Tesseract  3.02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
tesseract::MasterTrainer Class Reference

#include <mastertrainer.h>

List of all members.

Public Member Functions

 MasterTrainer (NormalizationMode norm_mode, bool shape_analysis, bool replicate_samples, int debug_level)
 ~MasterTrainer ()
bool Serialize (FILE *fp) const
bool DeSerialize (bool swap, FILE *fp)
void LoadUnicharset (const char *filename)
void SetFeatureSpace (const IntFeatureSpace &fs)
void ReadTrainingSamples (FILE *fp, const FEATURE_DEFS_STRUCT &feature_defs, bool verification)
void AddSample (bool verification, const char *unichar_str, TrainingSample *sample)
void LoadPageImages (const char *filename)
void PostLoadCleanup ()
void PreTrainingSetup ()
void SetupMasterShapes ()
void IncludeJunk ()
void ReplicateAndRandomizeSamplesIfRequired ()
bool LoadFontInfo (const char *filename)
bool LoadXHeights (const char *filename)
bool AddSpacingInfo (const char *filename)
int GetFontInfoId (const char *font_name)
int GetBestMatchingFontInfoId (const char *filename)
void SetupFlatShapeTable (ShapeTable *shape_table)
CLUSTERERSetupForClustering (const ShapeTable &shape_table, const FEATURE_DEFS_STRUCT &feature_defs, int shape_id, int *num_samples)
void WriteInttempAndPFFMTable (const UNICHARSET &unicharset, const UNICHARSET &shape_set, const ShapeTable &shape_table, CLASS_STRUCT *float_classes, const char *inttemp_file, const char *pffmtable_file)
const UNICHARSETunicharset () const
TrainingSampleSetGetSamples ()
const ShapeTablemaster_shapes () const
void DebugCanonical (const char *unichar_str1, const char *unichar_str2)
void DisplaySamples (const char *unichar_str1, int cloud_font, const char *unichar_str2, int canonical_font)
void TestClassifierOnSamples (int report_level, bool replicate_samples, ShapeClassifier *test_classifier, STRING *report_string)
double TestClassifier (int report_level, bool replicate_samples, TrainingSampleSet *samples, ShapeClassifier *test_classifier, STRING *report_string)
float ShapeDistance (const ShapeTable &shapes, int s1, int s2)

Detailed Description

Definition at line 68 of file mastertrainer.h.


Constructor & Destructor Documentation

tesseract::MasterTrainer::MasterTrainer ( NormalizationMode  norm_mode,
bool  shape_analysis,
bool  replicate_samples,
int  debug_level 
)

Definition at line 51 of file mastertrainer.cpp.

: norm_mode_(norm_mode), samples_(fontinfo_table_),
junk_samples_(fontinfo_table_), verify_samples_(fontinfo_table_),
charsetsize_(0),
enable_shape_anaylsis_(shape_analysis),
enable_replication_(replicate_samples),
fragments_(NULL), prev_unichar_id_(-1), debug_level_(debug_level) {
fontinfo_table_.set_compare_callback(
fontinfo_table_.set_clear_callback(
}
tesseract::MasterTrainer::~MasterTrainer ( )

Definition at line 67 of file mastertrainer.cpp.

{
delete [] fragments_;
for (int p = 0; p < page_images_.size(); ++p)
pixDestroy(&page_images_[p]);
}

Member Function Documentation

void tesseract::MasterTrainer::AddSample ( bool  verification,
const char *  unichar_str,
TrainingSample sample 
)

Definition at line 184 of file mastertrainer.cpp.

{
if (verification) {
verify_samples_.AddSample(unichar, sample);
prev_unichar_id_ = -1;
} else if (unicharset_.contains_unichar(unichar)) {
if (prev_unichar_id_ >= 0)
fragments_[prev_unichar_id_] = -1;
prev_unichar_id_ = samples_.AddSample(unichar, sample);
if (flat_shapes_.FindShape(prev_unichar_id_, sample->font_id()) < 0)
flat_shapes_.AddShape(prev_unichar_id_, sample->font_id());
} else {
int junk_id = junk_samples_.AddSample(unichar, sample);
if (prev_unichar_id_ >= 0) {
if (frag != NULL && frag->is_natural()) {
if (fragments_[prev_unichar_id_] == 0)
fragments_[prev_unichar_id_] = junk_id;
else if (fragments_[prev_unichar_id_] != junk_id)
fragments_[prev_unichar_id_] = -1;
}
delete frag;
}
prev_unichar_id_ = -1;
}
}
bool tesseract::MasterTrainer::AddSpacingInfo ( const char *  filename)

Definition at line 422 of file mastertrainer.cpp.

{
FILE* fontinfo_file = fopen(filename, "rb");
if (fontinfo_file == NULL)
return true; // We silently ignore missing files!
// Find the fontinfo_id.
int fontinfo_id = GetBestMatchingFontInfoId(filename);
if (fontinfo_id < 0) {
tprintf("No font found matching fontinfo filename %s\n", filename);
fclose(fontinfo_file);
return false;
}
tprintf("Reading spacing from %s for font %d...\n", filename, fontinfo_id);
// TODO(rays) scale should probably be a double, but keep as an int for now
// to duplicate current behavior.
int scale = kBlnXHeight / xheights_[fontinfo_id];
int num_unichars;
char uch[UNICHAR_LEN];
char kerned_uch[UNICHAR_LEN];
int x_gap, x_gap_before, x_gap_after, num_kerned;
ASSERT_HOST(fscanf(fontinfo_file, "%d\n", &num_unichars) == 1);
FontInfo *fi = fontinfo_table_.get_mutable(fontinfo_id);
fi->init_spacing(unicharset_.size());
FontSpacingInfo *spacing = NULL;
for (int l = 0; l < num_unichars; ++l) {
if (fscanf(fontinfo_file, "%s %d %d %d",
uch, &x_gap_before, &x_gap_after, &num_kerned) != 4) {
tprintf("Bad format of font spacing file %s\n", filename);
fclose(fontinfo_file);
return false;
}
bool valid = unicharset_.contains_unichar(uch);
if (valid) {
spacing = new FontSpacingInfo();
spacing->x_gap_before = static_cast<inT16>(x_gap_before * scale);
spacing->x_gap_after = static_cast<inT16>(x_gap_after * scale);
}
for (int k = 0; k < num_kerned; ++k) {
if (fscanf(fontinfo_file, "%s %d", kerned_uch, &x_gap) != 2) {
tprintf("Bad format of font spacing file %s\n", filename);
fclose(fontinfo_file);
return false;
}
if (!valid || !unicharset_.contains_unichar(kerned_uch)) continue;
spacing->kerned_unichar_ids.push_back(
unicharset_.unichar_to_id(kerned_uch));
spacing->kerned_x_gaps.push_back(static_cast<inT16>(x_gap * scale));
}
if (valid) fi->add_spacing(unicharset_.unichar_to_id(uch), spacing);
}
fclose(fontinfo_file);
return true;
}
void tesseract::MasterTrainer::DebugCanonical ( const char *  unichar_str1,
const char *  unichar_str2 
)

Definition at line 640 of file mastertrainer.cpp.

{
int class_id1 = unicharset_.unichar_to_id(unichar_str1);
int class_id2 = unicharset_.unichar_to_id(unichar_str2);
if (class_id2 == INVALID_UNICHAR_ID)
class_id2 = class_id1;
if (class_id1 == INVALID_UNICHAR_ID) {
tprintf("No unicharset entry found for %s\n", unichar_str1);
return;
} else {
tprintf("Font ambiguities for unichar %d = %s and %d = %s\n",
class_id1, unichar_str1, class_id2, unichar_str2);
}
int num_fonts = samples_.NumFonts();
const IntFeatureMap& feature_map = feature_map_;
// Iterate the fonts to get the similarity with other fonst of the same
// class.
tprintf(" ");
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, class_id2, false) == 0)
continue;
tprintf("%6d", f);
}
tprintf("\n");
for (int f1 = 0; f1 < num_fonts; ++f1) {
// Map the features of the canonical_sample.
if (samples_.NumClassSamples(f1, class_id1, false) == 0)
continue;
tprintf("%4d ", f1);
for (int f2 = 0; f2 < num_fonts; ++f2) {
if (samples_.NumClassSamples(f2, class_id2, false) == 0)
continue;
float dist = samples_.ClusterDistance(f1, class_id1, f2, class_id2,
feature_map);
tprintf(" %5.3f", dist);
}
tprintf("\n");
}
// Build a fake ShapeTable containing all the sample types.
ShapeTable shapes(unicharset_);
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, class_id1, true) > 0)
shapes.AddShape(class_id1, f);
if (class_id1 != class_id2 &&
samples_.NumClassSamples(f, class_id2, true) > 0)
shapes.AddShape(class_id2, f);
}
}
bool tesseract::MasterTrainer::DeSerialize ( bool  swap,
FILE *  fp 
)

Definition at line 95 of file mastertrainer.cpp.

{
if (fread(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false;
if (swap) {
ReverseN(&norm_mode_, sizeof(norm_mode_));
}
if (!unicharset_.load_from_file(fp)) return false;
charsetsize_ = unicharset_.size();
if (!feature_space_.DeSerialize(swap, fp)) return false;
feature_map_.Init(feature_space_);
if (!samples_.DeSerialize(swap, fp)) return false;
if (!junk_samples_.DeSerialize(swap, fp)) return false;
if (!verify_samples_.DeSerialize(swap, fp)) return false;
if (!master_shapes_.DeSerialize(swap, fp)) return false;
if (!flat_shapes_.DeSerialize(swap, fp)) return false;
if (!fontinfo_table_.read(fp, NewPermanentTessCallback(read_info), swap))
return false;
if (!fontinfo_table_.read(fp, NewPermanentTessCallback(read_spacing_info),
swap))
return false;
if (!xheights_.DeSerialize(swap, fp)) return false;
return true;
}
void tesseract::MasterTrainer::DisplaySamples ( const char *  unichar_str1,
int  cloud_font,
const char *  unichar_str2,
int  canonical_font 
)

Definition at line 700 of file mastertrainer.cpp.

{
const IntFeatureMap& feature_map = feature_map_;
const IntFeatureSpace& feature_space = feature_map.feature_space();
ScrollView* f_window = CreateFeatureSpaceWindow("Features", 100, 500);
f_window);
int class_id2 = samples_.unicharset().unichar_to_id(unichar_str2);
if (class_id2 != INVALID_UNICHAR_ID && canonical_font >= 0) {
const TrainingSample* sample = samples_.GetCanonicalSample(canonical_font,
class_id2);
for (int f = 0; f < sample->num_features(); ++f) {
RenderIntFeature(f_window, &sample->features()[f], ScrollView::RED);
}
}
int class_id1 = samples_.unicharset().unichar_to_id(unichar_str1);
if (class_id1 != INVALID_UNICHAR_ID && cloud_font >= 0) {
const BitVector& cloud = samples_.GetCloudFeatures(cloud_font, class_id1);
for (int f = 0; f < cloud.size(); ++f) {
if (cloud[f]) {
feature_map.InverseIndexFeature(f);
RenderIntFeature(f_window, &feature, ScrollView::GREEN);
}
}
}
f_window->Update();
ScrollView* s_window = CreateFeatureSpaceWindow("Samples", 100, 500);
SVEventType ev_type;
do {
SVEvent* ev;
// Wait until a click or popup event.
ev = f_window->AwaitEvent(SVET_ANY);
ev_type = ev->type;
if (ev_type == SVET_CLICK) {
int feature_index = feature_space.XYToFeatureIndex(ev->x, ev->y);
if (feature_index >= 0) {
// Iterate samples and display those with the feature.
Shape shape;
shape.AddToShape(class_id1, cloud_font);
s_window->Clear();
samples_.DisplaySamplesWithFeature(feature_index, shape,
feature_space, ScrollView::GREEN,
s_window);
s_window->Update();
}
}
delete ev;
} while (ev_type != SVET_DESTROY);
}
int tesseract::MasterTrainer::GetBestMatchingFontInfoId ( const char *  filename)

Definition at line 492 of file mastertrainer.cpp.

{
int fontinfo_id = -1;
int best_len = 0;
for (int f = 0; f < fontinfo_table_.size(); ++f) {
if (strstr(filename, fontinfo_table_.get(f).name) != NULL) {
int len = strlen(fontinfo_table_.get(f).name);
// Use the longest matching length in case a substring of a font matched.
if (len > best_len) {
best_len = len;
fontinfo_id = f;
}
}
}
return fontinfo_id;
}
int tesseract::MasterTrainer::GetFontInfoId ( const char *  font_name)

Definition at line 477 of file mastertrainer.cpp.

{
FontInfo fontinfo;
// We are only borrowing the string, so it is OK to const cast it.
fontinfo.name = const_cast<char*>(font_name);
fontinfo.properties = 0; // Not used to lookup in the table
fontinfo.universal_id = 0;
if (!fontinfo_table_.contains(fontinfo)) {
return -1;
} else {
return fontinfo_table_.get_id(fontinfo);
}
}
TrainingSampleSet* tesseract::MasterTrainer::GetSamples ( )
inline

Definition at line 185 of file mastertrainer.h.

{
return &samples_;
}
void tesseract::MasterTrainer::IncludeJunk ( )

Definition at line 312 of file mastertrainer.cpp.

{
// Get ids of fragments in junk_samples_ that replace the dead chars.
const UNICHARSET& junk_set = junk_samples_.unicharset();
const UNICHARSET& sample_set = samples_.unicharset();
int num_junks = junk_samples_.num_samples();
tprintf("Moving %d junk samples to master sample set.\n", num_junks);
for (int s = 0; s < num_junks; ++s) {
TrainingSample* sample = junk_samples_.mutable_sample(s);
int junk_id = sample->class_id();
const char* junk_utf8 = junk_set.id_to_unichar(junk_id);
int sample_id = sample_set.unichar_to_id(junk_utf8);
if (sample_id == INVALID_UNICHAR_ID)
sample_id = 0;
sample->set_class_id(sample_id);
junk_samples_.extract_sample(s);
samples_.AddSample(sample_id, sample);
}
junk_samples_.DeleteDeadSamples();
}
bool tesseract::MasterTrainer::LoadFontInfo ( const char *  filename)

Definition at line 350 of file mastertrainer.cpp.

{
FILE* fp = fopen(filename, "rb");
if (fp == NULL) {
fprintf(stderr, "Failed to load font_properties from %s\n", filename);
return false;
}
int italic, bold, fixed, serif, fraktur;
while (!feof(fp)) {
FontInfo fontinfo;
char* font_name = new char[1024];
fontinfo.name = font_name;
fontinfo.properties = 0;
fontinfo.universal_id = 0;
if (fscanf(fp, "%1024s %i %i %i %i %i\n", font_name,
&italic, &bold, &fixed, &serif, &fraktur) != 6)
continue;
fontinfo.properties =
(italic << 0) +
(bold << 1) +
(fixed << 2) +
(serif << 3) +
(fraktur << 4);
if (!fontinfo_table_.contains(fontinfo)) {
fontinfo_table_.push_back(fontinfo);
}
}
fclose(fp);
return true;
}
void tesseract::MasterTrainer::LoadPageImages ( const char *  filename)

Definition at line 214 of file mastertrainer.cpp.

{
int page;
Pix* pix;
for (page = 0; (pix = pixReadTiff(filename, page)) != NULL; ++page) {
page_images_.push_back(pix);
}
tprintf("Loaded %d page images from %s\n", page, filename);
}
void tesseract::MasterTrainer::LoadUnicharset ( const char *  filename)

Definition at line 119 of file mastertrainer.cpp.

{
if (!unicharset_.load_from_file(filename)) {
tprintf("Failed to load unicharset from file %s\n"
"Building unicharset for training from scratch...\n",
unicharset_.clear();
// Space character needed to represent NIL_LIST classification.
unicharset_.unichar_insert(" ");
}
charsetsize_ = unicharset_.size();
delete [] fragments_;
fragments_ = new int[charsetsize_];
memset(fragments_, 0, sizeof(*fragments_) * charsetsize_);
junk_samples_.LoadUnicharset(filename);
verify_samples_.LoadUnicharset(filename);
}
bool tesseract::MasterTrainer::LoadXHeights ( const char *  filename)

Definition at line 382 of file mastertrainer.cpp.

{
tprintf("fontinfo table is of size %d\n", fontinfo_table_.size());
xheights_.init_to_size(fontinfo_table_.size(), -1);
if (filename == NULL) return true;
FILE *f = fopen(filename, "rb");
if (f == NULL) {
fprintf(stderr, "Failed to load font xheights from %s\n", filename);
return false;
}
tprintf("Reading x-heights from %s ...\n", filename);
FontInfo fontinfo;
fontinfo.properties = 0; // Not used to lookup in the table.
fontinfo.universal_id = 0;
char buffer[1024];
int xht;
int total_xheight = 0;
int xheight_count = 0;
while (!feof(f)) {
if (fscanf(f, "%1024s %d\n", buffer, &xht) != 2)
continue;
fontinfo.name = buffer;
if (!fontinfo_table_.contains(fontinfo)) continue;
int fontinfo_id = fontinfo_table_.get_id(fontinfo);
xheights_[fontinfo_id] = xht;
total_xheight += xht;
++xheight_count;
}
if (xheight_count == 0) {
fprintf(stderr, "No valid xheights in %s!\n", filename);
return false;
}
int mean_xheight = DivRounded(total_xheight, xheight_count);
for (int i = 0; i < fontinfo_table_.size(); ++i) {
if (xheights_[i] < 0)
xheights_[i] = mean_xheight;
}
return true;
} // LoadXHeights
const ShapeTable& tesseract::MasterTrainer::master_shapes ( ) const
inline

Definition at line 188 of file mastertrainer.h.

{
return master_shapes_;
}
void tesseract::MasterTrainer::PostLoadCleanup ( )

Definition at line 228 of file mastertrainer.cpp.

{
if (debug_level_ > 0)
tprintf("PostLoadCleanup...\n");
if (enable_shape_anaylsis_)
ReplaceFragmentedSamples();
SampleIterator sample_it;
sample_it.Init(NULL, NULL, true, &verify_samples_);
sample_it.NormalizeSamples();
verify_samples_.OrganizeByFontAndClass();
samples_.IndexFeatures(feature_space_);
// TODO(rays) DeleteOutliers is currently turned off to prove NOP-ness
// against current training.
// samples_.DeleteOutliers(feature_space_, debug_level_ > 0);
if (debug_level_ > 0)
tprintf("ComputeCanonicalSamples...\n");
samples_.ComputeCanonicalSamples(feature_map_, debug_level_ > 0);
}
void tesseract::MasterTrainer::PreTrainingSetup ( )

Definition at line 251 of file mastertrainer.cpp.

{
if (debug_level_ > 0)
tprintf("PreTrainingSetup...\n");
samples_.IndexFeatures(feature_space_);
if (debug_level_ > 0)
tprintf("ComputeCloudFeatures...\n");
samples_.ComputeCloudFeatures(feature_space_.Size());
}
void tesseract::MasterTrainer::ReadTrainingSamples ( FILE *  fp,
const FEATURE_DEFS_STRUCT feature_defs,
bool  verification 
)

Definition at line 141 of file mastertrainer.cpp.

{
char buffer[2048];
int int_feature_type = ShortNameToFeatureType(feature_defs, kIntFeatureType);
int micro_feature_type = ShortNameToFeatureType(feature_defs,
int cn_feature_type = ShortNameToFeatureType(feature_defs, kCNFeatureType);
int geo_feature_type = ShortNameToFeatureType(feature_defs, kGeoFeatureType);
while (fgets(buffer, sizeof(buffer), fp) != NULL) {
if (buffer[0] == '\n')
continue;
char* space = strchr(buffer, ' ');
if (space == NULL) {
tprintf("Bad format in tr file, reading fontname, unichar\n");
continue;
}
*space++ = '\0';
int font_id = GetFontInfoId(buffer);
int page_number;
STRING unichar;
TBOX bounding_box;
if (!ParseBoxFileStr(space, &page_number, &unichar, &bounding_box)) {
tprintf("Bad format in tr file, reading box coords\n");
continue;
}
CHAR_DESC char_desc = ReadCharDescription(feature_defs, fp);
TrainingSample* sample = new TrainingSample;
sample->set_font_id(font_id);
sample->set_page_num(page_number + page_images_.size());
sample->set_bounding_box(bounding_box);
sample->ExtractCharDesc(int_feature_type, micro_feature_type,
cn_feature_type, geo_feature_type, char_desc);
AddSample(verification, unichar.string(), sample);
FreeCharDescription(char_desc);
}
charsetsize_ = unicharset_.size();
}
void tesseract::MasterTrainer::ReplicateAndRandomizeSamplesIfRequired ( )

Definition at line 338 of file mastertrainer.cpp.

{
if (enable_replication_) {
if (debug_level_ > 0)
tprintf("ReplicateAndRandomize...\n");
verify_samples_.ReplicateAndRandomizeSamples();
samples_.IndexFeatures(feature_space_);
}
}
bool tesseract::MasterTrainer::Serialize ( FILE *  fp) const

Definition at line 76 of file mastertrainer.cpp.

{
if (fwrite(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false;
if (!unicharset_.save_to_file(fp)) return false;
if (!feature_space_.Serialize(fp)) return false;
if (!samples_.Serialize(fp)) return false;
if (!junk_samples_.Serialize(fp)) return false;
if (!verify_samples_.Serialize(fp)) return false;
if (!master_shapes_.Serialize(fp)) return false;
if (!flat_shapes_.Serialize(fp)) return false;
if (!fontinfo_table_.write(fp, NewPermanentTessCallback(write_info)))
return false;
return false;
if (!xheights_.Serialize(fp)) return false;
return true;
}
void tesseract::MasterTrainer::SetFeatureSpace ( const IntFeatureSpace fs)
inline

Definition at line 84 of file mastertrainer.h.

{
feature_space_ = fs;
feature_map_.Init(fs);
}
void tesseract::MasterTrainer::SetupFlatShapeTable ( ShapeTable shape_table)

Definition at line 509 of file mastertrainer.cpp.

{
// To exactly mimic the results of the previous implementation, the shapes
// must be clustered in order the fonts arrived, and reverse order of the
// characters within each font.
// Get a list of the fonts in the order they appeared.
GenericVector<int> active_fonts;
int num_shapes = flat_shapes_.NumShapes();
for (int s = 0; s < num_shapes; ++s) {
int font = flat_shapes_.GetShape(s)[0].font_ids[0];
int f = 0;
for (f = 0; f < active_fonts.size(); ++f) {
if (active_fonts[f] == font)
break;
}
if (f == active_fonts.size())
active_fonts.push_back(font);
}
// For each font in order, add all the shapes with that font in reverse order.
int num_fonts = active_fonts.size();
for (int f = 0; f < num_fonts; ++f) {
for (int s = num_shapes - 1; s >= 0; --s) {
int font = flat_shapes_.GetShape(s)[0].font_ids[0];
if (font == active_fonts[f]) {
shape_table->AddShape(flat_shapes_.GetShape(s));
}
}
}
}
CLUSTERER * tesseract::MasterTrainer::SetupForClustering ( const ShapeTable shape_table,
const FEATURE_DEFS_STRUCT feature_defs,
int  shape_id,
int *  num_samples 
)

Definition at line 540 of file mastertrainer.cpp.

{
int desc_index = ShortNameToFeatureType(feature_defs, kMicroFeatureType);
int num_params = feature_defs.FeatureDesc[desc_index]->NumParams;
ASSERT_HOST(num_params == MFCount);
CLUSTERER* clusterer = MakeClusterer(
num_params, feature_defs.FeatureDesc[desc_index]->ParamDesc);
// We want to iterate over the samples of just the one shape.
IndexMapBiDi shape_map;
shape_map.Init(shape_table.NumShapes(), false);
shape_map.SetMap(shape_id, true);
shape_map.Setup();
// Reverse the order of the samples to match the previous behavior.
SampleIterator it;
it.Init(&shape_map, &shape_table, false, &samples_);
for (it.Begin(); !it.AtEnd(); it.Next()) {
sample_ptrs.push_back(&it.GetSample());
}
int sample_id = 0;
for (int i = sample_ptrs.size() - 1; i >= 0; --i) {
const TrainingSample* sample = sample_ptrs[i];
int num_features = sample->num_micro_features();
for (int f = 0; f < num_features; ++f)
MakeSample(clusterer, sample->micro_features()[f], sample_id);
++sample_id;
}
*num_samples = sample_id;
return clusterer;
}
void tesseract::MasterTrainer::SetupMasterShapes ( )

Definition at line 263 of file mastertrainer.cpp.

{
tprintf("Building master shape table\n");
int num_fonts = samples_.NumFonts();
ShapeTable char_shapes_begin_fragment(samples_.unicharset());
ShapeTable char_shapes_end_fragment(samples_.unicharset());
ShapeTable char_shapes(samples_.unicharset());
for (int c = 0; c < samples_.charsetsize(); ++c) {
ShapeTable shapes(samples_.unicharset());
for (int f = 0; f < num_fonts; ++f) {
if (samples_.NumClassSamples(f, c, true) > 0)
shapes.AddShape(c, f);
}
ClusterShapes(kMinClusteredShapes, 1, kFontMergeDistance, &shapes);
const CHAR_FRAGMENT *fragment = samples_.unicharset().get_fragment(c);
if (fragment == NULL)
char_shapes.AppendMasterShapes(shapes);
else if (fragment->is_beginning())
char_shapes_begin_fragment.AppendMasterShapes(shapes);
else if (fragment->is_ending())
char_shapes_end_fragment.AppendMasterShapes(shapes);
else
char_shapes.AppendMasterShapes(shapes);
}
kFontMergeDistance, &char_shapes_begin_fragment);
char_shapes.AppendMasterShapes(char_shapes_begin_fragment);
kFontMergeDistance, &char_shapes_end_fragment);
char_shapes.AppendMasterShapes(char_shapes_end_fragment);
kFontMergeDistance, &char_shapes);
master_shapes_.AppendMasterShapes(char_shapes);
tprintf("Master shape_table:%s\n", master_shapes_.SummaryStr().string());
}
float tesseract::MasterTrainer::ShapeDistance ( const ShapeTable shapes,
int  s1,
int  s2 
)

Definition at line 802 of file mastertrainer.cpp.

{
const IntFeatureMap& feature_map = feature_map_;
const Shape& shape1 = shapes.GetShape(s1);
const Shape& shape2 = shapes.GetShape(s2);
int num_chars1 = shape1.size();
int num_chars2 = shape2.size();
float dist_sum = 0.0f;
int dist_count = 0;
if (num_chars1 > 1 || num_chars2 > 1) {
// In the multi-char case try to optimize the calculation by computing
// distances between characters of matching font where possible.
for (int c1 = 0; c1 < num_chars1; ++c1) {
for (int c2 = 0; c2 < num_chars2; ++c2) {
dist_sum += samples_.UnicharDistance(shape1[c1], shape2[c2],
true, feature_map);
++dist_count;
}
}
} else {
// In the single unichar case, there is little alternative, but to compute
// the squared-order distance between pairs of fonts.
dist_sum = samples_.UnicharDistance(shape1[0], shape2[0],
false, feature_map);
++dist_count;
}
return dist_sum / dist_count;
}
double tesseract::MasterTrainer::TestClassifier ( int  report_level,
bool  replicate_samples,
TrainingSampleSet samples,
ShapeClassifier test_classifier,
STRING report_string 
)

Definition at line 775 of file mastertrainer.cpp.

{
SampleIterator sample_it;
sample_it.Init(NULL, test_classifier->GetShapeTable(), replicate_samples,
samples);
if (report_level > 0) {
int num_samples = 0;
for (sample_it.Begin(); !sample_it.AtEnd(); sample_it.Next())
++num_samples;
tprintf("Iterator has charset size of %d/%d, %d shapes, %d samples\n",
sample_it.SparseCharsetSize(), sample_it.CompactCharsetSize(),
test_classifier->GetShapeTable()->NumShapes(), num_samples);
tprintf("Testing %sREPLICATED:\n", replicate_samples ? "" : "NON-");
}
double unichar_error = 0.0;
ErrorCounter::ComputeErrorRate(test_classifier, report_level,
CT_SHAPE_TOP_ERR, fontinfo_table_,
page_images_, &sample_it, &unichar_error,
NULL, report_string);
return unichar_error;
}
void tesseract::MasterTrainer::TestClassifierOnSamples ( int  report_level,
bool  replicate_samples,
ShapeClassifier test_classifier,
STRING report_string 
)

Definition at line 755 of file mastertrainer.cpp.

{
TestClassifier(report_level, replicate_samples, &samples_,
test_classifier, report_string);
}
const UNICHARSET& tesseract::MasterTrainer::unicharset ( ) const
inline

Definition at line 182 of file mastertrainer.h.

{
return samples_.unicharset();
}
void tesseract::MasterTrainer::WriteInttempAndPFFMTable ( const UNICHARSET unicharset,
const UNICHARSET shape_set,
const ShapeTable shape_table,
CLASS_STRUCT float_classes,
const char *  inttemp_file,
const char *  pffmtable_file 
)

Definition at line 580 of file mastertrainer.cpp.

{
// Move the fontinfo table to classify.
classify->get_fontinfo_table().move(&fontinfo_table_);
INT_TEMPLATES int_templates = classify->CreateIntTemplates(float_classes,
shape_set);
FILE* fp = fopen(inttemp_file, "wb");
classify->WriteIntTemplates(fp, int_templates, shape_set);
fclose(fp);
// Now write pffmtable. This is complicated by the fact that the adaptive
// classifier still wants one indexed by unichar-id, but the static
// classifier needs one indexed by its shape class id.
// We put the shapetable_cutoffs in a GenericVector, and compute the
// unicharset cutoffs along the way.
GenericVector<uinT16> shapetable_cutoffs;
GenericVector<uinT16> unichar_cutoffs;
for (int c = 0; c < unicharset.size(); ++c)
unichar_cutoffs.push_back(0);
/* then write out each class */
for (int i = 0; i < int_templates->NumClasses; ++i) {
INT_CLASS Class = ClassForClassId(int_templates, i);
// Todo: Test with min instead of max
// int MaxLength = LengthForConfigId(Class, 0);
uinT16 max_length = 0;
for (int config_id = 0; config_id < Class->NumConfigs; config_id++) {
// Todo: Test with min instead of max
// if (LengthForConfigId (Class, config_id) < MaxLength)
uinT16 length = Class->ConfigLengths[config_id];
if (length > max_length)
max_length = Class->ConfigLengths[config_id];
int shape_id = float_classes[i].font_set.get(config_id);
const Shape& shape = shape_table.GetShape(shape_id);
for (int c = 0; c < shape.size(); ++c) {
int unichar_id = shape[c].unichar_id;
if (length > unichar_cutoffs[unichar_id])
unichar_cutoffs[unichar_id] = length;
}
}
shapetable_cutoffs.push_back(max_length);
}
fp = fopen(pffmtable_file, "wb");
shapetable_cutoffs.Serialize(fp);
for (int c = 0; c < unicharset.size(); ++c) {
const char *unichar = unicharset.id_to_unichar(c);
if (strcmp(unichar, " ") == 0) {
unichar = "NULL";
}
fprintf(fp, "%s %d\n", unichar, unichar_cutoffs[c]);
}
fclose(fp);
free_int_templates(int_templates);
}

The documentation for this class was generated from the following files: