
Quantis User Guide

Version 2.10

Quantis User Guide
Version 2.10

Information in this document is subject to change without notice.

Copyright © ID Quantique SA 2004-2013.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means – electronic, mechanical,
photocopying, recording or otherwise – without the written permission of ID Quantique SA.

Trademarks used in this text:

• Intel, Intel Inside (logos), MMX and Pentium are ® trademarks of Intel Corporation in the United States and other countries.

• Java and all Java-based trademarks are trademarks of Oracle, Inc. in the United States and other countries.

• Linux is a ® trademark of Linus Torvalds in the United States and other countries.

• Mac, Mac OS and Macintosh are ® trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

• Microsoft, Windows, Windows NT, XP, Visual Studio and the Windows logo are ® trademarks of Microsoft Corporation in the United States
and other countries.

• UNIX is a registered trademark of The Open Group in the United States and other countries.

Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products.
ID Quantique SA disclaims any proprietary interest in trademarks and trade names other than its own. The use of the word partner does not
imply a partnership relationship between ID Quantique SA and any other company.

Revision History

26.04.2013

• Add Microsoft Windows 8 32 and 64 bit support for Quantis-USB and Quantis-PCI/PCIe

• Improvement of the EasyQuantis installation documentation.

• Add EasyQuantis 2.1 new command line extraction options documentation.

Revision 2.9 03.09.2012

• Add QuantisExtension library documentation

• Add Quantis library new Open/Close functions.

• Add EasyQuantis extraction operations.

• Add how to recompile Quantis libraries

• Added an entry in the FAQ.

Revision 2.8 19.12.2011

• Added information concerning the C++11 user interface and installation under FreeBSD and Solaris.

• Corrected bug in the usage sample and provided detailed info about the sample code compilation and execution.

Revision 2.7 16.05.2011

• Added information related to the port of Quantis USB on Mac OS X.

Revision 2.6 10.03.2011

• Corrected minor mistakes and rephrased a few sentences for ease of understanding.

Revision 2.5 12.01.2011

• Added details on the QuantisGetManufacturer method.

Revision 2.4 16.09.2010

• Added instructions to install Quantis on Red Hat Enterprise Linux and CentOS.

Revision 2.3 25.06.2010

• Added details on the scaling algorithms.

• Improved the EasyQuantis installation description on Linux.

• Added Troubleshooting appendix.

Revision 2.2 30.04.2010

• In the Quantis PCI Linux driver installation section: fixed a wrong path and added two sub-sections.

• Updated the EasyQuantis installation procedure description under Linux.

Revision 2.1 26.04.2010

• Added an EasyQuantis command line section.

• Added answers in the FAQ.

Revision 2.0 09.04.2010

• Initial version.

v

Table of Contents
1. Introduction .. 1

1.1. What You Need ... 1
1.1.1. Additional Requirements .. 2

2. Hardware Installation ... 3
2.1. Quantis PCI and PCI Express Installation .. 3

2.1.1. Unpacking ... 3
2.1.2. Installing the Card .. 3

2.2. Quantis USB Installation .. 4
2.2.1. Unpacking ... 4
2.2.2. Installing the Device ... 4

3. Driver Installation ... 5
3.1. Windows Operating Systems ... 5

3.1.1. Windows XP ... 5
3.1.2. Windows Vista .. 9
3.1.3. Windows 7 .. 13
3.1.4. Windows 8 .. 18

3.2. Linux Operating System ... 25
3.2.1. Quantis PCI and Quantis PCI Express .. 26
3.2.2. Quantis USB .. 30

3.3. Mac OS X Operating System .. 33
3.3.1. QuantisPCI and QuantisPCI Express .. 33
3.3.2. Quantis USB .. 33
3.3.3. Installation ... 33
3.3.4. Implementation details ... 34
3.3.5. Known problems .. 35

3.4. Solaris / OpenSolaris .. 35
3.5. FreeBSD .. 35

4. The EasyQuantis application .. 37
4.1. Installation ... 37

4.1.1. Windows Operating Systems ... 37
4.1.2. Linux Operating Systems ... 38
4.1.3. Mac OSX .. 40
4.1.4. Solaris / OpenSolaris ... 40
4.1.5. FreeBSD ... 40

4.2. EasyQuantis ... 40
4.3. EasyQuantis2 (Windows, Linux) .. 40

4.3.1. Acquisition .. 40
4.3.2. File extraction .. 42
4.3.3. Extraction matrix .. 43

4.4. Using EasyQuantis 1.x (other OS) .. 44
4.5. The EasyQuantis Command Line ... 45

4.5.1. Options ... 46
4.5.2. Usage Examples ... 47

5. The Quantis Library ... 49
5.1. Library location .. 49
5.2. Device Type ... 49
5.3. Basic Functions .. 50

5.3.1. QuantisCount ... 50
5.3.2. QuantisGetDriverVersion ... 50
5.3.3. QuantisGetLibVersion ... 50
5.3.4. QuantisGetManufacturer .. 50
5.3.5. QuantisGetModulesDataRate ... 51
5.3.6. QuantisGetSerialNumber .. 51
5.3.7. QuantisRead .. 51
5.3.8. QuantisOpen .. 55

vi

5.3.9. QuantisClose .. 55
5.3.10. QuantisReadHandled .. 55
5.3.11. QuantisStrError ... 56

5.4. Advanced Functions .. 56
5.4.1. QuantisBoardReset .. 56
5.4.2. QuantisGetBoardVersion .. 56
5.4.3. QuantisGetModulesCount ... 57
5.4.4. QuantisGetModulesMask .. 57
5.4.5. QuantisGetModulesPower .. 57
5.4.6. QuantisGetModulesStatus ... 58
5.4.7. QuantisModulesDisable .. 58
5.4.8. QuantisModulesEnable .. 58
5.4.9. QuantisModulesReset .. 59

5.5. Recompiling the Quantis Library ... 59
5.5.1. Windows compilation with Visual Studio 2008 ... 59
5.5.2. Windows Compilation with Visual Studio 2010 .. 61
5.5.3. Linux Debian based .. 63
5.5.4. Linux RedHat / CentOS ... 63
5.5.5. Mac OSX .. 64
5.5.6. Solaris / OpenSolaris ... 64
5.5.7. FreeBSD ... 65

6. Quantis Library Wrappers ... 67
6.1. The C++11 random_device interface ... 67

6.1.1. About the interface and our implementation ... 67
6.1.2. Library Compilation for C++11 ... 68
6.1.3. C++11 Sample compilation .. 69

7. The QuantisExtensions Library .. 71
7.1. Extractor .. 71

7.1.1. Basic Functions .. 71
7.1.2. Advanced Functions .. 73

8. Sample Code .. 79
8.1. Windows Compilation / Execution .. 79

8.1.1. Visual Studio 2008 vs. 2010 ... 79
8.2. Linux / Solaris / OpenSolaris / FreeBSD compilation and execution 79

8.2.1. Mac OSX .. 80
8.3. C Sample ... 80
8.4. C++ Sample ... 81
8.5. Java Sample ... 82

A. Troubleshooting .. 85
A.1. EasyQuantis .. 85
A.2. Quantis Samples ... 85

B. Frequently Asked Questions (FAQ) .. 87
B.1. Quantis Library .. 87
B.2. EasyQuantis ... 87

C. Migrating to the New API .. 89
C.1. Compatibility Wrapper .. 90

D. Notes .. 91
D.1. Images .. 91

Bibliography ... 93

vii

List of Figures
4.1. EasyQuantis2 Acquisition tab .. 41
4.2. EasyQuantis2 File extraction tab .. 42
4.3. EasyQuantis2 Extraction matrix tab .. 43
4.4. EasyQuantis main window .. 44

viii

ix

List of Tables
1.1. Supported operating systems. .. 1
C.1. API 1.x and 2.0 functions equivalences. .. 89

x

1

Chapter 1. Introduction
Thank you for purchasing a Quantis Random Number Generator.

A random number generator is a device that produces sequences of numbers whose outcome is un-
predictable and which cannot subsequently be reliably reproduced. There exist two main classes of
random number generators: software and physical generators. In general, software generators produce
so-called pseudo random numbers. Although they may be useful in some applications, they should not
be used in most applications where true randomness is required.

Quantis is a physical random number generator exploiting an elementary quantum optics process.
Photons - light particles - are sent one by one onto a semi-transparent mirror and detected. The exclu-
sive events (reflection - transmission) are associated to "0" - "1" bit values. The operation of Quantis
is continuously monitored. If a failure is detected, the random bit stream is immediately stopped.

Quantum random number generators have the advantage over conventional randomness sources of
being invulnerable to environmental perturbations and of allowing live status verification.

1.1. What You Need
To use your Quantis, you need:

• A PC with a supported operating system installed (see Table 1.1, “Supported operating systems.”)
and one of the following slots/ports available:

• A PCI 32-bit slot (for Quantis PCI).

• A PCI Express x1 slot (for Quantis PCI Express).

• A USB 2.0 port (for Quantis USB).

• A USB 2.0 port for the USB Flash drive.

• 50MB hard drive space.

Operating System Quantis PCI/PCIe Quantis USB

Microsoft Windows XP (32-bit)

Microsoft Windows XP (64-bit)

Microsoft Windows Server 2003

Microsoft Windows Vista (32-
bit and 64-bit)

Microsoft Windows Server 2008
(32-bit and 64-bit)

Microsoft Windows 7 (32-bit
and 64-bit)

Microsoft Windows 8 (32-bit
and 64-bit)

Linux 2.6/3 (32-bit and 64-bit)

Solaris / OpenSolaris

FreeBSD

Additional Requirements

2

Operating System Quantis PCI/PCIe Quantis USB

Mac OS X

Table 1.1. Supported operating systems.

1.1.1. Additional Requirements

1.1.1.1. Linux

On Linux systems, you additionally need:

• Xorg 1.0 or higher (only required to use the EasyQuantis application).

3

Chapter 2. Hardware Installation
This chapter provides unpacking and installation information for Quantis.

2.1. Quantis PCI and PCI Express Installation
Caution

Under ordinary circumstances, the Quantis PCI and Quantis PCI Express (PCIe) cards
will not be affected by static charge as may be received through your body during han-
dling of the unit. However, there are special circumstances where you may carry an ex-
traordinarily high static charge and possibly damage the card and/or your computer. To
avoid any damage from static electricity, you should follow some precautions whenever
you work on your computer.

1. Turn off your computer and unplug power supply.

2. Use a grounded wrist strap before handling computer components. If you don't have
one, touch with both of your hands a safely grounded object or a metal object, such
as the power supply case.

3. Place components on a grounded anti-static pad or on the bag that came with the
components whenever the components are separated from the system.

The card contains sensitive electric components, which can be easily damaged by static
electricity, so the card should be left in its original packing until it is installed.

Unpacking and installation should be done on a grounded anti-static mat. The operator
should be wearing an anti-static wristband, grounded at the same point as the anti-static
mat.

Inspect the card carton for obvious damage. Shipping and handling may cause damage
to your card. Be sure there are no shipping and handling damages on the card before
proceeding.

DO NOT POWER YOUR SYSTEM IF THE QUANTIS CARD IS DAMAGED.

2.1.1. Unpacking
Open the shipping carton and carefully remove all items, and ascertain that you have:

• a Quantis PCI or Quantis PCIe card;

• a Quick Install Guide;

• a USB Flash Drive with Manual, Drivers and Samples.

If any item is found to be missing or damaged, please contact your local reseller for replacement.

2.1.2. Installing the Card
1. Shut down the computer, unplug its power cord and remove the chassis cover.

2. Locate the PCI 32-bits slot (for Quantis PCI) or the PCI Express x1 slot (for Quantis PCIe). If
necessary, remove the metal cover from this slot, then align your Quantis card with the PCI or PCIe
slot respectively and press it in firmly until the card is fully inserted.

Quantis USB Installation

4

3. Install the bracket screw and secure the card to the computer chassis.

4. Cover the computer’s chassis.

5. Switch the computer power on.

6. Install the driver (see next Chapter).

2.2. Quantis USB Installation

2.2.1. Unpacking
Open the shipping carton and carefully remove all items, and ascertain that you have:

• a Quantis USB;

• a USB cable;

• a Quick Install Guide;

• a USB Flash Drive with Manual, Drivers and Samples.

If any item is found to be missing or damaged, please contact your local reseller for replacement.

2.2.2. Installing the Device
1. Connect the Quantis device to a USB 2.0 port on your PC using the cable that came with the Quantis

device.

2. Install the driver (see next Chapter).

5

Chapter 3. Driver Installation
To be able to access your Quantis device, you need to install a driver. This chapter contains instructions
on how to install the driver on your operating system.

Important

Quantis PCI Express is software-compatible with Quantis PCI. This means that any soft-
ware capable of communicating with a Quantis PCI device (e.g driver) is also able to
communicate with the Quantis PCI Express. More specifically:

• Quantis PCIe uses the Quantis PCI driver.

• Quantis PCIe is considered by the software (driver, application) as a Quantis PCI
device.

3.1. Windows Operating Systems
This section contains instructions on how to install a Quantis device on Windows Operating Systems.

Insert the USB flash drive into an available USB port. This drive contains the Quantis drivers as well
as software for your device. The documentation show how install USB device. Quantis-PCI/PCIe
installation procedure is identical.

Important

In this section, we assume that the letter of the USB flash drive provided by IDQ is drive
D:. If this is different on your machine, substitute your corresponding drive name for
D: in the appropriate places in this instruction.

3.1.1. Windows XP

When a Quantis RNG is inserted into your computer for the first time, the operating system will detect
the device automatically and display a New Hardware Found message. The following are step-by-
step installation instructions.

3.1.1.1. Found New Hardware Wizard: Welcome

Windows will search for a driver on your computer, on removable media (e.g. CD-ROM) and on the
Windows Update Web site.

The Quantis driver is not available on the Windows Update Web site. If asked, deny access to the
Windows Update Web site and click the Next button.

Windows XP

6

Note

It is harmless to allow the wizard to connect to the Windows Update Web site. The only
effect is that the installation process will take a little longer.

3.1.1.2. Found New Hardware Wizard: Quantis

When the wizard asks you what to do to install Quantis software, select Install from a list or specific
location and click the Next button.

Windows XP

7

3.1.1.3. Found New Hardware Wizard: Search Location

First select Search for the best driver in these locations. Then activate the option Include this location
in the search. Click the Browse button and select the directory containing the right driver for your
device:

• For the Quantis PCI and Quantis PCIe select D:\Drivers\Windows\QuantisPci.

• For the Quantis USB select D:\Drivers\Windows\QuantisUsb.

Click the Next button to validate.

Windows XP

8

3.1.1.4. Found New Hardware Wizard: Installation

Wait while the wizard installs the Quantis driver.

3.1.1.5. Found New Hardware Wizard: Completed

When the wizard has finished installing the Quantis driver, click the Finish button to exit the instal-
lation. Reboot the computer if asked.

Windows Vista

9

Your Quantis device is now installed. You can go to the next Chapter and install the application
software.

3.1.2. Windows Vista

When the Quantis RNG is inserted into your computer for the first time, the operating system will
detect the device automatically and display a New Hardware Found message. The following are step-
by-step installation instructions.

Note

One or more intermediate dialog boxes may appear during the process stating Windows
needs your permission to continue. Click Continue to proceed.

3.1.2.1. Found New Hardware Wizard: Welcome

Windows will search for a driver on your computer, on removable media (e.g CD-ROM) and on the
Windows Update Web site.

Let Windows try to locate the driver by clicking on Locate and install driver software.

Windows Vista

10

3.1.2.2. Found New Hardware Wizard: Insert Disc

When the wizard asks you to insert the disc that came with your Quantis USB, choose I don't have
the disc. Show me other options. This allows you to specify the location of the driver available on
the USB flash drive.

3.1.2.3. Found New Hardware Wizard: Search Location

Select Browse my computer for driver software.

Windows Vista

11

On the next dialog, click the Browse button and select the directory D:\Drivers\Windows. This
directory contains all drivers for Windows. Activate the option Include subfolders and validate your
choices by clicking the Next button.

3.1.2.4. Found New Hardware Wizard: Installation

Wait while the wizard installs the Quantis driver.

Windows Vista

12

3.1.2.5. Found New Hardware Wizard: Install

If asked, validate the installation by clicking the Install button.

You can select Always trust software from "ID Quantique SA", to avoid this question in future. All
software with a valid digital signature from ID Quantique will be automatically accepted and will be
installed without prompting.

3.1.2.6. Found New Hardware Wizard: Completed

When the wizard has finished installing the Quantis driver, click the Close button to exit the installa-
tion. Reboot the computer if asked.

Windows 7

13

Your Quantis device is now installed. You can go to the next Chapter and install the application
software.

3.1.3. Windows 7

When the Quantis RNG is inserted into your computer for the first time, the operating system will
detect the device automatically and search the Windows Update Web site for a driver.

Note

One or more intermediate dialog boxes may appear during the process stating Windows
needs your permission to continue. Click Continue to proceed.

Since the driver for your Quantis device is not available on this site, this search will fail, and you will
have to manually point Windows to the driver.

Windows 7

14

Close the dialog and read the following for the step-by-step installation instructions.

3.1.3.1. Devices and Printers

Open the Start Menu and select Devices and Printers. Scroll down until the Quantis device appears.
Click on the Quantis device with the right mouse button. Select Properties on the menu.

3.1.3.2. Quantis Properties: Hardware

In the Quantis Properties dialog, click on the Hardware tab and then on the Properties button.

Windows 7

15

3.1.3.3. Quantis Properties: Update Driver

First click on the button Change settings.

This will enable the Update Driver button. Click on it.

Windows 7

16

3.1.3.4. Update Driver Software: Search Driver

Driver is available on the USB flash drive provided. Select Browse my computer for driver software.

3.1.3.5. Update Driver Software: Search Location

Click the button Browse an select the directory D:\Drivers\Windows. This directory contains
all drivers for Windows. Activate the option Include subfolders and validate your choices by clicking
the Next button.

Windows 7

17

3.1.3.6. Update Driver Software: Installation

Wait while the Windows installs the driver.

3.1.3.7. Update Driver Software: Completed

When the wizard has finished installing the Quantis driver, click the Close button to exit the installa-
tion. Reboot the computer if asked.

Windows 8

18

Your Quantis device is now installed. You can go to the next Chapter and install the application
software.

3.1.4. Windows 8

When the Quantis RNG is inserted into your computer for the first time, the operating system will
detect the device automatically and search the Windows Update Web site for a driver.

Since the driver for your Quantis device is not available on this site, this search will fail, and you will
have to manually point Windows to the driver. The Device Setup windows may appears for a short
time and will close automatically.

3.1.4.1. Open Windows settings

Point the mouse to the upper right corner of the screen. A side menu will appears click Settings.

Windows 8

19

Then click Control Panel.

Quantis PCI may not be listed here. In this case click Hardware and Sound then click on Device
Manager. An unknown PCI device must be listed.

3.1.4.2. Quantis-USB device

In Hardware and Sound select View devices and printers.

Windows 8

20

Click on the Quantis device with the right mouse button. Select Properties on the menu.

3.1.4.2.1. Quantis-USB Properties: Hardware

In the Quantis Properties dialog, click on the Hardware tab and then on the Properties.

Windows 8

21

3.1.4.2.2. Quantis-USB Properties: Update Driver

First click on Change settings.

This will enable the Update Driver button. Click on it.

Windows 8

22

3.1.4.3. Quantis-PCI device

In the Control Panel click Hardware and Sound.

Then click on Device Manager

Windows 8

23

Under Other devices an undefined PCI Device must be listed. Right click and select Update Driver
Software...

3.1.4.4. Update Driver Software: Search Driver

The driver is available on the USB memory drive provided. Select Browse my computer for driver
software.

3.1.4.5. Update Driver Software: Search Location

Click the button Browse an select the directory D:\Quantis-vYY.MM.DD\Drivers\Win-
dows. This directory contains all drivers for Windows. Activate the option Include subfolders and
validate your choices by clicking the Next.

Windows 8

24

3.1.4.6. Update Driver Software: Installation

Wait while Windows installs the driver.

3.1.4.7. Windows security check

Windows ask you to confirm the installation. Click the install.

Linux Operating System

25

3.1.4.8. Update Driver Software: Completed

When the wizard has finished installing the Quantis driver, click the Close button to exit the installa-
tion. Reboot the computer if asked.

Your Quantis device is now installed. You can go to the next Chapter and install the application
software.

3.2. Linux Operating System
This section contains instructions on how to install Quantis devices on Linux Operating Systems.

Note

In this section, we assume that the USB flash drive with the software is mounted on /
media/USB_FLASH. If this is different on your machine, substitute your correspond-
ing drive name in the appropriate places in this instruction.

Quantis PCI and Quantis PCI Ex-
press

26

Important note for Ubuntu users

Ubuntu does not include the root user. Instead, administrative access is given to indi-
vidual users, who may use the sudo application to perform administrative tasks. To use
sudo on the command line, preface your command with sudo:

$ sudo my_command_requiring_administrative_access

In this document, when a command must be executed as root on Ubuntu, preface the
command with sudo.

Please refer to the Ubuntu guide for more details about the command sudo.

3.2.1. Quantis PCI and Quantis PCI Express

The Quantis PCI and Quantis PCIe cards require a kernel module to be compiled and installed to work
correctly. The following are step-by-step installation instructions.

3.2.1.1. Install Pre-Requirements

Before being able to compile a Quantis PCI kernel module, you must install a compiler and the Linux
kernel sources.

Note

Generally, you do not need the full source tree in order to build a module against the
running kernel. Most of the time you just need the kernel headers.

3.2.1.1.1. Debian-based Distributions

Debian-based distributions have a powerful tool for building kernel modules: module-assistant. mod-
ule-assistant aims to facilitate the process of building kernel modules from source. Type following
command as root to install module assistant:

apt-get install module-assistant

To download the headers corresponding to the current kernel and other mandatory tools, simply run
(as root):

m-a prepare

This command determines the name of the required kernel-headers package, installs it if needed and
creates the /usr/src/linux symlink if needed. Also installs the build-essential package to ensure
that the same compiler environment is established.

All required software has been installed. You can skip to Section 3.2.1.2, “Compile and Install Driver”.

3.2.1.1.2. Red Hat Enterprise Linux and CentOS Distributions

To build kernel modules on Red Hat Enterprise Linux and CentOS distributions it is not necessary
to download the entire kernel. To build a module for the currently running kernel, only the matching
kernel-devel package is required. Run the following command to install the kernel-devel package
using yum:

yum install kernel-devel

Quantis PCI and Quantis PCI Ex-
press

27

Important

The previous command installs the kernel headers for the latest kernel available in the
repository. If your system is not up-to-date you need first to update the kernel and then
boot the new kernel before installing the kernel-devel package:

yum update kernel*
reboot
yum install kernel-devel

To compile the kernel driver you also need to install the developer tools such as GNU GCC C/C++
compilers, make and others. You can install them with the following command (as root):

yum groupinstall "Development Tools"

All required software has been installed. You can skip to Section 3.2.1.2, “Compile and Install Driver”.

3.2.1.1.3. Other Distributions

Install the GNU GCC compiler and the header corresponding to the current kernel (or the whole source
kernel). Please refer to the guide of your distribution for help on installing packages.

3.2.1.2. Compile and Install Driver

Now that all pre-requirements have been installed you can compile and install the driver.

First copy the source code of the driver to /tmp:

$ cp -R /media/USB_FLASH/Drivers/Unix /tmp/

Change to the directory which contains the driver and compile the driver:

$ cd /tmp/Unix/QuantisPci/
$ make

When compilation finish, install and load the driver with following commands (as root):

make install
modprobe quantis_pci

You can verify that the driver has been successfully loaded and all your Quantis PCI and PCIe cards
have been detected with the command dmesg:

$ dmesg | grep quantis_pci
quantis_pci: Initializing Quantis PCI RNG driver version 2.0
quantis_pci: driver build Feb 12 2010 14:26:14
quantis_pci: support enabled up to 10 PCI card(s)
quantis_pci: Found card #0
quantis_pci: core version 0x040a1201
quantis_pci: device registered at /dev/qrandom0
quantis_pci: Driver loaded. Found 1 card(s)

Important

If you update your kernel, you must recompile and reinstall the driver!

3.2.1.3. Auto-load the Driver on Boot-up

Instead of using the modprobe command each time you want to load the driver, you can let the system
load the driver automatically on boot-up.

Quantis PCI and Quantis PCI Ex-
press

28

Note

Some distributions already load the driver on boot for each detected device (if available).

To check if your system does this for you, reboot your computer and run the command
dmesg as explained in previous section. If the driver has been loaded and all Quantis
devices have been detected, you can skip this section.

3.2.1.3.1. Debian-based Distributions

To automatically load the driver on boot, simply add the driver's name at the end of /etc/modules.
You can type the following command (as root) to add the entry:

echo "quantis_pci" >> /etc/modules

3.2.1.3.2. Red Hat Enterprise Linux and CentOS Distributions

Red Hat Enterprise Linux checks for the existence of the /etc/rc.modules file at boot time,
which contains various commands to load modules. The following commands configure the loading
of the quantis_pci module at boot time (as root):

echo modprobe quantis_pci >> /etc/rc.modules
chmod +x /etc/rc.modules

3.2.1.3.3. Other Distribution

Please consult your distribution's guide to know how to auto-load a driver on boot-up.

3.2.1.4. Modify the Device's Permissions

Depending on the distribution, the Quantis PCI device might be accessible only to user root. UDEV
(the device manager for the Linux 2.6 kernel series) must be instructed to allow other users to access
the Quantis.

3.2.1.4.1. The plugdev group

IDQ provides a rule for UDEV that allows all users in group plugdev to access the Quantis device.
The group plugdev is generally created on all modern distributions.

First check if your system already has the group plugdev:

$ grep plugdev /etc/group

If the previous command displays a line beginning with:

plugdev:x:

then your system has the group plugdev. When the grep command does not display any message,
then the plugdev group doesn't exists on your system. Type following command (as root) to create
the plugdev group:

groupadd --gid 46 plugdev

3.2.1.4.2. Adding users to the plugdev group

Every user who is a member of the plugdev group can access hot-pluggable devices (digital cameras,
USB drives etc.).

You can use the command groups to display the groups your user is in:

$ groups

Quantis PCI and Quantis PCI Ex-
press

29

users adm dialout cdrom plugdev lpadmin admin sambashare

If your user is not in the group plugdev, use the usermod command (as root) to add the user
LOGIN to the group plugdev (substitute your own login name for LOGIN):

usermod -G plugdev -a LOGIN

3.2.1.4.3. UDEV rules

In the directory Drivers/Unix/ on the USB flash there are two files with UDEV rules:

• idq-quantis-rhel.rules for Red Hat Enterprise Linux and CentOS distributions.

• idq-quantis.rules for all other distributions.

Copy (as root) the right file into /etc/udev/rules.d/ directory:

• On Red Hat Enterprise Linux and CentOS distributions:

cp /media/USB_FLASH/Drivers/Unix/idq-quantis-rhel.rules
 /etc/udev/rules.d/

• On all other distributions:

cp /media/USB_FLASH/Drivers/Unix/idq-quantis.rules
 /etc/udev/rules.d/

Note

The files idq-quantis-rhel.rules and idq-quantis.rules contain
UDEV rules for both Quantis PCI and Quantis USB devices.

The udev daemon must now reload the rules. Type following command (as root) to reload the rules:

udevadm control --reload-rules

Note

On Red Hat Enterprise Linux and CentOS distributions the udevadm command does
not exists. User following command to reload the rules instead:

udevcontrol reload_rules

Note

The udev daemon only apply rules when creating the device's node (when the drivers
loads). If the Quantis PCI driver is already loaded you need thus to unload and reload it
to have the right permissions on the device:

rmmod quantis_pci
modprobe quantis_pci

3.2.1.5. Check Your Device

The driver has been installed and the system configured. You can now check if your device works
correctly by reading some random bytes from the device. The following command reads 100 bytes
from the first Quantis PCI device found on the system (not as root):

Quantis USB

30

$ head -c 100 /dev/qrandom0

Important

It is important not to run the head command as root but as the standard user who will
use the Quantis PCI device. Otherwise you won't be verifying that permission has been
granted to you to access the device.

The above command will display some random characters on the console.

Important

If you get one or more Operation not permitted messages, you don't have the right per-
missions to access the Quantis device. In such a case:

• Verify that /etc/udev/rules.d/idq-quantis.rules exists and has the
same content as the one provided on the USB flash drive.

• Verify that your user is in the plugdev group.

• Reboot the system to ensure that the new rules are loaded by the udev daemon.

You Quantis device is now installed. You can go to the next Chapter to install the application software.

3.2.2. Quantis USB

Quantis USB only requires USB support enabled in the kernel1. The Quantis USB device is accessed
through the open source library libusb-1.0 .

The following are step-by-step installation instructions.

3.2.2.1. libusb-1.0 Installation

Quantis USB device is accessed through the library libusb-1.02. This library is available on all recent
distributions and can be installed using the package manager of the distribution.

Warning

Do not confuse libusb-0.1 with libusb-1.0! libusb-0.1 is the legacy release and is not
developed any more. As of December 2008, libusb-1.0 is the current stable branch. This
new branch, used to access the Quantis USB, adds features missing in the first release.

3.2.2.1.1. Debian-based Distributions

Note for Debian users

libusb-1.0 is only available on Debian Squeeze and newer releases. It is also available
on Debian lenny-backports. Please refer to the Debian help on how to enable backports
packages. On all other Debian releases, you need to manually install libusb-1.0. Please
refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

1USB support in the kernel is generally enabled on all modern Linux distributions.
2http://libusb.org/wiki/Libusb1.0

Quantis USB

31

Note for Ubuntu users

libusb-1.0 is only available on Ubuntu Jaunty (9.04) and newer releases. On previous
Ubuntu releases you need to manually install libusb-1.0. Please refer to Section 3.2.2.1.4,
“Manually Compile libusb-1.0”.

Type the following command (as root) to install libusb-1.0 and the development package (needed if
you want to write your own application using the Quantis libraries):

apt-get install libusb-1.0-0 libusb-1.0-0-dev

3.2.2.1.2. Red Hat Enterprise Linux and CentOS Distributions

libusb-1.0 is currently not available on Red Hat Enterprise Linux nor CentOS distributions. You need
to manually install libusb-1.0. Please refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

3.2.2.1.3. Other Distributions

Use the package manager of your distribution to install the library libusb-1.0. If the package is not
available, please refer to Section 3.2.2.1.4, “Manually Compile libusb-1.0”.

3.2.2.1.4. Manually Compile libusb-1.0

If library libusb-1.0 can not is not available on the list of packages in the package manager of your
distribution, you can easily compile it by hand.

First you need to download the library's sources. Go to the address http://sourceforge.net/
projects/libusb/files/libusb-1.0/ and download the latest version.

Open the Terminal application and change the working directory to the one containing the down-
loaded libusb-1.0 archive. Unpack the archive and compile the library (replace x with your version
number):

$ tar xvjf libusb-1.0.x.tar.bz2
$ cd libusb-1.0.x/
$./configure --prefix=/usr
$ make

When the library has been compiled, install it with the following command (as root):

make install

3.2.2.2. Modify the Device's Permissions

By default, the Quantis USB device is accessible only to user root. UDEV (the device manager for
the Linux 2.6 kernel series) must be instructed to allow other users to access the Quantis. Please follow
instructions on Section 3.2.1.4, “Modify the Device's Permissions”.

Important

If the Quantis USB device was already plugged in before the reloading of the udev rules,
please unplug and replug the Quantis device, otherwise it will have the wrong permis-
sions.

3.2.2.3. Check Your Device

All requirements have been installed. You can now plug your Quantis USB device into your computer.

You can now check if your device works correctly with the lsusb command as following (not as
root):

Quantis USB

32

$ lsusb -d 0aba:0102 -v

Important

It is important not to run the lsusb command as root but as the standard user who will
use the Quantis USB device. Otherwise you won't be verifying that permission has been
granted to you to access the device.

Note

If above command returns the message:

lsusb: command not found

then the command lsusb is not installed. Install the usbutils package to fix the problem.

The output of above command should be similar to the following:

Bus 002 Device 035: ID 0aba:0102 Ellisys
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 255 Vendor Specific Class
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x0aba Ellisys
 idProduct 0x0102
 bcdDevice 2.00
 iManufacturer 1 id Quantique
 iProduct 2 Quantis USB
 iSerial 3 070001A410
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 25
 bNumInterfaces 1
 bConfigurationValue 1
 iConfiguration 0
 bmAttributes 0x80
 (Bus Powered)
 MaxPower 300mA
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 0
 bAlternateSetting 0
 bNumEndpoints 1
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 0
 bInterfaceProtocol 0
 iInterface 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x86 EP 6 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
Device Qualifier (for other device speed):
 bLength 10
 bDescriptorType 6

Mac OS X Operating System

33

 bcdUSB 2.00
 bDeviceClass 255 Vendor Specific Class
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 bNumConfigurations 1
Device Status: 0x0000
 (Bus Powered)

Important

Please verify that you have the Device Qualifier and Device Status information sections
and not messages such as:

can't get device qualifier: Operation not permitted
can't get debug descriptor: Operation not permitted
cannot read device status, Operation not permitted

If you get one or more Operation not permitted messages, you don't have the right per-
missions to access the Quantis device. In such a case:

• Verify that /etc/udev/rules.d/idq-quantis.rules or /etc/udev/
rules.d/idq-quantis-rhel.rules exists and has the same content as the
one provided on the USB flash drive.

• Verify that your user is in the plugdev group.

• Reboot the system to ensure that the new rules are loaded by the udev daemon.

You Quantis device is now installed. You can go to the next Chapter to install the application software.

3.3. Mac OS X Operating System
This section contains instructions on how to install and operate Quantis devices on Mac OS X Oper-
ating Systems. The binaries are only supported from Mac OS X 10.6 (Snow Leopard). In order to use
the driver with earlier versions of the OS, the sources should be recompiled.

3.3.1. QuantisPCI and QuantisPCI Express
The Quantis PCI is not yet supported on Mac OS X.

3.3.2. Quantis USB
The binary distribution is contained in the file EasyQuantis.dmg and is composed of:

• the EasyQuantis application which allow the immediate use of the Quantis;

• the QuantisRNG-2.7.0-Darwin-i386.pkg which is a standard package for the Mac OS X
installer and which contain all the SDK to use the Quantis from the C/C++ programming language.

• the Readme describing briefly how to install the software.

3.3.3. Installation
To access the content of the file EasyQuantis.dmg simply double click on its icon (in the Finder).
Once the disk opened, simply drag the icon of the EasyQuantis application in the Applications
folder (or in any other convenient folder).

Implementation details

34

To install the SDK, double click on its icon and follow the instructions of the package manager.
Once the license is accepted, the different files (headers, library and binaries) will be available in the
directory /opt/IDQQuantis.

This directory is deliberately chosen in order to avoid interferences with the standard system. The di-
rectory name should normally only be used to add search paths for headers files (/opt/IDQQuan-
tis/include) or libraries (/opt/IDQQuantis/lib) to the compiler command line or to the
XCode projects.

Note

The directory /opt/IDQQuantis is a perfectly standard Unix path and is accessible
without problem from the Terminal. Since it is not a standard Mac OS X path, it is not
available directly in the Finder. It is however possible to reach it by choosing the menu
Go to Folder (Shift+Command+g).

3.3.4. Implementation details
Like on Linux (see the paragraph Section 3.2.2.1, “libusb-1.0 Installation”), the Quantis USB is avail-
able by using the libusb 1.0. This software is not included in Mac OS X and should be installed
manually. The two projects

1. MacPorts [http://www.macports.org]

2. Fink [http://www.finkproject.org/]

provide an easy solution for installing additional Unix software on Mac OS X.

The MacPorts libusb 1.0 package has been chosen for the use with the distributed driver. To
facilitate the distribution of the software, the library libusb 1.0 has been statically linked inside
the library Quantis.

The application EasyQuantis needs the libraries qt, boost and png. All these libraries are statically
linked inside the application. Unfortunately none of the qt provided by the two projects has static
libraries. The qt library has then been compiled statically directly from the sources provided on the
official site [http://qt.nokia.com/products/].

Even if the EasyQuantis use graphical Mac OS X widgets, it is not fully recognized by the system
as a Cocoa application. To bypass this problem, a small Cocoa program has been written to load the
actual EasyQuantis program.

Since all the Cocoa applications are Mac OS X bundles,3the actual program is located inside the
subdirectory libexec of the application bundle with the name EasyQuantis (the Cocoa wrapper is
located in the subdirectory MacOS with the name EasyQuantis).

By using this trick, the EasyQuantis has the standard behaviour of a Cocoa application. It would have
perhaps been possible to modify the main source of the EasyQuantis application, but this solution
would have make the portability across platforms more complicated and the wrapper solution has been
preferred.

It is generally not possible to link statically all the libraries on Mac OS X since most of the standard
system libraries are provided only as dynamic libraries. To achieve a static linking as complete as
possible one has to do:

• add explicitly the name of the library (i.e. /opt/local/lib/libusb-1.0.a) to the list of
objects (otherwise the Mac linker, when static and dynamic libraries are available, prefers dynamic
libraries);

3A bundle is a directory with a specific organisation containing all what is needed to run the application (icons, resources, menu, documentation
and naturally the program itself).

http://www.macports.org
http://www.macports.org
http://www.finkproject.org/
http://www.finkproject.org/
http://qt.nokia.com/products/
http://qt.nokia.com/products/

Known problems

35

• add the correct parameters to the linker which otherwise do not link with the system dynamic li-
braries. For instance, the following parameters4 have been added (when invoking the compiler
on command line) in order to link the Quantis library: -framework IOKit -framework
CoreFoundation -lSystem

3.3.5. Known problems
The following problems have been noticed:

• the progress bar do not work while the application EasyQuantis acquires random data from the
Quantis device;

• the actual EasyQuantis command (located in /opt/IDQQuantis/bin) do not work correctly
in graphical mode.

This problem arise only when the qt library is statically linked in the program. It is caused while
some additional files for displaying graphic widgets are not found. The problem do not exist when
the application is used inside an application bundle or if a framework (containing the necessary
resources) for the qt library is installed in the system.

3.4. Solaris / OpenSolaris
Install the package containing the drivers by typing the command (after uncompressing the package):

pkgadd -d <path-to-quantis>/Packages/Solaris/Sparc/IDQpcidrv-2.1-sol10-sparc"

3.5. FreeBSD
On FreeBSD, first install the Ports package. Then, execute

cd /usr/ports/security/quantis-kmod
make
make install

to execute the provided makefile.

4A framework on Mac OS X is a bundle containing a dynamic library and all its resources (header files, static and dynamic libraries, docu-
mentation, etc.).

36

37

Chapter 4. The EasyQuantis
application

Quantis is delivered with the EasyQuantis application. This application allows you to quickly and
easily generate random data.

Important

Quantis PCI Express is software-compatible with Quantis PCI. EasyQuantis considers
Quantis PCIe devices as Quantis PCI devices.

4.1. Installation

4.1.1. Windows Operating Systems

EasyQuantis is provided as a Microsoft Installer (MSI) package for easy installation. Just double-click
on EasyQuantis.msi file and follow on-screen instructions.

Then you may select a directory to install EasyQuantis.

Then confirm you are ready to install

Linux Operating Systems

38

The installation starts. For security reasons you will be asked to allow the installation. Click yes.

After copying all required files the final screen shows the result. Click Close to quit.

To launch the application click on the EasyQuantis icon in Start -> Program or if you run
Windows8 the EasyQuantis icon will appear in the start screen.

4.1.2. Linux Operating Systems

4.1.2.1. Install Requirements

EasyQuantis requires the libusb-1 and Qt4 libraries (qt4-core and qt4-gui) to work.

If you have a Quantis PCI card, please follow instructions in Section 3.2.2.1, “libusb-1.0 Installation”.
If you have a Quantis USB device, libusb-1 has already been installed on your system.

Linux Operating Systems

39

Qt libraries are available on all major Linux distributions and they can be installed using the package
manager of the distribution.

4.1.2.1.1. Debian-based Distributions

Open a terminal and install libqt4-core and libqt4-gui using the following command (as
root):

apt-get install libqt4-core libqt4-gui

4.1.2.1.2. Other Distributions

Install libqt4-core and libqt4-gui using the package manager of your distribution.

4.1.2.2. Install the Application

The EasyQuantis and Quantis libraries are provided in a bz2 archive.

On 32-bit systems, you can install the application using the following commands as root (replace
x.y with your version number):

cd /mnt/USB_FLASH/
tar xvjf QuantisRNG-2.x.y-Linux-i386.tar.bz2 -C /tmp/
cd /tmp/QuantisRNG-2.x.y-Linux-i386/
mv bin/EasyQuantis /bin/
mv lib/libQuantis* /lib/

On 64-bit systems, use the following commands as root instead:

cd /mnt/USB_FLASH/
tar xvjf QuantisRNG-2.x.y-Linux-amd64.tar.bz2 -C /tmp/
cd /tmp/QuantisRNG-2.x.y-Linux-amd64/
mv bin/EasyQuantis /bin/

On some distributions you need to copy the 64 bits libraries to /lib64:

mv lib64/libQuantis* /lib64/

On other distributions you need to copy to /lib/x86_64-linux-gnu

mv lib64/libQuantis* /lib/x86_64-linux-gnu

You can run the EasyQuantis application by typing EasyQuantis on a terminal:

$ EasyQuantis

4.1.2.3. Uninstall the Application

To uninstall, manually remove installed files as follows (as root):

For 32 bits system:

rm -Rf /bin/EasyQuantis
rm -Rf /lib/libQuantis*

For 64 bits system:

rm -Rf /bin/EasyQuantis
rm -Rf /lib64/libQuantis*

or

rm -Rf /bin/EasyQuantis

Mac OSX

40

rm -Rf /lib/x86_64-linux-gnu/libQuantis*

4.1.3. Mac OSX
For Mac, there is a dmg package. Simply install it to get the EasyQuantis application.

4.1.4. Solaris / OpenSolaris
Install the package containing the library by typing the command (after uncompressing the package):

pkgadd -d <path-to-quantis>/Packages/Solaris/Sparc/IDQLibs-Apps-sparc-2.9"

4.1.5. FreeBSD
To install the Quantis code and application, execute

cd /usr/ports/security/quantis
make config
make
make install

Important

Running "make config" above allows you to choose a number of options. Unless you
are sure to need it, disallow the Quantis GUI, since permitting it will require the instal-
lation/configuration of a large number of large packages (Qt, Perl, Ruby, boost, ...) and
will take very, very long.

4.2. EasyQuantis
In the Quantis software package, two versions are provided:

• EasyQuantis 1: Allows to get random numbers from a Quantis device.

• EasyQuantis 2: Allows to get random numbers from a Quantis device and provide randomness
extraction capabilities (only available on Windows and Linux at the moment).

Note

Randomness extraction principle is explained in a dedicated white paper. Please re-
fer to the "Randomness Extraction for the Quantis True Random Number Generator"
document for details. This document may be found on IDQ website.

4.3. EasyQuantis2 (Windows, Linux)
EasyQuantis2 is made of 3 tabs:

• Acquisition: Make acquisition of random data from a Quantis device.

• File extraction: Process randomness extraction form a file.

• Extraction matrix: Create your own matrix file.

4.3.1. Acquisition
The Acquisition tab allows to generate random numbers from a Quantis device.

Acquisition

41

Figure 4.1. EasyQuantis2 Acquisition tab

To generate random data from a Quantis device using EasyQuantis:

1. Select a Quantis device from the list.

2. Select a data format:

• Binary data. Data is read from the Quantis and returned as bytes.

• Integer numbers. Generates 32-bit random numbers ranging between -2'147'483'648 and
2'147'483'647 (inclusive).

• Floating point numbers. Generates numbers between 0.0 (inclusive) and 1.0 (exclusive).

3. Select a data separator:

• Comma-separated values (CSV). CSV is a type of delimited text data, which uses a comma to
separate subsequent values. The benefit of CSV is that they allow for the transfer of data across
different applications.

The following is an example of CSV:

Value1,Value2,Value3,...,ValueN

• One entry per line. Each value is on a separate line:

Value1
Value2
Value3
...
ValueN

Note

When generating binary data you cannot select a data separator.

4. Optionally, you can scale the random values to be within a smaller range.

File extraction

42

Note

For more details about the scaling algorithms, please refer to section 5.3.7.2.1 "Inte-
gral Values: The Scaling Algorithm".

5. Optionally you can enable the randomness extraction post processing:

• Size. Select the size of the matrix.

• Matrix filename. Select a matrix filename. The size of the file must be greater or equal to the
matrix size. IDQuantique provide a default matrix located here: Libs-Apps/QuantisEx-
tensions/default_idq_matrix.dat

6. Select the data destination:

• Display. Data is displayed on screen. You can copy-paste the data to your application.

Use this option for small amounts of random data that you want to use it right away.

Note

This option is not available for binary data.

• Save to file. The data is written to a file. Use this option to generate large amounts of random
data or to generate data for later use.

Note

On some systems (Mac OS X, Windows) the temporary default directory is not
very convenient and should probably changed to a better suited one. This will ease
the manipulation of the produced file from outside the EasyQuantis program.

7. Select the amount of data to generate. File size is limited to 2 GBytes (2'147'483'647 bytes).

8. Click the Generate button and wait while the application generates the random data.

4.3.2. File extraction
The File extraction tab allows to extract the randomness from a file.

Figure 4.2. EasyQuantis2 File extraction tab

Extraction matrix

43

To extract randomness from a raw random file using EasyQuantis:

1. Select a matrix size.

2. Select a matrix file. The file size must be greater or equal to the matrix size.

3. Select the input file to process:

4. Define an output file to save the extracted data.

5. Click the Process button and wait while the application generates the random data.

Note

Randomness extraction algorithm is based on 64 bits integers. Using a 64 bits platform
allows significant higher speed processing.

4.3.3. Extraction matrix
The Extraction matrix tab allows to create your own extraction matrix file.

Figure 4.3. EasyQuantis2 Extraction matrix tab

To create an elementary matrix:

1. Select a Quantis device from the list.

2. Select the matrix size

3. Select the the under sampling period. Recommended value is 13 bytes.

4. Define an elementary matrix filename.

5. Click Create elementary matrix.

Note

Repeat this operation in order to have at least 2 elementary matrix file.

To create an extraction matrix:

Using EasyQuantis 1.x (other OS)

44

1. Select a list of the elementary files with the + and - buttons.

2. Define an output matrix filename

3. Click create matrix

4.4. Using EasyQuantis 1.x (other OS)
Figure 4.4, “EasyQuantis main window” shows the main window of the EasyQuantis application

Note

On some systems, when the application has been downloaded from Internet, one may
have to acknowledge that fact on first use.

.

Figure 4.4. EasyQuantis main window

To generate random data using EasyQuantis:

1. Select a Quantis device from the list.

2. Select a data format:

• Binary data. Data is read from the Quantis and returned as bytes.

• Integer numbers. Generates 32-bit random numbers ranging between -2'147'483'648 and
2'147'483'647 (inclusive).

• Floating point numbers. Generates numbers between 0.0 (inclusive) and 1.0 (exclusive).

The EasyQuantis Command Line

45

3. Select a data separator:

• Comma-separated values (CSV). CSV is a type of delimited text data, which uses a comma to
separate subsequent values. The benefit of CSV is that they allow for the transfer of data across
different applications.

The following is an example of CSV:

Value1,Value2,Value3,...,ValueN

• One entry per line. Each value is on a separate line:

Value1
Value2
Value3
...
ValueN

Note

When generating binary data you cannot select a data separator.

4. If needed, you can scale the random values to be within a smaller range.

Note

For more details about the scaling algorithms, please refer to section 5.3.7.2.1 "Inte-
gral Values: The Scaling Algorithm".

5. Select the data destination:

• Display. Data is displayed on screen. You can copy-paste the data to your application.

Use this option for small amounts of random data that you want to use it right away.

Note

This option is not available for binary data.

• Save to file. The data is written to a file. Use this option to generate large amounts of random
data or to generate data for later use.

Note

On some systems (Mac OS X, Windows) the temporary default directory is not
very convenient and should probably changed to a better suited one. This will ease
the manipulation of the produced file from outside the EasyQuantis program.

6. Select the amount of data to generate. File size is limited to 2 GBytes (2'147'483'647 bytes).

7. Click the Generate button and wait while the application generates the random data.

4.5. The EasyQuantis Command Line
EasyQuantis v1.1 and newer includes a command line parser, allowing you to use the application
from the console or in a script.

Options

46

Note

Extraction functionalities are not available in command line for the moment.

4.5.1. Options

4.5.1.1. Generic Options

-h [--help] Display a summary of available options.

-v [--version] Return the version of EasyQuantis (available since EasyQuan-
tis 2.1).

4.5.1.2. Quantis Options

-l [--list] List all devices available on the system.

-p [--pci] arg Select the given Quantis PCI device as input device. arg is the
number of the Quantis PCI device to use.

-u [--usb] arg Select the given Quantis USB device as input device. arg is
the number of the Quantis USB device to use.

4.5.1.3. Acquisition Options

-n [--size] arg Set the number of bytes or values that should be read. If nothing
is specified 1024 is used.

-b [--binary] arg Generates a binary file. arg designates the filename.

-i [--integers] arg Generates a file of integers numbers. arg designates the file-
name.

-f [--floats] arg Generates a file of floating point numbers. arg designates the
filename.

-s [--separator] arg Sets the separator string for non-binary files. The default format
is one entry per line.

--min arg Specify the minimal value for integers and floats. If specified,
requires --max to be specified as well.

--max arg Specify the maximal value for integers and floats. If specified,
requires --min to be specified as well.

4.5.1.4. Extraction Options

Extraction capabilities in command line mode require at least EasyQuantis version 2.1

-m [--matrix-file] arg Set the path and the filename of the matrix file. If not defined
the extraction processing is disabled.

-I [--matrix-size-in]
arg

Set the input size in bits of the matrix (1024 per default).

-O [--matrix-size-out]
arg

Set the output size in bits of the matrix (768 per default).

Usage Examples

47

--extraction-from-file If defined perform extraction processing from extraction-in-
put-file and save to extraction-output-file.

--extraction-input-file
arg

Set the path and filename of a binary input file as the source
for the extraction. Must be defined if extraction-from-file is de-
fined.

--extraction-output-file
arg

Set the path and filename of a binary output file as source for the
extraction. Must be defined if extraction-from-file is defined.

4.5.2. Usage Examples
In this section you will find some usage examples of the EasyQuantis command line.

4.5.2.1. List connected Quantis devices

EasyQuantis -l

List all USB and PCI/PCIe devices found on the system. Using this command allows to get the device
number required for acquisition.

4.5.2.2. Generate Binary Data

EasyQuantis -p 0 -b random.dat -n 1073741824

Generates a file named random.dat containing 1GByte of binary random numbers using the Quan-
tis PCI device number 0.

4.5.2.3. Generate Numbers

EasyQuantis -u 0 -i integers.dat -n 1000

Generates a file named integers.dat with 1000 integer numbers using Quantis-USB device num-
ber 0.

4.5.2.4. Generate Scaled Numbers

EasyQuantis -u 0 -i integers.dat -n 1000 --min 1 --max 6

Generates a file named integers.dat with 1000 integer numbers whose values are between 1 and
6.

4.5.2.5. Generate Extracted Numbers from Quantis device

EasyQuantis -u 0 -i integers.dat -n 10 -m default_idq_matrix.dat -I 2048 -O 1792

Generates with Quantis-USB device number 0 a file named integers.dat with 10 integer numbers
using extraction processing using default_idq_matrix.dat matrix file using 2048 x 1972 bits.

4.5.2.6. Generate Extracted Numbers from binary file

EasyQuantis -m default_idq_matrix.dat --extraction-from-file
--extraction-input-file input.dat --extraction-output-file output.dat

Reads an binary input file input.dat, applies extraction processing with default_idq_matrix.dat matrix
file and saves the result in output.dat.

48

49

Chapter 5. The Quantis Library
To easily access the Quantis device from your application, IDQ provides an abstraction library for all
supported operating systems. The library allows you to easily write your (multi-platform) application
without knowing how the Quantis devices internally works.

Important

API changed with Quantis library version 2.0. If your application uses a previous Quantis
library version, please read the Appendix C, Migrating to the New API.

Note for C++ users

Each time you request an operation, the Quantis library:

1. Opens the Quantis device;

2. Performs the requested operation;

3. Closes the Quantis device.

The C++ library wrapper has been optimized to open the Quantis device in the class
constructor and close it in the class destructor, thereby leaving the connection to the
device open throughout the entire execution. If your application is written in C++, it
is suggested to use the C++ wrapper rather than the C wrapper. Please read Chapter 6,
Quantis Library Wrappers for further information.

5.1. Library location
You can find the library files (Quantis.so, Quantis.dll, Quantis.lib, ...) in the
following path:

<path-to-quantis>\Packages\Windows\lib\<your system arch>\ for Windows
users, or for Linux users after decompressing

<path-to-quantis>/Packages/QuantisRNG-<version>-Linux-<your system
arch>.tar.gz under

QuantisRNG-<version>-Linux-<your system arch>/lib.

If you recompile your libraries yourself as described in later chapters, you will find the Windows
libraries under

<path-to-filename>\Libs-Apps\Quantis\<your system arch>\

and the Linux libraries under

<path-to-quantis>/Libs-Apps/build/Quantis

5.2. Device Type
Almost all Quantis library functions require the device type to be specified. Currently there are two
types:

• QUANTIS_DEVICE_PCI to specify a Quantis PCI or a Quantis PCI Express.

Basic Functions

50

• QUANTIS_DEVICE_USB to specify a Quantis USB.

Important

Quantis PCI Express is software-compatible with Quantis PCI. There is no distinction
between Quantis PCI and Quantis PCIe devices within the library and they are both
considered as PCI devices.

5.3. Basic Functions
This section introduces a minimal set functions you need to use to read random data from within your
application.

5.3.1. QuantisCount
int QuantisCount(QuantisDeviceType deviceType);

Returns the number of devices that have been detected. It returns 0 when no card is installed and on
error.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

5.3.2. QuantisGetDriverVersion
float QuantisGetDriverVersion(QuantisDeviceType deviceType);

Returns the version of the driver as a number composed of a major and a minor version number. The
value before the point represents the major version number, while the value after the point represents
the minor version number.

Returns a QUANTIS_ERROR code (cast to float) on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

5.3.3. QuantisGetLibVersion
float QuantisGetLibVersion();

Returns the version of the library as a number composed of a major and a minor version number. The
value before the point represents the major version number, while the value after the point represents
the minor version number.

5.3.4. QuantisGetManufacturer
char* QuantisGetManufacturer(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns a pointer to the manufacturer name string of the Quantis device. Currently only the USB
version supports manufacturer name retrieval. On PCI and PCI Express, the string "Not available"
is returned.

The string "Not available" is returned on failure as well.

Parameters:

QuantisGetModulesDataRate

51

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.3.5. QuantisGetModulesDataRate
int QuantisGetModulesDataRate(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the data rate (in bytes per second) provided by the Quantis device or a QUANTIS_ERROR
code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.3.6. QuantisGetSerialNumber
char* QuantisGetSerialNumber(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns a pointer to the serial number string of the Quantis device. Currently only the USB version
supports serial number retrieval. On PCI and PCI Express, the string "S/N not available" is returned.

The string "S/N not available" is returned on failure as well.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.3.7. QuantisRead
int QuantisRead(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 void* buffer,
 size_t size);

Reads random data from the Quantis device. This function perform an open, a read of the requested
data and close the device.

Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

buffer a pointer to the destination buffer. The buffer MUST already
be allocated. Its size must be at least size bytes.

size the number of bytes to read (cannot be larger than
QUANTIS_MAX_READ_SIZE).

QuantisRead

52

Warning

If buffer is not allocated or the allocated size of memory is insufficient to store the
data, the library will deliver unexpected results and may even cause a crash of the en-
closing application!

Note

In some situation it could be useful to control the Open and Close of a device. In this case
use the QuantisOpen(), QuantisReadHandled() and QuantisClose() functions described
later.

5.3.7.1. Reading Large Amounts of Data

QuantisRead is not meant to read large amount of data. The maximal size of a request is defined by
QUANTIS_MAX_READ_SIZE. If you try reading a larger amount, QuantisRead will return an
error. To read large amount of data you have to use a loop as in following example:

/* Chunk size. Recommended values are 2048 or 4096 */
chunkSize = CHUNK_SIZE;

remaining = SIZE;

while(remaining > 0u)
{
 /* Chunk size */
 if (remaining < chunkSize)
 {
 chunkSize = remaining;
 }

 /* Read data */
 result = QuantisRead(deviceType, 0, buffer, NUM_BYTES);

 /*
 * TODO:
 * 1. Check result (see example at the end of the chapter)
 * 2. Handle buffer (e.g. store data in a file)
 */

 /* Update info */
 remaining -= chunkSize;
}

5.3.7.2. Reading Basic Data Types

The function QuantiRead is useful to read a high quantity of raw random data. Depending on the
application, it can be useful to be able to directly read basic data types. This section introduces func-
tions designed for this purpose.

5.3.7.2.1. Integral Values

int QuantisReadShort(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 short* value);

int QuantisReadScaledShort(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 short* value,
 short min,
 short max);

int QuantisReadInt(QuantisDeviceType deviceType,
 unsigned int deviceNumber,

QuantisRead

53

 int* value);

int QuantisReadScaledInt(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int* value,
 int min,
 int max);

Reads a random 16-bit or 32-bit integral value. Returns QUANTIS_SUCCES on success or a
QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

value a pointer to the destination value.

min the minimal value that the returned numbers can take

max the maximal value that the returned numbers can take.

5.3.7.2.1.1. Integral Values: The Scaling Algorithm

Random numbers required by an application are very often in a range (much) smaller than the (fixed)
range of the random number produced by Quantis.

To perform the scaling, the largest permitted multiple of the output range is selected. Random values
equal or higher this limit are discarded. Below you will find a simplified version of the C code im-
plementing QuantisReadScaledInt which produces an unbiased number between minValue
and maxValue (inclusive):

int rnd;

/* Output range */
unsigned long long range = maxValue - minValue + 1;

/* Range of the rnd value */
unsigned long long maxRange = 232;

/* Largest multiple of the output range */
unsigned long long limit = maxRange - (maxRange % range);

/* Read raw random number until it is lower the limit */
do
{
 QuantisReadInt(deviceType, deviceNumber, &rnd);
} while (rnd >= limit);

/* Scale value */
value = (rnd % range) + minValue;

Note

This scaling algorithm wastes data when Quantis generates random values equalling or
exceeding the limit. In the worst case (when range = maxRange / 2 + 1), the
probability to drop a generated value is roughly 50%!

Warning

Raw random values are often scaled using the modulus operator, using something like:

QuantisRead

54

minValue + (rawRndValue % (maxValue - minValue + 1))

where % represents the modulus operator. This formula produces a number between
minValue and maxValue (inclusive), but in certain conditions (when their range is
not a multiple of the output range) the distribution of these numbers has a small bias that
favours numbers at the lower end of the output range.

5.3.7.2.2. Floating Point Values

int QuantisReadFloat_01(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 float* value);

int QuantisReadScaledFloat(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 float* value,
 float min,
 float max);

int QuantisReadDouble_01(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 double* value);

int QuantisReadScaledDouble(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 double* value,
 double min,
 double max);

Reads a random floating point value between 0.0 (inclusive) and 1.0 (exclusive). The scaled ver-
sions read a random floating point value between min (inclusive) and max (exclusive). Returns
QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

value a pointer to the destination value.

min the minimal value that the returned numbers can take.

max the maximal value that the returned number can take.

Note

Floating point values are computed by dividing a random integral value (32-bit for
floats and 64-bit for double) by the integral's value range (232 and 264 respectively).

Warning

In certain conditions, the distribution of numbers produced by the floating point scal-
ing algorithm has a small bias that favours numbers at the lower end of the output
range. If you need unbiased random numbers, please consider to use QuantisRead-
ScaledShort or QuantisReadInt instead:

/* Example: how to generate a random number between
 * 1.001 and 75.5 (inclusive)
 */

QuantisOpen

55

float min = 1.001;
float max = 75.5;
float multiplier = 1000.0;

int rndInt;
if (QuantisReadScaledInt(deviceType,
 deviceNumber,
 &rndInt,
 (int)(min * multiplier),
 (int)(max * multiplier)) < 0)
{
 /* Handle error */
}

float randomValue = (float)rndInt / multiplier;

5.3.8. QuantisOpen
int QuantisOpen(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 QuantisDeviceHandle** deviceHandle);

Open the Quantis device.

Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

deviceHandle a pointer to a pointer to a handle the device.

Note

This function has been implemented in the Quantis library version 2.10.

5.3.9. QuantisClose
void QuantisClose(QuantisDeviceHandle* deviceHandle);

Close the Quantis device.

Parameter:

deviceHandle a pointer to a handle the device.

Note

This function has been implemented in the Quantis library version 2.10.

5.3.10. QuantisReadHandled
int QuantisReadHandled(QuantisDeviceHandle* deviceHandle,
 void* buffer,
 size_t size);

Read data from Quantis. This function expect QuantisOpen() function has been called before.

QuantisStrError

56

Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code on failure.

Parameter:

deviceHandle a pointer to a handle the device.

buffer a pointer to the destination buffer. The buffer MUST already
be allocated. Its size must be at least size bytes.

size the number of bytes to read (cannot be larger than
QUANTIS_MAX_READ_SIZE).

Note

This function has been implemented in the Quantis library version 2.10.

5.3.11. QuantisStrError
char* QuantisStrError(QuantisError errorNumber);

Get a pointer to the error message string. This function interprets the value of errorNumber and
generates a string describing the error. The returned pointer points to a statically allocated string,
which may not be modified by the enclosing application. Further calls to this function will overwrite
its content.

Parameters:

errorNumber the number assigned to a particular type of error.

5.4. Advanced Functions
This section introduces advanced functions that allow more control over the Quantis device. Most
users don't need to use these functions.

5.4.1. QuantisBoardReset
int QuantisBoardReset(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Resets the Quantis board. Returns QUANTIS_SUCCESS on success or a QUANTIS_ERROR code on
failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

Note

You generally don't need to reset Quantis devices: the Quantis library already resets the
device when needed.

5.4.2. QuantisGetBoardVersion
int QuantisGetBoardVersion(QuantisDeviceType deviceType,

QuantisGetModulesCount

57

 unsigned int deviceNumber);

Returns the internal version of the board.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.4.3. QuantisGetModulesCount
int QuantisGetModulesCount(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the number of modules that have been detected on a Quantis device or a QUANTIS_ERROR
code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.4.4. QuantisGetModulesMask
int QuantisGetModulesMask(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns a bitmask of the modules that have been detected on a Quantis device or a QUANTIS_ERROR
code on failure.

Bit n is set in the bitmask if module n is present. For instance 5 (1101 in binary) is returned when
modules 0, 2 and 3 have been detected.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.4.5. QuantisGetModulesPower
int QuantisGetModulesPower(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the power status of the modules on a device. Returns 1 if the modules are powered, 0 if the
modules are not powered and a QUANTIS_ERROR code on failure.

Note

This function is useful only for Quantis USB devices. Modules of Quantis PCI devices
are always powered, thus the function always returns 1 on such devices.

Parameters:

QuantisGetModulesStatus

58

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.4.6. QuantisGetModulesStatus
int QuantisGetModulesStatus(QuantisDeviceType deviceType,
 unsigned int deviceNumber);

Returns the status of the modules on the given device as a bitmask or a QUANTIS_ERROR code on
failure.

Bit n is set in the bitmask if module n is enabled and functional. For instance 5 (1101 in binary) is
returned when modules 0, 2 and 3 are enabled and functional.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

5.4.7. QuantisModulesDisable
int QuantisModulesDisable(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Disable one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

modulesMask a bitmask of the modules (as specified in the QuantisGet-
ModulesMask function) that are to be disabled.

5.4.8. QuantisModulesEnable
int QuantisModulesEnable(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Enable one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

modulesMask a bitmask of the modules (as specified in the QuantisGet-
ModulesMask function) that are to be enabled.

QuantisModulesReset

59

5.4.9. QuantisModulesReset
int QuantisModulesReset(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

Reset one or more modules. Returns QUANTIS_SUCCES on success or a QUANTIS_ERROR code
on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

modulesMask a bitmask of the modules (as specified in the QuantisGet-
ModulesMask function) that are to be reset.

Note

This function executes sequentially QuantisModuleDisable and QuantisMod-
uleEnable with the given parameters.

5.5. Recompiling the Quantis Library

5.5.1. Windows compilation with Visual Studio 2008
Before compiling the Quantis libraries, you have prepare your machine described below. If you already
have some of these components, you may of course skip the relevant section.

Installing the Windows Driver Kit 7.0

Download the Windows Driver Kit version 7.0.0. It comes as an .iso image. Once you've mounted that
image, execute the program 'kit.exe', making sure that the kit is installed in the directory C:\WinDDK.

Installing the Boost C++ libraries

From the website http://www.boostpro.com/download/

download the file boost_1_43_setup.exe and run it to install Boost. You should explicitly en-
able the libraries "program_options" and "filesystem" libraries along with the standard distribution.

Installing Java

Please refer to the Sample Code chapter, section Java.

Installing Nokia QT 4.7

From the website http://qt.nokia.com/downloads

Download the QT online installer, you will need the Qt SDK: Complete Development Environment.
Quantis has been tested with QT 4.7.3 and 4.7.4, ideally you should install one of these versions. If
your version is too new or too old, and you find that you have problems with compiling or executing
Quantis samples or applications, you might have to update it or to roll back as appropriate.

From the same webpage, install the QT Visual Studio Add-in.

Configuring Visual Studio

Windows compilation with Visual
Studio 2008

60

In the Menu Tools, Options: Select Projests and Solutions, VC++ Directories:

Platform: Win32 and Show Directories for Include files Add the next entries at the end of the list:

C:\WinDDK\7600.16385.0\inc\ddk
C:\WinDDK\7600.16385.0\inc\api
C:\Program Files\Java\jdk1.6.0_25\include
C:\Program Files\Java\jdk1.6.0_25\include\win32
C:\Program Files\boost\Boost_1_43

Plateform Win32 and Show directories for Librairies files. Add the next entries at the end of the list:

C:\WinDDK\7600.16385.0\lib/wxp/i386
C:\Program Files\boost\boost_1_43\lib

Platform: x64 and Show Directories for Include files Add the next entries at the end of the list:

C:\WinDDK\7600.16385.0\inc\ddk
C:\WinDDK\7600.16385.0\inc\api
C:\Program Files\Java\jdk1.6.0_25\include
C:\Program Files\Java\jdk1.6.0_25\include\win32
C:\Program Files\boost\Boost_1_43

Plateform x64 and Show directories for Librairies files. Add the next entries at the end of the list:

C:\WinDDK\7600.16385.0\lib\wlh\amd64
C:\Program Files\boost\boost_1_43\lib

Now define the Qt version: Menu Qt, Qt Options: Click Add and browse to the next path: C:\QtSDK
\Desktop\Qt\4.7.3\msvc2008

Visual Studio requires an Environement variable for QTDIR:

In Windows Control Panel, System, Advanced system settings, click Environement variables and add
the variable QTDIR with the value C:QtSDK\Desktop\Qt\4.7.3\msvc2008.

This configuration has worked for a long time on older compilers since includes were managed more
automatically, but recent changes mean that the above instruction might generate errors. In case you get
errors with a number of standard headers such as "stddef.h" and certain I/O headers try the following.
First, add the include directory

C:\WinDDK\7600.16385.0\inc\crt

to both include file configurations. Then, again in both the include file configs, arrange the headers
in the following order:

C:\WinDDK\7600.16385.0\inc\ddk
$(VCInstallDir)include
$(VCInstallDir)atlmfc\include
C:\WinDDK\7600.16385.0\inc\api
C:\WinDDK\7600.16385.0\inc\crt
C:\Program Files\Java\jdk1.6.0_25\include
C:\Program Files\Java\jdk1.6.0_25\include\win32
C:\Program Files\boost\Boost_1_43
$(WindowsSdkDir)include
$(FrameworkSDKDir)include

The ordering of header files is important since they are read sequentially. It's important to make sure
that the right ones are read first in the cases where different directories contain duplicates.

If the C++ sample crashes and you get an Access Violation error, restart VS2008 in administrator
mode since there is some memory that cannot be accessed by a normal user. To do that, right-click on
the VS2008 icon and choose "Run in administrator mode".

Windows Compilation with Visual
Studio 2010

61

Compilation

Start Visual Studio and open the Quantis library solution file located in <path-to-Quan-
tis>\Libs-Apps\Quantis-Libs-Apps.sln.

In the build configuration, select your architecture, either Win32 or x64.

Win32 architecture

If are on a 32b machine, you can directly perform build solution.

If the building of QuantisPci/QuantisUsb-Compat projects fails, make sure that the Quantis project
is listed as a prerequisite. To do that, right-click on the solution, then choose "Properties->Common
Properties->Project Depenencies". Choose the project from the drop-down list and add Quantis as a
prerequisite.

If you want to work on the Quantis wrapper samples, don't forget to add the full path to Quantis.lib to
"Properties->Configuration Properties->Linker->Input->Additional Dependencies".

x64 architecture

If you are on a 64b machine, you must make sure that not all projects of the solution are selected,
because not all projects can compile in this case. It is easiest if you proceed as follows:

In the solution explorer select the next project: Quantis, Quantis-NoHw, QuantisP-
ci-compat, QuantisUSB-compat with your mouse, and then click 'build'.

The EasyQuantis can not be compiled in 64 bits due to Qt is only 32 bits.

If the building of QuantisPci/QuantisUsb-Compat projects fails, make sure that the Quantis project
is listed as a Project dependency. To do that in Visual Studio 2008, right-click on the solution, then
choose "Properties->Common Properties->Project Depenencies" . Choose the project from the drop-
down list and add Quantis as a prerequisite.

If you want to work on the Quantis wrapper samples, don't forget to add the full path to Quantis.lib to
"Properties->Configuration Properties->Linker->Input->Additional Dependencies".

5.5.2. Windows Compilation with Visual Studio 2010
Installing the Windows Driver Kit 7.0

Download the Windows Driver Kit version 7.0.0. It comes as an .iso image. Once you've mounted that
image, execute the program 'kit.exe', making sure that the kit is installed in the directory C:\WinDDK.

Installing the Boost C++ libraries

From the website http://www.boostpro.com/download/

download the file boost_1_43_setup.exe and run it to install Boost. You should explicitly en-
able the libraries "program_options" and "filesystem" libraries along with the standard distribution.

Installing Java

Please refer to the Sample Code chapter, section Java.

Installing QT

As of April 2013, the precompiled Qt libraries cannot be used in VS2010, so they need to be build and
configured from scratch. To do this, download the zipped Qt source package from the Qt download
website (as of April 2013 that is http://download.qt-project.org/archive/qt/).

Windows Compilation with Visual
Studio 2010

62

Once it is unzipped, go to the root directory of the unzipped folder. In the Visual Studio 2010 command
shell (Start->Programs->Visual Studio 2010, then under Tools), execute the command

configure.exe -debug-and-release -no-webkit -no-phonon
 -no-phonon-backend -no-script -no-scripttools
 -no-qt3support -no-multimedia -no-ltcg

to configure the Qt build. It is important that you execute it in the VS2010 shell since it is configured
in a particular way. The options of the configure command make sure that some advanced features
don't get built which would make the process take much longer. You may remove them if you need
these features, with the exception of the -debug-and-release flag which must be set, otherwise you
cannot work in both Debug and Release mode in VS2010 with Qt. With these flags, compilation takes
in the rough order of 10-15 minutes.

Once configure.exe has finished, run

nmake
setx QTDIR <your Qt root directory>

and add <your Qt root directory>\bin" to your PATH environmental variable. This can
be done under Control Panel -> System -> Advanced -> Environment variables. Choose or create
the PATH variable in 'system variables', and add the above-mentioned path to it, making sure that all
entries are separated by a semicolon. The nmake command is likely to take very long, up to 20 minutes.

Now install the Qt Visual Studio Addin as described in "Windows Computer - Visual Studio 2008 -
> Nokia QT". Reboot, and you're done.

If you're lucky, you may be able to read all this up on the webpage "http://stackoverflow.com/
questions/5601950/how-to-build-qt-for-visual-studio-2010" or from "http://doc.qt.nokia.com/4.7/in-
stall-win.html" from where it was copied and which provides snapshots of the entire procedure for
easier reading. It was available as of December 2011.

Configuring Visual Studio

The library- and include file paths are the same as those for VS 2008, see the section above. However,
since VS2010 does not support solution-specific VC++ Directories, you need to set these for each sin-
gle project. To do that, right-click on each project, choose "Properties->Configuration Properties->VC
++ Directories" and enter the directories as above.

You need to update the path to the Qt libraries for the EasyQuantis-Setup project if they don't point
to the Qt libraries you've built for VS2010. To do this, you can either open the file EasyQuan-
tis-Setup.vdproj and edit the line pointing to QtCore4.dll / QtGui4.dll manually, or remove the files
from the project in VS2010 by right-clicking on them and choosing "Remove" and adding the correct
versions by right-clicking on the project and choosing "Add->File.." and choosing the correct version
of the DLL.

Compilation

Start Visual Studio and open the Quantis library solution file located in <path-to-Quan-
tis>\Libs-Apps\Quantis-Libs-Apps.sln.

In the build configuration, select your architecture, either Win32 or x64.

Win32 architecture

If are on a 32b machine, you can directly perform build solution.

If the building of QuantisPci/QuantisUsb-Compat projects fails, make sure that the Quantis project
is listed as a prerequisite. To do that, right-click on the solution, then choose "Properties->Common
Properties->Project Depenencies". Choose the project from the drop-down list and add Quantis as a
prerequisite.

Linux Debian based

63

If you want to work on the Quantis wrapper samples, don't forget to add the full path to Quantis.lib to
"Properties->Configuration Properties->Linker->Input->Additional Dependencies".

x64 architecture

If you are on a 64b machine, you must make sure that not all projects of the solution are selected,
because not all projects can compile in this case. It is easiest if you proceed as follows:

In the solution explorer select the next project: Quantis, Quantis-NoHw, QuantisP-
ci-compat, QuantisUSB-compat with your mouse, and then click 'build'.

The EasyQuantis can not be compiled in 64 bits due to Qt is only 32 bits.

If the building of QuantisPci/QuantisUsb-Compat projects fails, make sure that the Quantis project
is listed as a Project dependency. To do that in Visual Studio 2008, right-click on the solution, then
choose "Properties->Common Properties->Project Depenencies" . Choose the project from the drop-
down list and add Quantis as a prerequisite.

If you want to work on the Quantis wrapper samples, don't forget to add the full path to Quantis.lib to
"Properties->Configuration Properties->Linker->Input->Additional Dependencies".

5.5.3. Linux Debian based
Prerequisites

To compile the Quantis library, you will need a certain number of packages. Unless you have already
installed them, please execute the following commands:

$ sudo apt-get install libusb-1.0-0-dev
$ sudo apt-get install cmake
$ sudo apt-get install libboost-filesystem1.42-dev
$ sudo apt-get install libboost-date-time1.42-dev
$ sudo apt-get install libboost-program-options1.42-dev
$ sudo apt-get install libboost-thread1.42-dev
$ sudo apt-get install default-jdk (openjdk-6-jdk)

Now you can compile the library by executing the following commands:

cd <path-to-Quantis>/Libs-Apps/
mkdir build
cd build
cmake ..

5.5.4. Linux RedHat / CentOS
Prerequisites

To compile the Quantis library, you will need a certain number of packages. Unless you have already
installed them, please execute the following commands:

yum install libusb-1.0-0-dev
yum install cmake
yum install libboost-filesystem1.42-dev
yum install libboost-date-time1.42-dev
yum install libboost-program-options1.42-dev
yum install libboost-thread1.42-dev
yum install default-jdk (openjdk-6-jdk)

Now you can compile the library by executing the following commands:

cd <path-to-Quantis>/Libs-Apps/
mkdir build
cd build

Mac OSX

64

cmake ..

5.5.5. Mac OSX
This procedure is extracted from the file

<path-to-Quantis>/Distribution/MacOS/Readme.

Prerequisites

• Apple Developer Kit

• Nokia QT libraries

• Boost version 1.42 C++ libraries

• libusb-1.0-0 library

To install it, execute as superuser port install libusb. At the time of writing, this installs the correct
version of the library, but you should verify that it is indeed the 1.0 version that has been installed
(the version is usually shown on the command line during the installation process).

The aforementioned libraries should ideally be compiled statically, but if this is not possible you can
still proceed with the Quantis library compilation.

Compilation

• The compiler to use. E.g., to use clang, set

export CC=/Developer/usr/bin/clang
export CXX=/Developer/usr/bin/clang++

• The path to the QT libraries should be added to the PATH environment variable:

export PATH=${PATH}:<path-to-QT>/qtx.y.z/bin:${PATH}

Now you can create the package. Create the build directory as follows:

Make sure the following variables are configured:

cd <path-to-Quantis>/Libs-Apps
mkdir build
cd build

If the libraries listed above under 'Prerequisites' have been compiled statically, execute the following
commands:

cmake ..
make

Otherwise, execute

cmake .. -DUSE_DYNAMIC_LIBS=1
make

5.5.6. Solaris / OpenSolaris
Prerequisites

In order to be able to compile the Quantis libraries, you need the following packages:

• libusb-1.0-0

FreeBSD

65

• CMake

• libboost-filesystem1.42-dev

• libboost-date-time1.42-dev

• libboost-program-options1.42-dev

• libboost-program-options1.42-dev

• Java JDK

Compilation

To compile the Quantis libraries, choose your library destination directory (e.g. /opt/quantis/),
and execute

cd /usr/local/Quantis
mkdir build
cd build
cmake .. -DDISABLE_QUANTIS_USB=1-DDISABLE_EASYQUANTIS_GUI=1
mkdir /tmp/quantis
make DESTDIR=<your-dest-directory> install

This will install all the Quantis libraries in your destination directory.

5.5.7. FreeBSD
For FreeBSD, the library is created and managed by the FreeBSD developers, not by ID Quantique.
We can therefore not provide a recompilation procedure.

66

67

Chapter 6. Quantis Library Wrappers
IDQ provides several wrappers to allow you to use the Quantis device with your preferred program-
ming language.

Currently wrappers for the following languages are available:

• C++

• C#

• Java

• VB.NET

The wrappers are for Object-oriented programming languages and they all have the same structure:

• The class is named Quantis.

• On class instantiation, you must provide the deviceType and the deviceNumber.

• The names of public functions in the Wrappers are the same as those in the Quantis C library but
without the prefix Quantis, for instance QuantisCount is named Count in the wrapper. Func-
tions other than the constructors do not require providing values for deviceType and devi-
ceNumber since these are defined globally within the class. The only exception to this rule are
static functions which have the same definition in both the C- and the Wrapper code.

Please refer to the sample available with each wrapper for further details.

Furthermore, Quantis can be accessed via the C++11 "random_device" interface which standardises
true random number generator access. Usage of this interface is described below.

Note for the C++ Wrapper

Since the Quantis device is kept open until the Quantis class is destroyed, it is highly
recommended to reduce the scope of the Quantis variable as much as possible. In par-
ticular it is discouraged to make the Quantis variable global.

6.1. The C++11 random_device interface

6.1.1. About the interface and our implementation
The standard C++11 "random_device" interface allows to access true random number generators in
a standarised manner. It is derived from the boost "random_device" class, so if your application uses
either the C++11 or the boost version of the random_device class, you can switch to Quantis very
easily by including the Quantis implementation - i.e. the file "Quantis_random_device.h" - in your
code and commenting your previous include, and making a very small number of changes described
in the following.

At the time of releasing this interface, C++11 is a very new standard. Many compilers have already
implemented parts of it, but which parts are supported varies widely. In order to avoid compile-time
issues, the C++11-specific keywords have been commented, and you should uncomment those that
your compiler supports in order to be as compatible as possible.

Note that our implementation is a little different from the standard one in that the standard interface
accesses a device mounted on the file system, while we must create a Quantis C++ object and access

Library Compilation for C++11

68

it to get to Quantis. For this reason, we have included a destructor in our interface that you should call
when you no longer need Quantis.

A sample executable in your code shows how to use this interface.

6.1.2. Library Compilation for C++11
It is important to not to compile EasyQuantis when compiling with C++11. If you want to compile
both, do two separate compilations.

If you want to test the interface without C++11 support, i.e. with the keywords suppressed, simply
compile it as usual, with no options given to cmake. The sample will work either way.

Important

For this feature to work, your compiler must support the C++11 standard. Many com-
pilers support parts of it but not all keywords needed in the "random_device" interface.
It may thus happen that even though your compiler has a C++0x/C++11 option, the full
feature version will still not be run. In this case, you can still use the "random_device"
interface, but the C++11-specific keywords are automatically suppressed to pass com-
pilation in C++98. In most applications using "random_device", it should still be easy to
replace your old implementation with Quantis even if you don't have C++11 supported.

The full version of this feature is only supported on Linux and MacOSX systems. On the
other supported OSs, the interface of the class will be available along with the Sample
code for C++11, but the C++11 specific keywords will be automatically suppressed.
Again, this means that you can use the class, but it is not compatible with the C++11
standard in the strict sense. In most applications using "random_device", it should still
be easy to replace your old implementation with Quantis even if you don't have C++11
supported.

If you use cmake and the gnu C/C++ compiler version 4.6 or newer, it is possible that
the features will work for you even on other systems than Linux and MacOSx.

6.1.2.1. Windows

The Windows Visual Studio 2008/2010 compilers do not support all the necessary C++11 features,
so if you want to user C++11 under Windows you must revert to a compilation as under Linux using
CMake and GCC 4.6 (see below).

6.1.2.2. Linux

The distribution available by default uses C++98, so you need to recompile the library to use C++11.
You will need to have installed CMake and GCC 4.6 or higher. Proceed as follows:

cd <your-path-to-Quantis>/Libs-Apps/
mkdir build
cd build
cmake .. -DUSE_CXX11=1 -DDISABLE_EASYQUANTIS=1
make

6.1.2.3. Mac OSX

On Solaris, you should use the clang/clang++ compiler. Define the two environment variables CC and
CXX in the following way before you call CMake:

export CC=clang
export CXX=clang++
cd <your-path-to-Quantis>/Libs-Apps/

C++11 Sample compilation

69

mkdir build
cd build
cmake .. -DUSE_CXX11=1 -DDISABLE_EASYQUANTIS=1
make

6.1.2.4. Solaris / OpenSolaris

On Solaris, you may choose whether to compile using GCC or using SunStudio. On a typical system
with both options installed, GCC is the default. To use SunStudio, define the two environment vari-
ables CC and CXX in the following way before you call CMake:

export CC=cc
export CXX=CC
cd <your-path-to-Quantis>/Libs-Apps/
mkdir build
cd build
cmake .. -DUSE_CXX11=1 -DDISABLE_EASYQUANTIS=1
make

6.1.2.5. FreeBSD

On FreeBSD, use CMake and make to compile in the following way:

cd <your-path-to-Quantis>/Libs-Apps/
mkdir build
cd build
cmake .. -DUSE_CXX11=1 -DDISABLE_EASYQUANTIS=1
make

6.1.3. C++11 Sample compilation
For how to compile the C++11 Sample, see the relevant section in the chapter "Sample Code" below.

70

71

Chapter 7. The QuantisExtensions
Library

The QuantisExtensions library is a set of functions to add extra processing to the random data. For the
moment it can provide randomness extraction.

IDQ provides an abstraction library written in C language to ensure support over various operating
systems.

Note

For the moment only Windows and Linux operating system are supported. The library
also comes with a C++ wrapper. Other languages wrappers are not available for the
moment.

7.1. Extractor
The extraction processing allow to improve the randomness of the data.

The Samples directory show how to use the QuantisExtractor functions.

IDQuantique provide a default matrix file located under: /Libs-Apps/QuantisExten-
sions/default_idq_matrix.dat

Note

Randomness extraction algorithm use 64 bits integer data type. Using a 64 bits platform
improve dramatically the performances.

7.1.1. Basic Functions
This section introduces a minimal set of functions you need to use to process the randomness extrac-
tion.

7.1.1.1. QuantisExtractorGetLibVersion

float QuantisExtractorGetLibVersion();

Returns the version of the library as a number composed of a major and a minor version number. The
value before the point represents the major version number, while the value after the point represents
the minor version number.

7.1.1.2. QuantisExtractorInitializeMatrix

int32_t QuantisExtractorInitializeMatrix(const char* matrixFilename,
 uint64_t** extractorMatrix,
 uint16_t matrixSizeIn,
 uint16_t matrixSizeOut);

Reads the extractor matrix from the specified file and store in memory. This function allocate the
required memory space. Use QuantisExtractorUnitializeMatrix to free memory.

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

Basic Functions

72

matrixFilename a pointer to a char array representing the path and the filename
of the extractor matrix.

extractorMatrix a pointer to a pointer where the matrix is stored in memory.

matrixSizeIn the number of bits which are input to the extractor

matrixSizeOut the number of bits which are output to the extractor

7.1.1.3. QuantisExtractorUnInitializeMatrix

void QuantisExtractorUnInitializeMatrix(uint64_t** extractorMatrix);

Free the allocated memory from QuantisExtractroInitializeMatrix function.

Parameters:

extractorMatrix a pointer to a pointer where the matrix is stored in memory.

7.1.1.4. QuantisExtractorGetDataFromQuantis

int32_t QuantisExtractorGetDataFromQuantis(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 uint8_t* outputBuffer,
 uint32_t numberOfBytesRequested,
 const uint64_t* extractorMatrix);

Reads the random data from the specified Quantis device and apply randomness extraction processing.

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

outputBuffer a pointer to the destination buffer. The buffer MUST already
be allocated. Its size must be at least numberOfBytesRe-
quested bytes.

numberOfBytesRequested the number of bytes to read

extractorMatrix a pointer where the matrix is stored in memory.

7.1.1.5. QuantisExtractorGetDataFromFile

int32_t QuantisExtractorGetDataFromFile(char* inputFilePath,
 char* outputFilePath,
 const uint64_t* extractorMatrix);

Apply randomness extraction to data coming from an input file and save the result to an output file.

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

inputFilePath a pointer to a char array representing the path and the filename
of the input file to process.

outputFilePath a pointer to a char array representing the path and the filename
of the output file to save the data after extraction.

Advanced Functions

73

extractorMatrix a pointer where the matrix is stored in memory.

7.1.1.6. QuantisExtractorGetDataFromBuffer

void QuantisExtractorGetDataFromBuffer(const uint8_t* inputBuffer,
 uint8_t* outputBuffer,
 const uint64_t* extractorMatrix,
 uint32_t nbrBytesAfterExtraction);

Apply randomness extraction to data stored in an input buffer in the memory and put the result in an
output buffer in memory.

Parameters:

inputBuffer a pointer to an allocated input buffer.

outputBuffer a pointer to an allocated output buffer.

extractorMatrix a pointer where the matrix is stored in memory.

nbrBytesAfterExtraction the number of processed bytes which should be produced.

7.1.1.7. QuantisExtractorStrError

char* QuantisExtractorStrError(QuantisExtractorError errorNumber);

Reads the extractor matrix from the specified file and store in memory. This function allocate the
required memory space. Use QuantisExtractorUnitializeMatrix to free memory.

Return a pointer to an array representing an human readable error message.

Parameters:

errorNumber The error number.

7.1.2. Advanced Functions
This section introduces advanced functions that allow more control more finely.

If you require to:

• Get a progression status during the processing, you may require to run the randomness extraction
in a thread.

• Create you own matrix file.

• Get multiple time small amount of random data and you want to increase the speed of processing
using a temporary buffer.

7.1.2.1. QuantisExtractorGetMatrixSizeIn

uint16_t QuantisExtractorGetMatrixSizeIn();

Returns the input size in bits of the matrix. See QuantisExtractorInitializeMatrix.

7.1.2.2. QuantisExtractorGetMatrixSizeOut

uint16_t QuantisExtractorGetMatrixSizeOut();

Returns the output size in bits of the matrix. See QuantisExtractorInitializeMatrix.

Advanced Functions

74

7.1.2.3. QuantisExtractorComputeBufferSize

int32_t QuantisExtractorComputeBufferSize(uint32_t numberOfBytesRequested,
 uint32_t* numberOfBytesAfterExtraction,
 uint32_t* numberOfBytesBeforeExtraction);

Get the parameters for reading the bytes to perform randomness extraction

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

numberOfBytesRequested the number of bytes to read (not larger than
QUANTIS_MAX_READ_SIZE).

numberOfBytesAfterEx-
traction

the number of bytes that will be output after the extraction.

numberOfBytesBeforeEx-
traction

the number of bytes required before the extraction.

7.1.2.4. QuantisExtractorInitializeOutputBuffer

int32_t QuantisExtractorInitializeOutputBuffer(uint32_t inputBufferSize,
 uint8_t** outputBuffer);

The function initializes an output buffer in order to contain the result of the extraction of an input
buffer of inputBufferLength bytes. Use QuantisExtractorUninitializeOutputBuffer to free memory.

Return the number of bytes that should be obtained after the extraction, a QUANTIS_EXT_ERROR
otherwise

Parameters:

inputBufferSize the number of bytes contained in the input buffer

outputBuffer a pointer to a pointer where the output buffer is stored in mem-
ory.

7.1.2.5. QuantisExtractorUninitializeOutputBuffer

void QuantisExtractorUninitializeOutputBuffer(uint8_t** outputBuffer);

This function free the memory allocated by QuantisExtractorInitializeOutputBuffer.

Parameters:

outputBuffer a pointer to a pointer where the output buffer is stored in mem-
ory.

7.1.2.6. QuantisExtractorProcessBlock

void QuantisExtractorProcessBlock(const uint64_t* inputBuffer,
 uint64_t* outputBuffer,
 const uint64_t* extractorMatrix);

Apply extraction processing function to a block of matrixSizeIn bits and produce matrixSizeOut
processed bits.

Parameters:

inputBuffer a pointer to the input of the extractor.

Advanced Functions

75

outputBuffer a pointer to the output of the extractor.

extractorMatrix a pointer where the matrix is stored in memory.

7.1.2.7. QuantisExtractorMatrixCreate

int32_t QuantisExtractorMatrixCreate(uint32_t nbrElementaryMatrices,
 uint32_t nbrBytesToXor,
 char* elementaryMatrixFilenames[],
 char* extractorMatrixFilename);

XOR the bitstreams contained in the nbrElementaryMatrices files specified in elementaryMatrices-
Filenames.

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

nbrElementaryMatrices number of elementary matrices that should be XORed.

nbrBytesToXor number of bytes that should be XORed

elementaryMatrixFile-
names

a pointer to a char array containing the name of the files where
the different elementary matrices are stored.

extractorMatrixFilename a pointer to a char array representing the path and the filename
of the output file to save the matrix.

7.1.2.8. QuantisExtractorMatrixCreateElementary

int32_t QuantisExtractorMatrixCreateElementary(QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 uint16_t matrixSizeIn,
 uint16_t matrixSizeOut,
 uint16_t underSamplingPeriod,
 char* elementaryMatrixFilename);

Write to file an elementary matrix created by applying QuantisExtractorMatrixUnderSamplingRead
to the buffer produced by QuantisExtractorMatrixUnderSamplingRead.

Returns QUANTIS_SUCCES on success or a QUANTIS_EXT_ERROR code on failure.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

matrixSizeIn the number of bits which are input to the extractor

matrixSizeOut the number of bits which are output to the extractor

underSamplingPeriod number of bytes to down sampled. should >= 13

elementaryMatrixFilename a pointer to a char array representing the path and the filename
of the output file to save the data after extraction.

7.1.2.9. QuantisExtractorMatrixUnderSamplingRead

int32_t QuantisExtractorMatrixUnderSamplingRead(QuantisDeviceType deviceType,
 unsigned int deviceNumber,

Advanced Functions

76

 uint32_t nbrOfBytesRequested,
 uint16_t underSamplingPeriod,
 uint8_t* sampledBuffer);

Sample the QuantisRead output according to underSamplingPeriod and save the output stream
in sampledBuffer

Return the number of read sampled bytes if success, QUANTIS_EXT_ERROR otherwise.

Parameters:

deviceType the type (PCI or USB) of the Quantis device.

deviceNumber the number of the Quantis device. Note that device numbering
starts at 0.

nbrOfBytesRequested number of bytes which should be output to the user after the
sampling of the data read from the Quantis

underSamplingPeriod number of bytes to down sampled. should >= 13

sampledBuffer a pointer to a buffer where to store the sampled sequence.

7.1.2.10. QuantisExtractorMatrixProcessBufferVonNeumann

uint32_t QuantisExtractorMatrixProcessBufferVonNeumann(uint8_t* inputBuffer,
 uint8_t* outputBuffer,
 uint32_t inputBufferSize);

Apply extraction processing function to a block of matrixSizeIn bits and produce matrixSizeOut
processed bits.

Return the number of bytes at the output of the Von Neumann processing.

Parameters:

inputBuffer a pointer to the input buffer to process.

outputBuffer a pointer to the output buffer. The buffer should be already ini-
tialized by the function which invokes this method; please note
that the number of bytes that will be output by the Von Neu-
mann processing is not deterministic, as it depends on the input
sequence, but it can never exceed 1/2 of the input buffer size.

inputBufferSize the size of the input buffer.

7.1.2.11. QuantisExtractorStorageBufferEnable

Enable the storage buffer and allocate MAX_STORAGE_BUFFER_SIZE bytes for it.

int32_t QuantisExtractorStorageBufferEnable();

Returns QUANTIS_SUCCESS if enabling is successful, QUANTIS_EXT_ERROR otherwise.

7.1.2.12. QuantisExtractorStorageBufferDisable

Disable the storage buffer (if it was previously activated) and free the allocated memory.

int32_t QuantisExtractorStorageBufferDisable();

Returns QUANTIS_SUCCESS if enabling is successful, QUANTIS_EXT_ERROR otherwise.

Advanced Functions

77

7.1.2.13. QuantisExtractorStorageBufferClear

Reset the storage buffer (free and reallocate memory).

int32_t QuantisExtractorStorageBufferClear();

Returns QUANTIS_SUCCESS if enabling is successful, QUANTIS_EXT_ERROR otherwise.

7.1.2.14. QuantisExtractorStorageBufferSet

Set the first bytesToCopy bytes of the storage buffer to the bytesToCopy bytes pointed by
bufferToCopy. Any data previously written in the storage buffer will be overwritten If the buffer
to copy is bigger than MAX_STORAGE_BUFFER_SIZE, extra data will be dropped

int32_t QuantisExtractorStorageBufferSet(uint8_t* bufferToCopy,
 uint32_t bytesToCopy);

Returns always QUANTIS_SUCCESS.

Parameters:

bufferToCopy pointer to the buffer which should be copied into the storage
buffer.

bytesToCopy number of bytes in bufferToCopy to be copied into the stor-
age buffer.

7.1.2.15. QuantisExtractorStorageBufferAppend

Append bytesToAppend bytes of the bufferToCopy to the storage buffer Existing data in the
storage buffer will be preserved Please note that appendable bytes are limited by

MAX_STORAGE_BUFFER_SIZE, i.e. bytes are appended as long as the storage buffer is not full.

int32_t QuantisExtractorStorageBufferAppend(uint8_t* bufferToCopy,
 uint32_t bytesToCopy);

Return the number of actually appended bytes.

Parameters:

bufferToCopy pointer to the buffer which should be copied into the storage
buffer.

bytesToCopy number of bytes in bufferToCopy to be copied into the stor-
age buffer.

7.1.2.16. QuantisExtractorStorageBufferRead

Read numberOfBytesRequested bytes from the storage buffer.

int32_t QuantisExtractorStorageBufferRead(uint8_t* outputBuffer,
 uint32_t numberOfBytesRequested);

Return QUANTIS_SUCCESS if reading is successful, QUANTIS_EXT_ERROR otherwise.

Parameters:

outputBuffer a pointer to the buffer where the read bytes should be written.

numberOfBytesRequested number of bytes to read.

Advanced Functions

78

7.1.2.17. QuantisExtractorStorageBufferGetSize

Get the number of bytes which has been written into the buffer.

int32_t QuantisExtractorStorageBufferGetSize();

Return the number of bytes in the storage buffer.

7.1.2.18. QuantisExtractorStorageBufferIsEnabled

Return the state (enabled/disabled) of the storage buffer.

int8_t QuantisExtractorStorageBufferIsEnabled();

Return 0 = disabled, 1 = enabled.

79

Chapter 8. Sample Code
You will find sample code on how to use each library wrapper in the subdirectory <path-to-Quan-
tis>/Samples/. In this chapter, we give a few further examples and explanations concerning com-
pilation and usage.

8.1. Windows Compilation / Execution
On Windows, use Visual Studio 2008 or Visual Studio 2010. Open the solution file (extension .sln)
for the sample you wish to compile, e.g. if you want to use the C# example, open the file
QuantisDemo.sln.

• For VB.Net and C#, you don't need to do any further configuration, just build the solutions. You
will get an executable called QuantisDemo.exe, which is located in the same directory as the
solution file. Double-click on it to execute it.

• For the C/C++ samples, proceed as follows: Make sure to add the path <path-to-Quan-
tis>\Libs-Apps\Quantis

to your VC++ include directories and

<path-to-Quantis>\Libs-Apps\Quantis\<your system arch>

to your VC++ library directories. Also, add <path-to-Quantis>\Libs-Apps\Quan-
tis\<your system arch>\Quantis.lib

to your "Linker input additional dependencies" in Visual Studio. Now build the solution. This will
create an executable called QRNG.exe. Execute it from your command prompt as follows:

QRNG.exe -<device type> <device number>

where you substitute the type by "u" or "p" for USB-device or "PCI device", and the number by
your device number.

• The Java Sample compilation is described further below since it is system independent.

• The C++11 sample can in principle be executed similarly to the C++ sample, but since the necessary
features of C++11 are not yet enabled in VS2008 or in VS2010, it will be executed as normal C++
code. To use the actual C++11 features, you would need to recompile the Quantis library. Further
details on how to do this can be found under the section "The C++ random_device interface".

8.1.1. Visual Studio 2008 vs. 2010
The Samples available for Visual Studio have been created under VS2008, but they are also compatible
with 2010.

8.2. Linux / Solaris / OpenSolaris / FreeBSD
compilation and execution

• The VB.Net and C# samples can't be compiled on Unix-based systems.

• For the C and C++ samples, type

cd <path-to-quantis>/Samples/<chosen language>
make
./qrng -<device type> <device number>

<device type> is "u" if you're using a Quantis USB and "p" if you're using a PCI/PCIe device.

Mac OSX

80

• For the Java sample, see the section "Java Sample" below.

• The C++11 sample can in principle be executed similarly to the C++ sample, but if you use it with
the library provided it will be executed as normal C++ code. To use the actual C++11 features, you
would need to recompile the Quantis library. Further details on how to do this can be found under
the section "The C++ random_device interface".

8.2.1. Mac OSX
• The VB.Net and C# samples can of course not be compiled on Mac OSX systems.

• For the C and C++ samples, type

cd <path-to-quantis>/Samples/<chosen language>
make OS=Darwin
./qrng -<device type> <device number>

<device type> is "u" if you're using a Quantis USB and "p" if you're using a PCI/PCIe device.

• For the Java sample, see the relevant section below.

• The C++11 sample can in principle be executed similarly to the C++ sample, but if you use it with
the library provided it will be executed as normal C++ code. To use the actual C++11 features, you
would need to recompile the Quantis library. Further details on how to do this can be found under
the section "The C++ random_device interface".

8.3. C Sample
The following is a simple example of usage of the Quantis library:

/* Global includes */
#include <stdio.h>
#include <stdlib.h>

/* Includes Quantis library's header */
#include "Quantis.h"

/* Define the number of bytes that should be read */
#define NUM_BYTES 100

int main()
{
 QuantisDeviceType deviceType;
 unsigned char* buffer;
 int result;
 int i;

 /* Select device type */
 if (QuantisCount(QUANTIS_DEVICE_PCI) > 0)
 {
 /* There is one ore more Quantis PCI device... */
 deviceType = QUANTIS_DEVICE_PCI;
 }
 else if (QuantisCount(QUANTIS_DEVICE_USB) > 0)
 {
 /* There is one ore more Quantis USB device... */
 deviceType = QUANTIS_DEVICE_USB;
 }
 else
 {
 /* No Quantis device has been found on the system */
 printf("No Quantis device found\n");
 return -1;
 }

 /* Allocate buffer's memory */
 buffer = (unsigned char*)malloc(NUM_BYTES);

C++ Sample

81

 if (!buffer)
 {
 fprintf(stderr, "Unable to allocate memory\n");
 return -1;
 }

 /* Read random data from the Quantis*/
 result = QuantisRead(deviceType, 0, buffer, NUM_BYTES);
 /* Check if there are some errors */
 if (result < 0)
 {
 /* An error occured. Print the error message */
 fprintf(stderr,
 "An error occured when reading random bytes: %s\n",
 QuantisStrError(result));
 goto cleanup;
 }
 else if (result != NUM_BYTES)
 {
 /* Quantis did not return the number of bytes asked */
 fprintf(stderr,
 "Asked to read %d byts but received %d bytes\n",
 NUM_BYTES,
 result);
 goto cleanup;
 }

 /* Display buffer in HEX format */
 printf("Displaying %d random bytes in HEX format:\n",
 NUM_BYTES);
 for(i = 0; i < NUM_BYTES; i++)
 {
 printf("%02x ", buffer[i]);
 }
 printf("\n");

 /* Cleanup */
cleanup:

 if(buffer)
 {
 free(buffer);
 }

 return 0;
}

A more detailed example is available on the USB flash drive in the Samples directory.

8.4. C++ Sample
Here is the example presented in the previous chapter modified to use the C++ Wrapper:

/*

Compile like this (if Quantis software is installed under
 "/opt/IDQQuantis").

g++ -L/usr/lib -L/opt/IDQQuantis/lib
-I/opt/IDQQuantis/include -l Quantis
-o quantis_osx quantis_osx_wrapper.cpp

*/

/* Global includes */
#include <iomanip>
#include <iostream>
#include <cstdlib>
#include <string>
/* Includes Quantis library's header */

Java Sample

82

/* Note the hpp extension! */
#include "Quantis.hpp"

/* Define the number of bytes that should be read */
#define NUM_BYTES 100
using namespace std;
using namespace idQ;

int main()
{
 QuantisDeviceType deviceType;
 int result;

 /* Select device type */
 if (Quantis::Count(QUANTIS_DEVICE_PCI) > 0)
 {
 /* There is one ore more Quantis PCI device... */
 deviceType = QUANTIS_DEVICE_PCI;
 }
 else if (Quantis::Count(QUANTIS_DEVICE_USB) > 0)
 {
 /* There is one ore more Quantis USB device... */
 deviceType = QUANTIS_DEVICE_USB;
 }
 else
 {
 /* No Quantis device has been found on the system */
 cout << "No Quantis device found" << endl;
 return -1;
 }
 try
 {
 /* Creates a quantis object */
 Quantis quantis(deviceType, 0);
 /* Read random data from the Quantis*/
 string buffer = quantis.Read(NUM_BYTES);
 if (buffer.length() != NUM_BYTES)
 {
 /* Quantis did not return the number of bytes asked */
 cerr << "Asked to read " << NUM_BYTES
 << " byts but received " << buffer.length()
 << " bytes" << endl;
 return -1;
 }
 // Display buffer in HEX format
 cout << "Displaying " << NUM_BYTES
 << " random bytes in HEX format:" << endl;
 string::iterator it = buffer.begin();
 while (it != buffer.end())
 {
 cout << setw(2) << setfill('0') << hex
 << static_cast<int>(static_cast<unsigned char>(*it++))
 << " ";
 }
 cout << endl;
 return 0;
 }
 catch (runtime_error &ex)
 {
 cerr << "Error while accessing Quantis device: "
 << ex.what() << endl;
 return -1;
 }
}

8.5. Java Sample
Install Java and Apache Ant - All OS

Java Sample

83

To use the Java wrapper, install the Java Standard Edition (JSE) JDK matching your OS. For in-
stance, the Java SE 64 bits JDK should be installed with a Windows 64 bits. You will find the JSE
JDK in all available versions and a detailed installation instruction on the website of OpenJDK or
on the webpage of Oracle (at the time of writing this guide, http://openjdk.java.net/ and
http://www.oracle.com/technetwork/java/javase/overview/index.html re-
spectively).

In addition to Java, Apache Ant should be installed. The Apache Ant website contains a user manual
that explains how to install it on your system (at the time of writing, http://ant.apache.org).

From here, go to the section describing your OS.

Linux

In order to be able to work with Java and Ant, you need to add their binaries to the PATH system
variable, if they aren't there yet. Additionally, Java needs you to set the JAVA_HOME variable. You
can set these variables as follows:

Open the file ~/.bashrc (on some systems this may be called ~/.bash_profile). This is a
script that will run automatically and set the variables in it for you, so you won't need to set them by
hand every time you open a new terminal.

In the file, add the following entry on a separate line:

export PATH=$PATH:<path-to-java-bin-directory>:
<path-to-ant-bin-directory>

To find out where your Java bin directory is, type in your terminal

which java

which will result in something like /usr/bin/java. Your <path-to-java-bin-directory> is therefore
/usr/bin. The same procedure applies to finding your ant directory. To apply the changes, execute
the command

source ~/.bashrc

To compile the Java samples, the easiest solution is to

• Change to the directory where the Java samples are located:

cd <path-to-quantis>/Samples/Java

• In order for Java to be able to use the Quantis library, execute the following command which will
add the Quantis library to the Java library path:

export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<directory-containing-libQuantis.so>

The location of the Quantis library is explained in section "Library location" in the chapter "The
Quantis Library".

You may also add this line to the ~/.bashrc file as you did before when adding Java and Ant to
the PATH variable, if you want it to be loaded automatically when you open a new shell.

• Type the command ant . The Java archive created is dist/Quantis.jar.

• To execute the program, pass the command java -jar dist/Quantis.jar . Alternatively, type ant run.

Windows

In order to be able to work with Java and Ant, you need to add their binaries to the PATH system
variable, if they aren't there yet. Additionally, you need to add the directory containing the Quantis
libraries to PATH as well.

Java Sample

84

You can set it in Control Panel -> System Properties -> Tab 'Advanced' -> Environment Variables,
note that usually you have to be Administrator user to do this. Choose or create the variable PATH (up-
per case important) under 'System Variables', and add <path-to-ant>\bin;<path-to-ja-
va>\bin;<path-to-Quantis-libs, making sure that all entries are separated by a semicolon.
To find your Quantis libraries, refer to chapter "The Quantis Library", section "Library Location". E.g.,
if you have decompressed the Ant folder in the location C:\Program Files\Ant\apache-
ant-x.y.z, your Java JDK is under C:\Program Files\Java\jdk-xxx and your Quantis
libraries are under <path-to-Quantis\Packages\Windows\lib\Win32, you should add
the following line:

C:\Program Files\Ant\apache-ant-x.y.z;C:\Program Files\Java\jdk-
xxx; <path-to-Quantis\Packages\Windows\lib\Win32

Important

On some 64b Windows systems, you may have to recompile the Quantis libraries before
executing the Java sample, in order to avoid JNI-related errors. For how to do this, refer
to chapter "The Quantis Library", section "Recompiling the Quantis Library". When
you have done that, you will need to update the entry in the PATH variable pointing to
the Quantis libraries. The section "Library Location" tells you where you can find your
recompiled Quantis libraries.

Now you can execute the Java Sample:

cd <path-to-Quantis>\Samples\Java
ant
ant run

Instead of ant run you can also execute java -jar dist\Quantis.jar.

85

Appendix A. Troubleshooting
A.1. EasyQuantis

A.1.1. EasyQuantis crashes on Linux, with one of the following errors:

• Segmentation fault.

• symbol lookup error: EasyQuantis: undefined symbol:
_ZN14QPlainTextEditC1EP7QWidget.

Such errors are generally caused by an incompatible Qt library binary. The binary of
EasyQuantis provided by ID Quantique has been linked against Qt version 4.3.4. To solve this
issue you need to install Qt4 version 4.3.4 or newer.

If Qt version 4.3.4 (or newer) is not available on your system, you can still use EasyQuantis
in command line mode, which is not affected by this issue. Please refer to Section 4.5, “The
EasyQuantis Command Line”.

This issue can also be solved by recompiling the Quantis library and EasyQuantis on your
system.

A.2. Quantis Samples
A.2.1. When I try to run the C++ sample code after a successful build, it crashes and gives me an

Access Violation error. What should I do?

If the C++ sample crashes upon build and you get an Access Violation error, restart VS2010 in
administrator mode since there is some memory that cannot be accessed by a normal user. To
do that, right-click on the VS2010 icon and choose "Run in administrator mode". Then reopen
your solution/project and proceed as normal.

A.2.2. I am on a Windows 64 bits machine. When I execute the Java sample, I get JNI-related errors.
What should I do?

This error occurs on some Windows 64 bits systems, and can be solved by recompiling the
Quantis libraries on your own machine. Instructions for recompiling the library can be found
in chapter "The Quantis Library" in section "Recompiling the Quantis Library".

86

87

Appendix B. Frequently Asked
Questions (FAQ)
B.1. Quantis Library

B.1.1. Can I use the 32-bit Quantis library on a 64-bit system?

Yes, you can use the 32-bit Quantis library within a 32-bit application on 64-bit systems. Note
however that you can neither use the 32-bit Quantis library within a 64-bit application nor the
64-bit Quantis library within a 32-bit application.

B.1.2. On Microsoft Windows, is it necessary to copy the Quantis.dll library to the system di-
rectory (C:\Windows\System32)?

No, this is not mandatory. IDQ recommends to install the Quantis.dll library in the di-
rectory in which your application resides.

B.1.3. On Microsoft Windows, when I use Quantis.dll within my application I get the error
"The application has failed to start because WINUSB.DLL was not found. Re-installing the
application may fix this problem". What should I do?

This problem occurs with Quantis.dll v2.1 (and older) when the Quantis USB dri-
ver is not installed. This issue has been fixed in Quantis.dll v2.2. Please update your
Quantis.dll to the latest available version.

B.1.4. I have changed the name of the Java package Java for Quantis from com.idquantique.quantis
to something else/I have moved the Java code to another directory. Now I can load the dynamic
library Quantis.dll but I get the error message

Exception in thread "main" java.lang.UnsatisfiedLinkError:
random.utils.Quantis.QuantisCount(I)I.

The Java classes use mainly native functions (by using the JNI interface). A native function
has to obey to strict rules, and if you don't abide by them your application may not execute
or compile properly.

For instance, the name of the package your code resides in is used to define the name of func-
tions in that package. So if you change the package name, say to random.quantis, the function
names will change in the Java code, but not match the native code function names anymore and
thus produce errors. The best solution is to keep the original name com.idquantique.quantis
for the package.

If you absolutely need the Java code in another package, change the two files Libs-Apps/
Quantis/Quantis_Java.h and Libs-Apps/Quantis/Quantis_Java.cpp to
reflect the new package name in function names. After the modification, the dynamic Quan-
tis library has to be recompiled and reinstalled.

B.2. EasyQuantis
B.2.1. On Microsoft Windows, when I launch EasyQuantis I have the error "The application has

failed to start because WINUSB.DLL was not found. Re-installing the application may fix this
problem". What should I do?

This problem occurs with EasyQuantis 1.0 when the Quantis USB driver is not installed. This
issue has been fixed in EasyQuantis 1.1. Please update EasyQuantis to the latest available
version.

EasyQuantis

88

B.2.2. When I launch EasyQuantis on Microsoft Windows, a console appears for a few seconds and
disappears when the GUI window comes up. Why does this happen?

EasyQuantis integrates a command line interface and a graphical interface. However, on Mi-
crosoft Windows it is not possible to build an hybrid Windows/Console application. EasyQuan-
tis has been built as a Console application. When launched, the system automatically creates a
console window. If no argument has been provided to the application (giving arguments would
invoke the console version), the console window is hidden and the graphical interface is dis-
played. Avoiding this issue is very difficult.

89

Appendix C. Migrating to the New API
The Quantis library version 2.0 has a slightly different API than its predecessors. This is mainly due
to the merge of the old Quantis library (used to access Quantis PCI devices) and Quantis-USB library
(used to access Quantis USB devices) into a single library.

The main difference between versions 1.x and 2.0 is the addition of the parameter deviceType,
which allows you to specify the type of device to use (PCI/PCIe or USB). Additionally, functions
names have been modified when ambiguous. See Table C.1, “API 1.x and 2.0 functions equivalences.”
for equivalences between API 1.x and 2.0.

API 1.x functions API 2.0 functions

int quantisBoardReset(
 int cardNumber);

int QuantisBoardReset(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisBoardVersion(
 int cardNumber);

int QuantisGetBoardVersion(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisCount(); int QuantisCount(
 QuantisDeviceType deviceType);

int quantisDriverVersion(); float QuantisGetDriverVersion(
 QuantisDeviceType deviceType);

int quantisGetModules(
 int cardNumber);

int QuantisGetModulesMask(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

char* quantisGetSerialNumber(
 int cardNumber);

char* QuantisGetSerialNumber(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisLibVersion(); float QuantisGetLibVersion();

int quantisModuleDataRate(
 int cardNumber);

int QuantisGetModulesDataRate(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisModulesDisable(
 int cardNumber,
 int moduleMask);

int QuantisModulesDisable(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

int quantisModulesEnable(
 int cardNumber,
 int moduleMask);

int QuantisModulesEnable(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

int quantisModulesPower(
 int cardNumber);

int QuantisGetModulesPower(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisModulesReset(
 int cardNumber,
 int moduleMask);

int QuantisModulesReset(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 int modulesMask);

int quantisModulesStatus(
 int cardNumber);

int QuantisGetModulesStatus(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber);

int quantisRead(
 int cardNumber,
 void* buffer,
 unsigned int size);

int QuantisRead(
 QuantisDeviceType deviceType,
 unsigned int deviceNumber,
 void* buffer,

Compatibility Wrapper

90

API 1.x functions API 2.0 functions
 size_t size);

Table C.1. API 1.x and 2.0 functions equivalences.

C.1. Compatibility Wrapper
IDQ provides a compatibility wrapper that allows you to use the old API with the new library. This is
meant to facilitate the migration of your application to the new API.

Important

It is highly recommended to update your application to the new API as soon as possible.

To use the compatibility wrapper, define QUANTIS_DEVICE_TYPE and then include Quan-
tis-Compat.h instead of quantis.h and recompile your application:

/*
 * Define Quantis type:
 * - set QUANTIS_DEVICE_TYPE to 1 for Quantis PCI/PCIe
 * - set QUANTIS_DEVICE_TYPE to 2 for Quantis USB
 */
#define QUANTIS_DEVICE_TYPE 1

/* Includes compatibility wrapper */
#include "Quantis-Compat.h"

Note

On Microsoft Windows systems, you can try to rename QuantisPci-Compat.dll
to Quantis.dll or QuantisUsb-Compat.dll to Quantis-Usb.dll and re-
place your old library with the renamed one. This way you normally do not need to re-
compile your application.

91

Appendix D. Notes
D.1. Images

Some images used in this manual and in the Quantis software are from VistaICO.com.

92

93

Bibliography
Websites
[USB] Official USB website. http://www.usb.org/ .

http://www.usb.org/

94

	Quantis User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What You Need
	1.1.1. Additional Requirements
	1.1.1.1. Linux

	Chapter 2. Hardware Installation
	2.1. Quantis PCI and PCI Express Installation
	2.1.1. Unpacking
	2.1.2. Installing the Card

	2.2. Quantis USB Installation
	2.2.1. Unpacking
	2.2.2. Installing the Device

	Chapter 3. Driver Installation
	3.1. Windows Operating Systems
	3.1.1. Windows XP
	3.1.1.1. Found New Hardware Wizard: Welcome
	3.1.1.2. Found New Hardware Wizard: Quantis
	3.1.1.3. Found New Hardware Wizard: Search Location
	3.1.1.4. Found New Hardware Wizard: Installation
	3.1.1.5. Found New Hardware Wizard: Completed

	3.1.2. Windows Vista
	3.1.2.1. Found New Hardware Wizard: Welcome
	3.1.2.2. Found New Hardware Wizard: Insert Disc
	3.1.2.3. Found New Hardware Wizard: Search Location
	3.1.2.4. Found New Hardware Wizard: Installation
	3.1.2.5. Found New Hardware Wizard: Install
	3.1.2.6. Found New Hardware Wizard: Completed

	3.1.3. Windows 7
	3.1.3.1. Devices and Printers
	3.1.3.2. Quantis Properties: Hardware
	3.1.3.3. Quantis Properties: Update Driver
	3.1.3.4. Update Driver Software: Search Driver
	3.1.3.5. Update Driver Software: Search Location
	3.1.3.6. Update Driver Software: Installation
	3.1.3.7. Update Driver Software: Completed

	3.1.4. Windows 8
	3.1.4.1. Open Windows settings
	3.1.4.2. Quantis-USB device
	3.1.4.2.1. Quantis-USB Properties: Hardware
	3.1.4.2.2. Quantis-USB Properties: Update Driver

	3.1.4.3. Quantis-PCI device
	3.1.4.4. Update Driver Software: Search Driver
	3.1.4.5. Update Driver Software: Search Location
	3.1.4.6. Update Driver Software: Installation
	3.1.4.7. Windows security check
	3.1.4.8. Update Driver Software: Completed

	3.2. Linux Operating System
	3.2.1. Quantis PCI and Quantis PCI Express
	3.2.1.1. Install Pre-Requirements
	3.2.1.1.1. Debian-based Distributions
	3.2.1.1.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.1.1.3. Other Distributions

	3.2.1.2. Compile and Install Driver
	3.2.1.3. Auto-load the Driver on Boot-up
	3.2.1.3.1. Debian-based Distributions
	3.2.1.3.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.1.3.3. Other Distribution

	3.2.1.4. Modify the Device's Permissions
	3.2.1.4.1. The plugdev group
	3.2.1.4.2. Adding users to the plugdev group
	3.2.1.4.3. UDEV rules

	3.2.1.5. Check Your Device

	3.2.2. Quantis USB
	3.2.2.1. libusb-1.0 Installation
	3.2.2.1.1. Debian-based Distributions
	3.2.2.1.2. Red Hat Enterprise Linux and CentOS Distributions
	3.2.2.1.3. Other Distributions
	3.2.2.1.4. Manually Compile libusb-1.0

	3.2.2.2. Modify the Device's Permissions
	3.2.2.3. Check Your Device

	3.3. Mac OS X Operating System
	3.3.1. QuantisPCI and QuantisPCI Express
	3.3.2. Quantis USB
	3.3.3. Installation
	3.3.4. Implementation details
	3.3.5. Known problems

	3.4. Solaris / OpenSolaris
	3.5. FreeBSD

	Chapter 4. The EasyQuantis application
	4.1. Installation
	4.1.1. Windows Operating Systems
	4.1.2. Linux Operating Systems
	4.1.2.1. Install Requirements
	4.1.2.1.1. Debian-based Distributions
	4.1.2.1.2. Other Distributions

	4.1.2.2. Install the Application
	4.1.2.3. Uninstall the Application

	4.1.3. Mac OSX
	4.1.4. Solaris / OpenSolaris
	4.1.5. FreeBSD

	4.2. EasyQuantis
	4.3. EasyQuantis2 (Windows, Linux)
	4.3.1. Acquisition
	4.3.2. File extraction
	4.3.3. Extraction matrix

	4.4. Using EasyQuantis 1.x (other OS)
	4.5. The EasyQuantis Command Line
	4.5.1. Options
	4.5.1.1. Generic Options
	4.5.1.2. Quantis Options
	4.5.1.3. Acquisition Options
	4.5.1.4. Extraction Options

	4.5.2. Usage Examples
	4.5.2.1. List connected Quantis devices
	4.5.2.2. Generate Binary Data
	4.5.2.3. Generate Numbers
	4.5.2.4. Generate Scaled Numbers
	4.5.2.5. Generate Extracted Numbers from Quantis device
	4.5.2.6. Generate Extracted Numbers from binary file

	Chapter 5. The Quantis Library
	5.1. Library location
	5.2. Device Type
	5.3. Basic Functions
	5.3.1. QuantisCount
	5.3.2. QuantisGetDriverVersion
	5.3.3. QuantisGetLibVersion
	5.3.4. QuantisGetManufacturer
	5.3.5. QuantisGetModulesDataRate
	5.3.6. QuantisGetSerialNumber
	5.3.7. QuantisRead
	5.3.7.1. Reading Large Amounts of Data
	5.3.7.2. Reading Basic Data Types
	5.3.7.2.1. Integral Values
	5.3.7.2.1.1. Integral Values: The Scaling Algorithm

	5.3.7.2.2. Floating Point Values

	5.3.8. QuantisOpen
	5.3.9. QuantisClose
	5.3.10. QuantisReadHandled
	5.3.11. QuantisStrError

	5.4. Advanced Functions
	5.4.1. QuantisBoardReset
	5.4.2. QuantisGetBoardVersion
	5.4.3. QuantisGetModulesCount
	5.4.4. QuantisGetModulesMask
	5.4.5. QuantisGetModulesPower
	5.4.6. QuantisGetModulesStatus
	5.4.7. QuantisModulesDisable
	5.4.8. QuantisModulesEnable
	5.4.9. QuantisModulesReset

	5.5. Recompiling the Quantis Library
	5.5.1. Windows compilation with Visual Studio 2008
	5.5.2. Windows Compilation with Visual Studio 2010
	5.5.3. Linux Debian based
	5.5.4. Linux RedHat / CentOS
	5.5.5. Mac OSX
	5.5.6. Solaris / OpenSolaris
	5.5.7. FreeBSD

	Chapter 6. Quantis Library Wrappers
	6.1. The C++11 random_device interface
	6.1.1. About the interface and our implementation
	6.1.2. Library Compilation for C++11
	6.1.2.1. Windows
	6.1.2.2. Linux
	6.1.2.3. Mac OSX
	6.1.2.4. Solaris / OpenSolaris
	6.1.2.5. FreeBSD

	6.1.3. C++11 Sample compilation

	Chapter 7. The QuantisExtensions Library
	7.1. Extractor
	7.1.1. Basic Functions
	7.1.1.1. QuantisExtractorGetLibVersion
	7.1.1.2. QuantisExtractorInitializeMatrix
	7.1.1.3. QuantisExtractorUnInitializeMatrix
	7.1.1.4. QuantisExtractorGetDataFromQuantis
	7.1.1.5. QuantisExtractorGetDataFromFile
	7.1.1.6. QuantisExtractorGetDataFromBuffer
	7.1.1.7. QuantisExtractorStrError

	7.1.2. Advanced Functions
	7.1.2.1. QuantisExtractorGetMatrixSizeIn
	7.1.2.2. QuantisExtractorGetMatrixSizeOut
	7.1.2.3. QuantisExtractorComputeBufferSize
	7.1.2.4. QuantisExtractorInitializeOutputBuffer
	7.1.2.5. QuantisExtractorUninitializeOutputBuffer
	7.1.2.6. QuantisExtractorProcessBlock
	7.1.2.7. QuantisExtractorMatrixCreate
	7.1.2.8. QuantisExtractorMatrixCreateElementary
	7.1.2.9. QuantisExtractorMatrixUnderSamplingRead
	7.1.2.10. QuantisExtractorMatrixProcessBufferVonNeumann
	7.1.2.11. QuantisExtractorStorageBufferEnable
	7.1.2.12. QuantisExtractorStorageBufferDisable
	7.1.2.13. QuantisExtractorStorageBufferClear
	7.1.2.14. QuantisExtractorStorageBufferSet
	7.1.2.15. QuantisExtractorStorageBufferAppend
	7.1.2.16. QuantisExtractorStorageBufferRead
	7.1.2.17. QuantisExtractorStorageBufferGetSize
	7.1.2.18. QuantisExtractorStorageBufferIsEnabled

	Chapter 8. Sample Code
	8.1. Windows Compilation / Execution
	8.1.1. Visual Studio 2008 vs. 2010

	8.2. Linux / Solaris / OpenSolaris / FreeBSD compilation and execution
	8.2.1. Mac OSX

	8.3. C Sample
	8.4. C++ Sample
	8.5. Java Sample

	Appendix A. Troubleshooting
	A.1. EasyQuantis
	A.2. Quantis Samples

	Appendix B. Frequently Asked Questions (FAQ)
	B.1. Quantis Library
	B.2. EasyQuantis

	Appendix C. Migrating to the New API
	C.1. Compatibility Wrapper

	Appendix D. Notes
	D.1. Images

	Bibliography

