struct.

NpyIter
This is an opaque pointer type for the iterator. Access to its contents can only be done through the iterator API.

NpyIter_Type
This is the type which exposes the iterator to Python. Currently, no API is exposed which provides access to
the values of a Python-created iterator. If an iterator is created in Python, it must be used in Python and vice

5.5. Array Iterator API 1211

NumPy Reference, Release 1.11.1

versa. Such an API will likely be created in a future version.

NpyIter_IterNextFunc
This is a function pointer for the iteration loop, returned by NpyIter_GetIterNext.

NpyIter_GetMultiIndexFunc
This is a function pointer for getting the current iterator multi-index, returned by
NpyIter_GetGetMultiIndex.

5.5.5 Construction and Destruction

NpyIter* NpyIter_New(PyArrayObject* op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting,
PyArray_Descr* dtype)

Creates an iterator for the given numpy array object op.

Flags that may be passed in flags are any combination of the global and per-operand flags documented in
NpyIter_MultiNew , except for NPY_ITER_ALLOCATE.

Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is
the best option, and the other orders enforce the particular iteration pattern.

Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.

If dtype isn’t NULL, then it requires that data type. If copying is allowed, it will make a temporary copy if the
data is castable. If NPY_ITER_UPDATEIFCOPY is enabled, it will also copy the data back with another cast
upon iterator destruction.

Returns NULL if there is an error, otherwise returns the allocated iterator.

To make an iterator similar to the old iterator, this should work.

iter = NpyIter_New(op, NPY_ITER_READWRITE,
NPY_CORDER, NPY_NO_CASTING, NULL);

If you want to edit an array with aligned double code, but the order doesn’t matter, you would use this.

dtype = PyArray_DescrFromType(NPY_DOUBLE);
iter = NpyIter_New(op, NPY_ITER_READWRITE|

NPY_ITER_BUFFERED|
NPY_ITER_NBO|
NPY_ITER_ALIGNED,
NPY_KEEPORDER,
NPY_SAME_KIND_CASTING,
dtype);

Py_DECREF(dtype);

NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags,
NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags,
PyArray_Descr** op_dtypes)

Creates an iterator for broadcasting the nop array objects provided in op, using regular NumPy broadcasting
rules.

Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is
the best option, and the other orders enforce the particular iteration pattern. When using NPY_KEEPORDER,
if you also want to ensure that the iteration is not reversed along an axis, you should pass the flag
NPY_ITER_DONT_NEGATE_STRIDES.

1212 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.

If op_dtypes isn’t NULL, it specifies a data type or NULL for each op[i].

Returns NULL if there is an error, otherwise returns the allocated iterator.

Flags that may be passed in flags, applying to the whole iterator, are:

NPY_ITER_C_INDEX
Causes the iterator to track a raveled flat index matching C order. This option cannot be used
with NPY_ITER_F_INDEX.

NPY_ITER_F_INDEX
Causes the iterator to track a raveled flat index matching Fortran order. This option cannot be
used with NPY_ITER_C_INDEX.

NPY_ITER_MULTI_INDEX
Causes the iterator to track a multi-index. This prevents the iterator from coalescing axes to
produce bigger inner loops. If the loop is also not buffered and no index is being tracked
(NpyIter_RemoveAxis can be called), then the iterator size can be -1 to indicate that the iterator
is too large. This can happen due to complex broadcasting and will result in errors being created
when the setting the iterator range, removing the multi index, or getting the next function.
However, it is possible to remove axes again and use the iterator normally if the size is small
enough after removal.

NPY_ITER_EXTERNAL_LOOP
Causes the iterator to skip iteration of the innermost loop, requiring the user of the iterator to
handle it.

This flag is incompatible with NPY_ITER_C_INDEX , NPY_ITER_F_INDEX , and
NPY_ITER_MULTI_INDEX .

NPY_ITER_DONT_NEGATE_STRIDES
This only affects the iterator when NPY_KEEPORDER is specified for the order parameter. By
default with NPY_KEEPORDER, the iterator reverses axes which have negative strides, so that
memory is traversed in a forward direction. This disables this step. Use this flag if you want to
use the underlying memory-ordering of the axes, but don’t want an axis reversed. This is the
behavior of numpy.ravel(a, order=’K’), for instance.

NPY_ITER_COMMON_DTYPE
Causes the iterator to convert all the operands to a common data type, calculated based on the
ufunc type promotion rules. Copying or buffering must be enabled.

If the common data type is known ahead of time, don’t use this flag. Instead, set the requested
dtype for all the operands.

NPY_ITER_REFS_OK
Indicates that arrays with reference types (object arrays or structured arrays containing an object
type) may be accepted and used in the iterator. If this flag is enabled, the caller must be sure to
check whether NpyIter_IterationNeedsAPI(iter) is true, in which case it may not
release the GIL during iteration.

NPY_ITER_ZEROSIZE_OK
Indicates that arrays with a size of zero should be permitted. Since the typical iteration loop
does not naturally work with zero-sized arrays, you must check that the IterSize is larger than
zero before entering the iteration loop. Currently only the operands are checked, not a forced
shape.

5.5. Array Iterator API 1213

NumPy Reference, Release 1.11.1

NPY_ITER_REDUCE_OK
Permits writeable operands with a dimension with zero stride and size greater than one. Note
that such operands must be read/write.

When buffering is enabled, this also switches to a special buffering mode which reduces the loop
length as necessary to not trample on values being reduced.

Note that if you want to do a reduction on an automatically allocated output, you must use
NpyIter_GetOperandArray to get its reference, then set every value to the reduction unit
before doing the iteration loop. In the case of a buffered reduction, this means you must also
specify the flag NPY_ITER_DELAY_BUFALLOC, then reset the iterator after initializing the
allocated operand to prepare the buffers.

NPY_ITER_RANGED
Enables support for iteration of sub-ranges of the full iterindex
range [0, NpyIter_IterSize(iter)). Use the function
NpyIter_ResetToIterIndexRange to specify a range for iteration.

This flag can only be used with NPY_ITER_EXTERNAL_LOOP when
NPY_ITER_BUFFERED is enabled. This is because without buffering, the inner loop is
always the size of the innermost iteration dimension, and allowing it to get cut up would require
special handling, effectively making it more like the buffered version.

NPY_ITER_BUFFERED
Causes the iterator to store buffering data, and use buffering to satisfy data type, alignment,
and byte-order requirements. To buffer an operand, do not specify the NPY_ITER_COPY
or NPY_ITER_UPDATEIFCOPY flags, because they will override buffering. Buffering is
especially useful for Python code using the iterator, allowing for larger chunks of data at once
to amortize the Python interpreter overhead.

If used with NPY_ITER_EXTERNAL_LOOP, the inner loop for the caller may get larger chunks
than would be possible without buffering, because of how the strides are laid out.

Note that if an operand is given the flag NPY_ITER_COPY or NPY_ITER_UPDATEIFCOPY ,
a copy will be made in preference to buffering. Buffering will still occur when the array was
broadcast so elements need to be duplicated to get a constant stride.

In normal buffering, the size of each inner loop is equal to the buffer size, or possibly larger if
NPY_ITER_GROWINNER is specified. If NPY_ITER_REDUCE_OK is enabled and a reduction
occurs, the inner loops may become smaller depending on the structure of the reduction.

NPY_ITER_GROWINNER
When buffering is enabled, this allows the size of the inner loop to grow when buffering isn’t
necessary. This option is best used if you’re doing a straight pass through all the data, rather
than anything with small cache-friendly arrays of temporary values for each inner loop.

NPY_ITER_DELAY_BUFALLOC
When buffering is enabled, this delays allocation of the buffers until NpyIter_Reset or
another reset function is called. This flag exists to avoid wasteful copying of buffer data when
making multiple copies of a buffered iterator for multi-threaded iteration.

Another use of this flag is for setting up reduction operations. After the iterator is created, and a
reduction output is allocated automatically by the iterator (be sure to use READWRITE access),
its value may be initialized to the reduction unit. Use NpyIter_GetOperandArray to get
the object. Then, call NpyIter_Reset to allocate and fill the buffers with their initial values.

Flags that may be passed in op_flags[i], where 0 <= i < nop:

NPY_ITER_READWRITE

1214 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

NPY_ITER_READONLY

NPY_ITER_WRITEONLY
Indicate how the user of the iterator will read or write to op[i]. Exactly one of these flags
must be specified per operand.

NPY_ITER_COPY
Allow a copy of op[i] to be made if it does not meet the data type or alignment requirements
as specified by the constructor flags and parameters.

NPY_ITER_UPDATEIFCOPY
Triggers NPY_ITER_COPY , and when an array operand is flagged for writing and is copied,
causes the data in a copy to be copied back to op[i] when the iterator is destroyed.

If the operand is flagged as write-only and a copy is needed, an uninitialized temporary array
will be created and then copied to back to op[i] on destruction, instead of doing the unecessary
copy operation.

NPY_ITER_NBO

NPY_ITER_ALIGNED

NPY_ITER_CONTIG
Causes the iterator to provide data for op[i] that is in native byte order, aligned according to
the dtype requirements, contiguous, or any combination.

By default, the iterator produces pointers into the arrays provided, which may be aligned or
unaligned, and with any byte order. If copying or buffering is not enabled and the operand data
doesn’t satisfy the constraints, an error will be raised.

The contiguous constraint applies only to the inner loop, successive inner loops may have arbi-
trary pointer changes.

If the requested data type is in non-native byte order, the NBO flag overrides it and the requested
data type is converted to be in native byte order.

NPY_ITER_ALLOCATE
This is for output arrays, and requires that the flag NPY_ITER_WRITEONLY or
NPY_ITER_READWRITE be set. If op[i] is NULL, creates a new array with the final
broadcast dimensions, and a layout matching the iteration order of the iterator.

When op[i] is NULL, the requested data type op_dtypes[i] may be NULL as well, in
which case it is automatically generated from the dtypes of the arrays which are flagged as
readable. The rules for generating the dtype are the same is for UFuncs. Of special note is
handling of byte order in the selected dtype. If there is exactly one input, the input’s dtype is
used as is. Otherwise, if more than one input dtypes are combined together, the output will be in
native byte order.

After being allocated with this flag, the caller may retrieve the new array by calling
NpyIter_GetOperandArray and getting the i-th object in the returned C array. The caller
must call Py_INCREF on it to claim a reference to the array.

NPY_ITER_NO_SUBTYPE
For use with NPY_ITER_ALLOCATE, this flag disables allocating an array subtype for the
output, forcing it to be a straight ndarray.

TODO: Maybe it would be better to introduce a function NpyIter_GetWrappedOutput
and remove this flag?

5.5. Array Iterator API 1215

NumPy Reference, Release 1.11.1

NPY_ITER_NO_BROADCAST
Ensures that the input or output matches the iteration dimensions exactly.

NPY_ITER_ARRAYMASK
New in version 1.7.

Indicates that this operand is the mask to use for selecting elements when writing to operands
which have the NPY_ITER_WRITEMASKED flag applied to them. Only one operand may have
NPY_ITER_ARRAYMASK flag applied to it.

The data type of an operand with this flag should be either NPY_BOOL, NPY_MASK, or a struct
dtype whose fields are all valid mask dtypes. In the latter case, it must match up with a struct
operand being WRITEMASKED, as it is specifying a mask for each field of that array.

This flag only affects writing from the buffer back to the array. This means that if the operand is
also NPY_ITER_READWRITE or NPY_ITER_WRITEONLY , code doing iteration can write to
this operand to control which elements will be untouched and which ones will be modified. This
is useful when the mask should be a combination of input masks, for example. Mask values can
be created with the NpyMask_Create function.

NPY_ITER_WRITEMASKED
New in version 1.7.

Indicates that only elements which the operand with the ARRAYMASK flag indicates are in-
tended to be modified by the iteration. In general, the iterator does not enforce this, it is up to
the code doing the iteration to follow that promise. Code can use the NpyMask_IsExposed
inline function to test whether the mask at a particular element allows writing.

When this flag is used, and this operand is buffered, this changes how data is copied from the
buffer into the array. A masked copying routine is used, which only copies the elements in the
buffer for which NpyMask_IsExposed returns true from the corresponding element in the
ARRAYMASK operand.

NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags,
NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags,
PyArray_Descr** op_dtypes, int oa_ndim, int** op_axes,
npy_intp* itershape, npy_intp buffersize)

Extends NpyIter_MultiNew with several advanced options providing more control over broadcasting and
buffering.

If -1/NULL values are passed to oa_ndim, op_axes, itershape, and buffersize, it is equivalent to
NpyIter_MultiNew .

The parameter oa_ndim, when not zero or -1, specifies the number of dimensions that will be iterated with cus-
tomized broadcasting. If it is provided, op_axes must and itershape can also be provided. The op_axes
parameter let you control in detail how the axes of the operand arrays get matched together and iterated. In
op_axes, you must provide an array of nop pointers to oa_ndim-sized arrays of type npy_intp. If an en-
try in op_axes is NULL, normal broadcasting rules will apply. In op_axes[j][i] is stored either a valid
axis of op[j], or -1 which means newaxis. Within each op_axes[j] array, axes may not be repeated. The
following example is how normal broadcasting applies to a 3-D array, a 2-D array, a 1-D array and a scalar.

Note: Before NumPy 1.8 oa_ndim == 0‘ was used for signalling that that ‘‘op_axes
and itershape are unused. This is deprecated and should be replaced with -1. Better backward compatibility
may be achieved by using NpyIter_MultiNew for this case.

int oa_ndim = 3; /* # iteration axes */
int op0_axes[] = {0, 1, 2}; /* 3-D operand */
int op1_axes[] = {-1, 0, 1}; /* 2-D operand */
int op2_axes[] = {-1, -1, 0}; /* 1-D operand */

1216 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

int op3_axes[] = {-1, -1, -1} /* 0-D (scalar) operand */
int* op_axes[] = {op0_axes, op1_axes, op2_axes, op3_axes};

The itershape parameter allows you to force the iterator to have a specific iteration shape. It is an array of
length oa_ndim. When an entry is negative, its value is determined from the operands. This parameter allows
automatically allocated outputs to get additional dimensions which don’t match up with any dimension of an
input.

If buffersize is zero, a default buffer size is used, otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 4096 or 8192 are recommended.

Returns NULL if there is an error, otherwise returns the allocated iterator.

NpyIter* NpyIter_Copy(NpyIter* iter)
Makes a copy of the given iterator. This function is provided primarily to enable multi-threaded iteration of the
data.

TODO: Move this to a section about multithreaded iteration.

The recommended approach to multithreaded iteration is to first create an iterator with
the flags NPY_ITER_EXTERNAL_LOOP, NPY_ITER_RANGED, NPY_ITER_BUFFERED,
NPY_ITER_DELAY_BUFALLOC, and possibly NPY_ITER_GROWINNER. Create a copy of this it-
erator for each thread (minus one for the first iterator). Then, take the iteration index range [0,
NpyIter_GetIterSize(iter)) and split it up into tasks, for example using a TBB paral-
lel_for loop. When a thread gets a task to execute, it then uses its copy of the iterator by calling
NpyIter_ResetToIterIndexRange and iterating over the full range.

When using the iterator in multi-threaded code or in code not holding the Python GIL, care must be taken to
only call functions which are safe in that context. NpyIter_Copy cannot be safely called without the Python
GIL, because it increments Python references. The Reset* and some other functions may be safely called by
passing in the errmsg parameter as non-NULL, so that the functions will pass back errors through it instead
of setting a Python exception.

int NpyIter_RemoveAxis(NpyIter* iter, int axis)‘‘
Removes an axis from iteration. This requires that NPY_ITER_MULTI_INDEX was set for iterator creation,
and does not work if buffering is enabled or an index is being tracked. This function also resets the iterator to
its initial state.

This is useful for setting up an accumulation loop, for example. The iterator can first be created with all the
dimensions, including the accumulation axis, so that the output gets created correctly. Then, the accumulation
axis can be removed, and the calculation done in a nested fashion.

WARNING: This function may change the internal memory layout of the iterator. Any cached functions or
pointers from the iterator must be retrieved again! The iterator range will be reset as well.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_RemoveMultiIndex(NpyIter* iter)
If the iterator is tracking a multi-index, this strips support for them, and does further iterator optimizations that
are possible if multi-indices are not needed. This function also resets the iterator to its initial state.

WARNING: This function may change the internal memory layout of the iterator. Any cached functions or
pointers from the iterator must be retrieved again!

After calling this function, NpyIter_HasMultiIndex(iter) will return false.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_EnableExternalLoop(NpyIter* iter)
If NpyIter_RemoveMultiIndex was called, you may want to enable the flag
NPY_ITER_EXTERNAL_LOOP. This flag is not permitted together with NPY_ITER_MULTI_INDEX,

5.5. Array Iterator API 1217

NumPy Reference, Release 1.11.1

so this function is provided to enable the feature after NpyIter_RemoveMultiIndex is called. This
function also resets the iterator to its initial state.

WARNING: This function changes the internal logic of the iterator. Any cached functions or pointers from the
iterator must be retrieved again!

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Deallocate(NpyIter* iter)
Deallocates the iterator object. This additionally frees any copies made, triggering UPDATEIFCOPY behavior
where necessary.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Reset(NpyIter* iter, char** errmsg)
Resets the iterator back to its initial state, at the beginning of the iteration range.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

int NpyIter_ResetToIterIndexRange(NpyIter* iter, npy_intp istart, npy_intp iend, char** errmsg)
Resets the iterator and restricts it to the iterindex range [istart, iend). See NpyIter_Copy for an
explanation of how to use this for multi-threaded iteration. This requires that the flag NPY_ITER_RANGED
was passed to the iterator constructor.

If you want to reset both the iterindex range and the base pointers at the same time, you can do the following
to avoid extra buffer copying (be sure to add the return code error checks when you copy this code).

/* Set to a trivial empty range */
NpyIter_ResetToIterIndexRange(iter, 0, 0);
/* Set the base pointers */
NpyIter_ResetBasePointers(iter, baseptrs);
/* Set to the desired range */
NpyIter_ResetToIterIndexRange(iter, istart, iend);

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

int NpyIter_ResetBasePointers(NpyIter *iter, char** baseptrs, char** errmsg)
Resets the iterator back to its initial state, but using the values in baseptrs for the data instead of the pointers
from the arrays being iterated. This functions is intended to be used, together with the op_axes parameter, by
nested iteration code with two or more iterators.

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

TODO: Move the following into a special section on nested iterators.

Creating iterators for nested iteration requires some care. All the iterator operands must match exactly, or the
calls to NpyIter_ResetBasePointers will be invalid. This means that automatic copies and output al-
location should not be used haphazardly. It is possible to still use the automatic data conversion and casting
features of the iterator by creating one of the iterators with all the conversion parameters enabled, then grabbing
the allocated operands with the NpyIter_GetOperandArray function and passing them into the construc-
tors for the rest of the iterators.

WARNING: When creating iterators for nested iteration, the code must not use a dimension more than once in
the different iterators. If this is done, nested iteration will produce out-of-bounds pointers during iteration.

1218 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

WARNING: When creating iterators for nested iteration, buffering can only be applied to the innermost iterator.
If a buffered iterator is used as the source for baseptrs, it will point into a small buffer instead of the array
and the inner iteration will be invalid.

The pattern for using nested iterators is as follows.

NpyIter *iter1, *iter1;
NpyIter_IterNextFunc *iternext1, *iternext2;
char **dataptrs1;

/*
* With the exact same operands, no copies allowed, and

* no axis in op_axes used both in iter1 and iter2.

* Buffering may be enabled for iter2, but not for iter1.

*/
iter1 = ...; iter2 = ...;

iternext1 = NpyIter_GetIterNext(iter1);
iternext2 = NpyIter_GetIterNext(iter2);
dataptrs1 = NpyIter_GetDataPtrArray(iter1);

do {
NpyIter_ResetBasePointers(iter2, dataptrs1);
do {

/* Use the iter2 values */
} while (iternext2(iter2));

} while (iternext1(iter1));

int NpyIter_GotoMultiIndex(NpyIter* iter, npy_intp* multi_index)
Adjusts the iterator to point to the ndim indices pointed to by multi_index. Returns an error if a multi-index
is not being tracked, the indices are out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_GotoIndex(NpyIter* iter, npy_intp index)
Adjusts the iterator to point to the index specified. If the iterator was constructed with the flag
NPY_ITER_C_INDEX, index is the C-order index, and if the iterator was constructed with the flag
NPY_ITER_F_INDEX, index is the Fortran-order index. Returns an error if there is no index being tracked,
the index is out of bounds, or inner loop iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

npy_intp NpyIter_GetIterSize(NpyIter* iter)
Returns the number of elements being iterated. This is the product of all the dimensions in the shape. When a
multi index is being tracked (and NpyIter_RemoveAxis may be called) the size may be -1 to indicate an iterator
is too large. Such an iterator is invalid, but may become valid after NpyIter_RemoveAxis is called. It is not
necessary to check for this case.

npy_intp NpyIter_GetIterIndex(NpyIter* iter)
Gets the iterindex of the iterator, which is an index matching the iteration order of the iterator.

void NpyIter_GetIterIndexRange(NpyIter* iter, npy_intp* istart, npy_intp* iend)
Gets the iterindex sub-range that is being iterated. If NPY_ITER_RANGED was not specified, this always
returns the range [0, NpyIter_IterSize(iter)).

int NpyIter_GotoIterIndex(NpyIter* iter, npy_intp iterindex)
Adjusts the iterator to point to the iterindex specified. The IterIndex is an index matching the iteration
order of the iterator. Returns an error if the iterindex is out of bounds, buffering is enabled, or inner loop
iteration is disabled.

Returns NPY_SUCCEED or NPY_FAIL.

5.5. Array Iterator API 1219

NumPy Reference, Release 1.11.1

npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* iter)
Returns 1 if the flag NPY_ITER_DELAY_BUFALLOC was passed to the iterator constructor, and no call to one
of the Reset functions has been done yet, 0 otherwise.

npy_bool NpyIter_HasExternalLoop(NpyIter* iter)
Returns 1 if the caller needs to handle the inner-most 1-dimensional loop, or 0 if the iterator han-
dles all looping. This is controlled by the constructor flag NPY_ITER_EXTERNAL_LOOP or
NpyIter_EnableExternalLoop.

npy_bool NpyIter_HasMultiIndex(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_MULTI_INDEX flag, 0 otherwise.

npy_bool NpyIter_HasIndex(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_C_INDEX or NPY_ITER_F_INDEX flag, 0 other-
wise.

npy_bool NpyIter_RequiresBuffering(NpyIter* iter)
Returns 1 if the iterator requires buffering, which occurs when an operand needs conversion or alignment and
so cannot be used directly.

npy_bool NpyIter_IsBuffered(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_BUFFERED flag, 0 otherwise.

npy_bool NpyIter_IsGrowInner(NpyIter* iter)
Returns 1 if the iterator was created with the NPY_ITER_GROWINNER flag, 0 otherwise.

npy_intp NpyIter_GetBufferSize(NpyIter* iter)
If the iterator is buffered, returns the size of the buffer being used, otherwise returns 0.

int NpyIter_GetNDim(NpyIter* iter)
Returns the number of dimensions being iterated. If a multi-index was not requested in the iterator constructor,
this value may be smaller than the number of dimensions in the original objects.

int NpyIter_GetNOp(NpyIter* iter)
Returns the number of operands in the iterator.

When NPY_ITER_USE_MASKNA is used on an operand, a new operand is added to the end of the operand list
in the iterator to track that operand’s NA mask. Thus, this equals the number of construction operands plus the
number of operands for which the flag NPY_ITER_USE_MASKNA was specified.

int NpyIter_GetFirstMaskNAOp(NpyIter* iter)
New in version 1.7.

Returns the index of the first NA mask operand in the array. This value is equal to the number of operands
passed into the constructor.

npy_intp* NpyIter_GetAxisStrideArray(NpyIter* iter, int axis)
Gets the array of strides for the specified axis. Requires that the iterator be tracking a multi-index, and that
buffering not be enabled.

This may be used when you want to match up operand axes in some fashion, then remove them with
NpyIter_RemoveAxis to handle their processing manually. By calling this function before removing the
axes, you can get the strides for the manual processing.

Returns NULL on error.

int NpyIter_GetShape(NpyIter* iter, npy_intp* outshape)
Returns the broadcast shape of the iterator in outshape. This can only be called on an iterator which is
tracking a multi-index.

Returns NPY_SUCCEED or NPY_FAIL.

1220 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

PyArray_Descr** NpyIter_GetDescrArray(NpyIter* iter)
This gives back a pointer to the nop data type Descrs for the objects being iterated. The result points into
iter, so the caller does not gain any references to the Descrs.

This pointer may be cached before the iteration loop, calling iternext will not change it.

PyObject** NpyIter_GetOperandArray(NpyIter* iter)
This gives back a pointer to the nop operand PyObjects that are being iterated. The result points into iter, so
the caller does not gain any references to the PyObjects.

npy_int8* NpyIter_GetMaskNAIndexArray(NpyIter* iter)
New in version 1.7.

This gives back a pointer to the nop indices which map construction operands with NPY_ITER_USE_MASKNA
flagged to their corresponding NA mask operands and vice versa. For operands which were not flagged with
NPY_ITER_USE_MASKNA, this array contains negative values.

PyObject* NpyIter_GetIterView(NpyIter* iter, npy_intp i)
This gives back a reference to a new ndarray view, which is a view into the i-th object in the array
NpyIter_GetOperandArray , whose dimensions and strides match the internal optimized iteration
pattern. A C-order iteration of this view is equivalent to the iterator’s iteration order.

For example, if an iterator was created with a single array as its input, and it was possible to rearrange all its
axes and then collapse it into a single strided iteration, this would return a view that is a one-dimensional array.

void NpyIter_GetReadFlags(NpyIter* iter, char* outreadflags)
Fills nop flags. Sets outreadflags[i] to 1 if op[i] can be read from, and to 0 if not.

void NpyIter_GetWriteFlags(NpyIter* iter, char* outwriteflags)
Fills nop flags. Sets outwriteflags[i] to 1 if op[i] can be written to, and to 0 if not.

int NpyIter_CreateCompatibleStrides(NpyIter* iter, npy_intp itemsize, npy_intp* outstrides)
Builds a set of strides which are the same as the strides of an output array created using the
NPY_ITER_ALLOCATE flag, where NULL was passed for op_axes. This is for data packed contigu-
ously, but not necessarily in C or Fortran order. This should be used together with NpyIter_GetShape and
NpyIter_GetNDim with the flag NPY_ITER_MULTI_INDEX passed into the constructor.

A use case for this function is to match the shape and layout of the iterator and tack on one or more dimensions.
For example, in order to generate a vector per input value for a numerical gradient, you pass in ndim*itemsize
for itemsize, then add another dimension to the end with size ndim and stride itemsize. To do the Hessian matrix,
you do the same thing but add two dimensions, or take advantage of the symmetry and pack it into 1 dimension
with a particular encoding.

This function may only be called if the iterator is tracking a multi-index and if
NPY_ITER_DONT_NEGATE_STRIDES was used to prevent an axis from being iterated in reverse or-
der.

If an array is created with this method, simply adding ‘itemsize’ for each iteration will traverse the new array
matching the iterator.

Returns NPY_SUCCEED or NPY_FAIL.

npy_bool NpyIter_IsFirstVisit(NpyIter* iter, int iop)
New in version 1.7.

Checks to see whether this is the first time the elements of the specified reduction operand which the iterator
points at are being seen for the first time. The function returns a reasonable answer for reduction operands and
when buffering is disabled. The answer may be incorrect for buffered non-reduction operands.

This function is intended to be used in EXTERNAL_LOOP mode only, and will produce some wrong answers
when that mode is not enabled.

5.5. Array Iterator API 1221

http://docs.python.org/dev/c-api/structures.html#c.PyObject
http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

If this function returns true, the caller should also check the inner loop stride of the operand, because if that
stride is 0, then only the first element of the innermost external loop is being visited for the first time.

WARNING: For performance reasons, ‘iop’ is not bounds-checked, it is not confirmed that ‘iop’ is actually a
reduction operand, and it is not confirmed that EXTERNAL_LOOP mode is enabled. These checks are the
responsibility of the caller, and should be done outside of any inner loops.

5.5.6 Functions For Iteration

NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter* iter, char** errmsg)
Returns a function pointer for iteration. A specialized version of the function pointer may be calculated by this
function instead of being stored in the iterator structure. Thus, to get good performance, it is required that the
function pointer be saved in a variable rather than retrieved for each loop iteration.

Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

The typical looping construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);

do {
/* use the addresses dataptr[0], ... dataptr[nop-1] */

} while(iternext(iter));

When NPY_ITER_EXTERNAL_LOOP is specified, the typical inner loop construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp* stride = NpyIter_GetInnerStrideArray(iter);
npy_intp* size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp iop, nop = NpyIter_GetNOp(iter);

do {
size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

Observe that we are using the dataptr array inside the iterator, not copying the values to a local temporary.
This is possible because when iternext() is called, these pointers will be overwritten with fresh values, not
incrementally updated.

If a compile-time fixed buffer is being used (both flags NPY_ITER_BUFFERED and
NPY_ITER_EXTERNAL_LOOP), the inner size may be used as a signal as well. The size is guaranteed
to become zero when iternext() returns false, enabling the following loop construct. Note that if you use
this construct, you should not pass NPY_ITER_GROWINNER as a flag, because it will cause larger sizes under
some circumstances.

/* The constructor should have buffersize passed as this value */
#define FIXED_BUFFER_SIZE 1024

1222 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp i, iop, nop = NpyIter_GetNOp(iter);

/* One loop with a fixed inner size */
size = *size_ptr;
while (size == FIXED_BUFFER_SIZE) {

/*
* This loop could be manually unrolled by a factor

* which divides into FIXED_BUFFER_SIZE

*/
for (i = 0; i < FIXED_BUFFER_SIZE; ++i) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
iternext();
size = *size_ptr;

}

/* Finish-up loop with variable inner size */
if (size > 0) do {

size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter* iter, char** errmsg)
Returns a function pointer for getting the current multi-index of the iterator. Returns NULL if the iterator is not
tracking a multi-index. It is recommended that this function pointer be cached in a local variable before the
iteration loop.

Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

char** NpyIter_GetDataPtrArray(NpyIter* iter)
This gives back a pointer to the nop data pointers. If NPY_ITER_EXTERNAL_LOOP was not specified, each
data pointer points to the current data item of the iterator. If no inner iteration was specified, it points to the first
data item of the inner loop.

This pointer may be cached before the iteration loop, calling iternext will not change it. This function may
be safely called without holding the Python GIL.

char** NpyIter_GetInitialDataPtrArray(NpyIter* iter)
Gets the array of data pointers directly into the arrays (never into the buffers), corresponding to iteration index
0.

These pointers are different from the pointers accepted by NpyIter_ResetBasePointers, because the
direction along some axes may have been reversed.

This function may be safely called without holding the Python GIL.

5.5. Array Iterator API 1223

NumPy Reference, Release 1.11.1

npy_intp* NpyIter_GetIndexPtr(NpyIter* iter)
This gives back a pointer to the index being tracked, or NULL if no index is being tracked. It is only useable if
one of the flags NPY_ITER_C_INDEX or NPY_ITER_F_INDEX were specified during construction.

When the flag NPY_ITER_EXTERNAL_LOOP is used, the code needs to know the parameters for doing the inner
loop. These functions provide that information.

npy_intp* NpyIter_GetInnerStrideArray(NpyIter* iter)
Returns a pointer to an array of the nop strides, one for each iterated object, to be used by the inner loop.

This pointer may be cached before the iteration loop, calling iternext will not change it. This function may
be safely called without holding the Python GIL.

WARNING: While the pointer may be cached, its values may change if the iterator is buffered.

npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* iter)
Returns a pointer to the number of iterations the inner loop should execute.

This address may be cached before the iteration loop, calling iternext will not change it. The value itself
may change during iteration, in particular if buffering is enabled. This function may be safely called without
holding the Python GIL.

void NpyIter_GetInnerFixedStrideArray(NpyIter* iter, npy_intp* out_strides)
Gets an array of strides which are fixed, or will not change during the entire iteration. For strides that may
change, the value NPY_MAX_INTP is placed in the stride.

Once the iterator is prepared for iteration (after a reset if NPY_DELAY_BUFALLOC was used), call this to get
the strides which may be used to select a fast inner loop function. For example, if the stride is 0, that means
the inner loop can always load its value into a variable once, then use the variable throughout the loop, or if the
stride equals the itemsize, a contiguous version for that operand may be used.

This function may be safely called without holding the Python GIL.

5.5.7 Converting from Previous NumPy Iterators

The old iterator API includes functions like PyArrayIter_Check, PyArray_Iter* and PyArray_ITER_*. The multi-
iterator array includes PyArray_MultiIter*, PyArray_Broadcast, and PyArray_RemoveSmallest. The new iterator
design replaces all of this functionality with a single object and associated API. One goal of the new API is that all
uses of the existing iterator should be replaceable with the new iterator without significant effort. In 1.6, the major
exception to this is the neighborhood iterator, which does not have corresponding features in this iterator.

Here is a conversion table for which functions to use with the new iterator:

1224 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

Iterator Functions
PyArray_IterNew NpyIter_New
PyArray_IterAllButAxis NpyIter_New + axes parameter or Iterator flag

NPY_ITER_EXTERNAL_LOOP
PyArray_BroadcastToShape NOT SUPPORTED (Use the support for multiple operands instead.)
PyArrayIter_Check Will need to add this in Python exposure
PyArray_ITER_RESET NpyIter_Reset
PyArray_ITER_NEXT Function pointer from NpyIter_GetIterNext
PyArray_ITER_DATA c:func:NpyIter_GetDataPtrArray
PyArray_ITER_GOTO NpyIter_GotoMultiIndex
PyArray_ITER_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_ITER_NOTDONE Return value of iternext function pointer
Multi-iterator Functions
PyArray_MultiIterNew NpyIter_MultiNew
PyArray_MultiIter_RESET NpyIter_Reset
PyArray_MultiIter_NEXT Function pointer from NpyIter_GetIterNext
PyArray_MultiIter_DATA NpyIter_GetDataPtrArray
PyArray_MultiIter_NEXTi NOT SUPPORTED (always lock-step iteration)
PyArray_MultiIter_GOTO NpyIter_GotoMultiIndex
PyArray_MultiIter_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_MultiIter_NOTDONE Return value of iternext function pointer
PyArray_Broadcast Handled by NpyIter_MultiNew
PyArray_RemoveSmallest Iterator flag NPY_ITER_EXTERNAL_LOOP
Other Functions
PyArray_ConvertToCommonTypeIterator flag NPY_ITER_COMMON_DTYPE

5.6 UFunc API

5.6.1 Constants

UFUNC_ERR_{HANDLER}
{HANDLER} can be IGNORE, WARN, RAISE, or CALL

UFUNC_{THING}_{ERR}
{THING} can be MASK, SHIFT, or FPE, and {ERR} can be DIVIDEBYZERO, OVERFLOW, UNDER-
FLOW, and INVALID.

PyUFunc_{VALUE}
{VALUE} can be One (1), Zero (0), or None (-1)

5.6.2 Macros

NPY_LOOP_BEGIN_THREADS
Used in universal function code to only release the Python GIL if loop->obj is not true (i.e. this is not an
OBJECT array loop). Requires use of NPY_BEGIN_THREADS_DEF in variable declaration area.

NPY_LOOP_END_THREADS
Used in universal function code to re-acquire the Python GIL if it was released (because loop->obj was not
true).

UFUNC_CHECK_ERROR(loop)
A macro used internally to check for errors and goto fail if found. This macro requires a fail label in the current

5.6. UFunc API 1225

NumPy Reference, Release 1.11.1

code block. The loop variable must have at least members (obj, errormask, and errorobj). If loop ->obj is
nonzero, then PyErr_Occurred () is called (meaning the GIL must be held). If loop ->obj is zero, then if
loop ->errormask is nonzero, PyUFunc_checkfperr is called with arguments loop ->errormask and loop
->errobj. If the result of this check of the IEEE floating point registers is true then the code redirects to the fail
label which must be defined.

UFUNC_CHECK_STATUS(ret)
Deprecated: use npy_clear_floatstatus from npy_math.h instead.

A macro that expands to platform-dependent code. The ret variable can can be any integer. The
UFUNC_FPE_{ERR} bits are set in ret according to the status of the corresponding error flags of the float-
ing point processor.

5.6.3 Functions

PyObject* PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func,

void** data, char* types, int ntypes, int nin, int nout, int identity,

char* name, char* doc, int unused)
Create a new broadcasting universal function from required variables. Each ufunc builds around the notion of
an element-by-element operation. Each ufunc object contains pointers to 1-d loops implementing the basic
functionality for each supported type.

Note: The func, data, types, name, and doc arguments are not copied by PyUFunc_FromFuncAndData.
The caller must ensure that the memory used by these arrays is not freed as long as the ufunc object is alive.

Parameters

• func – Must to an array of length ntypes containing PyUFuncGenericFunction
items. These items are pointers to functions that actually implement the underlying
(element-by-element) function 𝑁 times.

• data – Should be NULL or a pointer to an array of size ntypes . This array may contain
arbitrary extra-data to be passed to the corresponding 1-d loop function in the func array.

• types – Must be of length (nin + nout) * ntypes, and it contains the data-types (built-in
only) that the corresponding function in the func array can deal with.

• ntypes – How many different data-type “signatures” the ufunc has implemented.

• nin – The number of inputs to this operation.

• nout – The number of outputs

• name – The name for the ufunc. Specifying a name of ‘add’ or ‘multiply’ enables a special
behavior for integer-typed reductions when no dtype is given. If the input type is an integer
(or boolean) data type smaller than the size of the int_ data type, it will be internally upcast
to the int_ (or uint) data type.

• doc – Allows passing in a documentation string to be stored with the ufunc. The docu-
mentation string should not contain the name of the function or the calling signature as that
will be dynamically determined from the object and available when accessing the __doc__
attribute of the ufunc.

• unused – Unused and present for backwards compatibility of the C-API.

1226 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/exceptions.html#c.PyErr_Occurred

NumPy Reference, Release 1.11.1

PyObject* PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction* func,

void** data, char* types, int ntypes, int nin, int nout, int identity,

char* name, char* doc, int unused, char *signature)
This function is very similar to PyUFunc_FromFuncAndData above, but has an extra signature argument,
to define generalized universal functions. Similarly to how ufuncs are built around an element-by-element
operation, gufuncs are around subarray-by-subarray operations, the signature defining the subarrays to operate
on.

Parameters

• signature – The signature for the new gufunc. Setting it to NULL is equivalent to calling
PyUFunc_FromFuncAndData. A copy of the string is made, so the passed in buffer can be
freed.

int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc,

int usertype, PyUFuncGenericFunction function, int* arg_types, void* data)
This function allows the user to register a 1-d loop with an already- created ufunc to be used whenever the
ufunc is called with any of its input arguments as the user-defined data-type. This is needed in order to make
ufuncs work with built-in data-types. The data-type must have been previously registered with the numpy
system. The loop is passed in as function. This loop can take arbitrary data which should be passed in as data.
The data-types the loop requires are passed in as arg_types which must be a pointer to memory at least as large
as ufunc->nargs.

int PyUFunc_RegisterLoopForDescr(PyUFuncObject* ufunc,

PyArray_Descr* userdtype, PyUFuncGenericFunction function,

PyArray_Descr** arg_dtypes, void* data)
This function behaves like PyUFunc_RegisterLoopForType above, except that it allows the user to register a
1-d loop using PyArray_Descr objects instead of dtype type num values. This allows a 1-d loop to be registered
for structured array data-dtypes and custom data-types instead of scalar data-types.

int PyUFunc_ReplaceLoopBySignature(PyUFuncObject* ufunc,

PyUFuncGenericFunction newfunc, int* signature,

PyUFuncGenericFunction* oldfunc)
Replace a 1-d loop matching the given signature in the already-created ufunc with the new 1-d loop newfunc.
Return the old 1-d loop function in oldfunc. Return 0 on success and -1 on failure. This function works only
with built-in types (use PyUFunc_RegisterLoopForType for user-defined types). A signature is an array
of data-type numbers indicating the inputs followed by the outputs assumed by the 1-d loop.

int PyUFunc_GenericFunction(PyUFuncObject* self,

PyObject* args, PyObject* kwds, PyArrayObject** mps)
A generic ufunc call. The ufunc is passed in as self, the arguments to the ufunc as args and kwds. The mps
argument is an array of PyArrayObject pointers whose values are discarded and which receive the converted
input arguments as well as the ufunc outputs when success is returned. The user is responsible for managing
this array and receives a new reference for each array in mps. The total number of arrays in mps is given by self
->nin + self ->nout.

Returns 0 on success, -1 on error.

int PyUFunc_checkfperr(int errmask, PyObject* errobj)

5.6. UFunc API 1227

http://docs.python.org/dev/c-api/structures.html#c.PyObject

NumPy Reference, Release 1.11.1

A simple interface to the IEEE error-flag checking support. The errmask argument is a mask of
UFUNC_MASK_{ERR} bitmasks indicating which errors to check for (and how to check for them). The
errobj must be a Python tuple with two elements: a string containing the name which will be used in any
communication of error and either a callable Python object (call-back function) or Py_None. The callable
object will only be used if UFUNC_ERR_CALL is set as the desired error checking method. This routine
manages the GIL and is safe to call even after releasing the GIL. If an error in the IEEE-compatibile hardware
is determined a -1 is returned, otherwise a 0 is returned.

void PyUFunc_clearfperr()
Clear the IEEE error flags.

void PyUFunc_GetPyValues(char* name, int* bufsize,

int* errmask, PyObject** errobj)
Get the Python values used for ufunc processing from the thread-local storage area unless the defaults have
been set in which case the name lookup is bypassed. The name is placed as a string in the first element of
*errobj. The second element is the looked-up function to call on error callback. The value of the looked-up
buffer-size to use is passed into bufsize, and the value of the error mask is placed into errmask.

5.6.4 Generic functions

At the core of every ufunc is a collection of type-specific functions that defines the basic functionality for each of the
supported types. These functions must evaluate the underlying function 𝑁 ≥ 1 times. Extra-data may be passed in
that may be used during the calculation. This feature allows some general functions to be used as these basic looping
functions. The general function has all the code needed to point variables to the right place and set up a function call.
The general function assumes that the actual function to call is passed in as the extra data and calls it with the correct
values. All of these functions are suitable for placing directly in the array of functions stored in the functions member
of the PyUFuncObject structure.

void PyUFunc_f_f_As_d_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_d_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_f_f(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_g_g(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_F_F_As_D_D(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_F_F(char** args, npy_intp* dimensions,

1228 Chapter 5. Numpy C-API

http://docs.python.org/dev/c-api/none.html#c.Py_None

NumPy Reference, Release 1.11.1

npy_intp* steps, void* func)

void PyUFunc_D_D(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_G_G(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_e_e(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_e_e_As_f_f(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_e_e_As_d_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking
one input argument and returning one output. This function is passed in func. The letters correspond to
dtypechar’s of the supported data types (e - half, f - float, d - double, g - long double, F - cfloat, D - cdouble, G
- clongdouble). The argument func must support the same signature. The _As_X_X variants assume ndarray’s
of one data type but cast the values to use an underlying function that takes a different data type. Thus,
PyUFunc_f_f_As_d_d uses ndarrays of data type NPY_FLOAT but calls out to a C-function that takes
double and returns double.

void PyUFunc_ff_f_As_dd_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_ff_f(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_dd_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_gg_g(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_FF_F_As_DD_D(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

5.6. UFunc API 1229

NumPy Reference, Release 1.11.1

void PyUFunc_DD_D(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_FF_F(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_GG_G(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_ee_e(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_ee_e_As_ff_f(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_ee_e_As_dd_d(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking two
input arguments and returning one output. The underlying function to call is passed in as func. The letters
correspond to dtypechar’s of the specific data type supported by the general-purpose function. The argument
func must support the corresponding signature. The _As_XX_X variants assume ndarrays of one data type
but cast the values at each iteration of the loop to use the underlying function that takes a different data type.

void PyUFunc_O_O(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)

void PyUFunc_OO_O(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
One-input, one-output, and two-input, one-output core 1-d functions for the NPY_OBJECT data type. These
functions handle reference count issues and return early on error. The actual function to call is func
and it must accept calls with the signature (PyObject*) (PyObject*) for PyUFunc_O_O or
(PyObject*)(PyObject *, PyObject *) for PyUFunc_OO_O.

void PyUFunc_O_O_method(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object.
For each iteration of the loop, the Python obejct is extracted from the array and its func method is called
returning the result to the output array.

void PyUFunc_OO_O_method(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object

1230 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

that takes one argument. The first argument in args is the method whose function is called, the second argument
in args is the argument passed to the function. The output of the function is stored in the third entry of args.

void PyUFunc_On_Om(char** args, npy_intp* dimensions,

npy_intp* steps, void* func)
This is the 1-d core function used by the dynamic ufuncs created by umath.frompyfunc(function, nin, nout). In
this case func is a pointer to a PyUFunc_PyFuncData structure which has definition

PyUFunc_PyFuncData

typedef struct {
int nin;
int nout;
PyObject *callable;

} PyUFunc_PyFuncData;

At each iteration of the loop, the nin input objects are exctracted from their object arrays and placed into an
argument tuple, the Python callable is called with the input arguments, and the nout outputs are placed into their
object arrays.

5.6.5 Importing the API

PY_UFUNC_UNIQUE_SYMBOL

NO_IMPORT_UFUNC

void import_ufunc(void)
These are the constants and functions for accessing the ufunc C-API from extension modules in precisely
the same way as the array C-API can be accessed. The import_ufunc () function must always be called
(in the initialization subroutine of the extension module). If your extension module is in one file then that is
all that is required. The other two constants are useful if your extension module makes use of multiple files.
In that case, define PY_UFUNC_UNIQUE_SYMBOL to something unique to your code and then in source
files that do not contain the module initialization function but still need access to the UFUNC API, define
PY_UFUNC_UNIQUE_SYMBOL to the same name used previously and also define NO_IMPORT_UFUNC.

The C-API is actually an array of function pointers. This array is created (and pointed to by a global variable)
by import_ufunc. The global variable is either statically defined or allowed to be seen by other files depending
on the state of Py_UFUNC_UNIQUE_SYMBOL and NO_IMPORT_UFUNC.

5.7 Generalized Universal Function API

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays).
This concept is realized in Numpy by generalizing the universal functions (ufuncs). In regular ufuncs, the elementary
function is limited to element-by-element operations, whereas the generalized version (gufuncs) supports “sub-array”
by “sub-array” operations. The Perl vector library PDL provides a similar functionality and its terms are re-used in
the following.

Each generalized ufunc has information associated with it that states what the “core” dimensionality of the inputs is,
as well as the corresponding dimensionality of the outputs (the element-wise ufuncs have zero core dimensions). The
list of the core dimensions for all arguments is called the “signature” of a ufunc. For example, the ufunc numpy.add
has signature (),()->() defining two scalar inputs and one scalar output.

5.7. Generalized Universal Function API 1231

NumPy Reference, Release 1.11.1

Another example is the function inner1d(a, b) with a signature of (i),(i)->(). This applies the inner
product along the last axis of each input, but keeps the remaining indices intact. For example, where a is of shape (3,
5, N) and b is of shape (5, N), this will return an output of shape (3,5). The underlying elementary function
is called 3 * 5 times. In the signature, we specify one core dimension (i) for each input and zero core dimensions
() for the output, since it takes two 1-d arrays and returns a scalar. By using the same name i, we specify that the
two corresponding dimensions should be of the same size.

The dimensions beyond the core dimensions are called “loop” dimensions. In the above example, this corresponds to
(3, 5).

The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting from
the end of the shape tuple. These are the core dimensions, and they must be present in the arrays, or an error
will be raised.

2. Core dimensions assigned to the same label in the signature (e.g. the i in inner1d‘s (i),(i)->()) must
have exactly matching sizes, no broadcasting is performed.

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together, defining
the loop dimensions.

4. The shape of each output is determined from the loop dimensions plus the output’s core dimensions

Typically, the size of all core dimensions in an output will be determined by the size of a core dimension with the same
label in an input array. This is not a requirement, and it is possible to define a signature where a label comes up for
the first time in an output, although some precautions must be taken when calling such a function. An example would
be the function euclidean_pdist(a), with signature (n,d)->(p), that given an array of n d-dimensional
vectors, computes all unique pairwise Euclidean distances among them. The output dimension p must therefore be
equal to n * (n - 1) / 2, but it is the caller’s responsibility to pass in an output array of the right size. If the size
of a core dimension of an output cannot be determined from a passed in input or output array, an error will be raised.

Note: Prior to Numpy 1.10.0, less strict checks were in place: missing core dimensions were created by prepending 1’s
to the shape as necessary, core dimensions with the same label were broadcast together, and undetermined dimensions
were created with size 1.

5.7.1 Definitions

Elementary Function
Each ufunc consists of an elementary function that performs the most basic operation on the smallest portion of
array arguments (e.g. adding two numbers is the most basic operation in adding two arrays). The ufunc applies
the elementary function multiple times on different parts of the arrays. The input/output of elementary functions
can be vectors; e.g., the elementary function of inner1d takes two vectors as input.

Signature
A signature is a string describing the input/output dimensions of the elementary function of a ufunc. See section
below for more details.

Core Dimension
The dimensionality of each input/output of an elementary function is defined by its core dimensions (zero core
dimensions correspond to a scalar input/output). The core dimensions are mapped to the last dimensions of the
input/output arrays.

Dimension Name
A dimension name represents a core dimension in the signature. Different dimensions may share a name,
indicating that they are of the same size.

1232 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

Dimension Index
A dimension index is an integer representing a dimension name. It enumerates the dimension names according
to the order of the first occurrence of each name in the signature.

5.7.2 Details of Signature

The signature defines “core” dimensionality of input and output variables, and thereby also defines the contraction of
the dimensions. The signature is represented by a string of the following format:

• Core dimensions of each input or output array are represented by a list of dimension names in parentheses,
(i_1,...,i_N); a scalar input/output is denoted by (). Instead of i_1, i_2, etc, one can use any valid
Python variable name.

• Dimension lists for different arguments are separated by ",". Input/output arguments are separated by "->".

• If one uses the same dimension name in multiple locations, this enforces the same size of the corresponding
dimensions.

The formal syntax of signatures is as follows:

<Signature> ::= <Input arguments> "->" <Output arguments>
<Input arguments> ::= <Argument list>
<Output arguments> ::= <Argument list>
<Argument list> ::= nil | <Argument> | <Argument> "," <Argument list>
<Argument> ::= "(" <Core dimension list> ")"
<Core dimension list> ::= nil | <Dimension name> |

<Dimension name> "," <Core dimension list>
<Dimension name> ::= valid Python variable name

Notes:

1. All quotes are for clarity.

2. Core dimensions that share the same name must have the exact same size. Each dimension name typically
corresponds to one level of looping in the elementary function’s implementation.

3. White spaces are ignored.

Here are some examples of signatures:

add (),()->()
inner1d (i),(i)->()
sum1d (i)->()
dot2d (m,n),(n,p)->(m,p)matrix multiplication
outer_inner (i,t),(j,t)->(i,j)inner over the last dimension, outer over the second to last, and

loop/broadcast over the rest.

5.7.3 C-API for implementing Elementary Functions

The current interface remains unchanged, and PyUFunc_FromFuncAndData can still be used to implement (spe-
cialized) ufuncs, consisting of scalar elementary functions.

One can use PyUFunc_FromFuncAndDataAndSignature to declare a more general ufunc. The argument list
is the same as PyUFunc_FromFuncAndData, with an additional argument specifying the signature as C string.

Furthermore, the callback function is of the same type as before, void (*foo)(char **args, intp

*dimensions, intp *steps, void *func). When invoked, args is a list of length nargs containing
the data of all input/output arguments. For a scalar elementary function, steps is also of length nargs, denoting the

5.7. Generalized Universal Function API 1233

NumPy Reference, Release 1.11.1

strides used for the arguments. dimensions is a pointer to a single integer defining the size of the axis to be looped
over.

For a non-trivial signature, dimensions will also contain the sizes of the core dimensions as well, starting at the
second entry. Only one size is provided for each unique dimension name and the sizes are given according to the first
occurrence of a dimension name in the signature.

The first nargs elements of steps remain the same as for scalar ufuncs. The following elements contain the strides
of all core dimensions for all arguments in order.

For example, consider a ufunc with signature (i,j),(i)->(). In this case, args will contain three pointers to the
data of the input/output arrays a, b, c. Furthermore, dimensions will be [N, I, J] to define the size of N of
the loop and the sizes I and J for the core dimensions i and j. Finally, steps will be [a_N, b_N, c_N, a_i,
a_j, b_i], containing all necessary strides.

5.8 Numpy core libraries

New in version 1.3.0.

Starting from numpy 1.3.0, we are working on separating the pure C, “computational” code from the python dependent
code. The goal is twofolds: making the code cleaner, and enabling code reuse by other extensions outside numpy
(scipy, etc...).

5.8.1 Numpy core math library

The numpy core math library (‘npymath’) is a first step in this direction. This library contains most math-related C99
functionality, which can be used on platforms where C99 is not well supported. The core math functions have the
same API as the C99 ones, except for the npy_* prefix.

The available functions are defined in <numpy/npy_math.h> - please refer to this header when in doubt.

Floating point classification

NPY_NAN
This macro is defined to a NaN (Not a Number), and is guaranteed to have the signbit unset (‘positive’ NaN).
The corresponding single and extension precision macro are available with the suffix F and L.

NPY_INFINITY
This macro is defined to a positive inf. The corresponding single and extension precision macro are available
with the suffix F and L.

NPY_PZERO
This macro is defined to positive zero. The corresponding single and extension precision macro are available
with the suffix F and L.

NPY_NZERO
This macro is defined to negative zero (that is with the sign bit set). The corresponding single and extension
precision macro are available with the suffix F and L.

int npy_isnan(x)
This is a macro, and is equivalent to C99 isnan: works for single, double and extended precision, and return a
non 0 value is x is a NaN.

int npy_isfinite(x)
This is a macro, and is equivalent to C99 isfinite: works for single, double and extended precision, and return a
non 0 value is x is neither a NaN nor an infinity.

1234 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

int npy_isinf(x)
This is a macro, and is equivalent to C99 isinf: works for single, double and extended precision, and return a
non 0 value is x is infinite (positive and negative).

int npy_signbit(x)
This is a macro, and is equivalent to C99 signbit: works for single, double and extended precision, and return a
non 0 value is x has the signbit set (that is the number is negative).

double npy_copysign(double x, double y)
This is a function equivalent to C99 copysign: return x with the same sign as y. Works for any value, including
inf and nan. Single and extended precisions are available with suffix f and l.

New in version 1.4.0.

Useful math constants

The following math constants are available in npy_math.h. Single and extended precision are also available by adding
the F and L suffixes respectively.

NPY_E
Base of natural logarithm (𝑒)

NPY_LOG2E
Logarithm to base 2 of the Euler constant (ln(𝑒)ln(2))

NPY_LOG10E
Logarithm to base 10 of the Euler constant (ln(𝑒)

ln(10))

NPY_LOGE2
Natural logarithm of 2 (ln(2))

NPY_LOGE10
Natural logarithm of 10 (ln(10))

NPY_PI
Pi (𝜋)

NPY_PI_2
Pi divided by 2 (𝜋2)

NPY_PI_4
Pi divided by 4 (𝜋4)

NPY_1_PI
Reciprocal of pi (1

𝜋)

NPY_2_PI
Two times the reciprocal of pi (2𝜋)

NPY_EULER

The Euler constant
lim𝑛→∞(

∑︀𝑛
𝑘=1

1
𝑘 − ln𝑛)

Low-level floating point manipulation

Those can be useful for precise floating point comparison.

5.8. Numpy core libraries 1235

NumPy Reference, Release 1.11.1

double npy_nextafter(double x, double y)
This is a function equivalent to C99 nextafter: return next representable floating point value from x in the
direction of y. Single and extended precisions are available with suffix f and l.

New in version 1.4.0.

double npy_spacing(double x)
This is a function equivalent to Fortran intrinsic. Return distance between x and next representable floating
point value from x, e.g. spacing(1) == eps. spacing of nan and +/- inf return nan. Single and extended precisions
are available with suffix f and l.

New in version 1.4.0.

void npy_set_floatstatus_divbyzero()
Set the divide by zero floating point exception

New in version 1.6.0.

void npy_set_floatstatus_overflow()
Set the overflow floating point exception

New in version 1.6.0.

void npy_set_floatstatus_underflow()
Set the underflow floating point exception

New in version 1.6.0.

void npy_set_floatstatus_invalid()
Set the invalid floating point exception

New in version 1.6.0.

int npy_get_floatstatus()
Get floating point status. Returns a bitmask with following possible flags:

•NPY_FPE_DIVIDEBYZERO

•NPY_FPE_OVERFLOW

•NPY_FPE_UNDERFLOW

•NPY_FPE_INVALID

New in version 1.9.0.

int npy_clear_floatstatus()
Clears the floating point status. Returns the previous status mask.

New in version 1.9.0.

Complex functions

New in version 1.4.0.

C99-like complex functions have been added. Those can be used if you wish to implement portable C extensions.
Since we still support platforms without C99 complex type, you need to restrict to C90-compatible syntax, e.g.:

/* a = 1 + 2i */
npy_complex a = npy_cpack(1, 2);
npy_complex b;

b = npy_log(a);

1236 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

Linking against the core math library in an extension

New in version 1.4.0.

To use the core math library in your own extension, you need to add the npymath compile and link options to your
extension in your setup.py:

>>> from numpy.distutils.misc_util import get_info
>>> info = get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=info)

In other words, the usage of info is exactly the same as when using blas_info and co.

Half-precision functions

New in version 2.0.0.

The header file <numpy/halffloat.h> provides functions to work with IEEE 754-2008 16-bit floating point values.
While this format is not typically used for numerical computations, it is useful for storing values which require floating
point but do not need much precision. It can also be used as an educational tool to understand the nature of floating
point round-off error.

Like for other types, NumPy includes a typedef npy_half for the 16 bit float. Unlike for most of the other types, you
cannot use this as a normal type in C, since is is a typedef for npy_uint16. For example, 1.0 looks like 0x3c00 to C,
and if you do an equality comparison between the different signed zeros, you will get -0.0 != 0.0 (0x8000 != 0x0000),
which is incorrect.

For these reasons, NumPy provides an API to work with npy_half values accessible by including <numpy/halffloat.h>
and linking to ‘npymath’. For functions that are not provided directly, such as the arithmetic operations, the preferred
method is to convert to float or double and back again, as in the following example.

npy_half sum(int n, npy_half *array) {
float ret = 0;
while(n--) {

ret += npy_half_to_float(*array++);
}
return npy_float_to_half(ret);

}

External Links:

• 754-2008 IEEE Standard for Floating-Point Arithmetic

• Half-precision Float Wikipedia Article.

• OpenGL Half Float Pixel Support

• The OpenEXR image format.

NPY_HALF_ZERO
This macro is defined to positive zero.

NPY_HALF_PZERO
This macro is defined to positive zero.

NPY_HALF_NZERO
This macro is defined to negative zero.

NPY_HALF_ONE
This macro is defined to 1.0.

5.8. Numpy core libraries 1237

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://en.wikipedia.org/wiki/Half_precision_floating-point_format
http://www.opengl.org/registry/specs/ARB/half_float_pixel.txt
http://www.openexr.com/about.html

NumPy Reference, Release 1.11.1

NPY_HALF_NEGONE
This macro is defined to -1.0.

NPY_HALF_PINF
This macro is defined to +inf.

NPY_HALF_NINF
This macro is defined to -inf.

NPY_HALF_NAN
This macro is defined to a NaN value, guaranteed to have its sign bit unset.

float npy_half_to_float(npy_half h)
Converts a half-precision float to a single-precision float.

double npy_half_to_double(npy_half h)
Converts a half-precision float to a double-precision float.

npy_half npy_float_to_half(float f)
Converts a single-precision float to a half-precision float. The value is rounded to the nearest representable half,
with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow or
overflow bit will be set.

npy_half npy_double_to_half(double d)
Converts a double-precision float to a half-precision float. The value is rounded to the nearest representable
half, with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow
or overflow bit will be set.

int npy_half_eq(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 == h2).

int npy_half_ne(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 != h2).

int npy_half_le(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 <= h2).

int npy_half_lt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 < h2).

int npy_half_ge(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 >= h2).

int npy_half_gt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 > h2).

int npy_half_eq_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 == h2). If a value is NaN, the result is
undefined.

int npy_half_lt_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 < h2). If a value is NaN, the result is
undefined.

int npy_half_le_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 <= h2). If a value is NaN, the result is
undefined.

int npy_half_iszero(npy_half h)
Tests whether the half-precision float has a value equal to zero. This may be slightly faster than calling
npy_half_eq(h, NPY_ZERO).

1238 Chapter 5. Numpy C-API

NumPy Reference, Release 1.11.1

int npy_half_isnan(npy_half h)
Tests whether the half-precision float is a NaN.

int npy_half_isinf(npy_half h)
Tests whether the half-precision float is plus or minus Inf.

int npy_half_isfinite(npy_half h)
Tests whether the half-precision float is finite (not NaN or Inf).

int npy_half_signbit(npy_half h)
Returns 1 is h is negative, 0 otherwise.

npy_half npy_half_copysign(npy_half x, npy_half y)
Returns the value of x with the sign bit copied from y. Works for any value, including Inf and NaN.

npy_half npy_half_spacing(npy_half h)
This is the same for half-precision float as npy_spacing and npy_spacingf described in the low-level floating
point section.

npy_half npy_half_nextafter(npy_half x, npy_half y)
This is the same for half-precision float as npy_nextafter and npy_nextafterf described in the low-level floating
point section.

npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f)
Low-level function which converts a 32-bit single-precision float, stored as a uint32, into a 16-bit half-precision
float.

npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d)
Low-level function which converts a 64-bit double-precision float, stored as a uint64, into a 16-bit half-precision
float.

npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 32-bit single-precision float, stored as a
uint32.

npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 64-bit double-precision float, stored as a
uint64.

5.9 C API Deprecations

5.9.1 Background

The API exposed by NumPy for third-party extensions has grown over years of releases, and has allowed programmers
to directly access NumPy functionality from C. This API can be best described as “organic”. It has emerged from
multiple competing desires and from multiple points of view over the years, strongly influenced by the desire to make
it easy for users to move to NumPy from Numeric and Numarray. The core API originated with Numeric in 1995 and
there are patterns such as the heavy use of macros written to mimic Python’s C-API as well as account for compiler
technology of the late 90’s. There is also only a small group of volunteers who have had very little time to spend on
improving this API.

There is an ongoing effort to improve the API. It is important in this effort to ensure that code that compiles for
NumPy 1.X continues to compile for NumPy 1.X. At the same time, certain API’s will be marked as deprecated so
that future-looking code can avoid these API’s and follow better practices.

Another important role played by deprecation markings in the C API is to move towards hiding internal details of the
NumPy implementation. For those needing direct, easy, access to the data of ndarrays, this will not remove this ability.
Rather, there are many potential performance optimizations which require changing the implementation details, and

5.9. C API Deprecations 1239

NumPy Reference, Release 1.11.1

NumPy developers have been unable to try them because of the high value of preserving ABI compatibility. By
deprecating this direct access, we will in the future be able to improve NumPy’s performance in ways we cannot
presently.

5.9.2 Deprecation Mechanism NPY_NO_DEPRECATED_API

In C, there is no equivalent to the deprecation warnings that Python supports. One way to do deprecations is to flag
them in the documentation and release notes, then remove or change the deprecated features in a future major version
(NumPy 2.0 and beyond). Minor versions of NumPy should not have major C-API changes, however, that prevent
code that worked on a previous minor release. For example, we will do our best to ensure that code that compiled and
worked on NumPy 1.4 should continue to work on NumPy 1.7 (but perhaps with compiler warnings).

To use the NPY_NO_DEPRECATED_API mechanism, you need to #define it to the target API version of NumPy
before #including any NumPy headers. If you want to confirm that your code is clean against 1.7, use:

#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

On compilers which support a #warning mechanism, NumPy issues a compiler warning if you do not define the
symbol NPY_NO_DEPRECATED_API. This way, the fact that there are deprecations will be flagged for third-party
developers who may not have read the release notes closely.

1240 Chapter 5. Numpy C-API

CHAPTER

SIX

NUMPY INTERNALS

6.1 Numpy C Code Explanations

Fanaticism consists of redoubling your efforts when you have forgotten your aim. — George Santayana

An authority is a person who can tell you more about something than you really care to know. — Unknown

This Chapter attempts to explain the logic behind some of the new pieces of code. The purpose behind these explana-
tions is to enable somebody to be able to understand the ideas behind the implementation somewhat more easily than
just staring at the code. Perhaps in this way, the algorithms can be improved on, borrowed from, and/or optimized.

6.1.1 Memory model

One fundamental aspect of the ndarray is that an array is seen as a “chunk” of memory starting at some location. The
interpretation of this memory depends on the stride information. For each dimension in an 𝑁 -dimensional array, an
integer (stride) dictates how many bytes must be skipped to get to the next element in that dimension. Unless you have
a single-segment array, this stride information must be consulted when traversing through an array. It is not difficult
to write code that accepts strides, you just have to use (char *) pointers because strides are in units of bytes. Keep
in mind also that strides do not have to be unit-multiples of the element size. Also, remember that if the number of
dimensions of the array is 0 (sometimes called a rank-0 array), then the strides and dimensions variables are NULL.

Besides the structural information contained in the strides and dimensions members of the PyArrayObject, the
flags contain important information about how the data may be accessed. In particular, the NPY_ARRAY_ALIGNED
flag is set when the memory is on a suitable boundary according to the data-type array. Even if you have a contiguous
chunk of memory, you cannot just assume it is safe to dereference a data- type-specific pointer to an element. Only
if the NPY_ARRAY_ALIGNED flag is set is this a safe operation (on some platforms it will work but on others, like
Solaris, it will cause a bus error). The NPY_ARRAY_WRITEABLE should also be ensured if you plan on writing to
the memory area of the array. It is also possible to obtain a pointer to an unwritable memory area. Sometimes, writing
to the memory area when the NPY_ARRAY_WRITEABLE flag is not set will just be rude. Other times it can cause
program crashes (e.g. a data-area that is a read-only memory-mapped file).

6.1.2 Data-type encapsulation

The data-type is an important abstraction of the ndarray. Operations will look to the data-type to provide the key
functionality that is needed to operate on the array. This functionality is provided in the list of function pointers
pointed to by the ‘f’ member of the PyArray_Descr structure. In this way, the number of data-types can be
extended simply by providing a PyArray_Descr structure with suitable function pointers in the ‘f’ member. For
built-in types there are some optimizations that by-pass this mechanism, but the point of the data- type abstraction is
to allow new data-types to be added.

1241

NumPy Reference, Release 1.11.1

One of the built-in data-types, the void data-type allows for arbitrary structured types containing 1 or more fields as
elements of the array. A field is simply another data-type object along with an offset into the current structured type. In
order to support arbitrarily nested fields, several recursive implementations of data-type access are implemented for the
void type. A common idiom is to cycle through the elements of the dictionary and perform a specific operation based
on the data-type object stored at the given offset. These offsets can be arbitrary numbers. Therefore, the possibility of
encountering mis- aligned data must be recognized and taken into account if necessary.

6.1.3 N-D Iterators

A very common operation in much of NumPy code is the need to iterate over all the elements of a general, strided,
N-dimensional array. This operation of a general-purpose N-dimensional loop is abstracted in the notion of an iterator
object. To write an N-dimensional loop, you only have to create an iterator object from an ndarray, work with the
dataptr member of the iterator object structure and call the macro PyArray_ITER_NEXT (it) on the iterator object
to move to the next element. The “next” element is always in C-contiguous order. The macro works by first special
casing the C-contiguous, 1-D, and 2-D cases which work very simply.

For the general case, the iteration works by keeping track of a list of coordinate counters in the iterator object. At each
iteration, the last coordinate counter is increased (starting from 0). If this counter is smaller then one less than the size
of the array in that dimension (a pre-computed and stored value), then the counter is increased and the dataptr member
is increased by the strides in that dimension and the macro ends. If the end of a dimension is reached, the counter
for the last dimension is reset to zero and the dataptr is moved back to the beginning of that dimension by subtracting
the strides value times one less than the number of elements in that dimension (this is also pre-computed and stored
in the backstrides member of the iterator object). In this case, the macro does not end, but a local dimension counter
is decremented so that the next-to-last dimension replaces the role that the last dimension played and the previously-
described tests are executed again on the next-to-last dimension. In this way, the dataptr is adjusted appropriately for
arbitrary striding.

The coordinates member of the PyArrayIterObject structure maintains the current N-d counter unless
the underlying array is C-contiguous in which case the coordinate counting is by-passed. The index mem-
ber of the PyArrayIterObject keeps track of the current flat index of the iterator. It is updated by the
PyArray_ITER_NEXT macro.

6.1.4 Broadcasting

In Numeric, broadcasting was implemented in several lines of code buried deep in ufuncobject.c. In NumPy, the
notion of broadcasting has been abstracted so that it can be performed in multiple places. Broadcasting is handled by
the function PyArray_Broadcast. This function requires a PyArrayMultiIterObject (or something that
is a binary equivalent) to be passed in. The PyArrayMultiIterObject keeps track of the broadcast number of
dimensions and size in each dimension along with the total size of the broadcast result. It also keeps track of the
number of arrays being broadcast and a pointer to an iterator for each of the arrays being broadcast.

The PyArray_Broadcast function takes the iterators that have already been defined and uses them to determine
the broadcast shape in each dimension (to create the iterators at the same time that broadcasting occurs then use the
PyMultiIter_New function). Then, the iterators are adjusted so that each iterator thinks it is iterating over an array
with the broadcast size. This is done by adjusting the iterators number of dimensions, and the shape in each dimension.
This works because the iterator strides are also adjusted. Broadcasting only adjusts (or adds) length-1 dimensions. For
these dimensions, the strides variable is simply set to 0 so that the data-pointer for the iterator over that array doesn’t
move as the broadcasting operation operates over the extended dimension.

Broadcasting was always implemented in Numeric using 0-valued strides for the extended dimensions. It
is done in exactly the same way in NumPy. The big difference is that now the array of strides is kept
track of in a PyArrayIterObject, the iterators involved in a broadcast result are kept track of in a
PyArrayMultiIterObject, and the PyArray_BroadCast call implements the broad-casting rules.

1242 Chapter 6. Numpy internals

NumPy Reference, Release 1.11.1

6.1.5 Array Scalars

The array scalars offer a hierarchy of Python types that allow a one- to-one correspondence between the data-type
stored in an array and the Python-type that is returned when an element is extracted from the array. An exception to
this rule was made with object arrays. Object arrays are heterogeneous collections of arbitrary Python objects. When
you select an item from an object array, you get back the original Python object (and not an object array scalar which
does exist but is rarely used for practical purposes).

The array scalars also offer the same methods and attributes as arrays with the intent that the same code can be used to
support arbitrary dimensions (including 0-dimensions). The array scalars are read-only (immutable) with the exception
of the void scalar which can also be written to so that structured array field setting works more naturally (a[0][’f1’] =
value).

6.1.6 Indexing

All python indexing operations arr[index] are organized by first preparing the index and finding the index type.
The supported index types are:

• integer

• newaxis

• slice

• ellipsis

• integer arrays/array-likes (fancy)

• boolean (single boolean array); if there is more than one boolean array as index or the shape does not match
exactly, the boolean array will be converted to an integer array instead.

• 0-d boolean (and also integer); 0-d boolean arrays are a special case which has to be handled in the advanced
indexing code. They signal that a 0-d boolean array had to be interpreted as an integer array.

As well as the scalar array special case signaling that an integer array was interpreted as an integer index, which is
important because an integer array index forces a copy but is ignored if a scalar is returned (full integer index). The
prepared index is guaranteed to be valid with the exception of out of bound values and broadcasting errors for advanced
indexing. This includes that an ellipsis is added for incomplete indices for example when a two dimensional array is
indexed with a single integer.

The next step depends on the type of index which was found. If all dimensions are indexed with an integer a scalar
is returned or set. A single boolean indexing array will call specialized boolean functions. Indices containing an
ellipsis or slice but no advanced indexing will always create a view into the old array by calculating the new strides
and memory offset. This view can then either be returned or, for assignments, filled using PyArray_CopyObject.
Note that PyArray_CopyObject may also be called on temporary arrays in other branches to support complicated
assignments when the array is of object dtype.

Advanced indexing

By far the most complex case is advanced indexing, which may or may not be combined with typical view based
indexing. Here integer indices are interpreted as view based. Before trying to understand this, you may want to make
yourself familiar with its subtleties. The advanced indexing code has three different branches and one special case:

• There is one indexing array and it, as well as the assignment array, can be iterated trivially. For example they
may be contiguous. Also the indexing array must be of intp type and the value array in assignments should be
of the correct type. This is purely a fast path.

• There are only integer array indices so that no subarray exists.

6.1. Numpy C Code Explanations 1243

NumPy Reference, Release 1.11.1

• View based and advanced indexing is mixed. In this case the view based indexing defines a collection of
subarrays that are combined by the advanced indexing. For example, arr[[1, 2, 3], :] is created by
vertically stacking the subarrays arr[1, :], arr[2,:], and arr[3, :].

• There is a subarray but it has exactly one element. This case can be handled as if there is no subarray, but needs
some care during setup.

Deciding what case applies, checking broadcasting, and determining the kind of transposition needed are all done in
PyArray_MapIterNew. After setting up, there are two cases. If there is no subarray or it only has one element, no
subarray iteration is necessary and an iterator is prepared which iterates all indexing arrays as well as the result or
value array. If there is a subarray, there are three iterators prepared. One for the indexing arrays, one for the result or
value array (minus its subarray), and one for the subarrays of the original and the result/assignment array. The first
two iterators give (or allow calculation) of the pointers into the start of the subarray, which then allows to restart the
subarray iteration.

When advanced indices are next to each other transposing may be necessary. All necessary transposing is handled
by PyArray_MapIterSwapAxes and has to be handled by the caller unless PyArray_MapIterNew is asked to
allocate the result.

After preparation, getting and setting is relatively straight forward, although the different modes of iteration need to
be considered. Unless there is only a single indexing array during item getting, the validity of the indices is checked
beforehand. Otherwise it is handled in the inner loop itself for optimization.

6.1.7 Universal Functions

Universal functions are callable objects that take 𝑁 inputs and produce 𝑀 outputs by wrapping basic 1-D loops that
work element-by-element into full easy-to use functions that seamlessly implement broadcasting, type-checking and
buffered coercion, and output-argument handling. New universal functions are normally created in C, although there
is a mechanism for creating ufuncs from Python functions (frompyfunc). The user must supply a 1-D loop that
implements the basic function taking the input scalar values and placing the resulting scalars into the appropriate
output slots as explained in implementation.

Setup

Every ufunc calculation involves some overhead related to setting up the calculation. The practical significance of
this overhead is that even though the actual calculation of the ufunc is very fast, you will be able to write array and
type-specific code that will work faster for small arrays than the ufunc. In particular, using ufuncs to perform many
calculations on 0-D arrays will be slower than other Python-based solutions (the silently-imported scalarmath module
exists precisely to give array scalars the look-and-feel of ufunc based calculations with significantly reduced overhead).

When a ufunc is called, many things must be done. The information collected from these setup operations is stored
in a loop-object. This loop object is a C-structure (that could become a Python object but is not initialized as such
because it is only used internally). This loop object has the layout needed to be used with PyArray_Broadcast so that
the broadcasting can be handled in the same way as it is handled in other sections of code.

The first thing done is to look-up in the thread-specific global dictionary the current values for the buffer-size, the error
mask, and the associated error object. The state of the error mask controls what happens when an error condition is
found. It should be noted that checking of the hardware error flags is only performed after each 1-D loop is executed.
This means that if the input and output arrays are contiguous and of the correct type so that a single 1-D loop is
performed, then the flags may not be checked until all elements of the array have been calculated. Looking up these
values in a thread- specific dictionary takes time which is easily ignored for all but very small arrays.

After checking, the thread-specific global variables, the inputs are evaluated to determine how the ufunc should proceed
and the input and output arrays are constructed if necessary. Any inputs which are not arrays are converted to arrays
(using context if necessary). Which of the inputs are scalars (and therefore converted to 0-D arrays) is noted.

1244 Chapter 6. Numpy internals

NumPy Reference, Release 1.11.1

Next, an appropriate 1-D loop is selected from the 1-D loops available to the ufunc based on the input array types. This
1-D loop is selected by trying to match the signature of the data-types of the inputs against the available signatures.
The signatures corresponding to built-in types are stored in the types member of the ufunc structure. The signatures
corresponding to user-defined types are stored in a linked-list of function-information with the head element stored
as a CObject in the userloops dictionary keyed by the data-type number (the first user-defined type in the argument
list is used as the key). The signatures are searched until a signature is found to which the input arrays can all be cast
safely (ignoring any scalar arguments which are not allowed to determine the type of the result). The implication of
this search procedure is that “lesser types” should be placed below “larger types” when the signatures are stored. If no
1-D loop is found, then an error is reported. Otherwise, the argument_list is updated with the stored signature — in
case casting is necessary and to fix the output types assumed by the 1-D loop.

If the ufunc has 2 inputs and 1 output and the second input is an Object array then a special-case check is performed
so that NotImplemented is returned if the second input is not an ndarray, has the __array_priority__ attribute, and
has an __r{op}__ special method. In this way, Python is signaled to give the other object a chance to complete the
operation instead of using generic object-array calculations. This allows (for example) sparse matrices to override the
multiplication operator 1-D loop.

For input arrays that are smaller than the specified buffer size, copies are made of all non-contiguous, mis-aligned, or
out-of- byteorder arrays to ensure that for small arrays, a single loop is used. Then, array iterators are created for all
the input arrays and the resulting collection of iterators is broadcast to a single shape.

The output arguments (if any) are then processed and any missing return arrays are constructed. If any provided output
array doesn’t have the correct type (or is mis-aligned) and is smaller than the buffer size, then a new output array is
constructed with the special UPDATEIFCOPY flag set so that when it is DECREF’d on completion of the function,
it’s contents will be copied back into the output array. Iterators for the output arguments are then processed.

Finally, the decision is made about how to execute the looping mechanism to ensure that all elements of the input
arrays are combined to produce the output arrays of the correct type. The options for loop execution are one-loop (for
contiguous, aligned, and correct data type), strided-loop (for non-contiguous but still aligned and correct data type),
and a buffered loop (for mis-aligned or incorrect data type situations). Depending on which execution method is called
for, the loop is then setup and computed.

Function call

This section describes how the basic universal function computation loop is setup and executed for each of the three
different kinds of execution. If NPY_ALLOW_THREADS is defined during compilation, then as long as no object
arrays are involved, the Python Global Interpreter Lock (GIL) is released prior to calling the loops. It is re-acquired if
necessary to handle error conditions. The hardware error flags are checked only after the 1-D loop is completed.

One Loop

This is the simplest case of all. The ufunc is executed by calling the underlying 1-D loop exactly once. This is possible
only when we have aligned data of the correct type (including byte-order) for both input and output and all arrays have
uniform strides (either contiguous, 0-D, or 1-D). In this case, the 1-D computational loop is called once to compute
the calculation for the entire array. Note that the hardware error flags are only checked after the entire calculation is
complete.

Strided Loop

When the input and output arrays are aligned and of the correct type, but the striding is not uniform (non-contiguous
and 2-D or larger), then a second looping structure is employed for the calculation. This approach converts all of the
iterators for the input and output arguments to iterate over all but the largest dimension. The inner loop is then handled
by the underlying 1-D computational loop. The outer loop is a standard iterator loop on the converted iterators. The
hardware error flags are checked after each 1-D loop is completed.

6.1. Numpy C Code Explanations 1245

NumPy Reference, Release 1.11.1

Buffered Loop

This is the code that handles the situation whenever the input and/or output arrays are either misaligned or of the wrong
data-type (including being byte-swapped) from what the underlying 1-D loop expects. The arrays are also assumed to
be non-contiguous. The code works very much like the strided-loop except for the inner 1-D loop is modified so that
pre-processing is performed on the inputs and post- processing is performed on the outputs in bufsize chunks (where
bufsize is a user-settable parameter). The underlying 1-D computational loop is called on data that is copied over (if it
needs to be). The setup code and the loop code is considerably more complicated in this case because it has to handle:

• memory allocation of the temporary buffers

• deciding whether or not to use buffers on the input and output data (mis-aligned and/or wrong data-type)

• copying and possibly casting data for any inputs or outputs for which buffers are necessary.

• special-casing Object arrays so that reference counts are properly handled when copies and/or casts are neces-
sary.

• breaking up the inner 1-D loop into bufsize chunks (with a possible remainder).

Again, the hardware error flags are checked at the end of each 1-D loop.

Final output manipulation

Ufuncs allow other array-like classes to be passed seamlessly through the interface in that inputs of a particu-
lar class will induce the outputs to be of that same class. The mechanism by which this works is the following.
If any of the inputs are not ndarrays and define the __array_wrap__ method, then the class with the largest
__array_priority__ attribute determines the type of all the outputs (with the exception of any output arrays
passed in). The __array_wrap__ method of the input array will be called with the ndarray being returned from
the ufunc as it’s input. There are two calling styles of the __array_wrap__ function supported. The first takes
the ndarray as the first argument and a tuple of “context” as the second argument. The context is (ufunc, arguments,
output argument number). This is the first call tried. If a TypeError occurs, then the function is called with just the
ndarray as the first argument.

Methods

Their are three methods of ufuncs that require calculation similar to the general-purpose ufuncs. These are reduce,
accumulate, and reduceat. Each of these methods requires a setup command followed by a loop. There are four loop
styles possible for the methods corresponding to no-elements, one-element, strided-loop, and buffered- loop. These
are the same basic loop styles as implemented for the general purpose function call except for the no-element and one-
element cases which are special-cases occurring when the input array objects have 0 and 1 elements respectively.

Setup

The setup function for all three methods is construct_reduce. This function creates a reducing loop object and
fills it with parameters needed to complete the loop. All of the methods only work on ufuncs that take 2-inputs and
return 1 output. Therefore, the underlying 1-D loop is selected assuming a signature of [otype, otype, otype
] where otype is the requested reduction data-type. The buffer size and error handling is then retrieved from (per-
thread) global storage. For small arrays that are mis-aligned or have incorrect data-type, a copy is made so that the
un-buffered section of code is used. Then, the looping strategy is selected. If there is 1 element or 0 elements in the
array, then a simple looping method is selected. If the array is not mis-aligned and has the correct data-type, then
strided looping is selected. Otherwise, buffered looping must be performed. Looping parameters are then established,
and the return array is constructed. The output array is of a different shape depending on whether the method is reduce,
accumulate, or reduceat. If an output array is already provided, then it’s shape is checked. If the output array is not
C-contiguous, aligned, and of the correct data type, then a temporary copy is made with the UPDATEIFCOPY flag set.
In this way, the methods will be able to work with a well-behaved output array but the result will be copied back into
the true output array when the method computation is complete. Finally, iterators are set up to loop over the correct

1246 Chapter 6. Numpy internals

NumPy Reference, Release 1.11.1

axis (depending on the value of axis provided to the method) and the setup routine returns to the actual computation
routine.

Reduce

All of the ufunc methods use the same underlying 1-D computational loops with input and output arguments adjusted
so that the appropriate reduction takes place. For example, the key to the functioning of reduce is that the 1-D loop is
called with the output and the second input pointing to the same position in memory and both having a step- size of 0.
The first input is pointing to the input array with a step- size given by the appropriate stride for the selected axis. In
this way, the operation performed is

𝑜 = 𝑖[0]

𝑜 = 𝑖[𝑘]<op>𝑜 𝑘 = 1 . . . 𝑁

where 𝑁 + 1 is the number of elements in the input, 𝑖, 𝑜 is the output, and 𝑖[𝑘] is the 𝑘th element of 𝑖 along the selected
axis. This basic operations is repeated for arrays with greater than 1 dimension so that the reduction takes place for
every 1-D sub-array along the selected axis. An iterator with the selected dimension removed handles this looping.

For buffered loops, care must be taken to copy and cast data before the loop function is called because the underlying
loop expects aligned data of the correct data-type (including byte-order). The buffered loop must handle this copying
and casting prior to calling the loop function on chunks no greater than the user-specified bufsize.

Accumulate

The accumulate function is very similar to the reduce function in that the output and the second input both point to the
output. The difference is that the second input points to memory one stride behind the current output pointer. Thus,
the operation performed is

𝑜[0] = 𝑖[0]

𝑜[𝑘] = 𝑖[𝑘]<op>𝑜[𝑘 − 1] 𝑘 = 1 . . . 𝑁.

The output has the same shape as the input and each 1-D loop operates over 𝑁 elements when the shape in the selected
axis is 𝑁+1. Again, buffered loops take care to copy and cast the data before calling the underlying 1-D computational
loop.

Reduceat

The reduceat function is a generalization of both the reduce and accumulate functions. It implements a reduce over
ranges of the input array specified by indices. The extra indices argument is checked to be sure that every input
is not too large for the input array along the selected dimension before the loop calculations take place. The loop
implementation is handled using code that is very similar to the reduce code repeated as many times as there are
elements in the indices input. In particular: the first input pointer passed to the underlying 1-D computational loop
points to the input array at the correct location indicated by the index array. In addition, the output pointer and the
second input pointer passed to the underlying 1-D loop point to the same position in memory. The size of the 1-D
computational loop is fixed to be the difference between the current index and the next index (when the current index
is the last index, then the next index is assumed to be the length of the array along the selected dimension). In this
way, the 1-D loop will implement a reduce over the specified indices.

Mis-aligned or a loop data-type that does not match the input and/or output data-type is handled using buffered code
where-in data is copied to a temporary buffer and cast to the correct data-type if necessary prior to calling the under-
lying 1-D function. The temporary buffers are created in (element) sizes no bigger than the user settable buffer-size
value. Thus, the loop must be flexible enough to call the underlying 1-D computational loop enough times to complete
the total calculation in chunks no bigger than the buffer-size.

6.1. Numpy C Code Explanations 1247

NumPy Reference, Release 1.11.1

6.2 Internal organization of numpy arrays

It helps to understand a bit about how numpy arrays are handled under the covers to help understand numpy better.
This section will not go into great detail. Those wishing to understand the full details are referred to Travis Oliphant’s
book “Guide to Numpy”.

Numpy arrays consist of two major components, the raw array data (from now on, referred to as the data buffer), and
the information about the raw array data. The data buffer is typically what people think of as arrays in C or Fortran,
a contiguous (and fixed) block of memory containing fixed sized data items. Numpy also contains a significant set of
data that describes how to interpret the data in the data buffer. This extra information contains (among other things):

1. The basic data element’s size in bytes

2. The start of the data within the data buffer (an offset relative to the beginning of the data buffer).

3. The number of dimensions and the size of each dimension

4. The separation between elements for each dimension (the ‘stride’). This does not have to be a multiple of the
element size

5. The byte order of the data (which may not be the native byte order)

6. Whether the buffer is read-only

7. Information (via the dtype object) about the interpretation of the basic data element. The basic data element
may be as simple as a int or a float, or it may be a compound object (e.g., struct-like), a fixed character field, or
Python object pointers.

8. Whether the array is to interpreted as C-order or Fortran-order.

This arrangement allow for very flexible use of arrays. One thing that it allows is simple changes of the metadata
to change the interpretation of the array buffer. Changing the byteorder of the array is a simple change involving no
rearrangement of the data. The shape of the array can be changed very easily without changing anything in the data
buffer or any data copying at all

Among other things that are made possible is one can create a new array metadata object that uses the same data buffer
to create a new view of that data buffer that has a different interpretation of the buffer (e.g., different shape, offset,
byte order, strides, etc) but shares the same data bytes. Many operations in numpy do just this such as slices. Other
operations, such as transpose, don’t move data elements around in the array, but rather change the information about
the shape and strides so that the indexing of the array changes, but the data in the doesn’t move.

Typically these new versions of the array metadata but the same data buffer are new ‘views’ into the data buffer. There
is a different ndarray object, but it uses the same data buffer. This is why it is necessary to force copies through use of
the .copy() method if one really wants to make a new and independent copy of the data buffer.

New views into arrays mean the the object reference counts for the data buffer increase. Simply doing away with the
original array object will not remove the data buffer if other views of it still exist.

6.3 Multidimensional Array Indexing Order Issues

What is the right way to index multi-dimensional arrays? Before you jump to conclusions about the one and true
way to index multi-dimensional arrays, it pays to understand why this is a confusing issue. This section will try to
explain in detail how numpy indexing works and why we adopt the convention we do for images, and when it may be
appropriate to adopt other conventions.

The first thing to understand is that there are two conflicting conventions for indexing 2-dimensional arrays. Matrix
notation uses the first index to indicate which row is being selected and the second index to indicate which column
is selected. This is opposite the geometrically oriented-convention for images where people generally think the first

1248 Chapter 6. Numpy internals

NumPy Reference, Release 1.11.1

index represents x position (i.e., column) and the second represents y position (i.e., row). This alone is the source of
much confusion; matrix-oriented users and image-oriented users expect two different things with regard to indexing.

The second issue to understand is how indices correspond to the order the array is stored in memory. In Fortran the first
index is the most rapidly varying index when moving through the elements of a two dimensional array as it is stored
in memory. If you adopt the matrix convention for indexing, then this means the matrix is stored one column at a time
(since the first index moves to the next row as it changes). Thus Fortran is considered a Column-major language. C
has just the opposite convention. In C, the last index changes most rapidly as one moves through the array as stored
in memory. Thus C is a Row-major language. The matrix is stored by rows. Note that in both cases it presumes that
the matrix convention for indexing is being used, i.e., for both Fortran and C, the first index is the row. Note this
convention implies that the indexing convention is invariant and that the data order changes to keep that so.

But that’s not the only way to look at it. Suppose one has large two-dimensional arrays (images or matrices) stored
in data files. Suppose the data are stored by rows rather than by columns. If we are to preserve our index convention
(whether matrix or image) that means that depending on the language we use, we may be forced to reorder the data
if it is read into memory to preserve our indexing convention. For example if we read row-ordered data into memory
without reordering, it will match the matrix indexing convention for C, but not for Fortran. Conversely, it will match
the image indexing convention for Fortran, but not for C. For C, if one is using data stored in row order, and one wants
to preserve the image index convention, the data must be reordered when reading into memory.

In the end, which you do for Fortran or C depends on which is more important, not reordering data or preserving the
indexing convention. For large images, reordering data is potentially expensive, and often the indexing convention is
inverted to avoid that.

The situation with numpy makes this issue yet more complicated. The internal machinery of numpy arrays is flexible
enough to accept any ordering of indices. One can simply reorder indices by manipulating the internal stride infor-
mation for arrays without reordering the data at all. Numpy will know how to map the new index order to the data
without moving the data.

So if this is true, why not choose the index order that matches what you most expect? In particular, why not define
row-ordered images to use the image convention? (This is sometimes referred to as the Fortran convention vs the C
convention, thus the ‘C’ and ‘FORTRAN’ order options for array ordering in numpy.) The drawback of doing this
is potential performance penalties. It’s common to access the data sequentially, either implicitly in array operations
or explicitly by looping over rows of an image. When that is done, then the data will be accessed in non-optimal
order. As the first index is incremented, what is actually happening is that elements spaced far apart in memory are
being sequentially accessed, with usually poor memory access speeds. For example, for a two dimensional image ‘im’
defined so that im[0, 10] represents the value at x=0, y=10. To be consistent with usual Python behavior then im[0]
would represent a column at x=0. Yet that data would be spread over the whole array since the data are stored in
row order. Despite the flexibility of numpy’s indexing, it can’t really paper over the fact basic operations are rendered
inefficient because of data order or that getting contiguous subarrays is still awkward (e.g., im[:,0] for the first row,
vs im[0]), thus one can’t use an idiom such as for row in im; for col in im does work, but doesn’t yield contiguous
column data.

As it turns out, numpy is smart enough when dealing with ufuncs to determine which index is the most rapidly varying
one in memory and uses that for the innermost loop. Thus for ufuncs there is no large intrinsic advantage to either
approach in most cases. On the other hand, use of .flat with an FORTRAN ordered array will lead to non-optimal
memory access as adjacent elements in the flattened array (iterator, actually) are not contiguous in memory.

Indeed, the fact is that Python indexing on lists and other sequences naturally leads to an outside-to inside ordering
(the first index gets the largest grouping, the next the next largest, and the last gets the smallest element). Since image
data are normally stored by rows, this corresponds to position within rows being the last item indexed.

If you do want to use Fortran ordering realize that there are two approaches to consider: 1) accept that the first index
is just not the most rapidly changing in memory and have all your I/O routines reorder your data when going from
memory to disk or visa versa, or use numpy’s mechanism for mapping the first index to the most rapidly varying
data. We recommend the former if possible. The disadvantage of the latter is that many of numpy’s functions will
yield arrays without Fortran ordering unless you are careful to use the ‘order’ keyword. Doing this would be highly
inconvenient.

6.3. Multidimensional Array Indexing Order Issues 1249

NumPy Reference, Release 1.11.1

Otherwise we recommend simply learning to reverse the usual order of indices when accessing elements of an array.
Granted, it goes against the grain, but it is more in line with Python semantics and the natural order of the data.

1250 Chapter 6. Numpy internals

CHAPTER

SEVEN

NUMPY AND SWIG

7.1 Numpy.i: a SWIG Interface File for NumPy

7.1.1 Introduction

The Simple Wrapper and Interface Generator (or SWIG) is a powerful tool for generating wrapper code for interfacing
to a wide variety of scripting languages. SWIG can parse header files, and using only the code prototypes, create an
interface to the target language. But SWIG is not omnipotent. For example, it cannot know from the prototype:

double rms(double* seq, int n);

what exactly seq is. Is it a single value to be altered in-place? Is it an array, and if so what is its length? Is it
input-only? Output-only? Input-output? SWIG cannot determine these details, and does not attempt to do so.

If we designed rms, we probably made it a routine that takes an input-only array of length n of double values called
seq and returns the root mean square. The default behavior of SWIG, however, will be to create a wrapper function
that compiles, but is nearly impossible to use from the scripting language in the way the C routine was intended.

For Python, the preferred way of handling contiguous (or technically, strided) blocks of homogeneous data is with
NumPy, which provides full object-oriented access to multidimensial arrays of data. Therefore, the most logical
Python interface for the rms function would be (including doc string):

def rms(seq):
"""
rms: return the root mean square of a sequence
rms(numpy.ndarray) -> double
rms(list) -> double
rms(tuple) -> double
"""

where seq would be a NumPy array of double values, and its length n would be extracted from seq internally
before being passed to the C routine. Even better, since NumPy supports construction of arrays from arbitrary Python
sequences, seq itself could be a nearly arbitrary sequence (so long as each element can be converted to a double)
and the wrapper code would internally convert it to a NumPy array before extracting its data and length.

SWIG allows these types of conversions to be defined via a mechanism called typemaps. This document provides
information on how to use numpy.i, a SWIG interface file that defines a series of typemaps intended to make the
type of array-related conversions described above relatively simple to implement. For example, suppose that the rms
function prototype defined above was in a header file named rms.h. To obtain the Python interface discussed above,
your SWIG interface file would need the following:

%{
#define SWIG_FILE_WITH_INIT
#include "rms.h"
%}

1251

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

%include "numpy.i"

%init %{
import_array();
%}

%apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)};
%include "rms.h"

Typemaps are keyed off a list of one or more function arguments, either by type or by type and name. We will
refer to such lists as signatures. One of the many typemaps defined by numpy.i is used above and has the signature
(double* IN_ARRAY1, int DIM1). The argument names are intended to suggest that the double* argument
is an input array of one dimension and that the int represents the size of that dimension. This is precisely the pattern
in the rms prototype.

Most likely, no actual prototypes to be wrapped will have the argument names IN_ARRAY1 and DIM1. We use
the SWIG %apply directive to apply the typemap for one-dimensional input arrays of type double to the actual
prototype used by rms. Using numpy.i effectively, therefore, requires knowing what typemaps are available and
what they do.

A SWIG interface file that includes the SWIG directives given above will produce wrapper code that looks something
like:

1 PyObject *_wrap_rms(PyObject *args) {
2 PyObject *resultobj = 0;
3 double *arg1 = (double *) 0 ;
4 int arg2 ;
5 double result;
6 PyArrayObject *array1 = NULL ;
7 int is_new_object1 = 0 ;
8 PyObject * obj0 = 0 ;
9

10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail;
11 {
12 array1 = obj_to_array_contiguous_allow_conversion(
13 obj0, NPY_DOUBLE, &is_new_object1);
14 npy_intp size[1] = {
15 -1
16 };
17 if (!array1 || !require_dimensions(array1, 1) ||
18 !require_size(array1, size, 1)) SWIG_fail;
19 arg1 = (double*) array1->data;
20 arg2 = (int) array1->dimensions[0];
21 }
22 result = (double)rms(arg1,arg2);
23 resultobj = SWIG_From_double((double)(result));
24 {
25 if (is_new_object1 && array1) Py_DECREF(array1);
26 }
27 return resultobj;
28 fail:
29 {
30 if (is_new_object1 && array1) Py_DECREF(array1);
31 }
32 return NULL;
33 }

The typemaps from numpy.i are responsible for the following lines of code: 12–20, 25 and 30. Line 10 parses

1252 Chapter 7. Numpy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

the input to the rms function. From the format string "O:rms", we can see that the argument list is expected to
be a single Python object (specified by the O before the colon) and whose pointer is stored in obj0. A number of
functions, supplied by numpy.i, are called to make and check the (possible) conversion from a generic Python object
to a NumPy array. These functions are explained in the section Helper Functions, but hopefully their names are self-
explanatory. At line 12 we use obj0 to construct a NumPy array. At line 17, we check the validity of the result: that
it is non-null and that it has a single dimension of arbitrary length. Once these states are verified, we extract the data
buffer and length in lines 19 and 20 so that we can call the underlying C function at line 22. Line 25 performs memory
management for the case where we have created a new array that is no longer needed.

This code has a significant amount of error handling. Note the SWIG_fail is a macro for goto fail, refering to
the label at line 28. If the user provides the wrong number of arguments, this will be caught at line 10. If construction
of the NumPy array fails or produces an array with the wrong number of dimensions, these errors are caught at line
17. And finally, if an error is detected, memory is still managed correctly at line 30.

Note that if the C function signature was in a different order:

double rms(int n, double* seq);

that SWIG would not match the typemap signature given above with the argument list for rms. Fortunately, numpy.i
has a set of typemaps with the data pointer given last:

%apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)};

This simply has the effect of switching the definitions of arg1 and arg2 in lines 3 and 4 of the generated code above,
and their assignments in lines 19 and 20.

7.1.2 Using numpy.i

The numpy.i file is currently located in the tools/swig sub-directory under the numpy installation directory.
Typically, you will want to copy it to the directory where you are developing your wrappers.

A simple module that only uses a single SWIG interface file should include the following:

%{
#define SWIG_FILE_WITH_INIT
%}
%include "numpy.i"
%init %{
import_array();
%}

Within a compiled Python module, import_array() should only get called once. This could be in a C/C++
file that you have written and is linked to the module. If this is the case, then none of your interface files should
#define SWIG_FILE_WITH_INIT or call import_array(). Or, this initialization call could be in a wrapper
file generated by SWIG from an interface file that has the %init block as above. If this is the case, and you have
more than one SWIG interface file, then only one interface file should #define SWIG_FILE_WITH_INIT and
call import_array().

7.1.3 Available Typemaps

The typemap directives provided by numpy.i for arrays of different data types, say double and int, and dimen-
sions of different types, say int or long, are identical to one another except for the C and NumPy type specifications.
The typemaps are therefore implemented (typically behind the scenes) via a macro:

%numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)

7.1. Numpy.i: a SWIG Interface File for NumPy 1253

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

that can be invoked for appropriate (DATA_TYPE, DATA_TYPECODE, DIM_TYPE) triplets. For example:

%numpy_typemaps(double, NPY_DOUBLE, int)
%numpy_typemaps(int, NPY_INT , int)

The numpy.i interface file uses the %numpy_typemaps macro to implement typemaps for the following C data
types and int dimension types:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

• unsigned long long

• float

• double

In the following descriptions, we reference a generic DATA_TYPE, which could be any of the C data types listed
above, and DIM_TYPE which should be one of the many types of integers.

The typemap signatures are largely differentiated on the name given to the buffer pointer. Names with FARRAY are
for Fortran-ordered arrays, and names with ARRAY are for C-ordered (or 1D arrays).

Input Arrays

Input arrays are defined as arrays of data that are passed into a routine but are not altered in-place or returned to
the user. The Python input array is therefore allowed to be almost any Python sequence (such as a list) that can be
converted to the requested type of array. The input array signatures are

1D:

• (DATA_TYPE IN_ARRAY1[ANY])

• (DATA_TYPE* IN_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* IN_ARRAY1)

2D:

• (DATA_TYPE IN_ARRAY2[ANY][ANY])

• (DATA_TYPE* IN_ARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2)

• (DATA_TYPE* IN_FARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* IN_FARRAY2)

3D:

• (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])

1254 Chapter 7. Numpy and SWIG

NumPy Reference, Release 1.11.1

• (DATA_TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_ARRAY3)

• (DATA_TYPE* IN_FARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_FARRAY3)

4D:

• (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
IN_ARRAY4)

• (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
IN_FARRAY4)

The first signature listed, (DATA_TYPE IN_ARRAY[ANY]) is for one-dimensional arrays with hard-coded di-
mensions. Likewise, (DATA_TYPE IN_ARRAY2[ANY][ANY]) is for two-dimensional arrays with hard-coded
dimensions, and similarly for three-dimensional.

In-Place Arrays

In-place arrays are defined as arrays that are modified in-place. The input values may or may not be used, but the
values at the time the function returns are significant. The provided Python argument must therefore be a NumPy
array of the required type. The in-place signatures are

1D:

• (DATA_TYPE INPLACE_ARRAY1[ANY])

• (DATA_TYPE* INPLACE_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* INPLACE_ARRAY1)

2D:

• (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* INPLACE_ARRAY2)

• (DATA_TYPE* INPLACE_FARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* INPLACE_FARRAY2)

3D:

• (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_ARRAY3)

• (DATA_TYPE* INPLACE_FARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_FARRAY3)

4D:

7.1. Numpy.i: a SWIG Interface File for NumPy 1255

NumPy Reference, Release 1.11.1

• (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
INPLACE_ARRAY4)

• (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
INPLACE_FARRAY4)

These typemaps now check to make sure that the INPLACE_ARRAY arguments use native byte ordering. If not, an
exception is raised.

There is also a “flat” in-place array for situations in which you would like to modify or process each element, regardless
of the number of dimensions. One example is a “quantization” function that quantizes each element of an array in-
place, be it 1D, 2D or whatever. This form checks for continuity but allows either C or Fortran ordering.

ND:

• (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT)

Argout Arrays

Argout arrays are arrays that appear in the input arguments in C, but are in fact output arrays. This pattern occurs often
when there is more than one output variable and the single return argument is therefore not sufficient. In Python, the
convential way to return multiple arguments is to pack them into a sequence (tuple, list, etc.) and return the sequence.
This is what the argout typemaps do. If a wrapped function that uses these argout typemaps has more than one return
argument, they are packed into a tuple or list, depending on the version of Python. The Python user does not pass
these arrays in, they simply get returned. For the case where a dimension is specified, the python user must provide
that dimension as an argument. The argout signatures are

1D:

• (DATA_TYPE ARGOUT_ARRAY1[ANY])

• (DATA_TYPE* ARGOUT_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* ARGOUT_ARRAY1)

2D:

• (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])

3D:

• (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])

4D:

• (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY])

These are typically used in situations where in C/C++, you would allocate a(n) array(s) on the heap, and call the
function to fill the array(s) values. In Python, the arrays are allocated for you and returned as new array objects.

Note that we support DATA_TYPE* argout typemaps in 1D, but not 2D or 3D. This is because of a quirk with the
SWIG typemap syntax and cannot be avoided. Note that for these types of 1D typemaps, the Python function will take
a single argument representing DIM1.

1256 Chapter 7. Numpy and SWIG

http://www.swig.org

NumPy Reference, Release 1.11.1

Argout View Arrays

Argoutview arrays are for when your C code provides you with a view of its internal data and does not require any
memory to be allocated by the user. This can be dangerous. There is almost no way to guarantee that the internal data
from the C code will remain in existence for the entire lifetime of the NumPy array that encapsulates it. If the user
destroys the object that provides the view of the data before destroying the NumPy array, then using that array may
result in bad memory references or segmentation faults. Nevertheless, there are situations, working with large data
sets, where you simply have no other choice.

The C code to be wrapped for argoutview arrays are characterized by pointers: pointers to the dimensions and double
pointers to the data, so that these values can be passed back to the user. The argoutview typemap signatures are
therefore

1D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)

• (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)

2D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)

• (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)

3D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEW_ARRAY3)

• (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEW_FARRAY3)

4D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEW_ARRAY4)

• (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEW_FARRAY4)

Note that arrays with hard-coded dimensions are not supported. These cannot follow the double pointer signatures of
these typemaps.

7.1. Numpy.i: a SWIG Interface File for NumPy 1257

NumPy Reference, Release 1.11.1

Memory Managed Argout View Arrays

A recent addition to numpy.i are typemaps that permit argout arrays with views into memory that is managed. See
the discussion here.

1D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1)

• (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1)

2D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2)

3D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEWM_ARRAY3)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE**
ARGOUTVIEWM_FARRAY3)

4D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEWM_ARRAY4)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
DIM_TYPE* DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4,
DATA_TYPE** ARGOUTVIEWM_FARRAY4)

Output Arrays

The numpy.i interface file does not support typemaps for output arrays, for several reasons. First, C/C++ return
arguments are limited to a single value. This prevents obtaining dimension information in a general way. Second,
arrays with hard-coded lengths are not permitted as return arguments. In other words:

double[3] newVector(double x, double y, double z);

is not legal C/C++ syntax. Therefore, we cannot provide typemaps of the form:

%typemap(out) (TYPE[ANY]);

If you run into a situation where a function or method is returning a pointer to an array, your best bet is to write your
own version of the function to be wrapped, either with %extend for the case of class methods or %ignore and
%rename for the case of functions.

1258 Chapter 7. Numpy and SWIG

http://blog.enthought.com/python/numpy-arrays-with-pre-allocated-memory

NumPy Reference, Release 1.11.1

Other Common Types: bool

Note that C++ type bool is not supported in the list in the Available Typemaps section. NumPy bools are a single
byte, while the C++ bool is four bytes (at least on my system). Therefore:

%numpy_typemaps(bool, NPY_BOOL, int)

will result in typemaps that will produce code that reference improper data lengths. You can implement the following
macro expansion:

%numpy_typemaps(bool, NPY_UINT, int)

to fix the data length problem, and Input Arrays will work fine, but In-Place Arrays might fail type-checking.

Other Common Types: complex

Typemap conversions for complex floating-point types is also not supported automatically. This is because Python and
NumPy are written in C, which does not have native complex types. Both Python and NumPy implement their own
(essentially equivalent) struct definitions for complex variables:

/* Python */
typedef struct {double real; double imag;} Py_complex;

/* NumPy */
typedef struct {float real, imag;} npy_cfloat;
typedef struct {double real, imag;} npy_cdouble;

We could have implemented:

%numpy_typemaps(Py_complex , NPY_CDOUBLE, int)
%numpy_typemaps(npy_cfloat , NPY_CFLOAT , int)
%numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int)

which would have provided automatic type conversions for arrays of type Py_complex, npy_cfloat and
npy_cdouble. However, it seemed unlikely that there would be any independent (non-Python, non-NumPy) ap-
plication code that people would be using SWIG to generate a Python interface to, that also used these definitions
for complex types. More likely, these application codes will define their own complex types, or in the case of
C++, use std::complex. Assuming these data structures are compatible with Python and NumPy complex types,
%numpy_typemap expansions as above (with the user’s complex type substituted for the first argument) should
work.

7.1.4 NumPy Array Scalars and SWIG

SWIG has sophisticated type checking for numerical types. For example, if your C/C++ routine expects an integer
as input, the code generated by SWIG will check for both Python integers and Python long integers, and raise an
overflow error if the provided Python integer is too big to cast down to a C integer. With the introduction of NumPy
scalar arrays into your Python code, you might conceivably extract an integer from a NumPy array and attempt to
pass this to a SWIG-wrapped C/C++ function that expects an int, but the SWIG type checking will not recognize
the NumPy array scalar as an integer. (Often, this does in fact work – it depends on whether NumPy recognizes the
integer type you are using as inheriting from the Python integer type on the platform you are using. Sometimes, this
means that code that works on a 32-bit machine will fail on a 64-bit machine.)

If you get a Python error that looks like the following:

TypeError: in method 'MyClass_MyMethod', argument 2 of type 'int'

7.1. Numpy.i: a SWIG Interface File for NumPy 1259

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

and the argument you are passing is an integer extracted from a NumPy array, then you have stumbled upon this
problem. The solution is to modify the SWIG type conversion system to accept Numpy array scalars in addition to the
standard integer types. Fortunately, this capabilitiy has been provided for you. Simply copy the file:

pyfragments.swg

to the working build directory for you project, and this problem will be fixed. It is suggested that you do this anyway,
as it only increases the capabilities of your Python interface.

Why is There a Second File?

The SWIG type checking and conversion system is a complicated combination of C macros, SWIG macros, SWIG
typemaps and SWIG fragments. Fragments are a way to conditionally insert code into your wrapper file if it is needed,
and not insert it if not needed. If multiple typemaps require the same fragment, the fragment only gets inserted into
your wrapper code once.

There is a fragment for converting a Python integer to a C long. There is a different fragment that converts a Python
integer to a C int, that calls the rountine defined in the long fragment. We can make the changes we want here by
changing the definition for the long fragment. SWIG determines the active definition for a fragment using a “first
come, first served” system. That is, we need to define the fragment for long conversions prior to SWIG doing it
internally. SWIG allows us to do this by putting our fragment definitions in the file pyfragments.swg. If we were
to put the new fragment definitions in numpy.i, they would be ignored.

7.1.5 Helper Functions

The numpy.i file containes several macros and routines that it uses internally to build its typemaps. However, these
functions may be useful elsewhere in your interface file. These macros and routines are implemented as fragments,
which are described briefly in the previous section. If you try to use one or more of the following macros or functions,
but your compiler complains that it does not recognize the symbol, then you need to force these fragments to appear
in your code using:

%fragment("NumPy_Fragments");

in your SWIG interface file.

Macros

is_array(a)
Evaluates as true if a is non-NULL and can be cast to a PyArrayObject*.

array_type(a)
Evaluates to the integer data type code of a, assuming a can be cast to a PyArrayObject*.

array_numdims(a)
Evaluates to the integer number of dimensions of a, assuming a can be cast to a
PyArrayObject*.

array_dimensions(a)
Evaluates to an array of type npy_intp and length array_numdims(a), giving the lengths of
all of the dimensions of a, assuming a can be cast to a PyArrayObject*.

array_size(a,i)
Evaluates to the i-th dimension size of a, assuming a can be cast to a PyArrayObject*.

1260 Chapter 7. Numpy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

array_strides(a)
Evaluates to an array of type npy_intp and length array_numdims(a), giving the stridess of
all of the dimensions of a, assuming a can be cast to a PyArrayObject*. A stride is the distance
in bytes between an element and its immediate neighbor along the same axis.

array_stride(a,i)
Evaluates to the i-th stride of a, assuming a can be cast to a PyArrayObject*.

array_data(a)
Evaluates to a pointer of type void* that points to the data buffer of a, assuming a can be cast to a
PyArrayObject*.

array_descr(a)
Returns a borrowed reference to the dtype property (PyArray_Descr*) of a, assuming a can be
cast to a PyArrayObject*.

array_flags(a)
Returns an integer representing the flags of a, assuming a can be cast to a PyArrayObject*.

array_enableflags(a,f)
Sets the flag represented by f of a, assuming a can be cast to a PyArrayObject*.

array_is_contiguous(a)
Evaluates as true if a is a contiguous array. Equivalent to (PyArray_ISCONTIGUOUS(a)).

array_is_native(a)
Evaluates as true if the data buffer of a uses native byte order. Equivalent to
(PyArray_ISNOTSWAPPED(a)).

array_is_fortran(a)
Evaluates as true if a is FORTRAN ordered.

Routines

pytype_string()

Return type: const char*

Arguments:

• PyObject* py_obj, a general Python object.

Return a string describing the type of py_obj.

typecode_string()

Return type: const char*

Arguments:

• int typecode, a NumPy integer typecode.

Return a string describing the type corresponding to the NumPy typecode.

type_match()

Return type: int

Arguments:

• int actual_type, the NumPy typecode of a NumPy array.

• int desired_type, the desired NumPy typecode.

7.1. Numpy.i: a SWIG Interface File for NumPy 1261

NumPy Reference, Release 1.11.1

Make sure that actual_type is compatible with desired_type. For example, this al-
lows character and byte types, or int and long types, to match. This is now equivalent to
PyArray_EquivTypenums().

obj_to_array_no_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode.

Cast input to a PyArrayObject* if legal, and ensure that it is of type typecode. If
input cannot be cast, or the typecode is wrong, set a Python error and return NULL.

obj_to_array_allow_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a NumPy array with the given typecode. On success, return a valid
PyArrayObject* with the correct type. On failure, the Python error string will be set and
the routine returns NULL.

make_contiguous()

Return type: PyArrayObject*

Arguments:

• PyArrayObject* ary, a NumPy array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

• int min_dims, minimum allowable dimensions.

• int max_dims, maximum allowable dimensions.

Check to see if ary is contiguous. If so, return the input pointer and flag it as not a new object.
If it is not contiguous, create a new PyArrayObject* using the original data, flag it as a
new object and return the pointer.

make_fortran()

Return type: PyArrayObject*

Arguments

• PyArrayObject* ary, a NumPy array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Check to see if ary is Fortran contiguous. If so, return the input pointer and flag it as not a
new object. If it is not Fortran contiguous, create a new PyArrayObject* using the original
data, flag it as a new object and return the pointer.

obj_to_array_contiguous_allow_conversion()

1262 Chapter 7. Numpy and SWIG

NumPy Reference, Release 1.11.1

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a contiguous PyArrayObject* of the specified type. If the input object
is not a contiguous PyArrayObject*, a new one will be created and the new object flag
will be set.

obj_to_array_fortran_allow_conversion()

Return type: PyArrayObject*

Arguments:

• PyObject* input, a general Python object.

• int typecode, the desired NumPy typecode of the resulting array.

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a Fortran contiguous PyArrayObject* of the specified type. If the input
object is not a Fortran contiguous PyArrayObject*, a new one will be created and the new
object flag will be set.

require_contiguous()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

Test whether ary is contiguous. If so, return 1. Otherwise, set a Python error and return 0.

require_native()

Return type: int

Arguments:

• PyArray_Object* ary, a NumPy array.

Require that ary is not byte-swapped. If the array is not byte-swapped, return 1. Otherwise,
set a Python error and return 0.

require_dimensions()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

• int exact_dimensions, the desired number of dimensions.

Require ary to have a specified number of dimensions. If the array has the specified number
of dimensions, return 1. Otherwise, set a Python error and return 0.

require_dimensions_n()

Return type: int

Arguments:

7.1. Numpy.i: a SWIG Interface File for NumPy 1263

NumPy Reference, Release 1.11.1

• PyArrayObject* ary, a NumPy array.

• int* exact_dimensions, an array of integers representing acceptable numbers of
dimensions.

• int n, the length of exact_dimensions.

Require ary to have one of a list of specified number of dimensions. If the array has one of
the specified number of dimensions, return 1. Otherwise, set the Python error string and return
0.

require_size()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

• npy_int* size, an array representing the desired lengths of each dimension.

• int n, the length of size.

Require ary to have a specified shape. If the array has the specified shape, return 1. Otherwise,
set the Python error string and return 0.

require_fortran()

Return type: int

Arguments:

• PyArrayObject* ary, a NumPy array.

Require the given PyArrayObject to to be Fortran ordered. If the the PyArrayObject
is already Fortran ordered, do nothing. Else, set the Fortran ordering flag and recompute the
strides.

7.1.6 Beyond the Provided Typemaps

There are many C or C++ array/NumPy array situations not covered by a simple %include "numpy.i" and
subsequent %apply directives.

A Common Example

Consider a reasonable prototype for a dot product function:

double dot(int len, double* vec1, double* vec2);

The Python interface that we want is:

def dot(vec1, vec2):
"""
dot(PyObject,PyObject) -> double
"""

The problem here is that there is one dimension argument and two array arguments, and our typemaps are set up for
dimensions that apply to a single array (in fact, SWIG does not provide a mechanism for associating len with vec2
that takes two Python input arguments). The recommended solution is the following:

1264 Chapter 7. Numpy and SWIG

http://www.swig.org

NumPy Reference, Release 1.11.1

%apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1),
(int len2, double* vec2)}

%rename (dot) my_dot;
%exception my_dot {

$action
if (PyErr_Occurred()) SWIG_fail;

}
%inline %{
double my_dot(int len1, double* vec1, int len2, double* vec2) {

if (len1 != len2) {
PyErr_Format(PyExc_ValueError,

"Arrays of lengths (%d,%d) given",
len1, len2);

return 0.0;
}
return dot(len1, vec1, vec2);

}
%}

If the header file that contains the prototype for double dot() also contains other prototypes that you want to
wrap, so that you need to %include this header file, then you will also need a %ignore dot; directive, placed
after the %rename and before the %include directives. Or, if the function in question is a class method, you will
want to use %extend rather than %inline in addition to %ignore.

A note on error handling: Note that my_dot returns a double but that it can also raise a Python error. The resulting
wrapper function will return a Python float representation of 0.0 when the vector lengths do not match. Since this is
not NULL, the Python interpreter will not know to check for an error. For this reason, we add the %exception
directive above for my_dot to get the behavior we want (note that $action is a macro that gets expanded to a valid
call to my_dot). In general, you will probably want to write a SWIG macro to perform this task.

Other Situations

There are other wrapping situations in which numpy.i may be helpful when you encounter them.

• In some situations, it is possible that you could use the %numpy_typemaps macro to implement typemaps for
your own types. See the Other Common Types: bool or Other Common Types: complex sections for examples.
Another situation is if your dimensions are of a type other than int (say long for example):

%numpy_typemaps(double, NPY_DOUBLE, long)

• You can use the code in numpy.i to write your own typemaps. For example, if you had a five-dimensional
array as a function argument, you could cut-and-paste the appropriate four-dimensional typemaps into your
interface file. The modifications for the fourth dimension would be trivial.

• Sometimes, the best approach is to use the %extend directive to define new methods for your classes (or
overload existing ones) that take a PyObject* (that either is or can be converted to a PyArrayObject*)
instead of a pointer to a buffer. In this case, the helper routines in numpy.i can be very useful.

• Writing typemaps can be a bit nonintuitive. If you have specific questions about writing SWIG typemaps for
NumPy, the developers of numpy.i do monitor the Numpy-discussion and Swig-user mail lists.

A Final Note

When you use the %apply directive, as is usually necessary to use numpy.i, it will remain in effect until you tell
SWIG that it shouldn’t be. If the arguments to the functions or methods that you are wrapping have common names,

7.1. Numpy.i: a SWIG Interface File for NumPy 1265

http://www.swig.org
http://www.swig.org
mailto:Numpy-discussion@scipy.org
mailto:Swig-user@lists.sourceforge.net
http://www.swig.org

NumPy Reference, Release 1.11.1

such as length or vector, these typemaps may get applied in situations you do not expect or want. Therefore, it is
always a good idea to add a %clear directive after you are done with a specific typemap:

%apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)}
%include "my_header.h"
%clear (double* vector, int length);

In general, you should target these typemap signatures specifically where you want them, and then clear them after
you are done.

7.1.7 Summary

Out of the box, numpy.i provides typemaps that support conversion between NumPy arrays and C arrays:

• That can be one of 12 different scalar types: signed char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned long, long long, unsigned long long,
float and double.

• That support 74 different argument signatures for each data type, including:

– One-dimensional, two-dimensional, three-dimensional and four-dimensional arrays.

– Input-only, in-place, argout, argoutview, and memory managed argoutview behavior.

– Hard-coded dimensions, data-buffer-then-dimensions specification, and dimensions-then-data-buffer spec-
ification.

– Both C-ordering (“last dimension fastest”) or Fortran-ordering (“first dimension fastest”) support for 2D,
3D and 4D arrays.

The numpy.i interface file also provides additional tools for wrapper developers, including:

• A SWIG macro (%numpy_typemaps) with three arguments for implementing the 74 argument signatures for
the user’s choice of (1) C data type, (2) NumPy data type (assuming they match), and (3) dimension type.

• Fourteen C macros and fifteen C functions that can be used to write specialized typemaps, extensions, or inlined
functions that handle cases not covered by the provided typemaps. Note that the macros and functions are coded
specifically to work with the NumPy C/API regardless of NumPy version number, both before and after the
deprecation of some aspects of the API after version 1.6.

7.2 Testing the numpy.i Typemaps

7.2.1 Introduction

Writing tests for the numpy.i SWIG interface file is a combinatorial headache. At present, 12 different data types
are supported, each with 74 different argument signatures, for a total of 888 typemaps supported “out of the box”.
Each of these typemaps, in turn, might require several unit tests in order to verify expected behavior for both proper
and improper inputs. Currently, this results in more than 1,000 individual unit tests executed when make test is
run in the numpy/tools/swig subdirectory.

To facilitate this many similar unit tests, some high-level programming techniques are employed, including C and
SWIG macros, as well as Python inheritance. The purpose of this document is to describe the testing infrastructure
employed to verify that the numpy.i typemaps are working as expected.

1266 Chapter 7. Numpy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org

NumPy Reference, Release 1.11.1

7.2.2 Testing Organization

There are three indepedent testing frameworks supported, for one-, two-, and three-dimensional arrays respectively.
For one-dimensional arrays, there are two C++ files, a header and a source, named:

Vector.h
Vector.cxx

that contain prototypes and code for a variety of functions that have one-dimensional arrays as function arguments.
The file:

Vector.i

is a SWIG interface file that defines a python module Vector that wraps the functions in Vector.h while utilizing
the typemaps in numpy.i to correctly handle the C arrays.

The Makefile calls swig to generate Vector.py and Vector_wrap.cxx, and also executes the
setup.py script that compiles Vector_wrap.cxx and links together the extension module _Vector.so or
_Vector.dylib, depending on the platform. This extension module and the proxy file Vector.py are both
placed in a subdirectory under the build directory.

The actual testing takes place with a Python script named:

testVector.py

that uses the standard Python library module unittest, which performs several tests of each function defined in
Vector.h for each data type supported.

Two-dimensional arrays are tested in exactly the same manner. The above description applies, but with Matrix
substituted for Vector. For three-dimensional tests, substitute Tensor for Vector. For four-dimensional tests,
substitute SuperTensor for Vector. For flat in-place array tests, substitute Flat for Vector. For the descrip-
tions that follow, we will reference the Vector tests, but the same information applies to Matrix, Tensor and
SuperTensor tests.

The command make test will ensure that all of the test software is built and then run all three test scripts.

7.2.3 Testing Header Files

Vector.h is a C++ header file that defines a C macro called TEST_FUNC_PROTOS that takes two arguments:
TYPE, which is a data type name such as unsigned int; and SNAME, which is a short name for the same data type
with no spaces, e.g. uint. This macro defines several function prototypes that have the prefix SNAME and have at
least one argument that is an array of type TYPE. Those functions that have return arguments return a TYPE value.

TEST_FUNC_PROTOS is then implemented for all of the data types supported by numpy.i:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

7.2. Testing the numpy.i Typemaps 1267

http://www.swig.org

NumPy Reference, Release 1.11.1

• unsigned long long

• float

• double

7.2.4 Testing Source Files

Vector.cxx is a C++ source file that implements compilable code for each of the function prototypes specified
in Vector.h. It defines a C macro TEST_FUNCS that has the same arguments and works in the same way as
TEST_FUNC_PROTOS does in Vector.h. TEST_FUNCS is implemented for each of the 12 data types as above.

7.2.5 Testing SWIG Interface Files

Vector.i is a SWIG interface file that defines python module Vector. It follows the conventions for using
numpy.i as described in this chapter. It defines a SWIG macro %apply_numpy_typemaps that has a single
argument TYPE. It uses the SWIG directive %apply to apply the provided typemaps to the argument signatures
found in Vector.h. This macro is then implemented for all of the data types supported by numpy.i. It then does
a %include "Vector.h" to wrap all of the function prototypes in Vector.h using the typemaps in numpy.i.

7.2.6 Testing Python Scripts

After make is used to build the testing extension modules, testVector.py can be run to execute the tests. As
with other scripts that use unittest to facilitate unit testing, testVector.py defines a class that inherits from
unittest.TestCase:

class VectorTestCase(unittest.TestCase):

However, this class is not run directly. Rather, it serves as a base class to several other python classes, each one specific
to a particular data type. The VectorTestCase class stores two strings for typing information:

self.typeStr
A string that matches one of the SNAME prefixes used in Vector.h and Vector.cxx. For
example, "double".

self.typeCode
A short (typically single-character) string that represents a data type in numpy and corresponds
to self.typeStr. For example, if self.typeStr is "double", then self.typeCode
should be "d".

Each test defined by the VectorTestCase class extracts the python function it is trying to test by accessing the
Vector module’s dictionary:

length = Vector.__dict__[self.typeStr + "Length"]

In the case of double precision tests, this will return the python function Vector.doubleLength.

We then define a new test case class for each supported data type with a short definition such as:

class doubleTestCase(VectorTestCase):
def __init__(self, methodName="runTest"):

VectorTestCase.__init__(self, methodName)
self.typeStr = "double"
self.typeCode = "d"

Each of these 12 classes is collected into a unittest.TestSuite, which is then executed. Errors and failures are
summed together and returned as the exit argument. Any non-zero result indicates that at least one test did not pass.

1268 Chapter 7. Numpy and SWIG

http://www.swig.org
http://www.swig.org
http://www.swig.org

CHAPTER

EIGHT

ACKNOWLEDGEMENTS

Large parts of this manual originate from Travis E. Oliphant’s book Guide to Numpy (which generously entered Public
Domain in August 2008). The reference documentation for many of the functions are written by numerous contributors
and developers of Numpy, both prior to and during the Numpy Documentation Marathon.

Please help to improve NumPy’s documentation! Instructions on how to join the ongoing documentation marathon
can be found on the scipy.org website

1269

http://www.tramy.us/
http://scipy.org/Developer_Zone/DocMarathon2008
http://scipy.org/Developer_Zone/DocMarathon2008

NumPy Reference, Release 1.11.1

1270 Chapter 8. Acknowledgements

BIBLIOGRAPHY

[R50] : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University
Press, 1996, pg. 8.

[R51] : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University
Press, 1996, pg. 8.

[R52] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R53] Wikipedia, “Polynomial interpolation”, http://en.wikipedia.org/wiki/Polynomial_interpolation

[R281] http://en.wikipedia.org/wiki/IEEE_754

[R32] Wikipedia, “Two’s complement”, http://en.wikipedia.org/wiki/Two’s_complement

[R16] Wikipedia, “Two’s complement”, http://en.wikipedia.org/wiki/Two’s_complement

[R1] Press, Teukolsky, Vetterling and Flannery, “Numerical Recipes in C++,” 2nd ed, Cambridge University Press,
2002, p. 31.

[CT] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19: 297-301.

[CT] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19: 297-301.

[NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The Art of Scientific
Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Appli-
cations (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-
Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA.
[ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Appli-
cations (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-
Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA.
[ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

[G53] L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed., Addison-Wesley, 2003, pg. 346.

[WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Ap-
plications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA,
USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php ?wg_abbrev=office-
formulaOpenDocument-formula-20090508.odt

1271

http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/Two's_complement
http://en.wikipedia.org/wiki/Two's_complement
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
http://www.oasis-open.org/committees/documents.php

NumPy Reference, Release 1.11.1

[G32] L. J. Gitman, “Principles of Managerial Finance, Brief,” 3rd ed., Addison-Wesley, 2003, pg. 348.

[R280] Format Specification Mini-Language, Python Documentation.

[R20] Numpy User Guide, section I/O with Numpy.

[R55] : G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University
Press, 1996, pg. 8.

[R38] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222.

[R41] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985,
pg. 15

[R37] G. Strang, Linear Algebra and Its Applications, Orlando, FL, Academic Press, Inc., 1980, pg. 285.

[R39] MATLAB reference documention, “Rank” http://www.mathworks.com/help/techdoc/ref/rank.html

[R40] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes (3rd edition)”, Cam-
bridge University Press, 2007, page 795.

[R43] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22.

[R42] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-
142.

[R6] ISO/IEC standard 9899:1999, “Programming language C.”

[R284] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg.
83. http://www.math.sfu.ca/~cbm/aands/

[R285] Wikipedia, “Hyperbolic function”, http://en.wikipedia.org/wiki/Hyperbolic_function

[R4] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86.
http://www.math.sfu.ca/~cbm/aands/

[R5] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arcsinh

[R2] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86.
http://www.math.sfu.ca/~cbm/aands/

[R3] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arccosh

[R7] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86.
http://www.math.sfu.ca/~cbm/aands/

[R8] Wikipedia, “Inverse hyperbolic function”, http://en.wikipedia.org/wiki/Arctanh

[R9] “Lecture Notes on the Status of IEEE 754”, William Kahan, http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

[R10] “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?”, William Kahan,
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

[R286] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule

[R287] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

[R18] Wikipedia, “Exponential function”, http://en.wikipedia.org/wiki/Exponential_function

[R19] M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm

[R44] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67.
http://www.math.sfu.ca/~cbm/aands/

[R45] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

1272 Bibliography

http://docs.python.org/library/string.html#format-specification-mini-language
http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html
http://www.mathworks.com/help/techdoc/ref/rank.html
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Hyperbolic_function
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arcsinh
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arccosh
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Arctanh
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/Mindless.pdf
http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
http://en.wikipedia.org/wiki/Exponential_function
http://www.math.sfu.ca/~cbm/aands/page_69.htm
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm

NumPy Reference, Release 1.11.1

[R46] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67.
http://www.math.sfu.ca/~cbm/aands/

[R47] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[R48] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67.
http://www.math.sfu.ca/~cbm/aands/

[R49] Wikipedia, “Logarithm”. http://en.wikipedia.org/wiki/Logarithm

[R29] C. W. Clenshaw, “Chebyshev series for mathematical functions”, in National Physical Laboratory Mathemat-
ical Tables, vol. 5, London: Her Majesty’s Stationery Office, 1962.

[R30] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm

[R31] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

[R282] Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/SincFunction.html

[R283] Wikipedia, “Sinc function”, http://en.wikipedia.org/wiki/Sinc_function

[R17] Wikipedia, “Convolution”, http://en.wikipedia.org/wiki/Convolution.

[R60] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R64] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R63] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R61] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R62] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R65] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), Handbook of Mathematics, New
York, Van Nostrand Reinhold Co., 1985, pg. 720.

[R56] M. Sullivan and M. Sullivan, III, “Algebra and Trignometry, Enhanced With Graphing Utilities,” Prentice-Hall,
pg. 318, 1996.

[R57] G. Strang, “Linear Algebra and Its Applications, 2nd Edition,” Academic Press, pg. 182, 1980.

[R279] R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.

[R58] Wikipedia, “Curve fitting”, http://en.wikipedia.org/wiki/Curve_fitting

[R59] Wikipedia, “Polynomial interpolation”, http://en.wikipedia.org/wiki/Polynomial_interpolation

[R208] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

[R209] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[R210] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[R211] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

[R212] Wikipedia, “Binomial-distribution”, http://en.wikipedia.org/wiki/Binomial_distribution

[R213] NIST “Engineering Statistics Handbook” http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

[R214] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/

[R215] Wikipedia, “Dirichlet distribution”, http://en.wikipedia.org/wiki/Dirichlet_distribution

[R216] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

Bibliography 1273

http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/page_379.htm
http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html
http://mathworld.wolfram.com/SincFunction.html
http://en.wikipedia.org/wiki/Sinc_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://mathworld.wolfram.com/BinomialDistribution.html
http://en.wikipedia.org/wiki/Binomial_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
http://www.inference.phy.cam.ac.uk/mackay/
http://en.wikipedia.org/wiki/Dirichlet_distribution

NumPy Reference, Release 1.11.1

[R217] “Poisson Process”, Wikipedia, http://en.wikipedia.org/wiki/Poisson_process

[R218] “Exponential Distribution, Wikipedia, http://en.wikipedia.org/wiki/Exponential_distribution

[R219] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[R220] Wikipedia, “F-distribution”, http://en.wikipedia.org/wiki/F-distribution

[R221] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

[R222] Wikipedia, “Gamma-distribution”, http://en.wikipedia.org/wiki/Gamma-distribution

[R223] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

[R224] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology
and Other Fields,” Basel: Birkhauser Verlag, 2001.

[R225] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[R226] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

[R227] Wikipedia, “Hypergeometric-distribution”, http://en.wikipedia.org/wiki/Hypergeometric_distribution

[R228] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[R229] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, ” Birkhauser, 2001.

[R230] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

[R231] Wikipedia, “Laplace Distribution”, http://en.wikipedia.org/wiki/Laplace_distribution

[R232] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hy-
drology and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.

[R233] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html

[R234] Wikipedia, “Logistic-distribution”, http://en.wikipedia.org/wiki/Logistic_distribution

[R235] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

[R236] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp.
31-32.

[R237] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distri-
bution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September
1999 , pp. 187-195(9).

[R238] Fisher, R.A„ A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the
number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[R239] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

[R240] Wikipedia, “Logarithmic-distribution”, http://en.wikipedia.org/wiki/Logarithmic-distribution

[R241] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill,
1991.

[R242] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.

[R243] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

1274 Bibliography

http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/F-distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma-distribution
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://mathworld.wolfram.com/LaplaceDistribution.html
http://en.wikipedia.org/wiki/Laplace_distribution
http://mathworld.wolfram.com/LogisticDistribution.html
http://en.wikipedia.org/wiki/Logistic_distribution
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
http://en.wikipedia.org/wiki/Logarithmic-distribution
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

NumPy Reference, Release 1.11.1

[R244] Wikipedia, “Negative binomial distribution”, http://en.wikipedia.org/wiki/Negative_binomial_distribution

[R245] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”,
Metrika, Volume 15, Number 1 / December, 1970.

[R246] Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-
square_distribution

[R247] Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html

[R248] Wikipedia, “Noncentral F distribution”, http://en.wikipedia.org/wiki/Noncentral_F-distribution

[R249] Wikipedia, “Normal distribution”, http://en.wikipedia.org/wiki/Normal_distribution

[R250] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”,
4th ed., 2001, pp. 51, 51, 125.

[R251] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

[R252] Pareto, V. (1896). Course of Political Economy. Lausanne.

[R253] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.

[R254] Wikipedia, “Pareto distribution”, http://en.wikipedia.org/wiki/Pareto_distribution

[R255] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PoissonDistribution.html

[R256] Wikipedia, “Poisson distribution”, http://en.wikipedia.org/wiki/Poisson_distribution

[R257] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley,
2003.

[R258] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let
Subcommands and Library Functions”, National Institute of Standards and Technology Handbook Series, June
2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[R259] Brighton Webs Ltd., “Rayleigh Distribution,” http://www.brighton-webs.co.uk/distributions/rayleigh.asp

[R260] Wikipedia, “Rayleigh distribution” http://en.wikipedia.org/wiki/Rayleigh_distribution

[R262] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”,
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

[R263] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

[R264] Wikipedia, “Cauchy distribution” http://en.wikipedia.org/wiki/Cauchy_distribution

[R265] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

[R266] Wikipedia, “Gamma-distribution”, http://en.wikipedia.org/wiki/Gamma-distribution

[R267] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

[R268] Wikipedia, “Student’s t-distribution” http://en.wikipedia.org/wiki/Student’s_t-distribution

[R269] Wikipedia, “Triangular distribution” http://en.wikipedia.org/wiki/Triangular_distribution

[R270] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[R271] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.

[R272] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp

Bibliography 1275

http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://en.wikipedia.org/wiki/Noncentral_F-distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/PoissonDistribution.html
http://en.wikipedia.org/wiki/Poisson_distribution
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
http://www.brighton-webs.co.uk/distributions/rayleigh.asp
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://mathworld.wolfram.com/CauchyDistribution.html
http://en.wikipedia.org/wiki/Cauchy_distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma-distribution
http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Triangular_distribution
http://www.brighton-webs.co.uk/distributions/wald.asp

NumPy Reference, Release 1.11.1

[R273] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and
Applications”, CRC Press, 1988.

[R274] Wikipedia, “Wald distribution” http://en.wikipedia.org/wiki/Wald_distribution

[R275] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-
terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[R276] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[R277] Wikipedia, “Weibull distribution”, http://en.wikipedia.org/wiki/Weibull_distribution

[R278] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard
Univ. Press, 1932.

[R137] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

[R138] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[R139] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[R140] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html

[R141] Wikipedia, “Binomial-distribution”, http://en.wikipedia.org/wiki/Binomial_distribution

[R142] NIST “Engineering Statistics Handbook” http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

[R143] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/

[R144] Wikipedia, “Dirichlet distribution”, http://en.wikipedia.org/wiki/Dirichlet_distribution

[R145] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

[R146] “Poisson Process”, Wikipedia, http://en.wikipedia.org/wiki/Poisson_process

[R147] “Exponential Distribution, Wikipedia, http://en.wikipedia.org/wiki/Exponential_distribution

[R148] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[R149] Wikipedia, “F-distribution”, http://en.wikipedia.org/wiki/F-distribution

[R150] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

[R151] Wikipedia, “Gamma-distribution”, http://en.wikipedia.org/wiki/Gamma-distribution

[R152] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

[R153] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology
and Other Fields,” Basel: Birkhauser Verlag, 2001.

[R154] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[R155] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html

[R156] Wikipedia, “Hypergeometric-distribution”, http://en.wikipedia.org/wiki/Hypergeometric_distribution

[R157] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[R158] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, ” Birkhauser, 2001.

1276 Bibliography

http://en.wikipedia.org/wiki/Wald_distribution
http://en.wikipedia.org/wiki/Weibull_distribution
http://mathworld.wolfram.com/BinomialDistribution.html
http://en.wikipedia.org/wiki/Binomial_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
http://www.inference.phy.cam.ac.uk/mackay/
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/F-distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma-distribution
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://en.wikipedia.org/wiki/Hypergeometric_distribution

NumPy Reference, Release 1.11.1

[R159] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html

[R160] Wikipedia, “Laplace Distribution”, http://en.wikipedia.org/wiki/Laplace_distribution

[R161] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hy-
drology and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.

[R162] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html

[R163] Wikipedia, “Logistic-distribution”, http://en.wikipedia.org/wiki/Logistic_distribution

[R164] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

[R165] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp.
31-32.

[R166] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distri-
bution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September
1999 , pp. 187-195(9).

[R167] Fisher, R.A„ A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the
number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[R168] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

[R169] Wikipedia, “Logarithmic-distribution”, http://en.wikipedia.org/wiki/Logarithmic-distribution

[R170] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill,
1991.

[R171] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.

[R172] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

[R173] Wikipedia, “Negative binomial distribution”, http://en.wikipedia.org/wiki/Negative_binomial_distribution

[R174] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”,
Metrika, Volume 15, Number 1 / December, 1970.

[R175] Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-
square_distribution

[R176] Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/NoncentralF-Distribution.html

[R177] Wikipedia, “Noncentral F distribution”, http://en.wikipedia.org/wiki/Noncentral_F-distribution

[R178] Wikipedia, “Normal distribution”, http://en.wikipedia.org/wiki/Normal_distribution

[R179] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”,
4th ed., 2001, pp. 51, 51, 125.

[R180] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

[R181] Pareto, V. (1896). Course of Political Economy. Lausanne.

[R182] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.

[R183] Wikipedia, “Pareto distribution”, http://en.wikipedia.org/wiki/Pareto_distribution

[R184] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PoissonDistribution.html

Bibliography 1277

http://mathworld.wolfram.com/LaplaceDistribution.html
http://en.wikipedia.org/wiki/Laplace_distribution
http://mathworld.wolfram.com/LogisticDistribution.html
http://en.wikipedia.org/wiki/Logistic_distribution
http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
http://en.wikipedia.org/wiki/Logarithmic-distribution
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://en.wikipedia.org/wiki/Noncentral_F-distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/PoissonDistribution.html

NumPy Reference, Release 1.11.1

[R185] Wikipedia, “Poisson distribution”, http://en.wikipedia.org/wiki/Poisson_distribution

[R186] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley,
2003.

[R187] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let
Subcommands and Library Functions”, National Institute of Standards and Technology Handbook Series, June
2003. http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[R188] Brighton Webs Ltd., “Rayleigh Distribution,” http://www.brighton-webs.co.uk/distributions/rayleigh.asp

[R189] Wikipedia, “Rayleigh distribution” http://en.wikipedia.org/wiki/Rayleigh_distribution

[R190] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseu-
dorandom number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan.
1998.

[R191] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”,
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

[R192] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html

[R193] Wikipedia, “Cauchy distribution” http://en.wikipedia.org/wiki/Cauchy_distribution

[R194] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html

[R195] Wikipedia, “Gamma-distribution”, http://en.wikipedia.org/wiki/Gamma-distribution

[R196] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

[R197] Wikipedia, “Student’s t-distribution” http://en.wikipedia.org/wiki/Student’s_t-distribution

[R198] Wikipedia, “Triangular distribution” http://en.wikipedia.org/wiki/Triangular_distribution

[R199] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[R200] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.

[R201] Brighton Webs Ltd., Wald Distribution, http://www.brighton-webs.co.uk/distributions/wald.asp

[R202] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and
Applications”, CRC Press, 1988.

[R203] Wikipedia, “Wald distribution” http://en.wikipedia.org/wiki/Wald_distribution

[R204] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-
terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[R205] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[R206] Wikipedia, “Weibull distribution”, http://en.wikipedia.org/wiki/Weibull_distribution

[R207] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard
Univ. Press, 1932.

[R261] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseu-
dorandom number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan.
1998.

[R11] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1-16, 1950.

1278 Bibliography

http://en.wikipedia.org/wiki/Poisson_distribution
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
http://www.brighton-webs.co.uk/distributions/rayleigh.asp
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://mathworld.wolfram.com/CauchyDistribution.html
http://en.wikipedia.org/wiki/Cauchy_distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://en.wikipedia.org/wiki/Gamma-distribution
http://en.wikipedia.org/wiki/Student's_t-distribution
http://en.wikipedia.org/wiki/Triangular_distribution
http://www.brighton-webs.co.uk/distributions/wald.asp
http://en.wikipedia.org/wiki/Wald_distribution
http://en.wikipedia.org/wiki/Weibull_distribution

NumPy Reference, Release 1.11.1

[R12] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-
110.

[R13] A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice-Hall, 1999, pp. 468-471.

[R14] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R15] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 429.

[R21] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[R22] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-
110.

[R23] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R24] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[R25] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.

[R26] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 106-
108.

[R27] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

[R28] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University
Press, 1986, page 425.

[R34] J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital computer”, Editors: F.F. Kuo and J.F.
Kaiser, p 218-285. John Wiley and Sons, New York, (1966).

[R35] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 177-
178.

[R36] Wikipedia, “Window function”, http://en.wikipedia.org/wiki/Window_function

Bibliography 1279

http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function

NumPy Reference, Release 1.11.1

1280 Bibliography

INDEX

Symbols
__abs__ (numpy.ma.MaskedArray attribute), 273
__abs__ (numpy.ndarray attribute), 41
__add__ (numpy.ndarray attribute), 41
__add__() (numpy.ma.MaskedArray method), 273
__and__ (numpy.ma.MaskedArray attribute), 274
__and__ (numpy.ndarray attribute), 42
__array__() (numpy.class method), 95
__array__() (numpy.generic method), 61
__array__() (numpy.ma.MaskedArray method), 278
__array__() (numpy.ndarray method), 45
__array_finalize__() (numpy.class method), 95
__array_interface__ (built-in variable), 365
__array_interface__ (numpy.generic attribute), 50
__array_prepare__() (numpy.class method), 95
__array_priority__ (numpy.generic attribute), 50
__array_priority__ (numpy.ma.MaskedArray attribute),

241
__array_struct__ (C variable), 367
__array_struct__ (numpy.generic attribute), 50
__array_wrap__() (numpy.class method), 95
__array_wrap__() (numpy.generic method), 51
__array_wrap__() (numpy.ma.MaskedArray method),

278
__array_wrap__() (numpy.ndarray method), 45
__call__() (numpy.poly1d method), 941
__call__() (numpy.polynomial.chebyshev.Chebyshev

method), 809
__call__() (numpy.polynomial.hermite.Hermite method),

887
__call__() (numpy.polynomial.hermite_e.HermiteE

method), 914
__call__() (numpy.polynomial.laguerre.Laguerre

method), 861
__call__() (numpy.polynomial.legendre.Legendre

method), 835
__call__() (numpy.polynomial.polynomial.Polynomial

method), 784
__call__() (numpy.vectorize method), 587
__contains__ (numpy.ma.MaskedArray attribute), 278
__contains__ (numpy.ndarray attribute), 45
__copy__() (numpy.ma.MaskedArray method), 277

__copy__() (numpy.ndarray method), 44
__deepcopy__() (numpy.ma.MaskedArray method), 277
__deepcopy__() (numpy.ndarray method), 44
__delitem__ (numpy.ma.MaskedArray attribute), 278
__div__ (numpy.ndarray attribute), 42
__div__() (numpy.ma.MaskedArray method), 274
__divmod__ (numpy.ma.MaskedArray attribute), 274
__divmod__ (numpy.ndarray attribute), 42
__eq__ (numpy.ndarray attribute), 40
__eq__() (numpy.ma.MaskedArray method), 272
__float__ (numpy.ndarray attribute), 45
__float__() (numpy.ma.MaskedArray method), 242
__floordiv__ (numpy.ndarray attribute), 42
__floordiv__() (numpy.ma.MaskedArray method), 274
__ge__ (numpy.ma.MaskedArray attribute), 272
__ge__ (numpy.ndarray attribute), 40
__getitem__ (numpy.ndarray attribute), 45
__getitem__() (numpy.ma.MaskedArray method), 278
__getslice__ (numpy.ndarray attribute), 45
__getslice__() (numpy.ma.MaskedArray method), 278
__getstate__() (numpy.ma.MaskedArray method), 277
__gt__ (numpy.ma.MaskedArray attribute), 272
__gt__ (numpy.ndarray attribute), 40
__hex__ (numpy.ma.MaskedArray attribute), 242
__hex__ (numpy.ndarray attribute), 46
__iadd__ (numpy.ndarray attribute), 43
__iadd__() (numpy.ma.MaskedArray method), 275
__iand__ (numpy.ma.MaskedArray attribute), 276
__iand__ (numpy.ndarray attribute), 43
__idiv__ (numpy.ndarray attribute), 43
__idiv__() (numpy.ma.MaskedArray method), 275
__ifloordiv__ (numpy.ndarray attribute), 43
__ifloordiv__() (numpy.ma.MaskedArray method), 275
__ilshift__ (numpy.ma.MaskedArray attribute), 275
__ilshift__ (numpy.ndarray attribute), 43
__imod__ (numpy.ma.MaskedArray attribute), 275
__imod__ (numpy.ndarray attribute), 43
__imul__ (numpy.ndarray attribute), 43
__imul__() (numpy.ma.MaskedArray method), 275
__int__ (numpy.ndarray attribute), 45
__int__() (numpy.ma.MaskedArray method), 242
__invert__ (numpy.ndarray attribute), 41

1281

NumPy Reference, Release 1.11.1

__ior__ (numpy.ma.MaskedArray attribute), 276
__ior__ (numpy.ndarray attribute), 43
__ipow__ (numpy.ndarray attribute), 43
__ipow__() (numpy.ma.MaskedArray method), 275
__irshift__ (numpy.ma.MaskedArray attribute), 275
__irshift__ (numpy.ndarray attribute), 43
__isub__ (numpy.ndarray attribute), 43
__isub__() (numpy.ma.MaskedArray method), 275
__itruediv__ (numpy.ndarray attribute), 43
__itruediv__() (numpy.ma.MaskedArray method), 275
__ixor__ (numpy.ma.MaskedArray attribute), 276
__ixor__ (numpy.ndarray attribute), 43
__le__ (numpy.ma.MaskedArray attribute), 272
__le__ (numpy.ndarray attribute), 40
__len__ (numpy.ma.MaskedArray attribute), 278
__len__ (numpy.ndarray attribute), 45
__long__ (numpy.ma.MaskedArray attribute), 242
__long__ (numpy.ndarray attribute), 45
__lshift__ (numpy.ma.MaskedArray attribute), 274
__lshift__ (numpy.ndarray attribute), 42
__lt__ (numpy.ma.MaskedArray attribute), 272
__lt__ (numpy.ndarray attribute), 40
__mod__ (numpy.ma.MaskedArray attribute), 274
__mod__ (numpy.ndarray attribute), 42
__mul__ (numpy.ndarray attribute), 42
__mul__() (numpy.ma.MaskedArray method), 274
__ne__ (numpy.ndarray attribute), 41
__ne__() (numpy.ma.MaskedArray method), 273
__neg__ (numpy.ndarray attribute), 41
__new__() (numpy.ma.MaskedArray static method), 277
__new__() (numpy.ndarray method), 44
__nonzero__ (numpy.ma.MaskedArray attribute), 273
__nonzero__ (numpy.ndarray attribute), 41
__numpy_ufunc__() (numpy.class method), 94
__oct__ (numpy.ma.MaskedArray attribute), 242
__oct__ (numpy.ndarray attribute), 45
__or__ (numpy.ma.MaskedArray attribute), 275
__or__ (numpy.ndarray attribute), 42
__pos__ (numpy.ndarray attribute), 41
__pow__ (numpy.ndarray attribute), 42
__pow__() (numpy.ma.MaskedArray method), 274
__radd__() (numpy.ma.MaskedArray method), 273
__rand__ (numpy.ma.MaskedArray attribute), 274
__rdiv__ (numpy.ma.MaskedArray attribute), 274
__rdivmod__ (numpy.ma.MaskedArray attribute), 274
__reduce__() (numpy.dtype method), 74
__reduce__() (numpy.generic method), 61
__reduce__() (numpy.ma.MaskedArray method), 277
__reduce__() (numpy.ndarray method), 44
__repr__ (numpy.ndarray attribute), 46
__repr__() (numpy.ma.MaskedArray method), 276
__rfloordiv__() (numpy.ma.MaskedArray method), 274
__rlshift__ (numpy.ma.MaskedArray attribute), 274
__rmod__ (numpy.ma.MaskedArray attribute), 274

__rmul__() (numpy.ma.MaskedArray method), 274
__ror__ (numpy.ma.MaskedArray attribute), 275
__rpow__() (numpy.ma.MaskedArray method), 274
__rrshift__ (numpy.ma.MaskedArray attribute), 274
__rshift__ (numpy.ma.MaskedArray attribute), 274
__rshift__ (numpy.ndarray attribute), 42
__rsub__() (numpy.ma.MaskedArray method), 274
__rtruediv__() (numpy.ma.MaskedArray method), 274
__rxor__ (numpy.ma.MaskedArray attribute), 275
__setitem__ (numpy.ndarray attribute), 45
__setitem__() (numpy.ma.MaskedArray method), 278
__setmask__() (numpy.ma.MaskedArray method), 279
__setslice__ (numpy.ndarray attribute), 45
__setslice__() (numpy.ma.MaskedArray method), 278
__setstate__() (numpy.dtype method), 74
__setstate__() (numpy.generic method), 61
__setstate__() (numpy.ma.MaskedArray method), 277
__setstate__() (numpy.ndarray method), 44
__str__ (numpy.ndarray attribute), 46
__str__() (numpy.ma.MaskedArray method), 276
__sub__ (numpy.ndarray attribute), 42
__sub__() (numpy.ma.MaskedArray method), 273
__truediv__ (numpy.ndarray attribute), 42
__truediv__() (numpy.ma.MaskedArray method), 274
__xor__ (numpy.ma.MaskedArray attribute), 275
__xor__ (numpy.ndarray attribute), 42

A
A (numpy.matrix attribute), 97
A1 (numpy.matrix attribute), 99
absolute (in module numpy), 755
abspath() (numpy.DataSource method), 642
accumulate

ufunc methods, 1247
accumulate() (numpy.ufunc method), 390
add (in module numpy), 742
add() (in module numpy.core.defchararray), 479
add_data_dir() (numpy.distutils.misc_util.Configuration

method), 1139
add_data_files() (numpy.distutils.misc_util.Configuration

method), 1137
add_extension() (numpy.distutils.misc_util.Configuration

method), 1140
add_headers() (numpy.distutils.misc_util.Configuration

method), 1140
add_include_dirs() (numpy.distutils.misc_util.Configuration

method), 1139
add_installed_library() (numpy.distutils.misc_util.Configuration

method), 1141
add_library() (numpy.distutils.misc_util.Configuration

method), 1141
add_npy_pkg_config() (numpy.distutils.misc_util.Configuration

method), 1142

1282 Index

NumPy Reference, Release 1.11.1

add_scripts() (numpy.distutils.misc_util.Configuration
method), 1141

add_subpackage() (numpy.distutils.misc_util.Configuration
method), 1137

aligned, 36
alignment (numpy.dtype attribute), 74
all (in module numpy.ma), 289
all() (in module numpy), 681
all() (numpy.generic method), 53
all() (numpy.ma.MaskedArray method), 261
all() (numpy.matrix method), 107
all() (numpy.ndarray method), 14
all() (numpy.recarray method), 179
all() (numpy.record method), 203
all_strings() (in module numpy.distutils.misc_util), 1136
allclose() (in module numpy), 693
allclose() (in module numpy.ma), 359
allequal() (in module numpy.ma), 359
allpath() (in module numpy.distutils.misc_util), 1136
alterdot() (in module numpy), 771
amax() (in module numpy), 1080
amin() (in module numpy), 1078
angle() (in module numpy), 750
anom (in module numpy.ma), 330
anom() (numpy.ma.MaskedArray method), 262
anomalies (in module numpy.ma), 330
any (in module numpy.ma), 290
any() (in module numpy), 682
any() (numpy.generic method), 53
any() (numpy.ma.MaskedArray method), 262
any() (numpy.matrix method), 107
any() (numpy.ndarray method), 14
any() (numpy.recarray method), 179
any() (numpy.record method), 203
append() (in module numpy), 464
append() (in module numpy.ma), 311
appendpath() (in module numpy.distutils.misc_util), 1136
apply_along_axis() (in module numpy), 583
apply_along_axis() (in module numpy.ma), 360
apply_over_axes() (in module numpy), 584
arange (in module numpy.ma), 361
arange() (in module numpy), 421
arccos (in module numpy), 702
arccosh (in module numpy), 713
arcsin (in module numpy), 701
arcsinh (in module numpy), 712
arctan (in module numpy), 703
arctan2 (in module numpy), 705
arctanh (in module numpy), 713
argmax() (in module numpy), 1072
argmax() (in module numpy.ma), 342
argmax() (numpy.generic method), 53
argmax() (numpy.ma.MaskedArray method), 252
argmax() (numpy.matrix method), 108

argmax() (numpy.ndarray method), 15
argmax() (numpy.recarray method), 179
argmax() (numpy.record method), 203
argmin() (in module numpy), 1073
argmin() (in module numpy.ma), 342
argmin() (numpy.generic method), 53
argmin() (numpy.ma.MaskedArray method), 252
argmin() (numpy.matrix method), 108
argmin() (numpy.ndarray method), 15
argmin() (numpy.recarray method), 179
argmin() (numpy.record method), 203
argpartition() (in module numpy), 1070
argpartition() (numpy.matrix method), 109
argpartition() (numpy.ndarray method), 15
argpartition() (numpy.recarray method), 179
argsort() (in module numpy), 1067
argsort() (in module numpy.ma), 344
argsort() (numpy.generic method), 53
argsort() (numpy.ma.MaskedArray method), 253
argsort() (numpy.matrix method), 109
argsort() (numpy.ndarray method), 15
argsort() (numpy.recarray method), 179
argsort() (numpy.record method), 203
argwhere() (in module numpy), 1075
arithmetic, 40, 272
around (in module numpy.ma), 357
around() (in module numpy), 714
array

C-API, 1168
interface, 365
protocol, 365

array iterator, 211, 1242
array scalars, 1243
array() (in module numpy), 408
array() (in module numpy.core.defchararray), 167
array() (in module numpy.core.records), 419
array() (in module numpy.ma), 217
array2string() (in module numpy), 634
array_equal() (in module numpy), 695
array_equiv() (in module numpy), 695
array_repr() (in module numpy), 636
array_split() (in module numpy), 457
array_str() (in module numpy), 637
Arrayterator (class in numpy.lib), 622
as_array() (in module numpy.ctypeslib), 523
as_ctypes() (in module numpy.ctypeslib), 523
asanyarray() (in module numpy), 411
asanyarray() (in module numpy.ma), 219
asarray() (in module numpy), 410
asarray() (in module numpy.core.defchararray), 420
asarray() (in module numpy.ma), 219
asarray_chkfinite() (in module numpy), 447
ascontiguousarray() (in module numpy), 412
asfarray() (in module numpy), 446

Index 1283

NumPy Reference, Release 1.11.1

asfortranarray() (in module numpy), 447
asmatrix() (in module numpy), 135
asscalar() (in module numpy), 449
assert_allclose() (in module numpy.testing), 1117
assert_almost_equal() (in module numpy.testing), 1113
assert_approx_equal() (in module numpy.testing), 1114
assert_array_almost_equal() (in module numpy.testing),

1115
assert_array_almost_equal_nulp() (in module

numpy.testing), 1117
assert_array_equal() (in module numpy.testing), 1119
assert_array_less() (in module numpy.testing), 1120
assert_array_max_ulp() (in module numpy.testing), 1118
assert_equal() (in module numpy.testing), 1121
assert_raises() (in module numpy.testing), 1121
assert_raises_regex() (in module numpy.testing), 1122
assert_string_equal() (in module numpy.testing), 1122
assert_warns() (in module numpy.testing), 1122
astype() (numpy.chararray method), 150
astype() (numpy.core.defchararray.chararray method),

506
astype() (numpy.generic method), 54
astype() (numpy.ma.MaskedArray method), 244
astype() (numpy.matrix method), 109
astype() (numpy.ndarray method), 15
astype() (numpy.recarray method), 180
astype() (numpy.record method), 203
at() (numpy.ufunc method), 394
atleast_1d (in module numpy.ma), 302
atleast_1d() (in module numpy), 442
atleast_2d (in module numpy.ma), 302
atleast_2d() (in module numpy), 442
atleast_3d (in module numpy.ma), 303
atleast_3d() (in module numpy), 443
attributes

ufunc, 386
average() (in module numpy), 1089
average() (in module numpy.ma), 331
axis, 39

B
bartlett() (in module numpy), 1127
base, 3
base (numpy.chararray attribute), 142
base (numpy.core.defchararray.chararray attribute), 498
base (numpy.dtype attribute), 64
base (numpy.generic attribute), 50
base (numpy.ma.MaskedArray attribute), 236
base (numpy.matrix attribute), 99
base (numpy.ndarray attribute), 13
base (numpy.recarray attribute), 171
base (numpy.record attribute), 201
base_repr() (in module numpy), 641
baseclass (numpy.ma.MaskedArray attribute), 235

basis() (numpy.polynomial.chebyshev.Chebyshev
method), 809

basis() (numpy.polynomial.hermite.Hermite method),
887

basis() (numpy.polynomial.hermite_e.HermiteE method),
914

basis() (numpy.polynomial.laguerre.Laguerre method),
861

basis() (numpy.polynomial.legendre.Legendre method),
835

basis() (numpy.polynomial.polynomial.Polynomial
method), 784

beta() (in module numpy.random), 963
beta() (numpy.random.RandomState method), 1008
binary_repr() (in module numpy), 477
bincount() (in module numpy), 1110
binomial() (in module numpy.random), 963
binomial() (numpy.random.RandomState method), 1008
bitwise_and (in module numpy), 471
bitwise_or (in module numpy), 472
bitwise_xor (in module numpy), 472
blackman() (in module numpy), 1128
blue_text() (in module numpy.distutils.misc_util), 1136
bmat() (in module numpy), 135
broadcast (class in numpy), 213
broadcast_arrays() (in module numpy), 444
broadcast_to() (in module numpy), 444
broadcastable, 379
broadcasting, 379, 1242
buffers, 380
busday_count() (in module numpy), 529
busday_offset() (in module numpy), 527
busdaycalendar (class in numpy), 525
byteorder (numpy.dtype attribute), 73
bytes() (in module numpy.random), 961
bytes() (numpy.random.RandomState method), 1009
byteswap() (numpy.generic method), 54
byteswap() (numpy.ma.MaskedArray method), 244
byteswap() (numpy.matrix method), 110
byteswap() (numpy.ndarray method), 16
byteswap() (numpy.recarray method), 181
byteswap() (numpy.record method), 203

C
C-API

array, 1168
iterator, 1208, 1224
ndarray, 1168, 1208
ufunc, 1225, 1231

C-order, 35
c_ (in module numpy), 592
can_cast() (in module numpy), 530
capitalize() (in module numpy.core.defchararray), 479

1284 Index

NumPy Reference, Release 1.11.1

cast() (numpy.polynomial.chebyshev.Chebyshev
method), 809

cast() (numpy.polynomial.hermite.Hermite method), 888
cast() (numpy.polynomial.hermite_e.HermiteE method),

914
cast() (numpy.polynomial.laguerre.Laguerre method),

862
cast() (numpy.polynomial.legendre.Legendre method),

835
cast() (numpy.polynomial.polynomial.Polynomial

method), 785
casting rules

ufunc, 383
ceil (in module numpy), 717
center() (in module numpy.core.defchararray), 480
char (numpy.dtype attribute), 72
character arrays, 140
chararray (class in numpy), 140
chararray (class in numpy.core.defchararray), 496
cheb2poly() (in module numpy.polynomial.chebyshev),

833
chebadd() (in module numpy.polynomial.chebyshev), 827
chebcompanion() (in module

numpy.polynomial.chebyshev), 831
chebder() (in module numpy.polynomial.chebyshev), 824
chebdiv() (in module numpy.polynomial.chebyshev), 829
chebdomain (in module numpy.polynomial.chebyshev),

831
chebfit() (in module numpy.polynomial.chebyshev), 821
chebfromroots() (in module

numpy.polynomial.chebyshev), 820
chebgauss() (in module numpy.polynomial.chebyshev),

830
chebgrid2d() (in module numpy.polynomial.chebyshev),

818
chebgrid3d() (in module numpy.polynomial.chebyshev),

819
chebint() (in module numpy.polynomial.chebyshev), 825
chebline() (in module numpy.polynomial.chebyshev), 832
chebmul() (in module numpy.polynomial.chebyshev),

828
chebmulx() (in module numpy.polynomial.chebyshev),

829
chebone (in module numpy.polynomial.chebyshev), 832
chebpow() (in module numpy.polynomial.chebyshev),

830
chebroots() (in module numpy.polynomial.chebyshev),

819
chebsub() (in module numpy.polynomial.chebyshev), 828
chebtrim() (in module numpy.polynomial.chebyshev),

832
chebval() (in module numpy.polynomial.chebyshev), 816
chebval2d() (in module numpy.polynomial.chebyshev),

817

chebval3d() (in module numpy.polynomial.chebyshev),
817

chebvander() (in module numpy.polynomial.chebyshev),
823

chebvander2d() (in module
numpy.polynomial.chebyshev), 823

chebvander3d() (in module
numpy.polynomial.chebyshev), 824

chebweight() (in module numpy.polynomial.chebyshev),
831

chebx (in module numpy.polynomial.chebyshev), 832
Chebyshev (class in numpy.polynomial.chebyshev), 808
chebzero (in module numpy.polynomial.chebyshev), 831
chisquare() (in module numpy.random), 964
chisquare() (numpy.random.RandomState method), 1010
choice() (in module numpy.random), 959
choice() (numpy.random.RandomState method), 1011
cholesky() (in module numpy.linalg), 657
choose() (in module numpy), 606
choose() (in module numpy.ma), 362
choose() (numpy.generic method), 54
choose() (numpy.ma.MaskedArray method), 254
choose() (numpy.matrix method), 111
choose() (numpy.ndarray method), 17
choose() (numpy.recarray method), 181
choose() (numpy.record method), 204
class.__array_priority__ (in module numpy), 95
clip() (in module numpy), 754
clip() (in module numpy.ma), 357
clip() (numpy.generic method), 54
clip() (numpy.ma.MaskedArray method), 263
clip() (numpy.matrix method), 111
clip() (numpy.ndarray method), 17
clip() (numpy.recarray method), 181
clip() (numpy.record method), 204
clump_masked() (in module numpy.ma), 318
clump_unmasked() (in module numpy.ma), 318
code generation, 1147
column-major, 35
column_stack (in module numpy.ma), 305
column_stack() (in module numpy), 453
common_fill_value() (in module numpy.ma), 326
common_type() (in module numpy), 534
comparison, 40, 272
compress() (in module numpy), 608
compress() (numpy.generic method), 54
compress() (numpy.ma.MaskedArray method), 254
compress() (numpy.matrix method), 111
compress() (numpy.ndarray method), 17
compress() (numpy.recarray method), 182
compress() (numpy.record method), 204
compress_cols() (in module numpy.ma), 323
compress_rowcols() (in module numpy.ma), 323
compress_rows() (in module numpy.ma), 324

Index 1285

NumPy Reference, Release 1.11.1

compressed() (in module numpy.ma), 324
compressed() (numpy.ma.MaskedArray method), 244
concatenate() (in module numpy), 450
concatenate() (in module numpy.ma), 305
cond() (in module numpy.linalg), 669
Configuration (class in numpy.distutils.misc_util), 1136
conj (in module numpy), 751
conj() (numpy.generic method), 54
conj() (numpy.ma.MaskedArray method), 263
conj() (numpy.matrix method), 111
conj() (numpy.ndarray method), 17
conj() (numpy.recarray method), 182
conj() (numpy.record method), 204
conjugate (in module numpy.ma), 331
conjugate() (numpy.generic method), 54
conjugate() (numpy.ma.MaskedArray method), 263
conjugate() (numpy.matrix method), 111
conjugate() (numpy.ndarray method), 18
conjugate() (numpy.recarray method), 182
conjugate() (numpy.record method), 204
construction

from dict, dtype, 70
from dtype, dtype, 67
from list, dtype, 70
from None, dtype, 67
from string, dtype, 68
from tuple, dtype, 70
from type, dtype, 67

container (class in numpy.lib.user_array), 211
container class, 211
contiguous, 36
convert() (numpy.polynomial.chebyshev.Chebyshev

method), 810
convert() (numpy.polynomial.hermite.Hermite method),

888
convert() (numpy.polynomial.hermite_e.HermiteE

method), 915
convert() (numpy.polynomial.laguerre.Laguerre method),

862
convert() (numpy.polynomial.legendre.Legendre

method), 836
convert() (numpy.polynomial.polynomial.Polynomial

method), 785
convolve() (in module numpy), 752
coords (numpy.flatiter attribute), 621
copy (in module numpy.ma), 282
copy() (in module numpy), 412
copy() (numpy.chararray method), 151
copy() (numpy.core.defchararray.chararray method), 507
copy() (numpy.flatiter method), 622
copy() (numpy.generic method), 55
copy() (numpy.ma.MaskedArray method), 260
copy() (numpy.matrix method), 112
copy() (numpy.ndarray method), 18

copy() (numpy.nditer method), 619
copy() (numpy.polynomial.chebyshev.Chebyshev

method), 810
copy() (numpy.polynomial.hermite.Hermite method), 889
copy() (numpy.polynomial.hermite_e.HermiteE method),

915
copy() (numpy.polynomial.laguerre.Laguerre method),

863
copy() (numpy.polynomial.legendre.Legendre method),

836
copy() (numpy.polynomial.polynomial.Polynomial

method), 786
copy() (numpy.recarray method), 182
copy() (numpy.record method), 204
copysign (in module numpy), 739
copyto() (in module numpy), 434
corrcoef() (in module numpy), 1100
corrcoef() (in module numpy.ma), 332
correlate() (in module numpy), 1101
cos (in module numpy), 700
cosh (in module numpy), 710
count() (in module numpy.core.defchararray), 491
count() (in module numpy.ma), 290
count() (numpy.chararray method), 151
count() (numpy.core.defchararray.chararray method), 508
count() (numpy.ma.MaskedArray method), 281
count_masked() (in module numpy.ma), 291
count_nonzero() (in module numpy), 1078
cov() (in module numpy), 1102
cov() (in module numpy.ma), 333
cpu (in module numpy.distutils.cpuinfo), 1145
cross() (in module numpy), 727
ctypes (numpy.chararray attribute), 142
ctypes (numpy.core.defchararray.chararray attribute), 499
ctypes (numpy.ma.MaskedArray attribute), 236
ctypes (numpy.matrix attribute), 99
ctypes (numpy.ndarray attribute), 11
ctypes (numpy.recarray attribute), 171
ctypes_load_library() (in module numpy.ctypeslib), 523
cumprod (in module numpy.ma), 334
cumprod() (in module numpy), 723
cumprod() (numpy.generic method), 55
cumprod() (numpy.ma.MaskedArray method), 263
cumprod() (numpy.matrix method), 112
cumprod() (numpy.ndarray method), 18
cumprod() (numpy.recarray method), 183
cumprod() (numpy.record method), 204
cumsum (in module numpy.ma), 334
cumsum() (in module numpy), 724
cumsum() (numpy.generic method), 55
cumsum() (numpy.ma.MaskedArray method), 264
cumsum() (numpy.matrix method), 112
cumsum() (numpy.ndarray method), 19
cumsum() (numpy.recarray method), 183

1286 Index

NumPy Reference, Release 1.11.1

cumsum() (numpy.record method), 205
cutdeg() (numpy.polynomial.chebyshev.Chebyshev

method), 810
cutdeg() (numpy.polynomial.hermite.Hermite method),

889
cutdeg() (numpy.polynomial.hermite_e.HermiteE

method), 915
cutdeg() (numpy.polynomial.laguerre.Laguerre method),

863
cutdeg() (numpy.polynomial.legendre.Legendre method),

837
cutdeg() (numpy.polynomial.polynomial.Polynomial

method), 786
cyan_text() (in module numpy.distutils.misc_util), 1136
cyg2win32() (in module numpy.distutils.misc_util), 1136

D
data (numpy.chararray attribute), 143
data (numpy.core.defchararray.chararray attribute), 500
data (numpy.generic attribute), 50
data (numpy.ma.MaskedArray attribute), 235, 299
data (numpy.matrix attribute), 101
data (numpy.ndarray attribute), 6
data (numpy.recarray attribute), 172
data (numpy.record attribute), 201
DataSource (class in numpy), 641
debug_print() (numpy.nditer method), 619
decode() (in module numpy.core.defchararray), 480
decode() (numpy.chararray method), 151
decode() (numpy.core.defchararray.chararray method),

508
decorate_methods() (in module numpy.testing), 1125
default_fill_value() (in module numpy.ma), 327
deg2rad (in module numpy), 708
degree() (numpy.polynomial.chebyshev.Chebyshev

method), 811
degree() (numpy.polynomial.hermite.Hermite method),

889
degree() (numpy.polynomial.hermite_e.HermiteE

method), 916
degree() (numpy.polynomial.laguerre.Laguerre method),

863
degree() (numpy.polynomial.legendre.Legendre method),

837
degree() (numpy.polynomial.polynomial.Polynomial

method), 786
degrees (in module numpy), 706
delete() (in module numpy), 462
deprecated() (in module numpy.testing.decorators), 1123
deriv() (numpy.poly1d method), 941
deriv() (numpy.polynomial.chebyshev.Chebyshev

method), 811
deriv() (numpy.polynomial.hermite.Hermite method),

889

deriv() (numpy.polynomial.hermite_e.HermiteE method),
916

deriv() (numpy.polynomial.laguerre.Laguerre method),
863

deriv() (numpy.polynomial.legendre.Legendre method),
837

deriv() (numpy.polynomial.polynomial.Polynomial
method), 786

descr (numpy.dtype attribute), 64
det() (in module numpy.linalg), 670
diag() (in module numpy), 429
diag() (in module numpy.ma), 347
diag_indices() (in module numpy), 599
diag_indices_from() (in module numpy), 600
diagflat() (in module numpy), 430
diagonal() (in module numpy), 609
diagonal() (numpy.generic method), 55
diagonal() (numpy.ma.MaskedArray method), 255
diagonal() (numpy.matrix method), 113
diagonal() (numpy.ndarray method), 19
diagonal() (numpy.recarray method), 183
diagonal() (numpy.record method), 205
dict_append() (in module numpy.distutils.misc_util),

1135
diff() (in module numpy), 725
digitize() (in module numpy), 1112
dirichlet() (in module numpy.random), 965
dirichlet() (numpy.random.RandomState method), 1012
distutils, 1135
divide (in module numpy), 743
dot() (in module numpy), 643
dot() (in module numpy.ma), 347
dot() (numpy.matrix method), 113
dot() (numpy.ndarray method), 19
dot() (numpy.recarray method), 183
dot_join() (in module numpy.distutils.misc_util), 1136
dsplit() (in module numpy), 457
dstack (in module numpy.ma), 306
dstack() (in module numpy), 453
dtype, 1241

construction from dict, 70
construction from dtype, 67
construction from list, 70
construction from None, 67
construction from string, 68
construction from tuple, 70
construction from type, 67
field, 62
scalar, 62
sub-array, 62, 70

dtype (class in numpy), 63
dtype (numpy.chararray attribute), 143
dtype (numpy.core.defchararray.chararray attribute), 500
dtype (numpy.generic attribute), 50

Index 1287

NumPy Reference, Release 1.11.1

dtype (numpy.ma.MaskedArray attribute), 237
dtype (numpy.matrix attribute), 101
dtype (numpy.ndarray attribute), 6
dtype (numpy.recarray attribute), 172
dtype (numpy.record attribute), 201
dump() (in module numpy.ma), 325
dump() (numpy.chararray method), 152
dump() (numpy.core.defchararray.chararray method), 508
dump() (numpy.generic method), 55
dump() (numpy.ma.MaskedArray method), 261
dump() (numpy.matrix method), 113
dump() (numpy.ndarray method), 19
dump() (numpy.recarray method), 184
dump() (numpy.record method), 205
dumps() (in module numpy.ma), 325
dumps() (numpy.chararray method), 152
dumps() (numpy.core.defchararray.chararray method),

508
dumps() (numpy.generic method), 55
dumps() (numpy.ma.MaskedArray method), 261
dumps() (numpy.matrix method), 113
dumps() (numpy.ndarray method), 19
dumps() (numpy.recarray method), 184
dumps() (numpy.record method), 205

E
ediff1d() (in module numpy), 726
ediff1d() (in module numpy.ma), 363
eig() (in module numpy.linalg), 662
eigh() (in module numpy.linalg), 663
eigvals() (in module numpy.linalg), 665
eigvalsh() (in module numpy.linalg), 666
einsum() (in module numpy), 652
ellipsis, 75
empty (in module numpy.ma), 284
empty() (in module numpy), 399
empty() (in module numpy.matlib), 765
empty_like (in module numpy.ma), 284
empty_like() (in module numpy), 400
enable_external_loop() (numpy.nditer method), 620
encode() (in module numpy.core.defchararray), 481
encode() (numpy.chararray method), 152
encode() (numpy.core.defchararray.chararray method),

508
endswith() (numpy.chararray method), 152
endswith() (numpy.core.defchararray.chararray method),

508
equal (in module numpy), 697
equal() (in module numpy.core.defchararray), 489
error handling, 380
errstate (class in numpy), 547
exists() (numpy.DataSource method), 642
exp (in module numpy), 730
exp2 (in module numpy), 732

expand_dims() (in module numpy), 445
expand_dims() (in module numpy.ma), 304
expandtabs() (numpy.chararray method), 152
expandtabs() (numpy.core.defchararray.chararray

method), 508
expm1 (in module numpy), 732
exponential() (in module numpy.random), 966
exponential() (numpy.random.RandomState method),

1013
extract() (in module numpy), 1077
eye() (in module numpy), 401
eye() (in module numpy.matlib), 767

F
f() (in module numpy.random), 966
f() (numpy.random.RandomState method), 1013
fabs (in module numpy), 757
fft() (in module numpy.fft), 550
fft2() (in module numpy.fft), 553
fftfreq() (in module numpy.fft), 569
fftn() (in module numpy.fft), 556
fftshift() (in module numpy.fft), 570
field

dtype, 62
field() (numpy.recarray method), 184
fields (numpy.dtype attribute), 64
fill() (numpy.chararray method), 152
fill() (numpy.core.defchararray.chararray method), 508
fill() (numpy.generic method), 55
fill() (numpy.ma.MaskedArray method), 255
fill() (numpy.matrix method), 113
fill() (numpy.ndarray method), 20
fill() (numpy.recarray method), 184
fill() (numpy.record method), 205
fill_diagonal() (in module numpy), 613
fill_value (numpy.ma.MaskedArray attribute), 235, 329
filled() (in module numpy.ma), 324
filled() (numpy.ma.MaskedArray method), 245
filter_sources() (in module numpy.distutils.misc_util),

1136
find() (in module numpy.core.defchararray), 492
find() (numpy.chararray method), 152
find() (numpy.core.defchararray.chararray method), 509
find_common_type() (in module numpy), 541
finfo (class in numpy), 537
fit() (numpy.polynomial.chebyshev.Chebyshev method),

811
fit() (numpy.polynomial.hermite.Hermite method), 890
fit() (numpy.polynomial.hermite_e.HermiteE method),

916
fit() (numpy.polynomial.laguerre.Laguerre method), 863
fit() (numpy.polynomial.legendre.Legendre method), 837
fit() (numpy.polynomial.polynomial.Polynomial method),

787

1288 Index

NumPy Reference, Release 1.11.1

fix() (in module numpy), 716
fix_invalid() (in module numpy.ma), 220
flags (numpy.chararray attribute), 144
flags (numpy.core.defchararray.chararray attribute), 500
flags (numpy.dtype attribute), 74
flags (numpy.generic attribute), 50
flags (numpy.ma.MaskedArray attribute), 238
flags (numpy.matrix attribute), 101
flags (numpy.ndarray attribute), 7
flags (numpy.recarray attribute), 173
flags (numpy.record attribute), 201
flat (numpy.chararray attribute), 145
flat (numpy.core.defchararray.chararray attribute), 501
flat (numpy.generic attribute), 50
flat (numpy.lib.Arrayterator attribute), 623
flat (numpy.ma.MaskedArray attribute), 241
flat (numpy.matrix attribute), 102
flat (numpy.ndarray attribute), 8
flat (numpy.recarray attribute), 174
flat (numpy.record attribute), 201
flatiter (class in numpy), 621
flatnonzero() (in module numpy), 1075
flatnotmasked_contiguous() (in module numpy.ma), 315
flatnotmasked_edges() (in module numpy.ma), 316
flatten() (numpy.chararray method), 153
flatten() (numpy.core.defchararray.chararray method),

509
flatten() (numpy.generic method), 56
flatten() (numpy.ma.MaskedArray method), 248
flatten() (numpy.matrix method), 114
flatten() (numpy.ndarray method), 20
flatten() (numpy.recarray method), 184
flatten() (numpy.record method), 205
fliplr() (in module numpy), 468
flipud() (in module numpy), 468
floor (in module numpy), 716
floor_divide (in module numpy), 746
flush() (numpy.memmap method), 139
fmax (in module numpy), 760
fmin (in module numpy), 761
fmod (in module numpy), 747
format_parser (class in numpy), 535
Fortran-order, 35
frexp (in module numpy), 740
from dict

dtype construction, 70
from dtype

dtype construction, 67
from list

dtype construction, 70
from None

dtype construction, 67
from string

dtype construction, 68

from tuple
dtype construction, 70

from type
dtype construction, 67

fromarrays() (in module numpy.core.records), 419
frombuffer (in module numpy.ma), 282
frombuffer() (in module numpy), 413
fromfile() (in module numpy), 414
fromfile() (in module numpy.core.records), 420
fromfunction (in module numpy.ma), 283
fromfunction() (in module numpy), 415
fromiter() (in module numpy), 416
frompyfunc() (in module numpy), 587
fromrecords() (in module numpy.core.records), 419
fromregex() (in module numpy), 633
fromroots() (numpy.polynomial.chebyshev.Chebyshev

method), 812
fromroots() (numpy.polynomial.hermite.Hermite

method), 891
fromroots() (numpy.polynomial.hermite_e.HermiteE

method), 917
fromroots() (numpy.polynomial.laguerre.Laguerre

method), 864
fromroots() (numpy.polynomial.legendre.Legendre

method), 838
fromroots() (numpy.polynomial.polynomial.Polynomial

method), 788
fromstring() (in module numpy), 416
fromstring() (in module numpy.core.records), 420
full() (in module numpy), 406
full_like() (in module numpy), 407
fv() (in module numpy), 573

G
gamma() (in module numpy.random), 968
gamma() (numpy.random.RandomState method), 1014
generate_config_py() (in module

numpy.distutils.misc_util), 1136
generic (class in numpy), 51
genfromtxt() (in module numpy), 630
geometric() (in module numpy.random), 969
geometric() (numpy.random.RandomState method), 1016
get_build_temp_dir() (numpy.distutils.misc_util.Configuration

method), 1143
get_cmd() (in module numpy.distutils.misc_util), 1136
get_config_cmd() (numpy.distutils.misc_util.Configuration

method), 1143
get_dependencies() (in module

numpy.distutils.misc_util), 1136
get_distribution() (numpy.distutils.misc_util.Configuration

method), 1137
get_ext_source_files() (in module

numpy.distutils.misc_util), 1136
get_fill_value() (numpy.ma.MaskedArray method), 280

Index 1289

NumPy Reference, Release 1.11.1

get_info() (in module numpy.distutils.system_info), 1144
get_info() (numpy.distutils.misc_util.Configuration

method), 1144
get_numpy_include_dirs() (in module

numpy.distutils.misc_util), 1135
get_printoptions() (in module numpy), 639
get_script_files() (in module numpy.distutils.misc_util),

1136
get_standard_file() (in module

numpy.distutils.system_info), 1144
get_state() (in module numpy.random), 1059
get_state() (numpy.random.RandomState method), 1016
get_subpackage() (numpy.distutils.misc_util.Configuration

method), 1137
get_version() (numpy.distutils.misc_util.Configuration

method), 1144
getA() (numpy.matrix method), 114
getA1() (numpy.matrix method), 115
getbuffer() (in module numpy), 770
getbufsize() (in module numpy), 772
getdata() (in module numpy.ma), 293
geterr() (in module numpy), 546
geterrcall() (in module numpy), 546
geterrobj() (in module numpy), 549
getfield() (numpy.chararray method), 153
getfield() (numpy.core.defchararray.chararray method),

509
getfield() (numpy.generic method), 56
getfield() (numpy.matrix method), 116
getfield() (numpy.ndarray method), 20
getfield() (numpy.recarray method), 185
getfield() (numpy.record method), 205
getH() (numpy.matrix method), 115
getI() (numpy.matrix method), 115
getmask() (in module numpy.ma), 292
getmaskarray() (in module numpy.ma), 293
getslice

ndarray special methods, 75
getT() (numpy.matrix method), 116
gradient() (in module numpy), 726
greater (in module numpy), 696
greater() (in module numpy.core.defchararray), 490
greater_equal (in module numpy), 696
greater_equal() (in module numpy.core.defchararray),

490
green_text() (in module numpy.distutils.misc_util), 1136
gumbel() (in module numpy.random), 970
gumbel() (numpy.random.RandomState method), 1017

H
H (numpy.matrix attribute), 96
hamming() (in module numpy), 1129
hanning() (in module numpy), 1130
harden_mask (in module numpy.ma), 322

harden_mask() (numpy.ma.MaskedArray method), 279
hardmask (numpy.ma.MaskedArray attribute), 235
has_cxx_sources() (in module numpy.distutils.misc_util),

1136
has_f_sources() (in module numpy.distutils.misc_util),

1136
has_samecoef() (numpy.polynomial.chebyshev.Chebyshev

method), 812
has_samecoef() (numpy.polynomial.hermite.Hermite

method), 891
has_samecoef() (numpy.polynomial.hermite_e.HermiteE

method), 918
has_samecoef() (numpy.polynomial.laguerre.Laguerre

method), 865
has_samecoef() (numpy.polynomial.legendre.Legendre

method), 839
has_samecoef() (numpy.polynomial.polynomial.Polynomial

method), 788
has_samedomain() (numpy.polynomial.chebyshev.Chebyshev

method), 813
has_samedomain() (numpy.polynomial.hermite.Hermite

method), 891
has_samedomain() (numpy.polynomial.hermite_e.HermiteE

method), 918
has_samedomain() (numpy.polynomial.laguerre.Laguerre

method), 865
has_samedomain() (numpy.polynomial.legendre.Legendre

method), 839
has_samedomain() (numpy.polynomial.polynomial.Polynomial

method), 788
has_sametype() (numpy.polynomial.chebyshev.Chebyshev

method), 813
has_sametype() (numpy.polynomial.hermite.Hermite

method), 892
has_sametype() (numpy.polynomial.hermite_e.HermiteE

method), 918
has_sametype() (numpy.polynomial.laguerre.Laguerre

method), 865
has_sametype() (numpy.polynomial.legendre.Legendre

method), 839
has_sametype() (numpy.polynomial.polynomial.Polynomial

method), 788
has_samewindow() (numpy.polynomial.chebyshev.Chebyshev

method), 813
has_samewindow() (numpy.polynomial.hermite.Hermite

method), 892
has_samewindow() (numpy.polynomial.hermite_e.HermiteE

method), 918
has_samewindow() (numpy.polynomial.laguerre.Laguerre

method), 865
has_samewindow() (numpy.polynomial.legendre.Legendre

method), 839
has_samewindow() (numpy.polynomial.polynomial.Polynomial

method), 789

1290 Index

NumPy Reference, Release 1.11.1

hasobject (numpy.dtype attribute), 65
have_f77c() (numpy.distutils.misc_util.Configuration

method), 1143
have_f90c() (numpy.distutils.misc_util.Configuration

method), 1143
herm2poly() (in module numpy.polynomial.hermite), 912
hermadd() (in module numpy.polynomial.hermite), 906
hermcompanion() (in module

numpy.polynomial.hermite), 910
hermder() (in module numpy.polynomial.hermite), 904
hermdiv() (in module numpy.polynomial.hermite), 908
hermdomain (in module numpy.polynomial.hermite), 911
herme2poly() (in module numpy.polynomial.hermite_e),

938
hermeadd() (in module numpy.polynomial.hermite_e),

932
hermecompanion() (in module

numpy.polynomial.hermite_e), 937
hermeder() (in module numpy.polynomial.hermite_e),

930
hermediv() (in module numpy.polynomial.hermite_e),

934
hermedomain (in module numpy.polynomial.hermite_e),

937
hermefit() (in module numpy.polynomial.hermite_e), 926
hermefromroots() (in module

numpy.polynomial.hermite_e), 925
hermegauss() (in module numpy.polynomial.hermite_e),

936
hermegrid2d() (in module numpy.polynomial.hermite_e),

923
hermegrid3d() (in module numpy.polynomial.hermite_e),

924
hermeint() (in module numpy.polynomial.hermite_e), 931
hermeline() (in module numpy.polynomial.hermite_e),

938
hermemul() (in module numpy.polynomial.hermite_e),

933
hermemulx() (in module numpy.polynomial.hermite_e),

934
hermeone (in module numpy.polynomial.hermite_e), 937
hermepow() (in module numpy.polynomial.hermite_e),

935
hermeroots() (in module numpy.polynomial.hermite_e),

925
hermesub() (in module numpy.polynomial.hermite_e),

933
hermetrim() (in module numpy.polynomial.hermite_e),

937
hermeval() (in module numpy.polynomial.hermite_e),

921
hermeval2d() (in module numpy.polynomial.hermite_e),

922
hermeval3d() (in module numpy.polynomial.hermite_e),

923
hermevander() (in module numpy.polynomial.hermite_e),

928
hermevander2d() (in module

numpy.polynomial.hermite_e), 929
hermevander3d() (in module

numpy.polynomial.hermite_e), 929
hermeweight() (in module numpy.polynomial.hermite_e),

936
hermex (in module numpy.polynomial.hermite_e), 937
hermezero (in module numpy.polynomial.hermite_e), 937
hermfit() (in module numpy.polynomial.hermite), 900
hermfromroots() (in module numpy.polynomial.hermite),

899
hermgauss() (in module numpy.polynomial.hermite), 909
hermgrid2d() (in module numpy.polynomial.hermite),

897
hermgrid3d() (in module numpy.polynomial.hermite),

897
hermint() (in module numpy.polynomial.hermite), 905
Hermite (class in numpy.polynomial.hermite), 886
HermiteE (class in numpy.polynomial.hermite_e), 913
hermline() (in module numpy.polynomial.hermite), 911
hermmul() (in module numpy.polynomial.hermite), 907
hermmulx() (in module numpy.polynomial.hermite), 908
hermone (in module numpy.polynomial.hermite), 911
hermpow() (in module numpy.polynomial.hermite), 909
hermroots() (in module numpy.polynomial.hermite), 898
hermsub() (in module numpy.polynomial.hermite), 907
hermtrim() (in module numpy.polynomial.hermite), 911
hermval() (in module numpy.polynomial.hermite), 894
hermval2d() (in module numpy.polynomial.hermite), 896
hermval3d() (in module numpy.polynomial.hermite), 896
hermvander() (in module numpy.polynomial.hermite),

902
hermvander2d() (in module numpy.polynomial.hermite),

902
hermvander3d() (in module numpy.polynomial.hermite),

903
hermweight() (in module numpy.polynomial.hermite),

910
hermx (in module numpy.polynomial.hermite), 911
hermzero (in module numpy.polynomial.hermite), 911
hfft() (in module numpy.fft), 567
histogram() (in module numpy), 1104
histogram2d() (in module numpy), 1107
histogramdd() (in module numpy), 1110
holidays (numpy.busdaycalendar attribute), 526
hsplit (in module numpy.ma), 308
hsplit() (in module numpy), 458
hstack (in module numpy.ma), 307
hstack() (in module numpy), 454
hypergeometric() (in module numpy.random), 972

Index 1291

NumPy Reference, Release 1.11.1

hypergeometric() (numpy.random.RandomState method),
1019

hypot (in module numpy), 705

I
I (numpy.matrix attribute), 97
i0() (in module numpy), 737
identity (in module numpy.ma), 348
identity (numpy.ufunc attribute), 388
identity() (in module numpy), 402
identity() (in module numpy.matlib), 768
identity() (numpy.polynomial.chebyshev.Chebyshev

method), 813
identity() (numpy.polynomial.hermite.Hermite method),

892
identity() (numpy.polynomial.hermite_e.HermiteE

method), 919
identity() (numpy.polynomial.laguerre.Laguerre method),

866
identity() (numpy.polynomial.legendre.Legendre

method), 840
identity() (numpy.polynomial.polynomial.Polynomial

method), 789
ids() (numpy.ma.MaskedArray method), 276
ifft() (in module numpy.fft), 552
ifft2() (in module numpy.fft), 555
ifftn() (in module numpy.fft), 558
ifftshift() (in module numpy.fft), 571
ihfft() (in module numpy.fft), 568
iinfo (class in numpy), 537
imag (numpy.chararray attribute), 146
imag (numpy.core.defchararray.chararray attribute), 502
imag (numpy.generic attribute), 50
imag (numpy.ma.MaskedArray attribute), 241
imag (numpy.matrix attribute), 103
imag (numpy.ndarray attribute), 9
imag (numpy.recarray attribute), 175
imag (numpy.record attribute), 201
imag() (in module numpy), 751
import_array (C function), 1202
import_ufunc (C function), 1231
in1d() (in module numpy), 1061
index (numpy.broadcast attribute), 214
index() (in module numpy.core.defchararray), 492
index() (numpy.chararray method), 154
index() (numpy.core.defchararray.chararray method), 510
indexing, 74, 82, 1243
indices() (in module numpy), 596
indices() (in module numpy.ma), 363
info() (in module numpy), 590
inner() (in module numpy), 645
inner() (in module numpy.ma), 348
innerproduct() (in module numpy.ma), 349
insert() (in module numpy), 463

integ() (numpy.poly1d method), 941
integ() (numpy.polynomial.chebyshev.Chebyshev

method), 814
integ() (numpy.polynomial.hermite.Hermite method),

892
integ() (numpy.polynomial.hermite_e.HermiteE method),

919
integ() (numpy.polynomial.laguerre.Laguerre method),

866
integ() (numpy.polynomial.legendre.Legendre method),

840
integ() (numpy.polynomial.polynomial.Polynomial

method), 789
interface

array, 365
interp() (in module numpy), 763
intersect1d() (in module numpy), 1062
inv() (in module numpy.linalg), 677
invert (in module numpy), 473
ipmt() (in module numpy), 578
irfft() (in module numpy.fft), 561
irfft2() (in module numpy.fft), 563
irfftn() (in module numpy.fft), 565
irr() (in module numpy), 580
is_busday() (in module numpy), 526
is_local_src_dir() (in module numpy.distutils.misc_util),

1136
is_mask() (in module numpy.ma), 298
is_masked() (in module numpy.ma), 297
isalignedstruct (numpy.dtype attribute), 65
isalnum() (numpy.chararray method), 154
isalnum() (numpy.core.defchararray.chararray method),

510
isalpha() (in module numpy.core.defchararray), 493
isalpha() (numpy.chararray method), 154
isalpha() (numpy.core.defchararray.chararray method),

510
isbuiltin (numpy.dtype attribute), 65
isclose() (in module numpy), 694
iscomplex() (in module numpy), 688
iscomplexobj() (in module numpy), 688
iscontiguous() (numpy.ma.MaskedArray method), 276
isdecimal() (in module numpy.core.defchararray), 493
isdecimal() (numpy.chararray method), 154
isdecimal() (numpy.core.defchararray.chararray method),

510
isdigit() (in module numpy.core.defchararray), 493
isdigit() (numpy.chararray method), 154
isdigit() (numpy.core.defchararray.chararray method),

510
isfinite (in module numpy), 683
isfortran() (in module numpy), 688
isinf (in module numpy), 684
islower() (in module numpy.core.defchararray), 494

1292 Index

NumPy Reference, Release 1.11.1

islower() (numpy.chararray method), 154
islower() (numpy.core.defchararray.chararray method),

510
isnan (in module numpy), 685
isnative (numpy.dtype attribute), 65
isneginf() (in module numpy), 686
isnumeric() (in module numpy.core.defchararray), 494
isnumeric() (numpy.chararray method), 154
isnumeric() (numpy.core.defchararray.chararray method),

511
isposinf() (in module numpy), 687
isreal() (in module numpy), 689
isrealobj() (in module numpy), 690
isscalar() (in module numpy), 690
issctype() (in module numpy), 540
isspace() (in module numpy.core.defchararray), 494
isspace() (numpy.chararray method), 154
isspace() (numpy.core.defchararray.chararray method),

511
issubclass_() (in module numpy), 541
issubdtype() (in module numpy), 540
issubsctype() (in module numpy), 540
istitle() (in module numpy.core.defchararray), 495
istitle() (numpy.chararray method), 155
istitle() (numpy.core.defchararray.chararray method), 511
isupper() (in module numpy.core.defchararray), 495
isupper() (numpy.chararray method), 155
isupper() (numpy.core.defchararray.chararray method),

511
item() (numpy.chararray method), 155
item() (numpy.core.defchararray.chararray method), 511
item() (numpy.generic method), 56
item() (numpy.ma.MaskedArray method), 255
item() (numpy.matrix method), 117
item() (numpy.ndarray method), 21
item() (numpy.recarray method), 185
item() (numpy.record method), 206
itemset() (numpy.generic method), 56
itemset() (numpy.matrix method), 118
itemset() (numpy.ndarray method), 22
itemset() (numpy.recarray method), 186
itemset() (numpy.record method), 206
itemsize (numpy.chararray attribute), 146
itemsize (numpy.core.defchararray.chararray attribute),

502
itemsize (numpy.dtype attribute), 73
itemsize (numpy.generic attribute), 50
itemsize (numpy.ma.MaskedArray attribute), 239
itemsize (numpy.matrix attribute), 103
itemsize (numpy.ndarray attribute), 9
itemsize (numpy.recarray attribute), 175
itemsize (numpy.record attribute), 201
iterator

C-API, 1208, 1224

iternext() (numpy.nditer method), 620
iters (numpy.broadcast attribute), 214
ix_() (in module numpy), 597

J
join() (in module numpy.core.defchararray), 481
join() (numpy.chararray method), 156
join() (numpy.core.defchararray.chararray method), 512

K
kaiser() (in module numpy), 1132
keyword arguments

ufunc, 385
kind (numpy.dtype attribute), 72
knownfailureif() (in module numpy.testing.decorators),

1123
kron() (in module numpy), 656

L
lag2poly() (in module numpy.polynomial.laguerre), 885
lagadd() (in module numpy.polynomial.laguerre), 880
lagcompanion() (in module numpy.polynomial.laguerre),

884
lagder() (in module numpy.polynomial.laguerre), 877
lagdiv() (in module numpy.polynomial.laguerre), 882
lagdomain (in module numpy.polynomial.laguerre), 884
lagfit() (in module numpy.polynomial.laguerre), 873
lagfromroots() (in module numpy.polynomial.laguerre),

872
laggauss() (in module numpy.polynomial.laguerre), 883
laggrid2d() (in module numpy.polynomial.laguerre), 870
laggrid3d() (in module numpy.polynomial.laguerre), 871
lagint() (in module numpy.polynomial.laguerre), 878
lagline() (in module numpy.polynomial.laguerre), 885
lagmul() (in module numpy.polynomial.laguerre), 881
lagmulx() (in module numpy.polynomial.laguerre), 881
lagone (in module numpy.polynomial.laguerre), 884
lagpow() (in module numpy.polynomial.laguerre), 882
lagroots() (in module numpy.polynomial.laguerre), 872
lagsub() (in module numpy.polynomial.laguerre), 880
lagtrim() (in module numpy.polynomial.laguerre), 884
Laguerre (class in numpy.polynomial.laguerre), 860
lagval() (in module numpy.polynomial.laguerre), 868
lagval2d() (in module numpy.polynomial.laguerre), 869
lagval3d() (in module numpy.polynomial.laguerre), 870
lagvander() (in module numpy.polynomial.laguerre), 875
lagvander2d() (in module numpy.polynomial.laguerre),

876
lagvander3d() (in module numpy.polynomial.laguerre),

877
lagweight() (in module numpy.polynomial.laguerre), 883
lagx (in module numpy.polynomial.laguerre), 884
lagzero (in module numpy.polynomial.laguerre), 884
laplace() (in module numpy.random), 973

Index 1293

NumPy Reference, Release 1.11.1

laplace() (numpy.random.RandomState method), 1020
ldexp (in module numpy), 740
left_shift (in module numpy), 474
leg2poly() (in module numpy.polynomial.legendre), 859
legadd() (in module numpy.polynomial.legendre), 853
legcompanion() (in module numpy.polynomial.legendre),

857
legder() (in module numpy.polynomial.legendre), 851
legdiv() (in module numpy.polynomial.legendre), 855
legdomain (in module numpy.polynomial.legendre), 858
Legendre (class in numpy.polynomial.legendre), 834
legfit() (in module numpy.polynomial.legendre), 847
legfromroots() (in module numpy.polynomial.legendre),

846
leggauss() (in module numpy.polynomial.legendre), 856
leggrid2d() (in module numpy.polynomial.legendre), 844
leggrid3d() (in module numpy.polynomial.legendre), 845
legint() (in module numpy.polynomial.legendre), 852
legline() (in module numpy.polynomial.legendre), 858
legmul() (in module numpy.polynomial.legendre), 854
legmulx() (in module numpy.polynomial.legendre), 855
legone (in module numpy.polynomial.legendre), 858
legpow() (in module numpy.polynomial.legendre), 856
legroots() (in module numpy.polynomial.legendre), 846
legsub() (in module numpy.polynomial.legendre), 854
legtrim() (in module numpy.polynomial.legendre), 858
legval() (in module numpy.polynomial.legendre), 842
legval2d() (in module numpy.polynomial.legendre), 843
legval3d() (in module numpy.polynomial.legendre), 844
legvander() (in module numpy.polynomial.legendre), 849
legvander2d() (in module numpy.polynomial.legendre),

849
legvander3d() (in module numpy.polynomial.legendre),

850
legweight() (in module numpy.polynomial.legendre), 857
legx (in module numpy.polynomial.legendre), 858
legzero (in module numpy.polynomial.legendre), 858
less (in module numpy), 697
less() (in module numpy.core.defchararray), 491
less_equal (in module numpy), 697
less_equal() (in module numpy.core.defchararray), 490
lexsort() (in module numpy), 1066
LinAlgError, 680
linspace() (in module numpy), 422
linspace() (numpy.polynomial.chebyshev.Chebyshev

method), 814
linspace() (numpy.polynomial.hermite.Hermite method),

893
linspace() (numpy.polynomial.hermite_e.HermiteE

method), 919
linspace() (numpy.polynomial.laguerre.Laguerre

method), 866
linspace() (numpy.polynomial.legendre.Legendre

method), 840

linspace() (numpy.polynomial.polynomial.Polynomial
method), 790

ljust() (in module numpy.core.defchararray), 482
ljust() (numpy.chararray method), 156
ljust() (numpy.core.defchararray.chararray method), 512
load() (in module numpy), 624
load() (in module numpy.ma), 325
load_library() (in module numpy.ctypeslib), 524
loads() (in module numpy.ma), 326
loadtxt() (in module numpy), 417
log (in module numpy), 733
log10 (in module numpy), 733
log1p (in module numpy), 735
log2 (in module numpy), 734
logaddexp (in module numpy), 735
logaddexp2 (in module numpy), 736
logical_and (in module numpy), 691
logical_not (in module numpy), 692
logical_or (in module numpy), 691
logical_xor (in module numpy), 692
logistic() (in module numpy.random), 974
logistic() (numpy.random.RandomState method), 1022
lognormal() (in module numpy.random), 975
lognormal() (numpy.random.RandomState method), 1023
logseries() (in module numpy.random), 978
logseries() (numpy.random.RandomState method), 1025
logspace() (in module numpy), 424
lookfor() (in module numpy), 589
lower() (in module numpy.core.defchararray), 482
lower() (numpy.chararray method), 156
lower() (numpy.core.defchararray.chararray method), 512
lstrip() (in module numpy.core.defchararray), 482
lstrip() (numpy.chararray method), 156
lstrip() (numpy.core.defchararray.chararray method), 512
lstsq() (in module numpy.linalg), 676

M
MachAr (class in numpy), 538
make_config_py() (numpy.distutils.misc_util.Configuration

method), 1144
make_mask() (in module numpy.ma), 312
make_mask_descr() (in module numpy.ma), 315
make_mask_none() (in module numpy.ma), 313
make_svn_version_py() (numpy.distutils.misc_util.Configuration

method), 1144
mapparms() (numpy.polynomial.chebyshev.Chebyshev

method), 814
mapparms() (numpy.polynomial.hermite.Hermite

method), 893
mapparms() (numpy.polynomial.hermite_e.HermiteE

method), 920
mapparms() (numpy.polynomial.laguerre.Laguerre

method), 867

1294 Index

NumPy Reference, Release 1.11.1

mapparms() (numpy.polynomial.legendre.Legendre
method), 841

mapparms() (numpy.polynomial.polynomial.Polynomial
method), 790

mask (numpy.ma.masked_array attribute), 315
mask (numpy.ma.MaskedArray attribute), 235, 299
mask_cols() (in module numpy.ma), 319
mask_indices() (in module numpy), 600
mask_or() (in module numpy.ma), 314
mask_rowcols() (in module numpy.ma), 320
mask_rows() (in module numpy.ma), 321
masked (in module numpy.ma), 234
masked arrays, 216
masked_all() (in module numpy.ma), 285
masked_all_like() (in module numpy.ma), 286
masked_array (in module numpy.ma), 218
masked_equal() (in module numpy.ma), 221
masked_greater() (in module numpy.ma), 221
masked_greater_equal() (in module numpy.ma), 222
masked_inside() (in module numpy.ma), 222
masked_invalid() (in module numpy.ma), 223
masked_less() (in module numpy.ma), 223
masked_less_equal() (in module numpy.ma), 223
masked_not_equal() (in module numpy.ma), 224
masked_object() (in module numpy.ma), 224
masked_outside() (in module numpy.ma), 225
masked_print_options (in module numpy.ma), 234
masked_values() (in module numpy.ma), 225
masked_where() (in module numpy.ma), 227
MaskedArray (class in numpy.ma), 234
MaskType (in module numpy.ma), 281
mat() (in module numpy), 433
matmul() (in module numpy), 648
matrix, 40, 95
matrix (class in numpy), 98
matrix_power() (in module numpy.linalg), 655
matrix_rank() (in module numpy.linalg), 671
max (numpy.iinfo attribute), 538
max() (in module numpy.ma), 343
max() (numpy.generic method), 56
max() (numpy.ma.MaskedArray method), 264
max() (numpy.matrix method), 118
max() (numpy.ndarray method), 22
max() (numpy.recarray method), 187
max() (numpy.record method), 206
maximum (in module numpy), 758
maximum_fill_value() (in module numpy.ma), 327
may_share_memory() (in module numpy), 772
mean (in module numpy.ma), 335
mean() (in module numpy), 1090
mean() (numpy.generic method), 56
mean() (numpy.ma.MaskedArray method), 265
mean() (numpy.matrix method), 119
mean() (numpy.ndarray method), 22

mean() (numpy.recarray method), 187
mean() (numpy.record method), 206
median() (in module numpy), 1088
median() (in module numpy.ma), 336
memmap (class in numpy), 136
memory maps, 136
memory model

ndarray, 1241
meshgrid() (in module numpy), 425
metadata (numpy.dtype attribute), 65
methods

accumulate, ufunc, 1247
reduce, ufunc, 1247
reduceat, ufunc, 1247
ufunc, 389

mgrid (in module numpy), 427
min (numpy.iinfo attribute), 538
min() (in module numpy.ma), 343
min() (numpy.generic method), 56
min() (numpy.ma.MaskedArray method), 266
min() (numpy.matrix method), 119
min() (numpy.ndarray method), 23
min() (numpy.recarray method), 187
min() (numpy.record method), 206
min_scalar_type() (in module numpy), 533
minimum (in module numpy), 759
mintypecode() (in module numpy), 544
mirr() (in module numpy), 581
mod (in module numpy), 748
mod() (in module numpy.core.defchararray), 479
modf (in module numpy), 749
moveaxis() (in module numpy), 439
mr_ (in module numpy.ma), 309
msort() (in module numpy), 1069
multinomial() (in module numpy.random), 979
multinomial() (numpy.random.RandomState method),

1026
multiply (in module numpy), 743
multiply() (in module numpy.core.defchararray), 479
multivariate_normal() (in module numpy.random), 980
multivariate_normal() (numpy.random.RandomState

method), 1027

N
name (numpy.dtype attribute), 65
names (numpy.dtype attribute), 66
nan_to_num() (in module numpy), 761
nanargmax() (in module numpy), 1073
nanargmin() (in module numpy), 1074
nanmax() (in module numpy), 1082
nanmean() (in module numpy), 1096
nanmedian() (in module numpy), 1095
nanmin() (in module numpy), 1081
nanpercentile() (in module numpy), 1086

Index 1295

NumPy Reference, Release 1.11.1

nanstd() (in module numpy), 1097
nansum() (in module numpy), 722
nanvar() (in module numpy), 1098
nargs (numpy.ufunc attribute), 387
nbytes (numpy.chararray attribute), 146
nbytes (numpy.core.defchararray.chararray attribute), 502
nbytes (numpy.generic attribute), 52
nbytes (numpy.ma.MaskedArray attribute), 239
nbytes (numpy.matrix attribute), 103
nbytes (numpy.ndarray attribute), 10
nbytes (numpy.recarray attribute), 175
nbytes (numpy.record attribute), 201
ndarray, 82

C-API, 1168, 1208
memory model, 1241
special methods getslice, 75
special methods setslice, 75
view, 76

ndarray (class in numpy), 4
ndenumerate (class in numpy), 212
ndim (numpy.chararray attribute), 146
ndim (numpy.core.defchararray.chararray attribute), 503
ndim (numpy.generic attribute), 50
ndim (numpy.ma.MaskedArray attribute), 239
ndim (numpy.matrix attribute), 104
ndim (numpy.ndarray attribute), 10
ndim (numpy.recarray attribute), 175
ndim (numpy.record attribute), 201
ndincr() (numpy.ndindex method), 621
ndindex (class in numpy), 620
nditer (class in numpy), 615
ndpointer() (in module numpy.ctypeslib), 524
negative (in module numpy), 743
negative_binomial() (in module numpy.random), 981
negative_binomial() (numpy.random.RandomState

method), 1028
newaxis, 75
newaxis (in module numpy), 76
newbuffer() (in module numpy), 771
newbyteorder() (numpy.dtype method), 66
newbyteorder() (numpy.generic method), 57
newbyteorder() (numpy.matrix method), 120
newbyteorder() (numpy.ndarray method), 23
newbyteorder() (numpy.recarray method), 187
newbyteorder() (numpy.record method), 206
next (numpy.broadcast attribute), 215
next (numpy.flatiter attribute), 622
next (numpy.nditer attribute), 620
next() (numpy.ndenumerate method), 213
next() (numpy.ndindex method), 621
nin (numpy.ufunc attribute), 386
NO_IMPORT_ARRAY (C macro), 1202
NO_IMPORT_UFUNC (C variable), 1231
nomask (in module numpy.ma), 234

non-contiguous, 36
noncentral_chisquare() (in module numpy.random), 982
noncentral_chisquare() (numpy.random.RandomState

method), 1029
noncentral_f() (in module numpy.random), 984
noncentral_f() (numpy.random.RandomState method),

1031
nonzero (in module numpy.ma), 294
nonzero() (in module numpy), 594
nonzero() (numpy.chararray method), 156
nonzero() (numpy.core.defchararray.chararray method),

512
nonzero() (numpy.generic method), 57
nonzero() (numpy.ma.MaskedArray method), 256
nonzero() (numpy.matrix method), 120
nonzero() (numpy.ndarray method), 23
nonzero() (numpy.recarray method), 188
nonzero() (numpy.record method), 207
norm() (in module numpy.linalg), 667
normal() (in module numpy.random), 985
normal() (numpy.random.RandomState method), 1032
not_equal (in module numpy), 698
not_equal() (in module numpy.core.defchararray), 490
notmasked_contiguous() (in module numpy.ma), 317
notmasked_edges() (in module numpy.ma), 317
nout (numpy.ufunc attribute), 387
nper() (in module numpy), 581
npv() (in module numpy), 576
NPY_1_PI (C variable), 1235
NPY_2_PI (C variable), 1235
NPY_ALLOW_C_API (C macro), 1205
NPY_ALLOW_C_API_DEF (C macro), 1205
NPY_ANYORDER (C variable), 1207
NPY_ARRAY_ALIGNED (C variable), 1173, 1184
NPY_ARRAY_BEHAVED (C variable), 1173, 1185
NPY_ARRAY_BEHAVED_NS (C variable), 1175, 1185
NPY_ARRAY_C_CONTIGUOUS (C variable), 1173,

1184
NPY_ARRAY_CARRAY (C variable), 1173, 1185
NPY_ARRAY_CARRAY_RO (C variable), 1173, 1185
NPY_ARRAY_DEFAULT (C variable), 1173, 1185
NPY_ARRAY_ELEMENTSTRIDES (C variable), 1175
NPY_ARRAY_ENSUREARRAY (C variable), 1173,

1185
NPY_ARRAY_ENSURECOPY (C variable), 1173, 1185
NPY_ARRAY_F_CONTIGUOUS (C variable), 1173,

1184
NPY_ARRAY_FARRAY (C variable), 1173, 1185
NPY_ARRAY_FARRAY_RO (C variable), 1173, 1185
NPY_ARRAY_FORCECAST (C variable), 1173, 1185
NPY_ARRAY_IN_ARRAY (C variable), 1173
NPY_ARRAY_IN_FARRAY (C variable), 1173
NPY_ARRAY_INOUT_ARRAY (C variable), 1174
NPY_ARRAY_INOUT_FARRAY (C variable), 1174

1296 Index

NumPy Reference, Release 1.11.1

NPY_ARRAY_NOTSWAPPED (C variable), 1175, 1185
NPY_ARRAY_OUT_FARRAY (C variable), 1174
NPY_ARRAY_OWNDATA (C variable), 1184
NPY_ARRAY_UPDATE_ALL (C variable), 1185
NPY_ARRAY_UPDATEIFCOPY (C variable), 1173,

1184
NPY_ARRAY_WRITEABLE (C variable), 1173, 1184
NPY_AUXDATA_CLONE (C function), 1195
NPY_AUXDATA_FREE (C function), 1195
NPY_BEGIN_ALLOW_THREADS (C macro), 1204
NPY_BEGIN_THREADS (C macro), 1205
NPY_BEGIN_THREADS_DEF (C macro), 1205
NPY_BEGIN_THREADS_DESCR (C function), 1205
NPY_BEGIN_THREADS_THRESHOLDED (C func-

tion), 1205
NPY_BIG_ENDIAN (C variable), 1163
npy_bool (C type), 1167
NPY_BOOL (C variable), 1164
NPY_BUFSIZE (C variable), 1206
NPY_BYTE (C variable), 1164
NPY_BYTE_ORDER (C variable), 1163
NPY_CASTING (C type), 1208
NPY_CDOUBLE (C variable), 1165
NPY_CFLOAT (C variable), 1165
npy_clear_floatstatus (C function), 1236
NPY_CLIP (C variable), 1189, 1208
NPY_CLIPMODE (C type), 1207
NPY_CLONGDOUBLE (C variable), 1165
NPY_COMPLEX128 (C variable), 1165
NPY_COMPLEX64 (C variable), 1165
npy_copysign (C function), 1235
NPY_CORDER (C variable), 1207
NPY_CPU_AMD64 (C variable), 1162
NPY_CPU_IA64 (C variable), 1163
NPY_CPU_PARISC (C variable), 1163
NPY_CPU_PPC (C variable), 1163
NPY_CPU_PPC64 (C variable), 1163
NPY_CPU_S390 (C variable), 1163
NPY_CPU_SPARC (C variable), 1163
NPY_CPU_SPARC64 (C variable), 1163
NPY_CPU_X86 (C variable), 1162
NPY_DATETIME (C variable), 1165
NPY_DEFAULT_TYPE (C variable), 1166
NPY_DISABLE_C_API (C macro), 1205
NPY_DOUBLE (C variable), 1165
npy_double_to_half (C function), 1238
npy_doublebits_to_halfbits (C function), 1239
NPY_E (C variable), 1235
NPY_END_ALLOW_THREADS (C macro), 1205
NPY_END_THREADS (C macro), 1205
NPY_END_THREADS_DESCR (C function), 1205
NPY_EQUIV_CASTING (C variable), 1208
NPY_EULER (C variable), 1235
NPY_FAIL (C variable), 1206

NPY_FALSE (C variable), 1206
NPY_FLOAT (C variable), 1165
NPY_FLOAT16 (C variable), 1164
NPY_FLOAT32 (C variable), 1165
NPY_FLOAT64 (C variable), 1165
npy_float_to_half (C function), 1238
npy_floatbits_to_halfbits (C function), 1239
NPY_FORTRANORDER (C variable), 1207
npy_get_floatstatus (C function), 1236
NPY_HALF (C variable), 1164
npy_half_copysign (C function), 1239
npy_half_eq (C function), 1238
npy_half_eq_nonan (C function), 1238
npy_half_ge (C function), 1238
npy_half_gt (C function), 1238
npy_half_isfinite (C function), 1239
npy_half_isinf (C function), 1239
npy_half_isnan (C function), 1238
npy_half_iszero (C function), 1238
npy_half_le (C function), 1238
npy_half_le_nonan (C function), 1238
npy_half_lt (C function), 1238
npy_half_lt_nonan (C function), 1238
NPY_HALF_NAN (C variable), 1238
npy_half_ne (C function), 1238
NPY_HALF_NEGONE (C variable), 1237
npy_half_nextafter (C function), 1239
NPY_HALF_NINF (C variable), 1238
NPY_HALF_NZERO (C variable), 1237
NPY_HALF_ONE (C variable), 1237
NPY_HALF_PINF (C variable), 1238
NPY_HALF_PZERO (C variable), 1237
npy_half_signbit (C function), 1239
npy_half_spacing (C function), 1239
npy_half_to_double (C function), 1238
npy_half_to_float (C function), 1238
NPY_HALF_ZERO (C variable), 1237
npy_halfbits_to_doublebits (C function), 1239
npy_halfbits_to_floatbits (C function), 1239
NPY_INFINITY (C variable), 1234
NPY_INT (C variable), 1164
NPY_INT16 (C variable), 1164
NPY_INT32 (C variable), 1164
NPY_INT64 (C variable), 1164
NPY_INT8 (C variable), 1164
NPY_INTP (C variable), 1165
npy_isfinite (C function), 1234
npy_isinf (C function), 1235
npy_isnan (C function), 1234
NPY_ITER_ALIGNED (C variable), 1215
NPY_ITER_ALLOCATE (C variable), 1215
NPY_ITER_ARRAYMASK (C variable), 1216
NPY_ITER_BUFFERED (C variable), 1214
NPY_ITER_C_INDEX (C variable), 1213

Index 1297

NumPy Reference, Release 1.11.1

NPY_ITER_COMMON_DTYPE (C variable), 1213
NPY_ITER_CONTIG (C variable), 1215
NPY_ITER_COPY (C variable), 1215
NPY_ITER_DELAY_BUFALLOC (C variable), 1214
NPY_ITER_DONT_NEGATE_STRIDES (C variable),

1213
NPY_ITER_EXTERNAL_LOOP (C variable), 1213
NPY_ITER_F_INDEX (C variable), 1213
NPY_ITER_GROWINNER (C variable), 1214
NPY_ITER_MULTI_INDEX (C variable), 1213
NPY_ITER_NBO (C variable), 1215
NPY_ITER_NO_BROADCAST (C variable), 1215
NPY_ITER_NO_SUBTYPE (C variable), 1215
NPY_ITER_RANGED (C variable), 1214
NPY_ITER_READONLY (C variable), 1214
NPY_ITER_READWRITE (C variable), 1214
NPY_ITER_REDUCE_OK (C variable), 1213
NPY_ITER_REFS_OK (C variable), 1213
NPY_ITER_UPDATEIFCOPY (C variable), 1215
NPY_ITER_WRITEMASKED (C variable), 1216
NPY_ITER_WRITEONLY (C variable), 1215
NPY_ITER_ZEROSIZE_OK (C variable), 1213
NPY_KEEPORDER (C variable), 1207
NPY_LITTLE_ENDIAN (C variable), 1163
NPY_LOG10E (C variable), 1235
NPY_LOG2E (C variable), 1235
NPY_LOGE10 (C variable), 1235
NPY_LOGE2 (C variable), 1235
NPY_LONG (C variable), 1164
NPY_LONGDOUBLE (C variable), 1165
NPY_LONGLONG (C variable), 1164
NPY_LOOP_BEGIN_THREADS (C macro), 1225
NPY_LOOP_END_THREADS (C macro), 1225
NPY_MASK (C variable), 1166
NPY_MAX_BUFSIZE (C variable), 1206
NPY_MAXDIMS (C variable), 1206
NPY_MIN_BUFSIZE (C variable), 1206
NPY_NAN (C variable), 1234
npy_nextafter (C function), 1235
NPY_NO_CASTING (C variable), 1208
NPY_NOTYPE (C variable), 1166
NPY_NSCALARKINDS (C variable), 1207
NPY_NSORTS (C variable), 1207
NPY_NTYPES (C variable), 1166
NPY_NUM_FLOATTYPE (C variable), 1206
NPY_NZERO (C variable), 1234
NPY_OBJECT (C variable), 1165
NPY_ORDER (C type), 1207
NPY_OUT_ARRAY (C variable), 1173
NPY_PI (C variable), 1235
NPY_PI_2 (C variable), 1235
NPY_PI_4 (C variable), 1235
NPY_PRIORITY (C variable), 1205
NPY_PZERO (C variable), 1234

NPY_RAISE (C variable), 1189, 1208
NPY_SAFE_CASTING (C variable), 1208
NPY_SAME_KIND_CASTING (C variable), 1208
NPY_SCALAR_PRIORITY (C variable), 1205
NPY_SCALARKIND (C type), 1207
npy_set_floatstatus_divbyzero (C function), 1236
npy_set_floatstatus_invalid (C function), 1236
npy_set_floatstatus_overflow (C function), 1236
npy_set_floatstatus_underflow (C function), 1236
NPY_SHORT (C variable), 1164
npy_signbit (C function), 1235
NPY_SIZEOF_DOUBLE (C variable), 1162
NPY_SIZEOF_FLOAT (C variable), 1162
NPY_SIZEOF_INT (C variable), 1162
NPY_SIZEOF_LONG (C variable), 1162
NPY_SIZEOF_LONG_DOUBLE (C variable), 1162
NPY_SIZEOF_LONGLONG (C variable), 1162
NPY_SIZEOF_PY_INTPTR_T (C variable), 1162
NPY_SIZEOF_PY_LONG_LONG (C variable), 1162
NPY_SIZEOF_SHORT (C variable), 1162
NPY_SORTKIND (C type), 1207
npy_spacing (C function), 1236
NPY_STRING (C variable), 1165
NPY_SUBTYPE_PRIORITY (C variable), 1205
NPY_SUCCEED (C variable), 1206
NPY_TIMEDELTA (C variable), 1165
NPY_TRUE (C variable), 1206
NPY_UBYTE (C variable), 1164
NPY_UINT (C variable), 1164
NPY_UINT16 (C variable), 1164
NPY_UINT32 (C variable), 1164
NPY_UINT64 (C variable), 1164
NPY_UINT8 (C variable), 1164
NPY_UINTP (C variable), 1165
NPY_ULONG (C variable), 1164
NPY_ULONGLONG (C variable), 1164
NPY_UNICODE (C variable), 1165
NPY_UNSAFE_CASTING (C variable), 1208
NPY_USERDEF (C variable), 1166
NPY_USHORT (C variable), 1164
NPY_VERSION (C variable), 1206
NPY_VOID (C variable), 1165
NPY_WRAP (C variable), 1189, 1208
NpyAuxData (C type), 1194
NpyAuxData_CloneFunc (C type), 1195
NpyAuxData_FreeFunc (C type), 1195
NpyIter (C type), 1211
NpyIter_AdvancedNew (C function), 1216
NpyIter_Copy (C function), 1217
NpyIter_CreateCompatibleStrides (C function), 1221
NpyIter_Deallocate (C function), 1218
NpyIter_EnableExternalLoop (C function), 1217
NpyIter_GetAxisStrideArray (C function), 1220
NpyIter_GetBufferSize (C function), 1220

1298 Index

NumPy Reference, Release 1.11.1

NpyIter_GetDataPtrArray (C function), 1223
NpyIter_GetDescrArray (C function), 1220
NpyIter_GetFirstMaskNAOp (C function), 1220
NpyIter_GetGetMultiIndex (C function), 1223
NpyIter_GetIndexPtr (C function), 1223
NpyIter_GetInitialDataPtrArray (C function), 1223
NpyIter_GetInnerFixedStrideArray (C function), 1224
NpyIter_GetInnerLoopSizePtr (C function), 1224
NpyIter_GetInnerStrideArray (C function), 1224
NpyIter_GetIterIndex (C function), 1219
NpyIter_GetIterIndexRange (C function), 1219
NpyIter_GetIterNext (C function), 1222
NpyIter_GetIterSize (C function), 1219
NpyIter_GetIterView (C function), 1221
NpyIter_GetMaskNAIndexArray (C function), 1221
NpyIter_GetMultiIndexFunc (C type), 1212
NpyIter_GetNDim (C function), 1220
NpyIter_GetNOp (C function), 1220
NpyIter_GetOperandArray (C function), 1221
NpyIter_GetReadFlags (C function), 1221
NpyIter_GetShape (C function), 1220
NpyIter_GetWriteFlags (C function), 1221
NpyIter_GotoIndex (C function), 1219
NpyIter_GotoIterIndex (C function), 1219
NpyIter_GotoMultiIndex (C function), 1219
NpyIter_HasDelayedBufAlloc (C function), 1219
NpyIter_HasExternalLoop (C function), 1220
NpyIter_HasIndex (C function), 1220
NpyIter_HasMultiIndex (C function), 1220
NpyIter_IsBuffered (C function), 1220
NpyIter_IsFirstVisit (C function), 1221
NpyIter_IsGrowInner (C function), 1220
NpyIter_IterNextFunc (C type), 1212
NpyIter_MultiNew (C function), 1212
NpyIter_New (C function), 1212
NpyIter_RemoveMultiIndex (C function), 1217
NpyIter_RequiresBuffering (C function), 1220
NpyIter_Reset (C function), 1218
NpyIter_ResetBasePointers (C function), 1218
NpyIter_ResetToIterIndexRange (C function), 1218
NpyIter_Type (C type), 1211
ntypes (numpy.ufunc attribute), 387
num (numpy.dtype attribute), 72
numpy (module), 1
numpy.distutils (module), 1135
numpy.distutils.exec_command (module), 1145
numpy.distutils.misc_util (module), 1135
numpy.doc.internals (module), 1247
numpy.dual (module), 544
numpy.fft (module), 550
numpy.lib.scimath (module), 545
NumpyVersion (class in numpy.lib), 773

O
obj2sctype() (in module numpy), 535
offset, 35
ogrid (in module numpy), 428
ones (in module numpy.ma), 287
ones() (in module numpy), 402
ones() (in module numpy.matlib), 766
ones_like() (in module numpy), 403
open() (numpy.DataSource method), 643
operation, 40, 272
operator, 40, 272
outer() (in module numpy), 647
outer() (in module numpy.ma), 350
outer() (numpy.ufunc method), 393
outerproduct() (in module numpy.ma), 351

P
packbits() (in module numpy), 476
pad() (in module numpy), 774
pareto() (in module numpy.random), 987
pareto() (numpy.random.RandomState method), 1034
partition() (in module numpy), 1069
partition() (in module numpy.core.defchararray), 483
partition() (numpy.matrix method), 120
partition() (numpy.ndarray method), 23
partition() (numpy.recarray method), 188
paths() (numpy.distutils.misc_util.Configuration method),

1143
percentile() (in module numpy), 1084
permutation() (in module numpy.random), 961
permutation() (numpy.random.RandomState method),

1035
piecewise() (in module numpy), 587
pinv() (in module numpy.linalg), 678
place() (in module numpy), 611
pmt() (in module numpy), 577
poisson() (in module numpy.random), 988
poisson() (numpy.random.RandomState method), 1036
poly() (in module numpy), 942
poly1d (class in numpy), 939
poly2cheb() (in module numpy.polynomial.chebyshev),

833
poly2herm() (in module numpy.polynomial.hermite), 912
poly2herme() (in module numpy.polynomial.hermite_e),

939
poly2lag() (in module numpy.polynomial.laguerre), 886
poly2leg() (in module numpy.polynomial.legendre), 859
polyadd() (in module numpy), 950
polyadd() (in module numpy.polynomial.polynomial),

803
polycompanion() (in module

numpy.polynomial.polynomial), 806
polyder() (in module numpy), 948

Index 1299

NumPy Reference, Release 1.11.1

polyder() (in module numpy.polynomial.polynomial),
801

polydiv() (in module numpy), 951
polydiv() (in module numpy.polynomial.polynomial), 805
polydomain (in module numpy.polynomial.polynomial),

806
polyfit() (in module numpy), 945
polyfit() (in module numpy.ma), 354
polyfit() (in module numpy.polynomial.polynomial), 797
polyfromroots() (in module

numpy.polynomial.polynomial), 796
polygrid2d() (in module numpy.polynomial.polynomial),

794
polygrid3d() (in module numpy.polynomial.polynomial),

795
polyint() (in module numpy), 949
polyint() (in module numpy.polynomial.polynomial), 802
polyline() (in module numpy.polynomial.polynomial),

807
polymul() (in module numpy), 952
polymul() (in module numpy.polynomial.polynomial),

804
polymulx() (in module numpy.polynomial.polynomial),

805
Polynomial (class in numpy.polynomial.polynomial), 783
polyone (in module numpy.polynomial.polynomial), 806
polypow() (in module numpy.polynomial.polynomial),

805
polyroots() (in module numpy.polynomial.polynomial),

795
polysub() (in module numpy), 952
polysub() (in module numpy.polynomial.polynomial),

804
polytrim() (in module numpy.polynomial.polynomial),

807
polyval() (in module numpy), 942
polyval() (in module numpy.polynomial.polynomial), 791
polyval2d() (in module numpy.polynomial.polynomial),

793
polyval3d() (in module numpy.polynomial.polynomial),

793
polyvander() (in module numpy.polynomial.polynomial),

799
polyvander2d() (in module

numpy.polynomial.polynomial), 800
polyvander3d() (in module

numpy.polynomial.polynomial), 800
polyx (in module numpy.polynomial.polynomial), 806
polyzero (in module numpy.polynomial.polynomial), 806
power (in module numpy), 744
power() (in module numpy.ma), 337
power() (in module numpy.random), 989
power() (numpy.random.RandomState method), 1037
ppmt() (in module numpy), 578

pprint() (numpy.record method), 207
prod (in module numpy.ma), 337
prod() (in module numpy), 719
prod() (numpy.generic method), 57
prod() (numpy.ma.MaskedArray method), 266
prod() (numpy.matrix method), 121
prod() (numpy.ndarray method), 24
prod() (numpy.recarray method), 189
prod() (numpy.record method), 207
product() (numpy.ma.MaskedArray method), 267
promote_types() (in module numpy), 532
protocol

array, 365
ptp() (in module numpy), 1083
ptp() (in module numpy.ma), 344
ptp() (numpy.generic method), 57
ptp() (numpy.ma.MaskedArray method), 268
ptp() (numpy.matrix method), 122
ptp() (numpy.ndarray method), 24
ptp() (numpy.recarray method), 189
ptp() (numpy.record method), 207
put() (in module numpy), 612
put() (numpy.chararray method), 156
put() (numpy.core.defchararray.chararray method), 512
put() (numpy.generic method), 57
put() (numpy.ma.MaskedArray method), 257
put() (numpy.matrix method), 122
put() (numpy.ndarray method), 25
put() (numpy.recarray method), 189
put() (numpy.record method), 207
putmask() (in module numpy), 613
pv() (in module numpy), 575
PY_ARRAY_UNIQUE_SYMBOL (C macro), 1202
PY_UFUNC_UNIQUE_SYMBOL (C variable), 1231
PyArray_All (C function), 1192
PyArray_Any (C function), 1192
PyArray_Arange (C function), 1172
PyArray_ArangeObj (C function), 1172
PyArray_ArgMax (C function), 1190
PyArray_ArgMin (C function), 1190
PyArray_ArgPartition (C function), 1190
PyArray_ArgSort (C function), 1189
PyArray_ArrayDescr.base (C member), 1152
PyArray_ArrayDescr.shape (C member), 1152
PyArray_ArrayType (C function), 1182
PyArray_ArrFuncs (C type), 1152
PyArray_ArrFuncs.argmax (C member), 1154
PyArray_ArrFuncs.argmin (C member), 1155
PyArray_ArrFuncs.argsort (C member), 1154
PyArray_ArrFuncs.cancastscalarkindto (C member),

1155
PyArray_ArrFuncs.cancastto (C member), 1155
PyArray_ArrFuncs.cast (C member), 1153
PyArray_ArrFuncs.castdict (C member), 1154

1300 Index

NumPy Reference, Release 1.11.1

PyArray_ArrFuncs.compare (C member), 1154
PyArray_ArrFuncs.copyswap (C member), 1153
PyArray_ArrFuncs.copyswapn (C member), 1153
PyArray_ArrFuncs.dotfunc (C member), 1154
PyArray_ArrFuncs.fastclip (C member), 1155
PyArray_ArrFuncs.fastputmask (C member), 1155
PyArray_ArrFuncs.fasttake (C member), 1155
PyArray_ArrFuncs.fill (C member), 1154
PyArray_ArrFuncs.fillwithscalar (C member), 1154
PyArray_ArrFuncs.fromstr (C member), 1154
PyArray_ArrFuncs.getitem (C member), 1153
PyArray_ArrFuncs.nonzero (C member), 1154
PyArray_ArrFuncs.scalarkind (C member), 1155
PyArray_ArrFuncs.scanfunc (C member), 1154
PyArray_ArrFuncs.setitem (C member), 1153
PyArray_ArrFuncs.sort (C member), 1154
PyArray_AsCArray (C function), 1192
PyArray_AxisConverter (C function), 1201
PyArray_BASE (C function), 1169
PyArray_BoolConverter (C function), 1201
PyArray_Broadcast (C function), 1196
PyArray_BroadcastToShape (C function), 1195
PyArray_BufferConverter (C function), 1201
PyArray_ByteorderConverter (C function), 1201
PyArray_BYTES (C function), 1169
PyArray_Byteswap (C function), 1187
PyArray_CanCastArrayTo (C function), 1181
PyArray_CanCastSafely (C function), 1180
PyArray_CanCastTo (C function), 1181
PyArray_CanCastTypeTo (C function), 1181
PyArray_CanCoerceScalar (C function), 1199
PyArray_Cast (C function), 1180
PyArray_CastingConverter (C function), 1201
PyArray_CastScalarToCtype (C function), 1198
PyArray_CastTo (C function), 1180
PyArray_CastToType (C function), 1180
PyArray_CEQ (C function), 1207
PyArray_CGE (C function), 1207
PyArray_CGT (C function), 1206
PyArray_Check (C function), 1177
PyArray_CheckAnyScalar (C function), 1178
PyArray_CheckAxis (C function), 1177
PyArray_CheckExact (C function), 1177
PyArray_CheckFromAny (C function), 1175
PyArray_CheckScalar (C function), 1177
PyArray_CheckStrides (C function), 1194
PyArray_CHKFLAGS (C function), 1185
PyArray_Choose (C function), 1189
PyArray_Chunk (C type), 1160
PyArray_Chunk.PyArray_Chunk.base (C member), 1160
PyArray_Chunk.PyArray_Chunk.flags (C member), 1160
PyArray_Chunk.PyArray_Chunk.len (C member), 1160
PyArray_Chunk.PyArray_Chunk.ptr (C member), 1160
PyArray_CLE (C function), 1207

PyArray_CLEARFLAGS (C function), 1169
PyArray_Clip (C function), 1191
PyArray_ClipmodeConverter (C function), 1201
PyArray_CLT (C function), 1206
PyArray_CNE (C function), 1207
PyArray_CompareLists (C function), 1194
PyArray_Compress (C function), 1190
PyArray_Concatenate (C function), 1192
PyArray_Conjugate (C function), 1191
PyArray_ContiguousFromAny (C function), 1175
PyArray_ConvertClipmodeSequence (C function), 1201
PyArray_Converter (C function), 1200
PyArray_ConvertToCommonType (C function), 1182
PyArray_CopyAndTranspose (C function), 1193
PyArray_CopyInto (C function), 1176
PyArray_Correlate (C function), 1193
PyArray_Correlate2 (C function), 1193
PyArray_CountNonzero (C function), 1190
PyArray_CumProd (C function), 1192
PyArray_CumSum (C function), 1191
PyArray_DATA (C function), 1169
PyArray_DESCR (C function), 1169
PyArray_Descr (C type), 1151
PyArray_Descr.alignment (C member), 1152
PyArray_Descr.byteorder (C member), 1151
PyArray_Descr.elsize (C member), 1152
PyArray_Descr.f (C member), 1152
PyArray_Descr.fields (C member), 1152
PyArray_Descr.flags (C member), 1151
PyArray_Descr.kind (C member), 1151
PyArray_Descr.subarray (C member), 1152
PyArray_Descr.type (C member), 1151
PyArray_Descr.type_num (C member), 1152
PyArray_Descr.typeobj (C member), 1151
Pyarray_DescrAlignConverter (C function), 1200
Pyarray_DescrAlignConverter2 (C function), 1200
PyArray_DescrCheck (C function), 1199
PyArray_DescrConverter (C function), 1200
PyArray_DescrConverter2 (C function), 1200
PyArray_DescrFromObject (C function), 1199
PyArray_DescrFromScalar (C function), 1200
PyArray_DescrFromType (C function), 1200
PyArray_DescrNew (C function), 1199
PyArray_DescrNewByteorder (C function), 1199
PyArray_DescrNewFromType (C function), 1199
PyArray_Diagonal (C function), 1190
PyArray_DIM (C function), 1169
PyArray_DIMS (C function), 1168
PyArray_Dims (C type), 1159
PyArray_Dims.PyArray_Dims.len (C member), 1160
PyArray_Dims.PyArray_Dims.ptr (C member), 1160
PyArray_DTYPE (C function), 1169
PyArray_Dump (C function), 1187
PyArray_Dumps (C function), 1187

Index 1301

NumPy Reference, Release 1.11.1

PyArray_EinsteinSum (C function), 1193
PyArray_EMPTY (C function), 1172
PyArray_Empty (C function), 1172
PyArray_ENABLEFLAGS (C function), 1169
PyArray_EnsureArray (C function), 1175
PyArray_EquivArrTypes (C function), 1180
PyArray_EquivByteorders (C function), 1180
PyArray_EquivTypenums (C function), 1180
PyArray_EquivTypes (C function), 1180
PyArray_FieldNames (C function), 1200
PyArray_FillObjectArray (C function), 1183
PyArray_FILLWBYTE (C function), 1171
PyArray_FillWithScalar (C function), 1187
PyArray_FLAGS (C function), 1169
PyArray_Flatten (C function), 1188
PyArray_Free (C function), 1192
PyArray_free (C function), 1204
PyArray_FROM_O (C function), 1176
PyArray_FROM_OF (C function), 1176
PyArray_FROM_OT (C function), 1177
PyArray_FROM_OTF (C function), 1177
PyArray_FROMANY (C function), 1177
PyArray_FromAny (C function), 1172
PyArray_FromArray (C function), 1175
PyArray_FromArrayAttr (C function), 1175
PyArray_FromBuffer (C function), 1176
PyArray_FromFile (C function), 1176
PyArray_FromInterface (C function), 1175
PyArray_FromObject (C function), 1175
PyArray_FromScalar (C function), 1198
PyArray_FromString (C function), 1176
PyArray_FromStructInterface (C function), 1175
PyArray_GetArrayParamsFromObject (C function), 1174
PyArray_GetCastFunc (C function), 1180
PyArray_GETCONTIGUOUS (C function), 1176
PyArray_GetEndianness (C function), 1163
PyArray_GetField (C function), 1186
PyArray_GETITEM (C function), 1170
PyArray_GetNDArrayCFeatureVersion (C function),

1203
PyArray_GetNDArrayCVersion (C function), 1203
PyArray_GetNumericOps (C function), 1203
PyArray_GetPriority (C function), 1206
PyArray_GetPtr (C function), 1170
PyArray_GETPTR1 (C function), 1170
PyArray_GETPTR2 (C function), 1170
PyArray_GETPTR3 (C function), 1170
PyArray_GETPTR4 (C function), 1170
PyArray_HasArrayInterface (C function), 1177
PyArray_HasArrayInterfaceType (C function), 1177
PyArray_HASFIELDS (C function), 1180
PyArray_INCREF (C function), 1183
PyArray_InitArrFuncs (C function), 1182
PyArray_InnerProduct (C function), 1192

PyArray_IntpConverter (C function), 1201
PyArray_IntpFromSequence (C function), 1202
PyArray_IS_C_CONTIGUOUS (C function), 1185
PyArray_IS_F_CONTIGUOUS (C function), 1186
PyArray_ISALIGNED (C function), 1186
PyArray_IsAnyScalar (C function), 1177
PyArray_ISBEHAVED (C function), 1186
PyArray_ISBEHAVED_RO (C function), 1186
PyArray_ISBOOL (C function), 1180
PyArray_ISBYTESWAPPED (C function), 1180
PyArray_ISCARRAY (C function), 1186
PyArray_ISCARRAY_RO (C function), 1186
PyArray_ISCOMPLEX (C function), 1178
PyArray_ISEXTENDED (C function), 1179
PyArray_ISFARRAY (C function), 1186
PyArray_ISFARRAY_RO (C function), 1186
PyArray_ISFLEXIBLE (C function), 1179
PyArray_ISFLOAT (C function), 1178
PyArray_ISFORTRAN (C function), 1186
PyArray_ISINTEGER (C function), 1178
PyArray_ISNOTSWAPPED (C function), 1180
PyArray_ISNUMBER (C function), 1179
PyArray_ISOBJECT (C function), 1179
PyArray_ISONESEGMENT (C function), 1186
PyArray_ISPYTHON (C function), 1179
PyArray_IsPythonNumber (C function), 1177
PyArray_IsPythonScalar (C function), 1177
PyArray_IsScalar (C function), 1177
PyArray_ISSIGNED (C function), 1178
PyArray_ISSTRING (C function), 1179
PyArray_ISUNSIGNED (C function), 1178
PyArray_ISUSERDEF (C function), 1179
PyArray_ISWRITEABLE (C function), 1186
PyArray_IsZeroDim (C function), 1177
PyArray_Item_INCREF (C function), 1183
PyArray_Item_XDECREF (C function), 1183
PyArray_ITEMSIZE (C function), 1169
PyArray_ITER_DATA (C function), 1196
PyArray_ITER_GOTO (C function), 1196
PyArray_ITER_GOTO1D (C function), 1196
PyArray_ITER_NEXT (C function), 1196
PyArray_ITER_NOTDONE (C function), 1196
PyArray_ITER_RESET (C function), 1196
PyArray_IterAllButAxis (C function), 1195
PyArray_IterNew (C function), 1195
PyArray_LexSort (C function), 1189
PyArray_malloc (C function), 1204
PyArray_MatrixProduct (C function), 1193
PyArray_MatrixProduct2 (C function), 1193
PyArray_MAX (C function), 1206
PyArray_Max (C function), 1191
PyArray_Mean (C function), 1191
PyArray_MIN (C function), 1206
PyArray_Min (C function), 1191

1302 Index

NumPy Reference, Release 1.11.1

PyArray_MinScalarType (C function), 1181
PyArray_MoveInto (C function), 1176
PyArray_MultiIter_DATA (C function), 1196
PyArray_MultiIter_GOTO (C function), 1196
PyArray_MultiIter_GOTO1D (C function), 1196
PyArray_MultiIter_NEXT (C function), 1196
PyArray_MultiIter_NEXTi (C function), 1196
PyArray_MultiIter_NOTDONE (C function), 1196
PyArray_MultiIter_RESET (C function), 1196
PyArray_MultiIterNew (C function), 1196
PyArray_MultiplyIntList (C function), 1194
PyArray_MultiplyList (C function), 1194
PyArray_NBYTES (C function), 1170
PyArray_NDIM (C function), 1168
PyArray_NeighborhoodIterNew (C function), 1197
PyArray_New (C function), 1171
PyArray_NewCopy (C function), 1187
PyArray_NewFromDescr (C function), 1170
PyArray_NewLikeArray (C function), 1171
PyArray_Newshape (C function), 1187
PyArray_Nonzero (C function), 1190
PyArray_ObjectType (C function), 1182
PyArray_One (C function), 1182
PyArray_OrderConverter (C function), 1201
PyArray_OutputConverter (C function), 1200
PyArray_Partition (C function), 1190
PyArray_Prod (C function), 1191
PyArray_PromoteTypes (C function), 1181
PyArray_Ptp (C function), 1191
PyArray_PutMask (C function), 1189
PyArray_PutTo (C function), 1188
PyArray_PyIntAsInt (C function), 1202
PyArray_PyIntAsIntp (C function), 1202
PyArray_Ravel (C function), 1188
PyArray_realloc (C function), 1204
PyArray_REFCOUNT (C function), 1207
PyArray_RegisterCanCast (C function), 1183
PyArray_RegisterCastFunc (C function), 1183
PyArray_RegisterDataType (C function), 1182
PyArray_RemoveSmallest (C function), 1197
PyArray_Repeat (C function), 1189
PyArray_Reshape (C function), 1188
PyArray_Resize (C function), 1188
PyArray_ResultType (C function), 1181
PyArray_Return (C function), 1198
PyArray_Round (C function), 1191
PyArray_SAMESHAPE (C function), 1206
PyArray_Scalar (C function), 1198
PyArray_ScalarAsCtype (C function), 1198
PyArray_ScalarKind (C function), 1199
PyArray_SearchsideConverter (C function), 1201
PyArray_SearchSorted (C function), 1189
PyArray_SetBaseObject (C function), 1172
PyArray_SetField (C function), 1186

PyArray_SETITEM (C function), 1170
PyArray_SetNumericOps (C function), 1203
PyArray_SetStringFunction (C function), 1204
PyArray_SHAPE (C function), 1169
PyArray_SimpleNew (C function), 1171
PyArray_SimpleNewFromData (C function), 1171
PyArray_SimpleNewFromDescr (C function), 1171
PyArray_SIZE (C function), 1170
PyArray_Size (C function), 1170
PyArray_Sort (C function), 1189
PyArray_SortkindConverter (C function), 1201
PyArray_Squeeze (C function), 1188
PyArray_Std (C function), 1191
PyArray_STRIDE (C function), 1169
PyArray_STRIDES (C function), 1169
PyArray_Sum (C function), 1191
PyArray_SwapAxes (C function), 1188
PyArray_TakeFrom (C function), 1188
PyArray_ToFile (C function), 1187
PyArray_ToList (C function), 1187
PyArray_ToScalar (C function), 1198
PyArray_ToString (C function), 1187
PyArray_Trace (C function), 1191
PyArray_Transpose (C function), 1188
PyArray_TYPE (C function), 1170
PyArray_TypeObjectFromType (C function), 1199
PyArray_TypestrConvert (C function), 1202
PyArray_UpdateFlags (C function), 1186
PyArray_ValidType (C function), 1182
PyArray_View (C function), 1187
PyArray_Where (C function), 1193
PyArray_XDECREF (C function), 1183
PyArray_XDECREF_ERR (C function), 1207
PyArray_Zero (C function), 1182
PyArray_ZEROS (C function), 1172
PyArray_Zeros (C function), 1172
PyArrayInterface (C type), 1160
PyArrayInterface.PyArrayInterface.data (C member),

1161
PyArrayInterface.PyArrayInterface.descr (C member),

1161
PyArrayInterface.PyArrayInterface.flags (C member),

1161
PyArrayInterface.PyArrayInterface.itemsize (C member),

1161
PyArrayInterface.PyArrayInterface.nd (C member), 1161
PyArrayInterface.PyArrayInterface.shape (C member),

1161
PyArrayInterface.PyArrayInterface.strides (C member),

1161
PyArrayInterface.PyArrayInterface.two (C member),

1161
PyArrayInterface.PyArrayInterface.typekind (C mem-

ber), 1161

Index 1303

NumPy Reference, Release 1.11.1

PyArrayIter_Check (C function), 1196
PyArrayIterObject (C type), 1157
PyArrayIterObject.PyArrayIterObject.ao (C member),

1158
PyArrayIterObject.PyArrayIterObject.backstrides (C

member), 1158
PyArrayIterObject.PyArrayIterObject.contiguous (C

member), 1158
PyArrayIterObject.PyArrayIterObject.coordinates (C

member), 1158
PyArrayIterObject.PyArrayIterObject.dataptr (C mem-

ber), 1158
PyArrayIterObject.PyArrayIterObject.dims_m1 (C mem-

ber), 1158
PyArrayIterObject.PyArrayIterObject.factors (C mem-

ber), 1158
PyArrayIterObject.PyArrayIterObject.index (C member),

1158
PyArrayIterObject.PyArrayIterObject.nd_m1 (C mem-

ber), 1158
PyArrayIterObject.PyArrayIterObject.size (C member),

1158
PyArrayIterObject.PyArrayIterObject.strides (C mem-

ber), 1158
PyArrayMultiIterObject (C type), 1158
PyArrayMultiIterObject.PyArrayMultiIterObject.dimensions

(C member), 1159
PyArrayMultiIterObject.PyArrayMultiIterObject.index

(C member), 1159
PyArrayMultiIterObject.PyArrayMultiIterObject.iters (C

member), 1159
PyArrayMultiIterObject.PyArrayMultiIterObject.nd (C

member), 1159
PyArrayMultiIterObject.PyArrayMultiIterObject.numiter

(C member), 1158
PyArrayMultiIterObject.PyArrayMultiIterObject.size (C

member), 1159
PyArrayNeighborhoodIter_Next (C function), 1198
PyArrayNeighborhoodIter_Reset (C function), 1198
PyArrayNeighborhoodIterObject (C type), 1159
PyArrayObject (C type), 1150
PyArrayObject.base (C member), 1150
PyArrayObject.data (C member), 1150
PyArrayObject.descr (C member), 1151
PyArrayObject.dimensions (C member), 1150
PyArrayObject.flags (C member), 1151
PyArrayObject.nd (C member), 1150
PyArrayObject.strides (C member), 1150
PyArrayObject.weakreflist (C member), 1151
PyDataMem_FREE (C function), 1204
PyDataMem_NEW (C function), 1204
PyDataMem_RENEW (C function), 1204
PyDataType_FLAGCHK (C function), 1152
PyDataType_HASFIELDS (C function), 1180

PyDataType_ISBOOL (C function), 1179
PyDataType_ISCOMPLEX (C function), 1178
PyDataType_ISEXTENDED (C function), 1179
PyDataType_ISFLEXIBLE (C function), 1179
PyDataType_ISFLOAT (C function), 1178
PyDataType_ISINTEGER (C function), 1178
PyDataType_ISNUMBER (C function), 1178
PyDataType_ISOBJECT (C function), 1179
PyDataType_ISPYTHON (C function), 1179
PyDataType_ISSIGNED (C function), 1178
PyDataType_ISSTRING (C function), 1179
PyDataType_ISUNSIGNED (C function), 1178
PyDataType_ISUSERDEF (C function), 1179
PyDataType_REFCHK (C function), 1152
PyDimMem_FREE (C function), 1204
PyDimMem_NEW (C function), 1204
PyDimMem_RENEW (C function), 1204
Python Enhancement Proposals

PEP 3118, 365
PyTypeNum_ISBOOL (C function), 1179
PyTypeNum_ISCOMPLEX (C function), 1178
PyTypeNum_ISEXTENDED (C function), 1179
PyTypeNum_ISFLEXIBLE (C function), 1179
PyTypeNum_ISFLOAT (C function), 1178
PyTypeNum_ISINTEGER (C function), 1178
PyTypeNum_ISNUMBER (C function), 1178
PyTypeNum_ISOBJECT (C function), 1179
PyTypeNum_ISPYTHON (C function), 1179
PyTypeNum_ISSIGNED (C function), 1178
PyTypeNum_ISSTRING (C function), 1179
PyTypeNum_ISUNSIGNED (C function), 1178
PyTypeNum_ISUSERDEF (C function), 1179
PyUFunc_checkfperr (C function), 1227
PyUFunc_clearfperr (C function), 1228
PyUFunc_Loop1d (C type), 1162
PyUFunc_PyFuncData (C type), 1231
PyUFuncLoopObject (C type), 1161
PyUFuncObject (C type), 1156
PyUFuncObject.PyUFuncObject.data (C member), 1156
PyUFuncObject.PyUFuncObject.doc (C member), 1157
PyUFuncObject.PyUFuncObject.identity (C member),

1156
PyUFuncObject.PyUFuncObject.iter_flags (C member),

1157
PyUFuncObject.PyUFuncObject.name (C member),

1157
PyUFuncObject.PyUFuncObject.nargs (C member), 1156
PyUFuncObject.PyUFuncObject.nin (C member), 1156
PyUFuncObject.PyUFuncObject.nout (C member), 1156
PyUFuncObject.PyUFuncObject.ntypes (C member),

1156
PyUFuncObject.PyUFuncObject.obj (C member), 1157
PyUFuncObject.PyUFuncObject.op_flags (C member),

1157

1304 Index

NumPy Reference, Release 1.11.1

PyUFuncObject.PyUFuncObject.ptr (C member), 1157
PyUFuncObject.PyUFuncObject.types (C member), 1157
PyUFuncObject.PyUFuncObject.userloops (C member),

1157
PyUFuncReduceObject (C type), 1162

Q
qr() (in module numpy.linalg), 658

R
r_ (in module numpy), 592
rad2deg (in module numpy), 709
radians (in module numpy), 707
rand() (in module numpy.matlib), 769
rand() (in module numpy.random), 953
rand() (numpy.random.RandomState method), 1040
randint() (in module numpy.random), 955
randint() (numpy.random.RandomState method), 1040
randn() (in module numpy.matlib), 769
randn() (in module numpy.random), 954
randn() (numpy.random.RandomState method), 1041
random() (in module numpy.random), 958
random_integers() (in module numpy.random), 955
random_integers() (numpy.random.RandomState

method), 1042
random_sample() (in module numpy.random), 957
random_sample() (numpy.random.RandomState

method), 1043
RandomState (class in numpy.random), 1006
ranf() (in module numpy.random), 958
RankWarning, 953
rate() (in module numpy), 582
ravel (in module numpy.ma), 299
ravel() (in module numpy), 436
ravel() (numpy.chararray method), 156
ravel() (numpy.core.defchararray.chararray method), 512
ravel() (numpy.generic method), 58
ravel() (numpy.ma.MaskedArray method), 249
ravel() (numpy.matrix method), 122
ravel() (numpy.ndarray method), 25
ravel() (numpy.recarray method), 189
ravel() (numpy.record method), 207
ravel_multi_index() (in module numpy), 598
rayleigh() (in module numpy.random), 993
rayleigh() (numpy.random.RandomState method), 1044
real (numpy.chararray attribute), 147
real (numpy.core.defchararray.chararray attribute), 503
real (numpy.generic attribute), 50
real (numpy.ma.MaskedArray attribute), 241
real (numpy.matrix attribute), 104
real (numpy.ndarray attribute), 9
real (numpy.recarray attribute), 176
real (numpy.record attribute), 201
real() (in module numpy), 751

real_if_close() (in module numpy), 762
recarray (class in numpy), 168
reciprocal (in module numpy), 742
record (class in numpy), 199
recordmask (numpy.ma.MaskedArray attribute), 235, 299
red_text() (in module numpy.distutils.misc_util), 1136
reduce

ufunc methods, 1247
reduce() (numpy.ufunc method), 389
reduceat

ufunc methods, 1247
reduceat() (numpy.ufunc method), 392
remainder (in module numpy), 749
remove_axis() (numpy.nditer method), 620
remove_multi_index() (numpy.nditer method), 620
repeat() (in module numpy), 461
repeat() (numpy.chararray method), 156
repeat() (numpy.core.defchararray.chararray method),

513
repeat() (numpy.generic method), 58
repeat() (numpy.ma.MaskedArray method), 258
repeat() (numpy.matrix method), 123
repeat() (numpy.ndarray method), 25
repeat() (numpy.recarray method), 189
repeat() (numpy.record method), 208
replace() (in module numpy.core.defchararray), 484
replace() (numpy.chararray method), 157
replace() (numpy.core.defchararray.chararray method),

513
repmat() (in module numpy.matlib), 768
require() (in module numpy), 449
reset() (numpy.broadcast method), 215
reset() (numpy.nditer method), 620
reshape() (in module numpy), 435
reshape() (in module numpy.ma), 300
reshape() (numpy.chararray method), 157
reshape() (numpy.core.defchararray.chararray method),

513
reshape() (numpy.generic method), 58
reshape() (numpy.ma.MaskedArray method), 249
reshape() (numpy.matrix method), 123
reshape() (numpy.ndarray method), 25
reshape() (numpy.recarray method), 190
reshape() (numpy.record method), 208
resize() (in module numpy), 465
resize() (in module numpy.ma), 300
resize() (numpy.chararray method), 157
resize() (numpy.core.defchararray.chararray method), 513
resize() (numpy.generic method), 58
resize() (numpy.ma.MaskedArray method), 250
resize() (numpy.matrix method), 123
resize() (numpy.ndarray method), 25
resize() (numpy.recarray method), 190
resize() (numpy.record method), 208

Index 1305

NumPy Reference, Release 1.11.1

restoredot() (in module numpy), 771
result_type() (in module numpy), 533
rfft() (in module numpy.fft), 560
rfft2() (in module numpy.fft), 563
rfftfreq() (in module numpy.fft), 569
rfftn() (in module numpy.fft), 564
rfind() (in module numpy.core.defchararray), 495
rfind() (numpy.chararray method), 158
rfind() (numpy.core.defchararray.chararray method), 514
right_shift (in module numpy), 475
rindex() (in module numpy.core.defchararray), 496
rindex() (numpy.chararray method), 158
rindex() (numpy.core.defchararray.chararray method),

515
rint (in module numpy), 715
rjust() (in module numpy.core.defchararray), 484
rjust() (numpy.chararray method), 158
rjust() (numpy.core.defchararray.chararray method), 515
roll() (in module numpy), 469
rollaxis() (in module numpy), 439
roots() (in module numpy), 944
roots() (numpy.polynomial.chebyshev.Chebyshev

method), 815
roots() (numpy.polynomial.hermite.Hermite method),

894
roots() (numpy.polynomial.hermite_e.HermiteE method),

920
roots() (numpy.polynomial.laguerre.Laguerre method),

867
roots() (numpy.polynomial.legendre.Legendre method),

841
roots() (numpy.polynomial.polynomial.Polynomial

method), 790
rot90() (in module numpy), 470
round() (in module numpy.ma), 358
round() (numpy.generic method), 58
round() (numpy.ma.MaskedArray method), 268
round() (numpy.matrix method), 125
round() (numpy.ndarray method), 27
round() (numpy.recarray method), 191
round() (numpy.record method), 208
round_() (in module numpy), 715
row-major, 35
row_stack (in module numpy.ma), 309
rpartition() (in module numpy.core.defchararray), 484
rsplit() (in module numpy.core.defchararray), 485
rsplit() (numpy.chararray method), 159
rsplit() (numpy.core.defchararray.chararray method), 515
rstrip() (in module numpy.core.defchararray), 485
rstrip() (numpy.chararray method), 159
rstrip() (numpy.core.defchararray.chararray method), 515
run_module_suite() (in module numpy.testing), 1125
rundocs() (in module numpy.testing), 1126

S
s_ (in module numpy), 593
sample() (in module numpy.random), 959
save() (in module numpy), 625
savetxt() (in module numpy), 628
savez() (in module numpy), 626
savez_compressed() (in module numpy), 628
scalar

dtype, 62
sctype2char() (in module numpy), 543
searchsorted() (in module numpy), 1076
searchsorted() (numpy.chararray method), 159
searchsorted() (numpy.core.defchararray.chararray

method), 515
searchsorted() (numpy.generic method), 58
searchsorted() (numpy.ma.MaskedArray method), 258
searchsorted() (numpy.matrix method), 125
searchsorted() (numpy.ndarray method), 27
searchsorted() (numpy.recarray method), 191
searchsorted() (numpy.record method), 208
seed() (in module numpy.random), 1059
seed() (numpy.random.RandomState method), 1045
select() (in module numpy), 610
set_fill_value() (in module numpy.ma), 328
set_fill_value() (numpy.ma.MaskedArray method), 280
set_printoptions() (in module numpy), 637
set_state() (in module numpy.random), 1060
set_state() (numpy.random.RandomState method), 1045
set_string_function() (in module numpy), 640
set_verbosity() (in module numpy.distutils.log), 1145
setastest() (in module numpy.testing.decorators), 1124
setbufsize() (in module numpy), 380
setdiff1d() (in module numpy), 1062
seterr() (in module numpy), 380
seterrcall() (in module numpy), 382
seterrobj() (in module numpy), 548
setfield() (numpy.chararray method), 159
setfield() (numpy.core.defchararray.chararray method),

515
setfield() (numpy.generic method), 59
setfield() (numpy.matrix method), 125
setfield() (numpy.ndarray method), 27
setfield() (numpy.recarray method), 191
setfield() (numpy.record method), 208
setflags() (numpy.chararray method), 160
setflags() (numpy.core.defchararray.chararray method),

516
setflags() (numpy.generic method), 59
setflags() (numpy.matrix method), 126
setflags() (numpy.ndarray method), 28
setflags() (numpy.recarray method), 192
setflags() (numpy.record method), 208
setslice

ndarray special methods, 75

1306 Index

NumPy Reference, Release 1.11.1

setxor1d() (in module numpy), 1063
shape (numpy.broadcast attribute), 214
shape (numpy.chararray attribute), 147
shape (numpy.core.defchararray.chararray attribute), 503
shape (numpy.dtype attribute), 66
shape (numpy.generic attribute), 50
shape (numpy.lib.Arrayterator attribute), 623
shape (numpy.ma.MaskedArray attribute), 240
shape (numpy.matrix attribute), 104
shape (numpy.ndarray attribute), 10
shape (numpy.recarray attribute), 176
shape (numpy.record attribute), 201
shape() (in module numpy.ma), 296
sharedmask (numpy.ma.MaskedArray attribute), 235
shares_memory() (in module numpy), 772
shrink_mask() (numpy.ma.MaskedArray method), 279
shuffle() (in module numpy.random), 961
shuffle() (numpy.random.RandomState method), 1046
sign (in module numpy), 757
signbit (in module numpy), 739
sin (in module numpy), 699
sinc() (in module numpy), 737
single-segment, 36
sinh (in module numpy), 710
size (numpy.broadcast attribute), 214
size (numpy.chararray attribute), 147
size (numpy.core.defchararray.chararray attribute), 504
size (numpy.generic attribute), 50
size (numpy.ma.MaskedArray attribute), 240
size (numpy.matrix attribute), 104
size (numpy.ndarray attribute), 9
size (numpy.recarray attribute), 176
size (numpy.record attribute), 201
size() (in module numpy.ma), 296
skipif() (in module numpy.testing.decorators), 1124
slicing, 74
slogdet() (in module numpy.linalg), 672
slow() (in module numpy.testing.decorators), 1124
soften_mask (in module numpy.ma), 322
soften_mask() (numpy.ma.MaskedArray method), 279
solve() (in module numpy.linalg), 674
sort() (in module numpy), 1064
sort() (in module numpy.ma), 345
sort() (numpy.chararray method), 161
sort() (numpy.core.defchararray.chararray method), 517
sort() (numpy.generic method), 59
sort() (numpy.ma.MaskedArray method), 258
sort() (numpy.matrix method), 127
sort() (numpy.ndarray method), 29
sort() (numpy.recarray method), 193
sort() (numpy.record method), 208
sort_complex() (in module numpy), 1069
source() (in module numpy), 590
special methods

getslice, ndarray, 75
setslice, ndarray, 75

split() (in module numpy), 456
split() (in module numpy.core.defchararray), 486
split() (numpy.chararray method), 162
split() (numpy.core.defchararray.chararray method), 518
splitlines() (in module numpy.core.defchararray), 486
splitlines() (numpy.chararray method), 162
splitlines() (numpy.core.defchararray.chararray method),

518
sqrt (in module numpy), 754
square (in module numpy), 755
squeeze() (in module numpy), 446
squeeze() (in module numpy.ma), 304
squeeze() (numpy.chararray method), 162
squeeze() (numpy.core.defchararray.chararray method),

518
squeeze() (numpy.generic method), 59
squeeze() (numpy.ma.MaskedArray method), 250
squeeze() (numpy.matrix method), 128
squeeze() (numpy.ndarray method), 30
squeeze() (numpy.recarray method), 194
squeeze() (numpy.record method), 209
stack() (in module numpy), 452
standard_cauchy() (in module numpy.random), 994
standard_cauchy() (numpy.random.RandomState

method), 1046
standard_exponential() (in module numpy.random), 994
standard_exponential() (numpy.random.RandomState

method), 1047
standard_gamma() (in module numpy.random), 995
standard_gamma() (numpy.random.RandomState

method), 1047
standard_normal() (in module numpy.random), 996
standard_normal() (numpy.random.RandomState

method), 1048
standard_t() (in module numpy.random), 996
standard_t() (numpy.random.RandomState method), 1049
startswith() (in module numpy.core.defchararray), 496
startswith() (numpy.chararray method), 162
startswith() (numpy.core.defchararray.chararray method),

518
std (in module numpy.ma), 338
std() (in module numpy), 1092
std() (numpy.generic method), 59
std() (numpy.ma.MaskedArray method), 268
std() (numpy.matrix method), 129
std() (numpy.ndarray method), 30
std() (numpy.recarray method), 194
std() (numpy.record method), 209
str (numpy.dtype attribute), 66
stride, 35
strides (numpy.chararray attribute), 147
strides (numpy.core.defchararray.chararray attribute), 504

Index 1307

NumPy Reference, Release 1.11.1

strides (numpy.generic attribute), 50
strides (numpy.ma.MaskedArray attribute), 240
strides (numpy.matrix attribute), 105
strides (numpy.ndarray attribute), 11
strides (numpy.recarray attribute), 176
strides (numpy.record attribute), 201
strip() (in module numpy.core.defchararray), 486
strip() (numpy.chararray method), 162
strip() (numpy.core.defchararray.chararray method), 518
sub-array

dtype, 62, 70
subdtype (numpy.dtype attribute), 66
subtract (in module numpy), 745
sum (in module numpy.ma), 339
sum() (in module numpy), 720
sum() (numpy.generic method), 59
sum() (numpy.ma.MaskedArray method), 270
sum() (numpy.matrix method), 129
sum() (numpy.ndarray method), 30
sum() (numpy.recarray method), 194
sum() (numpy.record method), 209
svd() (in module numpy.linalg), 660
swapaxes (in module numpy.ma), 301
swapaxes() (in module numpy), 440
swapaxes() (numpy.chararray method), 162
swapaxes() (numpy.core.defchararray.chararray method),

518
swapaxes() (numpy.generic method), 59
swapaxes() (numpy.ma.MaskedArray method), 250
swapaxes() (numpy.matrix method), 130
swapaxes() (numpy.ndarray method), 30
swapaxes() (numpy.recarray method), 195
swapaxes() (numpy.record method), 209
swapcase() (in module numpy.core.defchararray), 487
swapcase() (numpy.chararray method), 162
swapcase() (numpy.core.defchararray.chararray method),

519

T
T (numpy.chararray attribute), 141
T (numpy.core.defchararray.chararray attribute), 498
T (numpy.generic attribute), 50
T (numpy.ma.MaskedArray attribute), 251
T (numpy.matrix attribute), 96
T (numpy.ndarray attribute), 6
T (numpy.recarray attribute), 170
T (numpy.record attribute), 201
take() (in module numpy), 605
take() (numpy.chararray method), 163
take() (numpy.core.defchararray.chararray method), 519
take() (numpy.generic method), 60
take() (numpy.ma.MaskedArray method), 260
take() (numpy.matrix method), 130
take() (numpy.ndarray method), 31

take() (numpy.recarray method), 195
take() (numpy.record method), 209
tan (in module numpy), 701
tanh (in module numpy), 711
tensordot() (in module numpy), 650
tensorinv() (in module numpy.linalg), 679
tensorsolve() (in module numpy.linalg), 675
terminal_has_colors() (in module

numpy.distutils.misc_util), 1136
Tester (in module numpy.testing), 1125
tile() (in module numpy), 460
title() (in module numpy.core.defchararray), 487
title() (numpy.chararray method), 163
title() (numpy.core.defchararray.chararray method), 519
tobytes() (numpy.generic method), 60
tobytes() (numpy.ma.MaskedArray method), 247
tobytes() (numpy.matrix method), 130
tobytes() (numpy.ndarray method), 31
tobytes() (numpy.recarray method), 195
tobytes() (numpy.record method), 209
todict() (numpy.distutils.misc_util.Configuration

method), 1137
tofile() (numpy.chararray method), 163
tofile() (numpy.core.defchararray.chararray method), 519
tofile() (numpy.generic method), 60
tofile() (numpy.ma.MaskedArray method), 245
tofile() (numpy.matrix method), 130
tofile() (numpy.ndarray method), 31
tofile() (numpy.recarray method), 195
tofile() (numpy.record method), 209
toflex() (numpy.ma.MaskedArray method), 246
tolist() (numpy.chararray method), 163
tolist() (numpy.core.defchararray.chararray method), 519
tolist() (numpy.generic method), 60
tolist() (numpy.ma.MaskedArray method), 246
tolist() (numpy.matrix method), 131
tolist() (numpy.ndarray method), 32
tolist() (numpy.recarray method), 196
tolist() (numpy.record method), 210
tomaxint() (numpy.random.RandomState method), 1050
torecords() (numpy.ma.MaskedArray method), 247
tostring() (numpy.chararray method), 164
tostring() (numpy.core.defchararray.chararray method),

520
tostring() (numpy.generic method), 60
tostring() (numpy.ma.MaskedArray method), 247
tostring() (numpy.matrix method), 131
tostring() (numpy.ndarray method), 32
tostring() (numpy.recarray method), 196
tostring() (numpy.record method), 210
trace (in module numpy.ma), 353
trace() (in module numpy), 673
trace() (numpy.generic method), 60
trace() (numpy.ma.MaskedArray method), 270

1308 Index

NumPy Reference, Release 1.11.1

trace() (numpy.matrix method), 132
trace() (numpy.ndarray method), 33
trace() (numpy.recarray method), 197
trace() (numpy.record method), 210
translate() (in module numpy.core.defchararray), 488
translate() (numpy.chararray method), 164
translate() (numpy.core.defchararray.chararray method),

520
transpose() (in module numpy), 441
transpose() (in module numpy.ma), 301
transpose() (numpy.chararray method), 164
transpose() (numpy.core.defchararray.chararray method),

521
transpose() (numpy.generic method), 60
transpose() (numpy.ma.MaskedArray method), 250
transpose() (numpy.matrix method), 132
transpose() (numpy.ndarray method), 33
transpose() (numpy.recarray method), 197
transpose() (numpy.record method), 210
trapz() (in module numpy), 729
tri() (in module numpy), 430
triangular() (in module numpy.random), 998
triangular() (numpy.random.RandomState method), 1051
tril() (in module numpy), 431
tril_indices() (in module numpy), 601
tril_indices_from() (in module numpy), 603
trim() (numpy.polynomial.chebyshev.Chebyshev

method), 815
trim() (numpy.polynomial.hermite.Hermite method), 894
trim() (numpy.polynomial.hermite_e.HermiteE method),

920
trim() (numpy.polynomial.laguerre.Laguerre method),

867
trim() (numpy.polynomial.legendre.Legendre method),

841
trim() (numpy.polynomial.polynomial.Polynomial

method), 791
trim_zeros() (in module numpy), 466
triu() (in module numpy), 431
triu_indices() (in module numpy), 603
triu_indices_from() (in module numpy), 604
true_divide (in module numpy), 746
trunc (in module numpy), 717
truncate() (numpy.polynomial.chebyshev.Chebyshev

method), 815
truncate() (numpy.polynomial.hermite.Hermite method),

894
truncate() (numpy.polynomial.hermite_e.HermiteE

method), 920
truncate() (numpy.polynomial.laguerre.Laguerre

method), 868
truncate() (numpy.polynomial.legendre.Legendre

method), 842

truncate() (numpy.polynomial.polynomial.Polynomial
method), 791

type (numpy.dtype attribute), 72
typename() (in module numpy), 542
types (numpy.ufunc attribute), 388

U
ufunc, 1244, 1247

attributes, 386
C-API, 1225, 1231
casting rules, 383
keyword arguments, 385
methods, 389
methods accumulate, 1247
methods reduce, 1247
methods reduceat, 1247

UFUNC_CHECK_ERROR (C function), 1225
UFUNC_CHECK_STATUS (C function), 1226
uniform() (in module numpy.random), 999
uniform() (numpy.random.RandomState method), 1052
union1d() (in module numpy), 1063
unique() (in module numpy), 466
unpackbits() (in module numpy), 476
unravel_index() (in module numpy), 598
unshare_mask() (numpy.ma.MaskedArray method), 279
unwrap() (in module numpy), 708
upper() (in module numpy.core.defchararray), 488
upper() (numpy.chararray method), 165
upper() (numpy.core.defchararray.chararray method), 521
user_array, 211

V
vander() (in module numpy), 432
vander() (in module numpy.ma), 353
var (in module numpy.ma), 340
var() (in module numpy), 1093
var() (numpy.generic method), 60
var() (numpy.ma.MaskedArray method), 271
var() (numpy.matrix method), 133
var() (numpy.ndarray method), 33
var() (numpy.recarray method), 198
var() (numpy.record method), 210
vdot() (in module numpy), 645
vectorize (class in numpy), 585
view, 3

ndarray, 76
view() (numpy.chararray method), 165
view() (numpy.core.defchararray.chararray method), 521
view() (numpy.generic method), 61
view() (numpy.ma.MaskedArray method), 242
view() (numpy.matrix method), 133
view() (numpy.ndarray method), 34
view() (numpy.recarray method), 198
view() (numpy.record method), 210

Index 1309

NumPy Reference, Release 1.11.1

vonmises() (in module numpy.random), 1001
vonmises() (numpy.random.RandomState method), 1054
vsplit() (in module numpy), 459
vstack (in module numpy.ma), 310
vstack() (in module numpy), 455

W
wald() (in module numpy.random), 1002
wald() (numpy.random.RandomState method), 1055
weekmask (numpy.busdaycalendar attribute), 526
weibull() (in module numpy.random), 1003
weibull() (numpy.random.RandomState method), 1056
where() (in module numpy), 595
where() (in module numpy.ma), 364

Y
yellow_text() (in module numpy.distutils.misc_util), 1136

Z
zeros (in module numpy.ma), 288
zeros() (in module numpy), 404
zeros() (in module numpy.matlib), 766
zeros_like() (in module numpy), 405
zfill() (in module numpy.core.defchararray), 489
zfill() (numpy.chararray method), 167
zfill() (numpy.core.defchararray.chararray method), 523
zipf() (in module numpy.random), 1005
zipf() (numpy.random.RandomState method), 1058

1310 Index

	Array objects
	The N-dimensional array (ndarray)
	Scalars
	Data type objects (dtype)
	Indexing
	Iterating Over Arrays
	Standard array subclasses
	Masked arrays
	The Array Interface
	Datetimes and Timedeltas

	Universal functions (ufunc)
	Broadcasting
	Output type determination
	Use of internal buffers
	Error handling
	Casting Rules
	Overriding Ufunc behavior
	ufunc
	Available ufuncs

	Routines
	Array creation routines
	Array manipulation routines
	Binary operations
	String operations
	C-Types Foreign Function Interface (numpy.ctypeslib)
	Datetime Support Functions
	Data type routines
	Optionally Scipy-accelerated routines (numpy.dual)
	Mathematical functions with automatic domain (numpy.emath)
	Floating point error handling
	Discrete Fourier Transform (numpy.fft)
	Financial functions
	Functional programming
	Numpy-specific help functions
	Indexing routines
	Input and output
	Linear algebra (numpy.linalg)
	Logic functions
	Mathematical functions
	Matrix library (numpy.matlib)
	Miscellaneous routines
	Padding Arrays
	Polynomials
	Random sampling (numpy.random)
	Set routines
	Sorting, searching, and counting
	Statistics
	Test Support (numpy.testing)
	Window functions

	Packaging (numpy.distutils)
	Modules in numpy.distutils
	Building Installable C libraries
	Conversion of .src files

	Numpy C-API
	Python Types and C-Structures
	System configuration
	Data Type API
	Array API
	Array Iterator API
	UFunc API
	Generalized Universal Function API
	Numpy core libraries
	C API Deprecations

	Numpy internals
	Numpy C Code Explanations
	Internal organization of numpy arrays
	Multidimensional Array Indexing Order Issues

	Numpy and SWIG
	Numpy.i: a SWIG Interface File for NumPy
	Testing the numpy.i Typemaps

	Acknowledgements
	Bibliography
	Index

