
GPS Documentation
Release 5.2.1

AdaCore

January 08, 2013

CONTENTS

1 Introduction 1

2 Description of the Main Windows 3
2.1 The Welcome Dialog . 3
2.2 The Tip of the Day . 4
2.3 The Menu Bar . 5
2.4 The Tool Bar . 6
2.5 The Work Space . 6
2.6 The Project View . 6
2.7 The File View . 10
2.8 The Entity View . 11
2.9 The Window View . 12
2.10 The Outline View . 12
2.11 The Clipboard View . 13
2.12 The Callgraph View . 14
2.13 Bookmarks . 15
2.14 The Messages Window . 15
2.15 The Shell and Python Windows . 15
2.16 The Locations View . 16
2.17 The Execution Window . 17
2.18 The Status Line . 17
2.19 The Task Manager . 17

3 Online Help 19
3.1 The Help Menu . 19
3.2 Adding New Help Files . 20

4 Multiple Document Interface 21
4.1 Selecting Windows . 21
4.2 Closing Windows . 21
4.3 Splitting Windows . 22
4.4 Floating Windows . 22
4.5 Moving Windows . 23
4.6 Perspectives . 23

5 Editing Files 25
5.1 General Information . 25
5.2 Editing Sources . 28
5.3 The File Selector . 28

i

5.4 Menu Items . 30
5.5 Rectangles . 36
5.6 Recording and replaying macros . 38
5.7 Contextual Menus for Editing Files . 39
5.8 Handling of case exceptions . 39
5.9 Refactoring . 40
5.10 Using an External Editor . 44
5.11 Using the Clipboard . 45
5.12 Saving Files . 45
5.13 Remote Files . 46

6 Source Navigation 49
6.1 Support for Cross-References . 49
6.2 The Navigate Menu . 50
6.3 Contextual Menus for Source Navigation . 51
6.4 Navigating with hyperlinks . 53
6.5 Highlighting dispatching calls . 53

7 Project Handling 55
7.1 Description of the Projects . 55
7.2 Supported Languages . 57
7.3 Scenarios and Configuration Variables . 58
7.4 Extending Projects . 60
7.5 The Project View . 61
7.6 Disabling Project Edition Features . 62
7.7 The Project Menu . 62
7.8 The Project Wizard . 63
7.9 The Project Dependencies Editor . 71
7.10 The Project Properties Editor . 72
7.11 The Switches Editor . 74
7.12 The Project Browser . 76

8 Searching and Replacing 77

9 Compilation/Build 81
9.1 The Build Menu . 81
9.2 The Target Configuration Dialog . 83
9.3 The Build Mode . 86
9.4 Working with two compilers . 86

10 Source Browsing 89
10.1 General Issues . 89
10.2 Call Graph . 90
10.3 Dependency Browser . 92
10.4 Entity Browser . 93

11 Debugging 95
11.1 The Debug Menu . 95
11.2 The Call Stack Window . 98
11.3 The Data Window . 98
11.4 The Breakpoint Editor . 103
11.5 The Memory Window . 105
11.6 Using the Source Editor when Debugging . 106
11.7 The Assembly Window . 107
11.8 The Debugger Console . 109

ii

11.9 Customizing the Debugger . 109

12 Version Control System 113
12.1 The VCS Explorer . 114
12.2 The VCS Activities . 116
12.3 The VCS Menu . 117
12.4 The Version Control Contextual Menu . 118
12.5 Working with global ChangeLog file . 120
12.6 The Revision View . 121

13 Tools 123
13.1 The Tools Menu . 123
13.2 Coding Standard . 124
13.3 Visual Comparison . 125
13.4 Code Fixing . 126
13.5 Documentation Generation . 127
13.6 Working With Unit Tests . 129
13.7 Metrics . 130
13.8 Code Coverage . 130
13.9 Stack Analysis . 133

14 Working in a Cross Environment 137
14.1 Customizing your Projects . 137
14.2 Debugger Issues . 138

15 Using GPS for Remote Development 139
15.1 Requirements . 139
15.2 Setup the remote servers . 140
15.3 Setup a remote project . 142
15.4 Limitations . 144

16 Customizing and Extending GPS 145
16.1 The Preferences Dialog . 145
16.2 GPS Themes . 158
16.3 The Key Manager Dialog . 158
16.4 The Plug-ins Editor . 159
16.5 Customizing through XML and Python files . 160
16.6 Adding support for new tools . 200
16.7 Customization examples . 208
16.8 Scripting GPS . 210
16.9 Adding support for new Version Control Systems . 226
16.10 The Server Mode . 233
16.11 Adding project templates . 234

17 Environment 235
17.1 Command Line Options . 235
17.2 Environment Variables . 235
17.3 Running GPS on Mac OS X . 236
17.4 Files . 236
17.5 Reporting Suggestions and Bugs . 238
17.6 Solving Problems . 238

18 Scripting API reference for GPS 241
18.1 Function description . 241
18.2 User data in instances . 241

iii

18.3 Hooks . 242
18.4 Functions . 242
18.5 Classes . 250

19 GNU Free Documentation License 365
19.1 PREAMBLE . 365
19.2 APPLICABILITY AND DEFINITIONS . 365
19.3 VERBATIM COPYING . 366
19.4 COPYING IN QUANTITY . 366
19.5 MODIFICATIONS . 367
19.6 COMBINING DOCUMENTS . 368
19.7 COLLECTIONS OF DOCUMENTS . 368
19.8 AGGREGATION WITH INDEPENDENT WORKS . 368
19.9 TRANSLATION . 369
19.10 TERMINATION . 369
19.11 FUTURE REVISIONS OF THIS LICENSE . 369
19.12 ADDENDUM: How to use this License for your documents . 369

20 Indices and tables 371

Python Module Index 373

Index 375

iv

CHAPTER

ONE

INTRODUCTION

GPS is a complete integrated development environment that gives access to a wide range of tools and integrates them
smoothly.

GPS gives access to built-in file editing; HTML based help system; complete compile/build/run cycle; intelligent
source navigation; project management; general graph technology giving access to many different browsers such
as source dependency, project dependency, call graphs, entity view, etc...; fully integrated visual debugger; generic
version control system, providing access to CVS, Subversion, ClearCase, GIT, and any other via xml plug-ins; many
other tools such as a visual comparison, automatic generation of files, source reformatting.

GPS is fully customizable, providing several levels of customizations: a first level, available through the preferences
and key manager dialogs; a second level, which allows you to customize your menu items, tool bar and key bindings; a
third level, which allows you to automate processing through scripts (via xml and python scripting). See Customizing
and Extending GPS for more details.

GPS also interacts with most versions of command-line tools such as gcc, gdb, gnatmake, gprbuild, gcov, etc...

1

GPS Documentation, Release 5.2.1

2 Chapter 1. Introduction

CHAPTER

TWO

DESCRIPTION OF THE MAIN WINDOWS

2.1 The Welcome Dialog

When starting GPS, a welcome dialog is displayed by default, giving the following choices:

Create new project from template If you select this option and then click the OK button, GPS will launch an assistant
to create a project using one of the predefined project templates.

Start with default project in directory If you select this option and click on the OK button, GPS will first look for a
project called default.gpr in the current directory and load it if found. Otherwise, it will copy in the current
directory the default project found under <prefix>/share/gps/default.gpr and load it. GPS will
remove this copy when exiting or loading another project, if the copy has not been modified during the session.

If the current directory is not writable, GPS will instead load directly <prefix>/share/gps/readonly.gpr. In this
case, GPS will work in a degraded mode, where some capabilities will not work (such as building and source
navigation).

3

GPS Documentation, Release 5.2.1

Create new project with wizard Selecting this option and clicking on the OK button will start a wizard allowing you
to specify most of the properties for a new project. Once the project is created, GPS will save it and load it
automatically. See The Project Wizard for more details on the project wizard.

Several kinds of wizard are available. Depending on the kind of project, you will get asked different type of
information. In the end, GPS will create one or more project files, and automatically load them.

One of the wizard, “From existing Ada sources”, will try and import a set of sources and object files, and
attempt to create one or more project files so that building your application through these project files will put
the objects in the same directory they are currently in. If you have not compiled your application when launching
this wizard, GPS will create a single project file and all object files will be put in the same object directory. This
is the prefered method when importing sources with duplicate file names, since the latter is only authorized in a
single project file, not across various project files.

Open existing project You can select an existing project by clicking on the Browse button, or by using a previously
loaded project listed in the combo box. When a project is selected, clicking on the OK button will load this
project and open the main window.

Always show this dialog when GPS starts If unset, the welcome dialog won’t be shown in future sessions. In this
case, GPS will behave as follows: it will first look for a -P switch on the command line, and load the corre-
sponding project if present. Then, it will look for a project file in the current directory and will load the first
project file found.

If no project file can be found in the current directory, GPS will start with the default project.

To reset this property, go to the menu Edit->Preferences. .. index:: preferences

The Preferences Dialog.

Quit If you click on this button, GPS will terminate immediately.

When you specify a -P switch on the command line, or if there is only one project file in the current directory, GPS
will start immediately with the project file specified, instead of displaying the welcome dialog.

In addition, if you specify source files on the command line, GPS will also start immediately, using the default project
if no project is specified.

By default, files specified on the command line are taken as is and can be absolute or relative pathnames. In addition,
if you prepend a filename with the = character, then GPS will look for the file in the source search path of the project.

2.2 The Tip of the Day

This dialog displays short tips on how to make the most efficient use of GPS. You can click on the Previous and Next
buttons to access all tips, and close the dialog by either clicking on the Close button or pressing the ESC key.

You can also disable this dialog by unchecking the Display Tip of the Day on startup check box. If you would like to
reenable this dialog, you can go to the Edit->Preferences dialog.

The Preferences Dialog.

4 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

2.3 The Menu Bar

This is a standard menu bar that gives access to all the global functionalities of GPS. It is usually easier to access a
given functionality using the various contextual menus provided throughout GPS: these menus give direct access to
the most relevant actions given the current context (e.g. a project, a directory, a file, an entity, ...). Contextual menus
pop up when the right mouse button is clicked or when using the special open contextual menu key on most
PC keyboards.

The menu bar gives access to the following items:

File The File Menu.

Edit The Edit Menu.

Navigate The Navigate Menu.

VCS The VCS Menu.

Project The Project Menu.

Build The Build Menu.

Debug The Debug Menu.

Tools The Tools Menu.

SPARK If the SPARK toolset is installed on your system and available on your PATH, then this menu is available.
See Help->SPARK->Reference->Using SPARK with GPS for more details.

CodePeer If the CodePeer toolset is installed on your system and available on your PATH, then this menu is available.
See your CodePeer documentation for more details.

Window Multiple Document Interface.

2.3. The Menu Bar 5

GPS Documentation, Release 5.2.1

Help The Help Menu.

2.4 The Tool Bar

The tool bar provides shortcuts via buttons to some typical actions: creating a new file, opening a file, saving the
current file; undo/redo last editing; go to previous/next location;

select build mode, compile file, build project, clean project;

start/continue the debugging session, step/next execution, finish current procedure.

The icon on the far right of the tool bar will be animated to indicate that an action (e.g. a build or a search) is going on
in the background.

2.5 The Work Space

The whole work space is based on a multiple document interface, Multiple Document Interface.

2.6 The Project View

The project view provides a representation of the various components of your project hierarchy, as listed below. It is
displayed by default on the left side of the main window, and can be selected by using the Project->Project View or
Tools->Views->Project menu items.

Under Windows, it is possible to drop files (coming e.g. from the Explorer) in the project view with the following
behavior: a project file dropped will be loaded; any other file will be opened in a new source editor.

6 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

The project view, as well as the file and outline view provide an interactive search capability allowing you to quickly
search in the information currently displayed. The default key to start an interactive search is control-f. This will
open a small window at the bottom of the view where you can interactively type names. The first matching name in
the tree will be selected while you type it. You can then also use the up and down keys to navigate through all the
items matching the current text.

The various components that are displayed are:

projects All the sources you are working with are put under control of projects. These projects are a way to store the
switches to use for the various tools, as well as a number of other properties.

They can be organized into a project hierarchy, where a root project can import other projects, with their own
set of sources.

Initially, a default project is created, that includes all the sources in the current directory.

The Project View displays this project hierarchy: the top node is the root project of your application (generally,
this is where the source file that contains the main subprogram will be located). Then a node is displayed for
each imported project, and recursively for their own imported projects.

A given project might appear multiple times in the Project View, if it is imported by several other projects.

2.6. The Project View 7

GPS Documentation, Release 5.2.1

There exists a second display for this project view, which lists all projects with no hierarchy: all projects appear
only once in the view, at the top level. This display might be useful for deep project hierarchies, to make it easier
to find projects in the project view.

This display is activated through the contextual menu entry Show flat view, which acts as a switch between the
two displays.

A special icon with a pen mark is displayed if the project was modified, but not saved yet. You can choose to
save it at any time by right-clicking on it. GPS will remind you to save it before any compilation, or save it
automatically, if the corresponding preference is saved.

directories

The files inside a project can be organized into several physical directories on the disk. These directories
are displayed under each project node in the Project View

You can chose whether you want to see the absolute path names for the directories or paths relative to the
location of the project. This is done through the Show absolute paths contextual menu.

Special nodes are created for object and executables directories. No files are shown for these.

The contextual menu entry Show hidden directories can be used to filter the directories considered as
hidden. This can be used to not display the version control directories like CVS or .svn for example.

files

The source files themselves are stored in the directories, and displayed under the corresponding nodes.
Note that only the source files that actually belong to the project (i.e. are written in a language supported
by that project and follow its naming scheme) are actually visible. For more information on supported
languages, Supported Languages.

A given file might appear multiple times in the Project View, if the project it belongs to is imported by
several other projects.

If you left click on a file and keep the button pressed, you can drop it anywhere in GPS to open an editor
at that location.

entities

If you open the node for a source file, the file is parsed by one of the fast parsers integrated in GPS so that
all entities declared in the project can be shown. These entities are grouped into various categories, which
depend on the language. Typical categories include subprograms, packages, types, variables, tasks, ...

Double-clicking on a file, or simple clicking on any entity will open a source editor and display respectively the first
line in this file or the line on which the entity is defined.

You can also drag a file anywhere into GPS. This will open a new editor if the file is not already edited, or move
the existing editor otherwise. If you press shift at the same time, and the file is already edited, a new view of the
existing editor is created instead.

If you open the search dialog through the Navigate->Find or Replace... menu, you have the possibility to search for
anything in the project view, either a file or an entity. Note that searching for an entity can be slow if you have lots of
files, and/or big files.

A contextual menu, named Locate in Project View, is also provided when inside a source editor. This will automatically
search for the first entry for this file in the project view. This contextual menu is also available in other modules, e.g.
when selecting a file in the Dependency Browser.

2.6.1 The configuration variables

As described in the GNAT User’s Guide, the project files can be configured through external variables (typically
environment variables). This means that e.g. the exact list of source files, or the exact switches to use to compile the

8 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

application can be changed when the value of these external variables is changed.

GPS provides a simple access to these variables, through a window called the Scenario View. These variables are
called Configuration Variables, since they provide various scenarios for the same set of project files.

A combo box is displayed in this area for each environment variable the project depends on. The current value of the
variable can be set simply by selecting it from the pop-down window that appears when you click on the arrow on the
right of the variable name

New variables can be added through the contextual menu Project->Add Configuration Variable in the Project View.
The list of possible values for a variable can be changed by clicking on the button on the left of the variable’s name.

Whenever you change the value of one of the variables, the project is automatically recomputed, and the list of source
files or directories is changed dynamically to reflect the new status of the project. Starting a new compilation at that
point will use the new switches, and all the aspects of GPS are immediately affected according to the new setup.

2.6.2 Icons for source language entities

Entities in the source code are presented with representative icons within the various GPS views (the Outline, Project,
and Entity views, for example). These icons indicate both the language categories of the entities, such as packages
and methods, as well as compile-time visibility. In addition, the icons distinguish entity declarations from other
entities. The same icons are used for all programming languages supported by the viewers, with language-specific
interpretations for both compile-time visibility and recognizing declarations.

There are five language categories used for all supported languages: package, subprogram, type, variable, and generic.
The icons corresponding to these language categories are as follows.

• The package category’s icon is a square.

• The subprogram category’s icon is a circle.

• The type category’s icon is a triangle.

• The variable category’s icon is a dot.

• The generic category’s icon is a diamond.

2.6. The Project View 9

GPS Documentation, Release 5.2.1

These basic icons are enhanced with decorators, when appropriate, to indicate compile-time visibility constraints and
to distinguish declarations from completions. For example, the icons for entity declarations have a small ‘S’ decorator
added, denoting a ‘spec’.

With respect to compile-time visibility, icons for ‘protected’ and ‘private’ entities appear within an enclosing box
indicating a visibility constraint. For entities with ‘protected’ visibility, this enclosing box is colored in gray. ‘Private’
entities are enclosed within a red box. The icons for ‘public’ entities have no such enclosing box. For example, a
variable with ‘private’ visibility would be represented by an icon consisting of a dot enclosed within a red box.

These additional decorators are combined when appropriate. For example, the icon corresponding to the ‘private’
declaration of a ‘package’ entity would be a square, as for any package entity, with a small ‘S’ added, all enclosed
within a red box.

Language constructs are mapped to the categories in a language-specific manner. For example, C++ namespaces
and Ada packages correspond to the package category. C functions and Ada subprograms correspond to the method
category, and so on. The generic category is a general category representing other language entities, but note that not
all possible language constructs are mapped to categories and icons. (Note also that the generic category does not
correspond to Ada generic units or C++ templates.)

The names of the categories should not be interpreted literally in terms of language constructs because the categories
are rather general, in order to limit the number used. The variable category includes both constants and variables in
Ada, for example. Limiting the number of categories maintains a balance between presentation complexity and the
need to support distinct programming languages.

Icons for a given entity may appear more than once within a view. For example, an Ada private type will have both
a partial view in the visible part of the enclosing package as well as a full view in the private part of the package.
Two triangle icons will therefore appear for the two occurrences of the type name, one with the additional decorator
indicating the ‘private’ compile-time visibility.

2.7 The File View

In addition to the Project View, GPS also provides a File View through the Tools->Views->Files menu.

10 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

In this view, directories are displayed exactly as they are organized physically on the disk (including Windows drives).

By default, the File View will display all the files that exist on the disk. Filters can be set through the contextual menu
to only show the files and directories that belong to the project hierarchy by using the contextual menu Show files from
project only.

Each source file can also be explored as described in The Project View. Drag and drop of files is also possible from the
files view, to conveniently open a file.

The contextual menu also allow you to create, rename and delete files and directories. Some of those operations are
also available from the Project View.

2.8 The Entity View

GPS provides an Entity View which allows you to browse and quickly find all Ada entities referenced in the currently
loaded project hierarchy. This view can be accessed through the Tools->Views->Entities menu.

2.8. The Entity View 11

GPS Documentation, Release 5.2.1

This view is divided in three parts: a Pattern entry, a tree view, and a documentation view.

To query an entity, enter a search pattern in the Pattern entry. The tree view then shows a list of all known entities
which start with this pattern. When an entry is selected in the tree, the documentation view displays the documentation
corresponding to the selected entity.

When the File View has the focus, using the up/down arrow keys changes the selection in the tree, and pressing the
Enter key opens an editor to the declaration of the selected entity. It is also possible to jump to this location by
double-clicking on the line in the tree, or by clicking on the hyperlink in the documentation view.

Note that the view shows the entities that are currently loaded in memory, see Support for Cross-References.

2.9 The Window View

The Window View displays the currently opened windows. It is opened through the Tools->Views->Windows menu.

It can display the opened windows in one of two ways:

• Sorted alphabetically

• Organized by notebooks, as in the GPS window itself. This latter view is mostly useful if you have lots of
windows open

The mode is selected through the contextual menu.

You can also choose, through this contextual menu, whether only the source editors should be visible, or whether all
windows should be displayed.

This window allows you to quickly select and focus on a particular window, by clicking on the corresponding line
with the left mouse button. If you click and leave the mouse button pressed, this starts a drag and drop operation so
that you can also move the window to some other place in the desktop (see the description of the MDI earlier in this
document).

Multiple windows can be selected by clicking with the mouse while pressing the control or shift keys. The Window
view provides a contextual menu to easily close all selected windows at once, which is a very fast way to cleanup your
desktop after you have finished working on a task.

2.10 The Outline View

The Outline View, which you can choose to activate through the Tools->Views->Outline menu, shows the contents of
the current file.

12 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

The exact meaning of this depends on the language you are seeing. For Ada, C and C++ files, this is the list of entities
that are declared at the global level in your current file (Ada packages, C++ classes, subprograms, Ada types, ...).

Clicking on any entity in this view will automatically jump to the right line in the file, including if your file has been
slightly modified since the outline view was last refreshed.

To refresh the contents of the view, select the Refresh entry in the contextual menu (right-click anywhere in the outline
view). The Outline View is updated automatically after editing, saving the file, or switching to a different editor.

There are several preferences associated with the outline view.

2.11 The Clipboard View

GPS has an advanced mechanism for handling copy/paste operations.

When you select the menus Edit->Copy or Edit->Cut, GPS adds the current selection to the clipboard. As opposed
to what lots of applications do, it doesn’t discard the previous contents of the clipboard, but save it for future usage.
It saves a number of entries this way, up to 10 by default. This value is configurable through the Clipboard Size
preference.

When you select the menu Edit->Paste, GPS will paste the last entry made in the clipboard at the current location in
the editor.

If you immediately select Edit->Paste Previous, this newly inserted text will be removed, and GPS will instead insert
the second to last entry added to the clipboard. You can keep selecting the same menu to get access to older entries.

This is a very powerful mechanism, since it means you can copy several distinct lines from a place in an editor, move
to an other editor and paste all these separate lines, without having to go back and forth between the two editors.

The Clipboard View provides a graphical mean of seeing what is currently stored in the clipboard. It appears as a list
of lines, each of which is associated with one level of the clipboard. The text that shows in these lines is the first line
of the selection at that level that contains non blank characters. Leading characters are discarded. [...] is prepended or
appended in case the selection has been truncated.

If you bring the mouse over a line in the Clipboard View, a tooltip will pop up showing the entire selection correspond-
ing to the line by opposition to the possibly truncated one.

In addition, one of the lines has an arrow on its left. This indicates the line that will be pasted when you select the
menu Edit->Paste. If you select instead the menu Edit->Paste Previous, then the line below that one will be inserted
instead.

2.11. The Clipboard View 13

GPS Documentation, Release 5.2.1

If you double-click on any of these lines, GPS will insert the corresponding text in the current editor, and make the
line you clicked on the current line, so that selecting Edit->Paste or the equivalent shortcut will now insert that line.

The contextual menu in the clipboard view provides one entry, which is Append To Previous. If you select this entry,
the select line will be append to the one below, and removed from the clipboard. This means that selection Edit-
>Paste will in fact paste the two entries at the same time. This is in particular useful when you want to copy lines
from separate places in the initial file, merge them, and then paste them together one or more times later on, through a
single operation.

The Clipboard View content is preserved between GPS sessions. As an exception, huge entries are removed and
replaced with an entry saying “[Big entry has been removed]”.

2.12 The Callgraph View

The callgraph view plays a role similar the callgraph browser. They display the same information about entities, but
in two different ways: the callgraph view displays the information in a tree, easily navigable and perhaps easier to
manipulate when lots of entities are involved; the callgraph browser displays the information as graphical boxes that
can be manipulated on the screen, and is best suited to generate a diagram that can be later exported to your own
documents.

This callgraph view is used to display the information about what subprograms are called by a given entity, and,
opposite, what entities are calling a given entity.

Some references might be reported with an additional ” (dispatching)” text. In such a case, this indicates that the call
to the entity is not explicit in the sources, but could occur through dynamic dispatching. This of course depends on
what arguments are passed to the caller at run time, and it is possible that the subprogram is in fact never dispatched
to.

This view is automatically displayed when you select one of the contextual menus ... calls and ... is called by. Every
time you select one of these menus, a new view is opened to display that entity.

Whenever you expand a node from the tree by clicking on the small expander arrow on the left of the line, further
callgraph information is computed for the selected entity, which makes it very easy to get information for a full
callgraph tree.

Closing and expanding a node again will recompute the callgraph for the entity.

On the right side of the main tree, a list displays the locations of calls for the selected entity. Clicking on entries in this
list opens editors showing the corresponding location.

The Callgraph View supports keyboard navigation: Up and Down keys navigate between listed locations, Left collapses
the current level, Right expands the current level, and Return jumps to the currently selected location.

The callgraph view is automatically saved in the desktop, and restored the next time you restart GPS. However, the
information displayed in these might no longer be accurate at this stage, since it shows the status of the callgraph
during the last GPS session.

Left-clicking on a line in the Call Tree brings up a contextual menu with the following entries:

Collapse all Collapse all the entities in the Callgraph View.

Remove entity Remove the selected entity from the Callgraph View.

Clear Call Trees Remove all entries from the Callgraph View.

14 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

2.13 Bookmarks

Bookmarks are a convenient way to remember places in your code or in your environment so that you can go back to
them at any point in the future. These bookmarks are saved automatically whenever they are modified, and restored
when GPS is reloaded, so that they exist across GPS sessions.

Bookmarks will automatically remember the exact location in an editor, not in terms of line/column, but in terms of
which word they point to. If you modify the file through GPS, the bookmark will be automatically updated to keep
refering to the same place. Likewise if you close and reopen the file. However, when the file is modified outside of
GPS, the bookmark will not be aware of that change, and will thus reference another place in the file.

The menu Edit->Create Bookmark allows you to create a bookmark at the current location (either in the editor, or the
browser for instance).

All the bookmarks you have created will be visible in the Tools->Views->Bookmarks window. Clicking on the small
icon to the left side of each line will immediately jump to that bookmark.

You can rename a bookmark so that it is easier to remember what it refers to. To do so, open the Bookmarks window,
and click twice on the line of the bookmark. This will change the way the name is displayed, so that you can edit it in
place. Press enter when you are done modifying the name.

You can delete an existing bookmark by right clicking on the line, and select Delete bookmark in the contextual menu.

2.14 The Messages Window

The Messages window is used by GPS to display information and feedback about operations, such as build output,
information about processes launched, error messages.

This is a read-only window, which means that only output is available, no input is possible.

For an input/output window, see The Execution Window and also The Shell and Python Windows.

2.15 The Shell and Python Windows

These windows give access to the various scripting languages supported by GPS, and allow you to type commands
such as editing a file or compiling without using the menu items or the mouse.

An OS shell window is now also available in GPS, providing a simple access to the underlying OS shell as defined by
the SHELL or COMSPEC environment variables.

To show the shell consoles, select the menu Tools->Consoles.

See Scripting GPS for more information on using scripting languages within GPS.

2.13. Bookmarks 15

GPS Documentation, Release 5.2.1

You can use the up and down keys to navigate through the history of commands.

2.16 The Locations View

The Location Tree is filled whenever GPS needs to display a list of locations in the source files (typically, when
performing a global search, compilation results, and so on).

The Locations View shows a hierarchy of categories, which contain files, which contain locations. Clicking on a
location item will bring up a file editor at the requested place. Right-clicking on file or category items brings up
a contextual menu allowing you to remove the corresponding node from the view. Placing the mouse over an item
automatically pop up a tooltip window with full text of the item if this text can’t be completely shown in the window.

Every time a new category is created, as a result of a compilation or a search operation for example, the first entry of
that category is automatically selected, and the corresponding editor opened. This behavior can be controlled through
a preference Jump To First Location.

Closing the Locations view will remove from the editors locations that are also visible in the Locations view. If the
Locations View is present when exiting GPS and the desktop is saved, the locations will be saved as part of the desktop
for the current project, and will be loaded the next time GPS is started on the same project.

To navigate through the next and previous location (also called Tag), you can use the menu items Navigate->Previous
Tag and Navigate->Next Tag, or the corresponding key bindings.

Left-clicking on a line in the Location Tree brings up a contextual menu with the following entries:

Filter panel Controls availability of the filter panel at the bottom of the window.

Sort by subcategory Toggle the sorting of the entries by sub-categories. This is useful, for example, for separating the
warnings from the errors in the build results.

Expand category Expand all the files in the current categories.

16 Chapter 2. Description of the Main Windows

GPS Documentation, Release 5.2.1

Collapse all Collapse all the categories in the Locations View

Remove category/file/message Remove the selected category, file or message from the Locations View. Selected
message can be removed using Locations view->Remove message key binding also.

Export messages into text file Export all messages of the selected category/file into text file.

Jump to location Open the location contained in the message, if any.

Clear Locations View Remove all entries from the Locations View.

In some cases, a wrench icon will be associated on the left of a compilation message. See Code Fixing for more
information on how to make advantage of this icon.

The filter panel can be used to filter messages which match (or do not match) a text pattern or regular expression. As
soon as you type in the text entry, the filter is enabled. If you clear the text, the filter is disabled. The Close button
on the filter panel hides it and cancels the filter. The Regexp check button specifies how to use the filter text entry: as
plain text or regular expression. The Hide matched check button reverts the filter, e.g. switch between matching and
non-matching items.

2.17 The Execution Window

Each time a program is launched using the menu Build->Run, a new execution window is created to provide input and
output for this program.

In order to allow post mortem analysis and copy/pasting, the execution windows are not destroyed when the application
terminates.

To close an execution window, click on the cross icon on the top right corner of the window, or use the menu File-
>Close, or the menu Window->Close or the key binding Ctrl-W.

If you close the execution window while the application is still running, a dialog window is displayed, asking whether
you want to kill the application, or to cancel the close operation.

2.18 The Status Line

The status line is composed of two areas: on the left a status bar and on the right a progress bar (displayed only when
background tasks are running).

The progress bar is used to display information about on going operations such as builds, searches, or VCS commands.
These tasks operate in the background, and can be paused/resumed by double clicking on the progress bar: this will
open The Task Manager. In addition, you can click on the close icon on the left of the progress bar to interrupt the
running task.

2.19 The Task Manager

The Task Manager window lists all the currently running GPS operations that run in the background, such as builds,
searches or VCS commands.

The Task Manager is opened by double clicking on the progress bar or using the Tools->Views->Tasks menu, and can
be put anywhere in your desktop.

For each of these tasks, the Task Manager shows the status of the task, and the current progress. The execution of
theses tasks can be suspended using a contextual menu, brought up by right-clicking on a line.

2.17. The Execution Window 17

GPS Documentation, Release 5.2.1

When exiting GPS, if there are tasks running in the Task Manager, a window will display those tasks. You can also
bring up a contextual menu on the items in this window. You can force the exit at any time by pressing the confirmation
button, which will kill all remaining tasks, or continue working in GPS by pressing the Cancel button.

18 Chapter 2. Description of the Main Windows

CHAPTER

THREE

ONLINE HELP

By default when you start GPS, the working area contains a welcome page giving a few starting points in the online
help.

Online help for the GNAT tools is available from the Help menu item. GPS launches an external html browser to view
these pages. (See The Preferences Dialog on how to configure this under Unix. Under Windows systems, the default
HTML browser is used.)

3.1 The Help Menu

The Help menu item provides the following entries:

Welcome Open the GPS Welcome page.

Contents Open a special HTML file that contains links for all the documentation files currently registered in GPS,
Adding New Help Files.

GPS Submenu containing GPS documentation items.

GNAT Runtime Submenu referencing all GNAT run-time files available, and a direct access to the corresponding
specs containing embedded documentation.

Python extensions Gives access to the GPS API available via python.

About Display a dialog giving information about the versions of GPS and GNAT used:

19

GPS Documentation, Release 5.2.1

This menu contains a number of additional entries, depending on what documentation packages were installed on your
system. See the next section to see how to add new help files.

3.2 Adding New Help Files

GPS will search for the help files in the list of directories set in the environment variable GPS_DOC_PATH (a colon-
separated list of directories on Unix systems, or semicolon-separated list of directories on Windows systems). In
addition, the default directory <prefix>/share/doc/gps/html is also searched. If the file cannot be found in any of these
directories, the corresponding menu item will be disabled.

The environment variable GPS_DOC_PATH can either be set by each user in his own environment, or can be set
system-wide by modifying the small wrapper script gps itself on Unix systems.

It can also be set programmatically through the GPS shell or any of the scripting languages. This is done with:

GPS.add_doc_directory ("/home/foo")

The specific list of files shown in the menus is set by reading the index files in each of the directories in
GPS_DOC_PATH. These index files must be called gps_index.xml.

The format of these index files is specified in Adding documentation.

20 Chapter 3. Online Help

CHAPTER

FOUR

MULTIPLE DOCUMENT INTERFACE

All the windows that are part of the GPS environment are under control of what is commonly called a multiple
document interface (MDI for short). This is a common paradigm on windowing systems, where related windows are
put into a bigger window which is itself under control of the system or the windows manager.

This means that, by default, no matter how many editors, browsers, views, ... windows you have opened, your system
will still see only one window (On Windows systems, the task bar shows only one icon). However, you can organize
the GPS windows exactly the way you want, all inside the GPS main window.

This section will show the various capacities that GPS provides to help you organize your workspace.

4.1 Selecting Windows

At any time, there is only one selected window in GPS (the active window). You can select a window either by
clicking in its title bar, which will then get a different color, or by selecting its name in the menu Window.

Alternatively, windows can be selected with the keyboard. By default, the selection key is Alt-Tab. When you press
it, a temporary dialog is popped-up on the screen, with the name of the window that will be selected when the key is
released. If you press the selection key multiple times, this will iterate over all the windows currently open in GPS.

This interactive selection dialog is associated with a filter, displayed below the name of the selected window. If you
maintain Alt pressed while pressing other keys than Tab, this will modify the current filter. From then on, pressing
Alt-Tab will only iterate through those windows that match the filter.

The filter is matched by any window whose name contains the letter you have typed. For instance, if you are currently
editing the files unit1.adb and file.adb, pressing t will only leave unit1.adb selectable.

4.2 Closing Windows

Wherever the windows are displayed, they are always closed in the same manner. In the right side of the title bar of
the window, one small button is displayed, looking like a cross. Clicking on this button will close the window.

An alternative way to close the window is to double-click on the icon to the left of the title bar of the window. Not all
windows have such an icon, but editors do for instance.

When a window is closed, the focus is given to the window of the same part of the MDI (each of the docks or the
middle area) that previously had the focus. Therefore, if you simply open an editor as a result of a cross-reference
query, you can simply close that editor to go back to where you were before.

Alternatively, you can also select the window by clicking anywhere in its title bar, and then select the menu Window-
>Close.

21

GPS Documentation, Release 5.2.1

Finally, a window can be closed by right-clicking in the associated notebook tab (if the tabs are visible), and select
Close in the contextual menu.

In the notebook tab (when you are in an editor), you will also find a Close all other editors menu, which, as its name
implies, will keep a single editor open, the one you are clicking on.

4.3 Splitting Windows

Windows can be split at will, through any combination of horizontal and vertical splits. This feature requires at least
two windows (text editors, browsers, ...) to be superimposed in the central area. Selecting either the Window->Split
Horizontally or Window->Split Vertically menus will then split the selected window in two. In the left (resp. top) pane,
the currently selected window will be left on its own. The rest of the previously superimposed windows will be put in
the right (resp. bottom) pane. You can then in turn split these remaining windows to achieve any layout you want.

All split windows can be resized interactively by dragging the handles that separate them. A preference (menu Edit-
>Preferences) controls whether this resizing is done in opaque mode or border mode. In the latter case, only the new
handle position will be displayed while the mouse is dragged.

You may want to bind the key shortcuts to the menus Window->Split Horizontally as well as Window->Split Vertically
using the key manager. In addition, if you want to achieve an effect similar to e.g. the standard Emacs behavior (where
control-x 2 splits a window horizontally, and control-x 3 splits a window vertically), you can use the key
manager (The Key Manager Dialog).

Moving Windows will show how to do the splitting through drag-and-drop and the mouse, which in general is the
fastest way to do.

Several editors or browsers can be put in the same area of the MDI. In such a case, they will be grouped together in a
notebook widget, and you can select any of them by clicking on the corresponding tab. Note that if there are lots of
windows, two small arrows will appear on the right of the tabs. Clicking on these arrows will show the remaining tabs.

In some cases GPS will change the color and size of the title (name) of a window in the notebook tab. This indicates
that the window content has been updated, but the window wasn’t visible. Typically, this is used to indicate that new
messages have been written in the messages or console window.

4.4 Floating Windows

Although the MDI, as described so far, is already extremely flexible, it is possible that you prefer to have several
top-level windows under direct control of your system or window manager. This would be the case for instance if
you want to benefit from some extra possibilities that your system might provide (virtual desktops, different window
decoration depending on the window’s type, transparent windows, multiple screens, ...).

GPS is fully compatible with this behavior, since windows can also be floating windows. Any window that is currently
embedded in the MDI can be made floating at any time, simply by selecting the window and then selecting the menu
Window->Floating. The window will then be detached, and can be moved anywhere on your screen, even outside of
GPS’s main window.

There are two ways to put a floating window back under control of GPS. The more general method is to select the
window through its title in the menu Window, and then unselect Window->Floating.

The second method assumes that the preference Destroy Floats in the menu Edit->Preferences has been set to false.
Then, you can simply close the floating window by clicking in the appropriate title bar button, and the window will be
put back in GPS. If you actually want to close it, you need to click once again on the cross button in its title bar.

A special mode is also available in GPS, where all windows are floating. The MDI area in the main window becomes
invisible. This can be useful if you rely on windows handling facilities supported by your system or window manager

22 Chapter 4. Multiple Document Interface

GPS Documentation, Release 5.2.1

but not available in GPS. This might also be useful if you want to have windows on various virtual desktops, should
your window manager support this.

This special mode is activated through a preference (menu Edit->Preferences). This preference is entitled All Float-
ing.

4.5 Moving Windows

As we have seen, the organization of windows can be changed at any time by selecting a notebook containing several
editors or browsers, and selecting one of the Split menus in the Window menu.

A more intuitive method is also provided, based on the drag-and-drop paradigm. The idea is simply to select a window,
wherever it is, and then, by clicking on it and moving the mouse while keeping the left button pressed, drop it anywhere
else inside GPS.

Selecting an item so that it can be dragged is done simply by clicking with the left mouse button in its title bar, and
keep the button pressed while moving the mouse.

If the window is inside a notebook, you can also choose to select the notebook tab to start dragging the window around.
In such a case, the windows within the notebook can also be reordered: select the tab, then start moving left or right
to the new position the window should have. Note that your mouse must remain within the tab area, since otherwise
GPS will enter in the mode where the window can be put in other notebooks.

If you want to move a window to another notebook by dragging its tab, you should first move out of the tab area
(vertically in general), and then anywhere in GPS. That’s to distinguish between the mode where you want to reorder
tabs and the mode where you want to move windows.

While you keep the mouse button pressed, and move the mouse around, the selected drop area is highlighted with a
dashed border. This shows precisely where the window would be put if you were to release the mouse button at that
point.

If you move your mouse all the way to the side of the desktop, and then drop the window, that window will occupy the
full width (resp. height) of the desktop on that side.

Here are the various places where a window can be dropped:

Inside the MDI The location of the current window is indicated by a dashed rectangle, and the window you are
dragging will be positioned at the same location as that rectangle: either on top of the window on which you
dropped it (therefore they will both be put inside a notebook), or to one of the sides of that window, splitting as
needed.

System window If you drop a window outside of GPS (for instance, on the background of your screen), the window
will be floated.

If you maintain the shift key pressed while dropping the window, this might result in a copy operation instead of a
simple move. For instance, if you are dropping an editor, a new view of the same editor will be created, resulting in
two views present in GPS: the original one is left at its initial location, and a second view is created at the new location.

If you maintain the control key pressed while dropping the window, all the windows that were in the same notebook
are moved, instead of the single one you selected. This is the fastest way to move a group of windows to a new location,
instead of moving them one by one.

4.6 Perspectives

GPS supports the concept of perspectives. These are activity-specific desktops, each with their own set of windows,
but sharing some common windows like the editors.

4.5. Moving Windows 23

GPS Documentation, Release 5.2.1

Depending on the activity you want to perform (debugging, version control,...) you could switch to another perspective.
For instance, in the context of the debugger, the new perspective would by default contain the call stack window, the
data window, the debugger consoles,... each at your favorite location. Whenever the debug starts, you therefore do not
have to open these windows again.

The perspectives have names, and you switch perspectives by selecting the menu /Window/Perspectives/. You can also
create a new perspective by selecting the menu /Window/Perspectives/Create New.

GPS will sometimes automatically change perspectives. For instance, if you start a debugger, it will switch to the
perspective called “Debug” (if it exists). When the debugger terminates, you are switched back to the “Default”
perspective (again, if it exists).

When you leave a perspective, GPS automatically saves its contents (which windows are opened, their location,...), so
that when you are going back to the same perspective you find the same layout.

Likewise, when GPS exits, it will save the layout of all perspectives into a file called perspectives.xml, so that
it can restore them when you restart GPS. This behavior is controlled by the “Save desktop on exit” preference, and
can be disabled.

One of the difficulties in working with perspectives is knowing which windows will be preserved when you switch
to another perspective, and which windows will be hidden. There is a central area where all preserved windows are
found. Typically, it only contains editors (including if you have split them side by side for instance). If you drag and
drop another window on top or to the sides of an editor, that window will be preserved when changing perspectives,
unless it was already found elsewhere in the new perspective. The small tooltip that appears on the screen while you
drag and drop will tell you whether the window (if dropped at the current location) will be visible in other perspectives
or not.

24 Chapter 4. Multiple Document Interface

CHAPTER

FIVE

EDITING FILES

5.1 General Information

Source editing is one of the central parts of GPS, giving in turn access to many other functionalities, including extended
source navigation and source analyzing tools.

The integrated source editor provides all the usual capabilities found in integrated environments, including:

Title bar Showing the full name of the file including path information.

Line number information This is the left area of the source editor. Line numbers can be disabled from the prefer-
ences. The Preferences Dialog. Note that this area can also display additional information, such as the current
line of execution when debugging, or cvs annotations.

Scrollbar Located on the right of the editor, it allows you to scroll through the source file.

25

GPS Documentation, Release 5.2.1

Speed column This column, when visible, is located on the left of the editor. It allows you to view all the highlighted
lines in a file, at a glance. For example, all the lines containing compilation errors are displayed in the Speed
Column. See The Preferences Dialog for information on how to customize the behavior of the Speed Column.

Status bar Giving information about the file. It is divided in two sections, one on the left and one on the right of the
window.

The left section The first box on the left shows the current subprogram name for languages that support this capability.
Currently Ada, C and C++ have this ability. See The Preferences Dialog to enable or disable this feature.

The right section If the file is maintained under version control, and version control is supported and enabled in GPS,
the first box on the left will show VCS information on the file: the VCS kind (e.g. CVS), followed by the revision
number, and if available, the status of the file.

The second box shows the current editing mode. This is either Insert or Overwrite and can be changed using
the insert keyboard keys by default.

The third box shows the writable state of the file. You can change this state by clicking on the label directly:
this will switch between Writable and Read Only. Note that this will not change the permissions of the file on
disk, it will only change the writable state of the source editor within GPS.

When trying to save a file which is read only on the disk, GPS will ask for confirmation, and if possible, will
force saving of the file, keeping its read only state.

The fourth box shows whether the file has been modified since the last save. The three possible states are:

Unmodified The file has not been modified since the file has been loaded or saved.

Modified The file has been modified since last load or save. Note that if you undo all the editing operations until the
last save operation, this label will change to Unmodified.

Saved The file has been saved and not modified since.

The fifth box displays the position of the cursor in the file by a line and a column number.

Contextual menu Displayed when you right-click on any area of the source editor. See in particular Contextual Menus
for Source Navigation for more details.

Syntax highlighting Based on the programming language associated with the file, reserved words and languages
constructs such as comments and strings are highlighted in different colors and fonts. See The Preferences
Dialog for a list of settings that can be customized.

By default, GPS knows about many languages. You can also easily add support for other languages through
XML files. Most languages supported by GPS will provide syntax highlighting in the editor.

Automatic indentation When enabled, lines are automatically indented each time you press the Enter key, or by
pressing the indentation key. The indentation key is Ctrl-Tab by default, and can be changed in the key
manager dialog, The Key Manager Dialog.

If a set of lines is selected when you press the indentation key, this whole set of lines will be indented.

Tooltips When you leave the mouse over a word in the source editor, a small window will automatically pop up if
there are relevant contextual information to display about the word.

The type of information displayed depends on the current state of GPS.

In normal mode, the entity kind and the location of declaration is displayed when this information is available.
That is, when the cross-reference information about the current file has been generated. If there is no relevant
information, no tooltip is displayed. See Support for Cross-References for more information.

In addition, the documentation for the entity is displayed. This is the block of comments just before or just after
the entity’s declaration of body. There mustn’t be any blank line between the two. For instance, the following
are valid documentation for Ada and C:

26 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

-- A comment for A
A : Integer;

B : Integer;
-- A comment for B

C : Integer;

-- Not a comment for C, there is a blank linke

In debugging mode, the value of the variable under the mouse is displayed in the pop up window if the variable
is known to the debugger. Otherwise, the normal mode information is displayed.

You can disable the automatic pop up of tool tips in the Editor section of the preferences dialog. The Preferences
Dialog.

Code completion GPS provides two kinds of code completion: a smart code completion based on semantic informa-
tion, and a text completion.

It is useful when editing a file and using often the same words to get automatic word completion. This is possible
by typing the Ctrl-/ key combination (customizable through the key manager dialog) after a partial word: the
next possible completion will be inserted in the editor. Typing this key again will cycle through the list of
possible completions.

Text completions are searched in all currently open source files, by first looking at the closest words and then
looking further in the source as needed.

Delimiter highlighting When the cursor is moved before an opening delimiter or after a closing delimiter, then both
delimiters will be highlighted. The following characters are considered delimiters: ()[]{}. You can disable
highlighting of delimiters in the preferences.

You can also jump to a corresponding delimiter by using the Ctrl-’ key, that can be configured in the prefer-
ences. Typing twice on this key will move the cursor back to its original position.

Current line highlighting You can configure the editor to highlight the current line with a certain color. The Prefer-
ences Dialog.

Current block highlighting If this preference is enabled, the editor will highlight the current block of code, e.g. the
current begin...end block, or loop statement, etc...

The block highlighting will also take into account the changes made in your source code, and will recompute
automatically the current block when needed.

This capability is currently implemented for Ada, C and C++ languages.

Block folding When enabled, the editor will display - icons on the left side, corresponding to the beginning of
subprograms. If you click on one of these icons, all the lines corresponding to this subprogram are hidden,
except the first one. As for the block highlighting, these icons are recomputed automatically when you modify
your sources and are always kept up to date.

This capability is currently implemented for Ada, C and C++ languages.

Auto save You can configure the editor to periodically save modified files. See Autosave delay for a full description
of this capability.

Automatic highlighting of entities When the cursor is positioned on an entity in the source editor, GPS will highlight
all references to this entity in the current editor.

When the cursor moves away from the entity, the highlighting is removed.

This is controlled by the plugin auto_highlight_occurrences.py: it can be deactivated by deactivating the plugin
(The Plug-ins Editor).

5.1. General Information 27

GPS Documentation, Release 5.2.1

Details such as presence of indications in the Speed Column or highlighting color can be customized in the
Plugins section of The Preferences Dialog.

GPS also integrates with existing third party editors such as Emacs or vi. Using an External Editor.

5.2 Editing Sources

5.2.1 Key bindings

In addition to the standard keys used to navigate in the editor (up, down, right, left, page up, page down), the integrated
editor provides a number of key bindings allowing easy navigation in the file.

There are also several ways to define new key bindings, see Defining text aliases and Binding actions to keys.

Ctrl-Shift-u Pressing these three keys and then holding Ctrl-Shift allow you to enter characters using their hexadeci-
mal value. For example, pressing Ctrl-Shift-u-2-0 will insert a space character (ASCII 32, which is 20
in hexadecimal).

Ctrl-x / Shift-delete Cut to clipboard

Ctrl-c / Ctrl-insert Copy to clipboard

Ctrl-v / Shift-insert Paste from clipboard

Ctrl-s Save file to disk

Ctrl-z Undo previous insertion/deletion

Ctrl-r Redo previous insertion/deletion

Insert Toggle overwrite mode

Ctrl-a Select the whole file

Home / Ctrl-Pgup Go to the beginning of the line

End / Ctrl-Pgdown Go to the end of the line

Ctrl-Home Go to the beginning of the file

Ctrl-End Go to the end of the file

Ctrl-up Go to the beginning of the line, or to the previous line if already at the beginning of the line.

Ctrl-down Go to the end of the line, or to the beginning of the next line if already at the end of the line.

Ctrl-delete Delete end of the current word.

Ctrl-backspace Delete beginning of the current word.

5.3 The File Selector

The file selector is a dialog used to select a file. Under Windows, the default is to use the standard file selection widget.
Under other platforms, the file selector is a built-in dialog:

28 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

This dialog provides the following areas and capabilities:

• A tool bar on the top composed of five buttons giving access to common navigation features:

• left arrow go back in the list of directories visited

• right arrow go forward

• up arrow go to parent directory

• refresh refresh the contents of the directory

• home go to home directory (value of the HOME environment variable, or / if not defined)

• A list with the current directory and the last directories explored. You can modify the current directory by
modifying the text entry and hitting Enter, or by clicking on the right arrow and choose a previous directory
in the pop down list displayed.

5.3. The File Selector 29

GPS Documentation, Release 5.2.1

• A directory tree. You can open or close directories by clicking on the + and - icons on the left of the directories,
or navigate using the keyboard keys: up and down to select the previous or the next directory, + and - to expand
and collapse the current directory, and backspace to select the parent directory.

• A file list. This area lists the files contained in the selected directory. If a filter is selected in the filter area,
only the relevant files for the given filter are displayed. Depending on the context, the list of files may include
additional information about the files, e.g. the kind of a file, its size, etc...

• A filter area. Depending on the context, one or several filters are available to select only a subset of files to
display. The filter All files which is always available will display all files in the directory selected.

• A file name area. This area will display the name of the current file selected, if any. You can also type a file or
directory name directly, and complete the name automatically by using the Tab key.

• A button bar with the OK and Cancel buttons. When you have selected the right file, clock on OK to confirm,
or click on Cancel at any time to cancel and close the file selection.

5.4 Menu Items

The main menus that give access to extended functionalities related to source editing are described in this section.

5.4.1 The File Menu

New Open a new untitled source editor. No syntax highlighting is performed until the file is saved, since GPS needs
to know the file name in order to choose the programming language associated with a file.

When you save a new file for the first time, GPS will ask you to enter the name of the file. In case you have
started typing Ada code, GPS will try to guess based on the first main entity in the editor and on the current
naming scheme, what should be the default name of this new file.

New View Create a new view of the current editor. The new view shares the same contents: if you modify one of the
source views, the other view is updated at the same time. This is particularly useful when you want to display
two separate parts of the same file, for example a function spec and its body.

A new view can also be created by keeping the shift key pressed while drag-and-dropping the editor (see
Moving Windows). This second method is preferred, since you can then specify directly where you want to put
the new view. The default when using the menu is that the new view is put on top of the editor itself.

Open... Open a file selection dialog where you can select a file to edit. Under Windows, this is the standard file
selector. Under other platforms, this is a built-in file selector described in The File Selector.

Open From Project... Open a dialog where you can easily and rapidly select a source file from your project.

30 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

The first text area allows you to type a file name. You can start the beginning of a file name, and use the Tab
key to complete the file name. If there are several possible completions, the common prefix will be displayed,
and a list of all possible completions will be displayed in the second text area.

You can then either complete the name by typing it, or continue hitting the Tab key to cycle through the possible
completions, or click on one of the completions in the list displayed.

If you press the down arrow key, the focus will move to the list of completions, so that you can select a file from
this list without using the mouse.

Once you have made your choice, click on the OK button to validate. Clicking on Cancel or hitting the Esc key
will cancel the operation and close the dialog.

This dialog will only show each file once. If you have extended projects in your hierarchy, some files may be
redefined in some extending project. In this case, only the files from the extending project are shown, and you
cannot have access through this dialog to the overridden files of the extended project. Of course, you can still
use the project view or the standard File->Open menu to open these files.

Open From Host... Open a file selector dialog where you can specify a remote host, as defined in The remote con-
figuration dialog. You have access to a remote host file system, can specify a file which can be edited in GPS.
When you hit the save button or menu, the file will be saved on the remote host.

See also Using GPS for Remote Development for a more efficient way to work locally on remote files.

Recent Open a sub menu containing a list of the ten most recent files opened in GPS, so that you can reopen them
easily.

Save Save the current source editor if needed.

Save As... Same current file under a different name, using the file selector dialog. The File Selector.

Save More Give access to extra save capabilities.

All Save all items, including projects, etc...

5.4. Menu Items 31

GPS Documentation, Release 5.2.1

Desktop Save the desktop to a file. The desktop includes information about files, graphs, ... and their window size and
position in GPS. The desktop is saved per top level project, so that if you reload the same project you get back to
the same situation you were in when you left GPS. Instead, if you load a different project another desktop will
be loaded (or the default desktop). Through the preference “Save Desktop On Exit”, you can also automatically
save this desktop when you quit GPS.

Change Directory... Open a directory selection dialog that lets you change the current working directory.

Messages This sub menu gives access to functionalities related to the Messages window. The Messages Window.

Clear Clear the contents of the Messages window.

Save As... Save the contents of the Messages window to a file. A file selector is displayed to choose the name and
location of the file.

Load Contents... Open a file selector to load the contents of a file in the Messages window. Source locations are
identified and loaded in The Locations View.

Export Locations to Editor List the contents of the Locations view in a standard text editor.

Close Close the current window. This applies to all GPS windows, not only source editors.

Print Print the current window contents, optionally saving it interactively if it has been modified. The Print Command
specified in the preferences is used if it is defined. On Unix this command is required; on Windows it is optional.

On Windows, if no command is specified in the preferences the standard Windows print dialog box is displayed.
This dialog box allows the user to specify the target printer, the properties of the printer, which pages to print
(all, or a specific range of pages), the number of copies to print, and, when more than one copy is specified,
whether the pages should be collated. Pressing the Cancel button on the dialog box returns to GPS without
printing the window contents; otherwise the specified pages and copies are printed on the selected printer. Each
page is printed with a header containing the name of the file (if the window has ever been saved). The page
number is printed on the bottom of each page.

See also:ref:Print Command <Print_Command>.

Exit Exit GPS after confirmation and if needed, confirmation about saving modified windows and editors.

5.4.2 The Edit Menu

Undo Undo previous insertion/deletion in the current editor.

Redo Redo previous insertion/deletion in the current editor.

Cut Cut the current selection and store it in the clipboard.

Copy Copy the current selection to the clipboard.

Paste Paste the contents of the clipboard to the current cursor position.

Paste Previous GPS stores a list of all the text that was previously copied into the clipboard through the use of Copy
or Cut.

By default, if you press Paste, the newest text will be copied at the current position. But if you select Paste
Previous immediately after (one or more times) you can instead paste text that was copied previously in the
clipboard.

For instance, if you copy through Edit->Copy the text “First”, then copy the text “Second”, you can then select
Edit->Paste to insert “Second” at the current location. If you then select Edit->Paste Previous, “Second” will
be replaced by “First”.

Selecting this menu several times will replace the text previously pasted by the previous one in the list saved in
the clipboard. When reaching the end of this list, GPS will started from the beginning, and insert again the last
text copied into the clipboard.

32 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

The size of this list is controlled by the Clipboard Size preference.

For more information, The Clipboard View.

Select All Select the whole contents of the current source editor.

Rectangles... See the section Rectangles for more information on rectangles.

Insert File... Open a file selection dialog and insert the contents of this file in the current source editor, at the current
cursor location.

Insert Shell Output... Open an input window at the bottom of the GPS window where you can specify any external
command. The output of the command will be inserted at the current editor location in case of success. If text
is selected, the text is passed to the external command and replaced by the command’s output.

Format Selection Indent and format the selection or the current line. The Preferences Dialog, for preferences related
to source formatting.

Smart Completion

Complete the identifier prefix under the cursor, and list the results in a pop-up list. Used with Ada sources
this command can take advantage of an entity database as well as Ada parsers embedded in GPS which
analyze the context, and offer completions from the entire project along with documentation extracted
from comments surrounding declarations. To take full advantage of this feature, the smart completion
preference must be enabled, which will imply the computation of the entity database at GPS startup.

The support for C and C++ is not as powerful as the support for Ada since it relies completely on the
xref information files generated by the compiler, does not have into account the C/C++ context around
the cursor, and does not extract documentation from comments around candidate declarations. To take
advantage of this feature, in addition to enable the smart completion preference, the C/C++ application
must be built with -fdump-xref.

In order to use this feature, open any Ada, C or C++ file, and begin to type an identifier. It has to be
an identifier declared either in the current file (and accessible from the cursor location) or in one of the
packages of the project loaded. Move the cursor right after the last character of the incomplete identifier
and hit the completion key (which is ctrl+space by default). GPS will open a popup displaying all the
known identifiers beginning with the prefix you typed. You can then browse among the various proposals
by clicking on the up and down keys, or using the left scrollbar. For each entity, a documentation box is
filled. If the location of the entity is known, it’s displayed as an hyperlink, and you can jump directly to
its declaration by clicking on it.

Typing new letters will reduce the range of proposal, as long as there remain solutions. Once you’ve
selected the expected completion, you can validate by pressing Enter.

Typing control characters (ie, characters which cannot be used in identifiers) will also validate the current
selection.

GPS is also able to complete automatically subprogram parameter or dotted notations. For example, if
you type:

with Ada.

the smart completion window will appear automatically, listing all the child and nested packages of Ada.
You can configure the time interval after which the completion window appears (The Preferences Dialog).

You can also write the beginning of the package, e.g.:

with Ada.Text

pressing the completion key will offer you Text_IO.

If you are in a code section, you will be able to complete the fields of a record, or the contents of a
package, e.g.:

5.4. Menu Items 33

GPS Documentation, Release 5.2.1

declare
type R is record

Field1 : Integer;
Field2 : Integer;

end record;

V : R;
begin

V.

Completing V. will propose Field1 and Field2.

The smart completion can also give you the possible parameters of a call you’re currently making. For
example, in the following code:

procedure Proc (A, B, C : Integer);
begin

Proc (1,

If you hit the completion key after the comma, the smart completion engine will propose you to complete
with the named parameters “B =>”, “C =>” or directly to complete with all the remaining parameters,
which in this case will be “B =>, C =>)”.

Limitations:

• This feature is currently only available for Ada, C and C++. Using the smart completion on sources of other
languages behaves as the identifier completion does.

• Smart completion for C and C++ is based on the xref information generated by the compiler. Therefore, GPS
has no knowledge on recently edited files. Use Build->Recompute Xref Info or rebuild with -fdump-xref to
update the completion database.

• Smart completion for C and C++ is only triggered at the beginning of an expression (that is, it is not triggered
on special characters such as ‘(‘, ‘->’, or the C++ operator ‘::’) and it may propose too much candidates since it
does not have into account the C/C++ syntax context. Typing new letters will reduce the range of proposal, as
long as there remain solutions.

• Smart completion of subprogram parameters, fields and dotted notation are not available yet for C and C++.

• More Completion .. index:: completion

This submenu contains more ways to automatically complete code

– Expand Alias Consider the current word as an alias and expand according to aliases defined in Defining
text aliases.

34 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

– Complete Identifier Complete the identifier prefix under the cursor. This command will cycle through all
identifiers starting with the given prefix.

– Complete Block .. index:: complete block

Close the current statement (if, case, loop) or unit (procedure, function, package). This action works only
on an Ada buffer.

Selection

Comment Lines Comment the current selection or line based on the current programming language syntax.

Uncomment Lines Remove the comment delimiters from the current selection or line.

Refill Refill text on the selection or current line: rearrange line breaks in the paragraph so that line lengths do
not exceed the maximum length, as set in the “Right margin” preference (The Preferences Dialog).

Sort Sort the selected lines alphabetically. This is particularly useful when editing non source code, or for
specific parts of the code, like with clauses in Ada.

Sort Reverse Sort the selected lines in reverse alphabetical order

Pipe in external program... Open an input window at the bottom of the GPS window where you can specify
any external command, which will take the current selection as input. The output of the command will
replace the contents of the selection on success.

Serialize Increment a set of numbers found on adjacent lines. The exact behavior depends on whether there is
a current selection or not.

If there is no selection, then the set of lines considered is from the current line on and includes all adjacent
lines that have at least one digit in the original columns. In the following example, ‘|’ marks the place
where the cursor is at the beginning:

AAA |10 AAA
CCC 34567 CCC
DDD DDD

then only the first two lines will be modified, and will become:

AAA 10 AAA
CCC 11 CCC
DDD DDD

If there is a selection, all the lines in the selection are modified. For each line, the columns that had digits
in the first line are modified, no matter what they actually contain. In the example above, if you select all
three lines, the replacement becomes:

AAA 10 AAA
CCC 11567 CCC
DDD 12D

ie only the fifth and sixth columns are modified since only those columns contained digits in the first line.
This feature assumes that you are selecting a relevant set of lines. But it allows you to transform blank
lines more easily. For instance, if you have:

AAA 1
BBB
CCC

this is transformed into:

5.4. Menu Items 35

GPS Documentation, Release 5.2.1

AAA 1
BBB 2
CCC 3

Untabify Replace all tabs in the current selection (or in the whole buffer if there is no selection) by the appro-
priate number of spaces

Move Right and Move Left Shift the currently selected lines (or the current line if there is no selection) one
character to the right or to the left

Fold all blocks Collapse all the blocks in the current file.

Unfold all blocks Uncollapse all the blocks in the current file.

Create Bookmark Creates a new Bookmark at cursor position. For more information, Bookmarks.

Pretty Print Pretty print the current source editor by calling the external tool gnatpp. It is possible to specify gnatpp
switches in the switch editor. The Switches Editor.

Generate Body Generate Ada body stub for the current source editor by calling the external tool gnatstub.

Edit with external editor Using an External Editor.

Aliases Display the Aliases editor. Defining text aliases.

Key shortcuts Give access to the key manager dialog, to associate commands with special keys. The Key Manager
Dialog.

Preferences Give access to the preferences dialog. The Preferences Dialog.

5.5 Rectangles

Rectangle commands operate on a rectangular area of the text, that is all the characters between two columns in a
certain range of lines.

A rectangle is selected using the standard selection mechanism. You can therefore use either the mouse to highlight
the proper region, or shift and the cursor keys to extend the selection, or the Emacs selection (with the mark and
the current cursor location) if you have activated the emacs.py plugin.

Visually, a selected rectangle is exactly the same as the standard selection. In particular, the characters after the last
column, on each line, will also be highlighted. The way the selection is interpreted (either as a full text or as a
rectangle) depends on the command you then chose to manipulate the selection.

If you chose one of the commands from the /Edit/Rectangles menu, the actual rectangle will extend from the top-
left corner down to the bottom-right corner. All characters to the right of the right-most column, although they are
highlighted, are not part of the rectangle.

Consider for instance the following initial text:

package A is
procedure P;

procedure Q;
end A;

and assume we have selected from the character “p” in “procedure P”, down to the character “c” in “procedure Q”.

The following commands can then be used (either from the menu, or you can assign key shortcuts to them via the
usual /Edit/Key shortcuts menu.

36 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

• Cut or Delete These commands will remove the selected text (and have no effect on empty lines within the
rectangle). The former will in addition copy the rectangle to the clipboard, so that you can paste it later. In our
example, we end up with:

package A is
edure P;

edure Q;
end A;

• Copy This command has no visual effect, but copies the contents of the rectangle into the clipboard.

• Paste Pastes the contents of the clipboard as a rectangle: each line from the clipboard is treated independently,
and inserted on successive lines in the current editor. They all start in the same column (the one where the cursor
is initially in), and existing text in the editor lines is shifted to the right). If for instance you now place the cursor
in the second line, first column, and paste, we end up with:

package A is
proc edure P;

proc edure Q;
end A;

• Clear Replaces the contents of the selected rectangle with spaces. If we start from our initial exmaple, we end
up with the following. Note the difference with Delete:

package A is
edure P;

edure Q;
end A;

• Open Replaces the contents of the selected rectangle with spaces, but shifts the lines to the right to do so. Note
the difference with Clear:

package A is
procedure P;

procedure Q;
end A;

• Replace With Text This is similar to Clear, but the rectangle is replaced with user-defined text. The lines will be
shifted left or right if the text you insert is shorter (resp. longer) than the width of the rectangle. If for instance
we replace our initial rectangle with the text TMP, we end up with the following. Note that the character “c” has
disappeared, since TMP is shorter than our rectangle width (4 characters). This command will impact lines that
are empty in the initial rectangle:

package A is
TMPedure P;
TMP
TMPedure Q;

end A;

• Insert Text This inserts a text to the left of the rectangle on each line. The following example inserts TMP. Note
the difference with Replace With Text. This command will also insert the text on lines that are empty in the
initial rectangle:

package A is
TMPprocedure P;
TMP

5.5. Rectangles 37

GPS Documentation, Release 5.2.1

TMPprocedure Q;
end A;

• Sort This sorts the selected lines according to the key which starts and ends on the corresponding rectangle’s
columns:

aaa 15 aa
bbb 02 bb
ccc 09 cc

With a selection starting from the 1 on the first line and ending on the 9 on the last one, sorting will result with
the following content:

bbb 02 bb
ccc 09 cc
aaa 15 aa

• Sort reverse

As above but in the reverse order.

5.6 Recording and replaying macros

It is often convenient to be able to repeat a given key sequence a number of times.

GPS supports this with several different methods:

• Repeat the next action

If there is a single key press that you wish to repeat a number of times, you should first use the GPS action
“Repeat Next” (bound by default to control-u, but this can be changed as usual through the /Edit/Key
Shortcuts menu), then entering the number of times you wish to repeat, and finally pressing the key you want.

For instance, the following sequence control-u 79 - will insert 79 characters ‘-‘ in the current editor. This
proves often useful to insert separators.

If you are using the emacs mode (see /Tools/Plug-ins menu), you can also use the sequence control-u 30
control-k to delete 30 lines.

• Recording macros

If you wish to repeat a sequence of more than 1 key, you should record this sequence as a macro. All macro-
related menus are found in /Tools/Macros, although it is often more convenient to use these through key bindings,
which you can of course override.

You must indicate to GPS that it should start recording the keys you are pressing. This is done through the
/Tools/Macros/Start Keyboard Macro menu. As its name indicates, this only records keyboard events, not mouse
events. Until you select /Tools/Macros/Stop Macro, GPS will keep recording the events.

In Emacs mode, the macro actions are bound to control-x (, control-x) and control-x e key
shortcuts. For instance, you can execute the following to create a very simple macro that deletes the current line,
wherever your cursor initially is on that line:

– control-x (start recording

– control-a go to beginning of line

– control-k delete line

– control-x) stop recording

38 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

5.7 Contextual Menus for Editing Files

Whenever you ask for a contextual menu (using e.g. the third button on your mouse) on a source file, you will get
access to a number of entries, displayed or not depending on the current context.

Menu entries include the following categories:

Source Navigation Contextual Menus for Source Navigation.

Dependencies Dependency Browser.

Entity browsing Entity Browser.

Project view The Project View.

Version control The Version Control Contextual Menu.

Debugger Using the Source Editor when Debugging.

Case exceptions Handling of case exceptions.

Refactoring Refactoring.

In addition, an entry Properties... is always visible in this contextual menu. When you select it, a dialog pops up that
allows you to override the language used for the file, or the character set.

This can be used for instance if you want to open a file that does not belong to the current project, but where you want
to benefit from the syntax highlighting that GPS knows how to.

It is not recommended to override the language for source files that belong to the project. Instead, you should use the
Project Properties dialog and change the naming scheme if appropriate. This will ensure better consistency between
GPS and the compiler in the way they manipulate the file.

5.8 Handling of case exceptions

GPS keeps a set of case exceptions that is used by all case insensitive languages. When editing or reformatting a
buffer for such a language the case exception dictionary will be checked first. If an exception is found for this word or
a substring of the word, it will be used; otherwise the specified casing for keywords or identifiers is used. A substring
is defined as a part of the word separated by underscores.

Note that this feature is not activated for entities (keywords or identifiers) for which the casing is set to Unchanged.
See The Preferences Dialog.

A contextual menu named Casing has the following entries:

Lower *entity* Set the selected entity in lower case.

Upper *entity* Set the selected entity in upper case.

Mixed *entity* Set the selected entity in mixed case (set the first letter and letters before an underscore in upper case,
all other letters are set to lower case).

Smart Mixed *entity* Set the selected entity in smart mixed case. Idem as above except that upper case letters are
kept unchanged.

Add exception for *entity* Add the current entity into the case exception dictionary.

Remove exception for *entity* Remove the current entity from the case exception dictionary.

To add or remove a substring exception into/from the dictionary you need to first select the substring on the editor. In
this case the last two contextual menu entries will be:

Add substring exception for *str* Add the selected substring into the case substring exception dictionary.

5.7. Contextual Menus for Editing Files 39

GPS Documentation, Release 5.2.1

Remove substring exception for *str* Remove the selected substring from the case substring exception dictionary.

5.9 Refactoring

GPS includes basic facilities for refactoring your code. Refactoring is the standard term used to describe manipulation
of the source code that do not affect the behavior of the application, but help reorganize the source code to make it
more readable, more extendable, ...

Refactoring technics are generally things that programmers are used to do by hand, but which are faster and more
secure to do automatically through a tool.

One of the basic recommendations when you refactor your code is to recompile and test your application very regularly,
to make sure that each of the small modifications you made to it didn’t break the behavior of your application. This is
particularly true with GPS, since it relies on the cross-references information that is generated by the compiler. If some
of the source files have not been recompiled recently, GPS will print warning messages indicating that the renaming
operation might be dangerous and/or only partial.

One of the reference books that was used in the choice of refactoring methods to implement is “Refactoring”, by
Martin Fowler (Addison Wesley).

5.9.1 Rename Entity

Clicking on an entity in a source file and selecting the Refactoring/Rename menu will open a dialog asking for the new
name of the entity. GPS will rename all instances of the entity in your application. This includes the definition of the
entity, its body, all calls to it, etc... Of course, no comment is updated, and you should probably check manually that
the comment for the entity still applies.

GPS will handle primitive operations by also renaming the operations it overrides or that overrides it. This means
that any dispatching call to that operation will also be renamed, and the application should still work as before. If
you are renaming a parameter to a subprogram, GPS can also rename parameters with similar names in overriding or
overridden subprograms.

The behavior when handling read-only files can be specified: by default, GPS will not do any refactoring in these files,
and will display a dialog listing all of them; but you can also choose to make them writable just as if you had clicked
on the “Read-Only” button in the status bar of the editor and then have GPS perform the renaming in them as well.

5.9.2 Name Parameters

If you are editing Ada code and click on a call to a subprogram, GPS will display a contextual menu Refactoring/Name
parameters, which will replace all unnamed parameters by named parameters, as in:

Call (1, 2)
=>

Call (Param1 => 1, Param2 => 2);

5.9.3 Extract Subprogram

This refactoring is used to move some code from one place to a separate subprogram. The goal is to simplify the
original subprogram, by moving part of its code elsewhere.

Here is an example from the “Refactoring” book. The refactoring will take place in the body of the package pkg.adb,
but the spec is needed so that you can compile the source code (a preliminary step mandatory before you can refactor
the code):

40 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

pragma Ada_05;

with Ada.Containers.Indefinite_Doubly_Linked_Lists;
with Ada.Strings.Unbounded;

package Pkg is

type Order is tagged null record;
function Get_Amount (Self : Order) return Integer;

package Order_Listsis new
Ada.Containers.Indefinite_Doubly_Linked_Lists (Order);

type Invoice is tagged record
Orders : Order_Lists.List;
Name : Ada.Strings.Unbounded.Unbounded_String;

end record;

procedure Print_Owing (Self : Invoice);

end Pkg;

The initial implementation for this code is given by the following code:

pragma Ada_05;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;

package body Pkg is
use Order_Lists;

-- Get_Amount --

function Get_Amount (Self : Order) return Integer is
begin

return 0;
end Get_Amount;

-- Print_Owing --

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
-- <<< line 30
-- Print Banner

Put_Line ("");
Put_Line (" Customer Owes ");
Put_Line (""); -- << line 35

-- Calculate Outstanding

5.9. Refactoring 41

GPS Documentation, Release 5.2.1

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

-- Print Details

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img);

end Print_Owing;
end Pkg;

The procedure Print_Owing is too long and does several independent actions. We will perform a series of three
successive refactoring steps to extract the code and move it elsewhere.

The first is the code that prints the banner. Moving it is easy, since this code does not depend on any context. We could
just do a copy-paste, but then we would have to create the new subprogram. Instead, we select lines 30 to 35, and then
select the contextual menu Refactoring/Extract Subprogram. GPS will then automatically change Print_Owing and
create a new procedure Print_Banner (the name is specified by the user, GPS does not try to guess it). Also, since the
chunk of code that is extracted starts with a comment, GPS automatically uses that comment as the documentation for
the new subprogram. Here is part of the resulting file:

package body Pkg is

procedure Print_Banner;
-- Print Banner

-- Print_Banner --

procedure Print_Banner is
begin

Put_Line ("");
Put_Line (" Customer Owes ");
Put_Line ("");

end Print_Banner;

... (code not shown)

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
Print_Banner;

-- Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

-- Print Details <<< line 54

42 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img); -- line 57

end Print_Owing;
end Pkg;

A more interesting example is when we want to extract the code to print the details of the invoice. This code depends
on one local variable and the parameter to Print_Owing. When we select lines 54 to 57 and extract it into a new
Print_Details subprogram, we get the following result. GPS automatically decides which variables to extract, and
whether they should become parameters of the new subprogram, or local variables. In the former case, it will also
automatically decide whether to create “in”, “out” or “in out” parameters. If there is a single “out” parameter, it will
automatically create a function rather than a procedure.

GPS will use, for the parameters, the same name that was used for the local variable. Very often, it will make sense
to recompile the new version of the source, and then apply the Rename Entity refactoring to have more specific names
for the parameters, or the Name Parameters refactoring so that the call to the new method uses named parameters to
further clarify the code:

... code not shown

procedure Print_Details
(Self : Invoice’Class;
Outstanding : Natural);

-- Print Details

-- Print_Details --

procedure Print_Details
(Self : Invoice’Class;
Outstanding : Natural)

is
begin

Put_Line ("Name: " & To_String (Self.Name));
Put_Line ("Outstanding:" & Outstanding’Img);

end Print_Details;

procedure Print_Owing (Self : Invoice) is
E : Order_Lists.Cursor := First (Self.Orders);
Outstanding : Natural := 0;
Each : Order;

begin
Print_Banner;

-- Calculate Outstanding

while Has_Element (E) loop
Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;

Print_Details (Self, Outstanding);
end Print_Owing;

Finally, we want to extract the code that computes the outstanding amount. When this code is moved, the vari-
ables E and Each become useless in Print_Owing and are moved into the new subprogram (which we will call
Get_Outstanding. Here is the result of that last refactoring (the initial selection should include the blank lines be-

5.9. Refactoring 43

GPS Documentation, Release 5.2.1

fore and after the code, to keep the resulting Print_Owing simpler). GPS will automatically ignore those blank lines:

... code not shown

procedure Get_Outstanding (Outstanding : in out Natural);
-- Calculate Outstanding

-- Get_Outstanding --

procedure Get_Outstanding (Outstanding : in out Natural) is
E : Order_Lists.Cursor := First (Self.Orders);
Each : Order;

begin
while Has_Element (E) loop

Each := Element (E);
Outstanding := Outstanding + Each.Get_Amount;
Next (E);

end loop;
end Get_Outstanding;

procedure Print_Owing (Self : Invoice) is
Outstanding : Natural := 0;

begin
Print_Banner;
Get_Outstanding (Outstanding);
Print_Details (Self, Outstanding);

end Print_Owing;

Note that the final version of Print_Owing is not perfect. For instance, passing the initial value 0 to Get_Outstanding
is useless, and in fact that should probably be a function with no parameter. But GPS already saves a lot of time and
manipulation.

Finally, a word of caution: this refactoring does not check that you are giving a valid input. For instance, if the text you
select includes a declare block, you should always include the full block, not just a part of it (or select text between
begin and end). Likewise, GPS does not expect you to select any part of the variable declarations, just the code.

5.10 Using an External Editor

GPS is integrated with a number of external editors, in particular Emacs and vi. The choice of the default external
editor is done in the preferences. The Preferences Dialog.

The following values are recognized:

gnuclient This is the recommended client. It is based on Emacs, but needs an extra package to be installed. This
is the only client that provides a full integration in GPS, since any extended lisp command can be sent to the
Emacs server.

By default, gnuclient will open a new Emacs frame for every file that is opened. You might want to add the
following code to your .emacs file (create one if needed) so that the same Emacs frame is reused every time:

(setq gnuserv-frame (car (frame-list)))

See http://www.hpl.hp.com/personal/ange/gnuserv/home.html for more information.

emacsclient This is a program that is always available if you have installed Emacs. As opposed to starting a new
Emacs every time, it will reuse an existing Emacs session. It is then extremely fast to open a file.

44 Chapter 5. Editing Files

http://www.hpl.hp.com/personal/ange/gnuserv/home.html

GPS Documentation, Release 5.2.1

emacs This client will start a new Emacs session every time a file needs to be opened. You should use emacsclient
instead, since it is much faster, and makes it easier to copy and paste between multiple files. Basically, the only
reason to use this external editor is if your system doesn’t support emacsclient.

vim Vim is a vi-like editor that provides a number of enhancements, for instance syntax highlighting for all the
languages supported by GPS. Selecting this external editor will start an xterm (or command window, depending
on your system) with a running vim process editing the file.

Note that one limitation of this editor is that if GPS needs to open the same file a second time, it will open a new
editor, instead of reusing the existing one.

To enable this capability, the xterm executable must be found in the PATH, and thus is not supported on Windows
systems. Under Windows systems, you can use the custom editor instead.

vi This editor works exactly like vim, but uses the standard vi command instead of vim.

custom You can specify any external editor by choosing this item. The full command line used to call the editor can
be specified in the preferences (see Custom Editor Command).

none No external editor is used, and the contextual menus simply won’t appear.

In the cases that require an Emacs server, GPS will try several solutions if no already running server was found. It will
first try to spawn the glide environment distributed with GNAT. If not found in the PATH, it will then start a standard
Emacs. The project file currently used in GPS will be set appropriately the first time Emacs is spawned. This means
that if you load a new project in GPS, or modify the paths of the current project, you should kill any running Emacs,
so that a new one is spawned by GPS with the appropriate project.

Alternatively, you can reload explicitly the project from Emacs itself by using the menu Project->Load

In the preferences, there are three settings that allow you to select the external editor (if left to an empty string, GPS
will automatically select the first editor available on your system), to specify the custom editor command, in case
you’ve selector this item, and whether this editor should always be used every time you double-click on a file, or
whether you need to explicitly select the contextual menu to open the external editor.

5.11 Using the Clipboard

This section concerns X-Window users who are used to cutting and pasting with the middle mouse button. In the GPS
text editor, as in many recent X applications, the GPS clipboard is set by explicit cut/copy/paste actions, either through
menu items or keyboard shortcuts, and the primary clipboard (i.e. the ‘middle button’ clipboard) is set by the current
selection.

Therefore, copy/paste between GPS and other X applications using the primary clipboard will still work, provided
that there is some text currently selected. The GPS clipboard, when set, will override the primary clipboard.

By default, GPS overrides the X mechanism. To prevent this, add the following line: OVER-
RIDE_MIDDLE_CLICK_PASTE = no to your traces.cfg file. Note, however, that the X mechanism pastes all attributes
of text, including coloring and editability, which can be confusing.

See http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt for more information.

5.12 Saving Files

After you have finished modifying your files, you need to save them. The basic method to do that is to select the menu
File->Save, which saves the currently selected file.

You can also use the menu File->Save As... if you want to save the file with another name, or in another directory.

5.11. Using the Clipboard 45

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt

GPS Documentation, Release 5.2.1

If you have multiple files to save, another possibility is to use the menu File->Save More->All. This will open a dialog
listing all the currently modified editors that need saving. You can then select individually which one should be saved,
and click on Save to do the actual saving.

When calling external commands, such as compiling a file, if the Auto save preference is disabled, this same dialog is
also used, to make sure that e.g. the compiler will take into account your local changes. If the preference is enabled,
the saving is performed automatically.

You can conveniently select or unselect all the files at once by clicking on the title of the first column (labeled Select).
This will toggle the selection status of the first line, and have the same status for all other editors.

If you press Cancel instead of Save, no saving will take place, and the action that displayed this dialog is also canceled.
Such actions can be for instance starting a compilation command, a VCS operation, or quitting GPS with unsaved files.

5.13 Remote Files

GPS has a basic support for working with files on remote hosts. This includes a number of protocols, described below,
which allow you to read a file from a remote host, edit it locally, and then save it transparently to the remote machine.

For now, the support for remote files is only available through the GPS shell window. You start editing a remote file
by typing a line similar to:

Editor.edit protocol://user@machine/full/path

where “protocol” should be replaced by the name of the protocol you want to use, “user” is the login name you wish
to use on the remote “machine”, and “/full/path” is the full path on the remote machine to access the file.

The user name is optional. If it is the same as on the local machine, you can omit the user name as well as the “@”
sign.

Likewise, the machine name is optional, if you want to get a file from the local host. This can be used to access files
belonging to another user. In this case, you need to specify the “@” sign, but do not insert a machine name right after

46 Chapter 5. Editing Files

GPS Documentation, Release 5.2.1

it.

Remote files can also be used if you want to work with GPS, but the machine on which the files are found isn’t
supported by GPS.

The following protocols are supported:

ssh This protocol is based on the ssh command line tool, which must therefore be available in the path. It provides
encrypted and secure connections to the remote host. Files are transfered in-line, that is the connection is
established the first time you access the remote host, and kept open for all further access.

Although ssh can be setup not to require a password, GPS will automatically detect if a password is asked and
open a dialog to query it.

The remote system must be a Unix-like system with support for standard Unix commands like test, echo, rm
and ls.

In the sample shell command above, you would replace the word “protocol” with “ssh” to use this protocol.

rsh This protocol behaves like ssh, except that the connections are not encrypted. However, this protocol is generally
available on all Unix machines by default.

It has the same requirements that the ssh protocol. To use it, substitute the word “rsh” to “protocol” in the
example above.

telnet This protocol is based on the standard telnet protocol. It behaves much like the two protocols above, with an
unencrypted connection.

To use it, substitute the word “telnet” to “protocol” in the example above.

scp This protocol is also based on one of the tools of the ssh suite. It provides encrypted connections, and uses a mix-
ture of ssh and scp connections. Various commands like querying the time stamp of a file are executed through
a permanent ssh connection, whereas files are downloaded and uploaded through a one-time scp command.

It basically has the same behavior as the ssh protocol, although it might be slightly slower since a new connection
has to be established every time a file is fetched from, or written to the remote host. However, it might work
better than ssh if the file contains 8 bit characters.

To use it, substitute the word “scp” to “protocol” in the example above.

rsync Just like scp is based on ssh, this protocol is based on either rsh or ssh. It depends on the external tool rsync,
and uses a mixture of a rsh/ssh connection for commands like querying the time stamp of a file, and one-time
connections with rsync to transfer the files.

Rsync is specially optimized to transfer only the parts of a file that are different from the one already on the
remote host. Therefore, it will generally provide the best performance when writing the file back to the remote
host.

If you set up the environment variable RSYNC_RSH to ssh before starting gps, the connection will then be
encrypted when transferring the files, and the connection will be performed using ssh instead of rsh.

To use this protocol, substitute the word “rsync” to “protocol” in the example above.

ftp This protocol provides only limited capabilities, but can be used to retrieve or write a file back through an ftp
connection, possibly even through an anonymous ftp connection.

To use this protocol, substitute the word “ftp” to “protocol” in the example above.

http This is the usual http protocol to download documents from the web. It is in particular useful for documentation

5.13. Remote Files 47

GPS Documentation, Release 5.2.1

48 Chapter 5. Editing Files

CHAPTER

SIX

SOURCE NAVIGATION

6.1 Support for Cross-References

GPS provides cross-reference navigation for program entities, such as types, procedures, functions, variables, ...,
defined in your application. The cross-reference support in GPS relies on the compiler generated xref information,
which means that you need to either compile your project first before being able to navigate, or use the menu Build-
>Recompute Xref info. Similarly when your sources have been modified, you need to rebuild and recompute xref
information so that your changes are taken into account.

Here are language specific information about source navigation:

Ada The GNAT compiler is used to generate the cross-references information needed by GPS by default, unless you
are using the -gnatD or -gnatx switches, in which case no cross reference information will be available.

If you need to navigate through sources that do not compile (e.g after modifications, or while porting an applica-
tion), GNAT can still generate partial cross-reference information if you specify the -gnatQ compilation option.
Along with the -k option of gnatmake, it is then possible to generate as much relevant information as possible
for your non compilable sources.

There are a few special cases where GPS cannot find the external file (called ALI file) that contains the cross-
reference information. Most likely, this is either because you haven’t compiled your sources yet, or because the
source code has changed since the ALI file was generated.

It could also be that you haven’t included in the project the object directories that contain the ALI files.

In addition, one special case cannot be handled automatically. This is for separate units, whose file names
have been crunched through the gnatkr command. To handle this, you should force GPS to parse all the ALI
files in the appropriate object directory. This is done by right-clicking on the object directory in the project
view (left-side panel on the main window), and selecting the menu “Parse all xref information”.

C/C++ The GCC C and C++ compilers that come with GNAT need to be used to generate the cross-references
information needed by GPS, via the -fdump-xref switch. This means that you need to first add the -fdump-
xref switch to your project’s switches for C and C++ sources, and compile your application before you browse
through the cross-references or view various graphs in GPS. If sources have been modified, you should recompile
the modified files.

6.1.1 Loading xref info in memory

The cross-reference information, as mentioned above, is generated either by the compiler when you recompile your
sources, or explicitly when you select the menu Build->Recompute Xref info.

This information will be loaded in memory automatically by GPS when it needs it, and as little as possible, to limit the
memory footprint. However, this means that some operations, for instance searching for all the references to a global

49

GPS Documentation, Release 5.2.1

entity, will need to parse most, if not all, of the cross-reference information. This will slow done the search the first
time (and then the information is in memory and the search is fast, unless the cross-reference information has been
regenerated on the disk).

You can select the menu Build->Load xref info in memory to force GPS to load all the available information immedi-
ately in memory. This will speed up future queries.

Note that GPS always loads all xref information for C and C++ sources in order to provide accurate source navigation,
so this menu is mainly relevant for Ada sources.

A preference can be set to have GPS load the cross-information automatically on startup, The Preferences Dialog.

6.1.2 Ada xrefs heuristics

GPS is able to provide some basic navigation support for Ada sources in the absence of information coming from the
compiler. It uses a built-in Ada parser parsing the Ada files at startup and allowing navigation in simple cases.

In this mode, GPS is able to navigate to an entity body from the declaration, and to an entity declaration from the body.
In case of other references, GPS will navigate to the declaration on simple cases, namely if the heuristics provide an
information without ambiguity. In particular, it may not work with overloaded entities.

These heuristics are not used in global reference searching operations or call graphs.

Note that this parser is also used to provide the Ada outline view, code completion and entity view.

6.2 The Navigate Menu

Find or Replace... Open the find and replace dialog. Searching and Replacing.

Find Next Find next occurrence of the current search. Searching and Replacing.

Find Previous Find previous occurrence of the current search. Searching and Replacing.

Find All References Find all the references to the current entity in the project. The search is based on the semantic
information extracted from the sources, this is not a simple text search. The result of the search is displayed in
the location window, see The Locations View.

Goto Declaration Go to the declaration/spec of the current entity. The current entity is determined by the word
located around the cursor. This item is also accessible through the editor’s contextual menu directly. This
capability requires the availability of cross-reference information. Support for Cross-References.

Goto Body Go to the body/implementation of the current entity. If the current entity is the declaration of an Ada
subprogram imported from C it goes to the location where the C function is defined. This item is also acces-
sible through the editor’s contextual menu directly. This capability requires the availability of cross-reference
information. Support for Cross-References.

Goto Matching Delimiter Go to the delimiter matching the one right before (for a closing delimiter) or right after
(for an opening delimiter) the cursor if any.

Goto Line... Open a dialog where you can type a line number, in order to jump to a specific location in the current
source editor.

Goto Entity... Open a dialog allowing browsing of the entities loaded in the project. This dialog functions similarly
to The Entity View.

Goto File Spec<->Body Open the corresponding spec file if the current edited file is a body file, or body file oth-
erwise. This option is only available for the Ada language. This item is also accessible through the editor’s
contextual menu

50 Chapter 6. Source Navigation

GPS Documentation, Release 5.2.1

This capability requires support for cross-references. This item is also accessible through the editor’s contextual
menu

Start Of Statement Move the cursor position to the start of the current statement, move to the start of the enclosing
statement if the cursor position is already at the start of the statement.

End Of Statement Move the current cursor position to the end of the statement, move to the end of the enclosing
statement if the cursor position is already at the end of the statement.

Previous Subprogram Move the current cursor position to the start of the previous procedure, function, task, pro-
tected record or entry.

Next Subprogram Move the current cursor position to the start of the next procedure, function, task, protected record
or entry.

Previous Tag Go to previous tag/location. The Locations View.

Next Tag Go to next tag/location. The Locations View.

Back Go to previous location.

Forward Go to next location.

6.3 Contextual Menus for Source Navigation

This contextual menu is available from any source editor. If you right click over an entity, or first select text, the
contextual menu will apply to this selection or entity.

Goto declaration of *entity* Go to the declaration/spec of entity. The current entity is determined by the word
located around the cursor or by the current selection if any. This capability requires support for cross-references.

Goto full declaration of *entity* This contextual menu appears for a private or limited private types. Go to the full
declaration/spec of entity. The current entity is determined by the word located around the cursor or by the
current selection if any. This capability requires support for cross-references.

Goto type declaration of *entity* Go to the type declaration of entity. The current entity is determined by the word
located around the cursor or by the current selection if any. This capability requires support for cross-references.

Display type hierarchy for *entity* This contextual menu appears for derived or access types. Output the type hier-
archy for entity into the location view. The current entity is determined by the word located around the cursor
or by the current selection if any. This capability requires support for cross-references.

Goto body of *entity* Go to the body/implementation of entity. If entity is the declaration of an Ada subprogram
imported from C it goes to the the location where the C function is defined. This capability requires support for
cross-references.

Goto declarations of *entity* This contextual menu appears when you are clicking on a subprogram call that is a
dispatching call. In such a case, there is no possibility for GPS to know what subprogram will actually be called
at run time, since that depends on dynamic information. It therefore gives you a list of all entities in the tagged
type hierarchy, and lets you choose which of the declarations you want to jump to. See also the methods.py
plug-in (enabled by default) which, given an object, lists all its primitive operations in a contextual menu so
that you can easily jump to them. See also the contextual menu References/Find References To...
which allows you to find all calls to a subprogram or to one of its overriding subprograms.

Goto bodies of *entity* This is similar to Goto declarations of, but applies to the bodies of the entities.

Goto file spec/body Open the corresponding spec file if the current edited file is a body file, or body file otherwise.
This option is only available for the Ada language.

Entity calls Display a list of all subprograms called by entity in a tree view. This is generally more convenient than
using the corresponding Browsers/ submenu if you expect lots of references, The Callgraph View.

6.3. Contextual Menus for Source Navigation 51

GPS Documentation, Release 5.2.1

Entity is called by Display a list of all subprograms calling entity in a tree view. This is generally more convenient
than using the correponding Browsers/ submenu if you expect lots of references, The Callgraph View.

References This item gives access to different capabilities related to listing or displaying references to the current
entity or selection.

Find all references to *entity* Find all references to entity in all the files in the project.

Find all references... This menu is similar to the one above, except it is possible to select more precisely what kind of
reference should be selected. It is also possible to indicate the scope of the search, and whether the context (or
caller) at each reference should be displayed. Computing the caller information will take slightly longer though.

This dialog has an option Include overriding and overriden operations, which, when activated, will include
references to overriden or overriding entities of the one you selected.

This is particularly useful when you are wondering whether you can easily modify the profile of a primitive
operation, since you can then see what other entities will also be impacted. If you select only the declaration
check box, you will see the list of all related primitive operations.

This dialog also allows you to find out which entities are imported from a given file/unit. Click on any entity
from that file (for instance on the with line for Ada code), then select the All entities imported from same file
toggle button. This will display in the location window the list of all entities imported from the same file as the
entity selected.

In addition, if you have selected the Show context option, you will get a list of all the exact references to these
entities within the file. Otherwise, you just get a pointer to the declaration of the imported entities.

Find all local references to *entity* Find all references to entity in the current file (or in the current top level unit for
Ada sources). details.

Variables used in *entity* Find all variables (local or global) used in entity and list each first reference in the locations
window.

Non Local variables used in *entity* Find all non-local variables used in the entity.

Methods of *entity* This submenu is only visible if you have activated the plug-in methods.py (which is the case
by default), and when you click on a tagged type or an instance of a tagged type. This menu lists all the primitive
operations of that type, and you can therefore easily jump to the declaration of any of these operations.

Browsers This item gives access to graph representations of callers and callees for subprograms.

Entity calls Open or raise the call graph browser on the specified entity and display all the subprograms called
by entity. Call Graph.

Entity calls (recursively) Open or raise the call graph browser on the specified entity and display all the sub-
programs called by entity, transitively for all subprograms. Since this can take a long time to compute
and generate a very large graph, an intermediate dialog is displayed to limit the number of subprograms to
display (1000 by default). Call Graph.

Entity is called by Open or raise the call graph browser on the specified entity and display all the subprograms
calling entity. Call Graph.

Note that this capability requires a global look up in the project cross-references, which may take a signifi-
cant amount of time the first time. After a global look up, information is cached in memory, so that further
global queries will be faster.

Expanded code Present for Ada files only. This menu generates a .dg file using your gnat compiler (using the -
gnatGL switch) and displays the expanded code. This can be useful when investigating low-level issues and
tracing precisely how the source code is transformed by the GNAT front-end.

Show subprogram Display expanded code for the current subprogram in the current editor.

Show file Display expanded code for the current file in the current editor.

52 Chapter 6. Source Navigation

GPS Documentation, Release 5.2.1

Show in separate editor Display expanded code for the current file in a new editor.

Clear Remove expanded code from the current editor.

For Ada files only, this entry will generate, and will open this file at the location corresponding to the current
source line.

Open <filename> When you click on a filename (for instance a C’ #include, or an error message in a log file), this
menu gives you a way to open the corresponding file. If the file name was followed by ”:” and a line number,
the corresponding line is activated.

6.4 Navigating with hyperlinks

When the Control key is pressed and you start moving the mouse, entities in the editors under the mouse cursor become
hyperlinks and the mouse cursor aspect changes.

Left-clicking on a reference to an entity will open a source editor on the declaration of this entity, and left-clicking on
an entity declaration will open an editor on the implementation of this entity.

Left-clicking on the Ada declaration of a subprogram imported from C will open a source editor on the definition of
the corresponding C entity. This capability requires support for cross-references.

Clicking with the middle button on either a reference to an entity or the declaration of an entity will jump directly to
the implementation or type completion) of this entity.

Note that for efficiency, GPS may create hyperlinks for some entities which have no associated cross reference. In this
case, clicking will have no effect, even though an hyperlink may have been displayed.

This behavior is controlled by the Hyper links preference.

6.5 Highlighting dispatching calls

Dispatching calls in Ada and C++ source code are highlighted by default in GPS via the dispatching.py plug-in.

Based on the cross-reference information, this plug-in will highlight (with a special color that you can configure in the
preferences dialog) all calls that are dispatching (or calls to virtual methods in C++). A dispatching call, in Ada, is a
subprogram call where the actual subprogram that is called is not known until run time, and is chosen based on the tag
of the object (so this of course only exists when you are using object-oriented programming).

To disable this highlighting (which might sometimes be slow if you are using big sources, even though the highlighting
itself is done in the background), you can go to the /Tools/Plug-ins menu, and disable the dispatching.py plug-in.

6.4. Navigating with hyperlinks 53

GPS Documentation, Release 5.2.1

54 Chapter 6. Source Navigation

CHAPTER

SEVEN

PROJECT HANDLING

The section on the project view (The Project View) has already given a brief overview of what the projects are, and the
information they contain.

This chapter provides more in-depth information, and describes how such projects can be created and maintained.

7.1 Description of the Projects

7.1.1 Project files and GNAT tools

This section describes what the projects are, and what information they contain.

The most important thing to note is that the projects used by GPS are the same as the ones used by GNAT. These are
text files (using the extension .gpr) which can be edited either manually, with any text editor, or through the more
advanced GPS interface.

The exact syntax of the project files is fully described in the GNAT User’s Guide (gnat_ug.html) and GNAT Reference
Manual (gnat_rm.html). This is recommended reading if you want to use some of the more advanced capabilities of
project files which are not yet supported by the graphical interface.

GPS can load any project file, even those that you have been edited manually. Furthermore, you can manually edit
project files created by GPS.

Typically you will not need to edit project files manually, since several graphical tools such as the project wizard (The
Project Wizard) and the properties editor(The Project Properties Editor) are provided.

GPS doesn’t preserve the layout nor comments of manually created projects after you have edited them in GPS. For
instance, multiple case statements in the project will be coalesced into a single case statement. This normalization is
required for GPS to be able to preserve the previous semantic of the project in addition to the new settings.

All command-line GNAT tools are project aware, meaning that the notion of project goes well beyond GPS’ user in-
terface. Most capabilities of project files can be accessed without using GPS itself, making project files very attractive.

GPS uses the same mechanisms to locate project files as GNAT itself:

• absolute paths

• relative paths. These paths, when used in a with line as described below, are relative to the location of the project
that does the with.

• ADA_PROJECT_PATH. If this environment variable is set, it contains a colon-separated (or semicolon under
Windows) list of directories in which the project files are searched.

• predefined project path. The compiler itself defines a predefined project path, in which standard libraries can be
installed, like XML/Ada for instance.

55

GPS Documentation, Release 5.2.1

7.1.2 Contents of project files

Project files contain all the information that describe the organization of your source files, object files and executables.

A project file can contain comments, which have the same format as in Ada, that is they start by “–” and extend to the
end of the line. You can add comments when you edit the project file manually. GPS will attempt to preserve them
when you save the project through the menu, but this will not always be possible. It helps if the comments are put at
the end of the line, as in:

project Default is
for Source_Dirs use (); -- No source in this project

end Default;

Generally, one project file will not be enough to describe a complex organization. In this case, you will create and use a
project hierarchy, with a root project importing other sub projects. Each of the projects and sub projects is responsible
for its own set of sources (compiling them with the appropriate switches, put the resulting files in the right directories,
...).

Each project contains the following information (see the GNAT user’s guide for the full list)

• List of imported projects: .. index:: imported project

When you are compiling sources from this project, the builder will first make sure that all the imported projects
have been correctly recompiled and are up-to-date. This way, dependencies between source files are properly
handled.

If one of the source files of project A depends on some source files from project B, then B must be imported by
A. If this isn’t the case, the compiler will complain that some of the source files cannot be found.

One important rule is that each source file name must be unique in the project hierarchy (i.e. a file cannot be
under control of two different projects). This ensures that the same file will be found no matter what project is
managing the source file that uses

• List of source directories: .. index:: source directory

All the sources managed by a project are found in one or more source directories. Each project can have multiple
source directories, and a given source directory might be shared by multiple projects.

• Object directory: .. index:: object directory

When the sources of the project are compiled, the resulting object files are put into this object directory. There
exist exactly one object directory for each project. If you need to split the object files among multiple object
directories, you need to create multiple projects importing one another as appropriate.

When sources from imported sub-projects are recompiled, the resulting object files are put in the sub project’s
own object directory, and will never pollute the parent’s object directory.

• Exec directory: .. index:: exec directory

When a set of object files is linked into an executable, this executable is put in the exec directory of the project
file. If this attribute is unspecified, the object directory is used.

• List of source files: .. index:: source file

The project is responsible for managing a set of source files. These files can be written in any programming
languages. Currently, the graphical interface supports Ada, C and C++.

The default to find this set of source files is to take all the files in the source directories that follow the naming
scheme (see below) for each language. In addition if you edit the project file manually, it is possible to provide
an explicit list of source files.

This attribute cannot be modified graphically yet.

56 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

• List of main units: .. index:: main unit

The main units of a project (or main files in some languages) are the units that contain the main subprogram of
the application, and that can be used to link the rest of the application.

The name of the file is generally related to the name of the executable.

A given project file hierarchy can be used to compile and link several executables. GPS will automatically
update the Compile, Run and Debug menu with the list of executables, based on this list.

• Naming schemes: .. index:: naming scheme

The naming scheme refers to the way files are named for each languages of the project. This is used by GPS to
choose the language support to use when a source file is opened. This is also used to know what tools should be
used to compile or otherwise work with a source file.

• Embedded targets and cross environments: .. index:: cross environment

GPS supports cross environment software development: GPS itself can run on a given host, such as GNU/Linux,
while compilations, runs and debugging occur on a different remote host, such as Sun/Solaris.

GPS also supports embedded targets (VxWorks, ...) by specifying alternate names for the build and debug tools.

The project file contains the information required to log on the remote host.

• Tools: .. index:: tools

Project files provide a simple way to specify the compiler and debugger commands to use.

• Switches: .. index:: switches

Each tool that is used by GPS (compiler, pretty-printer, debugger, ...) has its own set of switches. Moreover,
these switches may depend on the specific file being processed, and the programming language it is written in.

7.2 Supported Languages

Another information stored in the project is the list of languages that this project knows about. GPS support any number
of language, with any name you choose. However, advanced support is only provided by default for some languages
(Ada, C and C++), and you can specify other properties of the languages through customization files (Adding support
for new languages).

By default, the graphical interface will only give you a choice of languages among the ones that are known to GPS at
that point, either through the default GPS support or your customization files. But you can also edit the project files
by hand to add support for any language.

Languages are a very important part of the project definition. For each language, you should specify a naming scheme
that allows GPS to associate files with that language. You would for instance specify that all .adb files are Ada, all
.txt files are standard text files, and so on.

Only the files that have a known language associated with them are displayed in the Project View, or available for easy
selection through the File->Open From Project menu. Similarly, only these files are shown in the Version Control
System interface.

It is therefore important to properly setup your project to make these files available conveniently in GPS, although of
course you can still open any file through the File->Open menu.

If your project includes some README files, or other text files, you should add “txt” as a language (or any other name
you want), and make sure that these files are associated with that language in the Project properties editor.

By default, GPS provides support for a number of languages. In most cases, this support takes the form of syntax
highlighting in the editor, and possibly the Outline View. Other languages have advanced cross-references available.

7.2. Supported Languages 57

GPS Documentation, Release 5.2.1

All the supported languages can be added to the project, but you can also add your own languages as you need (either
by editing the project files by hand, or by creating XML files to add GPS support for these languages, which will then
show in the project properties editor graphically).

7.3 Scenarios and Configuration Variables

The behavior of projects can be further tailored by the use of scenarios.

All the attributes of a project, except its list of imported projects, can be chosen based on the value of external
variables, whose value is generally coming from the host computer environment, or directly set in GPS. The interface
to manipulate these scenarios is the scenario view, which can be displayed by selecting the menu Tools->Views-
>Scenario. It can be convenient to drag this window with your mouse, and drop it above the project view, so that you
can see both at the same time.

This area allows you to select new values for the scenario variables defined in your project, and thus change dynami-
cally the view GPS has of your project and your source files.

This facility can for instance be used to compile all the sources either in debug mode (so that the executables can be run
in the debugger), or in optimized mode (to reduce the space and increase the speed when delivering the software). In
this configuration scenario, all the attributes (source directories, tools, ...) remain the same, except for the compilation
switches. It would be more difficult to maintain a completely separate hierarchy of project, and it is much more efficient
to create a new configuration variable and edit the switches for the appropriate scenario (The Project Properties Editor).

There is one limitation in what GPS can do with scenario variables: although gnatmake and gprbuild have no problem
dealing with scenario variables whose default value is not a static string (for instance a concatenation, or the value of
another scenario variable), GPS will not be able to edit such a project graphically. Such projects will load fine in GPS
though.

7.3.1 Creating new configuration variables

Creating a new scenario variable is done through the contextual menu (right-click) in the Project View or the Scenario
View itself. Select the menu Project->Add Configuration Variable. This opens the following dialog:

58 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

There are two main areas in this dialog: in the top line, you specify the name of the variable. This name is used for
two purposes:

• It is displayed in the scenario view .. index:: scenario view

• This is the name of the environment variable from which the initial value is read. When GPS is started, all
configuration variables are initialized from the host computer environment, although you can of course change
its value later on inside GPS. Note that selecting a new value for the scenario variable does not change the actual
value of the environment variable, which is only used to get the default initial value of the scenario variable.

When you spawn external tools like gnatmake for instance, you can also specify the value they will use for the
scenario variable by using a command line switch, typically -X.

If you click on the arrow on the right of this name area, GPS will display the list of all the environment variables that
are currently defined. However, you don’t need to pick the name of an existing variable, neither must the variable exist
when GPS is started.

The second part of this dialog is the list of authorized value for this variable. Any other value will generate an error
reported by GPS, and the project won’t be loaded as a result.

One of these values is the default value (the one whose button in the Default column is selected). This means that if
the environment variable doesn’t exist when GPS is started, GPS will behave as if it did exist with this default value.

The list of possible values can be edited by right-clicking on the name of the variable, and selecting one of Edit
properties or Delete variable.

7.3.2 Editing existing configuration variables

If at least one configuration variable is defined in your project, the scenario view will contain something similar to:

7.3. Scenarios and Configuration Variables 59

GPS Documentation, Release 5.2.1

This screen shot shows two configuration variables, named Build and OS, with their current value (resp. Debug and
Unix).

You can easily change the current value of any of these variables by clicking on the arrow on the right of the value.
This will display a pop-up window with the list of possible values, from which you select the one you wish to use.

As soon as a new value is selected, GPS will recompute the project view (in case source directories, object directories
or list of source files have changed). A number of things will also be updated (like the list of executables in the
Compile, Run and Debug menus).

Currently, GPS will not recompute the contents of the various browsers (call graph, dependencies, ...) for this updated
project. This would be too expensive to do every time the value changes, and therefore you need to explicitly request
an update.

You can change the list of possible values for a configuration variable at any time by clicking on the button to the far
left of the variable’s name. This will pop up the same dialog that is used to create new variables. This dialog also
allows you to change the name of the scenario variable. This name is the same as the environment variable that is used
to set the initial value of the scenario variable.

Removing a variable is done by clicking on the button immediately to the left of the variable’s name. GPS will then
display a confirmation dialog.

If you confirm that you want to delete the variable, GPS will simply remove the variable, and from now on act as if
the variable always had the value it had when it was deleted.

7.4 Extending Projects

7.4.1 Description of extending projects

The project files were designed to support big projects, with several hundreds or thousands of source files. In such
contexts, one developer will generally work on a subset of the sources. It is also not rare for such a project to take
several hours to fully compile. Most developers therefore do not need to have the full copy of the project compiled on
their own machine or personal disk space.

However, it is still useful to be able to access other source files of the application, for instance to find out whether a
subprogram can be changed and where it is currently called.

Such a setup can be achieved through extending projects. These are special types of projects that inherit most of
their attributes and source files from another project, and can have, in their source directories, some source files that
hide/replace those inherited from the original project.

When compiling such projects, the compiler will put the newly created project files in the extending project’s direc-
tory, and will leave the original untouched. As a result, the original project can be shared read-only among several
developers (for instance, it is usual for this original project to be the result of a nightly build of the application).

7.4.2 Creating extending projects

This project wizard allows you to easily create extending projects. You should select an empty directory (which will
be created automatically if needed), as well as a list of source files you want to work on initially. New files can also be
added later.

As a result, GPS will copy the selected source files to the new directory (if you so decided), and create a number of
project files there. It will then load a new project, which has the same properties as the previous one, except that some
files are found transparently in the new directory, and object files resulting from the compilation are create into that
directory as opposed to the object directory of the original project.

60 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

7.4.3 Adding files to extending projects

Once you have loaded an extending project in GPS, things work mostly transparently. If you open a file through the
File->Open From Project dialog, the files found in the local directory of your extending project will be picked up first.

The build actions will create object files in the extending project’s directory, leaving the original project untouched.

It might happen that you want to start working on a source file that you had not added in the extending project when it
was created. You can of course edit the file found in the original project, provided you have write access to it. However,
it is generally better to edit it in the context of the extending project, so that the original project can be shared among
developers.

This can be done by clicking on the file in the Project View, then selecting the menu Add To Extending Project. This
will popup a dialog asking whether you want GPS to copy the file to the extending project’s directory for you. GPS
might also create some new project files in that directory if necessary, and automatically reload the project as needed.
From then on, if you use the menu File->Open From Project, GPS will first see the file from the extending project.

Note that open editors will still be editing the same file they were before, so you should open the new file if needed.

7.5 The Project View

The project view, as mentioned in the general description of the GPS window, is one of the views found by default on
the left of the window. It shows in a tree structure the project hierarchy, along with all the source files belonging to the
project, and the entities declared in the source files.

It is worth noting that the project view provides a tree representation of the project hierarchy. If a project is imported
by multiple other projects in the hierarchy, then this project will appear multiple times in the project view.

Likewise, if you have edited the project manually and have used the limited with construct to have cycles in the project
dependencies, the cycle will expand infinitely. For instance, if project a imports project b, which in turns imports
project a through a limited with clause, then expanding the node for a will show b. In turn, expanding the node for b
will show a node for a, and so on.

The contextual menu in this project view provides a number of items to modify the project hierarchy (what each project
imports), as well as to visualize and modify the attributes for each projects (compilation switches, naming scheme, ...)

The following entries are available in the contextual menu:

Show Projects Imported by... This item will open a new window in GPS, the project browser, which displays graphi-
cally the relationships between each project in the hierarchy.

Save The Project... This item can be selected to save a single project in the hierarchy after it was modified. Modified
but unsaved projects in the hierarchy have a special icon (a pen mark is drawn on top of the standard icon). If
you would rather save all the modified projects in a single step, use the menu bar item Project->Save All.

Project/Properties This item will open a new dialog, and give access to all the attributes of the project: tool switches,
naming schemes, source directories, ... The Project Properties Editor.

Project/Edit source file This menu will load the project file into an editor, so that you can manually edit it. This
should be used if you need to access some features of the project files that are not accessible graphically (renames
statements, variables, ...)

Project/Dependencies... This opens the dependencies editor (The Project Dependencies Editor).

Add Configuration Variable This menu item should be used to add new configuration variables, as described in
Scenarios and Configuration Variables.

Build This menu offers the submenu “Clean” which remove all object files and other compilation artifacts associated
to the current project.

7.5. The Project View 61

GPS Documentation, Release 5.2.1

Any time one or several projects are modified, the contents of the project view is automatically refreshed. No project
is automatically saved. This provides a simple way to temporarily test new values for the project attributes. Unsaved
modified projects are shown with a special icon in the project view, displaying a pen mark on top of the standard icon:

Note that in all tree views in GPS, you can use the + and - keys to expand and collapse nodes (e.g. projects and
directories).

7.6 Disabling Project Edition Features

The project files should generally be considered as part of the sources, and thus be put under control of a version
control system. As such, you might want to prevent accidental editing of the project files, either by you or some other
person using the same GPS installation.

The main thing to do to prevent such accidental edition is to change the write permissions on the project files them-
selves. On Unix systems, you could also change the owner of the file. When GPS cannot write a project file, it will
report an error to the user.

However, the above doesn’t prevent a user from trying to do some modifications at the GUI level, since the error
message only occurs when trying to save the project (this is by design, so that temporary modification can be done in
memory).

You can disable all the project editing related menus in GPS by adding special startup switches. The recommended
way is to create a small batch script that spawns GPS with these switches. You should use the following command
line:

gps --traceoff=MODULE.PROJECT_VIEWER --traceoff=MODULE.PROJECT_PROPERTIES

What these do it prevent the loading of the two GPS modules that are responsible for project edition. However, this
also has an impact on the python functions that are exported by GPS, and thus could break some plug-ins. Another
solution which might apply in your case is simply to hide the corresponding project-editing menus and contextual
menus. This could be done by creating a small python plugin for GPS (Customizing through XML and Python files,
which contains the following code:

import GPS
GPS.Menu.get ("/Project/Edit Project Properties").hide()
GPS.Contextual (’Edit project properties’).hide()
GPS.Contextual (’Save project’).hide()
GPS.Contextual (’Add configuration variable’).hide()

7.7 The Project Menu

The menu bar item Project contains several commands that generally act on the whole project hierarchy. If you only
want to act on a single project, use the contextual menu in the project view.

Some of these menus apply to the currently selected project. This notion depends on what window is currently active
in GPS: if it is the project view, the selected project is either the selected node (if it is a project), or its parent project
(for a file, directory, ...). If the currently active window is an editor, the selected project is the one that contains the file.

In all cases, if there is no currently selected project, the menu will apply to the root project of the hierarchy.

These commands are:

62 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

New This menu will open the project wizard (The Project Wizard), so that you can create new project. On exit, the
wizard asks whether the newly created project should be loaded. If you select Yes, the new project will replace
the currently loaded project hierarchy.

You will get asked what information you would like to create the project from. In particular, you can create a
set of project files from existing Ada sources.

New from template This menu will open the project template wizard, allowing you to create a new project using one
of the project templates defined in GPS. Adding project templates.

Open This menu opens a file selection dialog, so that any existing project can be loaded into GPS. The newly loaded
project replaces the currently loaded project hierarchy. GPS works on a single project hierarchy at a time.

Recent This menu can be used to easily switch between the last projects that were loaded in GPS.

Edit Project Properties This menu applies to the currently selected project, and will open the project properties dialog
for this project.

Save All This will save all the modified projects in the hierarchy.

Edit File Switches This menu applies to the currently selected project. This will open a new window in GPS, listing
all the source files for this project, along with the switches that will be used to compile them, The Switches
Editor.

Reload Project Reload the project from the disk, to take into account modifications done outside of GPS. In par-
ticular, it will take into account new files added externally to the source directories. This isn’t needed for
modifications made through GPS.

Project View Open (or raise if it is already open) the project view on the left side of the GPS window.

7.8 The Project Wizard

The project wizard allows you to create in a few steps a new project file. It has a number of pages, each dedicated to
editing a specific set of attributes for the project.

The typical way to access this wizard is through the Project->New... menu.

The project wizard is also launched when a new dependency is created between two projects, through the contextual
menu in the project view.

7.8. The Project Wizard 63

GPS Documentation, Release 5.2.1

The wizard gives access to the following list of pages:

• Project type

• Project Naming

• Languages Selection

• Version Control System Selection

• Source Directories Selection

• Build Directory

• Main Units

• Library

• Naming Scheme

• Switches

64 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

7.8.1 Project Type

Several types of project wizards are provided in GPS. Depending on the information you have or your current setup,
you will choose one or the other.

• Single Project

This is likely the wizard you will use most often. It creates a project file from scratch, and asks you for the
location of source directories, the object directory, ...; The rest of this chapter describes this wizard in more
details

• Project Tree

This wizard will attempt to create a set of one or more project files to represent your current build environment.
It will analyze what your sources are, where the corresponding object files are, and will try and find some
possible setup for the project files (remember that a given .gpr project file can be associated with a single
object directory.

This wizard might not work in all cases, but is worth a try to get you started if you already have an existing set
of sources

• Convert GLIDE Project (.adp)

This wizard will help you convert a .adp project file that is used by the GLIDE environment. The same
restrictions apply as above, except that the list of source directories, object directories and tool switches are read
directly from that file.

• Library Project .. index:: project, library

This specialized wizard is similar to the Single Project wizard, except it adds one extra page, the Library page.
The output of the compilation of this project is a library (shared or static), as opposed to an executable in the
case of Single Project.

• Extending Project .. index:: project, extending

This specialized wizard allows you to easily create extending projects (Extending Projects).

7.8.2 Project Naming

This is the first page displayed by any of the wizard.

You must enter the name and location of the project to create. This name must be a valid Ada identifier (i.e. start with
a letter, optionally followed by a series of digits, letters or underscores). Spaces are not allowed. Likewise, reserved
Ada keywords must be avoided. If the name is invalid, GPS will display an error message when you press the Forward
button.

Child projects can be created from this dialog. These are project whose name is of the form Parent.Child. GPS will
automatically generate the dependency to the parent project so as to make the child project valid.

In this page, you should also select what languages the source files in this project are written in. Currently supported
languages are Ada, C and C++. Multiple languages can be used for a single project.

The last part of this page is used to indicate how the path should be stored in the generated project file. Most of the
time, this setting will have no impact on your work. However, if you wish to edit the project files by hand, or be able
to duplicate a project hierarchy to another location on your disk, it might be useful to indicate that paths should be
stored as relative paths (they will be relative to the location of the project file).

7.8. The Project Wizard 65

GPS Documentation, Release 5.2.1

7.8.3 Languages Selection

This page is used to select the programming languages used for the sources of this project. By default, only Ada is
selected. New languages can be added to this list by using XML files, see the section on customizing GPS (Adding
support for new languages).

Additionally, this page allows you to select the toolchain used when working on your project. There you can select
one of the pre-defined toolchains or scan your system for installed toolchains. You can also manually define some of
the tools in the toolchain such as the debugger to use, the gnat driver to use or the gnatls tool to use.

If you need to select a toolchain for a cross environment, you should have a look at Working in a Cross Environment
for more info on this subject.

7.8.4 VCS Selection

The second page in the project wizard allows you to select which Version Control system is to be used for the source
files of this project.

GPS doesn’t attempt to automatically guess what it should use, so you must specify it if you want the VCS operations
to be available to you.

The two actions Log checker and File checker are the name and location of programs to be run just prior an actual
commit of the files in the Version Control System. These should be used for instance if you wish to enforce style
checks before a file is actually made available to other developers in your team.

If left blank, no program will be run.

7.8.5 Source Directories Selection

This page lists and edits the list of source directories for the project. Any number of source directory can be used (the
default is to use the directory which contains the project file, as specified in the first page of the wizard).

If you do not specify any source directory, no source file will be associated with the project, since GPS wouldn’t know
where to look for them.

To add source directories to the project, select a directory in the top frame, and click on the down arrow. This will add
the directory to the bottom frame, which contains the current list of source directories.

You can also add a directory and all its subdirectories recursively by using the contextual menu in the top frame. This
contextual menu also provides an entry to create new directories, if needed.

To remove source directories from the project, select the directory in the bottom frame, and click on the up arrow, or
use the contextual menu.

All the files in these directories that match one of the language supported by the project are automatically associated
with that project.

The relative sizes of the top and bottom frame can be changed by clicking on the separation line between the two
frames and dragging the line up or down.

7.8.6 Build Directory

The object directory is the location where the files resulting from the compilation of sources (e.g. .o files) are placed.
One object directory is associated for each project.

The exec directory is the location where the executables are put. By default, this is the same directory as the object
directory.

66 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

7.8.7 Main Units

The main units of a project are the files that should be compiled and linked to obtain executables.

Typically, for C applications, these are the files that contain the main() function. For Ada applications, these are the
files that contain the main subprogram each partition in the project.

These files are treated specially by GPS. Some sub-menus of Build and Debug will have predefined entries for the
main units, which makes it more convenient to compile and link your executables.

To add main units click on the Add button. This opens a file selection dialog. No check is currently done that the
selected file belongs to the project, but GPS will complain later if it doesn’t.

When compiled, each main unit will generate an executable, whose name is visible in the second column in this page.
If you are using a recent enough version of GNAT (3.16 or more recent), you can change the name of this executable
by clicking in the second column and changing the name interactively.

7.8.8 Library

This page allows you to configure your project so that the output of its compilation is a library (shared or static), as
opposed to an executable or a simple set of objet files. This library can then be linked with other executables (and will
be automatically if the project is imported by another one.

You need to define the attributes in the top box to transform your project into a library project. See the tooltips that
appear when you leave your mouse on top of the label to the left of each field.

If you define any of the attributes in the Standalone Library box, you will compile a standalone library. This is a library
that takes care of its elaboration by itself, instead of relying on its caller to elaborate it as is standard in Ada. You also
have more control over what files make up the public interface to the library, and what files are private to the library
and invisible from the outside.

7.8.9 Naming Scheme

A naming scheme indicates the file naming conventions used in the different languages supported by a given project.
For example, all .adb files are Ada files, all .c files are C files.

GPS is very flexible in this respect, and allows you to specify the default extension for the files in a given programming
language. GPS makes a distinction between spec (or header) files, which generally contain no executable code, only
declarations, and body files which contain the actual code. For languages other than Ada, this header file is used rather
than the body file when you select Go To Declaration in the contextual menu of editors.

In a language like Ada, the distinction between spec and body is part of the definition of the language itself, and you
should be sure to specify the appropriate extensions.

The default naming scheme for Ada is GNAT’s naming scheme (.ads for specs and .adb for bodies). In addition, a
number of predefined naming schemes for other compilers are available in the first combo box on the page. You can
also create your own customized scheme by entering a free text in the text entries.

7.8. The Project Wizard 67

GPS Documentation, Release 5.2.1

For all languages, GPS accepts exceptions to this standard naming scheme. For instance, this let you specify that in
addition to using .adb for Ada body files, the file foo.ada should also be considered as an Ada file.

The list of exceptions is displayed in the bottom list of the naming scheme editor. To remove entries from this list,
select the line you want to remove, and then press the Del key. The contents of the lines can be edited interactively,
by double-clicking on the line and column you want to edit.

To add new entries to this list, use the fields at the bottom of the window, and press the update button.

GNAT and GPS both support Ada source files that contain multiple Ada units (typically a single file would contain
both the spec and the body of the unit for instance). This is not a recommend approach if you can avoid it, since that

68 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

might trigger unnecessary recompilation of your source files. Such source files are always handled as naming scheme
exceptions, and you can specify those in the editor by adding “at 1”, “at 2”,... after the file name for either the spec,
the body or both. The digit after “at” is the index (starting at 1) of the unit in the source file.

For instance, specifying “file.ada at 1” for the spec and “file.ada at 2” for the body of the unit “unit” indicates that the
two components of the unit are in the same file, first the spec, followed by the body.

7.8.10 Switches

The last page of the project wizard is used to select the default switches to be used by the various tools that GPS calls
(compiler, linker, binder, pretty printer, ...).

7.8. The Project Wizard 69

GPS Documentation, Release 5.2.1

This page appears as a notebook, where each page is associated with a specific tool. All these pages have the same
structure:

Graphical selection of switches The top part of each page contains a set of buttons, combo boxes, entry fields, ...
which give fast and intuitive access to the most commonly used switches for that tool.

Textual selection of switches The bottom part is an editable entry field, where you can directly type the switches.
This makes it easier to move from an older setup (e.g. Makefile, script) to GPS, by copy-pasting switches.

The two parts of the pages are kept synchronized at any time: clicking on a button will edit the entry field to show the
new switch; adding a new switch by hand in the entry field will activate the corresponding button if there is one.

70 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

Any switch can be added to the entry field, even if there is no corresponding button. In this case, GPS will simply
forward it to the tool when it is called, without trying to represent it graphically.

7.9 The Project Dependencies Editor

You can edit the dependencies between projects through the contextual menu Project->Dependencies... in the Project
View.

This view makes it easy to indicate that your project depends on external libraries, or other modules in your source
code. For instance, you can give access to the GtkAda graphical library in your project by adding a project dependency
to gtkada.gpr, assuming GtkAda has been installed in your system.

The dependencies also determine in what order your application is built. When you compile a project, the builder will
first make sure that the projects it depends on are up-to-date, and otherwise recompile them.

When you select that contextual menu, GPS will open a dialog that allows you to add or remove dependencies to your
project. New dependencies are added by selecting a project file name from one of several sources:

• One of the loaded project from the current project tree

• One of the predefined projects

These are the projects that are found in one of the directories referenced in the ADA_PROJECT_PATH environ-
ment variable. Typically, these include third party libraries, such as GtkAda, win32ada, ...

7.9. The Project Dependencies Editor 71

GPS Documentation, Release 5.2.1

• A new project created through the project wizard

• Any project file located on the disk

In all these cases, you will generally be able to choose whether this should be a simple dependency, or a limited
dependency. The latter allows you to have mutually dependent projects (A depends on B, which in turns depends on
A even indirectly), although you cannot reference the attribute of such a project in the current project (for instance to
indicate that the compiler switches to use for A are the same as for B – you need to duplicate that information).

In some cases, GPS will force a limited dependency on you to avoid loops in the dependencies that would make the
project tree illegal.

7.10 The Project Properties Editor

The project properties editor gives you access at any time to the properties of your project. It is accessible through the
menu Project->Edit Project Properties, and through the contextual menu Edit project properties on any project item,
e.g. from the Project View or the Project Browser.

If there was an error loading the project (invalid syntax, non-existing directories, ...), a warning dialog is displayed
when you select the menu. This reminds you that the project might be only partially loaded, and editing it might result
in the loss of data. In such cases, it is recommended that you edit the project file manually, which you can do directly
from the pop-up dialog.

Fix the project file as you would for any text file, and then reload it manually (through the Project->Open... or
Project->Recent menus.

72 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

The project properties editor is divided in three parts:

The attributes editor

The contents of this editor are very similar to that of the project wizard (The Project Wizard). In fact, all
pages but the General page are exactly the same, and you should therefore read the description for these
in the project wizard chapter.

See also Working in a Cross Environment for more info on the Cross environment attributes.

The project selector

This area, in the top-right corner of the properties editor, contains a list of all the projects in the hierarchy.
The value in the attributes editor is applied to all the selected projects in this selector. You cannot unselect

7.10. The Project Properties Editor 73

GPS Documentation, Release 5.2.1

the project for which you activated the contextual menu.

Clicking on the right title bar (Project) of this selector will sort the projects in ascending or descending
order.

Clicking on the left title bar (untitled) will select or unselect all the projects.

This selector has two different possible presentations, chosen by the toggle button on top: you can either
get a sorted list of all the projects, each one appearing only once. Or you can have the same project
hierarchy as displayed in the project view.

The scenario selector

This area, in the bottom-right corner of the properties editor, lists all the scenario variables declared for
the project hierarchy. By selecting some or all of their values, you can chose to which scenario the
modifications in the attributes editor apply.

Clicking on the left title bar (untitled, on the left of the Scenario label) will select or unselect all values of
all variables.

To select all values of a given variable, click on the corresponding check button.

7.11 The Switches Editor

The switches editor, available through the menu Project->Edit Switches, lists all the source files associated with the
selected project.

For each file, the compiler switches are listed. These switches are displayed in gray if they are the default switches
defined at the project level (The Project Properties Editor). They are defined in black if they are specific to a given
file.

Double-clicking in the switches column allows you to edit the switches for a specific file. It is possible to edit the
switches for multiple files at the same time by selecting them before displaying the contextual menu (Edit switches for
all selected files).

When you double-click in one of the columns that contain the switches, a new dialog is opened that allows you to edit
the switches specific to the selected files.

This dialog has a button titled Revert. Clicking on this button will cancel any file-specific switch, and revert to the
default switches defined at the project level.

74 Chapter 7. Project Handling

GPS Documentation, Release 5.2.1

7.11. The Switches Editor 75

GPS Documentation, Release 5.2.1

7.12 The Project Browser

The project graph is a special kind of browser (Source Browsing). It shows the dependencies between all the project
in the project hierarchy. Two items in this browser will be linked if one of them imports the other.

It is accessed through the contextual menu in the project view, by selecting the Show projects imported by... item,
when right-clicking on a project node.

Clicking on the left arrow in the title bar of the items will display all the projects that import that project. Similarly,
clicking on the right arrow will display all the projects that are imported by that project.

The contextual menu obtained by right-clicking on a project item contains several items. Most of them are added by
the project editor, and gives direct access to editing the properties of the project, adding dependencies... The Project
View.

Some new items are added to the menu:

Locate in Project View Selecting this item will switch the focus to the project view, and highlight the first project
node found that matches the project in the browser item. This is a convenient way to get information like the list
of directories or source files for that project.

Show dependencies This item plays the same role as the right arrow in the title bar, and display all the projects in the
hierarchy that are imported directly by the selected project

Show recursive dependencies This item will display all the dependencies recursively for the project (i.e. the projects
it imports directly, the projects that are imported by them, and so on).

Show projects depending on This item plays the same role as the left arrow in the title bar, and displays all the
projects that directly import the selected project.

76 Chapter 7. Project Handling

CHAPTER

EIGHT

SEARCHING AND REPLACING

GPS provides extensive search capabilities among its different elements. For instance, it is possible to search in the
currently edited source file, or in all the source files belonging to the project, even those that are not currently open. It
is also possible to search in the project view (on the left side of the main GPS window), ...

All these search contexts are grouped into a single graphical window, that you can open either through the menu
Navigate->Find/Replace..., or the shortcut Ctrl-F.

By default, the search window is floating, ie appears as a dialog on top of GPS. You can choose to put it inside
the multiple document interface permanently for easier access. This can be done by selecting the menu Window-
>Floating, and then drag-and-dropping the search window in a new location if you wish (for instance above the
Project View).

Selecting either of these two options will pop up a dialog on the screen, similar to the following:

On this screen shot, you can see three entry fields:

Search for This is the location where you type the string or pattern you are looking for. The search widget supports
two modes, either fixed strings or regular expressions. You can commute between the two modes by either
clicking on the Options button and selecting the appropriate check box, or by opening the combo box (click on
the arrow on the right of the entry field).

77

GPS Documentation, Release 5.2.1

In this combo box, a number of predefined patterns are provided. The top two ones are empty patterns, that
automatically set up the appropriate fixed strings/regular expression mode. The other regular expressions are
language-specific, and will match patterns like Ada type definition, C++ method declaration, ...

Replace with This field should contain the string that will replace the occurrences of the pattern defined above. The
combo box provides a history of previously used replacement strings. If regular expression is used for search,
special escapes 1, 2 .. 9 in this field refer to the corresponding matching sub-expressions and 0 refers whole
matched string.

Look in This field defines the context in which the search should occur.

GPS will automatically select the most appropriate context when you open the search dialog, depending on
which component currently has the focus. If several contexts are possible for one component (for example, the
editor has “Current_File”, “Files from Project”, “Files...” and “Open Files”), then the last one you’ve been using
will be selected. You can of course change the context to another one if needed.

Clicking on the arrow on the right will display the list of all possible contexts. This list includes:

Project View Search in the project view. An extra Scope box will be displayed where you can specify the scope
of your search, which can be a set of: Projects, Directories, Files, Entities. The search in entities may take
a long time, search each file is parsed during the search.

Open Files Search in all the files that are currently open in the source editor. The Scope entry is described in
the Files... section below.

Files...

Search in a given set of files. An extra Files box will be displayed where you can specify the files by
using standard shell (Unix or Windows) regular expression, e.g. *.ad? for all files ending with .ad
and any trailing character. The directory specified where the search starts, and the Recursive search
button whether sub directories will be searched as well.

The Scope entry is used to restrict the search to a set of language constructs, e.g. to avoid matching
on comments when you are only interested in actual code, or to only search strings and comments,
and ignore the code.

Files From Project

Search in all the files from the project, including files from project dependencies. The Scope entry is
described in the Files... section above.

Files From Current Project

Search in all the files from the currently selected project, defaulting on the root project if there is no
project currently selected. The Scope entry is described in the Files... section above.

Files From Runtime

Search in all specification files from GNAT runtime library. The Scope entry is described in the
Files... section above.

Current File

Search in the current source editor. The Scope entry is described in the Files... section above.

Project Browser

Search in the project browser (The Project Browser).

The default value for Look In is set through various means: by default, GPS will select a context that matches
the currently selected window. For instance, if you are in an editor and open the search dialog, the context will
be set to Current File. But if the project view is the active window, the context will be set to Project View.
Optionally, GPS can remember the last context that was set (see the preference Search/Preserve Search Context.

78 Chapter 8. Searching and Replacing

GPS Documentation, Release 5.2.1

If this is set, and an editor is selected, GPS will remember whether the last time you started a search from an
editor you decided to search in Current File or Files From Project for instance.

Finally, you can create key shortcuts (through the /Edit/Key Shortcuts menu, in the Search category) to open the
search dialog and set the context to a specific value.

The second part of the window is a row of buttons, to start the search (or continue to the next occurrence), and to
display the options.

There are five check boxes in this options box.

‘”Regexp”‘ This button commutes between fixed string patterns and regular expressions. You can also commute
between these two modes by selecting the arrow on the right of the Search for: field. The grammar followed
by the regular expressions is similar to the Perl and Python regular expressions grammar, and is documented
in the GNAT run time file g-regpat.ads. To open it from GPS, you can use the open from project dialog
(File->Open From Project...) and type g-regpat.ads.

‘”Whole Word”‘ If activated, this check box will force the search engine to ignore substrings. “sensitive” will no
longer match “insensitive”.

79

GPS Documentation, Release 5.2.1

‘Select on Match‘ When this button is selected, the focus is given to the editor that contains the match, so that you
can start editing the text immediatly. If the button is not selected, the focus is left on the search window, so that
you can press Enter to search for the next occurrence.

‘Close on Match‘ This button only appears if the search window is floating. If this button is enabled, the search
window will be automatically closed when an occurrence of the search string is found.

‘”Case Sensitive Search”‘ By default, patterns are case insensitive (upper-case letters and lower-case letters are
considered as equivalent). You can change this behavior by clicking on this check box.

‘”Case Preserving Replace”‘ When this is checked, replacements preserve casing. Three casings are detected and
preserved: all lower, all UPPER, and Mixed_Case where the first character of each word is capitalized. Note
that when the replace pattern is not all lower case, replacement is never case-preserving, the original casing of
the replace pattern is used.

Pressing the Find / Previous buttons performs an interactive search. It stops as soon as one occurrence of the pattern
is found. search. Once a first occurrence has been found, the Find button is renamed to Next. You then have to press
the Next button (or the equivalent shortcut Ctrl-N) to go to the next occurrence.

If you use the Find all button, the search widget will start searching for all occurrences right away, and put the results
in a new window called Locations, The Locations View.

The Replace and Replace & Find buttons are grayed out as long as no occurence of the pattern is found. In order to
enable them, you have to start a search, e.g. by pressing the Find button. Pressing Replace will replace the current
occurence (and therefore the two buttons will be grayed out), and Replace & Find will replace the occurence and then
jump to the next one, if any. If you don’t want to replace the current occurence, you can jump directly to the next one
by pressing Next.

The Repl all button will replace all the occurences found. By default, a popup is displayed and ask for confirmation.
It’s possible to disable this popup by either checking the box “Do not ask this question again”, or by going in the
Search pannel of the preferences pages, and unchecking “Confirmation for ‘Replace all”’. The confirmation popup
can be reenabled through this checkbox.

As most GPS components, the search window is under control of the multiple document interface, and can thus be
integrated into the main GPS window instead of being an external window.

To force this behavior, open the menu Window, select Search in the list at the bottom of the menu, and then select
either Floating or Docked.

If you save the desktop (File->Save More->Desktop, GPS will automatically reopen the search dialog in its new place
when it is started next time.

80 Chapter 8. Searching and Replacing

CHAPTER

NINE

COMPILATION/BUILD

This chapter describes how to compile files, build executables and run them. Most capabilities can be accessed through
the Build menu item, or through the Build and Run contextual menu items, as described in the following section.

When compiler messages are detected by GPS, an entry is added in the Locations View, allowing you to easily navigate
through the compiler messages (see The Locations View), or even to automatically correct some errors or warnings
(see Code Fixing).

Compiler messages also appear as icons on the side of lines in the source editors. When the mouse pointer is left on
these icons, a tooltip appears, listing the error messages found on this line. When GPS is capable of automatically
correcting the errors, clicking on the icon will apply the fix to the source code. The icons on the side of editors are
removed when the corresponding entries are removed from The Locations View.

9.1 The Build Menu

The build menu gives access to capabilities related to checking, parsing and compiling files, as well as creating and
running executables. note that this menu is fully configurable via the Targets dialog, so what is documented in this
manual are the default menus.

See The Target Configuration Dialog.

Check Syntax Check the syntax of the current source file. Display an error message in the Messages window if no
file is currently selected.

Check Semantic Check the semantic of the current source file. Display an error message in the Messages window if
no file is currently selected.

Compile File

Compile the current file.

By default, will display an intermediate dialog where you can add extra switches, or simply press Enter
to get the standard (or previous) switches. Display an error message in the Messages window if no file is
selected.

If errors or warnings occur during the compilation, the corresponding locations will appear in the Loca-
tions View. If the corresponding Preference is set, the source lines will be highlighted in the editors (see
The Preferences Dialog). To remove the highlighting on these lines, remove the files from the Locations
View using either the contextual menu (Remove category) or by closing the Locations View.

Project

Build <main> The menu will list of all mains defined in your project hierarchy. Each menu item will
build the selected main.

81

GPS Documentation, Release 5.2.1

Build All

Build and link all main units defined in your project. If no main unit is specified in your
project, build all files defined in your project and subprojects recursively. For a library project
file, compile sources and recreate the library when needed.

Compile All Sources

Compile all source files defined in the top level project.

Build <current file>

Consider the currently selected file as a main file, and build it.

Custom Build...

Display a text entry where you can enter any external command. This menu is very useful when
you already have existing build scripts, make files, ... and want to invoke them from GPS. If
the SHELL environment variable is defined (to e.g. /bin/sh), then the syntax used to execute
the command is the one for this shell. Otherwise, the command will be spawned directly by
GPS without any shell interpretation.

Clean

Clean All

Remove all object files and other compilation artifacts associated to all projects related to the
current one. It allows to restart a complete build from scratch.

Clean Root

Remove all object files and other compilation artifacts associated to the root project. It does
not clean objects from other related projects.

Makefile

If you have the make utility in your PATH, and have a file called Makefile in the same directory as your
project file is, or if you’ve set the makefile property in the Make section of the project properties (see The
Project Properties Editor), this menu will be displayed, giving access to all the targets defined in your
makefile.

Ant

If you have the ant utility in your PATH, and have a file called build.xml in the same directory as your
project file is, or if you’ve set the antfile property in the Ant section of the project properties (see The
Project Properties Editor), this menu will be displayed, giving access to all the targets defined in your ant
file.

Run

main

For each main source file defined in your top level project, an entry is listed to run the exe-
cutable associated with this main file. Running an application will first open a dialog where
you can specify command line arguments to your application, if needed. You can also specify
whether the application should be run within GPS (the default), or using an external terminal.

When running an application from GPS, a new execution window is added in the bottom area
where input and output of the application is handled. This window is never closed automati-
cally, even when the application terminates, so that you can still have access to the application’s
output. If you explicitly close an execution window while an application is still running, a di-
alog window will be displayed to confirm whether the application should be terminated.

82 Chapter 9. Compilation/Build

GPS Documentation, Release 5.2.1

When using an external terminal, GPS launches an external terminal utility that will take care
of the execution and input/output of your application. This external utility can be configured
in the preferences dialog (External Commands->Execute command).

The GPS execution windows have several limitations compared to external terminals. In partic-
ular, they do not handle signals like ctrl-z and control-c. In general, if you are running
an interactive application, we strongly encourage you to run in an external terminal.

Similarly, the Run contextual menu accessible from a project entity contains the same entries.

Custom...

Similar to the entry above, except that you can run any arbitrary executable. If the SHELL
environment variable is defined (to e.g. /bin/sh), then the syntax used to execute the command
is the one for this shell. Otherwise, the command will be spawned directly by GPS without
any shell interpretation.

Recompute Xref info Recompute the cross-reference information for Ada, C and C++ source files. Support for
Cross-References.

Load xref info in memory Load all the cross-reference information in memory. This menu is generally not needed,
Support for Cross-References.

Settings

Targets

This opens the Target Configuration Dialog. The Target Configuration Dialog.

Toolchains

Open a dialog allowing the configuration of GPS for working with two compilation toolchains.
This is particulary useful when compiling a project with an old compiler, while wanting up-to-
date functionalities from the associated tools (gnatmetric, gnatcheck and so on). Working with
two compilers.

The Tools->Interrupt menu can be used to interrupt the last compilation or run command. Once you have interrupted
that last operation, you can interrupt the previous one by selecting the same menu again.

However, the easiest way to interrupt a specific operation, no matter if it was started last or not, is to use the Task
Manager, through the Tools->Views->Tasks menu. It will show one line per running process, and right-clicking on
any of these lines gives the possibility to interrupt that process.

If your application is build through a Makefile, you should probably load the Makefile.py startup script (see the
menu /Tools/Plug-ins).

9.2 The Target Configuration Dialog

GPS provides an interface for launching operations like building projects, compiling individual files, performing syn-
tax or semantic checks, and so on. All these operations have in common that they involve launching an external
command, and parsing the output for error messages. In GPS, these operations are called “Targets”, and can be con-
figured either through the Target Configuration dialog, or through XML configuration. Customizing build Targets and
Models.

9.2. The Target Configuration Dialog 83

GPS Documentation, Release 5.2.1

This dialog is divided in two areas: on the left, a tree listing Targets, and, in the main area, a panel for configuring the
Target which is currently selected in the tree.

9.2.1 The Targets tree

The Tree contains a list of targets, organized by categories.

On top of the tree are three buttons:

• The Add button creates a new target.

• The Remove button removes the currently selected target. Note that only user-defined targets can be removed,
the default targets created by GPS cannot be removed.

• The Clone button creates a new user-defined target which is identical to the currently selected target.

9.2.2 The configuration panel

On top of the configuration panel, one can select the Target model. The Model determines the graphical options
available in the “Command line” frame.

The “Revert” button resets all target settings to their original value.

The “Options” frame contains a number of options that are available for all Targets.

84 Chapter 9. Compilation/Build

GPS Documentation, Release 5.2.1

• The Launch mode indicates the way the target is launched:

– Manually: the target is launched when clicking on the corresponding icon in the toolbar, or when activating
the corresponding menu item. In the latter case, a dialog is displayed, allowing last-minute modifications
of the command line.

– Manually with dialog: same as Manually, but the dialog is always displayed, even when clicking on the
toolbar icon.

– Manually with no dialog: same as Manually, but the dialog is never displayed, even when activating the
menu item.

– On file save: the Target is launched automatically by GPS when a file is saved. The dialog is never
displayed.

– In background: the Target is launched automatically in the background after each modification in the
source editor. See Background compilations below.

• Icon: the icon to use for representing this target in the menus and in the toolbar. To use one of your icons, you
must register a icons using the <stock> XML customization node. (Adding stock icons). Then, use “custom”
choice and enter in the text field the ID of the icon.

• Target type: type of target described. If empty, or set to Normal, represents a simple target. If set to another
value, represents multiple subtargets. For example, if set to main, each subtarget corresponds to a Main source
as defined in the currently loaded project. Other custom values may be defined, and then handled via the
compute_build_targets hook.

The “Display” frame indicates where the launcher for this target should be visible.

• in the toolbar: when active, a button is displayed in the main toolbar, allowing to quickly launch a Target.

• in the main menu: whether to display a menu item corresponding to the Target in the main GPS menu. By
default, Targets in the “File” category are listed directly in the Build menu, and Targets in other categories are
listed in a submenu corresponding to the name of the category.

• in contextual menus for projects: whether to display an item in the contextual menu for projects in the Project
View

• in contextual menus for files: whether to display an item in the contextual menus for files, for instance in file
items in the Project View or directly on source file editors.

The “Command line” contains a graphical interface for some configurable elements of the Target, which are specific
to the Model of this Target.

The full command line is displayed at the bottom. Note that it may contain Macro Arguments. For instance if the
command line contains the string “%PP”, GPS will expand this to the full path to the current project. For a full list of
available Macros, see Macro arguments.

9.2.3 Background compilations

GPS is capable of launching compilation targets in the background. This means that GPS will launch the compiler on
the current state of the file in the editor.

Error messages resulting from background compilations are not listed in the Locations view or the Messages window.
The full messages are listed in the Background Build console, accessible from the menu Tools->Console. Error
messages which contain a source location indication are shown as icons on the side of lines in editors, and the exact
location is highlighted directly in the editor. On both of these places, tooltips show the contents of the error messages.

Messages from background compilations are removed automatically either when a new background compilation has
finished, or when a non-background compilation is launched.

9.2. The Target Configuration Dialog 85

GPS Documentation, Release 5.2.1

GPS will launch background compilations for all targets that have a Launch mode set to In background, after modifi-
cations occur in a source editor. Background compilation is useful mostly for targets such as Compile File or Check
Syntax. For targets that work on Mains, the last main that was used in a non-background is considered, defaulting to
the first main defined in the project hierarchy.

Background compilations are not launched while GPS is already listing results from non-background compilations, ie
as long as there are entries in the Locations View showing entries in the Builder results category.

9.3 The Build Mode

GPS provides an easy way to build your project with different options, through the Mode selection, located in the main
toolbar.

When the Mode selection is set to default, the build is done using the switches defined in the project. When the Mode
selection is set to another value, then specialized parameters are passed to the builder. For instance, the gcov Mode
adds all the compilation parameters needed to instrument the produced objects and executables to work with the gcov
tool.

In addition to changing the build parameters, the Mode selection has the effect of changing the output directory for
objects and executables. For instance, objects produced under the debug mode will be located in the debug subdirec-
tories of the object directories defined by the project. This allows switching from one Mode to another without having
to erase the objects pertaining to a different Mode.

It is possible to define new Modes using XML customization, see Customizing build Targets and Models.

Note that the Build Mode affects only builds done using recent versions of gnatmake and gprbuild. The Mode selection
has no effect on builds done through Targets that launch other builders.

9.4 Working with two compilers

This functionality is intended for people whose projects need to be compiled with a specific (old) version of the GNAT
toolchain, while still desiring to take full advantage of up-to-date associated tools for non-compilation actions, such as
checking the code against a coding standard, getting better cross-reference browsing in GPS, computing metrics and
so on.

GPS now allows you to handle this case. To configure GPS to make it handle two compiler toolchains, you need to use
the Build->Settings->Toolchains menu. This will open a dialog where you can activate the multiple-toolchains mode.

86 Chapter 9. Compilation/Build

GPS Documentation, Release 5.2.1

In this dialog, two paths need to be configured: the compiler path and the tools path. The first one is used to actually
compile the code, while the second one is used to run up-to-date tools to get more functionalities or accurate results.

Note that GPS will only enable the OK button when the two paths are set to different location, since otherwise it does
not make sense to enable the multiple toolchains set up.

From this dialog, you can also activate an automated cross-reference generation. The cross-reference files are the .ali
files generated by the GNAT compiler together with the compiled object. Those files are used by GPS for several
functionalities, such as cross-reference browsing or documentation generation. Having those .ali files produced by a
recent compiler helps having more accurate results with those functionalities, but might interract badly with an old
compiler also reading those .ali files for compiling a project.

If the automated xref generation is activated, then GPS will generate those .ali files using the compiler found in the
tools path, and place them in a directory distinct from the one used by the actual compiler. This allows GPS to take
full benefit of up-to-date cross-reference files, while keeping the old toolchain happy as its .ali files remain untouched.

Note that the cross-reference files generation does not output anything in the “Messages” window, so as to not confuse
the output of the regular build process. If needed, you can see the output of the cross-ref generation command by
selecting the Tools->Consoles->Auxiliary Builds menu.

9.4.1 Interaction with the remote mode

The ability to work with two compilers has impacts on the remote mode configuration: paths defined here are local
paths, so they have no meaning on the server side.

To handle the case of using a specific compiler version on the remote side while still wanting up-to-date tools, the
following behavior is applied when both a remote compilation server is defined, and the multiple toolchains mode is
activated:

• The compiler path is ignored when a remote build server is defined. All compilation actions are then performed
normally on the build server.

• The tools path is however taken into account, and all related actions are performed on the local machine using
this path.

• The cross-reference files are taken care of by the rsync mechanism so that they don’t get overwritten during
local and remote host synchronisations, as build and cross-reference generation actions occur at the same time,
on the local machine and on the distant server.

9.4. Working with two compilers 87

GPS Documentation, Release 5.2.1

88 Chapter 9. Compilation/Build

CHAPTER

TEN

SOURCE BROWSING

10.1 General Issues

GPS contains several kinds of browsers, that have a common set of basic functionalities. There are currently four
such browsers: the project browser (The Project Browser), the call graph (Call Graph), the dependency browser
(Dependency Browser) and the entity browser (Entity Browser).

All these browsers are interactive viewers. They contain a number of items, whose visual representation depends on
the type of information displayed in the browser (they can be projects, files, entities, ...).

In addition, the following capabilities are provided in all browsers:

Scrolling

When a lot of items are displayed in the canvas, the currently visible area might be too small to display
all of them. In this case, scrollbars will be added on the sides, so that you can make other items visible.
Scrolling can also be done with the arrow keys.

Layout

A basic layout algorithm is used to organize the items. This algorithm is layer oriented: items with no
parents are put in the first layer, then their direct children are put in the second layer, and so on. Depending
on the type of browser, these layers are organized either vertically or horizontally. This algorithm tries to
preserve as much as possible the positions of the items that were moved interactively.

The Refresh layout menu item in the background contextual menu can be used to recompute the layout of
items at any time, even for items that were previously moved interactively.

Interactive moving of items

Items can be moved interactively with the mouse. Click and drag the item by clicking on its title bar. The
links will still be displayed during the move, so that you can check whether it overlaps any other item. If
you are trying to move the item outside of the visible part of the browser, the latter will be scrolled.

Links

Items can be linked together, and will remain connected when items are moved. Different types of links
exist, see the description of the various browsers.

By default, links are displayed as straight lines. You can choose to use orthogonal links instead, which
are displayed only with vertical or horizontal lines. Select the entry orthogonal links in the background
contextual menu.

Exporting

The entire contents of a browser can be exported as a PNG image using the entry Export to PNG... in the
background contextual menu. It can also be exported in SVG format using the Export to SVG... entry.

89

GPS Documentation, Release 5.2.1

Zooming

Several different zoom levels are available. The contextual menu in the background of the browser con-
tains three entries: zoom in, zoom out and zoom. The latter is used to select directly the zoom level you
want.

This zooming capability is generally useful when lots of items are displayed in the browser, to get a more
general view of the layout and the relationships between the items.

Selecting items

Items can be selected by clicking inside them. Multiple items can be selected by holding the control
key while clicking in the item. Alternatively, you can click and drag the mouse inside the background of
the browser. All the items found in the selection rectangle when the mouse is released will be selected.

Selected items are drawn with a different title bar color. All items linked to them also use a different title
bar color, as well as the links. This is the most convenient way to understand the relationships between
items when lots of them are present in the browser.

Hyper-links

Some of the items will contain hyper links, displayed in blue by default, and underlined. Clicking on
these will generally display new items.

Two types of contextual menus are available in the browsers: the background contextual menu is available by right-
clicking in the background area (i.e. outside of any item). As described above, it contains entries for the zooming,
selecting of orthogonal links, and refresh; the second kind of contextual menu is available by right-clicking in items.

The latter menu contains various entries. Most of the entries are added by various modules in GPS (VCS module,
source editor, ...). In addition, each kind of browser also has some specific entries, which is described in the corre-
sponding browser’s section.

There are two common items in all item contextual menus:

Hide Links

Browsers can become confusing if there are many items and many links. You can lighten them by selecting
this menu entry. As a result, the item will remain in the canvas, but none of the links to or from it will be
visible. Selecting the item will still highlight linked items, so that this information remains available.

Remove unselected items

Selecting this menu will remove all the items that are not currently selected. This is a convenient method
to clean up the contents of the browser.

Remove selected items

Selecting this menu will remove all the items that are currently selected.

10.2 Call Graph

The call graph shows graphically the relationship between subprogram callers and callees. A link between two items
indicate that one of them is calling the other.

A special handling is provided for renaming entities (in Ada): if a subprogram is a renaming of another one, both
items will be displayed in the browser, with a special hashed link between the two. Since the renaming subprogram
doesn’t have a proper body, you will then need to ask for the subprograms called by the renamed to get the list.

90 Chapter 10. Source Browsing

GPS Documentation, Release 5.2.1

In this browser, clicking on the right arrow in the title bar will display all the entities that are called by the selected
item.

Clicking on the left arrow will display all the entities that call the selected item (i.e. its callers).

This browser is accessible through the contextual menu in the project view and source editor, by selecting one of the
items:

All boxes in this browser list several information: the location of their declaration, and the list of all their references
in the other entities currently displayed in the browser. If you close the box for an entity that calls them, the matching
references are also hidden, to keep the contents of the browser simpler.

Browsers->*Entity calls*

Display all the entities called by the selected entity. This has the same effect as clicking on the right title
bar arrow if the item is already present in the call graph.

Browsers->*Entity is called by*

Display all the entities called by the selected entity. This has the same effect as clicking on the left title
bar arrow if the item is already present in the call graph.

The contextual menu available by right-clicking on the entities in the browser has the following new entries, in addition
to the ones added by other modules of GPS.

Entity calls Same as described above.

10.2. Call Graph 91

GPS Documentation, Release 5.2.1

Entity is called by Same as described above.

Go To Spec Selecting this item will open a source editor that displays the declaration of the entity.

Go To Body Selecting this item will open a source editor that displays the body of the entity.

Locate in Project View Selecting this menu entry will move the focus to the project view, and select the first node
representing the file in which the entity is declared. This makes it easier to see which other entities are declared
in the same file.

10.3 Dependency Browser

The dependency browser shows the dependencies between source files. Each item in the browser represents one source
file.

In this browser, clicking on the right arrow in the title bar will display the list of files that the selected file depends
on. A file depend on another one if it explicitly imports it (with statement in Ada, or #include in C/C++). Implicit
dependencies are currently not displayed in this browser, since the information is accessible by opening the other direct
dependencies.

Clicking on the left arrow in the title bar will display the list of files that depend on the selected file.

This browser is accessible through the contextual menu in the project view and the source editor, by selecting one of
the following items:

Show dependencies for *file* This has the same effect as clicking on the right arrow for a file already in the browser,
and will display the direct dependencies for that file.

92 Chapter 10. Source Browsing

GPS Documentation, Release 5.2.1

Show files depending on *file* This has the same effect as clicking on the left arrow for a file already in the browser,
and will display the list of files that directly depend on that file.

The background contextual menu in the browser adds a few entries to the standard menu:

Open file...

This menu entry will display an external dialog in which you can select the name of a file to analyze.

Recompute dependencies

This menu entry will check that all links displays in the dependency browser are still valid. If not, they
are removed. The arrows in the title bar are also reset if necessary, in case new dependencies were added
for the files.

The browser is not refreshed automatically, since there are lots of cases where the dependencies might
change (editing source files, changing the project hierarchy or the value of the scenario variables, ...)

It also recomputes the layout of the graph, and will change the current position of the boxes.

Show system files This menu entry indicates whether standard system files (runtime files for instance in the case of
Ada) are displayed in the browser. By default, these files will only be displayed if you explicitly select them
through the Open file menu, or the contextual menu in the project view.

Show implicit dependencies This menu entry indicates whether implicit dependencies should also be displayed for
the files. Implicit dependencies are files that are required to compile the selected file, but that are not explic-
itly imported through a with or #include statement. For instance, the body of generics in Ada is an implicit
dependency. Any time one of the implicit dependencies is modified, the selected file should be recompiled as
well.

The contextual menu available by right clicking on an item also adds a number of entries:

Analyze other file This will open a new item in the browser, displaying the complement file for the selected one.
In Ada, this would be the body if you clicked on a spec file, or the opposite. In C, it depends on the naming
conventions you specified in the project properties, but you would generally go from a .h file to a .c file and
back.

Show dependencies for *file* These play the same role as in the project view contextual menu

10.4 Entity Browser

The entity browser displays static information about any source entity.

The exact content of the items depend on the type of the item. For instance:

Ada record / C struct

The list of fields, each as an hyper link, is displayed. Clicking on one of the fields will open a new item
for the type.

Ada tagged type / C++ class

The list of attributes and methods is displayed. They are also click-able hyper-links.

Subprograms

The list of parameters is displayed

Packages

The list of all the entities declared in that package is displayed

10.4. Entity Browser 93

GPS Documentation, Release 5.2.1

and more...

This browser is accessible through the contextual menu in the project view and source editor, when clicking on an
entity:

Browsers/Examine entity *entity* Open a new item in the entity browser that displays information for the selected
entity.

Most information in the items are click-able (by default, they appear as underlined blue text). Clicking on one of these
hyper links will open a new item in the entity browser for the selected entity.

This browser can display the parent entities for an item. For instance, for a C++ class or Ada tagged type, this would
be the types it derives from. This is accessible by clicking on the up arrow in the title bar of the item.

Likewise, children entities (for instance types that derive from the item) can be displayed by clicking on the down
arrow in the title bar.

An extra button appear in the title bar for the C++ class or Ada tagged types, which toggles whether the inherited
methods (or primitive operations in Ada) should be displayed. By default, only the new methods, or the ones that
override an inherited one, are displayed. The parent’s methods are not shown, unless you click on this title bar button.

94 Chapter 10. Source Browsing

CHAPTER

ELEVEN

DEBUGGING

GPS is also a graphical front-end for text-based debuggers such as GDB. A knowledge of the basics of the underlying
debugger used by GPS will help understanding how GPS works and what kind of functionalities it provides.

Please refer to the debugger-specific documentation - e.g. the GNAT User’s Guide (chapter Running and Debugging
Ada Programs) or the GDB documentation for more details.

Debugging is tightly integrated with the other components of GPS. For example, it is possible to edit files and navigate
through your sources while debugging.

To start a debug session, go to the menu Debug->Initialize, and choose either the name of your executable, if you have
specified the name of your main program(s) in the project properties, or start an empty debug session using the <no
main file> item. It is then possible to load any file to debug, by using the menu Debug->Debug->Load File...

Note that you first need to build your executable with debug information (-g switch), either explicitly as part of your
project properties, or via the Debug build mode (see The Build Mode for more details).

Note that you can create multiple debuggers by using the Initialize menu several times: this will create a new debugger
each time. All the debugger-related actions (e.g. stepping, running) are performed on the current debugger, which is
represented by the current debugger console. To switch between debuggers, simply select its corresponding console.

After the debugger has been initialized, you have access to two new windows: the data window (in the top of the
working area), and the debugger console (in a new page, after the Messages and Shell windows). All the menus under
Debugger are now also accessible, and you also have access to additional contextual menus, in particular in the source
editor where it is possible to easily display variables, set breakpoints, and get automatic display (via tool tips) of object
values.

When you want to quit the debugger without quitting GPS, go to the menu Debug->Terminate Current, that will
terminate your current debug session, or the menu Debug->Terminate that will terminate all your debug sessions at
once.

11.1 The Debug Menu

The Debug entry in the menu bar provides operations that act at a global level. Key shortcuts are available for the most
common operations, and are displayed in the menus themselves. Here is a detailed list of the menu items that can be
found in the menu bar:

Run... Opens a dialog window allowing you to specify the arguments to pass to the program to be debugged, and
whether this program should be stopped at the beginning of the main subprogram. If you confirm by clicking
on the OK button, the program will be launched according to the arguments entered.

Step Execute the program until it reaches a different source line.

Step Instruction Execute the program for one machine instruction only.

95

GPS Documentation, Release 5.2.1

Next Execute the program until it reaches the next source line, stepping over subroutine calls.

Next Instruction Execute the program until it reaches the next machine instruction, stepping over subroutine calls.

Finish Continue execution until selected stack frame returns.

Continue Continue execution of the program being debugged.

Interrupt Asynchronously interrupt the program being debugged. Note that depending on the state of the program,
you may stop it in low-level system code that does not have debug information, or in some cases, not even a
coherent state. Use of breakpoints is preferable to interrupting programs. Interrupting programs is nevertheless
required in some situations, for example when the program appears to be in an infinite (or at least very time-
consuming) loop.

Terminate Current Terminate the current debug session by terminating the underlying debugger (e.g gdb) used to
handle the low level debugging. You can control what happens to the windows through the Debugger/Debugger
Windows preference.

Terminate Terminate all your debug sessions. Same as Terminate Current if there is only one debugger open.

11.1.1 Initialize

This menu contains one entry per main unit defined in your project, which will start a debug session and load the
executable associated with the main unit selected and if relevant, all corresponding settings: a debug session will open
the debug perspective and associated debug properties (e.g. saved breakpoints, and data display).

<No Main File>

Will initialize the debugger with no executable. You can then use one of the menu items in the Debug
menu (e.g. Load File... or Attach...) if needed.

11.1.2 Debug

Connect to Board... Opens a simple dialog to connect to a remote board. This option is only relevant to cross
debuggers.

Load File... Opens a file selection dialog that allows you to choose a program to debug. The program to debug is
either an executable for native debugging, or a partially linked module for cross environments (e.g VxWorks).

Add Symbols... Add the symbols from a given file/module. This corresponds to the gdb command add-symbol-file.
This menu is particularly useful under VxWorks targets, where the modules can be loaded independently of the
debugger. For instance, if a module is independently loaded on the target (e.g. using windshell), it is absolutely
required to use this functionality, otherwise the debugger won’t work properly.

Attach... Instead of starting a program to debug, you can instead attach to an already running process. To do so, you
need to specify the process id of the process you want to debug. The process might be busy in an infinite loop,
or waiting for event processing. Note that as for Core Files, you need to specify an executable before attaching
to a process.

Detach Detaches the currently debugged process from the underlying debugger. This means that the executable will
continue to run independently. You can use the Attach To Process menu later to re-attach to this process.

Debug Core File... This will open a file selection dialog that allows you to debug a core file instead of debugging a
running process. Note that you must first specify an executable to debug before loading a core file.

Kill Kills the process being debugged.

96 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

11.1.3 Data

Note that most items in this menu need to access the underlying debugger when the process is stopped, not when it is
running. This means that you first need to stop the process on a breakpoint or interrupt it, before using the following
commands. Failing to do so will result in blank windows.

Data Window

Displays the Data window. If this window already exists, it is raised so that it becomes visible

Call Stack Displays the Call Stack window. See The Call Stack Window for more details.

Threads Opens a new window containing the list of threads currently present in the executable as reported by the
underlying debugger. For each thread, it will give information such as internal identifier, name and status. This
information is language- and debugger-dependent. You should refer to the underlying debugger’s documenta-
tion for more details. As indicated above, the process being debugged needs to be stopped before using this
command, otherwise a blank list will be displayed.

When supported by the underlying debugger, clicking on a thread will change the context (variables, call stack,
source file) displayed, allowing you to inspect the stack of the selected thread.

Tasks For GDB only, this will open a new window containing the list of Ada tasks currently present in the executable.
Similarly to the thread window, you can switch to a selected task context by clicking on it, if supported by GDB.
See the GDB documentation for the list of items displayed for each task.

As for the thread window, the process being debugged needs to be stopped before using this window.

Protection Domains For VxWorks AE only, this will open a new window containing the list of available protection
domains in the target. To change to a different protection domain, simply click on it. A @c{*} character
indicates the current protection domain.

Assembly Opens a new window displaying an assembly dump of the current code being executed. See The Assembly
Window for more details.

Edit Breakpoints Opens an advanced window to create and modify any kind of breakpoint, including watchpoints
(see The Breakpoint Editor). For simple breakpoint creation, see the description of the source window.

Examine Memory Opens a memory viewer/editor. See The Memory Window for more details.

Command History Opens a dialog with the list of commands executed in the current session. You can select any
number of items in this list and replay the selection automatically.

Display Local Variables Opens an item in the Data Window containing all the local variables for the current frame.

11.1. The Debug Menu 97

GPS Documentation, Release 5.2.1

Display Arguments Opens an item in the Data Window containing the arguments for the current frame.

Display Registers Opens an item in the Data Window containing the machine registers for the current frame.

Display Any Expression... Opens a small dialog letting you specify an arbitrary expression in the Data Window.
This expression can be a variable name, or a more complex expression, following the syntax of the underlying
debugger. See the documentation of e.g gdb for more details on the syntax. The check button Expression is a
subprogram call should be enabled if the expression is actually a debugger command (e.g p/x var) or a procedure
call in the program being debugged (e.g call my_proc).

Recompute Recomputes and refreshes all the items displayed in the Data Window.

11.2 The Call Stack Window

The call stack window gives a list of frames corresponding to the current execution stack for the current thread/task.

The bottom frame corresponds to the outermost frame where the thread is currently stopped. This frame corresponds
to the first function executed by the current thread (e.g main if the main thread is in C). You can click on any frame to
switch to the caller’s context, this will update the display in the source window. See also the up and down buttons in
the tool bar to go up and down one frame in the call stack.

The contextual menu (right mouse button) allows you to choose which information you want to display in the call
stack window (via check buttons):

• Frame number: the debugger frame number (usually starts at 0 or 1)

• Program Counter: the low level address corresponding to the function’s entry point.

• Subprogram Name: the name of the subprogram in a given frame

• Parameters: the parameters of the subprogram

• File Location: the filename and line number information.

By default, only the subprogram name is displayed. You can hide the call stack window by closing it, as for other
windows, and show it again using the menu Data->Call Stack.

11.3 The Data Window

11.3.1 Description

The Data Window is the area in which various information about the debugged process can be displayed. This includes
the value of selected variables, the current contents of the registeres, the local variables, ...

98 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

This window is not open by default when you start the debugger. It will be created automatically when needed (e.g.
when using the Debug constextual menu to display a variable). You can also force its display through the menu
Debug->Data->Data Window.

However, if you save the desktop through the menu File->Save More->Desktop while the data window is open, it will
be automatically reopen the next time the desktop is loaded, for instance when restarting GPS.

The contents of the data window is preserved by default whenever you close it. Thus, if you reopen the data window
either during the same debugger session, or automatically when you start a debugger on the same executable, it will
display the same items again. This behavior is controlled by the Preserve State on Exit preference.

The data window contains all the graphic boxes that can be accessed using the Data->Display menu items, or the data
window Display Expression... contextual menu, or the source window Display contextual menu items, or finally the
graph command in the debugger console.

For each of these commands, a box is displayed in the data window with the following information:

• A title bar containing:

– The number of this expression: this is a positive number starting from 1 and incremented for each new box
displayed. It represents the internal identifier of the box.

– The name of the expression: this is the expression or variable specified when creating the box.

– An icon representing either a flash light, or a lock. .. index:: icon

This is a click-able icon that will change the state of the box from automatically updated (the flash light
icon) to frozen (the lock icon). When frozen, the value is grayed, and will not change until you change the
state. When updated, the value of the box will be recomputed each time an execution command is sent to
the debugger (e.g step, next).

– An icon representing an ‘X’. .. index:: icon

You can click on this icon to close/delete any box.

• A main area.

11.3. The Data Window 99

GPS Documentation, Release 5.2.1

The main area will display the data value hierarchically in a language-sensitive manner. The canvas knows about
data structures of various languages (e.g C, Ada, C++) and will organize them accordingly. For example, each
field of a record/struct/class, or each item of an array will be displayed separately. For each subcomponent, a
thin box is displayed to distinguish it from the other components.

A contextual menu, that takes into account the current component selected by the mouse, gives access to the following
capabilities:

Close *component* Closes the selected item.

Hide all *component* Hides all subcomponents of the selected item. To select a particular field or item in a
record/array, move your mouse over the name of this component, not over the box containing the values for
this item.

Show all *component* Shows all subcomponents of the selected item.

Clone *component* Clones the selected component into a new, independent item.

View memory at address of *component* Brings up the memory view dialog and explore memory at the address of
the component.

Set value of *component*

Sets the value of a selected component. This will open an entry box where you can enter the new value of
a variable/component. Note that GDB does not perform any type or range checking on the value entered.

Update Value Refreshes the value displayed in the selected item.

Show Value Shows only the value of the item.

Show Type Shows only the type of each field for the item.

Show Value+Type Shows both the value and the type of the item.

Auto refresh Enables or disables the automatic refreshing of the item upon program execution (e.g step, next).

A contextual menu can be accessed in the canvas itself (point the mouse to an empty area in the canvas, and click on
the right mouse button) with the following entries:

Display Expression... Open a small dialog letting you specify an arbitrary expression in the Data Window. This
expression can be a variable name, or a more complex expression, following the syntax of the current language
and underlying debugger. See the documentation of e.g gdb for more details on the syntax. The check button
Expression is a subprogram call should be enabled if the expression is actually not an expression but rather a
debugger command (e.g p/x var) or a procedure call in the program being debugged (e.g call my_proc).

Align On Grid Enables or disables alignment of items on the grid.

Detect Aliases Enables or disables the automatic detection of shared data structures. Each time you display an item
or dereference a pointer, all the items already displayed on the canvas are considered and their addresses are
compared with the address of the new item to display. If they match, (for example if you tried to dereference a
pointer to an object already displayed) instead of creating a new item a link will be displayed.

Zoom in Redisplays the items in the data window with a bigger font

Zoom out Displays the items in the data window with smaller fonts and pixmaps. This can be used when you have
several items in the window and you can’t see all of them at the same time (for instance if you are displaying a
tree and want to clearly see its structure).

Zoom Allows you to choose the zoom level directly from a menu.

Clear When this item is selected, all the boxes currently displayed are removed.

100 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

11.3.2 Manipulating items

Moving items

All the items on the canvas have some common behavior and can be fully manipulated with the mouse. They can be
moved freely anywhere on the canvas, simply by clicking on them and then dragging the mouse. Note that if you are
trying to move an item outside of the visible area of the data window, the latter will be scrolled so as to make the new
position visible.

Automatic scrolling is also provided if you move the mouse while dragging an item near the borders of the data
window. As long as the mouse remains close to the border and the button is pressed on the item, the data window is
scrolled and the item is moved. This provides an easy way to move an item a long distance from its initial position.

Colors

Most of the items are displayed using several colors, each conveying a special meaning. Here is the meaning assigned
to all colors (note that the exact color can be changed through the preferences dialog; these are the default colors):

black

This is the default color used to print the value of variables or expressions.

blue This color is used for C pointers (or Ada access values), i.e. all the variables and fields that are memory addresses
that denote some other value in memory.

You can easily dereference these (that is to say see the value pointed to) by double-clicking on the blue text
itself.

red

This color is used for variables and fields whose value has changed since the data window was last dis-
played. For instance, if you display an array in the data window and then select the Next button in the tool
bar, then the elements of the array whose value has just changed will appear in red.

As another example, if you choose to display the value of local variables in the data window (Display-
>Display Local Variables), then only the variables whose value has changed are highlighted, the others
are left in black.

11.3. The Data Window 101

GPS Documentation, Release 5.2.1

Icons

Several different icons can be used in the display of items. They also convey special meanings.

trash bin icon

This icon indicates that the debugger could not get the value of the variable or expression. There might
be several reasons, for instance the variable is currently not in scope (and thus does not exist), or it might
have been optimized away by the compiler. In all cases, the display will be updated as soon as the variable
becomes visible again.

package icon

This icon indicates that part of a complex structure is currently hidden. Manipulating huge items in the
data window (for instance if the variable is an array of hundreds of complex elements) might not be very
helpful. As a result, you can shrink part of the value to save some screen space and make it easier to
visualize the interesting parts of these variables.

Double-clicking on this icon will expand the hidden part, and clicking on any sub-rectangle in the display
of the variable will hide that part and replace it with that icon.

See also the description of the contextual menu to automatically show or hide all the contents of an
item. Note also that one alternative to hiding subcomponents is to clone them in a separate item (see the
contextual menu again).

102 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

11.4 The Breakpoint Editor

The breakpoint editor can be accessed from the menu Data->Edit Breakpoints. It allows manipulation of different
kinds of breakpoints: at a source location, on a subprogram, at an executable address, on memory access (watchpoints),
and on Ada exceptions.

You can double-click on any breakpoint in the list to open the corresponding source editor at the right location.
Alternatively, you can select the breakpoint and then click on the View button.

The top area provides an interface to create the different kinds of breakpoints, while the bottom area lists existing
breakpoints and their characteristics.

It is possible to access advanced breakpoint characteristics for a given breakpoint. First, select a breakpoint in the
list. Then, click on the Advanced button, which will display a new dialog window. You can specify commands to run
automatically after a breakpoint is hit, or specify how many times a selected breakpoint will be ignored. If running
VxWorks AE, you can also change the Scope and Action settings for breakpoints.

11.4. The Breakpoint Editor 103

GPS Documentation, Release 5.2.1

11.4.1 Scope/Action Settings for VxWorks AE

In VxWorks AE breakpoints have two extra properties:

• Scope: .. index:: scope

which task(s) can hit a given breakpoint. Possible Scope values are:

– task: .. index:: task

the breakpoint can only be hit by the task that was active when the breakpoint was set. If the breakpoint is
set before the program is run, the breakpoint will affect the environment task

– pd: .. index:: protection domain

any task in the current protection domain can hit that breakpoint

– any:

any task in any protection domain can hit that breakpoint. This setting is only allowed for tasks in the
Kernel domain.

• Action: .. index:: action

when a task hits a breakpoints, which tasks are stopped:

– task: .. index:: task

stop only the task that hit the breakpoint.

– pd: .. index:: protection domain

stop all tasks in the current protection domain

– all: stop all breakable tasks in the system

104 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

These two properties can be set/changed through the advanced breakpoints characteristics by clicking on the Advanced
button. There are two ways of setting these properties:

• Per breakpoint settings:

after setting a breakpoint (the default Scope/Action values will be task/task), select the Scope/Action tab in the
Advanced settings. To change these settings on a given breakpoint, select it from the breakpoints list, select the
desired values of Scope and Action and click on the Update button.

• Default session settings:

select the Scope/Action tab in the Advanced settings. Select the desired Scope and Action settings, check the Set
as session defaults check box below and click the Close button. From now on, every new breakpoint will have
the selected values for Scope and Action.

If you have enabled the preference Preserve state on exit, GPS will automatically save the currently set breakpoints,
and restore them the next time you debug the same executable. This allows you to immediately start debugging your
application again, without reseting the breakpoints every time.

11.5 The Memory Window

The memory window allows you to display the contents of memory by specifying either an address, or a variable
name.

To display memory contents, enter the address using the C hexadecimal notation: 0xabcd, or the name of a variable,
e.g foo, in the Location text entry. In the latter case, its address is computed automatically. Then either press Enter or
click on the View button. This will display the memory with the corresponding addresses in the bottom text area.

You can also specify the unit size (Byte, Halfword or Word), the format (Hexadecimal, Decimal, Octal or ASCII), and
you can display the corresponding ASCII value at the same time.

The up and down arrows as well as the Page up and Page down keys in the memory text area allows you to walk
through the memory in order of ascending/descending addresses respectively.

Finally, you can modify a memory area by simply clicking on the location you want to modify, and by entering the
new values. Modified values will appear in a different color (red by default) and will only be taken into account (i.e

11.5. The Memory Window 105

GPS Documentation, Release 5.2.1

written to the target) when you click on the Submit changes button. Clicking on the Undo changes or going up/down
in the memory will undo your editing.

Clicking on Close will close the memory window, canceling your last pending changes, if any.

11.6 Using the Source Editor when Debugging

When debugging, the left area of each source editor provides the following information:

Lines with code

In this area, blue dots are present next to lines for which the debugger has debug information, in other
words, lines that have been compiled with debug information and for which the compiler has generated
some code. Currently, there is no check when you try to set a breakpoint on a non dotted line: this will
simply send the breakpoint command to the underlying debugger, and usually (e.g in the case of gdb)
result in setting a breakpoint at the closest location that matches the file and line that you specified.

Current line executed This is a green arrow showing the line about to be executed.

Lines with breakpoints For lines where breakpoints have been set, a red mark is displayed on top of the blue dot for
the line. You can add and delete breakpoints by clicking on this area (the first click will set a breakpoint, the
second click will remove it).

The second area in the source window is a text window on the right that displays the source files, with syntax high-
lighting. If you leave the cursor over a variable, a tooltip will appear showing the value of this variable. Automatic
tooltips can be disabled in the preferences menu.

See Preferences Dialog.

When the debugger is active, the contextual menu of the source window contains a sub menu called Debug providing
the following entries.

Note that these entries are dynamic: they will apply to the entity found under the cursor when the menu is displayed
(depending on the current language). In addition, if a selection has been made in the source window the text of the
selection will be used instead. This allows you to display more complex expressions easily (for example by adding
some comments to your code with the complex expressions you want to be able to display in the debugger).

Print *selection* Prints the selection (or by default the name under the cursor) in the debugger console.

Display *selection* Displays the selection (or by default the name under the cursor) in the data window. The value
will be automatically refreshed each time the process state changes (e.g after a step or a next command). To

106 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

freeze the display in the canvas, you can either click on the corresponding icon in the data window, or use the
contextual menu for the specific item (see The Data Window for more information).

Print *selection.all* Dereferences the selection (or by default the name under the cursor) and prints the value in the
debugger console.

Display *selection.all* Dereferences the selection (or by default the name under the cursor) and displays the value in
the data window.

View memory at address of *selection* Brings up the memory view dialog and explores memory at the address of
the selection.

Set Breakpoint on Line *xx* Sets a breakpoint on the line under the cursor, in the current file.

Set Breakpoint on *selection* Sets a breakpoint at the beginning of the subprogram named selection

Continue Until Line *xx* Continues execution (the program must have been started previously) until it reaches the
specified line.

Show Current Location Jumps to the current line of execution. This is particularly useful after navigating through
your source code.

11.7 The Assembly Window

It is sometimes convenient to look at the assembly code for the subprogram or source line you are currently debugging.

You can open the assembly window by using the menu Debug->Data->Assembly.

11.7. The Assembly Window 107

GPS Documentation, Release 5.2.1

The current assembly instruction is highlighted with a green arrow on its left. The instructions corresponding to the
current source line are highlighted in red by default. This allows you to easily see where the program counter will
point to, once you have pressed the “Next” button on the tool bar.

Moving to the next assembly instruction is done through the “Nexti” (next instruction) button in the tool bar. If you
choose “Stepi” instead (step instruction), this will also jump to the subprogram being called.

For efficiency reasons, only a small part of the assembly code around the current instruction is displayed. You can
specify in the Preferences Dialog how many instructions are displayed by default. Also, you can easily display the
instructions immediately preceding or following the currently displayed instructions by pressing one of the Page up
or Page down keys, or by using the contextual menu in the assembly window.

A convenient complement when debugging at the assembly level is the ability of displaying the contents of machine
registers. When the debugger supports it (as gdb does), you can select the Data->Display Registers menu to get an
item in the canvas that will show the current contents of each machine register, and that will be updated every time one
of them changes.

You might also choose to look at a single register. With gdb, select the Data->Display Any Expression, entering
something like:

output /x $eax

in the field, and selecting the toggle button “Expression is a subprogram call”. This will create a new canvas item that
will be refreshed every time the value of the register (in this case eax) changes.

108 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

11.8 The Debugger Console

This is the text window located at the bottom of the main window. In this console, you have direct access to the
underlying debugger, and can send commands (you need to refer to the underlying debugger’s documentation, but
usually typing help will give you an overview of the commands available).

If the underlying debugger allows it, pressing Tab in this window will provide completion for the command that is
being typed (or for its arguments).

There are also additional commands defined to provide a simple text interface to some graphical features.

Here is the complete list of such commands. The arguments between square brackets are optional and can be omitted.

graph (print|display) expression [dependent on display_num] [link_name name] [at x, y] [num num]

This command creates a new item in the canvas, that shows the value of Expression. Expression should
be the name of a variable, or one of its fields, that is in the current scope for the debugger.

The command graph print will create a frozen item, that is not automatically refreshed when the debugger
stops, whereas graph display displays an automatically refreshed item.

The new item is associated with a number, that is visible in its title bar. This number can be specified
through the num keyword, and will be taken into account if no such item already exists. These numbers
can be used to create links between the items, using the second argument to the command, dependent on.
The link itself (i.e. the line) can be given a name that is automatically displayed, using the third argument.

graph (print|display) ‘command‘

This command is similar to the one above, except it should be used to display the result of a debugger
command in the canvas.

For instance, if you want to display the value of a variable in hexadecimal rather than the default decimal
with gdb, you should use a command like:

graph display ‘print /x my_variable‘

This will evaluate the command between back-quotes every time the debugger stops, and display this in
the canvas. The lines that have changed will be automatically highlighted (in red by default).

This command is the one used by default to display the value of registers for instance.

graph (enable|disable) display display_num [display_num ...]

This command will change the refresh status of items in the canvas. As explained above, items are
associated with a number visible in their title bar.

Using the graph enable command will force the item to be automatically refreshed every time the debug-
ger stops, whereas the graph disable command will freeze the item.

graph undisplay display_num

This command will remove an item from the canvas

11.9 Customizing the Debugger

GPS is a high-level interface to several debugger backends, in particular gdb. Each back end has its own strengths, but
you can enhance the command line interface to these backends through GPS, using Python.

This section will provide a small such example. The idea is to provide the notion of “alias” in the debugger console.
For example, this can be used so that you type “foo”, and this really executes a longer command, like displaying the
value of a variable with a long name.

11.8. The Debugger Console 109

GPS Documentation, Release 5.2.1

gdb already provides this feature through the define keywords, but we will in fact rewrite that feature in terms of
python.

GPS provides an extensive Python API to interface with each of the running debugger. In particular, it provides
the function “send”, which can be used to send a command to the debugger, and get its output, and the function
“set_output”, which can be used when you implement your own functions.

It also provides, through hook, the capability to monitor the state of the debugger back-end. In particular, one such
hook, debugger_command_action_hook is called when the user has typed a command in the debugger console, and
before the command is executed. This can be used to add your own commands. The example below uses this hook.

Here is the code:

import GPS

aliases={}

def set_alias (name, command):
"""Set a new debugger alias. Typing this alias in a debugger window

will then execute command"""
global aliases
aliases[name] = command

def execute_alias (debugger, name):
return debugger.send (aliases[name], output=False)

def debugger_commands (hook, debugger, command):
global aliases
words = command.split()
if words[0] == "alias":

set_alias (words[1], " ".join (words [2:]))
return True

elif aliases.has_key (words [0]):
debugger.set_output (execute_alias (debugger, words[0]))
return True

else:
return False

GPS.Hook ("debugger_command_action_hook").add (debugger_commands)

The list of aliases is stored in the global variable aliases, which is modified by set_alias. Whenever the user executes
an alias, the real command send to the debugger is sent through execute_alias.

The real part of the work is done by debugger_commands. If the user is executing the alias command, it defines a
new alias. Otherwise, if he typed the name of an alias, we really want to execute that alias. Else, we let the debugger
back-end handle that command.

After you have copied this example in the $HOME/.gps/plug-ins directory, you can start a debugger as usual in
GPS, and type the following in its console:

(gdb) alias foo print a_long_long_name
(gdb) foo

The first command defines the alias, the second line executes it.

This alias can also be used within the graph display command, so that the value of the variable is in fact displayed in
the data window automatically, for instance:

(gdb) graph display ‘foo‘

110 Chapter 11. Debugging

GPS Documentation, Release 5.2.1

Other examples can be programmed. You could write complex python functions, which would for instance query
the value of several variables, and pretty print the result. This complex python function can then be called from the
debugger console, or automatically every time the debugger stops through the graph display command.

11.9. Customizing the Debugger 111

GPS Documentation, Release 5.2.1

112 Chapter 11. Debugging

CHAPTER

TWELVE

VERSION CONTROL SYSTEM

GPS offers the possibility for multiple developers to work on the same project, through the integration of version
control systems (VCS). Each project can be associated to a VCS, through the VCS tab in the Project properties editor.
The Project Properties Editor.

GPS does not come with any version control system: it uses underlying command-line systems such as Subversion or
ClearCase to perform the low level operations, and provides a high level user interface on top of them. Be sure to have
a properly installed version control system before enabling it under GPS.

The systems that are supported out of the box in GPS are:

Auto GPS can be setup to auto-detect the actual VCS to use for each project. This is done by selecting Auto in the
VCS tab of the Project properties editor. The Project Properties Editor. This is also the default behavior when
no VCS is specified in the project.

ClearCase The standard ClearCase interface, which is built-in and uses a generic GPS terminology for VCS opera-
tions.

Note that, at the moment, only Snapshot Views are supported in the ClearCase integration; Dynamic Views are
not supported.

ClearCase Native Which is fully customizable and uses by default the terminology specific to ClearCase.

Note that, at the moment, only Snapshot Views are supported in the ClearCase integration; Dynamic Views are
not supported.

CVS The Concurrent Version System.

GPS needs a corresponding patch command that usually comes with it.

Git Distributed fast source code management. Support for Git on GPS is partial. Basic commands are supported but
the full power of Git (like working with the index) is only available on the command line.

GPS needs a corresponding diff command that usually comes with it.

Mercurial An experimental plugin for supporting Mercurial.

Subversion The Subversion version control system. Note that on Windows this version is intended to be used with
Cygwin/Subversion and fully supports the Cygwin path names.

GPS needs a corresponding patch and diff command that usually comes with it.

Subversion Windows The Windows native Subversion version control system. The external Subversion commands
are expected to be built for the Win32 subsystem. This version does not support Cygwin path names.

GPS needs a corresponding patch and diff command that usually comes with it.

The default VCS that GPS will use is “Auto” by default, and this can be configured through The Preferences Dialog.

113

GPS Documentation, Release 5.2.1

It is also possible to add your own support for other version control systems, or modify one of the existing interfaces,
see Adding support for new Version Control Systems for more information.

It is recommended that you first get familiar with the version control system that you intend to use in GPS first, since
many concepts used in GPS assume basic knowledge of the underlying system.

Associating a VCS to a project enables the use of basic VCS features on the source files contained in the project.
Those basic features typically include the checking in and out of files, the querying of file status, file revision history,
comparison between various revisions, and so on.

Note: the set-up must make sure that the VCS commands can be launched without entering a password.

12.1 The VCS Explorer

The VCS Explorer provides an overview of source files and their status. A file edited in GPS will be automatically
added on the VCS Explorer with a Modified status (see below).

The easiest way to bring up the VCS Explorer is through the menu VCS->Explorer. The Explorer can also be brought
up using the contextual menu Version Control->Query status on files, directories and projects in the file and project
views, and on file editors. The Version Control Contextual Menu.

The VCS Explorer contains the following columns:

Project / File This is a two levels tree, the first level contains the name of the project and the second the name of files
inside the project. Next to the project name the VCS name, if any, is displayed. This is the only information
available for a project. The columns described below are for the files only. This column can be sorted by clicking
on the header.

Status Shows the status of the file. This column can be sorted by clicking on the header. The different possible status
for files are the following:

Unknown

114 Chapter 12. Version Control System

GPS Documentation, Release 5.2.1

The status is not yet determined or the VCS repository is not able to give this information (for example if
it is unavailable, or locked).

Not registered

The file is not known to the VCS repository.

Up-to-date

The file corresponds to the latest version in the corresponding branch on the repository.

Added

The file has been added remotely but is not yet updated in the local view.

Removed

The file still exists locally but is known to have been removed from the VCS repository.

Modified

The file has been modified by the user or has been explicitly opened for editing.

Needs merge

The file has been modified locally and on the repository.

Needs update

The file has been modified in the repository but not locally.

Contains merge conflicts

The file contains conflicts from a previous update operation.

Log This column indicates whether a revision log exists for this file.

Activity The name of the activity the file belongs to. See The VCS Activities for more details.

Working rev. Indicates the version of the local file.

Head rev. Indicates the most recent version of the file in the repository.

The VCS Explorer supports multiple selections. To select a single line, simply left-click on it. To select a range of
lines, select the first line in the range, then hold down the Shift key and select the last line in the range. To add or
remove single columns from the selection, hold down the Control key and left-click on the columns that you want
to select/unselect. It is also possible to select files having the same status using the Select files same status menu entry.
See The Version Control Contextual Menu.

The explorer also provides an interactive search capability allowing you to quickly look for a given file name. The
default key to start an interactive search is Ctrl-i.

The VCS contextual menu can be brought up from the VCS explorer by left-clicking on a selection or on a single line.
The Version Control Contextual Menu.

12.1. The VCS Explorer 115

GPS Documentation, Release 5.2.1

12.2 The VCS Activities

The VCS Activities give the ability to group files to be committed together. The set of files can be committed atomically
if supported by the version control system used.

The way to bring up the VCS Activities view is through the VCS->Activities menu.

The VCS Activities view contains the following columns:

Activity / File The name of the activity or files belonging to an activity. This column can be sorted by clicking on the
header.

Status Shows the status of the file. This column can be sorted by clicking on the header. See The VCS Explorer for a
full description.

Log This column indicates whether a revision log exists for this file.

Working rev. Indicates the version of the local file.

Head rev. Indicates the most recent version of the file in the repository.

The VCS Explorer supports multiple selections. To select a single line, simply left-click on it. To select a range of
lines, select the first line in the range, then hold down the Shift key and select the last line in the range. To add or

116 Chapter 12. Version Control System

GPS Documentation, Release 5.2.1

remove single columns from the selection, hold down the Control key and left-click on the columns that you want
to select/unselect.

There are different contextual menu entries depending on the position on the screen. On an empty area we have a
simple contextual menu:

Create new activity Create a new activity. The name can be edited by double clicking on it.

On an activity line the contextual menu is:

Group commit This is a selectable menu entry. It is activated only if the VCS supports atomic commit and absolute
filenames. See The VCS node for full details.

Create new activity Create a new activity. The name can be edited by double clicking on it.

Re-open activity / Close activity If the activity is closed it is possible to re-open it and if it is opened it is possible to
close it manually.

Delete activity Remove the activity.

Commit activity Commit the activity. If group commit is activated then the commit log content is generated using a
template file fully configurable. See Files. If group commit is not activated then the log content for each activity
file is the file log catenated with the activity log. After this operation the file’s log are removed but the activity
log is kept as documentation.

Query status Query the status for all the source files contained in the activity.

Update Update all the source files contained in the activity.

Compare against head revision Show a visual comparison between the local activity files and the most recent version
of those files in the repository.

Build patch file Create a patch file (in text format) for the activity. The patch file contains a header (the activity log
and file’s logs) and the diff of each file. The header format is fully configurable using a template file. See Files.

Edit revision log Edit the current revision log for activity. This log is shared with all the activity files.

Remove revision log Remove the current revision log for activity. This menu is present only if the activity revision
log exists.

On a file line the contextual menu contains:

Create new activity Create a new activity. The name can be edited by double clicking on it.

Remove from activity Remove the selected file from the activity and delete the activity log.

Edit revision log Edit the current revision log for the selected file.

12.3 The VCS Menu

Basic VCS operations can be accessed through the VCS menu. Most of these functions act on the current selection,
i.e. on the selected items in the VCS Explorer if it is present, or on the currently selected file editor, or on the currently
selected item in the Tools->Views->Files. In most cases, the VCS contextual menu offers more control on VCS
operations. The Version Control Contextual Menu.

Explorer Open or raise the VCS Explorer. The VCS Explorer.

Update all projects Update the source files in the current project, and all imported sub-projects, recursively.

Query status for all projects Query the status of all files in the project and all imported sub-projects.

Create tag... Create a tag or branch tag starting from a specific root directory. The name of the tag is a simple name.

12.3. The VCS Menu 117

GPS Documentation, Release 5.2.1

Switch tag... Switch the local copy to a specific tag. The name of the tag depends on the external VCS used. For CVS
this this the simple tag name, for Subversion the tag must conform to the default repository layout. For a branch
tag this is /branches/<tag_name>/<root_dir>.

For a description of the other entries in the VCS menu, see The Version Control Contextual Menu

12.4 The Version Control Contextual Menu

This section describes the version control contextual menu displayed when you right-click on an entity (e.g. a file, a
directory, a project) from various parts of GPS, including the project view, the source editor and the VCS Explorer.

Depending on the context, some of the items described in this section won’t be shown, which means that they are not
relevant to the current context.

Remove project Only displayed on a project line. This will remove the selected project from the VCS Explorer.

Expand all Expand all VCS Explorer project nodes.

Collapse all Collapse all VCS Explorer project nodes.

Clear View Clear the VCS Explorer.

Query status Query the status of the selected item. Brings up the VCS Explorer.

Update Update the currently selected item (file, directory or project).

Commit Submits the changes made to the file to the repository, and queries the status for the file once the change is
made.

It is possible to tell GPS to check the file before the actual commit happens. This is done by specifying a File
checker in the VCS tab of the project properties dialog. This File checker is in fact a script or executable that
takes an absolute file name as argument, and displays any error message on the standard output. The VCS
commit operation will actually occur only if nothing was written on the standard output.

It is also possible to check the change-log of a file before commit, by specifying a Log checker in the project
properties dialog. This works on change-log files in the same way as the File checker works on source files.

Open Open the currently selected file for writing. On some VCS systems, this is a necessary operation, and on other
systems it is not.

View entire revision history Show the revision logs for all previous revisions of this file.

View specific revision history Show the revision logs for one previous revision of this file.

Compare against head revision Show a visual comparison between the local file and the most recent version of that
file in the repository.

Compare against other revision Show a visual comparison between the local file and one specific version of that file
in the repository.

Compare two revisions Show a visual comparison between two specific revisions of the file in the repository.

Compare base against head Show a visual comparison between the corresponding version of the file in the repository
and the most recent version of that file.

Compare against tag/branch Only available on a Revision View and over a tag/branch. Show a visual comparison
between the corresponding version of the file in the repository and the version of that file in the tag/branch.

Annotate Display the annotations for the file, i.e. the information for each line of the file showing the revision
corresponding to that file, and additional information depending on the VCS system.

When using CVS or Subversion, the annotations are clickable. Left-clicking on an annotation line will query
and display the changelog associated to the specific revision for this line.

118 Chapter 12. Version Control System

GPS Documentation, Release 5.2.1

Remove Annotate Remove the annotations from the selected file.

Edit revision log Edit the current revision log for the selected file.

Edit global ChangeLog Edit the global ChangeLog entry for the selected file. Working with global ChangeLog file.

Remove revision log Clear the current revision associated to the selected file.

Add Add a file to the repository, using the current revision log for this file. If no revision log exists, activating this
menu will create one. The file is committed in the repository.

Add/No commit Add a file to the repository, using the current revision log for this file. If no revision log exists,
activating this menu will create one. The file is not committed in the repository.

Remove Remove a file from the repository, using the current revision log for this file. If no revision log exists,
activating this menu will create one. The modification is committed in the repository.

Remove/No commit Remove a file from the repository, using the current revision log for this file. If no revision log
exists, activating this menu will create one. The modification is not committed in the repository.

Revert Revert a locale file to the repository revision, discarding all local changes.

Resolved Mark files’ merge conflics as resolved. Some version control systems (like Subversion) will block any
commit until this action is called.

Switch tag/bracnh Only available on a Revision View and over a tag/branch name. Will switch the tree starting from
a selected root to this specific tag or branch.

Merge Only available on a Revision View and over a tag/branch name. Merge file changes made on this specific
tag/branch.

View revision Only available on a Revision View and over a revision.

Commit as new Activity An action to prepare a group-commit in just one-click. This action will:

create an anonymous activity,

add all files selected into the VCS Explorer into the newly created anonymous activity,

open the activity log, Just fill the activity log and commit the anonymous activity.

Add to Activity A menu containing all the current activities. Selecting one will add the current file to this activity.
This menu is present only if the file is not already part of an activity.

Remove from Activity Remove file from the given activity. This menu is present only if the file is already part of an
activity.

Directory Only available when the current context contains directory information

Add/No commit Add the selected directory into the VCS.

Remove/No commit Remove the selected directory from the VCS.

Commit Commit the selected directory into the VCS. This action is available only if the VCS supports commit
on directories, The VCS node.

Add to Activity Add the selected directory into the VCS. This action is available only if the VCS supports
commit on directories, The VCS node.

Query status for directory Query status for the files contained in the selected directory.

Update directory Update the files in the selected directory.

Query status for directory recursively Query status for the files in the selected directory and all subdirectories
recursively. Links and hidden directories are not included.

12.4. The Version Control Contextual Menu 119

GPS Documentation, Release 5.2.1

Update directory recursively Update the files in the selected directory and all subdirectories recursively. Links
and hidden directories not included..

Project Only available when the current context contains project information

List all files in project Bring up the VCS Explorer with all the source files contained in the project.

Query status for project Query the status for all the source files contained in the project.

Update project Update all the source files in the project.

List all files in project and sub-projects Bring up the VCS Explorer with all the source files contained in the
project and all imported sub-projects.

Query status for project and sub-projects Query the status for all the source files contained in the project and
all imported sub-projects.

Update project and sub-projects Update all the source files in the project and all imported sub-projects.

Select files same status Select the files having the same status as the current selected file.

Filters Only available from the VCS Explorer. This menu controls filtering of the items displayed in the list.

Show all status Do not filter out any file from the list in the VCS Explorer.

Hide all status Filter out all the files from the list in the VCS Explorer.

Show <status> When disabled, filter out the files with the given status from the VCS Explorer.

12.5 Working with global ChangeLog file

A global ChangeLog file contains revision logs for all files in a directory and is named ChangeLog. The format for
such a file is:

ISO-DATE *name <e-mail>*

<HT>* **filename**[, **filename**]:
<HT>revision history

where:

ISO-DATE A date with the ISO format YYYY-MM-DD

name A name, generally the developer name

<e-mail> The e-mail address of the developer surrounded with ‘<’ and ‘>’ characters.

HT Horizontal tabulation (or 8 spaces)

The name and <e-mail> items can be entered automatically by setting the GPS_CHANGELOG_USER environment
variable. Note that there is two spaces between the name and the <e-mail>:

On sh shell:

export GPS_CHANGELOG_USER="John Doe <john.doe@home.com>"

On Windows shell:
set GPS_CHANGELOG_USER="John Doe <john.doe@home.com>"

Using the menu entry Edit global ChangeLog will open the file ChangeLog in the directory where the current
selected file is and create the corresponding ChangeLog entry. This means that the ISO date and filename headers
will be created if not yet present. You will have to enter your name and e-mail address.

120 Chapter 12. Version Control System

GPS Documentation, Release 5.2.1

This ChangeLog file serve as a repository for revision logs, when ready to check-in a file use the standard Edit
revision log menu command. This will open the standard revision log buffer with the content filled from the global
ChangeLog file.

12.6 The Revision View

The revision view is used to display a revision tree for a given file. Each node contains information for a specific
revision of the file.

the revision number This corresponds to the external VCS revision number.

author The author of this revision.

date / log For root nodes this column contains the check-in date and eventually the list of tags and branches associated
with this revision. For children nodes this contains the log for the corresponding revision.

12.6. The Revision View 121

GPS Documentation, Release 5.2.1

122 Chapter 12. Version Control System

CHAPTER

THIRTEEN

TOOLS

13.1 The Tools Menu

The Tools menu gives access to additional tools. Some items are currently disabled, meaning that these are planned
tools not yet available.

The list of active items includes:

Views

Bookmarks Bookmarks.

Call Trees Open a tree view of function callers and callees. See also

Call Graph.

Clipboard The Clipboard View.

Coverage Report Coverage Report.

Entities Open the Entity View in the bottom area

The Entity View.

Files Open a file system explorer on the left area.

The File View.

File Switches File Switches.

Outline Open a view of the current source editor.

The Outline View.

Messages Open the Messages winbdow

The Messages Window.

Project The Project View.

Remote Setup a remote project.

Scenario Scenarios and Configuration Variables.

Tasks The Task Manager.

VCS Activities The VCS Activities.

VCS Explorer The VCS Explorer.

123

GPS Documentation, Release 5.2.1

Windows Open a view containing all currently opened files.

The Window View.

Browsers

Call Graph Call Graph.

Dependency Dependency Browser.

Entity Entity Browser.

Coding Standard Coding Standard.

Compare Visual Comparison.

Consoles

GPS Shell Open a shell console at the bottom area of GPS. Note that this not an OS shell console, but a
GPS shell console, where you can type GPS specific commands such as help.

The Shell and Python Windows.

Python Open a python console to access the python interpreter. The Shell and Python Windows.

OS Shell Open an OS (Windows or Unix) console, using the environment variables SHELL and COM-
SPEC to determine which shell to use. The Shell and Python Windows.

On Unix, this terminal behaves a lot like a standard Unix terminal. In particular, you need to make
sure that your shell will output all the information. In some cases, the configuration of your shell
(.bashrc if you are running bash for instance) will deactivate the echo of what you type to the
terminal. Since GPS is not outputing anything on its own, just showing what the shell is outputing,
you need to somehow ensure that your shell always echos what you type. This is done by running
the command:

stty echo

in such cases. In general, this can be safely done in your .bashrc

Auxiliary Builds Open the console containing auxiliary builds output. For now, only cross-reference
automated generation output is redirected to this console. Working with two compilers.

Coverage Code Coverage.

Documentation Documentation Generation.

GNATtest Working With Unit Tests.

Stack Analysis Stack Analysis.

Macro Recording and replaying macros.

Metrics Metrics.

Plug-ins The Plug-ins Editor.

Interrupt Interrupt the last task launched (e.g. compilation, vcs query, ...).

13.2 Coding Standard

The Coding Standard menu allows you to edit your coding standard file, as can be understood by gnatcheck, as well
as run it against your code, to verifiy its compliance with this coding standard.

124 Chapter 13. Tools

GPS Documentation, Release 5.2.1

Note that you can also use the contextual menu to check the conformance of a particular project or source file against
a Coding Standard.

The Coding standard editor is triggered by the menu Tools->Coding Standard->Edit Rules File. The editor allows you
to select an existing coding standard file, or create a new one. The editor adapts itself to the version of gnatcheck you
are using on your local machine.

The currently used rules are summarized in the bottom of the editor. Once all rules are defined, you can check the box
‘Open rules file after exit’ to manually verify the created file.

Once the Coding Standard file is created, you can define it as the default coding standard file for a project by going to
the project editor, selecting the ‘Switches’ tab, and using this file in the ‘Gnatcheck’ section.

13.3 Visual Comparison

The visual comparison, available either from the VCS menus or from the Tools menu, provide a way to display
graphically differences between two or three files, or two different versions of the same file.

The 2-file comparison tool is based on the standard text command diff, available on all Unix systems. Under Windows,
a default implementation is provided with GPS, called gnudiff.exe. You may want to provide an alternate implementa-
tion by e.g. installing a set of Unix tools such as cygwin (http://www.cygwin.com).

The 3-file comparison tool is based on the text command diff3, available on all Unix systems. Under Windows, this
tool is not shipped with GPS. It is available as part of cygwin, for example.

When querying a visual comparison in GPS, in Side_By_Side mode, the user area will show, side by side, editors for
the files involved in the comparison. The reference file is placed by default on the left side. When in Unified mode,
GPS will not open a new editor, but will show all the changes directly in the original editor. Note that Unified mode is
relevant only when comparing two files: when comparing three files, the Side_By_Side mode is used.

Color highlighting will be added to the file editors:

gray This color is used for all the chunks on the reference (left) file. Only the modified (right) file is displayed with
different colors.

yellow This color is used to display lines that have been modified compared to the reference file. When there are fine
differences within one line, they are shown in a brighter yellow.

green Used to display lines added compared to the reference file; in other words, lines that are not present in the
reference file.

red Used to display lines removed from the reference file; in other words, lines that are present only in the reference
file.

These colors can be configured, The Preferences Dialog.

As with all highlighted lines in GPS, the visual differences highlights are visible in the Speed Column at the left of the
editors.

Blank lines are also added in the editors, in places that correspond to existing lines in the other editors. The vertical
and horizontal scrolling are synchronized between all editors involved in a visual comparison.

When a visual comparison is created, the Locations View is populated with the entries for each chunk of differences,
and can be used to navigate between those.

Closing one of the editors involved in a visual comparison removes the highlighting, blank lines, and scrolling in the
other editors.

Editors involved in a visual comparison have a contextual menu Visual diff that contains the following entries:

13.3. Visual Comparison 125

http://www.cygwin.com

GPS Documentation, Release 5.2.1

Recompute Regenerates the visual comparison. This is useful, for example, when one of the editors has been modified
by hand while it was involved in a visual comparison

Hide Removes the highlighting corresponding to the visual comparison from all editors involved

Close editors Closes all editors involved in this visual comparison

Use this editor as reference Change the reference to this editor. (This is only visible when displaying a visual com-
parison involving 3 files).

13.4 Code Fixing

GPS provides an interactive way to fix or improve your source code, based on messages (errors and warnings) gener-
ated by the GNAT compiler.

This capability is integrated with the Locations View (see The Locations View): when GPS can take advantage of a
compiler message, an icon is added on the left side of the line.

For a simple fix, a wrench icon is displayed. If you click with the left button on this icon, the code will be fixed
automatically, and you will see the change in the corresponding source editor. An example of a simple fix, is the
addition of a missing semicolon.

You can also check what action will be performed by clicking on the right button which will display a contextual menu
with a text explaining the action that will be performed. Similarly, if you display the contextual menu anywhere else
on the message line, a sub menu called Auto Fix gives you access to the same information. In the previous example of
a missing semicolon, the menu will contain an entry labelled Add expected string ”;”. Two nested menu items let you
choose to Apply to this occurrence or Apply to all similar errors. Latter choice will apply the same simple fix for all
errors which are detected by the system as being the same kind. This is based on message parsing.

Once the code change has been performed, the tool icon is no longer displayed.

For more complex fixes, where more than one change is possible, a wrench icon with a blue plus sign is displayed. In
this case, clicking on the icon will display the contextual menu directly, giving you access to the possible choices. For
example, this will be the case when an ambiguity is reported by the compiler for resolving an entity.

Right clicking on a message with a fix will open a contextual menu with an entry “Auto Fix”. Fixes that can be applied
by clicking on the wrench are available through that menu as well. In addiditon, if one of the fixes is considered to be

126 Chapter 13. Tools

GPS Documentation, Release 5.2.1

safe by GPS, additional entries will be provided to apply fixes on multiple messages:

Fix all simple style errors and warnings This entry is offered only when the selected message is a warning and a
style error. Will fix all other warnings and style errors for which a unique simple fix is available.

Fix all simple errors Will fix all errors messages for which a unique simple fix is available

13.5 Documentation Generation

GPS provides a documentation generator which processes source files and generates annotated HTML files.

It is based on the source cross-reference information (e.g. generated by GNAT for Ada files). This means that you
should ensure that cross-reference information has been generated before generating the documentation. It also relies
on standard comments that it extracts from the source code. Note that unlike other similar tools, no macro needs to be
put in your comments. The engine in charge of extracting them coupled with the cross-reference engine gives GPS all
the flexibility needed to generate accurate documentation.

The documentation is put by default into a directory called doc, created under the object directory of the root project
loaded in GPS. If no such object directory exists, then it is directly created in the same directory as the root project.
This behavior can be modified by specifying the attribute Documentation_Dir in the package IDE of your root project:

project P is
package IDE is

for Documentation_Dir use "html";
end IDE;

end P;

Once the documentation is generated, the main documentation file is loaded in your default browser.

The documentation generator uses a set of templates files to control the final rendering. This means that you can
control precisely the rendering of the generated documentation. The templates used for generating the documentation
can be found under <install_dir>/share/gps/docgen2. If you need a different layout as the proposed one,
you can change directly those files.

In addition, user-defined structured comments can be used to improve the generated documentation. The structured
comments use xml-like tags. To define your own set of tags, please refer to the GPS python extension documentation
(from GPS Help menu, choose ‘Python extensions’).

The string values inside those tags are handled very roughly the same way as in regular xml: duplicated spaces and
line returns are ignored. One exception is that the layout is preserved in the following cases:

The line starts with “- ” or “ “* In this case, GPS makes sure that a proper line return precedes the line. This is to
allow lists in comments

The line starts with a capital letter GPS then supposes that the preceding line return was intended, so it is kept

Some default tags have been already defined by GPS in <install_dir>/share/gps/plug-ins/docgen_base_tags.py.
The tags handled are:

summary Short summary of what a package or method is doing.

description Full description of what a package or method is doing.

parameter (attribute “name” is expected) Description of the parameter named “name”.

exception Description of possible exceptions raised by the method.

seealso Reference to another package, method, type, etc.

c_version For bindings, the version of the C file.

group For packages, this builds an index of all packages in the project grouped by categories.

13.5. Documentation Generation 127

GPS Documentation, Release 5.2.1

code When the layout of the value of the node needs to be preserved. The text is displayed using a fixed font
(monospace).

The following sample shows how those tags are translated:

-- <description>
-- This is the main description for this package. It can contain a complete
-- description with some xml characters as < or >.
-- </description>
-- <group>Group1</group>
-- <c_version>1.0.0</c_version>
package Pkg is

procedure Test (Param : Integer);
-- <summary>Test procedure with a single parameter</summary>
-- <parameter name="Param">An Integer</parameter>
-- <exception>No exception</exception>
-- <seealso>Test2</seealso>

procedure Test2 (Param1 : Integer; Param2 : Natural);
-- <summary>Test procedure with two parameters</summary>
-- <parameter name="Param1">An Integer</parameter>
-- <parameter name="Param2">A Natural</parameter>
-- <exception>System.Assertions.Assert_Failure if Param1 < 0</exception>
-- <seealso>Test</seealso>

end Pkg;

Its documentation will be:

The documentation generator can be invoked from the Tools->Documentation menu:

Generate project Generate documentation for all files from the loaded project.

Generate projects & subprojects Generate documentation for all files from the loaded project as well all its subpro-

128 Chapter 13. Tools

GPS Documentation, Release 5.2.1

jects.

Generate current file Generate documentation for the file you are currently editing.

Generate for... This will open a File Selector Dialog (The File Selector) and documentation will be generated for the
file you select.

In addition, when relevant (depending on the context), right-clicking with your mouse will show a Documentation
contextual menu.

From a source file contextual menu, you have one option called Generate for <filename>, that will generate documen-
tation for this file and if needed its corresponding body (The Preferences Dialog).

From a project contextual menu (The Project View), you will have the choice between generating documentation for
all files from the selected project only or from the selected project recursively.

You will find the list of all documentation options in The Preferences Dialog.

Note that the documentation generator relies on the ALI files created by GNAT. Depending on the version of GNAT
used, the following restrictions may or may not apply:

• A type named type may be generated in the type index.

• Parameters and objects of private generic types may be considered as types.

13.6 Working With Unit Tests

GPS relies on gnattest tool that creates unit-test stubs as well as a test driver infrastructure (harness). Harness can
be generated for project hierarchy, single project or a package. Generation process can be launched from Tools-
>GNATtest menu or from contextual menu.

After generation of harness project GPS will switch to it, allowing you to implement tests, compile and run the harness.
At any moment you can exit harness project and return to original project.

13.6.1 The GNATtest Menu

The GNATtest submenu is available from the Tools global menu and contains:

Generate unit test setup Generate harness for the root project.

Generate unit test setup recursive Generate harness for the root project and subprojects.

Show not implemented tests Find never modified tests and show them in Locations view. This menu is active in
harness project only.

Exit from harness project Return from harness to original project.

13.6.2 The Contextual Menu

When relevant (depending on the context), right-clicking with your mouse will show GNATtest-related contextual
menu entries.

Pointing to a source file containing the library package declaration, you have an option called GNATtest/Generate unit
test setup for <file> that will generate the harness for this single package.

From a project contextual menu (The Project View), you have an option GNATtest/Generate unit test setup for
<project> that will generate the harness for the project. An option GNATtest/Generate unit test setup for <project>
recursive will generate harness for whole hierarchy of projects. If harness project already exists, an option “GNAT-
test/Open harness project” will switch GPS to harness project.

13.6. Working With Unit Tests 129

GPS Documentation, Release 5.2.1

While harness project is opened it’s easy to navigate from tested routine to test code and back. Pointing to name
of tested routine provides options GNATtest/Go to test case, GNATtest/Go to test setup and GNATtest/Go to test
teardown. From contextual menu for source file of test case or setup/teardown, you have an option called GNATtest/Go
to <routine> to go to tested routine.

13.6.3 Project Properties

Gnattest’s behaviour could be configured through project properties. GNATtest page in (The Project Properties Editor)
gives you convenient access to these properties.

13.7 Metrics

GPS provides an interface with the GNAT software metrics generation tool gnatmetric.

The metrics can be computed for the one source file, for the current project, or for the current project and its imported
subprojects

The metrics generator can be invoked either from the Tools->Metrics menu or from the contextual menu.

13.7.1 The Metrics Menu

The Metrics submenu is available from the Tools global menu and contains:

Compute metrics for current file Generate metrics for the current source file.

Compute metrics for current project Generate metrics for all files from the current project.

Compute metrics for current project and subprojects Generate metrics for all files from the current project and sub-
projects.

13.7.2 The Contextual Menu

When relevant (depending on the context), right-clicking with your mouse will show metrics-related contextual menu
entries.

From a source file contextual menu, you have an option called Metrics for file that will generate the metrics for the
current file.

From a project contextual menu (The Project View), you have an option Metrics for project that will generate the
metrics for all files in the project.

After having computed metrics, a new window in the left-side area is displayed showing the computed metrics as
a hierarchical tree view. The metrics are arranged by files, and then by scopes inside the files in a nested fashion.
Double-clicking on any of the files or scopes displayed will open the appropriate source location in the editor. Any
errors encountered during metrics computation will be displayed in the Locations Window.

13.8 Code Coverage

GPS provides a tight integration with Gcov, the GNU code coverage utility.

Code coverage information can be computed from, loaded and visualized in GPS. This can be done file by file, for each
files of the current project, project by project (in case of dependencies) or for the entire project hierarchy currently
used in GPS.

130 Chapter 13. Tools

GPS Documentation, Release 5.2.1

Once computed then loaded, the coverage information is summarized in a graphical report (shaped as a tree-view with
percentage bars for each item) and used to decorate source code through mechanisms such as line highlighting or
coverage annotations.

All the coverage related operations are reachable via the Tools->Coverage menu.

In order to be loaded in GPS, the coverage information need to be computed before, using the Tools->Coverage-
>Gcov->Compute coverage files menu for instance.

At each attempt, GPS automatically tries to load the needed information and reports errors for missing or corrupted
.gcov files.

To be able to produce coverage information from Gcov, your project must have been compiled with the -fprofile-arcs
and -ftest-coverage” switches, respectively “Instrument arcs” and “Code coverage” entries in The Project Properties
Editor, and run once.

13.8.1 Coverage Menu

The Tools->Coverage menu has a number of entries, depending on the context:

Gcov->Compute coverage files Generates the .gcov files of current and properly compiled and run projects.

Gcov->Remove coverage files Deletes all the .gcov of current projects.

Show report Open a new window summarizing the coverage information currently loaded in GPS.

Load data for all projects Load or re-load the coverage information of every projects and subprojects.

Load data for project ‘XXX‘ Load or re-load the coverage information of the project XXX.

Load data for :file:‘xxxxxxxx.xxx‘ Load or re-load the coverage information of the specified source file.

Clear coverage from memory Drop every coverage information loaded in GPS.

13.8.2 The Contextual Menu

When clicking on a project, file or subprogram entity (including the entities listed in the coverage report), you have
access to a Coverage submenu.

This submenu contains the following entries, adapted to the entity selected. For instance, if you click on a file, you
will have:

Show coverage information Append an annotation column to the left side of the current source editor. This column
indicates which lines are covered and which aren’t. Unexecuted lines are also listed in the The Locations View.

Hide coverage information Withdraw from the current source editor a previously set coverage annotation column and
clear The Locations View from the eventually listed uncovered lines.

Load data for :file:‘xxxxxxxx.xxx‘ Load or re-load the coverage information of the specified source file.

Remove data of :file:‘xxxxxxxx.xxx‘ Remove the coverage information of the specified source file from GPS mem-
ory.

Show Coverage report Open a new window summarizing the coverage information. (This entry appears only if the
contextual menu has been created from outside of the Coverage Report.)

13.8. Code Coverage 131

GPS Documentation, Release 5.2.1

13.8.3 The Coverage Report

When coverage information is loaded, a graphical coverage report is displayed. This report contains a tree of Projects,
Files and Subprograms with corresponding coverage information for each node in sided columns.

The contextual menus generated on this widget contain, in addition to the regular entries, some specific Coverage
Report entries.

These entries allow you to expand or fold the tree, and also to display flat lists of files or subprograms instead of the
tree. A flat list of file will look like:

132 Chapter 13. Tools

GPS Documentation, Release 5.2.1

GPS and Gcov both support many different programming languages, and so code coverage features are available in
GPS for many languages. But, note that subprogram coverage details are not available for every supported languages.

Note also that if you change the current main project in GPS, using the Project->Open menu for instance, you will
also drop every loaded coverage information as they are related to the working project.

13.9 Stack Analysis

GPS provides an interface to GNATstack, the static stack analysis tool. This interface is enabled only if you have the
gnatstack executable installed on your system and available on the path.

Stack usage information can be computed from, loaded and visualized in GPS for the entire project hierarchy used in
GPS. Stack usage information for unknown and unbounded calls can be edited in GPS.

Once computed and loaded, the stack usage information is summarized in a report, and used to decorate source code
through stack usage annotations. The largest stack usage path is filled into the The Locations View.

Stack usage information for undefined subprograms can be specified by adding a .ci file to the set of GNATStack
switches in the Switches attribute of the Stack package of your root project, e.g:

project P is
package Stack is

for Switches use ("my.ci");
end Stack;

end P;

You can also specify this information by using the GNATStack page of the Switches section in the The Project Proper-
ties Editor. Several files can be specified.

13.9. Stack Analysis 133

GPS Documentation, Release 5.2.1

The Stack Usage Editor can be used to edit stack usage information for undefined subprograms.

13.9.1 The Stack Analysis Menu

All stack analysis related operations are reachable via the Tools->Stack Analysis menu:

Analyze stack usage Generates stack usage information for the root project.

Open undefined subprograms editor Opens undefined subprograms editor.

Load last stack usage Loads or re-loads last stack usage information for the root project.

Clear stack usage data Removes stack analysis data loaded in GPS and any associated information such as annota-
tions in source editors.

13.9.2 The Contextual Menu

When clicking on a project, file or subprogram entity (including the entities listed in the coverage report), you have
access to a Stack Analysis submenu.

This submenu contains the following entries, related to the entity selected:

Show stack usage Shows stack usage information for every subprogram of currently selected file.

Hide stack usage Hides stack usage information for every subprogram of currently selected file.

Call tree for xxx Opens Call Tree view for currently selected subprogram.

13.9.3 The Stack Usage Report

When the stack usage information is loaded, a report is displayed containing a summary of the stack analysis.

13.9.4 The Stack Usage Editor

The Stack Usage Editor allows to specify stack usage for undefined subprograms and use these values to refine results
of future analysis.

134 Chapter 13. Tools

GPS Documentation, Release 5.2.1

The Stack Usage Editor consists of two main areas. The notebook in the top area allows to select the file to edit. It
displays the contents of the file and allows changing the stack usage of subprograms. The table in the bottom area
displays all subprograms whose stack usage information is not specified so that they can be set.

Stack usage information for subprograms can be specified or changed by clicking in the stack usage column on the
right of the subprogram’s name. When a value is specified in the bottom area table, the subprogram is moved to the
top table of the currently selected file. When a negative value is specified, the subprogram is moved to the bottom
table.

All changes are saved when the stack usage editor window is closed.

13.9. Stack Analysis 135

GPS Documentation, Release 5.2.1

136 Chapter 13. Tools

CHAPTER

FOURTEEN

WORKING IN A CROSS ENVIRONMENT

This chapter explains how to adapt your project and configure GPS when working in a cross environment.

14.1 Customizing your Projects

This section describes some possible ways to customize your projects when working in a cross environment. For more
details on the project capabilities, see Project Handling.

When using the project editor to modify the project’s properties, two areas are particularly relevant to cross environ-
ments: Cross environment part of the General page, and Toolchains part of the Languages page.

In the Toolchains section, you will typically either scan your system to display found toolchains, and select the one
corresponding to your cross environment or use the Add button and manually select the desired cross environment.

If needed, you can also modify manually some of the tools defined in this toolchain in the Details part of the Languages
page.

For example, assuming you have an Ada project, and using a powerpc VxWorks configuration. Hitting the scan button,
you should see the toolchain powerpc-wrs-vxworks appearing in the Toolchains section. Selecting this toolchain will
change the Details part, displaying the relevant tools (e.g. Gnatls to powerpc-wrs-vxworks-gnatls and Debugger to
powerpc-wrs-vxworks-gdb ...).

The list of toolchains and their default values that can be selected when using the Add button can be modified via a
custom xml file. See Customizing and Extending GPS and in particular Toolchains customization for further informa-
tion.

If you are using an alternative run time, e.g. a soft float run time, you need to add the option –RTS=soft-float to
the Gnatls property, e.g: powerpc-wrs-vxworks-gnatls –RTS=soft-float, and add this same option to the Gnatmake
switches in the switch editor. See Switches for more details on the switch editor.

To modify your project to support configurations such as multiple targets, or multiple hosts, you can create scenario
variables, and modify the setting of the Toolchains parameters based on the value of these variables. See Scenarios
and Configuration Variables for more information on these variables.

For example, you may want to create a variable called Target to handle the different kind of targets handled in your
project:

Target Native, Embedded

Target Native, PowerPC, M68K

Similarly, you may define a Board variable listing the different boards used in your environment and change the
Program host and Protocol settings accordingly.

137

GPS Documentation, Release 5.2.1

In some cases, it is useful to provide a different body file for a given package (e.g. to handle target specific differences).
A possible approach in this case is to use a configuration variable (e.g. called TARGET), and specify a different naming
scheme for this body file (in the project properties, Naming tab), based on the value of TARGET.

14.2 Debugger Issues

This section describes some debugger issues that are specific to cross environments. You will find more information
on debugging by reading Debugging.

To connect automatically to the right remote debug agent when starting a debugging session (using the menu Debug-
>Initialize), be sure to specify the Program host and Protocol project properties, as described in the previous section.

For example, if you are using the Tornado environment, with a target server called target_ppc, set the Protocol to wtx
and the Program host to target_ppc.

Once the debugger is initialized, you can also connect to a remote agent by using the menu Debug->Debug->Connect
to Board.... This will open a dialog where you can specify the target name (e.g. the name of your .. index:: board

board or debug agent) and the communication protocol.

In order to load a new module on the target, you can select the menu Debug->Debug->Load File....

If a module has been loaded on the target and is not known to the current debug session, use the menu Debug->Debug-
>Add Symbols... to load the symbol tables in the current debugger.

Similarly, if you are running the underlying debugger (gdb) on a remote machine, you can specify the name of this
machine by setting the Tools host field of the project properties.

138 Chapter 14. Working in a Cross Environment

CHAPTER

FIFTEEN

USING GPS FOR REMOTE
DEVELOPMENT

In a network environment, it is common for programmers to use a desktop computer that is not directly suitable for
their development tasks. For example, each developer may have a desktop PC running Windows or GNU/Linux as
their main entrypoint to the company network. They may do all their actual development work using project resources
shared on networked servers. These remote servers may also be running an operating system that is different from the
one on their desktop machine.

A typical way of operating in such an environment is to access the server through a remote windowing system such as
X-Window. GPS does indeed work in such a context but it is not necessarily the most efficient organization. Running
GPS remotely on a shared server will increase the workload of the server as well as the traffic on the network. When
the network is slow or saturated, user interactions can become uncomfortably sluggish. This is unfortunate because
the desktop used to access the network is often a powerful PC that remains idle most of the time. To address this
situation, GPS offers the option to run natively on the desktop, with compilation, run and/or debug activities performed
transparently on one or more remote servers.

15.1 Requirements

In order to compile, run or debug on a host remote from GPS, three conditions must be met:

• Have a remote connection to the host using ‘rsh’, ‘ssh’ or ‘telnet’. Note that GPS can now handle passwords for
such connections.

• Have either a Network Filesystem (i.e. NFS, SMB or equivalent) sharing the project files between the
host and the target, or have rsync installed on both client and server. Note that rsync can be found at
http://www.samba.org/rsync/ for unix, and comes as part of cygwin under Windows: http://www.cygwin.com.

• Subprojects must be ‘withed’ by the main project using relative paths, or the same absolute paths must exist on
the machines involved.

The full remote development setup is performed in two broad steps:

• Setup the remote servers configuration.

• Setup a remote project.

139

http://www.samba.org/rsync/
http://www.cygwin.com

GPS Documentation, Release 5.2.1

15.2 Setup the remote servers

15.2.1 The remote configuration dialog

In order to configure remote servers, you need to open the remote configuration dialog. A predefined configuration
can also be set when installing GPS, using xml files. Defining a remote server, and Defining a remote path translation,
for more information.

The remote configuration dialog is opened via the remote view. You can open it using the menu Tools->Views-
>Remote.

Once the Remote View is opened, click on Settings to open the servers configuration dialog.

This dialog is composed of two parts:

• The left part of the dialog contains the list of configured servers, identified by their nickname. Three buttons
allow you to create, reinitialize or delete a server.

• The right part of the dialog contains the selected server’s configuration.

140 Chapter 15. Using GPS for Remote Development

GPS Documentation, Release 5.2.1

You need first to create a new server. For this, click on the button Add Server on the bottom left part of the dialog. Enter
a nickname identifying the server you want to connect to (this is not necessarily the network name of this server). Note
that this nickname identifies the server and therefore must be unique. This new server is then automatically selected,
and the right part of the dialog shows its configuration, which is empty for the most part.

15.2.2 Connection settings

The first configuration part that needs to be filled concerns the way we will connect to this server:

You have to enter first all mandatory fields, identified by an asterisk:

• The network name is the name used to connect to this server via your network. It can be either an IP address, a
host name of your local network, or a fully qualified network name.

• The remote access tool is the tool used to connect to this server. You select it using the drop down list. The
following tools are supported natively by GPS: ssh, rsh, telnet and plink (Windows tool) in ssh, rsh or telnet
mode. Defining a remote connection tool, if you need to add a specific tool. Note also that if one of those tools
is not installed (e.g. is not in your path), then it won’t appear in the tools list. Some tools incompatible with
GPS will not be displayed either, such as the Microsoft telnet client.

• The shell tells GPS what shell runs on the remote server. The following unix shells are supported by GPS:
sh, bash, csh and tcsh. Windows’ shell is also supported (cmd.exe). Limitations, for cygwin’s shell usage on
windows: it is preferable to use cmd.exe as a remote shell on Windows servers.

Other fields might need to be taken into consideration, but they are not mandatory. They are, for the most part,
accessible through the advanced configuration pane.

• The remote sync tool is used to synchronize remote and local filesystems, if these are not shared filesystems.
For now, only rsync is supported.

• The Extra Init Commands field represents initialization commands sent to the server upon connection: when
GPS connects to your remote machine, the chosen shell is launched, and your default initialization files are read
(i.e. .bashrc file for the bash shell). Then GPS sends these extra init commands, allowing you for example to
specify a compilation toolchain.

• (In Advanced configuration pane) The user name specifies the name used to connect to the server. If unspecified,
the remote access tool will typically use your current login name. If not, and a user name is requested, GPS will
prompt you for a user name.

• (In Advanced configuration pane) The timeout value is used to determine if a connection to a remote host is
dead. All elementary operations performed on the remote host (i.e., operations that normally complete almost
immediately) will use this timeout value. By default, this value is set to 10s. If you have a very slow network
connection or a very overloaded server, set this timeout to a higher value.

• (In Advanced configuration pane) The maximum number of connections determines the maximum number of
simultaneous connections GPS is allowed to have to this server. In fact, if you want to compile, debug and
execute at the same time on the machine, GPS will need more that one connection to do this. The default value
is 3.

• (In Advanced configuration pane) Depending on the kind of server and the remote access tool used, commands
sent to the server may require a specific line terminator, i.e., either the LF character or CR/LF characters. Usually
GPS can automatically detect what is needed (the ‘auto’ mode), but the choice can be forced to CR/LF (cr/lf
handling set to ‘on’) or LF (cr/lf handling set to ‘off’).

• (In Advanced configuration pane) The Debug console allows you to easily debug a remote connection. If
checked, it will open a console reporting all exchanges between GPS and the selected server.

15.2. Setup the remote servers 141

GPS Documentation, Release 5.2.1

15.2.3 Paths settings

The last configuration part defines the path translations between your local host and the remote server.

The remote paths definition will allow GPS to translate your locally loaded project (the project that resides in your
local filesystem) to paths used on the remote server. This part also tells GPS how to keep those paths synchronized
between the local machine and the remote server.

All your project’s dependencies must then reside in a path that is defined here. Note that you can retrieve those paths
by using gnat list -v -Pyour_project. In particular, the path to the GNAT run-time (adainclude directory) needs to be
mapped so that code completion and source navigation work properly on run-time entities.

To add a new path, click on the + button, and enter the corresponding local and remote paths.

You can easily select the desired paths by clicking on the icon next to the path’s entry. Remote browsing is allowed
only when the connection configuration is set (Connection settings.) Clicking on Apply will apply your connection
configuration and allow you to browse the remote host to select the remote paths.

Five kinds of path synchronization can be set for each defined path:

• Never: no synchronization is required from GPS, the paths are shared using an OS mechanism like NFS.

• Manually: synchronization is needed, but will only be performed manually using the remote view buttons.

• Always: Relevant to source and object paths of your project. They are kept synchronised by GPS before and
after every remote action (such as performing a build or run).

• Once to local/Once to remote: Relevant to project’s dependencies. They are synchronized once when a remote
project is loaded or when a local project is set remote. They can still be manually synchronized using the Remote
View (The remote view.)

The way those paths need to be configured depends on your network architecture.

• If your project is on a filesystem that is shared between your host and the remote host (using NFS of SMB
filestems, for example), then only the roots of those filesystems need to be specified, using each server’s native
paths (on Windows, the paths will be expressed using X:\my\mounted\directory\ while on unix, the paths will
be expressed using /mnt/path/).

• If the project’s files are synchronized using rsync, defining a too generic path translation will lead to very slow
synchronization. In that case you should define the paths as specifically as possible, in order to speed up the
synchronization process.

15.3 Setup a remote project

15.3.1 Remote operations

GPS defines four different remote operation categories: Build operations, Debug operations, Execution operations and
Tools operations. All compiler related operations are performed on the Build_Server. The Tools server is somewhat
special and will be explained later. The debugger is run on the Debug_Server, and the project’s resulting programs are
run on the Execution_Server. The GPS_Server (the local machine) is used for all other operations.

The Tools server is defined to handle all compiler related operations that do not depend on a specific compiler version.
It is used in dual compilation mode, for example, to determine whether the action can be safely run using a very recent
compiler toolchain (this is the tools server), or whether a specific older baseline compiler version must be used.

In case the remote mode is activated, and the dual compilation mode is not, all Tools server operations are executed
on the build server. Otherwise, if the dual compilation mode is activated, then the tools server operations are always
executed on the local machine.

142 Chapter 15. Using GPS for Remote Development

GPS Documentation, Release 5.2.1

15.3.2 The remote view

The Remote view (Tools->Views->Remote) allows you to assign servers to operation categories for the currently
loaded project. You may assign each operation category a distinct server if the Servers assignment tab is fully ex-
panded. Alternatively, you may assign all categories to a single server in one step if the Servers assignment tab is
collapsed.

When a server is selected for a particular category, the change is not immediately effective. To indicate that fact, the
server’s name will appear in red. This approach allows you to check the configuration before applying it, by pressing
the Check button. This action will test for correct remote hosts connection. It will also verify that the project path
exists on the build server and that it has an equivalence on the local machine.

Clicking on the Apply button will perform the following actions:

• Read the default project paths on the Build machine and translate them into local paths.

• Synchronize from the build server those paths marked as Sync Always or Once to local.

• Load the translated local project.

• Assign the Build, Execution and Debug servers.

If one of the above operations fails, corresponding errors are reported in the Messages view and the previous project
settings are retained.

Once a remote server is assigned, this remote configuration will be automatically loaded each time the project is
loaded.

The two buttons on the right of each server can be used to manually perform a synchronization from the remote host
to your local machine (left button) or from your local machine to the remote host (right button).

15.3.3 Loading a remote project

If the project you want to work with is already on a distant server, you can directly load it on your local GPS.

To do this, use the Project->Open From Host menu. Then select the server’s nickname. This will show you its file
tree. Navigate to your project and select it. The project will be loaded as described above, with all remote operations
categories assigned to the selected server by default.

15.3. Setup a remote project 143

GPS Documentation, Release 5.2.1

You can reload your project using the local files on your machine. The remote configuration will then be automatically
reapplied.

15.4 Limitations

The GPS remote mode imposes a few limitations:

• Execution: you cannot use an external terminal to remotely execute your application. The Use external terminal
checkbox of the run dialog will have no effect if the program is run remotely.

• Debugging: you cannot use a separate execution window. The Use separate execution window option is ignored
for remote debugging sessions.

• Cygwin on remote host: the GNAT compilation toolchain does not understand cygwin’s mounted directories.
In order to use GPS with a remote Windows server using cygwin’s bash, you need to use directories that are the
same on Windows and cygwin (absolute paths). For example, a project having a C:\my_project will be accepted
if cygwin’s path is /my_project, but will not be accepted if /cygdrive/c/my_project is used.

Note that even if you use cygwin’s sshd on such a server, you can still access it using cmd.exe (Connection
settings.)

144 Chapter 15. Using GPS for Remote Development

CHAPTER

SIXTEEN

CUSTOMIZING AND EXTENDING GPS

GPS provides several levels of customization, from simple preferences dialog to powerful scripting capability through
the python language. This chapters describes each of these capabilities.

16.1 The Preferences Dialog

This dialog, available through the menu Edit->Preferences, allows you to modify the global preferences of GPS. To
enable the new preferences, you simply need to confirm by pressing the OK button. To test your changes, you can use
the Apply button. Pressing the Cancel button will undo all your changes.

Each preference is composed of a label displaying the name of the preference, and an editing area to modify its value.
If you leave to mouse over the label, a tool tip will be displayed giving an on-line help on the preference.

145

GPS Documentation, Release 5.2.1

The preferences dialog is composed of several areas, accessible through the tabs at the left of the dialog. Each page
corresponds to a set of preferences.

• Themes

This page allows you to quickly change the current settings for GPS, including preferences, key bindings,
menus...; See GPS Themes for more information on themes. It is only displayed when there are themes regis-
tered.

• General

Default font The default font used in GPS. The background color you select for this preference will set the
background color for all consoles and most views (the ones that display their data as trees, mostly). To
change the background color of editors, see the preference Edit/Fonts&Colors/Default.

Fixed view font The fixed (monospace) font used in views like the outline view, the bookmark view, ...; As
much as possible, this font should use a fixed width for characters, for a better rendering

Character set Name of character set to use when reading or writting text files. GPS uses UTF-8 and Unicode
internally, which can handle any character in any language. However, your system will generally not
support Unicode natively, and thus the contents of the files should be translated from the file system
encoding to unicode.

This preference indicates the file system encoding in use. It defaults to ISO-8859-1, which corresponds to
western european characters.

Display splash screen Whether a splash screen should be displayed when starting GPS.

Display welcome window Whether GPS should display the welcome window for the selection of the project to
use.

Show text in tool bar Whether the tool bar should show both text and icons, or only icons.

Auto save Whether unsaved files and projects should be saved automatically before calling external tools (e.g.
before a build).

Save desktop on exit Whether the desktop (size and positions of all windows) should be saved when exiting.
If you are working with a project created automatically by GPS, the desktop will not be saved.

Save editor in desktop Determines when source editors should be saved in the desktop: Never, Always, or
when a source file is associated with the current project (From_Project).

Default builder The default builder to be used by GPS.

– Auto to use gnatmake for Ada-only projects and gprbuild otherwise (for multi-language and non Ada
projects).

– Gnatmake to always use gnatmake for builds, even for projects that contain other sources. This will
disable support for building non Ada projects.

– Gprbuild to always use gprbuild for builds, even for Ada only projects.

Jump to first location Whether the first entry of the location window should be selected automatically, and
thus whether the corresponding editor should be immediately open.

Wrap around on next/previous Whether using the Next Tag and Previous Tag actions/menus should wrap
around to the beginning when reaching the end of the category. The default is to wrap around, as was
done in previous GPS versions.

Auto close Locations view Whether the Locations view should be closed automatically when it becomes
empty.

Hyper links Whether to display hyper links in the editors when the Control key is pressed. Navigating with
hyperlinks.

146 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Clipboard size This controls the size of the list where all the entries copied into the clipboard through Edit-
>Copy and Edit->Cut are saved. This list is navigated through the menu Edit->Paste and Edit->Paste
Previous, as described earlier in this guide.

Tool bar style How the tool bar should be displayed: not at all, with small icons or with large icons

Show status bar Whether the status bar at the bottom of the GPS window should be displayed. This status bar
contains one or more progress bars while GPS is executing long actions like a build or a search. These
progress bars can be used to monitor the progress of those actions.

If you wish to save vertical screen space, you can hide this status bar. The progress bars will no longer be
visible. Instead, you can display the Task Manager through the Tools->Views->Tasks menu, to get similar
information. This manager can then be put on the right or left side of the GPS window, for instance just
below the Project View.

Remove policy when fixing code Prefered way to fix code when parts have to be removed. Always_Remove
means that the code will be removed by GPS. Always_Comment means that the code will always be
commented out. Propose_Both_Choices will propose a menu with both choices.

Tip of the Day Whether GPS will display a Tip of the Day dialog at start up.

• Windows

This section specifies preferences that apply to the Multiple Document Interface described in Multiple Document
Interface.

Opaque If True, items will be resized or moved opaquely when not maximized.

Destroy floats If False, closing the window associated with a floating item will put the item back in the main
GPS window, but will not destroy it. If True, the item is destroyed.

All floating If True, then all the windows will be floating by default, i.e. be under the control of your system
(Windows) or your window manager (Unix machines). This replaces the MDI.

Short titles for floats If True, all floating windows will have a short title. In particular, base file names will be
used for editors instead of full names.

Background color Color to use for the background of the MDI.

Title bar color Color to use for the title bar of unselected items.

Selected title bar color Color to use for the title bar of selected items.

Show title bars

If Always, each window in GPS will have its own title bars, showing some particular information
(like the name of the file edited for editors), and some buttons to iconify, maximize or close the
window. This title bar is highlighted when the window is the one currently selected.

If Never, the title bar is not displayed, to save space on the screen. The tabs of the notebooks will
then be highlighted.

If Central Only, then only the windows in the central area (ie the part that gets preserved when
switching perspective, mostly editors) will have a title bar. All other windows will not show the title
bar. This is often a good way to save space on the screen: the title bar is useful for editors since it
gives the full name of the file as well as provide an easy handle for drag and drop operations, whereas
the other views do not change position as much and it is better to save space on the screen by not
displaying their title.

Notebook tabs policy

Indicates when the notebook tabs should be displayed. If set to “Never”, you will have to select
the window in the Window menu, or through the keyboard. If set to “Automatic”, then the tabs
will be shown when two or more windows are stacked.

16.1. The Preferences Dialog 147

GPS Documentation, Release 5.2.1

Notebook tabs position

Indicates where the notebook tabs should be displayed by default. It is possible to select the
position of tabs individually for each notebook by right-clicking in any of their tabs and chosing
a new position in the contextual menu. This position will be saved as part of the desktop and
restored the next time you restart GPS. However, if you change the value of this preference, all
notebooks will reset the position of their tabs to match the new value of the preference.

• Editor .. index:: editor

General

Strip blanks Whether the editor should remove trailing blanks when saving a file.

Line terminator Choose between Unix, Windows and Unchanged line terminators when saving files.
Choosing Unchanged will use the original line terminator when saving the file; Unix will use LF
line terminators; Windows will use CRLF line terminators.

Display line numbers Whether the line numbers should be displayed in file editors.

Display subprogram names Whether the subprogram name should be displayed in the editor’s sta-
tus bar.

Tooltips Whether tool tips should be displayed automatically.

Tooltips timeout Time (in milliseconds) before displaying tooltips.

Highlight delimiters Determine whether the delimiter matching the character following the cursor
should be highlighted. The list of delimiters includes: {}[]()

Autosave delay The period (in seconds) after which an editor is automatically saved, 0 if none.

Each modified file is saved under a file called .#filename#, which is removed on the next explicit
save operation.

Right margin The right margin to highlight. 0 if none. This value is also used to implement the
Edit->Refill command.

Block highlighting Whether the editor should highlight the current block. The current block de-
pends on the programming language, and will include e.g. procedures, loops, if statements,
...

Block folding Whether the editor should provide the ability to fold/unfold blocks.

Speed Column Policy When the Speed Column should be shown on the side of the editors:

Never The Speed Column is never displayed.

Automatic The Speed Column is shown whenever lines are highlighted in the editor, for ex-
ample to show the current execution point, or lines containing compilation errors, ...; It
disappears when no lines are highlighted.

Always The Speed Column is always displayed.

Use Windows ACL This is a Windows specific preference which is disabled by default. When en-
abled GPS will use the ACL to change the file’s write permission. Note that ACL can’t be used
on network drives.

External editor The default external editor to use.

Custom editor command Specify the command line for launching a custom editor. It is assumed
that the command will create a new window/terminal as needed. If the editor itself does not
provide this capability (such as vi or pico under Unix systems), you can use an external terminal
command, e.g:

148 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

xterm -geo 80x50 -exe vi +%l %f

The following substitutions are provided:

%l line to display

%c column to display

%f full pathname of file to edit

%e extended lisp inline command

%p top level project file name

%% percent sign (‘%’)

Always use external editor True if all editions should be done with the external editor. This will
deactivate completely the internal editor. False if the external editor needs to be explicitly called
by the user.

Smart completion When enabled, GPS loads on startup all the information needed for the Smart
completion to work.

Smart completion timeout The timeout, expressed in milliseconds, after which the Smart comple-
tion window appears automatically after entering a triggering character, such as ‘.’

Fonts & Colors

Default The default font, default foreground and default background colors used in the source editor.

Block Font variant and colors used to highlight blocks (subprograms, task, entries, ...) in declarations.

Type Font variant and colors used to highlight types in declarations.

Keywords Font variant and colors used to highlight keywords.

Comments Font variant and colors used to highlight comments. Setting the color to white will set a
transparent color.

SPARK Annotations Font variant and colors used to highlight SPARK annotations within Ada comments
(Starting with –#). Setting the color to white will set a transparent color.

Strings Font variant and colors used to highlight strings. Setting the color to white will set a transparent
color.

Current line color Color for highlighting the current line. Leave it to blank for no highlighting. Setting
the color to white will set a transparent color.

Draw current line as a thin line Whether to use a thin line rather than full background highlighting on
the current line.

Current block color Color for highlighting the current source block.

Delimiter highlighting color Color for highlighting delimiters.

Search results highlighting Color for highlighting the search results in the text of source editors.

Cursor color Color used for the cursor in editors and interactive consoles

Cursor aspect ratio Defines the size of the cursor, relatively to characters. 100 means the cursor will
occupy the same size as a character, 10 means it will only occupy 10% of the size occupies by a
character.

Ada

16.1. The Preferences Dialog 149

GPS Documentation, Release 5.2.1

Auto indentation How the editor should indent Ada sources. None means no indentation; Sim-
ple means that indentation from the previous line is used for the next line; Extended means
that a language specific parser is used for indenting sources.

Use tabulations Whether the editor should use tabulations when indenting. Note that this pref-
erence does not modify the Tab key which will still insert Tab characters. Consider also the
/Edit/Insert Tab With Spaces key shortcut which can be mapped (to e.g. Tab) via The Key
Manager Dialog. Finally, another alternative is to reconfigure the default key binding for the
automatic indentation action: by default, it is mapped to Ctrl-Tab and can be changed to
Tab by modifying the /Edit/Format Selection action from The Key Manager Dialog.

Default indentation The number of spaces for the default Ada indentation.

Continuation lines The number of extra spaces for continuation lines.

Declaration lines The number of extra spaces for multiple line declarations. For example, using
a value of 4, here is how the following code would be indented:

variable1,
variable2,
variable3 : Integer;

Conditional continuation lines The number of extra spaces used to indent multiple lines con-
ditionals within parentheses.

For example, when this preference is set to 1 (the default), continuation lines are indented
based on the previous parenthesis plus one space:

if (Condition1
and then Condition2)

then

When this preference is set to 3, this gives:

if (Condition1
and then Condition2)

then

Record indentation The number of extra spaces for record definitions, when the record keyword
is on its own line.

For example, when this preference is set to 3 (the default), the following sample will be
indented as:

type T is
record

F : Integer;
end record;

When this preference is set to 1, this gives:

type T is
record

F : Integer;
end record;

Case indentation Whether GPS should indent case statements with an extra level, as used in the
Ada Reference Manual, e.g:

150 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

case Value is
when others =>

null;
end case;

If this preference is set to Non_Rm_Style, this would be indented as:

case Value is
when others =>

null;
end case;

By default (Automatic), GPS will choose to indent with an extra level or not based on the
first when construct: if the first when is indented by an extra level, the whole case statement
will be indented following the RM style.

Casing policy The way the editor will handle the case settings below. Disabled no auto-casing
will be done; End_Of_Line auto-casing will be done when hitting Enter key; End_Of_Word
auto-casing will be done word-by-word while typing; On_The_Fly auto-casing will be done
character-by-character while typing. For the End_Of_Line, End_Of_Word and On_The_Fly
policies it is always possible to force the casing of the current line by pressing the indentation
key (Ctrl-Tab by default).

It is also possible to disable the casing for a single character (action No Casing/indentation on
Next Key, default Ctrl-Q) or temporarily (action Toggle Auto Casing/indentation, default
Alt-Q).

Reserved word casing How the editor should handle reserved words casing. Unchanged will
keep the casing as-is; Upper will change the casing of all reserved words to upper case;
Lower will change the casing to lower case; Mixed will change the casing to mixed case (all
characters to lower case except first character and characters after an underscore which are
set to upper case); Smart_Mixed As above but do not force upper case characters to lower
case.

Identifier casing How the editor should handle identifiers casing. The values are the same as for
the Reserved word casing preference.

Format operators/delimiters Whether the editor should add extra spaces around operators and
delimiters if needed. If enabled, an extra space will be added when needed in the following
cases: before an opening parenthesis; after a closing parenthesis, comma, semicolon; around
all Ada operators (e.g. <=, :=, =>, ...)

Align colons in declarations Whether the editor should automatically align colons in declara-
tions and parameter lists. Note that the alignment is computed by taking into account the
current buffer up to the current line (or end of the current selection), so if declarations con-
tinue after the current line, you can select the declarations lines and hit the reformat key.

Align associations on arrows Whether the editor should automatically align arrows in associa-
tions (e.g. aggregates or function calls). See also previous preference.

Align declarations after colon

Whether the editor should align continuation lines in variable declarations based on the colon
character.

Consider the following code:

Variable : constant String :=
"a string";

16.1. The Preferences Dialog 151

GPS Documentation, Release 5.2.1

If this preference is enabled, it will be indented as follows:

Variable : constant String :=
"a string";

Indent comments Whether to indent lines containing only comments and blanks, or to keep these
lines unchanged.

Align comments on keywords Whether to align comment lines following record and is keywords
immediately with no extra space.

When enabled, the following code will be indented as:

package P is
-- Comment

[...]
end P;

When disabled, the indentation will be:

package P is
-- Comment

[...]
end P;

C & C++

Auto indentation How the editor should indent C/C++ sources. None means no indentation; Simple
means that indentation from the previous line is used for the next line; Extended means that a language
specific parser is used for indenting sources.

Use tabulations Whether the editor should use tabulations when indenting. If True, the editor will replace
each occurrence of eight characters by a tabulation character.

Default indentation The number of spaces for the default indentation.

Extra indentation Whether to indent loops, if and switch statements an extra level. if this preference is
enabled, the following layout will be chosen:

if (condition)
{
int x;

}

If disabled, the same code will be indented as:

if (condition)
{
int x;

}

Indent comments Whether to indent lines containing only comments and blanks, or to keep these lines
unchanged.

• Debugger .. index:: debugger

152 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Preserve State on Exit If this preference is enabled, the debugger will automatically save breakpoints when it
exists, and restore them the next time the same executable is debugged. This is a convenient way to work
on an executable, where the typical usage looks like compile, debug, compile, debug, ...

When the preference is enabled, the debugger will also preserve the contents of the data window whenever
it is closed. Reopening the window either during the same debugger session, or automatically when a new
debugger is started on the same executable, will recreate the same boxes within the data window.

Debugger Windows

This preference controls what happens to debugger-related windows, like the call stack, the data
window, the tasks view,..., when the debugger is terminated. There are three possible behavior:

Close Windows In this case, all these windows are closed. This saves memory and space on the
screen, but you will need to explicitly reopen them and put them in the right location on the
desktop the next time you start a debugger session.

Keep Windows In this case, the windows are cleared, but kept on the desktop. When you start a new
debugger session, the windows will be automatically reused. This ensures that you won’t have to
reopen and reposition them, but takes space on your screen

Hide Windows The windows are cleared, and hidden. When you start a new debugger session, they are
automatically made visible again and reused. This also ensures you will not have to reopen and repo-
sition them, but requires a bit of memory. If you move some windows around while these windows
are hidden, they might reappear in unexpected location the next time, although you then just have to
move them.

Break on exceptions Specifies whether a breakpoint on all exceptions should be set by default when loading a
program. This setup is only taken into account when a new debugger is initialized, and will not modify a
running debugger (use the breakpoint editor for running debuggers).

Execution window Specifies whether the debugger should create a separate execution window for the program
being debugged.

Note that this preference cannot be taken into account for the current debug session: you need to terminate
the current debug session and restart a new one.

If true, a separate console will be created. Under Unix systems, this console is another window in the
bottom part of the main window; under Windows, this is a separate window created by the underlying gdb,
since Windows does not have the notion of separate terminals (aka ttys).

Note that in this mode under Windows, the Debug->Interrupt menu will only interrupt the debugged
program with recent versions of gdb. If you are using older versions of gdb, you need to hit Ctrl-C
in the separate execution window to interrupt it while it is running. Note also that this separate execution
window uses the default system-wide console properties (the size of the window, the colors...). It is possible
to change those properties using e.g. the default console menu (top-left of the console) on Windows XP.

If false, no execution window will be created. The debugger assumes that the program being debugged
does not require input, or that if it does, input is handled outside GPS. For example, when you attach to a
running process, this process already has a separate associated terminal.

Show lines with code Specifies whether the source editor should display blue dots for lines that contain code.
If set to False, gray dots will be displayed instead on each line, allowing breakpoint on any line. Disabling
this option provides a faster feedback, since GPS does not need to query the debugger about which lines
contain code.

Detect aliases If enabled, do not create new items when an item with the same address is already present on
the canvas.

Assembly range size Number of assembly lines to display in the initial display of the assembly window. If the
size is 0, then the whole subprogram is displayed, but this can take a very long time on slow machines.

16.1. The Preferences Dialog 153

GPS Documentation, Release 5.2.1

Current assembly line Color used to highlight the assembly code for the current line.

Color highlighting Color used for highlighting in the debugger console.

Clickable item Indicates color to be used for the items that are click-able (e.g pointers).

Changed data Indicates color to be used to highlight fields in the data window that have changed since the last
update.

Memory color Color used by default in the memory view window.

Memory highlighting Color used for highlighted items in the memory view.

Memory selection Color used for selected items in the memory view.

Item name Indicates the font to be used for the name of the item in the data window.

Item type Indicates font to be used to display the type of the item in the data window.

Max item width The maximum width an item can have.

Max item height The maximum height an item can have.

• External Commands .. index:: helper .. index:: external commands

List processes Command used to list processes running on the machine.

Remote shell Program used to run a process on a remote machine. You can specify arguments, e.g. rsh -l user

Remote copy Program used to copy a file from a remote machine. You can specify arguments, e.g. rcp -l user

Execute command Program used to execute commands externally.

HTML Browser Only used under Unix, not relevant under Windows where the default HTML browser is used.
Program used to execute view HTML files, for instance the documentation. Empty by default, which
means that GPS will try to find a suitable HTML browser automatically. Only change the value if GPS
cannot find a HTML browser, or if the browser found is not your preferred one.

Print command External program used to print files.

This program is required under Unix systems in order to print, and is set to a2ps by default. If a2ps is not
installed on your system, you can download it from ftp://ftp.enst.fr/pub/unix/a2ps/, although other printing
programs such as lp can be specified instead.

Under Windows systems, this program is optional and is empty by default, since a built-in printing is
provided. An external tool will be used if specified, such as the PrintFile freeware utility available from
http://www.lerup.com/printfile/descr.html

• Search .. index:: search

Confirmation for “Replace all” Enable or disable the confirmation popup for the replace all action.

Close on Match If this option is enabled, the search window will be closed when a match is found.

Select on Match If this option is enabled, the focus will be given to the editor when a match is found.

Preserve Search Context If this option is enabled, the contents of the “Look in:” field will be preserved be-
tween consecutive searches in files.

• Browsers .. index:: browsers

General

Selected item color Color to use to draw the selected item.

Background color Color used to draw the background of the browsers.

Hyper link color Color used to draw the hyper links in the items.

154 Chapter 16. Customizing and Extending GPS

ftp://ftp.enst.fr/pub/unix/a2ps/
http://www.lerup.com/printfile/descr.html

GPS Documentation, Release 5.2.1

Selected link color Color to use for links between selected items.

Default link color Color used to draw the links between unselected items.

Ancestor items color Color to use for the background of the items linked to the selected item.

Offspring items color Color to use for the background of the items linked from the selected item.

Vertical layout Whether the layout of the graph should be vertical (True) or horizontal (False). This
setting applies to most browsers (call graph for instance), but does not apply to the entities
browsers.

• VCS .. index:: vcs

Implicit status Whether a status action can be launched as part of another action. For example to get the
revision numbers of new files after an update command. If the network connection with the repository is
slow disabling this command can speed-up the VCS actions.

Default VCS The default VCS to use when the project does not define a VCS.

• Visual diff .. index:: visual diff .. index:: file comparison

Note that in order to perform visual comparison between files, GPS needs to call external tool (not distributed
with GPS) such as diff or patch. These tools are usually found on most unix systems, and may not be available
by default on other OSes. Under Windows, you can download them from one of the unix toolsets available, such
as msys (http://www.mingw.org) or cygwin (http://www.cygwin.com).

mode How GPS displays visual diffs between two files:

Side_By_Side Editors are displayed side-by-side; new editors are created as needed

Unified No new editor is created, and changes are displayed directly in the reference editor.

Diff command Command used to compute differences between two files. Arguments can also be specified.
The visual diff expects a standard diff output with no context (that is, no -c nor -u switch). Arguments of
interest may include (this will depend on the version of diff used):

-b Ignore changes in amount of white space.

-B Ignore changes that just insert or delete blank lines.

-i Ignore changes in case; consider upper and lower case letters equivalent.

-w Ignore white space when comparing lines.

Patch command Command used to apply a patch. Arguments can also be specified. This command is used
internally by GPS to perform the visual comparison on versioned files (e.g. when performing a comparison
with a version control system).

This command should be compatible with the GNU patch utility.

Use old diff Use the old version of the visual comparison.

Diff3 command This item is only displayed if the preference Use old diff is disabled. Command used to query
a 3-way diff. See Diff command for a description of the parameters.

Default color This item is only displayed if the preference Use old diff is disabled. The color used to indicate
lines on which there is a difference, in the “reference” editor.

Old color This item is only displayed if the preference Use old diff is disabled. The color used to indicate
spaces used by lines not present in one of the editors in a 3-way diff and present in the other editors.

Append color This item is only displayed if the preference Use old diff is disabled. The color used to display
the lines that are present in an editor but not in the reference editor.

16.1. The Preferences Dialog 155

http://www.mingw.org
http://www.cygwin.com

GPS Documentation, Release 5.2.1

Remove color This item is only displayed if the preference Use old diff is disabled. The color used to display
the lines that are present in the reference editor but not in other editors.

Change color This item is only displayed if the preference Use old diff is disabled. The color used to display
the lines that have changed between the reference editor and the other editors.

Fine change color This item is only displayed if the preference Use old diff is disabled. The color used to
highlight fine differences within a modified line.

Context length This item is only displayed if the preference Use old diff is enabled. The number of lines
displayed before and after each chunk of differences. Specifying -1 will display the whole file.

• Messages .. index:: messages

Color highlighting Color used to highlight text in the messages window.

Errors highlighting Color used to highlight lines causing compilation errors, in the source editors. When this
color is set to white, the errors are not highlighted. (Compilation/Build)

Warnings highlighting Color used to highlight lines causing compilation warnings, in the source editors.
When this color is set to white, the warnings are not highlighted.

Style errors highlighting Color used to highlight lines containing style errors, in the source editors. When this
color is set to white, the errors are not highlighted.

Compiler info highlighting Color used to highlight lines containing compiler information, in the source edi-
tors. When this color is set to white, the information is not highlighted.

File pattern Pattern used to detect file locations and the type of the output from the messages window. This
is particularly useful when using an external tool such as a compiler or a search tool, so that GPS will
highlight and allow navigation through source locations. This is a standard system V regular expression
containing from two to five parenthesized subexpressions corresponding to the file, line, column, warnings
or style error patterns.

File index Index of filename in the file pattern.

Line index Index of the line number in the file pattern.

Column index Index of the column number in the file pattern.

Warning index Index of the warning identifier in the file pattern.

Style index Index of the style error identifier in the file pattern.

Info index Index of the compiler info identifier in the file pattern.

Secondary File pattern Pattern used to detect additional file locations from the messages window. This is a
standard system V regular expression containing from two to three parenthesized subexpressions corre-
sponding to the file, line, and column patterns.

Secondary File index Index of filename in the file pattern.

Secondary Line index Index of the line number in the file pattern.

Secondary Column index Index of the column number in the file pattern.

Alternate Secondary File pattern Pattern used to detect additional file locations in alternate form from the
messages window. This is a standard system V regular expression containing one parenthesized subex-
pressions corresponding to the line patterns.

Alternate Secondary Line index Index of the line number in the file pattern.

• Project

Relative project paths Whether paths should be absolute or relative when the projects are modified.

156 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Fast Project Loading If the project respects a number of restrictions, activating the preference will provide
major speed up when GPS parses the project. This is especially noticeable if the source files are on a
network drive.

GPS assumes that the following restricitions are true when the preference is activated. If this isn’t the case,
no error is reported, and only minor drawacks will be visible in GPS (no detection that two files are the
same if one of them is a symbolic link for instance, although GPS will still warn you if you are trying to
overwrite a file modified on the disk).

The restrictions are the following:

Symbolic links shouldn’t be used in the project. More precisely, you can only have symbolic links that
point to files outside of the project, but not to another file in the project

Directories can’t have source names. No directory name should match the naming scheme defined in the
project. For instance, if you are using the default GNAT naming scheme, you cannot have directories
with names ending with ”.ads” or ”.adb”

Load Xref info on project load Whether the Xref information should be automatically loaded into memory
when a new project is loaded. Support for Cross-References.

Hidden directories pattern A regular expression used to match hidden directories. Such directories are not
displayed by default in the project view, and are not taken into account for VCS operations working on
directories.

• Outline

Font You can choose a specific font for the outline view. Typically, this will be used to use a slightly smaller
font than in the editor, so that you can see more entities at once on the screen.

Show Profiles For some of the languages, in particular Ada, GPS can display the profile (list of parameters) for
the subprograms. This can be used to differentiate between overloaded entities (ie entities with the same
name). Disabling this preference will only show the entity name.

Sort alphabetically If this preference is activated, the entities will be sorted alphabetically in the outline view.
If disabled, they will be displayed in the order they are found in the source file.

Link with Editor If this option is set, the current subprogram will be selected in the outline view every time
the cursor position changes in the current editor. This option requires some computation for GPS, and you
might want to avoid the slow down by disabling it.

Show file name If this option is set, the outline view will show the name of the file on its first line, and indent
slightly all following lines. If this option is unset, this will save some screen real estate, but you will have
to look at the current editor to see what file is descrived in the Outline View.

• Documentation .. _Documention_Preferences:

This section specifies preferences that apply to the Documentation Generator. Documentation Generation for
more information.

Process body files If this preference is enabled, implementation files will be processed. Otherwise, only the
specification files will.

Show private entities By default, no documentation is generated for private entities. Enabling this preference
will change this behavior.

Call graph If enabled, the documentation tool will compute and take advantage of source references to e.g
generate call graph information. Activating this option will slow down the documentation generation
process.

Up-to-date files only If enabled, only files having up-to-date cross references information will be documented.

16.1. The Preferences Dialog 157

GPS Documentation, Release 5.2.1

Comments filter regexp A regular expression used to filter to comments found in the source code before using
them for generating documentation. For example “^!.*” will remove all comments starting with ‘!’.

Spawn a browser If enabled, a browser is spawned after each documentation generation to view the generated
files. This browser is not spawned if disabled.

Find xrefs in comments If enabled, GPS will try to find references to entities in comments, and generate links
to them when generating the documentation.

• Coverage Analysis .. _Coverage_Analysis_Preferences:

Coverage toolchain Select which coverage toolchain (gcov or xcov) to use from the Tools->Coverage menu.

16.2 GPS Themes

GPS provides an extensive support for themes. Themes are predefined set of value for the preferences, for the key
bindings, or any other configurable aspect of GPS.

For instance, color themes are a convenient way to change all colors in GPS at once, according to predefined choices
(strongly contrasted colors, monochrome,...). It is also possible to have key themes, defining a set of key bindings to
emulate e.g. other editors.

Any number of themes can be activated at the same time through the preferences dialog (Edit->Preferences). This
dialog contains a list of all themes that GPS knows about, organized into categories for convenient handling. Just click
on the buttons on the left of each theme name to activate that theme.

Note that this will immediately change the current preferences settings. For instance, if the theme you just selected
changes the colors in the editor, these are changed immediately in the Editor->Fonts & Colors. You can of course still
press Cancel to keep your previous settings

If multiple themes are active at the same time and try to override the same preferences, the last theme which is loaded
by GPS will override all previously loaded themes. However, there is no predefined order in which the themes are
loaded.

16.3 The Key Manager Dialog

The key manager is accessible through the menu Edit->Key Shortcuts. This dialog provides an easy way to associate
key shortcuts with actions. These actions are either predefined in GPS, or defined in your own customization files,
as documented in Customizing through XML and Python files. It also provides an easy way to redefine the menu
shortcuts.

158 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Actions are referenced by their name, and are grouped into categories. These categories indicate when the action
applies. For instance, the indentation command only applies in source editors, whereas the command to change the
current window applies anywhere in GPS. The categories can be explicitly specified when you created your own
actions through XML files (Defining Actions).

Through the key manager, you can define key bindings similar to what Emacs uses (control-x followed by
control-k for instance). To register such key bindings, you need to press the Grab button as usual, and then
type the shortcut. The recording of the key binding will stop a short while after the last key stroke.

If you define complex shortcuts for menus, they will not appear next to the menu name when you select it with the
mouse. This is expected, and is due to technical limitations in the graphical toolkit that GPS uses.

When you assign a new shortcut to an action, the following happens:

• All actions and menus currently associated with the same key will no longer be executed when the key is pressed.

• All key shortcuts defined for this action are replaced by the new one. As a result, the action is only executable
through this new shortcut.

16.4 The Plug-ins Editor

GPS can be extensively customized through external plug-ins. You can write your own plug-ins (Customization files
and plugins), but GPS also comes with its own collection of plug-ins.

Some of them are loaded by default when GPS starts (for instance the support for the CVS version management
system or support for highlighting in various programming languages); others are available for any user but not loaded
automatically by GPS, for instance an Emacs emulation mode.

Among the plug-ins that are provided with GPS, you will find:

16.4. The Plug-ins Editor 159

GPS Documentation, Release 5.2.1

• Emacs emulation .. index:: Emacs

Several plug-ins emulate some of the functions provided by Emacs, such as the interactive search, manipulation
of rectangles, navigation in the editor, and of course the usual Emacs key shortcuts

This emacs mode used to be activated in the preferences dialog, on the Themes page, but you should now
activate it by loading the emacs.xml plug-in.

• Makefile support .. index:: Makefile

A plug-in is provided that parses a Makefile and creates menus for each of its possible targets, so that you can
easily start a make command.

• Cross-references enhancements

Various plug-ins take advantage of GPS’s cross-references information to create additional menus to navigate
(for instance to jump to the primitive operations of Ada tagged types, to the body of Ada separate entities, ...)

• Text manipulation

Several plug-ins provide support for advanced text manipulation in the editors, for instance to be able to align a
set of lines based on various criteria, or to manipulate a rectangular selection of text.

You can choose graphically which plug-ins should or should not be loaded on startup. To do so, select the menu
/Tools/Plug-ins. This brings up a new window, containing two parts:

• On the left is the list of all known plug-ins.

As described in Customization files and plugins, GPS will search for candidates in various directories, and based
on these directories decide whether to automatically load the plug-in or not.

This list indicates the name of the plug-in, and whether it has been loaded in this GPS session (when the toggle
button is checked).

• On the right are the details for the selected plug-in.

This window is displayed as a notebook with two pages: on the first one you will see the exact location of the
plug-in, the reason why it was loaded or not, and, more importantly, the source of the plug-in. By convention,
each plug-in starts with a general comment that indicates the purpose of this plug-in, and some more detailed
documentation on its usage.

For those interested, this also contains the plug-in itself, so that this can act as an example to create your own
customization script.

Technically, the list of plug-ins to load or not to load are stored in the file HOME/.gps/startup.xml.

If you have modified anything through this dialog (the list of plug-ins to load or unload), you will need to
restart GPS. GPS cannot unload a module, since it can have too many possible effects on GPS (adding menus,
overriding key shortcuts, ...).

A dialog is displayed asking you whether you would like to exit GPS now. This will properly save all your files.

16.5 Customizing through XML and Python files

16.5.1 Customization files and plugins

You can customize lots of capabilities in GPS using files that are loaded by GPS at start up.

For example, you can add items in the menu and tool bars, as well as defining new key bindings, new languages, new
tools, ...; Using Python as a programming language, you can also add brand new facilities and integrate your own tools
in the GPS platform.

160 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

These customization files are searched for at startup in several different places. Depending on the location where they
are found, these files will either be automatically loaded by GPS (and thus can immediately modify things in GPS), or
will simply be made visible in the Plug-ins Editor (The Plug-ins Editor).

These directories are searched for in the order given below. Any script loaded latter can override setups done by
previously loaded scripts. For instance, they could override a key shortcut, remove a menu, redefine a GPS action, ...

In the directory names below, INSTALL is the name of the directory in which you have installed GPS. HOME is the
user’s home directory, either by default or as overriden by the GPS_HOME environment variable. If none of these
exists, GPS will use the USERPROFILE environment variable.

In all these directories, only the files with .xml or .py extensions are taken into account. Other files are ignored,
although for compatibility with future versions of GPS it is recommended not to keep other files in the same directory.

• Automatically loaded system wide modules

The INSTALL/share/gps/plug-ins directory should contain the files that GPS will automatically load
by default (unless overriden by the user through the Plug-ins Editor). These plug-ins are visible to any user
on the system that uses the same GPS installation. This directory should be reserved for critical plug-ins that
almost everyone should use.

• Not automatically loaded system wide modules

The INSTALL/share/gps/library directory should contain the files that GPS should show in the Plug-
ins Editor, but not load automatically. Typically, these would be files that add optional capabilities to GPS, for
instance an emacs emulation mode, or additional editor capabilities that a lot of users would not generally use.

• GPS_CUSTOM_PATH

This environment variable can be set before launching GPS. It should contain a list of directories, separated by
semicolons (‘;’) on Windows systems and colons (‘:’) on Unix systems. All the files in these directories with
the appropriate extensions will be automatically loaded by default by GPS, unless overriden by the user through
the Plug-ins Editor.

This is a convenient way to have project-specific customization files. You can for instance create scripts, or
icons, that set the appropriate value for the variable and then start GPS. Depending on your project, this allows
you to load specific aliases which do not make sense for other projects.

• Automatically loaded user directory

The directory HOME/.gps/plug-ins is searched last. Any script found in there will be automatically loaded
unless overriden in the Plug-ins Editor.

This is a convenient way for users to create their own plug-ins, or test them before they are made available to
the whole system by copying them to one of the other directories.

Any script loaded by GPS can contain customization for various aspects of GPS, mixing aliases, new languages or
menus, ... in a single file. This is a convenient way to distribute your plug-ins to other users.

Python files

Although the format of the python plug-ins is free (as long as it can be executed by Python), the following organization
is suggested. These plug-ins will be visible in the Plug-ins Editor, and therefore having a common format makes it
easier for users to understand the goal of the plug-ins:

• Comment

The first part of the script should be a general comment on the goal and usage of the script. This comment
should use python’s triple-quote convention, rather than start-of-line hash (‘#’) signs.

The first line of the comment should be a one liner explaining the goal of the script. It is separated by a blank
line from the rest of the comment.

16.5. Customizing through XML and Python files 161

GPS Documentation, Release 5.2.1

The rest of the comment is free-form.

• Customization variables

If your script can be configured by the user by changing some global variables, they should be listed in their
own section, and fully documented. The user can then, through the /Tools/Plug-ins editor change the value of
these variables

• Implementation

The implementation should be separated from the initial comment by a form-feed (control-L) character. The
startup scripts editor will know not to display the rest of the script on the first page of the editor.

Generally speaking, scripts should avoid executing code as soon as they are loaded. This gives a chance to the
user to change the value of global variables or even override functions before the script is actually launched.

The solution is to connect to the “gps_started” hook, as in:

^L
###
No user customization below this line
###

import GPS

def on_gps_started (hook_name):
... launch the script

GPS.Hook ("gps_started").add (on_gps_started)

XML files

XML files must be utf8-encoded by default. In addition, you can specify any specific encoding through the standard
<?xml encoding=”...” ?> declaration, as in the following example:

<?xml version="1.0" encoding="iso-8859-1"?>
<!-- general description -->
<submenu>

<title>encoded text</title>
</submenu>

These files must be valid XML files, i.e. must start with the <?xml?> tag, and contain a single root XML node, the
name of which is left to your consideration. The general format is therefore:

<?xml version="1.0" ?>
<root_node>

...
</root_node>

It is also recommended that the first line after the <?xml?> tag contains a general comment describing the purpose
and usage of the script. This comment will be made visible in the Plug-ins editor.

The list of valid XML nodes that can be specified under <root> is described in later sections. It includes:

<action> (Defining Actions)

<key> (Binding actions to keys)

<submenu> (Adding new menus)

<pref> (Preferences support in custom files)

162 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

<preference> (Preferences support in custom files)

<alias> (Defining text aliases)

<language> (Adding support for new languages)

<button> (Adding tool bar buttons)

<entry> (Adding tool bar buttons)

<vsearch-pattern> (Defining new search patterns)

<tool> (Adding support for new tools)

<filter> (Filtering actions)

<contextual> (Adding contextual menus)

<case_exceptions> (Adding casing exceptions)

<documentation_file> (Adding documentation)

<doc_path> (Adding documentation)

<stock> (Adding stock icons)

<project_attribute> (Defining project attributes)

<remote_machine_descriptor> (Defining a remote server)

<remote_path_config> (Defining a remote path translation)

<remote_connection_config> (Defining a remote connection tool)

<rsync_configuration> (Configuring rsync usage)

16.5.2 Defining Actions

This facility distinguishes the actions from their associated menus or key bindings. Actions can take several forms:
external commands, shell commands and predefined commands, as will be explained in more details below.

The general form to define new actions is to use the <action> tag. This tag accepts the following attributes:

name (mandatory) This tag must be specified. It provides the name by which the action is referenced in other parts of
the customization files, for instance when it is associated with a menu or a toolbar button. The name can contain
any character, although it is recommended to avoid XML special characters. It mustn’t start with a ‘/’.

output (optional) If specified, this attribute indicates where the output of the commands will be sent by default. This
can be overridden by each command, using the same attribute for <shell> and <external> tags, Redirecting the
command output.

show-command (optional, default true) If specified, this attribute indicates whether the text of the command itself
should be displayed at the same location as its output. Neither will be displayed if the output is hidden. The
default is to show the command along with its output. This attribute can be overridden for each command.

show-task-manager (optional, default false) This attribute indicates whether an entry should be created in the task
manager to show this command. Associated with this entry is the progress bar indicator, so if you hide the entry,
no progress will be shown. On the other hand, several progress bars might be displayed for your action if you
show the progress bar here, which might be an issue depending on the context. This attribute can be overriden
for each external command.

category (optional, default “General”) The category in the keybindings editor (menu Edit/Key bindings) in which the
action should be shown to the user. If you specify an empty string, the action is considered as an implementation
detail, and not displayed in the editor. The user will thus not be able to assign it a keybinding through the
graphical user interface (although this is still doable through XML commands).

16.5. Customizing through XML and Python files 163

GPS Documentation, Release 5.2.1

If you are defining the same action multiple times, the last definition will be kept. However, existing menus, buttons,
... that already reference that action will keep their existing semantic. The new definition will only be used for all new
menus created from that point on.

The <action> can have one or several children, all of which define a particular command to execute. All of these
commands are executed one after the other, unless one of them fails in which case the following commands are not
executed.

The following XML tags are valid children for <action>.

<external> This defines a command to execute through the system (i.e. a standard Unix or Windows command)

Note for Windows users: like under UNIX, scripts can be called from custom menu. In order to do that, you
need to write your script in a .bat or .cmd file, and call this file as usual. The external tag would e.g. look
like:

<?xml version="1.0" ?>
<external_example>
<action name="my_command">

<external>c:\\.gps\\my_scripts\\my_cmd.cmd</external>
</action>

</external_example>

This tag accepts the following attributes:

server (optional) This attribute can be used to execute the external command on a remote server. The
accepted values are “gps_server” (default), “build_server”, “execution_server”, “debug_server” and
“tools_server”. Remote operations, for explanation of what these servers are.

check-password (optional) This attribute can be used to tell GPS to check and handle password prompts from
the external command. The accepted values are “false” (default) and “true”.

show-command (optional) This attribute can be used to override the homonym attribute specified for the <ac-
tion> tag.

output (optional) This attribute can be used to override the homonym attribute specified for the <action> tag.

progress-regexp (optional) This attribute specifies a regular expression that the output of the command will be
checked against. Every time the regular expression matches, it should provide two numeric values that are
used to display the usual progress indicators at the bottom-right corner of the GPS window, as happens
during regular compilations.

The name of the action is printed in the progress bar while the action is executing:

<?xml version="1.0" ?>
<progress_action>

<action name="progress" >
<external
progress-regexp="(\\d+) out of (\\d+).*$"
progress-current="1"
progress-final="2"
progress-hide="true">gnatmake foo.adb

</external>
</action>

</progress_action>

progress-current (optional, default is 1) This is the opening parenthesis count index in progress-regexp that
contains the current step.

progress-final (optional, default is 2) This is the opening parenthesis count index in progress-regexp that con-
tains the current last step. This last index can grow as needed. For example, gnatmake will output the

164 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

number of the file it is currently examining, and the total number of files to be examined. However, that
last number may grow up, since parsing a new file might generate a list of additional files to parse later on.

progress-hide (optional, default is true) If this attribute is set to the value “true”, then all the lines that match
progress-regexp and are used to compute the progress will not be displayed in the output console. For any
other value of this attribute, these lines are displayed along will the rest of the output.

show-task-manager (optional, default inherited from ‘<action>‘) This attribute indicates whether an entry
should be created in the task manager to show this command. Associated with this entry is the progress
bar indicator, so if you hide the entry, no progress will be shown. On the other hand, several progress bars
might be displayed for your action if you show the progress bar here, which might be an issue depending
on the context.

If you have set a value for progress-regexp, this will automatically be set to true by default so that the
progress bar is indeed displayed in the task manager. You can still override it explicitly for that <external>
element to force hiding the progress bar.

<on-failure> This tag specifies a group of command to be executed if the previous external command fails. Typically,
this is used to parse the output of the command and fill the location window appropriately (Processing the tool
output).

For instance, the following action spawns an external tool, and parses its output to the location window and the
automatic fixing tool if the external tool happens to fail.

In this group of commands the %... and $... macros can be used (Macro arguments):

<?xml version="1.0" ?>
<action_launch_to_location>
<action name="launch tool to location" >

<external>tool-path</external>
<on-failure>
<shell>Locations.parse "%1" category<shell>
<external>echo the error message is "%2"</external>

</on-failure>
<external>echo the tool succeeded with message %1</external>

</action>
</action_launch_to_location>

<shell> As well as external commands, you can use custom menu items to invoke GPS commands using the shell tag.
These are command written in one of the shell scripts supported by GPS.

This tag supports the same show-command and output attributes as the <action> tag.

The following example shows how to create two actions to invoke the help interactive command and to open the
file main.c:

<?xml version="1.0" ?>
<help>
<action name="help">
<shell>help</shell>

</action>
<action name="edit">

<shell>edit main.c</shell>
</action>

</help>

By default, commands are expected to be written in the GPS shell language. However, you can specify the
language through the lang attribute. Its default value is “shell”.

The value of this attribute could also be “python”.

16.5. Customizing through XML and Python files 165

GPS Documentation, Release 5.2.1

When programming with the GPS shell, you can execute multiple commands by separating them with semi-
colons. Therefore, the following example adds a menu which lists all the files used by the current file, in a
project browser:

<?xml version="1.0" ?>
<current_file_uses>
<action name="current file uses">

<shell lang="shell">File %f</shell>
<shell lang="shell">File.uses %1</shell>

</action>
</current_file_uses>

<description> This tag contains a description for the command, which is used in the graphical editor for the key
manager. The Key Manager Dialog.

<filter>, <filter_and>, <filter_or> This is the context in which the action can be executed, Filtering actions.

It is possible to mix both shell commands and external commands. For instance, the following command opens an
xterm (on Unix systems only) in the current directory, which depends on the context:

<?xml version="1.0" ?>
<xterm_directory>

<action "xterm in current directory">
<shell lang="shell">cd %d</shell>
<external>xterm</external>

</action>
</xterm_directory>

As seen in some of the examples above, some special strings are expanded by GPS just prior to executing the command.
These are the “%f”, “%d”,.. See below for a full list.

More information on chaining commands is provided in Chaining commands.

Some actions are also predefined in GPS itself. This include for instance aliases expansion, manipulating MDI win-
dows, ...; All known actions (predefined and the ones you have defined in your own customization files) can be
discovered by opening the key shortcut editor (Edit->Key shortcuts menu).

16.5.3 Macro arguments

When an action is defined, you can use macro arguments to pass to your shell or external commands. Macro arguments
are special parameters that are transformed every time the command is executed. The following macro arguments are
provided.

The equivalent python command is given for all tests. These commands are useful when you are writing a full python
script, and want to test for yourself whether the context is properly defined.

%a If the user clicked within the Locations Window, this is the name of the category to which the current line belongs

%builder Replaced by the default builder configured in GPS. This can be e.g. gnatmake if your project contains
only Ada code, or gprbuild for non Ada or multi-language projects. Note: this macro is only available in the
commands defined in the Build Manager and the Build Launcher dialogs.

%c This is the column number on which the user clicked. Python equivalent:

GPS.current_context().column()

%d The current directory. Python equivalent:

GPS.current_context().directory()

%dk The krunched name of the current directory.

166 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

%e Name of the entity the user clicked on. Python equivalent:

GPS.current_context().entity().name()

%E The full path to the executable name corresponding to the target.

%ek Krunched name of the entity the user clicked on. This is the same as %e, except long names are shorted as in
%fk.

%eL Replaced by either an empty string, or -eL, depending on whether the Fast Project Loading preference if set or
not. -eL is used by GNAT tools to specify whether symbolink links should be followed or not when parsing
projects. Note: this macro is only available in the commands defined in the Build Manager and the Build
Launcher dialogs.

%external Replaced by the command line specified in the preference External Commands->Execute command.

%f Base name of the currently selected file. Python equivalent:

import os.path
os.path.basename (GPS.current_context().file().name())

%F Absolute name of the currently opened file. Python equivalent:

GPS.current_context().file().name()

%fk Krunched base name of the currently selected file. This is the same as %f, except that long names are shortened,
and their middle letters are replaced by “[...]”. This should be used in particular in menu labels, to keep the
menus narrow.

%fp Base name of the currently selected file. If the file is not part of the project tree, or no file is selected, generate
an error on the Messages window. Note: this macro is only available in the commands defined in the Build
Manager and the Build Launcher dialogs.

%gnatmake Replaced by the gnatmake executable configured in your project file.

%gprbuild Replaced by the gprbuild command line configured in your project file.

%gprclean Replaced by the default cleaner configured in GPS. This can be e.g. gnat clean, or gprclean. Note: this
macro is only available in the commands defined in the Build Manager and the Build Launcher dialogs.

%i If the user clicked within the Project View, this is the name of the parent project, ie the one that is importing the
one the user clicked on. Note that with this definition of parent project, a given project might have multiple
parents. The one that is returned is read from the Project View itself.

%l This is the line number on which the user clicked. Python equivalent:

GPS.current_context().line()

%o The object directory of the current project.

%O The object directory of the root project.

%p The current project. This is the name of the project, not the project file, ie the .gpr extension is not included in
this name, and the casing is the one found inside the project file, not the one of the file name itself. If the current
context is an editor, this is the name of the project to which the source file belongs. Python equivalent:

GPS.current_context().project().name()

%P The root project. This is the name of the project, not the project file. Python equivalent:

GPS.Project.root().name()

%Pb The basename of the root project file.

16.5. Customizing through XML and Python files 167

GPS Documentation, Release 5.2.1

%Pl The name of the root project, all lower case.

%pp The current project file pathname. If a file is selected, this is the project file to which the source file belongs.
Python equivalent:

GPS.current_context().project().file().name()

%PP The root project pathname. Python equivalent:

GPS.Project.root().file().name()

%pps This is similar to %pp, except it returns the project name prepended with -P, or an empty string if there is no
project file selected and the current source file doesn’t belong to any project. This is mostly for use with the
GNAT command line tools. The project name is quoted if it contains spaces. Python equivalent:

if GPS.current_context().project():
return "-P" & GPS.current_context().project().file().name()

%PPs This is similar to %PP, except it returns the project name prepended with -P, or an empty string if the root
project is the default project. This is mostly for use with the GNAT command line tools.

%(p|P)[r](d|s)[f] Substituted by the list of sources or directories of a given project. This list is a list of space-separated,
quoted names (all names are surrounded by double quotes, for proper handling of spaces in directories or file
names).

P the root project.

p the selected project, or the root project if there is no project selected.

r recurse through the projects: sub projects will be listed as well as their sub projects, etc...

d list the source directories.

Python equivalent:

GPS.current_context().project().source_dirs()

s list the source files.

Python equivalent:

GPS.current_context().project().sources()

f output the list into a file and substitute the parameter with the name of that file. This file is never deleted by
GPS, it is your responsibility to do so.

%s This is the text selected by the user, if a single line was selected. When multiple lines were selected, this returns
the empty string

%S This is either the text selected by the user, of the current entity if there is no selection. If the entity is part of an
expression (“A.B.C”), then the whole expression is used instead of the entity name.

%switches(tool) Replaced by IDE’Default_Switches (tool), in other words, if you have a tool whose switches are
defined via an xml file in GPS, they are stored as Default_Switches (xxx) in the IDE package and can be retrieved
using this macro. The value returned is a list of switches, or an empty list if not set.

Note: This macro is only available in the commands defined in the Build Manager and Build Launcher dialogs.

%T Replaced by the subtarget being considered for building. Depending on the context, this can correspond to e.g.
the base filename of a Main source, or makefile targets. Note: this macro is only available in the commands
defined in the Build Manager and the Build Launcher dialogs.

%TT Same as %TT, but returns the full path to main sources rather than the base filename.

168 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

%attr(Package’Name[,default]) Replaced by the project attribute Package’Name, in other words, the attribute Name
from the package Package. Package’ is optional if Name is a top level attribute (e.g. Object_Dir).

If the attribute is not defined in the project, an optional default value is returned, or an empty string if not.

Note: This macro is only available in the commands defined in the Build Manager and Build Launcher dialogs,
and only supports single string attributes, not lists.

%dirattr(Package’Name[,default]) Replaced by the directory part of an attribute. The attribute is specified as in %attr
above.

%baseattr(Package’Name[,default]) Replaced by the base name of an attribute. The attribute is specified as in %attr
above.

%vars Replaced by a list of switches of the form <variable>=<value>, where <variable> is the name of a scenario
variable and <value> its current value, as configured in the Scenario View. All the scenario variables defined in
the current project tree will be listed. Alternatively, you can also use %vars(-D) to generate a list of switches
of the form -D<variable>=<value>. Note: this macro is only available in the commands defined in the Build
Manager and the Build Launcher dialogs.

%X Replaced by a list of switches of the form -X<variable>=<value>, where <variable> is the name of a scenario
variable and <value> its current value, as configured in the Scenario View. All the scenario variables defined in
the current project tree will be listed. Note: this macro is only available in the commands defined in the Build
Manager and the Build Launcher dialogs.

%target Replaced by –target=<t> where <t> is the build target detected by the toolchain being used.

%% Replaced by the % sign.

Examples:

%Ps Replaced by a list of source files in the root project.

%prs Replaced by a list of files in the current project, and all imported sub projects, recursively.

%prdf Replaced by the name of a file that contains a list of source directories in the current project, and all imported
sub projects, recursively.

Another type of macros are expanded before commands are executed: These all start with the $ character, and represent
parameters passed to the action by its caller. Depending on the context, GPS will give zero, one or more arguments to
the action. This is in particular used when you define your own VCS system. See also the shell function execute_action,
which you can use yourself to execute an action and pass it some arguments.

These arguments are the following

$1, $2, ... $n Where n is a number. These are each argument passed to the action

$1-, $2-, ... $n- This represents a string concatenating the specified argument and all arguments after it

$* This represents a string concatenating all arguments passed to the action

$repeat This is the number of times the action has been repeated in a row. It will in general be 1 (ie this is the first
execution of the action), unless the user has first executed the action “Repeat Next”, which allows automatic
repetition of an action.

By default, when the action “Repeat Next” is invoked by the user, it will repeat the following action as many
times as the user specified. However, in some cases, either for efficiency reasons or simply for technical reasons,
you might want to handle yourself the repeat. This can be done with the following action declaration:

<action name="my_action">
<shell lang="python">if $repeat==1: my_function($remaining + 1)</shell>

</action>

def my_function (count):

16.5. Customizing through XML and Python files 169

GPS Documentation, Release 5.2.1

"""Perform an action count times"""
...

Basically, the technique here is to only perform something the first time the action is called (hence the if state-
ment), but pass your shell function the number of times that it should repeat (hence the $remaining parameter).

$remaining This is similar to $repeat, and indicates the number of times that the action remains to be executed. This
will generally be 0, unless the user has chosen to automatically repeat the action a number of times.

16.5.4 Filtering actions

By default, an action will execute in any context in GPS. The user just selects the menu or key, and GPS tries to execute
the action.

It is possible to restrict when an action should be considered as valid. If the current context is incorrect for the action,
GPS will not attempt to run anything, and will display an error message for the user.

Actions can be restricted in several ways:

• Using macro arguments (Macro arguments). If you are using one of the macro arguments defined in the previous
section, anywhere in the chain of commands for that action, GPS will first check that the information is available,
and if not will not start running any of the shell commands or external commands for that action.

For instance, if you have specified %F as a parameter to one of the commands, GPS will check prior to running
the action that there is a current file. This can be either a currently selected file editor, or for instance that the
project view is selected, and a file node inside it is also selected.

You do not have to specify anything else, this filtering is automatic

Note however that the current context might contain more information than you expect. For instance, if you
click on a file name in the Project View, then the current context contains a file (thus satisfies %F), but also
contains a project (and thus satisfies %p and similar macros).

• Defining explicit filters Explicit restrictions can be specified in the customization files. These are specified
through the <filter>, <filter_and> and <filter_or> tags, see below.

These tags can be used to further restrict when the command is valid. For instance, you can use them to specify
that the command only applies to Ada files, or only if a source editor is currently selected.

The filters tags

Such filters can be defined in one of two places in the customization files:

• At the toplevel. At the same level as other tags such as <action>, <menu> or <button> tags, you can define
named filters. These are general filters, that can be referenced elsewhere without requiring code duplication.

• As a child of the <action> tag. Such filters are anonymous, although they provide exactly the same capabilities
as the ones above. These are mostly meant for simple filters, or filters that you use only once.

There are three different kinds of tags:

<filter> This defines a simple filter. This tag takes no child tag.

<filter_and> All the children of this tag are composed together to form a compound filter. They are evaluated in turn,
and as soon as one of them fails, the whole filter fails. Children of this tag can be of type <filter>, <filter_and>
and <filter_or>.

<filter_or> All the children of this tag are composed together to form a compound filter. They are evaluated in turn,
and as soon as one of them succeeds, the whole filter succeeds. Children of this tag can be of type <filter>,
<filter_and> and <filter_or>.

170 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

If several such tags are found following one another under an <action> tag, they are combined through “or”, i.e. any
of the filters may match for the action to be executed.

The <filter>, <filter_and> and <filter_or> tags accept the following set of common attributes:

name (optional) This attribute is used to create named filters, that can be reused elsewhere in actions or compound
filters through the id attribute. The name can take any form.

error (optional) This is the error message printed in the GPS console if the filter doesn’t match, and thus the action
cannot be executed. If you are composing filters through <filter_and> and <filter_or>, only the error message
of the top-level filter will be printed.

In addition, the <filter> has the following specific attributes:

id (optional)

If this attribute is specified, all other attributes are ignored. This is used to reference a named filter
previously defined. Here is for instance how you can make an action depend on a named filter:

<?xml version="1.0" ?>
<test_filter>
<filter name="Test filter" language="ada" />
<action name="Test action" >

<filter id="Test filter" />
<shell>pwd</shell>

</action>
</test_filter>

A number of filters are predefined by GPS itself.

Source editor This filter will only match if the currently selected window in GPS is an editor.

Explorer_Project_Node Matches when clicking on a project node in the Project View

Explorer_Directory_Node Matches when clicking on a directory node in the Project View

Explorer_File_Node Matches when clicking on a file node in the Project View

Explorer_Entity_Node Matches when clicking on an entity node in the Project View

File Matches when the current context contains a file (for instance the focus is on a source editor, or the
focus is on the Project view and the currently selected line contains file information).

language (optional) This attribute specifies the name of the language that must be associated with the current file to
match. For instance, if you specify ada, you must have an Ada file selected, or the action won’t execute. The
language for a file is found by GPS following several algorithms (file extensions, and via the naming scheme
defined in the project files).

shell_cmd (optional) This attribute specifies a shell command to execute. The output value of this command is used
to find whether the filter matches: if it returns “1” or “true”, the filter matches. In any other case, the filter fails.

Macro arguments (%f, %p, ...) are fully supported in the text of the command to execute.

shell_lang (optional) This attribute specifies in which language the shell command above is written. Its default value
indicates that the command is written using the GPS shell.

module (optional) This attribute specifies that the filter only matches if the current window was setup by this specific
GPS module. For instance, if you specify “Source_Editor”, this filter will only match when the active window
is a source editor.

The list of module names can be obtained by typing lsmod in the shell console at the bottom of the GPS window.

This attribute is mostly useful when creating new contextual menus.

16.5. Customizing through XML and Python files 171

GPS Documentation, Release 5.2.1

When several attributes are specified for a <filter> node (which is not possible with id), they must all match for the
action to be executed:

<?xml version="1.0" ?>
<!-- The following filter will only match if the currently selected

window is a text editor editing an Ada source file -->
<ada_editor>

<filter_and name="Source editor in Ada" >
<filter language="ada" />
<filter id="Source editor" />

</filter_and>

<!-- The following action will only be executed for such an editor -->

<action name="Test Ada action" >
<filter id="Source editor in Ada" />
<shell>pwd</shell>

</action>

<!-- An action with an anonymous filter. It will be executed if the
selected file is in Ada, even if the file was selected through
the project view -->

<action name="Test for Ada files" >
<filter language="ada" />
<shell>pwd</shell>

</action>
</ada_editor>

16.5.5 Adding new menus

These commands can be associated with menus, tool bar buttons and keys. All of these use similar syntax.

Binding a menu to an action is done through the <menu> and <submenu> tags.

The <menu> tag takes the following attributes:

action (mandatory) This attribute specifies which action to execute when the menu is selected by the user. If no
action by this name was defined, no new menu is added. The action name can start with a ‘/’, in which case it
represents the absolute path to a menu to execute instead.

This attribute can be omitted only when no title is specified for the menu to make it a separator (see below).

If a filter is associated with the action through the <filter> tag, then the menu will be greyed out when the filter
doesn’t match. As a result, users will not be able to click on it.

before (optional) It specifies the name of another menu item before which the new menu should be inserted. The
reference menu must have been created before, otherwise the new menu is inserted at the end. This attribute can
be used to control where precisely the new menu should be made visible.

after (optional) This attribute is similar to before, but has a lower priority. If it is specified, and there is no before
attribute, it specifies a reference menu after which the new menu should be inserted.

It should also have one XML child called <title> which specifies the label of the menu. This is really a path to a menu,
and thus you can define submenus by specifying something like “/Parent1/Parent2/Menu” in the title to automatically
create the parent menus if they don’t exist yet.

You can define the accelerator keys for your menus, using underscores in the titles. Thus, if you want an accelerator
on the first letter in a menu named File, set its title as _File.

172 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

The tag <submenu> accepts the following attributes:

before (optional) See description above, same as for <menu>

after (optional) See description above, same as for <menu>

It accepts several children, among <title> (which must be specified at most once), <submenu> (for nested menus),
and <menu>.

Since <submenu> doesn’t accept the action attribute, you should use <menu> for clickable items that should result in
an action, and <submenu> if you want to define several menus with the same path.

You can specify which menu the new item is added to in one of two ways:

• Specify a path in the title attribute of <menu>

• Put the <menu> as a child of a <submenu> node This requires slightly more typing, but it allows you to specify
the exact location, at each level, of the parent menu (before or after an existing menu).

For example, this adds an item named mymenu to the standard Edit menu:

<?xml version="1.0" ?>
<test>

<submenu>
<title>Edit</title>
<menu action="current file uses">

<title>mymenu</title>
</menu>

</submenu>
</test>

The following has exactly the same effect:

<?xml version="1.0" ?>
<test>

<menu action="current file uses">
<title>Edit/mymenu</title>

</menu>
</test>

The following adds a new item “stats” to the “unit testing” submenu in “my_tools”:

<?xml version="1.0" ?>
<test>

<menu action="execute my stats">
<title>/My_Tools/unit testing/stats</title>

</menu>
</test>

The previous syntax is shorter, but less flexible than the following, where we also force the My_Tools menu, if it
doesn’t exist yet, to appear after the File menu. This is not doable by using only <menu> tags. We also insert several
items in that new menu:

<?xml version="1.0" ?>
<test>

<submenu after="File">
<title>My_Tools</title>
<menu action="execute my stats">

<title>unit testing/stats</title>
</menu>
<menu action="execute my stats2">

<title>unit testing/stats2</title>

16.5. Customizing through XML and Python files 173

GPS Documentation, Release 5.2.1

</menu>
</submenu>

</test>

Adding an item with an empty title or no title at all inserts a menu separator. For instance, the following example will
insert a separator followed by a File/Custom menu:

<?xml version="1.0" ?>
<menus>

<action name="execute my stats" />
<submenu>

<title>File</title>
<menu><title/></menu>
<menu action="execute my stats">

<title>Custom</title>
</menu>

</submenu>
</menus>

16.5.6 Adding contextual menus

The actions can also be used to contribute new entries in the contextual menus everywhere in GPS. These menus are
displayed when the user presses the right mouse button, and should only show actions relevant to the current context.

Such contributions are done through the <contextual> tag, which takes the following attributes:

“action” (mandatory) Name of the action to execute, and must be defined elsewhere in one of the customization files.

If this attribute is set to an empty string, a separator will be inserted in the contextual menu instead. If you
specify a reference item with one of the “before” or “after” attribute, the separator will be visible only when the
reference item is visible.

“before” (optional, default=””) If it is specified, this attribute should be the name of another contextual, before which
the new menu should appear. The name of predefined contextual menus can be found by looking at the output
of “Contextual.list” in the shell console. The name of the contextual menus you define yourself is the value of
the <title> child.

There is no guarantee that the new menu will appear just before the referenced menu. In particular, it won’t be
the case if the new menu is created before the reference menu was created, or if another later contextual menu
indicates that it must be displayed before the same reference item.

“after” (optional, default=””) Same as “before”, except it indicates the new menu should appear after the reference
item.

If both “after” and “before” are specified, only the latter is taken into account.

It accepts one child tag, <Title> which specifies the name of the menu entry. If this child is not specified, the menu
entry will use the name of the action itself. The title is in fact the full path to the new menu entry. Therefore, you can
create submenus by using a title of the form “Parent1/Parent2/Menu”.

Special characters can be used in the title, and will be automatically expended based on the current context. These are
exactly the ones described in the section for macros arguments, Macro arguments.

The new contextual menu will only be shown if the filters associated with the action match the current context.

For instance, the following example inserts a new contextual menu which prints the name of the current file in the
GPS console. This contextual menu is only displayed in source editors. This contextual menu entry is followed by a
separator line, visible when the menu is visible:

174 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

<?xml version="1.0" ?>
<print>

<action name="print current file name" >
<filter module="Source_Editor" />
<shell>echo %f</shell>

</action>

<contextual action="print current file name" >
<Title>Print Current File Name</Title>

</contextual>
<contextual action="" after="Print Current File Name" />

</print>

16.5.7 Adding tool bar buttons

As an alternative to creating new menu items, you can create new buttons on the tool bar, with a similar syntax, by
using the <button> tag. As for the <menu> tag, it requires an action attribute which specifies what should be done
when the button is pressed. The button is not created if no such action was created.

Within this tag, the tag <pixmap> can be used to indicate the location of an image file (of the type jpeg, png, gif or
xpm) to be used as icon for the button. An empty <button> tag indicates a separator in the tool bar.

A title can also be specified with <title>. This will be visible only if the user choses to see both text and icons (or text
only) in the tool bar. This title also acts as a tooltip (popup help message) when the button is displayed as an icon only.

The following example defines a new button:

<?xml version="1.0" ?>
<stats>

<button action="execute my stats">
<title>stats</title>
<pixmap>/my_pixmaps/button.jpg</pixmap>

</button>
</stats>

The <button> tag allows you to create a simple button that the user can press to start an action. GPS also supports
another type of button, a combo box, from which the user can choose among a list of choices. Such a combo box can
be created with the <entry> tag.

This tag accepts the following arguments:

id (mandatory) This should be a unique id for this combo box, and will be used later on to refer it, in particular from
the scripting languages. It can be any string

label (default is “”) The text of a label to display on the left of the combo box. If this isn’t specified, no text will be
displayed

on-changed (default is “”) The name of a GPS action to execute whenever the user selects a new value in the combo
box. This action is called with two parameters, the unique id of the combo box and the newly selected text
respectively.

It also accepts any number of <choice> tags, each of which defines one of the values the user can choose from. These
tags accepts one optional attribute, “on-selected”, which is the name of a GPS action to call when that particular value
is selected:

<action name="animal_changed">
<shell>echo A new animal was selected in combo $1: animal is $2</shell>

</action>
<action name="gnu-selected">

16.5. Customizing through XML and Python files 175

GPS Documentation, Release 5.2.1

<shell>echo Congratulations on choosing a Gnu</shell>
</action>
<entry id="foo" label="Animal" on-changed="animal_changed">

<choice>Elephant</choice>
<choice on-selected="gnu-selected">Gnu</choice>

</entry>

A more convenient interface exists for Python, the GPS.Toolbar class, which gives you the same flexibility as above,
but also gives you dynamic control over the entry, and allows placement of buttons at arbitrary positions in the toolbar.
See the python documentation.

16.5.8 Binding actions to keys

All the actions defined above can be bound to specific key shortcuts through the <key> attribute. As usual, it requires
one <action> attribute to specify what to do when the key is pressed. The name of the action can start with a ‘/’ to
indicate that a menu should be executed instead of a user-defined action.

If the action is the empty string, then instead the key will no longer be bound to any action.

This tag doesn’t contain any child tag. Instead, its text contents specified the keyboard shortcut. The name of the key
can be prefixed by control-, alt-, shift- or any combination of these to specify the key modifiers to apply.

You can also define multiple key bindings similar to Emacs’s by separating them by a space. For instance, control-x
control-k means that the user should press control-x, followed by a control-k to activate the corresponding
action. This is only possible if the prefix key is not already bound to an action. If it is, you should first unbound it by
passing an empty action to <key>.

Use an empty string to describe the key binding if you wish to deactivate a preexisting binding. The second example
below deactivates the standard binding:

<?xml version="1.0" ?>
<keys>

<key action="expand alias">control-o</key>
<key action="Jump to matching delimiter" />

<!-- Bind a key to a menu -->
<key action="/Window/Close">control-x control-w</key>

</key>

Multiple actions can be bound to the same key binding. They will all be executed in turn, followed by any menu for
which this key is an accelerator.

When GPS processes a <key> tag, it does the following:

• Removes all actions bound to that key. This ensures that if you press the key, any action associated with it by
default in GPS or in some other XML file will no longer be executed, and only the last one will be executed.

• Adds the new key to the list of shortcuts that can execute the action. Any existing shortcut on the action is
preserved, and therefore there are multiple possible shortcuts for this action.

16.5.9 Preferences support in custom files

Creating new preferences

GPS has a number of predefined preferences to configure its behavior and its appearance. They are all customizable
through the Edit->Preferences menu.

176 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

However, you might wish to add your own kind of preferences for your extension modules. This can easily be
done through the usual GPS customization files. Preferences are different from project attributes (Defining project
attributes), in that the latter will vary depending on which project is loaded by the user, whereas preferences are
always set to the same value no matter what project is loaded.

Such preferences are created with the <preference> tag, which takes a number of attributes.

name (mandatory) This is the name of the preference, used when the preference is saved by GPS in the
$HOME/.gps/preferences file, and to query the value of a preference interactively through the
GPS.Preference class in the GPS shell or python. There are a few limitation to the form of these names: they
cannot contain space or underscore characters. You should replace the latter with minus signs for instance.

page (optional, default is “General”) The name of the page in the preferences editor where the preference can be
edited. If this is the name of a non-existing page, GPS will automatically create it. If this is the empty string
(“”), the preference will not be editable interactively. This could be used to save a value from one session of
GPS to the next, without allowing the user to alter it.

Subpages are references by separating pages name with colons (‘:’).

default (optional, default depends on the type of the preference) The default value of the preference, when not set
by the user. This is 0 for integer preferences, the empty string for string preferences, True for boolean values,
and the first possible choice for choice preferences.

tip (optional, default is “”) This is the text of the tooltip that appears in the preferences editor dialog.

label (mandatory) This is the name of the preference as it appears in the preferences editor dialog

type (mandatory) This is the type of the preference, and should be one of:

“boolean” The preference can be True or False.

“integer” The preference is an integer. Two optional attributes can be specified for <preference>, “minimum”
and “maximum”, which define the range of valid values for that integer. Default values are 0 and 10
respectively.

“string” The preference is a string, which might contain any value

“color” The preference is a color name, in the format of a named color such as “yellow”, or a string similar to
“#RRGGBB”, where RR is the red component, GG is the green component, and BB is the blue component

“font” The preference is a font

“choices” The preference is a string, whose value is chosen among a static list of possible values. Each possible
value is defined in a <choice> child of the <preference> node.

Here is an example that defines a few new preferences:

<?xml version="1.0"?>
<custom>

<preference name="my-int"
page="Editor"
label="My Integer"
default="30"
minimum="20"
maximum="35"
page="Manu"
type="integer" />

<preference name="my-enum"
page="Editor:Fonts & Colors"
label="My Enum"
default="1"
type="choices" >

16.5. Customizing through XML and Python files 177

GPS Documentation, Release 5.2.1

<choice>Choice1</choice>
<choice>Choice2</choice> <!-- The default choice -->
<choice>Choice3</choice>

</preference>
</custom>

The values of the above preferences can be queries in the scripting languages:

• GPS shell:

Preference "my-enum"
Preference.get %1

• Python:

val = GPS.Preference ("my-enum").get ()
val2 = GPS.Preference ("my-int").get ()

Setting preferences values

You can force specific default values for the preferences in the customization files through the <pref> tag. This is the
same tag that is used by GPS itself when it saves the preferences edited through the preferences dialog.

This tag requires on attribute:

name This is the name of the preference of which you are setting a default value. Such names are predefined when
the preference is registered in GPS, and can be found by looking at the $HOME/.gps/preferences file for
each user, or by looking at one of the predefined GPS themes.

It accepts no child tag, but the value of the <pref> tag defines the default value of the preference, which will be used
unless the user has overridden it in his own preferences file.

Any setting that you have defined in the customization files will be overridden by the user’s preferences file itself,
unless the user was still using the default value of that preference.

This <pref> tag is mostly intended for use through the themes (Creating themes).

16.5.10 Creating themes

You can create your own themes and share them between users. You can then selectively chose which themes they
want to activate through the preferences dialog (GPS Themes).

Creating new themes is done in the customization files through the <theme> tag.

This tag accepts a number of attributes:

name (mandatory) This is the name of the theme, as it will appear in the preferences dialog

description (optional) This text should explain what the text does. It appears in the preferences dialog when the user
selects that theme.

category (optional, default is General) This is the name of the category in which the theme should be presented in
the preferences dialog. Categories are currently only used to organize themes graphically. New categories are
created automatically if you chose one that doesn’t exist yet.

This tag accepts any other customization tag that can be put in the customization files. This includes setting preferences
(<pref>, defining key bindings (<key), defining menus (<menu>), ...

178 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

If the same theme is defined in multiple locations (multiple times in the same customization file or in different files),
their effects will be cumulated. The first definition of the theme seen by GPS will set the description and category for
this theme.

All the children tags of the theme will be executed when the theme is activated through the preferences dialog. Al-
though there is no strict ordering in which order the children will be executed, the global order is the same as for
the customization files themselves: first the predefined themes of GPS, then the ones defined in customization files
found through the GPS_CUSTOM_PATH directories, and finally the ones defined in files found in the user’s own GPS
directory:

<?xml version="1.0" ?>
<my-plug-in>

<theme name="my theme" description="Create a new menu">
<menu action="my action"><title>/Edit/My Theme Menu</title></menu>

</theme>
</my-plug-in>

16.5.11 Defining new search patterns

The search dialog contains a number of predefined search patterns for Ada, C and C++. These are generally complex
regular expressions, presented in the dialog with a more descriptive name. This includes for instance “Ada assign-
ment”, which will match all such assignments.

You can define your own search patterns in the customization files. This is done through the <vsearch-pattern> tag.
This tag can have a number of children tags:

<name> This tag is the string that is displayed in the search dialog to represent the new pattern. This is the text that
the user will effectively see, instead of the often hard to understand regular expression.

<regexp> This tag provides the regular expression to use when the pattern has been selected by the user. Be careful
that you must protect reserved XML characters such as ‘<’ and replace them by their equivalent expansion
(“<” for this character).

This accepts one optional attribute, named case-sensitive. This attribute accepts one of two possible values
(“true” or “false”) which indicates whether the search should distinguish lower case and upper case letters. Its
default value is “false”.

<string> This tag provides a constant string that should be searched. Only one of <regexp> and <string> should be
provided. If both exists, the first <regexp> child found is used. If there is none, the first <string> child is used.

The tag accepts the same optional attribute case-sensitive as above

Here is a small example on how the “Ada assignment” pattern was defined:

<?xml version="1.0" ?>
<search>

<vsearch-pattern>
<name>Ada: assignment</name>
<regexp case-sensitive="false">\\b(\\w+)\\s*:=</regexp>

</vsearch-pattern>
</search>

16.5.12 Adding support for new languages

You can define new languages in a custom file by using the Language tag. Defining languages gives GPS the ability to
highlight the syntax of a file, explore a file (using e.g. the project view), find files associated with a given language, ...

16.5. Customizing through XML and Python files 179

GPS Documentation, Release 5.2.1

As described previously for menu items, any file in the plug-ins directory will be loaded by GPS at start up.
Therefore, you can either define new languages in a separate file, or reuse a file where you already define actions and
menus.

The following tags are available in a Language section:

Name A short string describing the name of the language.

Parent If set to the name of an existing language (e.g. Ada, C++) or another custom language, this language will
inherit by default all its properties from this language. Any field explicitly defined for this language will override
the inherited settings.

Spec_Suffix A string describing the suffix of spec/definition files for this language. If the language does not have the
notion of spec or definition file, you can ignore this value, and consider using the Extension tag instead. This
tag must be unique.

Body_Suffix A string describing the suffix of body/implementation files for this language. This tag works in coordi-
nation with the Spec_Suffix, so that the user can choose to easily go from one file to the other. This tag must be
unique.

LI_Suffix A string describing the suffix of library information files for this language. If the language does not support
library information files, you can omit this value.

Extension A string describing one of the valid extensions for this language. There can be several such children. The
extension must start with a ‘.’ character

Keywords A V7 style regular expression for recognizing and highlighting keywords. Multiple Keywords tags can be
specified, and will be concatenated into a single regular expression. If the regular expression needs to match
characters other than letters and underscore, you must also edit the Wordchars node. If a parent language has
been specified for the current language definition it is possible to append to the parent Keywords by setting the
mode attribute to append, the default value is override meaning that the keywords definition will replace the
parent’s one.

The full grammar of the regular expression can be found in the spec of the file g-regpat.ads in the GNAT
run time.

Wordchars Most languages have keywords that only contain letters, digits and underscore characters. However, if
you want to also include other special characters (for instance ‘<’ and ‘>’ in XML), you need to use this tag to
let GPS know. The value of this node is a string made of all the special word characters. You do not need to
include letters, digits or underscores.

Engine The name of a dynamic library providing one or several of the functions described below.

The name can be a full pathname, or a short name. E.g. under most Unix systems if you specify custom, GPS
will look for libcustom.so in the LD_LIBRARY_PATH run time search path. You can also specify explicitly e.g.
libcustom.so or /usr/lib/libcustom.so.

For each of the following five items, GPS will look for the corresponding symbol in Engine and if found, will
call this symbol when needed. Otherwise, it will default to the static behavior, as defined by the other language-
related items describing a language.

You will find the required specification for the C and Ada languages to implement the follow-
ing functions in the directory <prefix>/share/examples/gps/language of your GPS instal-
lation. language_custom.ads is the Ada spec file; language_custom.h is the C spec file;
gpr_custom.ad? are example files showing a possible Ada implementation of the function Comment_Line
for the GPS project files (.gpr files), or any other Ada-like language; gprcustom.c is the C version of
gpr_custom.adb.

Comment_Line Name of a symbol in the specified shared library corresponding to a function that will comment or
uncomment a line (used to implement the menu Edit->Un/Comment Lines).

180 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Parse_Constructs Name of a symbol in the specified shared library corresponding to a function that will parse con-
structs of a given buffer.

This procedure is used by GPS to implement several capabilities such as listing constructs in the project view,
highlighting the current block of code, going to the next or previous procedure, ...

Format_Buffer Name of a symbol in the specified shared library corresponding to a function that will indent and
format a given buffer.

This procedure is used to implement the auto indentation when hitting the enter key, or when using the format
key on the current selection or the current line.

Parse_Entities Name of a symbol in the specified shared library corresponding to a function that will parse entities
(e.g. comments, keywords, ...) of a given buffer. This procedure is used to highlight the syntax of a file, and
overrides the Context node described below.

Context Describes the context used to highlight the syntax of a file.

Comment_Start A string defining the beginning of a multiple-line comment.

Comment_End A string defining the end of a multiple-line comment.

New_Line_Comment_Start A regular expression defining the beginning of a single line comment (ended at
the next end of line). This regular expression may contain multiple possible line starts, such as ;|# for
comments starting after a semicolon or after the hash sign. If a parent language has been specified for
the current language definition it is possible to append to the parent New_Line_Comment_Start by setting
the mode attribute to append, the default value is override meaning that the New_Line_Comment_Start
definition will replace the parent’s one.

String_Delimiter A character defining the string delimiter.

Quote_Character A character defining the quote character, used for e.g. canceling the meaning of a string
delimiter (\ in C).

Constant_Character A character defining the beginning of a character literal.

Can_Indent A boolean indicating whether indentation should be enabled for this language. The indentation
mechanism used will be the same for all languages: the number of spaces at the beginning of the current
line is used when indenting the next line.

Syntax_Highlighting A boolean indicating whether the syntax should be highlighted/colorized.

Case_Sensitive A boolean indicating whether the language (and in particular the identifiers and keywords) is
case sensitive.

Categories Optional node to describe the categories supported by the project view for the current language. This node
contains a list of Category nodes, each describing the characteristics of a given category, with the following
nodes:

Name Name of the category, which can be either one of the following predefined categories: package,
namespace, procedure, function, task, method, constructor, destructor, protected, entry, class, structure,
union, type, subtype, variable, local_variable, representation_clause, with, use, include, loop_statement,
case_statement, if_statement, select_statement, accept_statement, declare_block, simple_block, excep-
tion_handler, or any arbitrary name, which will create a new category.

Pattern Regular expression used to detect a language category. As for the Keywords node, multiple Pattern tags
can be specified and will be concatenated into a single regular expression.

Index Index in the pattern used to extract the name of the entity contained in this category.

End_Index Optional attribute that indicates the index in the pattern used to start the next search. Default value
is the end of the pattern.

16.5. Customizing through XML and Python files 181

GPS Documentation, Release 5.2.1

Icon Name of a stock icon that should be used for that category (Adding stock icons). This attribute is currently
ignored, and is reserved for future uses.

Project_Field This tag describes the tools that are used to support this language. The name of these tools is stored
in the project files, and therefore only a limited number of tools can be specified. Note that this tag is currently
only used by the project properties and wizard, and is not taken into account by other components.

This node has two attributes:

Name Name of the attribute in the project file. Currently, only “compiler_command” can be specified.

Index If present, this attributes indicates the index to use for the attribute in the project file. The line defining
this attribute would therefore look like:

for Name ("Index") use "value";

e.g:

for Compiler_Command ("my_language") use "my_compiler";

The value of the index should be either the empty string or the name of the language.

The value of this tag is the string to use in the project properties editor when editing this project field.

Here is an example of a possible language definition for the GPS project files:

<?xml version="1.0"?>
<Custom>

<Language>
<Name>Project File</Name>
<Spec_Suffix>.gpr</Spec_Suffix>
<Keywords>^(case|e(nd|xte(nds|rnal))|for|is|</Keywords>
<Keywords>limited|null|others|</Keywords>
<Keywords>p(ackage|roject)|renames|type|use|w(hen|ith))\\b</Keywords>

<Context>
<New_Line_Comment_Start>--</New_Line_Comment_Start>
<String_Delimiter>"</String_Delimiter>
<Constant_Character>'</Constant_Character>
<Can_Indent>True</Can_Indent>
<Syntax_Highlighting>True</Syntax_Highlighting>
<Case_Sensitive>False</Case_Sensitive>

</Context>

<Categories>
<Category>

<Name>package</Name>
<Pattern>^[\\t]*package[\\t]+((\\w|\\.)+)</Pattern>
<Index>1</Index>

</Category>
<Category>

<Name>type</Name>
<Pattern>^[\\t]*type[\\t]+(\\w+)</Pattern>
<Index>1</Index>

</Category>
</Categories>

<Engine>gpr</Engine>
<Comment_Line>gpr_comment_line</Comment_Line>

</Language>
</Custom>

182 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

16.5.13 Defining text aliases

GPS provides a mechanism known as aliases. These are defined through the menu Edit->Aliases.

Each alias has a name, which is generally a short string of characters. When you type them in any textual entry in GPS
(generally a source editor, but also entry fields for instance in the file selector), and then press the special activation
key (by default control-o, controlled by a preference), this name is removed from the source editor, and replaced
by the text you have associated with it.

Alias names may be composed of any character except newlines, but must start with a letter. GPS will jump to the start
of each word before the current cursor position, and if the characters between this word start and the cursor position is
an alias name (the comparison is case insensitive), this alias is expanded.

The alias editor is divided into three main parts: on the left side, the list of currently defined aliases is shown. Clicking
on any of them will display the replacement text for this alias. If you click again the selected alias, GPS displays a
text entry which you can use to rename an existing alias. Alias names must start with a letter. A check button at the
bottom selects whether the read-only aliases (i.e. system-wide aliases) should be displayed.

The second part is the expansion text for the alias, at the bottom right corner. This replacement text can used multiple
lines, and contain some special text that act as a special replacement. These special texts are highlighted in a different
color. You can insert these special entities either by typing them, or by right-clicking in the editor, and select the entity
in the contextual menu.

The following special entities are currently defined:

%_ This is the position where the cursor should be put once the replacement text has been inserted in the editor.

%(name) This is the name of a parameter. name can be any string you want, excluding closing parenthesis. See below
for more information on parameters.

%D This is the current date, in ISO format. The year is displayed first, then the month and the day

%H This is the current time (hour, minutes and seconds)

16.5. Customizing through XML and Python files 183

GPS Documentation, Release 5.2.1

%l If the expansion of the alias is done in a source editor, this is the line on which the cursor is when pressing
control-o.

%c This is similar to %l, except it returns the current column.

%f If the expansion is done in a source editor, this is the name of the current file (its base name only, this doesn’t
include the directory)

%d If the expansion is done in a source editor, this is the directory in which the current file is

%p If the expansion is done in a source editor, this is the base name of the project file to which the file belongs.

%P If the expansion is done in a source editor, this is the full path name to the project file (directory and base name).

%O Used for recursive aliases expansion. This special character will expand the text seen before it in the current
alias, after replacement of the parameters and possibly other recursive expansions. This is similar to pressing
control-o (or any key you have defined for alias expansion) in the expanded form of the alias.

%% Inserts a percent sign as part of the expanded text

You cannot expand an alias recursively when already expanding that alias. For instance, if the alias expansion
for procedure contains procedure%O, the inner procedure will not be expanded.

The indentation as set in the expansion of the alias is preserved when the alias is expanded. All the lines will be
indented the same amount to the right as the alias name. You can override this default behavior by selecting the check
button Indent source editor after expansion. In this case, GPS will replace the name of the alias by its expansion,
and then automatically recompute the position of each line with its internal indentation engine, as if the text had been
inserted manually.

The third part of the aliases editor, at the top right corner, lists the parameters for the currently selected alias. Any time
you insert a %(name) string in the expansion text, GPS automatically detects there is a new parameter reference (or an
old reference has changed name or was removed); the list of parameters is automatically updated to show the current
list.

Each parameters has three attributes:

name This is the name you use in the expansion text of the alias in the %(name) special entity.

Environment This specifies whether the default value of the parameter comes from the list of environment variables
set before GPS was started.

default value Instead of getting the default value from the environment variable, you can also specify a fixed text.
Clicking on the initial value of the currently selected variable opens a text entry which you can use to edit this
default value.

When an alias that contains parameters is expanded, GPS will first display a dialog to ask for the value of the parame-
ters. You can interactively enter this value, which replaces all the %(name) entities in the expansion text.

16.5.14 Aliases files

The customization files described earlier can also contain aliases definition. This can be used for instance to create
project or system wide aliases. All the customization files will be parsed to look for aliases definition.

All these customization files are considered as read-only by GPS, and therefore cannot be edited through the graphical
interface. It is possible to override some of the aliases in your own custom files.

There is one specific files, which must contain only aliases definition. This is the file $HOME/.gps/aliases.
Whenever you edit aliases graphically, or create new ones, they are stored in this file, which is the only one that GPS
will ever modify automatically.

The system files are loaded first, and aliases defined there can be overridden by the user-defined file.

184 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

These files are standard XML customization files. The specific XML tag to use is <alias>, one per new alias. The
following example contains a standalone customization file, but you might wish to merge the <alias> tag in any other
customization file.

The following tags are available:

alias This indicates the start of a new alias. It has one mandatory attribute, name, which the text to type in the source
editor before pressing control-o. It has one optional attribute, indent, which, if set to true, indicate that GPS
should recompute the indentation of the newly inserted paragraph after the expansion.

param These are children of the alias node. There is one per parameter of the alias. They have one mandatory
attribute, name, which is the name to type between %(name) in the alias expansion text.

They have one optional attribute, environment, which indicates the default value must be read from the environ-
ment variables if it is set to true.

These tags contain text, which is the default value for the parameter.

text This is a child of the alias node, whose value is the replacement text for the alias.

Here is an example of an alias file:

<?xml version="1.0"?>
<Aliases>

<alias name="proc" >
<param name="p" >Proc1</param>
<param environment="true" name="env" />
<text>procedure %(p) is

%(env)%_
end %(p);</text>
</alias>

</Aliases>

16.5.15 Defining project attributes

The project files are required by GPS, and are used to store various pieces of information related to the current set
of source files. This includes how to find the source files, how the files should be compiled, or manipulated through
various tools,

However, the default set of attributes that are usable in a project file is limited to the attributes needed by the tool
packaged with GPS or GNAT.

If you are delivering your own tools, you might want to store similar information in the project files themselves, since
these are a very convenient place to associate some specific settings with a given set of source files.

GPS lets manipulate the contents of projects through XML customization files and script commands. You can therefore
add you own typed attributes into the projects, so that they are saved automatically when the user saves the project,
and reloaded automatically the next time GPS is started.

Declaring the new attributes

New project attributes can be declared in two ways: either using the advanced XML tags below, or using the <tool>
tag (Defining tool switches).

The customization files support the <project_attribute> tag, which is used to declare all the new attributes that GPS
should expect in a project. Attributes that have not been declared explictly will not be accessible through the GPS
scripting languagues, and will generate warnings in the Messages window.

16.5. Customizing through XML and Python files 185

GPS Documentation, Release 5.2.1

Project attributes are typed: they can either have a single value, or have a set of such values (a list). The values can in
turn be a free-form string, a file name, a directory name, or a value extracted from a list of preset values.

Attributes that have been declared in these customization files will also be graphically editable through the project
properties dialog, or the project wizard. Therefore, you should specify when an attribute is defined how it should be
presented to the GPS user.

The <project_attribute> tag accepts the following attributes:

• package (a string, default value: “”)

This is the package in the project file in which the attribute is stored. Common practice suggests that one such
package should be used for each tool. These packages provide namespaces, so that attributes with the same
name, but for different tools, do not conflict with each other.

• name (a string, mandatory)

This is the name of the attribute. This should be a string with no space, and that represents a valid Ada identifier
(typically, it should start with a letter and be followed by a set of letters, digits or underscore characters). This
is an internal name that is used when saving the attribute in a project file.

• editor_page (a string, default value: “General”)

This is the name of the page in the Project Properties editor dialog in which the attribute is presented. If no
such page already exists, a new one will be created as needed. If the page already exists, the attribute will be
appended at its bottom.

• editor_section (a string, default value: “”)

This is the name of the section, inside editor page, in which the attribute is displayed. These sections are
surrounded by frames, the title of which is given by the editor_section attribute. If this attribute is not specified,
the attribute is put in an untitled section.

• label (a string, default value: the name of the attribute)

If this attribute is set to a value other than the empty string “”, a textual label is displayed to the left of the
attribute in the graphical editor. This should be used to identify the attribute. However, it can be left to the
empty string if the attribute is in a named section of its own, since the title of the section might be a good
enough indication.

• description (a string, default value: “”)

This is the help message that describes the role of the attribute. It is displayed in a tooltip if the user leaves the
mouse on top of the attribute for a while.

• list (a boolean, default value: “false”)

If this is set to “true”, the project attribute will in fact contains a list of values, as opposed to a single value.
This is used for instance for the list of source directories in standard projects.

• ordered (a boolean, default value: “false”)

This is only relevant if the project attribute contains a list of values. This indicates whether the order of the values
is relevant. In most cases, it will not matter. However, for instance, the order of source directories matters, since
this also indicates where the source files will be searched, stopping at the first match.

• omit_if_default (a boolean, default value: “true”)

This indicates whether the project attribute should be set explicitly in the project if the user has left it to its
default value. This can be used to keep the project files a simple as possible, if all the tools that will use this
project attribute know about the default value. If this isn’t the case, set omit_if_default to “false” to force the
generation of the project attribute.

186 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

• base_name_only (a boolean, default value: “false”)

If the attribute contains a file name or a directory name, this indicates whether the full path should be stored, or
only the base name. In most cases, the full path should be used. However, since GPS automatically looks for
source files in the list of directories, for instance, the list of source files should only contain base names. This
also increases the portability of project files.

• case_sensitive_index (a string (“true”, “false” or “file”), default: “false”)

This XML attribute is only relevant for project attributes that are indexed on another one (see below for more
information on indexed attributes). It indicates whether two indexes that differ only by their casing should be
considered the same. For instance, if the index is the name of one of the languages supported by GPS, the index
is case insensitive since “Ada” is the same as “C”.

As a special case, the value “file” can be passed to indicate that the case sensitivity is the same as on the
filesystem of the local host. This should be used when the index is the name of a file.

• hide_in (a string, default value: “”)

This XML attribute defines the various context in which this attribute should not be editable graphically. Cur-
rently, GPS provides three such contexts (“wizard”, “library_wizard” and “properties”, corresponding to the
project creation wizards and the project properties editor). If any of those context is specified in hide_in, then
the widget to edit this attribute will not be shown. The goal is to keep the graphical interface simple.

• disable_if_not_set (a boolean, default value: “false”)

If this attribute is set to “true”, the editor for this attribute will be greyed out if the attribute is not explicitly set
in the project. In most cases, this is not needed, since the default value of the attribute can be used to leave the
editor active at all time. However, when the value of the attribute is automatically computed depending on other
attributes, the default value cannot be easily specified in the XML file, and in this case it might be easier to grey
out the editor. An extra check box is displayed next to the attribute so that the user can choose to activate the
editor and add the attribute to the project.

• disable (a space-separated list of attribute names, default: “”)

This is a list of attribute whose editor should be greyed out if the current attribute is specified. This only works if
both the current attribute and the referenced attributes have their disable_if_not_set attribute set to “true”. This
can be used to have mutually exclusive attributes present in the editor

Declaring the type of the new attributes

The type of the project attribute is specified through one or several child tags of <project_attribute>. The following
tags are recognized.

• <string>

This tag indicates that the attribute is made of one (or more if it is a list) strings. This tag accepts the following
XML attributes:

– default (a string, default value: “”)

This gives the default value to be used for the string (and therefore the project attribute), in case the user
hasn’t overridden it.

If the attribute’s type is a file or a directory, the default value will be normalized (ie an absolute path will
be generated from it, based on the project’s location, where ”.” will represent the project’s directory). As
a special case, if default is surrounded by parenthesis, no normalization takes place, so that you can later
on test whether the user is still using the default value or not).

16.5. Customizing through XML and Python files 187

GPS Documentation, Release 5.2.1

A special case if when default is set to “project source files”. In this case, this is automatically replaced by
the known list of source files for the project. This doesn’t work from the project wizard, since the list of
source files hasn’t been computed at that stage.

– type (one of “” (default), “file”, “directory” or “unit”)

This indicates what the string represents. In the first case, any value can be used. In the second case, it
should represent a file name, although no check is done to make sure the file actually exists on the disk.
But GPS will be able to do some special marshalling with the file name. The third case indicates that GPS
should expect a directory. The fourth case indicates the GPS should expect the name of one of the project’s
units.

– filter (one of “none”, “project”, “extending_project”)

This attribute is ignored for all types except “file”. In this case, it further specifies what kind of files can
be used in this attribute. If the filter is “none”, then any file anywhere on the system is valid. If the filter
is “project”, then only files from the selected project can be specified. If the filter is “extended_project”,
then only the files from the project extended by the current project can be specified. The attribute will not
be shown if the current project is not an extending project.

– allow_empty (one of “True” or “False, default “True”)

This attribute indicates whether the value for this attribute can be an empty string. If not, the user must
specify a value or an error message will be displayed in the project properties editor and project wizard.

• <choice>

This tag can be repeated several times. It indicates one of the valid values for the attribute, and can be used to
provide a static list of such values. If it is combined with a <string> tag, this indicates that the attribute can
be any string, although a set of possible values is provided to the user for ease of use. This tag accepts one
optional attribute, “default”, which is a boolean. It indicates whether this value is the default to use for the
project attribute.

If several <choice> tags are used, it is possible that several of them are part of the default value if the project
attribute is a list, as opposed to a single value.

• <shell>

This tag is a GPS scripting command to execute to get a list of valid values for the attribute. The command
should return a list. As for the <choice> tag, the <shell> tag can be combined with a <string> tag to indicate
that the list of values returned by the scripting command is only a set of possible values, but that the project
attribute can in fact take any value.

The <shell> tag accepts two attributes:

– lang (a string, default value: “shell”)

The scripting language in which the command is written. Currently, the only other possible value is
“python”.

– default (a string, default value: “”)

The default value that the project attribute takes if the user hasn’t overridden it.

In some cases, the type of the project attribute, or at least its default value, depends on what the attribute applies to.
The project file support this in the form of indexed project attribute. This is for instance used to specify what should
be the name of the executable generated when compiling each of the main files in the project (ie the executable name
for gps.adb should be gps.exe, the one for main.c should be myapp.exe, and so on).

Such attributes can also be declared through XML files. In such cases, the <project_attribute> tag should have one
<index> child, and zero or more <specialized_index> children. Each of these two tags in turn take one of the already
mentioned <string>, <choice> or <shell> tag.

188 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

The <index> tag indicates what other project attribute is used to index the current one. In the example given above for
the executable names, the index is the attribute that contains the list of main files for the project.

It accepts the following XML attributes:

• attribute (a string, mandatory)

The name of the other attribute. This other attribute must be declared elsewhere in the customization files, and
must be a list of values, not a single value.

• package (a string, default value: “”)

The package in which the index project attribute is defined. This is used to uniquely identify homonym attributes.

The <specialized_index> is used to override the default type of the attribute for specific values of the index. For
instance, the project files contains an attribute that specify what the name of the compiler is for each language. It is
indexed on the project attribute that list the languages used for the source files of the project. Its default value depends
on the language (“gnatmake” for Ada, “gcc” for C, and so on). This attribute accepts requires one XML attribute:

• value (a string, mandatory)

This is the value of the attribute for which the type is overriden.

Note that almost all the standard project attributes are defined through an XML file, projects.xml, which is part
of the GPS installation. Check this file to get advanced examples on how to declare project attributes.

Examples

The following example declares three attributes, with a single string as their value. This string represents a file or
a directory in the last two cases. You can simply copy this into a .xml file in your $HOME/.gps/plug-ins
directory, as usual:

<?xml version="1.0"?>
<custom>

<project_attribute
name="Single1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any string">

<string default="Default value" />
</project_attribute>

<project_attribute
name="File1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any file" >

<string type="file" default="/my/file" />
</project_attribute>

<project_attribute
name="Directory1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Any directory" >

16.5. Customizing through XML and Python files 189

GPS Documentation, Release 5.2.1

<string type="directory" default="/my/directory/" />
</project_attribute>

</custom>

The following example declares an attribute whose value is a string. However, a list of predefined possible values is
also provided, as an help for interactive edition for the user. If the <string> tag wasn’t given, the attribute’s value
would have two be one of the three possible choices:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Static2"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Choice from static list (or any string)" >

<choice>Choice1</choice>
<choice default="true" >Choice2</choice>
<choice>Choice3</choice>
<string />

</project_attribute>
</custom>

The following example declares an attribute whose value is one of the languages currently supported by GPS. Since
this list of languages is only know when GPS is executed, a script command is used to query this list:

<?xml version="1.0" ?>
<custom>
<project_attribute

name="Dynamic1"
package="Test"
editor_page="Tests single"
editor_section="Single"
description="Choice from dynamic list" >

<shell default="C" >supported_languages</shell>
</project_attribute>

</custom>

The following example declares an attribute whose value is a set of file names. The order of files in this list matters to
the tools that are using this project attribute:

<?xml version="1.0" ?>
<custom>
<project_attribute

name="File_List1"
package="Test"
editor_page="Tests list"
editor_section="Lists"
list="true"
ordered="true"
description="List of any file" >

<string type="file" default="Default file" />
</project_attribute>

</custom>

The following example declares an attribute whose value is a set of predefined possible values. By default, two such

190 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

values are selected, unless the user overrides this default setting:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Static_List1"
package="Test"
editor_page="Tests list"
editor_section="Lists"
list="true"
description="Any set of values from a static list" >

<choice>Choice1</choice>
<choice default="true">Choice2</choice>
<choice default="true">Choice3</choice>

</project_attribute>
</custom>

The following example declares an attribute whose value is a string. However, the value is specific to each language
(this could for instance be used for the name of the compiler to use for a given language). This is an indexed project
attribute. It has two default values, one for Ada, one for C. All other languages have no default value:

<?xml version="1.0" ?>
<custom>

<project_attribute
name="Compiler_Name"
package="Test"
editor_page="Tests indexed"
editor_section="Single"
<index attribute="languages" package="">

<string default="" />
</index>
<specialized_index value="Ada" >

<string default="gnatmake" />
</specialized_index>
<specialized_index value="C" >

<string default="gcc" />
</specialized_index>

</project_attribute>
</custom>

Accessing the project attributes

The new attributes that were defined are accessible from the GPS scripting languages, like all the standard attributes,
Querying project switches.

You can for instance access the Compiler_Name attribute we created above with a python command similar to:

GPS.Project.root().get_attribute_as_string ("Compiler_Name", "Test", "Ada")

You can also access the list of main files for the project, for instance, by calling:

GPS.Project.root().get_attribute_as_list ("main")

16.5. Customizing through XML and Python files 191

GPS Documentation, Release 5.2.1

16.5.16 Adding casing exceptions

A set of case exceptions can be declared in this file. Each case exception is put inside the tag <word> or <substring>.
These exceptions are used by GPS to set identifiers or keywords case when editing case insensitive languages (except
if corresponding case is set to Unchanged). The Preferences Dialog:

<?xml version="1.0" ?>
<exceptions>

<case_exceptions>
<word>GNAT</word>
<word>OS_Lib</word>
<substring>IO</substring>

</case_exceptions>
</exceptions>

16.5.17 Adding documentation

New documentation can be added in GPS in various ways. This is useful if you want to point to your own project
documentation for instance.

The first possibility is to create a new menu, through a <menu> tag in an XML file, associated with an action that
either spawn an external web browser or calls the internal GPS.Help.browse() shell command.

However, this will not show the documentation in the Help->Contents menu, which you also might want to do.

To have both results, you should use the <documentation_file> tag in an XML file. These tags are generally found in
the gps_index.xml files, as documented in Adding New Help Files, but you can in fact add them in any of your
customization files.

The documentation files you display can contain the usual type of html links. In addition, GPS will treat specially links
starting with ‘%’, and consider them as script commands to execute instead of file to display. The following example
show how to insert a link that will in effect open a file in GPS when clicked by the user:

Open runtime file

The first word after ‘%’ is the name of the language, and the command to execute is found after the ‘:’ character.

The <documentation_file> accepts a number of child nodes:

name This is the name of the file. It can be either an absolute file name, or a file name relative to one of the directories
in GPS_DOC_PATH. If this child is omitted, you must specify a <shell> child.

This name can contain a reference to a specific anchor in the html file, using the standard HTML syntax:

<name>file#anchor</name>

shell This child specifies the name of a shell command to execute to get the name of the HTML file. This command
can for instance create the HTML file dynamically, or download it locally using some special mechanism. This
child accepts one attribute, “lang”, which is the name of the language in which the command is written

descr This is the description for this help file. It appears in a tool tip for the menu item.

category This is used in the Help->Contents menu to organize all the documentation files.

menu This is the full path to the menu. It behaves like a UNIX path, except it reference the various menus, starting
from the menu bar itself. The first character of this path must be “/”. The last part of the path is the name of the
new menu item. If not set, no menu is displayed for this file, although it will still appear in the Help->Contents
menu

The <menu> child tag accepts two attributes.

192 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

before (optional, default=””) The name of the menu before which the new entry should be inserted. If the
new menu is inserted in some submenus, this tag controls the deeper nesting. Parent menus are created as
needed, but if you wish to control their specific order, you should create them first with a <menu> tag.

after (optional, default=””) The name of the menu after which the new entry should be inserted.

The following example shows how to create a new entry “item” in the Help menu, that will display file.html. The
latter is searched in the GPS_DOC_PATH list of directories:

<?xml version="1.0"?>
<index>

<documentation_file>
<name>file.html</name>
<descr>Tooltip text</descr>
<category>name</category>
<menu>/Help/item</menu>

</documentation_file>
</index>

As mentioned above, HTML files are looked for through the GPS_DOC_PATH environment variable. However, you
can also use the <doc_path> XML node to defined additional directories to be searched.

Such a directory is relative to the installation directory of GPS:

<?xml version="1.0"?>
<GPS>

<doc_path>doc/application/</doc_path>
</GPS>

will add the directory <prefix>/doc/application to the search path for the documentation.

Such a directory can also be added through Python, as in:

GPS.HTML.add_doc_directory (’doc/application’)

16.5.18 Adding stock icons

XML files can be used to define ‘stock icons’. Stock icons are pictures that are identified by their label, and which are
used through GPS in various places, such as buttons, menus, toolbars, and so on.

The stock icons must be declared using the tag <icon>, within the global tag <stock>. The attribute id indicates the
label used to identify the stock icon, and the attribute file points to the file which contains the actual picture, either in
absolute format, or relative to the directory which contains the XML file.

If the stock icon is to be used in a toolbar, use the attribute label to specify the text to display in the toolbar, under the
button, when the toolbar is configured to show text.

For icons that are intended to be displayed at multiple sizes, you can specify multiple files corresponding to these
multiple sizes. This is done by adding children to the main icon node, with the tag alternate, containing a file attribute
and a size attribute which correspond to the size for which this alternate source should be used.

Possible sizes are:

1 Menu item (ideal size: 16x16 pixels)

2 Button in a small toolbar (ideal size: 18x18 pixels)

3 Button in a large toolbar (ideal size: 24x24 pixels)

4 Image for a standard button (ideal size: 20x20 pixels)

5 Image used during drag-and-drop operation (ideal size: 32x32 pixels)

16.5. Customizing through XML and Python files 193

GPS Documentation, Release 5.2.1

6 Main image in a dialog (ideal size: 48x48 pixels)

Here is an example:

<?xml version="1.0"?>
<my_visual_preferences>

<stock>
<icon id="myproject-my-picture" file="icons/my-picture.png" />

<icon id="myproject-multipurpose-image"
label="do something"
file="icons/icon_default.png">

<alternate file"icons/icon_16.png" size="menu" />
<alternate file"icons/icon_24.png" size="large_toolbar" />
<alternate file"icons/icon_20.png" size="button" />

</icon>

</stock>
</my_visual_preferences>

Note: as shown in the example above, it is a good practice to prefix the label by a unique name (e.g. myproject-), in
order to make sure that predefined stock icons will not get overridden by your icons.

16.5.19 Remote programming customization

The configuration of the remote programming functionality has two separate parts: the tools configuration (remote
connection tools, shells, and rsync parameters) and the servers configuration.

The first part (see Defining a remote connection tool, Defining a shell and Configuring rsync usage) is handled by a
pre-installed file in the plug-ins directory called protocols.xml.

The second part (see Defining a remote server and Defining a remote path translation), when configured via the user
interface (see Setup the remote servers), will create a remote.xml file in the user’s gps directory. System-wide servers
can be also installed.

Defining a remote connection tool

Several remote access tools are already defined in GPS: ssh, rsh, telnet and plink. It is possible to add other tools,
using the node remote_connection_config.

The attributes for this node are:

name (string) (mandatory) The name of the tool. This name does not necessarilly correspond to the command used
to launch the tool.

The following children are defined:

start_command (mandatory) The command used to launch the tool. This tag supports the use_pipes attribute. This
attribute selects on Windows the way GPS will launch the remote tools, and can take the following values:

true use pipes to launch the tool.

false (default) use a tty emulation, which is a bit slower but allow password prompts retrieval with some tools.

Note that this argument has effects only on Windows platforms.

start_command_common_args (optional) The arguments that are provided to the tool. This string can contain the
following replacement macros:

%C is replaced by the command executed on the remote host (e.g. the shell command)

194 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

%h is replaced by the remote host name

%U is replaced by the start_command_user_args, if a user is specified

%u is replaced by the user name

Note that if neither %u nor %U is found, and a user is specified in the remote connection configuration, then the
start_command_user_args is placed at the beginning of the arguments.

start_command_user_args (optional) The arguments used to define a specific user during connection. %u is replaced
by the user name

send_interrupt (optional) The characters sequence to send to the remote tool to interrupt the remote application. If
unset, then an Interrupt signal is sent directly to the remote tool.

user_prompt_ptrn (optional) A regular expression, used to catch user name prompts from the connection tool. If
undefined, a default regular expression is used.

password_prompt_ptrn (optional) A regular expression, used to catch password prompts from the connection tool.
If undefined, a default regular expression is used.

passphrase_prompt_ptrn (optional) A regular expression, used to catch passphrase prompts from the connection tool.
If undefined, a default regular expression is used.

extra_ptrn (optional) Complex child. Used to catch extra prompts from the connection tool, other than password,
passphrase or usename prompts. This tag has an attribute auto_answer telling if GPS automatically answers to
this prompt, or ask the user. If auto_answer is true, then this tag needs an answer child, whose value is used for
the answer. If auto_answer is false, then this tag needs a question child, whose value is used as question to the
end user.

Defining a shell

Several shells are already defined in GPS: sh, bash, csh, tcsh and cmd.exe (Windows). It is possible to add other shells,
using the node remote_shell_config.

The attributes for this node are:

name (string) (mandatory) The name of the shell. This name does not necessarilly correspond to the command used
to launch the shell.

The following children are defined:

start_command (mandatory) The command used to launch the shell. If arguments are required, they should be put
here, separated with spaces.

generic_prompt (optional) The regular expression used to identify a prompt after the initial connection. If not set, a
default value is used.

gps_prompt (mandatory) The regular expression used to identify a prompt after the initial setup is performed. If not
set, a default value is used.

filesystem (mandatory) Takes the following values: unix or windows. This is the filesystem used by the shell.

init_commands (optional) Complex child. Each cmd child contains a command used to initialise a new session.

exit_commands (optional) Complex child. Each cmd child contains a command used to exit a session.

no_echo_command (optional) Command used to suppress the echo of the remote shell.

cd_command (mandatory) Command used to go to a directory. %d is replaced by the directory’s full name.

get_status_command (mandatory) Command used to retrieve the status of the last command launched.

16.5. Customizing through XML and Python files 195

GPS Documentation, Release 5.2.1

get_status_ptrn (mandatory) Regular expression used to retrieve the status returned by get_status_command. A pair
of parenthesis is required, and identifies the status.

Configuring rsync usage

GPS has native support for the rsync tool, for paths synchronization during remote programming operations.

By default, GPS will use –rsh=ssh option if ssh is the main connection tool for the concerned server. It will also define
the -L switch when transfering files to a Windows local host.

It is possible to define additional arguments to rsync using the rsync_configuration tag.

This tag accepts the child tagged arguments, and containing additional arguments to pass to rsync.

Defining a remote server

Remote servers can be defined via the user interface, as described in Setup the remote servers. This user interface will
create a remote.xml file in the user’s gps directory, which in turn can be installed in any plug-ins directory to set the
values system-wide. This file will define for each server the node remote_machine_descriptor.

The attributes for this node are:

nickname (mandatory) Identifies uniquely the server in GPS.

network_name (mandatory) The server’s network name or IP address.

remote_access (mandatory) The tool’s name used to access the server. Shall point to one of the tools defined in
Defining a remote connection tool.

remote_shell (mandatory) The shell’s name used to access the server. Shall point to one of the shells defined in
Defining a shell.

remote_sync (mandatory) The remote file synchronisation tool used to synchronize files between the local host and
the server. Only rsync is recognized currently.

debug_console (optional) Can take the value True or False. Tells if a debug console should be displayed during
connection with a remote host. False by default.

The children for this node are:

extra_init_commands (optional) Complex child. Can contain cmd children whose values are used to set server spe-
cific initialization commands.

max_nb_connections (optional) Positive number representing the maximum number of simultaneous connections
GPS can launch.

timeout (optional) Positive number representing a timeout value (in ms) used for every action performed on the re-
mote host.

Defining a remote path translation

Remote path translation can also be defined via the user interface, as described in Setup the remote servers. The remote
paths translation are defined with the node remote_path_config.

The attributes for this node are:

server_name (mandatory) The server name concerned by the paths translation.

The remote_path_config node contains mirror_path children.

The attributes for the node mirror_path are:

196 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

local_path (mandatory) The absolute local path, expressed using the local filesystem standards.

remote_path (mandatory) The absolute remote path, expressed using the remote filesystem standards.

sync (mandatory) Specify the synchronization mechanism used for the paths (see Paths settings). Possible values are
NEVER, ONCE_TO_LOCAL, ONCE_TO_REMOTE and ALWAYS.

16.5.20 Customizing build Targets and Models

The information displayed in The Target Configuration Dialog and in the Mode selection can be customized through
XML.

Defining new Target Models

Models are defined in a target-model node which has one attributes, name, which contains the name of the model, and
which supports the following sub-nodes:

<icon> The stock name of the icon to associate by default with targets of this model.

<description> A one-line description of what the Model supports

<server> Optional, defaulting to Build_Server. Indicates the server used for launching Targets of this model. Remote
operations.

<is-run> Optional, defaulting to False. A boolean indicating whether this target corresponds to the launching of an
executable rather than a build. Targets with such a model are launched through an interactive console in GPS,
and their output is not parsed for errors.

<uses-shell> Optional, defaulting to False. A boolean indicating whether Targets of this model should be launched
via the shell pointed to by the SHELL environment variable.

<command-line> Contains a number of <arg> nodes, each containing an argument of the default command line for
this model, starting with the executable.

<switches command=”executable_name”> The graphical description of the switches. (Defining tool switches):

<?xml version="1.0" ?>
<my_model>
<target-model name="gprclean" category="">

<description>Clean compilation artefacts with gprclean</description>
<command-line>

<arg>gprclean</arg>
<arg>-P%PP</arg>
<arg>%X</arg>

</command-line>
<icon>gps-clean</icon>
<switches command="%(tool_name)s" columns="1">

<check label="Clean recursively" switch="-r"
tip="Clean all projects recursively" />

</switches>
</target-model>

</my_model>

Defining new Targets

Targets are defined in a target node which has three attributes:

16.5. Customizing through XML and Python files 197

GPS Documentation, Release 5.2.1

name Contains the name of the Target. It must be a unique name. Underscores are interpreted as menu mnemonics.
To represent an actual underscore, use a double underscore.

category The category which contains the Target, for purposes of ordering the tree in the Target Configuration Dialog,
and for ordering in the Build menu.Underscores are interpreted as menu mnemonics. To represent an actual
underscore, use a double underscore. If category begins and ends with an underscore, the menu for the Target is
placed in the toplevel Build menu.

messages_category The name of the category to be used to organize messages in Locations window.

model The name of the Model of which this Target inherits initially.

<icon> The stock name of the icon to associate by default with the Target.

<in-toolbar> Optional, defaulting to False. A boolean indicating whether the Target should have an associated icon
in the Toolbar.

<in-menu> Optional, defaulting to True. A boolean indicating whether the Target should have an associated entry in
the Build menu.

<in-contextual-menus-for-projects> Optional, defaulting to False. A boolean indicating whether the Target should
have an associated entry in the contextual menu for projects.

<in-contextual-menus-for-files> Optional, defaulting to False. A boolean indicating whether the Target should have
an associated entry in the contextual menu for files.

<visible> Optional, defaulting to True. A boolean indicating whether the Target should initially be visible in GPS.

<read-only> Optional, defaulting to False. A boolean indicating whether the Target can be removed by the user.

<target-type> Optional, defaulting to an empty string. A string indicating whether the Target represents a simple
target (if empty), or a family of Targets. The name represents a parameter passed to the compute_build_targets
hook. If set to main, a new subtarget will be create for each Main source defined in the project.

<launch-mode> Optional, defaulting to MANUALLY. Indicates how the Target should be launched. Possible values
are MANUALLY, MANUALLY_WITH_DIALOG, MANUALLY_WITH_NO_DIALOG, and ON_FILE_SAVE.

<server> Optional, defaulting to Build_Server. Indicates the server used for launching Target. Remote operations.

<command-line> Contains a number of <arg> nodes, each containing an argument of the default command line for
this Target, starting with the executable:

<?xml version="1.0" ?>
<my_target>

<target model="gprclean" category="C_lean" name="Clean _All">
<in-toolbar>TRUE</in-toolbar>
<icon>gps-clean</icon>
<launch-mode>MANUALLY_WITH_DIALOG</launch-mode>
<read-only>TRUE</read-only>
<command-line>

<arg>%gprclean</arg>
<arg>-r</arg>
<arg>%eL</arg>
<arg>-P%PP</arg>
<arg>%X</arg>

</command-line>
</target>

</my_target>

198 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Defining new Modes

Modes are defined in a builder-mode node which has one attributes, name, which contains the name of the model, and
which supports the following sub-nodes:

<description> A one-line description of what the Mode does

<subdir> Optional. The base name of the subdirectory to create for this Mode. The macro argument %subdir in the
extra-args nodes will be substituted with this.

<supported-model> The name of a model supported by this Mode. There can be multiple supported-model nodes,
each corresponding to a supported Model. Optionally, you can specify a filter attribute for this node, corre-
sponding to the switches that are relevant for this mode. By default, all switches will be taken into account. The
extra-args of the Mode that match filter will be passed to commands of the supported Models.

<extra-args> Contains a list of <arg> nodes, each containing one extra argument to append to the command line
when launching Targets while this Mode is active. Macros are supported in the <arg> nodes:

<?xml version="1.0" ?>
<my_mode>
<builder-mode name="optimization">
<description>Build with code optimization activated</description>
<subdir>optimized_objects</subdir>
<supported-model>builder</supported-model>
<supported-model>gnatmake</supported-model>
<supported-model filter="--subdirs=">gprclean</supported-model>
<extra-args>

<arg>--subdirs=%subdir</arg>
<arg>-cargs</arg>
<arg>-O2</arg>

</extra-args>
</builder-mode>
</my_mode>

16.5.21 Toolchains customization

The list of toolchains and their values presented in the project editor (The Project Wizard) can be customized through
XML. The GPS default list is contained in toolchains.xml. You can add your own toolchain by providing an xml
description following the below described structure:

<toolchain_default> Contains the default names for the different tools used by all toolchains. The final name used
will be toolchain_name-default_name.

<toolchain name=”name”> Defines a toolchain using name “name”. This toolchain can override the default values
defined in the toolchain_default above.

Each of the above tags can have the following chilren

<gnat_driver> Defines the gnat driver to use.

<gnat_list> Defines the gnat list tool to use.

<debugger> Defines the debugger to use.

<cpp_filt> Not used by GPS.

<compiler lang=”lang”> Defines the compiler to use to compile language “lang”

The toolchain_default values can either be overriden or nullified by just providing the same tab with an empty value
in a toolchain definition.

16.5. Customizing through XML and Python files 199

GPS Documentation, Release 5.2.1

16.6 Adding support for new tools

GPS has built-in support for external tools. This feature can be used to support a wide variety of tools (in particular,
to specify different compilers). Regular enhancements are done in this area, so if you are planning to use the external
tool support in GPS, check for the latest GPS version available.

Typically, the following things need to be achieved to successfully use a tool:

• Specify its command line switches

• Pass it the appropriate arguments depending on the current context, or on user input

• Spawn the tool

• Optionally parse its result and act accordingly

Each of these points is discussed in further sections. In all these cases, most of the work can be done statically through
XML customization files. These files have the same format as other XML customization files (Customizing through
XML and Python files), and the tool descriptions are found in <tool> tags.

This tag accepts the following attributes:

name (mandatory) This is the name of the tool. This is purely descriptive, and will appear throughout the GPS
interface whenever this tool is referenced. This includes for instances the tabs of the switches editor.

package (Default value is ide) This optional attribute specifies which package should be used in the project to store
information about this tool, in particular its switches. Most of the time the default value should be used, unless
you are working with one of the predefined packages.

See also Defining project attributes, for more information on defining your own project attributes. Using the
“package”, “attribute” or “index” XML attributes of <tool> will implicitly create new project attributes as
needed.

If this attribute is set to “ide”, then the switches cannot be set for a specific file, only at the project level. Support
for file-specific switches currently requires modification of the GPS sources themselves.

attribute (Default value is default_switches) This optional attribute specifies the name of the attribute in the project
which is used to store the switches for that tool.

index (Default value is the tool name) This optional attribute specifies what index is used in the project. This is
mostly for internal use by GPS, and describes what index of the project attribute is used to store the switches for
that tool.

override (Default value is ‘false’) This optional attribute specifies whether the tool definition can be redefined. The
accepted values are ‘true’ or ‘false’. If override is not set, and the tool is defined several times, then a Warning
will be displayed.

This tag accepts the following children, described in separate sections:

<switches> (Defining tool switches)

<language> (Defining supported languages)

<initial-cmd-line> (Defining default command line)

16.6.1 Defining supported languages

This is the language to which the tool applies. There can be from no to any number of such nodes for one <tool> tag.

If no language is specified, the tool applies to all languages. In particular, the switches editor page will be displayed
for all languages, no matter what languages they support.

200 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

If at least one language is specified, the switches editor page will only be displayed if that language is supported by
the project:

<?xml version="1.0" ?>
<my_tool>

<tool name="My Tool" >
<language>Ada</language>
<language>C</language>

</tool>
</my_tool>

16.6.2 Defining default command line

It is possible to define the command line that should be used for a tool when the user is using the default project, or
hasn’t overridden this command line in the project.

This is done through the <initial-cmd-line> tag, as a child of the <tool> tag. Its value is the command line that would
be passed to the tool. This command line is parsed as usual, e.g. quotes are taken into account to avoid splitting
switches each time a space is encountered:

<?xml version="1.0" ?>
<my_tool>

<tool name="My tool" >
<initial-cmd-line>-a -b -c</initial-cmd-line>

</tool>
</my_tool>

16.6.3 Defining tool switches

The user has to be able to specify which switches to use with the tool. If the tool is simply called through custom
menus, you might want to hard code some or all of the switches. However, in the general case it is better to use the
project properties editor, so that project-specific switches can be specified.

This is what GPS does by default for Ada, C and C++. You can find in the GPS installation directory how the switches
for these languages are defined in an XML file. These provide extended examples of the use of customization files.

The switches editor in the project properties editor provides a powerful interface to the command line, where the user
can edit the command line both as text and through GUI widgets.

The switches are declared through the <switches> tag in the customization file, which must be a child of a <tool> tag
as described above.

This <switches> tag accepts the following attributes:

lines (default value is 1) The switches in the project properties editor are organized into boxes, each surrounded by a
frame, optionally with a title. This attribute specifies the number of rows of such frames.

columns (default value is 1) This attribute specifies the number of columns of frames in the project properties page.

separator (default value is “”) This attribute specifies the default character that should go between a switch and its
value, to distinguishes cases like “-a 1”, “-a1” and “-a=1”. This can be overridden separately for each switch.
Note that if you want the separator to be a space, you must use the value “ ” rather than ” “, since XML
parser must normalize the latter to the empty string when reading the XML file.

use_scrolled_window (Default value is false) This optional attribute specifies if the boxes of the project editor are
placed into scrolled window. This is particularily useful if the number of displayed switches if important.

16.6. Adding support for new tools 201

GPS Documentation, Release 5.2.1

show_command_line (Default value is true) If this attribute is set to “false”, the command line will not be displayed
in the project properties editor. This can be used for instance if you only want users to edit it through the buttons
and other widgets, and not directly.

switch_char (Default value is “-”) This is the leading character of command line arguments that indicate they are
considered as switches. Arguments not starting with this character will be kept as is, and cannot have graphical
widgets associated with them

sections (Default value is empty) This is a space separated list of switches delimiting a section (such as “-bargs -cargs
-largs”). A section of switches is a set of switches that need to be grouped together and preceded by a specific
switch. Sections are always placed at the end of the command line, after regular switches.

This <switches> tag can have any number of child tag, among the following. They can be repeated multiple times if
you need several check boxes. For consistency, most of these child tags accept attributes among the following:

line (default value is 1) This indicates the row of the frame that should contain the switch. See the description of
lines above.

column (default value is 1) This indicates the column of the frame that should contain the switch. See the description
of columns above.

label (mandatory) This is the label which is displayed in the graphical interface

switch (mandatory) This is the text that should be put on the command line if that switch is selected. Depending on
its type, a variant of the text might be put instead, see the description of combo and spin below. This switch
shouldn’t contain any space.

switch-off (default value is empty) This attribute is used for <check> tags, and indicates the switch used for deacti-
vating the concerned feature. This is useful for features that are on by default on certain occasions, but can be
individually deactivated.

section (default value is empty) This is the switch section delimiter (such as “-cargs”). See the ‘sections’ attribute of
the tag ‘switches’ for more information.

tip (default value is empty) This is the tooltip which describes that switch more extensively. It is displayed in a small
popup window if the user leaves the mouse on top of the widget. Note that tags accepting the tip attribute also
accept a single child <tip> whose value will contain the text to be displayed. The advantage of the latter is that
the text formatting is then kept.

before (default value is “false”) This attribute is used to indicate that a switch needs to be always inserted at the
begining of the command line.

min (default value is 1) This attribute is used for <spin> tags, and indicates the minimum value authorized for that
switch.

max (default value is 1) This attribute is used for <spin> tags, and indicates the maximum value authorized for that
switch.

default (default value is 1) This attribute is used for <check> and <spin> tags. See the description below.

noswitch (default is empty) This attribute is only valid for <combo> tags, and described below.

nodigit (default is empty) This attribute is only valid for <combo> tags, and described below.

value (mandatory) This attribute is only valid for <combo-entry> tags.

separator (default is the value given to ‘<switches>‘ This attribute specifies the separator to use between the switch
and its value. See the description of this attribute for <switches>.

Here are the valid children for <switches>:

<title> This tag, which accepts the line and column attributes, is used to give a name to a specific frame. The value
of the tag is the title itself. You do not have to specify a name, and this can be left to an empty value.

202 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Extra attributes for <title> are:

line-span (default value is 1) This indicates how many rows the frame should span. If this is set to 0, then the
frame is hidden from the user. See for instance the Ada or C switches editor.

column-span (default value is 1) This indicates how many columns the frame should span. If this is set to 0,
then the frame is hidden from the user. See for instance the Ada or C switches editor.

<check> This tag accepts the line, column, label, switch, switch-off, section, default, before and tip attributes.

This tag doesn’t have any value. An optional <tip> child can be present.

It creates a toggle button. When the latter is active, the text defined in the switch attribute is added as is to the
command line. The switch can be also activated by default (default attribute is “on” or “true”). In this case,
deactivating the switch will add switch-off to the command line.

<spin> This tag accepts the line, column, label, switch, section, tip, min, max, separator and default attributes.

This tag doesn’t have any value. An optional <tip> child can be present.

This switch will add the contents of the switch attribute followed by the current numeric value of the widget to
the command line. This is typically used to indicate indentation length for instance. If the current value of the
widget is equal to the default attribute, then nothing is added to the command line.

<radio> This tag accepts the line and column attributes. It groups any number of children, each of which is associated
with its own switch. However, only one of the children can be selected at any given time.

The children must have the tag radio-entry. This tag accepts the attributes label, switch, section, before and tip.
As a special case, the switch attribute can have an empty value (“”) to indicate this is the default switch to use
in this group of radio buttons.

This tag doesn’t have any value. An optional <tip> child can also be present.

<field> This tag accepts the line, column, label, switch, section, separator, before and tip attributes.

This tag doesn’t have any value. An optional <tip> child can be present.

This tag describes a text edition field, which can contain any text the user types. This text will be prefixed by
the value of the switch attribute, and the separator (by default nothing). If no text is entered in the field by the
user, nothing is put on the command line.

This tag accepts two extra attributes:

as-directory (optional) If this attribute is specified and set to “true”, then an extra “Browse” button is displayed,
so that the user can easily select a directory.

as-file (optional) This attribute is similar to as-directory, but opens a dialog to select a file instead of a directory.
If both attributes are set to “true”, the user will select a file.

<combo> This tag accepts the line, column, label, switch, section, before, tip, noswitch, separator and nodigit at-
tributes.

The tag <combo> accepts any number of combo-entry children tags, each of which accepts the label and value
attribute. An optional <tip> child can also be present.

The text inserted in the command line is the text from the switch attribute, concatenated with the text of the
value attribute for the currently selected entry. If the value of the current entry is the same as that of the nodigit
attribute, then only the text of the switch attribute is put on the command line. This is in fact necessary to
interpret the gcc switch “-O” as “-O1”.

If the value of the current entry is that of the noswitch attribute, then nothing is put in the command line.

<popup> This tag accepts the line, column, label, lines and columns attributes. This displays a simply button that,
when clicked, displays a dialog with some extra switches. This dialog, just as the switches editor itself, is
organizes into lines and columns of frames, the number of which is provided by the lines and columns attributes.

16.6. Adding support for new tools 203

GPS Documentation, Release 5.2.1

This tag accepts any number of children, which are the same as the <switches> attribute itself.

<dependency> This tag is used to describe a relationship between two switches. It is used for instance when the
“Debug Information” switch is selected for “Make”, which forces it for the Ada compiler as well.

It has its own set of attributes:

master-page master-switch master-section These two attributes define the switch that possibly forces a specific
setting on the slave switch. In our example, they would have the values “Make” and “-g”. The switch
referenced by these attributes must be of type <check> or <field>. If it is part of a section, then ‘master-
section’ needs to be defined. If the check button is selected, it forces the selection of the slave check button.
Likewise, if the field is set to any value, it forces the selection of the slave.

slave-page slave-switch slave-section These two attributes define the switch which is acted upon by the master
switch. In our example, they would have the values “Ada” and “-g”. The switch referenced by these
attributes must be of type <check>.

master-status slave-status These two switches indicate which state of the master switch forces which state of
the slave-status. In our example, they would have the values “on” and “on”, so that when the make debug
information is activated, the compiler debug information is also activated. However, if the make debug
information is not activated, no specific setup is forced for the compiler debug information. if master-
status is “off” and the master switch is a field, then the status of the slave will be changed when no value
is set in the field.

<default-value-dependency> This tag is used to describe a relationship between two switches. It is slightly different
from the <dependency> tag in that the relationship concerns only the default activation states. It is used for
instance when the “-gnatwa” switch is selected for the “Ada” Compiler, which imply that the default values for
“-gnatwc”, “-gnatwd”, etc. become activated by default. They can however still be deactivated with respectively
“-gnatwC” and “-gnatwD”.

It has its own set of attributes:

master-switch This is the switch that triggers the dependency. If master-switch is present in the command line,
then the switch’s default status of slave-switch is modified accordingly.

slave-switch This is the switch whose default value depends on master-switch. This needs to be a switch already
defined in a <switch> tag. It can match its ‘switch’ or ‘switch-off’ attributes. In the latter case, the slave-
switch default value is deactivated if master-switch is present.

<expansion> This tag is used to describe how switches can be grouped together on the command line to keep it
shorter. It is also used to define aliases between switches.

It is easier to explain it through an example. Specifying the GNAT switch “-gnatyy” is equivalent to specifying
“-gnaty3abcefhiklmnprst”. This is in fact a style check switch, with a number of default values. But it is also
equivalent to decomposing it into several switches, as in “-gnatya”, “-gnatyb”, ...; With this information, GPS
will try to keep the command line length as short as possible, to keep it readable.

Both these aspects are defined in a unique <expansion> tag, which accepts two attributes: switch is mandatory,
and alias is optional. Alias contains the text “-gnatyabcefhiklmnprst” in our example.

There are two possible uses for this tag:

• If the “alias” attribute is not specified, then the “switch” attribute indicates that all switches starting with
that prefix should be grouped. For instance, if you pass “-gnatw” as the value for the “switch” attribute,
then a command line with “-gnatwa -gnatw.b” will in fact result in “-gnatwa.b”.

• If the “alias” attribute is specified, then the “switch” attribute is considered as a shorter way of writting
“alias”. For instance, if “switch” is “-gnatyy” and “alias” is “-gnaty3abcefhiklmnprst”, then the user can
simply type “-gnatyy” to mean the whole set of options.

The same “switch” attribute can be used in two expansion nodes if you want to combine the behavior.

204 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

For historical reasons, this tag accepts <entry> children, but these are no longer used.

16.6.4 Executing external tools

The user has now specified the default switches he wants to use for the external tool. Spawning the external tool can
be done either from a menu item, or as a result of a key press.

Both cases are described in an XML customization file, as described previously, and both are setup to execute what
GPS calls an action, i.e. a set of commands defined by the <action> tag.

Chaining commands

This action tag, as described previously, executes one or more commands, which can either be internal GPS commands
(written in any of the scripting language supported by GPS), or external commands provided by executables found on
the PATH.

The command line for each of these commands can either be hard-coded in the customization file, or be the result of
previous commands executed as part of the same action. As GPS executes each command from the action in turn, it
saves its output on a stack as needed. If a command line contains a special construct %1, %2... then these constructs
will be replaced by the result of respectively the last command executed, the previous from last command, and so on.
They are replaced by the returned value of the command, not by any output it might have done to some of the consoles
in GPS.

Every time you execute a new command, it pushes the previous %1, %2... parameters one step further on the stack, so
that they become respectively %2, %3... and the output of that command becomes %1.

The result value of the previous commands is substituted exactly as is. However, if the output is surrounded by quotes,
they are ignored when a substitution takes place, so you need to put them back if they are needed. The reason for this
behavior is so that for scripting languages that systematically protect their output with quotes (simple or double), these
quotes are sometimes in the way when calling external commands:

<?xml version="1.0" ?>
<quotes>

<action name="test quotes">
<shell lang="python">’-a -b -c’</shell>
<external> echo with quotes: "%1"</external>
<external> echo without quotes: %2</external/>

</action>
</quotes>

If one of the commands in the action raises an error, the execution of the action is stopped immediately, and no further
command is performed.

Saving open windows

Before launching the external tool, you might want to force GPS to save all open files, the project...; This is done using
the same command GPS itself uses before starting a compilation. This command is called MDI.save_all, and takes
one optional boolean argument which specifies whether an interactive dialog should be displayed for the user.

Since this command aborts when the user presses cancel, you can simply put it in its own <shell> command, as in:

<?xml version="1.0" ?>
<save_children>

<action name="test save children">
<shell>MDI.save_all 0</shell>
<external>echo Run unless Cancel was pressed</external>

16.6. Adding support for new tools 205

GPS Documentation, Release 5.2.1

</action>
</save_children>

Querying project switches

Some GPS shell commands can be used to query the default switches set by the user in the project file.
These are get_tool_switches_as_string, get_tool_switches_as_list, or, more generally, get_attribute_as_string and
get_attribute_as_list. The first two require a unique parameter which is the name of the tool as specified in the
<tool> tag. This name is case-sensitive. The last two commands are more general and can be used to query the status
of any attribute from the project. See their description by typing the following in the GPS shell console window:

help Project.get_attribute_as_string
help Project.get_attribute_as_list

The following is a short example on how to query the switches for the tool “Find” from the project, Tool exam-
ple. It first creates an object representing the current project, then passes this object as the first argument of the
get_tool_switches_as_string command. The last external command is a simple output of these switches:

<?xml version="1.0" ?>
<find_switches>

<action name="Get switches for Find">
<shell>Project %p</shell>
<shell>Project.get_tool_switches_as_string %1 Find </shell>
<external>echo %1</external>

</action>
</find_switches>

The following example shows how something similar can be done from Python, in a simpler manner. For a change,
this function queries the Ada compiler switches for the current project, and prints them out in the messages window.
The:

<?xml version="1.0" ?>
<query_switches>

<action name="Query compiler switches">
<shell lang="python">GPS.Project("%p").get_attribute_as_list
(package="compiler",
attribute="default_switches",
index="ada")</shell>

<external>echo compiler switches= %1</external>
</action>

</query_switches>

Querying switches interactively

Another solution to query the arguments for the tool is to ask the user interactively. The scripting languages provides
a number of solutions for these.

They generally have their own native way to read input, possibly by creating a dialog.

In addition, the simplest solution is to use the predefined GPS commands for this. These are the two functions:

yes_no_dialog This function takes a single argument, which is a question to display. Two buttons are then available
to the user, “Yes” and “No”. The result of this function is the button the user has selected, as a boolean value.

input_dialog This function is more general. It takes a minimum of two arguments, with no upper limit. The first
argument is a message describing what input is expected from the user. The second, third and following argu-

206 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

ments each correspond to an entry line in the dialog, to query one specific value (as a string). The result of this
function is a list of strings, each corresponding to these arguments.

From the GPS shell, it is only convenient to query one value at a time, since it doesn’t have support for lists,
and would return a concatenation of the values. However, this function is especially useful with other scripting
languages.

The following is a short example that queries the name of a directory and a file name, and displays each in the Messages
window:

<?xml version="1.0" ?>
<query_file>

<action name="query file and dir">
<shell lang="python">list=GPS.MDI.input_dialog \\

("Please enter directory and file name", "Directory", "File")</shell>
<shell lang="python">print ("Dir=" + list[0], "File=" + list[1])</shell>
</shell>

</action>
</query_file>

Redirecting the command output

The output of external commands is send by default to the GPS console window. In addition, finer control can be
exercised using the output attribute of the <external> and <shell> tags.

This attribute is a string that may take any value. Two values have specific meanings:

“none” The output of the command, as well as the text of the command itself, will not be shown to the user at all.

“” The output of the command is sent to the GPS console window, entitled “Messages”.

other values A new window is created, with the title given by the attribute. If such a window already exists, it is
cleared up before any of the command in the chain is executed. The output of the command, as well as the text
of the command itself, are sent to this new window.

This attribute can also be specified at the <action> tag level, in which case it defines the default value for all <shell>
and <external> tags underneath. If it isn’t specified for the action itself, its default value will always be the empty
string, i.e. output is sent to the GPS console:

<?xml version="1.0" ?>
<ls>

<action name="ls current directory" output="default output" >
<shell output="Current directory" >pwd</shell>
<external output="Current directory contents" >/bin/ls</external>

</action>
</ls>

Processing the tool output

The output of the tool has now either been hidden or made visible to the user in one or more windows.

There are several additional things that can be done with this output, for further integration of the tool in GPS.

• Parsing error messages .. index:: Locations.parse

External tools can usually display error messages for the user that are associated with specific files and locations
in these files. This is for instance the way the GPS builder itself analyzes the output of make.

16.6. Adding support for new tools 207

GPS Documentation, Release 5.2.1

This can be done for your own tools using the shell command Locations.parse. This command takes several
arguments, so that you can specify your own regular expression to find the file name, line number and so on in
the error message. By default, it is configured to work seamlessly with error message of the forms:

file:line: message
file:line:column: message

Please refer to the online help for this command to get more information (by e.g. typing help Locations.parse
in the GPS Shell).

Here is a small example on how to run a make command and send the errors to the location window afterward.

For languages that support it, it is also recommended that you quote the argument with triple quotes, so that any
special character (newlines, quotes, ...) in the output of the tool are not specially interpreted by GPS. Note also
that you should leave a space at the end, in case the output itself ends with a quote:

<?xml version="1.0" ?>
<make>
<action name="make example" >

<external>make</external>
<on-failure>

<shell>Locations.parse """%1 """ make_example</shell>
</on-failure>

</action>
</make>

• Auto-correcting errors .. index:: Codefix.parse

GPS has support for automatically correcting errors for some of the languages. You can get access to this auto-
fixing feature through the Codefix.parse shell command, which takes the same arguments as for Locations.parse.

This will automatically add pixmaps to the relevant entries in the location window, and therefore Locations.parse
should be called first prior to calling this command.

Errors can also be fixed automatically by calling the methods of the Codefix class. Several codefix sessions can
be active at the same time, each of which is associated with a specific category. The list of currently active
sessions can be retrieved through the Codefix.sessions() command.

If support for python is enabled, you can also manipulate the fixable errors for a given session. To do so, you
must first get a handle on that section, as shown in the example below. You can then get the list of fixable errors
through the errors command.

Each error is of the class CodefixError, which has one important method fix which allows you to perform an
automatic fixing for that error. The list of possible fixes is retrieved through possible_fixes:

print GPS.Codefix.sessions ()
session = GPS.Codefix ("category")
errors = session.errors ()
print errors [0].possible_fixes ()
errors [0].fix ()

16.7 Customization examples

16.7.1 Menu example

This section provides a full example of a customization file. It creates a top-level menu named custom menu. This
menu contains a menu item named item 1, which is associated to the external command external-command 1, a sub
menu named other menu, etc...:

208 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

<?xml version="1.0"?>
<menu-example>

<action name="action1">
<external>external-command 1</external>

</action>

<action name="action2">
<shell>edit %f</shell>

</action>

<submenu>
<title>custom menu</title>
<menu action="action1">

<title>item 1</title>
</menu>

<submenu>
<title>other menu</title>
<menu action="action2">
<title>item 2</title>

</menu>
</submenu>

</submenu>
</menu-example>

16.7.2 Tool example

This section provides an example that defines a new tool. This is only a short example, since Ada, C and C++ support
themselves are provided through such a file, available in the GPS installation.

This example adds support for the “find” Unix utility, with a few switches. All these switches are editable through the
project properties editor.

It also adds a new action and menu. The action associated with this menu gets the default switches from the currently
selected project, and then ask the user interactively for the name of the file to search:

<?xml version="1.0" ?>
<toolexample>

<tool name="Find" >
<switches columns="2" >
<title column="1" >Filters</title>
<title column="2" >Actions</title>

<spin label="Modified less than n days ago" switch="-mtime-"
min="0" max="365" default="0" />

<check label="Follow symbolic links" switch="-follow" />

<check label="Print matching files" switch="-print" column="2" />
</switches>

</tool>

<action name="action find">
<shell>Project %p</shell>
<shell>Project.get_tool_switches_as_string %1 Find </shell>
<shell>MDI.input_dialog "Name of file to search" Filename</shell>
<external>find . -name %1 %2</external>

</action>

16.7. Customization examples 209

GPS Documentation, Release 5.2.1

<Submenu>
<Title>External</Title>
<menu action="action find">

<Title>Launch find</Title>
</menu>

</Submenu>
</toolexample>

16.8 Scripting GPS

16.8.1 Scripts

Scripts are small programs that interact with GPS and allow you to perform complex tasks repetitively and easily. GPS
includes support for two scripting languages currently, although additional languages might be added in the future.
These two languages are described in the following section.

Support for scripting is currently work in progress in GPS. As a result, not many commands are currently exported
by GPS, although their number is increasing daily. These commands are similar to what is available to people who
extend GPS directly in Ada, but with a strong advantage: they do not require any recompilation of the GPS core, and
can be tested and executed interactively.

The goal of such scripts is to be able to help automate processes such as builds, automatic generation of graphs, ...

These languages all have a separate console associated with them, which you can open from the Tools menu. In each
of these console, GPS will display a prompt, at which you can type interactive commands. These console provide
completion of the command names through the tab key.

For instance, in the GPS shell console you can start typing:

GPS> File

then press the tab key, which will list all the functions whose name starts with “File”.

A similar feature is available in the python console, which also provides completion for all the standard python com-
mands and modules.

All the scripting languages share the same set of commands exported by GPS, thanks to an abstract interface defined
in the GPS core. As a result, GPS modules do not have to be modified when new scripting languages are added.

Scripts can be executed immediately upon startup of GPS by using the command line switch –load. Specifying the
following command line:

gps --load=shell:mytest.gps

will force the gps script mytest.gps to be executed immediately, before GPS starts reacting to user’s requests. This
is useful if you want to do some special initializations of the environment. It can also be used as a command line
interface to GPS, if you script’s last command is to exit GPS.

In-line commands can also be given directly on the command line through –eval command line switch.

For instance, if you want to analyze an entity in the entity browser from the command line, you would pass the
following command switches:

gps --eval=shell:’Entity entity_name file_name; Entity.show %1’

See the section Customizing through XML and Python files on how to bind key shortcuts to shell commands.

210 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

16.8.2 Scripts and GPS actions

There is a strong relationship between GPS actions, as defined in the customization files (Defining Actions), and
scripting languages

Actions can be bound to menus and keys through the customization files or the Edit->Key shortcuts dialog.

These actions can execute any script command, Defining Actions. This is done through the <shell> XML tag.

But the opposite is also true. From a script, you can execute any action registered in GPS. This can for instance be
used to split windows, highlight lines in the editor, ... when no equivalent shell function exists. This can also be used
to execute external commands, if the scripting language doesn’t support this in an easy manner.

Such calls are made through a call to execute_action, as in the following example:

execute_action "Split horizontally"

GPS.execute_action (action="Split horizontally")

The list of actions known to GPS can be found through the Edit->Key shortcuts dialog. Action names are case
sensitive.

Some of the shell commands take subprograms as parameters. If you are using the GPS shell, this means you have
to pass the name of a GPS action. If you are using Python, this means that you pass a subprogram, Subprogram
parameters.

16.8.3 The GPS Shell

The GPS shell is a very simple-minded, line-oriented language. It is accessible through the Shell window at the bottom
of the GPS window. It is similar to a Unix shell, or a command window on Windows systems.

Type help at the prompt to get the list of available commands, or help followed by the name of a command to get more
information on that specific command.

The following example shows how to get some information on a source entity, and find all references to this entity
in the application. It searches for the entity “entity_name”, which has at least one reference anywhere in the file
“file_name.adb”. After the first command, GPS returns an identifier for this entity, which can be used for all commands
that need an entity as a parameter, as is the case for the second command. When run, the second command will
automatically display all matching references in the location window:

GPS> Entity my_entity file_name.adb
<Entity_0x09055790>
GPS> Entity.find_all_refs <Entity_0x09055790>

Since the GPS shell is very simple, it doesn’t provide any reference counting for the result types. As a result, all the
values returned by a command, such as <Entity_0x09055790> in the example above, are kept in memory.

The GPS shell provides the command clear_cache which removes all such values from the memory. After this com-
mand is run, you can no longer use references obtained from previous commands, although of course you can run
these commands again to get a new reference.

The return value of the 9 previous commands can easily be recalled by passing %1, %2, ... on the command line. For
instance, the previous example could be rewritten as:

GPS> Entity my_entity file_name.adb
<Entity_0x09055790>
GPS> Entity.find_all_refs %1

16.8. Scripting GPS 211

GPS Documentation, Release 5.2.1

These return values will be modified also for internal commands sent by GPS, so you should really only use this when
you emit multiple commands at the same time, and don’t do any other action in GPS. This is mostly useful when used
for command-line scripts (see –eval and –load), or for custom files, Customizing through XML and Python files.

Arguments to commands can, but need not, be quoted. If they don’t contain any space, double-quote (‘”’) or newline
characters, you do not need to quote them. Otherwise, you should surround them with double-quotes, and protect any
double-quote part of the argument by preceding it with a backslash.

There is another way to quote a command: use three double-quotes characters in a row. Any character loses its special
meaning until the next three double-quotes characters set. This is useful if you do not know in advance the contents of
the string you are quoting:

Locations.parse """%1 """ category_name

16.8.4 The Python Interpreter

Python is an interpreted object-oriented language, created by Guido Van Rossum. It is similar in its capabilities to
languages such as Perl, Tcl or Lisp. This section is not a tutorial on python programming. See http://docs.python.org/
to access the documentation for the current version of python.

If python support has been enabled, the python shell is accessible through the Python window at the bottom of the
GPS window. You can also display it by using the menu Tools->Consoles->Python.

The full documentation on what GPS makes visible through python is available through the /Help/Python extensions.

The same example that was used to show the GPS shell follows, now using python. As you can notice, the name
of the commands is similar, although they are not run exactly in the same way. Specifically, GPS benefits from the
object-oriented aspects of python to create classes and instances of these classes.

In the first line, a new instance of the class Entity is created through the create_entity function. Various methods can
then be applied to that instance, including find_all_refs, which lists all references to that entity in the location window:

>>> e=GPS.Entity ("entity_name", GPS.File ("file_name.adb"))
>>> e.find_all_refs()

The screen representation of the classes exported by GPS to python has been modified, so that most GPS functions
will return an instance of a class, but still display their output in a user-readable manner.

Python has extensive introspection capabilities. Continuing the previous example, you can find what class e is an
instance of with the following command:

>>> help(e)
Help on instance of Entity:

<GPS.Entity instance>

It is also possible to find all attributes and methods that can be applied to e, as in the following example:

>>> dir (e)
[’__doc__’, ’__gps_data__’, ’__module__’, ’called_by’, ’calls’,
’find_all_refs’]

Note that the list of methods may vary depending on what modules were loaded in GPS, since each module can add
its own methods to any class.

In addition, the list of all existing modules and objects currently known in the interpreter can be found with the
following command:

>>> dir ()
[’GPS’, ’GPSStdout’, ’__builtins__’, ’__doc__’, ’__name__’, ’e’, ’sys’]

212 Chapter 16. Customizing and Extending GPS

http://docs.python.org/

GPS Documentation, Release 5.2.1

You can also load and execute python scripts with the execfile command, as in the following example:

>>> execfile ("test.py")

Python supports named parameters. Most functions exported by GPS define names for their parameters, so that you
can use this Python feature, and make your scripts more readable. A notable exception to this rule are the functions
that take a variable number of parameters. Using named parameters allows you to specify the parameters in any order
you wish, e.g:

>>> e=GPS.Entity (name="foo", file=GPS.File("file.adb"))

16.8.5 Python modules

On startup, GPS will automatically import (with python’s import command) all the files with the extension .py found
in the directory $HOME/.gps/plug-ins, the directory $prefix/share/gps/plug-ins or in the directories
pointed to by GPS_CUSTOM_PATH. These files are loaded only after all standard GPS modules have been loaded, as
well as the custom files, and before the script file or batch commands specified on the command lines with the –eval
or –load switches.

As a result, one can use the usual GPS functions exported to python in these startup scripts. Likewise, the script run
from the command line can use functions defined in the startup files.

Since the import command is used, the functions defined in this modules will only be accessible by prefixing their
name by the name of the file in which they are defined. For instance if a file mystartup.py is copied to the startup
directory, and defines the function func, then the latter will be accessible in GPS through mystartup.func.

Python’s own mechanism for loading files at startup (the environment variable PYTHONSTARTUP) is not suitable for
use within the context of GPS. When python is loaded by GPS, the GPS module itself is not yet available, and thus
any script that depends on that module will fail to load correctly. Instead, copy your script to one of the plug-ins
directories, as documented above.

If you are writing a set of python scripts that other people will use, you need to provide the python files themselves.
This is a set of .py files, which the user should install in the plug-ins directory.

To make the Python function accessible through GPS, this can be done:

• Either by exporting the APIs directly through Python, under the form of Actions (see the Action class), Menus
(see the Contextual and Menu classes) or toolbar buttons (see the ToolButton and Toolbar classes);

• Or by writing an XML file with the format described in the customization section of this documentation. This
XML file should create a set of actions, through the <action> tag, exported to the user. This allows him to either
create menus to execute these commands or to bind them to special key shortcuts. The menus can be created
directly in python, with the GPS.Menu class. The same XML can in fact be directly embedded in the python file
itself and executed through GPS.parse_xml.

The following example defines a python command that inserts a line full of dashes (‘-‘) at the current cursor location.
This command is associated with the key binding control-c n, and can be distributed as a single Python file:

This code can be stored in a file test.py in $HOME/.gps/plug-ins
from GPS import *

def add_dashes_line():
Editor.replace_text (current_context().file().name(),

current_context().location().line(),
current_context().location().column(),
"--------------------------------", 0, 0)

GPS.parse_xml ("""
<action name="dashes line">

<shell lang="python">test.add_dashes_line()</shell>

16.8. Scripting GPS 213

GPS Documentation, Release 5.2.1

<context>Source editor</context>
</action>
<key action="dashes line">control-c n</key>

""")

Several complex examples are provided in the GPS distribution, in the directory examples/python. These are
modules that you might want to use for your own GPS, but more important that will show how GPS can be extended
from Python.

If your script doesn’t do what you expect it to do, there are several ways to debug it, among which the easiest is
probably to add some “print” statements. Since some output of the scripts is sometimes hidden by GPS (for instance
for interactive commands), you might not see this output.

In this case, you can reuse the tracing facility embedded in GPS itself. Modify the file $HOME/.gps/traces.cfg,
and add the following line:

PYTHON.OUT=yes

This will include the python traces as part of the general traces available in the file $HOME/.gps/log. Note that it
may slow down GPS if there is a lot of output to process.

16.8.6 Subprogram parameters

A few of the functions exported by GPS in the GPS shell or in python expect a subprogram as a parameter.

This is handled in different ways depending on what language your are using:

• GPS shell

It isn’t possible to define new functions in the GPS shell. However, this concept is similar to the GPS actions
(Defining Actions), which allow you to execute a set of commands and launch external processes.

Therefore, a subprogram parameter in the GPS shell is a string, which is the name of the action to execute.

For instance, the following code defines the action “on_edition”, which is called every time a new file is edited.
The action is defined in the shell itself, although this could be more conveniently done in a separate customiza-
tion file:

parse_xml """<action name="on_edition">
<shell>echo "File edited"</shell></action>"""

Hook "file_edited"
Hook.add %1 "on_edition"

• Python

Python of course has its own notion of subprogram, and GPS is fully compatible with it. As a result, the syntax
is much more natural than in the GPS shell. The following example has the same result as above:

import GPS
def on_edition(self, *arg):
print "File edited"

GPS.Hook ("file_edited").add (on_edition)

Things are in fact slightly more complex if you want to pass methods as arguments. Python has basically three
notions of callable subprograms, detailed below. The following examples all create a combo box in the toolbar,
which calls a subprogram whenever its value is changed. The documentation for the combo box indicates that
the callback in this case takes two parameters:

– The instance of the combo

– The current selection in the combo box

214 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

The first parameter is the instance of the combo box associated with the toolbar widget, and, as always in python,
you can store your own data in the instance, as shown in the examples below.

Here is the description of the various subprograms:

– Global subprograms

These are standard subprograms, found outside class definitions. There is no implicit parameter in this
case. However, if you need to pass data to such a subprogram, you need to use global variables:

import GPS

my_var = "global data"

def on_changed (combo, choice):
global my_var
print "on_changed called: " + \\

my_var + " " + combo.data + " " + choice

combo = GPS.Combo \\
("name", label="name", on_changed=on_changed)

GPS.Toolbar().append (combo)
combo.data = "My own data"

– Unbound methods

These are methods of a class. You do not specify, when you pass the method in parameter to the combo
box, what instance should be passed as its first parameter. Therefore, there is no extra parameter either.

Note however than whatever class the method is defined in, the first parameter is always an instance of the
class documented in the GPS documentation (in this case a GPS.Combo instance), not an instance of the
current class.

In this first example, since we do not have access to the instance of MyClass, we also need to store the
global data as a class component. This is a problem if multiple instances of the class can be created:

import GPS
class MyClass:

my_var = "global data"
def __init__ (self):

self.combo = GPS.Combo \\
("name", label="name", on_changed=MyClass.on_changed)

GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"

def on_changed (combo, choice):
No direct access to the instance of MyClass.
print "on_changed called: " + \\

MyClass.my_var + " " + combo.data + " " + choice

MyClass()

As the example above explains, there is no direct access to MyClass when executing on_changed. An easy
workaround is the following, in which the global data can be stored in the instance of MyClass, and thus
be different for each instance of MyClass:

import GPS
class MyClass:

def __init__ (self):
self.combo = GPS.Combo \\

("name", label="name", on_changed=MyClass.on_changed)

16.8. Scripting GPS 215

GPS Documentation, Release 5.2.1

GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"
self.combo.myclass = self ## Save the instance
self.my_var = "global data"

def on_changed (combo, choice):
print "on_changed called: " + \\

combo.myclass.my_var + " " + combo.data + " " + choice

MyClass()

– Bound methods

The last example works as expected, but is not convenient to use. The solution here is to use a bound
method, which is a method for a specific instance of a class. Such a method always has an extra first
parameter, set implicitly by Python or GPS, which is the instance of the class the method is defined in.

Notice the way we pass the method in parameter to append(), and the extra third argument to on_changed
in the example below:

import GPS
class MyClass:

def __init__ (self):
self.combo = GPS.Combo \\

("name", label="name", on_changed=self.on_changed)
GPS.Toolbar().append (self.combo)
self.combo.data = "My own data"
self.my_var = "global data"

def on_changed (self, combo, choice):
self is the instance of MyClass specified in call to append()
print "on_changed called: " + \\

self.my_var + " " + combo.data + " " + choice

MyClass()

It is often convenient to use the object-oriented approach when writing python scripts. If for instance you
want to spawn an external process, GPS provides the GPS.Process class. When you create an instance,
you specify a callback to be called when some input is made available by the process. Matching the above
example, the code would look something like:

class MyClass:
def __init__ (self):

self.process = GPS.Process
("command_line", on_match = self.on_match)

def on_match (self, process, matched, unmatched);
print "Process output: " + unmatched + matched + "\\n"

A more natural approach, rather than having a class that has a process field, is to directly extend the
GPS.Process class, as in:

class MyClass (GPS.Process):
def __init__ (self):

GPS.Process.__init__ \\
(self, "command_line", on_match = self.on_match)

def on_match (self, matched, unmatched);
print "Process output: " + unmatched + matched + "\\n"

216 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

Any command that can be used on a process (such as send) can then directly be used on instances of
MyClass.

There is one non-obvious improvement in the code above: the on_match callback has one less parameter.
What happens is the following: as per the documentation of GPS.Process.__init__, GPS gives three argu-
ments to its on_match callback: the instance of the process (process in the first example above), the string
that matched the regular expression, and the string before that match.

In the first example above, we are passing self.on_match, ie a bound method, as a callback. That tells
python that it should automatically, and transparently, add an extra first parameter when calling My-
Class.on_match, which is self. This is why the first example has four parameters to on_match.

However, the second example only has three parameters, because GPS has detected that self (the instance
of MyClass) and the instance of GPS.Process are the same in this case. Thus it doesn’t add an extra
parameter (self and process would have been the same).

16.8.7 Python FAQ

This section lists some of the problems that have been encountered while using Python inside GPS. This is not a
general Python discussion.

Hello World! in python

Writing a python script to interact with GPS is very simple. Here we show how to create a new menu in GPS that
when clicked, diplays a dialog saying the famous ‘Hello World!’.

Here is the code that you need to put in hello_world.py:

import GPS

def hello_world (self):
GPS.MDI.dialog ("Hello World!")

GPS.Menu.create ("/Help/Hello World!", on_activate=hello_world)

In order to use this plug-in, you can launch GPS with the following command line:

$ gps --load=python:hello_world.py

If would want the plug-in to be loaded every time you launch GPS without having to specify it on the command
line, you should copy hello_world.py to your $HOME/.gps/plug-ins/ directory or %USERPROFILE%\.gps\ under
Windows.

Alternatively, you can add the directory in which you plug-in is located to you GPS_CUSTOM_PATH environment
variable. For a description of the various environment variables used by GPS, Environment Variables.

Spawning external processes

There exist various solutions to spawn external processes from a script:

• Use the functionalities provided by the GPS.Process class

• Execute a GPS action through GPS.execute_action.

This action should have an <external> XML node indicating how to launch the process

16.8. Scripting GPS 217

GPS Documentation, Release 5.2.1

• Create a pipe and execute the process with os.popen() calls

This solution doesn’t provide a full interaction with the process, though.

• Use a standard expect library of Python

The use of an expect library may be a good solution. There are various python expect libraries that already exist.

These libraries generally try to copy the parameters of the standard file class. They may fail doing so, as GPS’s
consoles do not fully emulate all the primitive functions of that class (there is no file descriptor for instance).

When possible, it is recommended to use one of the methods above instead.

Redirecting the output of spawned processes

In general, it is possible to redirect the output of any Python script to any GPS window (either an already existing one,
or creating one automatically), through the “output” attribute of XML configuration files.

However, there is a limitation in python that the output of processes spawned through os.exec() or os.spawn() is
redirected to the standard output, and not to the usual python output that GPS has overriden.

There are two solutions for this:

• Execute the external process through a pipe

The output of the pipe is then redirected to Python’s output, as in:

import os, sys
def my_external():

f = os.popen (’ls’)
console = GPS.Console ("ls")
for l in f.readlines():

console.write (’ ’ + l)

This solution allows you, at the same time, to modify the output, for instance to indent it as in the example
above.

• Execute the process through GPS

You can go through the process of defining an XML customization string for GPS, and execute your process
this way, as in:

GPS.parse_xml ("""
<action name="ls">

<external output="output of ls">ls</external>
</action>""")

def my_external():
GPS.execute_action ("ls")

This solution also allows you to send the output to a different window than the rest of your script. But you
cannot filter or modify the output as in the first solution.

Contextual menus on object directories only

The following filter can be used for actions that can only execute in the Project View, and only when the user clicks
on an object directory. The contextual menu entry will not be visible in other contexts:

218 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

<?xml version="1.0" ?>
<root>

<filter name="object directory"
shell_cmd="import os.path; os.path.samefile (GPS.current_context().project().object_dirs()[0],GPS.current_context().directory())"
shell_lang="python"
module="Explorer" />

<action name="Test on object directory">
<filter id="object directory" />
<shell>echo "Success"</shell>

</action>

<contextual action="Test on object directory" >
<Title>Test on object directory</Title>

</contextual>
</root>

Another example would be to have a filter so that the contextual menu only appears when on a project node in the
Project View. Using %P in your command is not enough, since the current context when you click on a file or directory
also contain information about the project this file or directory belongs to. Thus this implicit filter will not be enough
to hide your contextual menu.

As a result, you need to do a slightly more complex test, where you check that the current context doesn’t contains in-
formation on directories (which will disable the contextual menu for directories, files and entities). Since the command
uses %P, GPS garantees that a project is available.

We’ll implement this contextual menu in a Python file, called filters.py:

import GPS
def on_project():

try:
GPS.current_context().directory()
return False

except:
return True

GPS.parse_xml ("""
<action name="test_filter">
<filter module="Explorer"

shell_lang="python"
shell_cmd="filters.on_project()" />

<shell>echo current project is %P</shell>
</action>
<contextual action="test_filter">
<title>Print current project</title>
</contextual>""")

The example above shows the flexibility of filters, since you can pretty much do anything you wish through the shell
commands. However, it is complex to write for such a simple filter. Luckily, GPS provides a predefined filter just for
that purpose, so that you can write instead, in an XML file:

<action name="test_filter" >
<filter id="Explorer_Project_Node" />
<shell>echo current project is %P</shell>
</action>

16.8. Scripting GPS 219

GPS Documentation, Release 5.2.1

Redirecting the output to specific windows

By default, the output of all python commands is displayed in the Python console. However, you might want in some
cases to create other windows in GPS for this output. This can be done in one of two ways:

• Define a new action

If the whole output of your script should be redirected to the same window, or if the script will only be used
interactively through a menu or a key binding, the easiest way is to create a new XML action, and redirect the
output, as in:

<?xml version="1.0" ?>
<root>
<action name="redirect output" output="New Window">

<shell lang="python">print "a"</shell>
</action>

</root>

All the various shell commands in your action can be output in a different window, and this also applies for the
output of external commands.

• Explicit redirection

If, however, you want to control in your script where the output should be sent, for instance if you can’t know
that statically when you write your commands, you can use the following code:

sys.stdin = sys.stdout = GPS.Console ("New window")
print "foo"
print (sys.stdin.read ())
sys.stdin = sys.stdout = GPS.Console ("Python")

The first line redirect all input and output to a new window, which is created if it doesn’t exist yet. Note however
that the output of stderr is not redirected, and you need to explicitely do it for sys.stderr.

The last line restore the default Python console. You must do this at the end of your script, or all scripts will
continue to use the new consoles.

You can alternatively create separate objects for the output, and use them in turn:

my_out = GPS.Console ("New Window")
my_out2 = GPS.Console ("New Window2")

sys.stdout=my_out
print "a"
sys.stdout=my_out2
print "b"
sys.stdout=GPS.Console ("Python")

The parameter to the constructor GPS.Console indicates whether any output sent to that console should be saved
by GPS, and reused for the %1, %2, ... parameters if the command is executed in a GPS action. That should
generally be 1, except for stderr where it should be 0.

Reloading a python file in GPS

After you have made modification to a python file, you might want to reload it in GPS. This requires careful use of
python commands.

Here is an example. Lets assume you have a python file ("mymod.py") which contains the following:

220 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

GPS.parse_xml ("""
<action name="my_action">

<shell lang="python">mymod.myfunc()</shell>
</action>""")

def myfunc():
print "In myfunc\\n"

As you can guess from this file, it defines an action “my_action”, that you can for instance associate with a keybinding
through the Edit->Key shortcuts menu.

If this file has been copied in one of the plug-ins directories, it will be automatically loaded at startup.

Notice that the function myfunc is thus found in a separate namespace, with the name mymod, same as the file.

If you decide, during your GPS session, to edit this file and have the function print “In myfunc2” instead, you then
have to reload the file by typing the following command in the Python console:

> execfile ("HOME/.gps/plug-ins/mymod.py", mymod.__dict__)

The first parameter is the full path to the file that you want to reload. The second argument is less obvious, but indicates
that the file should be reloaded in the namespace mymod.

If you omit the optional second parameter, Python will load the file, but the function myfunc will be defined in the
global namespace, and thus the new definition is accessible through:

> myfunc()

Thus, the key shortcut you had set, which still executes mymod.myfunc() will keep executing the old definition.

By default, GPS provides a contextual menu when you are editing a Python file. This contextual menu (Python-
>Reload module) will take care of all the above details.

Printing the GPS Python documentation

The python extension provided by GPS is fully documentation in this manual and a separate manual accessible through
the Help menu in GPS.

However, this documentation is provided in HTML, and might not be the best suitable for printing, if you wish to do
so.

The following paragraph explains how you can generate your own documentation for any python module, including
GPS, and print the result:

import pydoc
pydoc.writedoc (GPS)

In the last comamnd, GPS is the name of the module that you want to print the documentation for.

These commands generate a .html file in the current directory.

Alternatively, you can generate a simple text file with:

e=file("./python_doc", "w")
e.write (pydoc.text.document (GPS))
e.flush()

This text file includes bold characters by default. Such bold characters are correctly interpreted by tools such as a2ps
which can be used to convert the text file into a postscript document.

16.8. Scripting GPS 221

GPS Documentation, Release 5.2.1

Automatically loading python files at startup

At startup, GPS will automatically load all python files found in the directories share/gps/plug-ins and
$HOME/.gps/plug-ins.

In addition, python files located under <prefix>/share/gps/python can be imported (using the import com-
mand) by any python script.

You can also set the PYTHONPATH environment variable to add other directories to the python search path.

Hiding contextual menus

GPS provides most of its tools through contextual menus, accessed by right clicking in various parts of GPS. Due
to the number of tools provided by GPS, these contextual menus tend to be big, and you might want to control what
should be displayed in them. There are several ways to control this:

• Define appropriate filters for your actions

If you are creating your own contextual menus through customization files and XML, these menus are associated
with actions (<action>) that you have created yourself most of the time. In this case, you need to define filters
appropriately, through the <filter> tag, to decide when the action is relevant, and therefore when the contextual
menu should be displayed.

• Use shell commands to hide the menus

If you want to control the visibility of predefined contextual menus, or for menus where you cannot easily
modify the associated filter, you can use shell and python commands to hide the menu entry. For this, you will
need to find out the name of the menu, which can be done by checking the list returned by GPS.Contextual.list()
and using the most likely entry. This name is also the value of the <title> tag for contextual menus that you
have created yourself. Using this name, you can then disable the contextual menu by executing:

GPS.Contextual ("name").hide()

in the python console

Creating custom graphical interfaces

GPS is based on the Gtk+ graphical toolkit, which is available under many platforms and for many programming
languages.

In particular, GPS comes with pygtk, a python binding to Gtk+. Using pygtk, you will be able to create your own
dialogs and graphical windows using the python capabilities provided by GPS.

See the menu Help->Python Extensions, in particular the GPS.MDI documentation, for a sample of code on how to
create your own graphical interfaces and integrate them in GPS.

16.8.8 Hooks

A hook is a named set of commands to be executed on particular occasions as a result of user actions in GPS.

GPS and its various modules define a number of standard hooks, which are called for instance when a new project is
loaded, when a file is edited, and so on. You can define your own commands to be executed in such cases.

You can find out the list of hooks that GPS currently knows about by calling the Hook.list function, which takes no
argument, and returns a list of hook names that you can use. More advanced description for each hook is available
through the Help->Python Extensions:

222 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

GPS> Hook.list
project_changed
open_file_action_hook
preferences_changed
[...]

Python> GPS.Hook.list()

The description of each hooks includes a pointer to the type of the hook, that is what parameters the subprograms in
this hook will receive. For instance:

The list of all known hook types can be found through the Hook.list_types command. This takes no argument and
returns a list of all known types of hooks. As before, you can more information for each of these type through a call
to Hook.describe_type.

Adding commands to hooks

You can add your own command to existing hooks through a call to the Hook.add command. Whenever the hook is
executed by GPS or another script, your command will also be executed, and will be given the parameters that were
specified when the hook is run. The first parameter is always the name of the hook being executed.

This Hook.add applies to an instance of the hook class, and takes one parameter, the command to be executed. This
is a subprogram parameter (Subprogram parameters).

• GPS shell

The command can be any GPS action (Defining Actions). The arguments for the hook will be passed to
the action, and are available as $1, $2, ...; In the following example, the message “Just executed the hook:
project_changed” will be printed in the Shell console. Note that we are defining the action to be executed inline,
but this could in fact be defined in a separate XML customization file for convenience:

GPS> parse_xml """<action name="my_action"><shell>echo "Just executed the hook"</shell></action_name>"""
GPS> Hook project_changed
GPS> Hook.add %1 "my_action"

• Python

The command must be a subprogram to execute. The arguments for the hook will be passed to this subprogram.
In the following example, the message “The hook project_changed was executed by GPS” will be displayed in
the Python console whenever the project changes:

def my_callback (name):
print "The hook " + name + " was executed by GPS"

GPS.Hook ("project_changed").add (my_callback)

The example above shows the simplest type of hook, which doesn’t take any argument. However, most hooks receive
several parameters. For instance, the hook “file_edited” receives the file name as a parameter.

• GPS shell

The following code will print the name of the hook (“file_edited”) and the name of the file in the shell console
every time a file is open by GPS:

GPS> parse_xml """<action name="my_action"><shell>echo name=$1 file=$2</shell></action>"""
GPS> Hook "file_edited"
GPS> Hook.add %1 "my_action"

• Python

16.8. Scripting GPS 223

GPS Documentation, Release 5.2.1

The following code prints the name of the file being edited by GPS in the python console whenever a new editor
is opened. The second argument is of type GPS.File:

def my_file_callback (name, file):
print "Editing " + file.name()

GPS.Hook ("file_edited").add (my_file_callback)

Action hooks

Some hooks have a special use in GPS. Their name always ends with “_action_hook”.

As opposed to the standard hooks described in the previous section, the execution of the action hooks stops as soon as
one of the subprograms returns a True value (“1” or “true”). The subprograms associated with that hook are executed
one after the other. If any such subprogram knows how to act for that hook, it should do the appropriate action and
return “1”.

Other action hooks expect a string as a return value instead of a boolean. The execution will stop when a subprogram
returns a non-empty string.

This mechanism is used extensively by GPS internally. For instance, whenever a file needs to be opened in an editor,
GPS executes the “open_file_action_hook” hook to request its editing. Several modules are connected to that hook.

One of the first modules to be executed is the external editor module. If the user has chosen to use an external editor,
this module will simply spawn Emacs or the external editor that the user has selected, and return 1. This immediately
stops the execution of the “open_file_action_hook”.

However, if the user doesn’t want to use external editors, this module will return 0. This will keep executing the hook,
and in particular will execute the source editor module, which will always act and open an editor internally in GPS.

This is a very flexible mechanism. In your own script, you could choose to have some special handling for files with a
”.foo” extension for instance. If the user wants to open such a file, you would spawn for instance an external command
(say “my_editor”) on this file, instead of opening it in GPS.

This is done with a code similar to the following:

from os.path import *
import os
def my_foo_handler(name, file, line, column,

column_end, enable_nav, new_file, reload):
if splitext(file.name())[1] == ".foo":

os.spawnv(
os.P_NOWAIT, "/usr/bin/emacs", ("emacs", file.name()))

return 1 ## Prevent further execution of the hook
return 0 ## Let other subprograms in the hook do their job

GPS.Hook("open_file_action_hook").add(my_foo_handler)

Running hooks

Any module in GPS is responsible for running the hooks when appropriate. Most of the time, the subprograms
exported by GPS to the scripting languages will properly run the hook. But you might also need to run them in your
own scripts.

As usual, this will result in the execution of all the functions bound to that hook, whether they are defined in Ada or in
any of the scripting languages.

This is done through the Hook.run command. This applies to an instance of the Hook class, and a variable number of
arguments These must be in the right order and of the right type for that specific type of hook.

224 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

If you are running an action hook, the execution will stop as usual as soon as one of the subprograms return a True
value.

The following example shows how to run a simple hook with no parameter, and a more complex hook with several
parameters. The latter will in fact request the opening of an editor for the file in GPS, and thus has an immediately
visible effect on the interface. The file is opened at line 100. See the description of the hook for more information on
the other parameters:

GPS.Hook ("project_changed").run()
GPS.Hook ("open_file_action_hook").run \\

(GPS.File ("test.adb"), 100, 1, 0, 1, 1, 1)

Creating new hooks

The list of hooks known to GPS is fully dynamic. GPS itself declares a number of hooks, mostly for its internal use
although of course you can also connect to them.

But you can also create your own hooks to report events happening in your own modules and programs. This way, any
other script or GPS module can react to these events.

Such hooks can either be of a type exported by GPS, which constraints the list of parameters for the callbacks, but make
such hooks more portable and secure; or they can be of a general type, which allows basically any kind of parameters.
In the latter case, checks are done at runtime to ensure that the subprogram that is called as a result of running the
hook has the right number of parameters. If this isn’t the case, GPS will complain and display error messages. Such
general hooks will also not pass their parameters to other scripting languages.

Creating new hooks is done through a call to Hook.register. This function takes two arguments: the name of the hook
you are creating, and the type of the hook.

The name of the hook is left to you. Any character is allowed in that name, although using only alphanumerical
characters is recommended.

The type of the hook must be one of the following:

• “” (the empty string)

This indicates that the hook doesn’t take any argument. None should be given to Hook.run, and none should be
expected by the various commands connected to that hook, apart from the hook name itself.

• one of the values returned by Hook.list_types

This indicates that the hook is of one of the types exported by GPS itself. The advantage of using such explicit
types as opposed to “general” is that GPS is able to make more tests for the validity of the parameters. Such
hooks can also be connected to from other scripting languages.

• “general”

This indicates that the hook is of the general type that allows any number of parameter, of any type. Other
scripts will be able to connect to it, but will not be executed when the hook is run if they do not expect the same
number of parameters that was given to Hook.run. Other scripts in other language will only receive the hook
name in parameter, not the full list of parameters.

A small trick worth noting: if the command bound to a hook doesn’t have the right number of parameters that this hook
provides, the command will not be executed and GPS will report an error. You can make sure that your command will
always be executed by either giving default values for its parameter, or by using python’s syntax to indicate a variable
number of arguments.

This is especially useful if you are connecting to a “general” hook, since you do not really know in advance how many
parameters the call of Hook.run will provide:

16.8. Scripting GPS 225

GPS Documentation, Release 5.2.1

This callback can be connected to any type of hook
def trace (name, *args):

print "hook=" + name

This callback can be connected to hooks with one or two parameters
def trace2 (name, arg1, arg2=100):

print "hook=" + str (arg1) + str (arg2)

Hook.register ("my_custom_hook", "general")
Hook ("my_custom_hook").add (trace2)
Hook ("my_custom_hook").run (1, 2) ## Prints 1 2
Hook ("my_custom_hook").run (1) ## Prints 1 100

16.9 Adding support for new Version Control Systems

16.9.1 Custom VCS interfaces

The Version Control interface in GPS can be customized, either to refine the behavior of the existing system and adapt
it to specific needs, or to add support for other Version Control systems.

Custom VCS interfaces are defined through XML files and Python plugins. Those files are read in the same location
as all the other XML and Python customizations that GPS offers. See Customizing through XML and Python files for
a complete description.

There are three steps to follow when creating a custom VCS interface. The first step is to describe the VCS itself, the
second step is to implement actions corresponding to all the operations that this VCS can perform, and the third step
is to define the layout of the menus. The following three sections (Describing a VCS, Implementing VCS actions, and
Implementing VCS menus) describe those steps.

GPS is distributed with XML/Python files describing the interfaces to ClearCase, CVS, Subversion, Git and Mercurial
(experimental support). These XML/Python files are located in the directory share/gps/plug-ins in the GPS installation,
and can be used as a reference for implementing new custom VCS interfaces.

16.9.2 Describing a VCS

The VCS node

The vcs node is the toplevel node which contains the description of the general behavior expected from the VCS. It
has the following attributes:

name The attribute name indicates the identifier of the VCS. The casing of this name is important, and the same
casing must be used in the project files.

absolute_names The attribute absolute_names indicates the behavior of the VCS relative to file names, and can take
the values TRUE or FALSE. If it is set to TRUE, it means that all commands in the VCS will work on absolute
file names. If it set to FALSE, it means that all actions work on base file names, and that GPS will move to the
appropriate directory before executing an action.

group_queries_by_directory The attribute group_queries_by_directory indicates that, when querying status for all
the source files in a directory, a query for the directory should be launched, instead of launching a query for
multiple files. This operation is faster on some Version Control systems. By default, this is set to FALSE.

ignore_file The attribute ignore_file specifies the name of the file used by the VCS Explorer to get the list of files to
ignore. By default for the CVS mode this is set to .cvsignore.

226 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

atomic_commands The attribute atomic_commands specifies if the VCS supports atomicity and can take the values
TRUE or FALSE. If it is set to TRUE it means that the VCS supports atomic commands. It is FALSE by default.
This attribute is important to trigger the activities group commit feature. See The VCS Activities.

path_style The attribute path_style specifies which kind of directory separator is supported by the VCS and can take
the values UNIX, DOS, Cygwin or System_Default. The later value is the default value. With this attribute it
is possible to control the directory separator to use when specifying files to the VCS. For the Cygwin case the
drive is specified as /cygdrive/<drive>.

dir_sep Alias for path_style, obsolescent.

commit_directory The attribute commit_directory specifies if the VCS supports commit on directories and can take
the values TRUE or FALSE. If it is set to TRUE it means that the VCS supports commit on directories this is the
case for Subversion for example.

administrative_directory The attribute administrative_directory specifies the name of the directory where the external
VCS stores the local repository information. For example for Subversion this is .svn. This information is used
when the project is setup to select automatically the external VCS. Version Control System.

prev_revision A string which can be used when querying revisions to indicate the previous revision of a file, for
instance “PREV” for subversion.

head_revision A string which can be used when querying revisions to indicate the latest revision of a file, for instance
“HEAD” for subversion.

require_log The attribute require_log specifies if the VCS require a log for the commit/add/delete actions. It can take
the values TRUE or FALSE. If it is set to TRUE GPS will ensure that a log is created for each file. If it is set to
FALSE GPS will not ask for log, it is expected to be handled by the external VCS.

Note that to support group commit with shared log on GPS both absolute_name and atomic_commands must be true.
This is the case for the Subversion VCS for example.

Here is an example, adapted to the use of CVS:

<vcs name="Custom CVS" absolute_names="FALSE">

(... description of action associations ...)
(... description of supported status ...)
(... description of output parsers ...)

</vcs>

Associating actions to operations

GPS knows about a certain set of predefined ‘operations’ that a VCS can perform. The user can decide to implement
some of them - not necessarily all of them - in this section.

The following node is used to associate a predefined operation to an action:

<OPERATION action="ACTION_LABEL" label="NAME OF OPERATION" />

Where:

OPERATION is the name of the predefined action. The list of predefined actions is described in Implementing VCS
actions,

ACTION_LABEL is the name of the corresponding gps Action that will be launched when GPS wants to ask the VCS
to perform OPERATION,

NAME OF OPERATION is the name that will appear in the GPS menus when working on a file under the control of
the defined VCS.

16.9. Adding support for new Version Control Systems 227

GPS Documentation, Release 5.2.1

Defining revision information

Some VCS reports revisions number from which it is possible to deduce the related branches. This is the case in CVS
for example where a revision number for a branch uses as prefix the branch point revision number. For such VCS it is
possible to specify two regular expressions:

‘parent_revision‘ Parse the revision number and report as first match the parent revision:

<parent_revision regexp="..." />

For CVS on 1.2.4.5 it must match 1.2.

‘branch_root_revision‘ Parse the revision number and report as first match the branch root revision:

<branch_root_revision regexp="..." />

For CVS on 1.2.4.5 it must match 1.2.4.

Defining status

All VCS have the notion of ‘status’ or ‘state’ to describe the relationship between the local file and the repository. The
XML node status is used to describe the status that are known to a custom VCS, and the icons associated to it:

<status label="STATUS_LABEL" stock="STOCK_LABEL" />

Where:

STATUS_LABEL is the name of the status, for example ‘Up to date’ or ‘Needs update’ in the context of CVS.

STOCK_LABEL is the stock identifier of the icon associated to this status, that will be used, for example, in the VCS
Explorer. See section Adding stock icons for more details on how to define stock icons.

Note that the order in which status are defined in the XML file is important: the first status to be displayed must
correspond to the status ‘Up-to-date’ or equivalent.

Output parsers

There are cases in which GPS needs to parse the output of the VCS commands: when querying the status, or when
‘annotating’ a file.

The following parsers can be implemented in the vcs node.

‘<status_parser>‘, ‘<local_status_parser>‘ and ‘<update_parser>‘ These parsers are used by the command
VCS.status_parse, to parse a string for the status of files controlled by a VCS.

They accept the following child nodes:

‘<regexp>‘ (mandatory) Indicates the regular expression to match.

‘<file_index>‘ An index of a parenthesized expression in regexp that contains the name of a file.

‘<status_index>‘ An index of a parenthesized expression in regexp that contains the file status. This status is
passed through the regular expressions defined in the status_matcher nodes, see below.

‘<local_revision_index>‘ An index of a parenthesized expression in regexp that contains the name of the local
revision (the version of the file that was checked out).

‘<repository_revision_index>‘ An index of a parenthesized expression in regexp that contains the name of the
repository revision (the latest version of the file in the VCS).

228 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

‘<status_matcher>‘ A regular expression which, when matching an expressions, identifies the status passed in
the node attribute label.

‘<annotations_parser>‘ This parser is used by the command VCS.annotations_parse, to parse a string for annotations
in a file controlled by a VCS.

It accepts the following child nodes:

‘<regexp>‘ (mandatory) Indicates the regular expression to match.

‘<repository_revision_index>‘ (mandatory) An index of a parenthesized expression in regexp that contains the
repository revision of the line.

‘<author_index>‘ An index of a parenthesized expression in regexp that contains the author of the line.

‘<date_index>‘ An index of a parenthesized expression in regexp that contains the date of the line.

‘<file_index>‘ An index of a parenthesized expression in regexp that indicates the part of the line that belongs
to the file.

‘<tooltip_pattern>‘ A template pattern that will be used to format the tooltip information. It can contain text
and reference parenthesized expressions in regexp using \‘n‘ (where n represents the nth expression in
regexp).

‘<log_parser>‘ This parser is used by the command VCS.log_parse, to parse a string for revision histories in a file
controlled by a VCS.

It accepts the following child nodes:

‘<regexp>‘ (mandatory) Indicates the regular expression to match.

‘<repository_revision_index>‘ (mandatory) An index of a parenthesized expression in regexp that contains the
repository revision of the log.

‘<author_index>‘ An index of a parenthesized expression in regexp that contains the author of the log.

‘<date_index>‘ An index of a parenthesized expression in regexp that contains the date of the log.

‘<log_index>‘ An index of a parenthesized expression in regexp that contains the actual text of the log.

‘<revision_parser>‘ This parser is used by the command VCS.revision_parse, to parse a string for revision tags and
branches in a file controlled by a VCS.

It accepts the following child nodes:

‘<regexp>‘ (mandatory) Indicates the regular expression to match.

‘<sym_index>‘ (mandatory) An index of a parenthesized expression in regexp that contains the tags or branches
symbolic name of the revision.

‘<repository_revision_index>‘ (mandatory) An index of a parenthesized expression in regexp that contains the
repository revision number of the revision.

16.9.3 Implementing VCS actions

A number of ‘standard’ VCS operations are known to GPS. Each of these operations can be implemented, using
Actions. See Defining Actions) for a complete description of how to implement actions.

Here is a list of all the defined VCS operations, and their parameters:

status_files

• $1 = whether the log files should be cleared when obtaining up-to-date status

16.9. Adding support for new Version Control Systems 229

GPS Documentation, Release 5.2.1

• $2- = the list of files to query status for.

Query the status for a list of files. This should perform a complete VCS query and return results as
complete as possible.

status_dir

• $1 = the directory.

Same as above, but works on all the files in one directory.

status_dir_recursive

• $1 = the directory.

Same as above, but works on all the files in one directory and all subdirectories, recursively.

local_status_files

• $* = list of files

Query the local status for specified files. This query should be as fast as possible, not connecting to any
remote VCS. The results need not be complete, but it is not useful to implement this command if the
output does not contain at least the working revision.

open

• $* = list of files

Open files or directories for editing. This command should be implemented on any VCS that require an
explicit check-out/open/edit action before being able to edit a file.

update

• $* = list of files

Bring the specified files in sync with the latest repository revision.

resolved

• $* = list of files

Mark files’ merge conflics as resolved. Some version control systems (like Subversion) will block any
commit until this action is called.

commit

• $1 = log file

• $2- = list of files

Commit/submit/check-in files or directories with provided log. The log is passed in a file.

commit_dir

• $1 = log

• $2 = directory

Commit/submit one directory with provided log. The log is passed in a file.

history_text

• $1 = file

Query the entire changelog history for the specified file. The result is expected to be placed into an editor
as plain text.

history

230 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

• $1 = file

Query the entire changelog history for the specified file. The result is expected to be placed into a Revision
View.

history_revision

• $1 = revision

• $2 = file

Query the history for corresponding revision of the specified file.

annotate

• $1 = file

Query the annotations for a file.

add

• $1 = log

• $2- = list of files or dirs

Add files/dirs to the repository, with the provided revision log. The added files/dirs are commited.

add_no_commit

• $1 = log

• $2- = list of files or dirs

Add files/dirs to the repository, with the provided revision log. The added files/dirs are not commited.

remove

• $1 = log

• $2 = file or dir

Remove file/dir from the repository, with the provided revision log.

remove_no_commit

• $1 = log

• $2 = file or dir

Remove file/dir from the repository, with the provided revision log. The removed files/dirs are not com-
mited.

revert

• $* = files

Revert the local file to repository revision, cancelling all local changes, and close the file for editing if it
was open.

diff_patch

• $1 = file

Create a textual diff for the given file. This command is used to build the activity patch file.

diff_head

16.9. Adding support for new Version Control Systems 231

GPS Documentation, Release 5.2.1

• $1 = file

Display a visual comparison between the local file and the latest repository revision. The diff command
must report a normal diff as opposed to context or unified ones.

diff_base_head

• $1 = file

Display a visual comparison between the revision from which the file has been checked-out and the latest
revision. The diff command must report a normal diff as opposed to context or unified ones.

diff_working

• $1 = file

Display a visual comparison between the local file and the revision from which it was obtained. The diff
command must report a normal diff as opposed to context or unified ones.

diff

• $1 = rev

• $2 = file

Display a visual comparison between the local file and the specified revision. The diff command must
report a normal diff as opposed to context or unified ones.

diff2

• $1 = revision 1

• $2 = revision 2

• $3 = file

Display a visual comparison between the two specified revisions of the file. The diff command must
report a normal diff as opposed to context or unified ones.

16.9.4 Implementing VCS menus

GPS defines a standard set of Actions to interact with Version Control Systems. All these actions can be viewed, for
instance, in the “VCS” of the Key Shortcuts dialog (see The Key Manager Dialog).

A Python facility exists in plugin vcs.py to associate menu items to VCS actions. This facility defines in one place the
VCS menus that are to be displayed in the global VCS menu, in the contextual menus on contexts that contain files,
and on the menus in the VCS explorer.

To use this facility, you must first define a list of associations in Python, and then register this list through a call to
vcs.register_vcs_actions.

This function takes as parameter:

the name of the version control system as defined in the name attribute of the vcs node in the XML definition.

a list of dictionaries of the form ACTION : <name of the vcs action>, LABEL: <menu label>. The predefined SEP-
ARATOR dictionary can be used to indicate a separator which will be displayed in the contextual menus on file
and on the VCS Explorer.

If you have defined a custom VCS in a previous version of GPS, you will need to define your menus through this
facility. The easiest is to simply copy one of the existing plugins (for instance subversion.py or clearcase.py) and
simply change the first parameter in the call to register_vcs_actions.

232 Chapter 16. Customizing and Extending GPS

GPS Documentation, Release 5.2.1

16.10 The Server Mode

In order to give access to the GPS capabilities from external processes (e.g. Emacs), GPS can be launched in server
mode.

The two relevant command line switches are –server and –hide.

–server will open a socket on the given port, allowing multiple clients to connect to a running GPS, and sending GPS
shell or python commands.

–hide tells GPS not to display its main window when starting. note that under unix systems, you still need to have
access to the current screen (as determined by the DISPLAY environment variable) in this mode.

Using the two switches together provides a way to launch GPS as a background process with no initial user interface.

Clients connecting through a standard socket have access to a simple shell using GPS>> as the separating prompt
between each command. This is needed in order to determine when the output (result) of a command is terminated.

All the GPS shell commands (as defined in The GPS Shell) are available from this shell. In addition, the python
interpreter, if enabled, is also available through the use of the python prefix before a python command.

For example, sending pwd through the socket will send the pwd command through the GPS shell and display the result
on the socket; similarly, sending python GPS.pwd() will send the GPS.help() command through the python interpreter
(see The Python Interpreter for more details).

The socket shell provides also additional commands:

• logout This command will inform the GPS server that the connection should now be closed.

• id <string> This command will register the current session with a given string. This string can then be used
within GPS itself (for example via a .xml or python plug-in) to display extra information to the client via the
socket, using the command GPS.Socket().send.

For example, let suppose that we start gps with the –server=1234 command: this will bring up GPS as usual.

Now, on a separate terminal, create a simple client by typing the following:

telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’^]’.
GPS>> id test-1
id set to ’test-1’
GPS>> pwd
c:\\working-dir\\
GPS>>

Then in the GPS Python Console:

>>> GPS.Socket ("test-1").send ("hello, it’s time to logout\\n");

At this point, the following is received on the client (telnet) side:

GPS>> hello, it’s time to logout

We can then close the client:

logout
Connection closed by foreign host.

16.10. The Server Mode 233

GPS Documentation, Release 5.2.1

16.11 Adding project templates

The Project template wizard lists a selection of templates. The default set is found automatically by GPS in the
share/gps/templates directory of your GPS installation.

It is possible to register new directories in which GPS will look for templates, by using the Shell/Python command
GPS.ProjectTemplate.add_templates_dir.

To create a new project template, first create a subdirectory in the share/gps/templates/ directory, or in one of the
directories which has been registered through GPS.ProjectTemplate.add_templates_dir. Then, in this directory, create
one template description file.

A template description file is a text file with the .gpt extension, with the following syntax:

Name: <name>
Category: <category>
Project: <project file>
<optional_hook_line>

<variable_1>: <variable_1_default_value>: <variable_1_description>
<variable_2>: <variable_2_default_value>: <variable_3_description>
<etc>

[Description]
<the description>

Where the following should be defined:

• <name> The name of the template as it will appear in the template tree in the project template wizard.

• <category> The category in which the template will be inserted in the template tree. There can be multiple levels
of categories, separated with /.

• <variable_1> A name which will be substituted in the template files when deploying the template, see below.

• <variable_1_default_value> The default value for variable 1, which will appear in the project template wizard.

• <variable_1_description> The description of variable 1.

• <optional_hook_line> An optional line of the form post_hook: <python_file> where <python_file> is the name
of a Python file present in the same directory as the template description file. This Python file will be run by
GPS once, right after the project template is deployed

• <description> A short paragraph describing the project template. This paragraph will be displayed in the project
template wizard when the template is selected in the tree.

When deploying templates, GPS will copy in the destination directory chosen by the use all files and directories
present in the directory that contains the template description file, except the Python file indicated as post_hook, and
the template description file itself.

As it deploys templates, GPS will replace strings of the form @code{@_<variable_name>_} with the value of the
variable. If <variable_name> is all lower case, the substitution will be transformed to lower-case. If <variable_name>
is in Mixed_Case, the substitution will be transformed into Mixed_Case as well. If it is in upper case, then the
substitution will contain the original value specified by the user.

234 Chapter 16. Customizing and Extending GPS

CHAPTER

SEVENTEEN

ENVIRONMENT

17.1 Command Line Options

The command line options are:

Usage:
gps [options] [-Pproject-file] [[+line] source1] [[+line] source2] ...

Options:
--help Show this help message and exit
--version Show the GPS version and exit
--debug[=program] Start a debug session and optionally load the

program with the given arguments
--debugger debugger Specify the debugger’s command line
--hide Hide GPS main window
--host=tools_host Use tools_host to launch tools (e.g. gdb)
--target=TARG:PRO Load program on machine TARG using protocol PRO
--load=lang:file Execute an external file written in the

language lang
--eval=lang:file Execute an in-line script written in the

language lang
--readonly Open all files in read-only mode
--server=port Start GPS in server mode, opening a socket on the

given port
--tracelist Output the current configuration for logs
--traceon=name Activate the logs for a given module
--traceoff=name Deactivate the logs for a given module
--tracefile=file Parse an alternate configuration file for the logs

Source files can be absolute or relative pathnames.
If you prepend a file name with ’=’, this file will be
searched anywhere on the project’s source path

To open a file at a given line, use the ’+line’ prefix, e.g.
gps +40 source.adb

‘tools_host‘ corresponds to a remote host’s nickname as defined in
:ref:‘Setup_the_remote_servers‘.

17.2 Environment Variables

The following environment variables can be set to override some default settings in GPS:

235

GPS Documentation, Release 5.2.1

GPS_HOME Override the variable HOME if present. All the configuration files and directories used by
GPS are either relative to $HOME/.gps (%HOME%\.gps under Windows) if GPS_HOME is not set, or to
$GPS_HOME/.gps (respectively %GPS_HOME%\.gps) if set.

GPS_DOC_PATH Set the search path for the documentation. Adding New Help Files.

GPS_CUSTOM_PATH Contains a list of directories to search for custom files. See Customizing through XML and
Python files for more details.

GPS_CHANGELOG_USER Contains the user and e-mail to use in the global ChangeLog files. Note that the com-
mon usage is to have two spaces between the name and the e-mail. Ex: “John Does <john.doe@home.com>”

GPS_STARTUP_PATH Contains the value of the PATH environment variable just before GPS was started. This
is used by GPS to restore the proper environment before spawning applications, no matter what particular
directories it needed to set for its own purpose.

GPS_STARTUP_LD_LIBRARY_PATH Same as GPS_STARTUP_LD_LIBRARY_PATH but for the
LD_LIBRARY_PATH variable.

GPS_MEMORY_MONITOR If set, GPS will add special code on every allocation and deallocation, thus slowing
things down a bit, that makes it possible to check where the biggest amount of memory is allocated, through the
GPS.debug_memory_usage python command.

GPS_PYTHONHOME If set, the Python interpreter will look for libraries in the subdirectory lib/python<version>
of the directory contained in GPS_PYTHONHOME.

GNAT_CODE_PAGE This variable can be set to CP_ACP or CP_UTF8 and is used to control the code page used
on Windows platform. The default is CP_UTF8 to support more languages. If file or directory names are using
accents for example it may be necessary to set this variable to CP_ACP which is the default Windows ANSI
code page.

GPS_ROOT Override and hardcode the default root installation directory. This variable should in general not be
needed, except by GPS developers, in some rare circumstances. GPS will find all its resource files (e.g. images,
plug-ins, xml files) from this root prefix, so setting GPS_ROOT to a wrong value will cause GPS to misbehave.

17.3 Running GPS on Mac OS X

The current version of GPS on Mac OS X requires an X11 server. Such a server is distributed with Mac OS X Panther
and Mac OS X Tiger.

Additionally, if you are launching GPS from a standard Terminal, you need to specify the display on which to launch
GPS, by typing:

export DISPLAY=:0

before launching GPS.

Note: GPS does not support files with line endings in CR.

17.4 Files

$HOME/.gps GPS state directory. Defaults to C:\.gps under Windows systems if HOME or USERPROFILE envi-
ronment variables are not defined.

$HOME/.gps/log Log file created automatically by GPS. When GPS is running, it will create a file named
log.<pid>, where <pid> is the GPS process id, so that multiple GPS sessions do not clobber each other’s

236 Chapter 17. Environment

mailto:john.doe@home.com

GPS Documentation, Release 5.2.1

log. In case of a successful session, this file is renamed log when exiting; in case of an unexpected exit (a bug
box will be displayed), the log file is kept under its original name.

Note that the name of the log file is configured by the traces.cfg file.

$HOME/.gps/aliases File containing the user-defined aliases (Defining text aliases).

$HOME/.gps/plug-ins Directory containing files with user-defined plug-ins. All xml and python files found under
this directory are loaded by GPS during start up. You can create/edit these files to add your own menu/tool-bar
entries in GPS, or define support for new languages. Customizing through XML and Python files and Adding
support for new languages.

$HOME/.gps/keys.xml Contains all the key bindings for the actions defined in GPS or in the custom files. This only
contains the key bindings overridden through the key shortcuts editor (see The Key Manager Dialog).

$HOME/.gps/gtkrc Configuration and theme file for gtkrc. This file can be edited to activate gtk+ specific aspects, or
change the look of GPS in some measure. Mostly, everything can be done through the standard GPS preferences,
but this file can be used to get access to the old GPS preference “Dynamic Key Binding”. This preference
activated a gtk+ behavior were key shortcuts for menu can be changed by simply pressing the appropriate key
combination when the mouse is over that menu. It has various dangereous aspects and is not fully supported by
GPS, so was removed as a preference, but you can add the following line in gtkrc to get this back:

gtk-can-change-accels=1

$HOME/.gps/actions.xml Contains the definition of all the actions that were defined through the graphical interface.
This is loaded last, and overrides all actions defined elsewhere.

$HOME/.gps/perspectives.xml Desktop file in XML format (using the menu File->Save More->Desktop), loaded
automatically if found.

$HOME/.gps/locations.xml This file contains the list of locations that GPS has previously edited. It corresponds to
the history navigation (Navigate->Back and Navigate->Forward)

$HOME/.gps/properties.xml This file is used to store file-specific properties across GPS sessions. In particular, it
contains the encoding to use for various files when the default encoding isn’t appropriate.

$HOME/.gps/histories.xml Contains the state and history of combo boxes (e.g. the Run->Custom... dialog).

$HOME/.gps/targets.xml Contains the build targets defined by the user.

$HOME/.gps/preferences Contains all the preferences in XML format, as specified in the preferences menu.

$HOME/.gps/traces.cfg Default configuration for the system traces. These traces are used to analyze problems with
GPS. By default, they are sent to the file $HOME/.gps/log.<pid>.

This file is created automatically when the $HOME/.gps/ directory is created. If you remove it manually, it
won’t be recreated the next time you start GPS.

$HOME/.gps/startup.xml This file contains the list of scripts to load at startup, as well as additional code that need
to be executed to setup the script.

$HOME/.gpe/activity_log.tmplt Template file used to generate activities’ group commit-log and patch file’s header.
If not present the system wide template (see below) is used. The set of configurable tags are described into this
template.

prefix The prefix directory where GPS is installed, e.g /opt/gps.

prefix/bin The directory containing the GPS executables.

prefix/etc/gps The directory containing global configuration files for GPS.

prefix/lib This directory contains the shared libraries used by GPS.

prefix/share/doc/gps/html GPS will look for all the documentation files under this directory.

17.4. Files 237

GPS Documentation, Release 5.2.1

prefix/share/examples/gps This directory contains source code examples.

prefix/share/examples/gps/language This directory contains sources showing how to provide a shared library to
dynamically define a new language. See Adding support for new languages.

prefix/share/examples/gps/tutorial This directory contains the sources used by the GPS tutorial.

See gps-tutorial.html.

prefix/share/gps/plug-ins Directory containing files with system-wide plug-ins (xml and python files) loaded auto-
matically at start-up.

prefix/share/gps/library Directory containing files with system-wide plug-ins (xml and python files) that are not
loaded automatically at startup, but can be selected in the Plug-ins editor.

prefix/share/gps/gps-animation.png Default image displayed in the top right corner of GPS when GPS is idle.

prefix/share/gps/gps-animation.gif Animated image displayed in the top right corner of GPS to indicate that actions
(e.g compilation) are on going. If you remove this file, the idle image (gps-animation.png) will always
be displayed.

prefix/share/gps/gps-splash.png Splash screen displayed by default when GPS is started.

prefix/share/gps/perspectives.xml This is the description of the default desktop that GPS uses when the user hasn’t
defined his own default desktop and no project specific desktop exists. You can modify this file if you want,
knowing that this will impact all users of GPS sharing this installation. The format of this file is the same as
$HOME/.gps/perspectives.xml, which can be copied from your own directory if you wish.

prefix/share/gps/default.gpr Default project used by GPS. Can be modified after installation time to provide useful
default for a given system or project.

prefix/share/gps/readonly.gpr Project used by GPS as the default project when working in a read-only directory.

prefix/share/gps/activity_log.tmplt Template file used by default to generate activities’ group commit-log and patch
file’s header. This file can be copied into user home directory and customized (see above).

prefix/share/locale Directory used to retrieve the translation files, when relevant.

17.5 Reporting Suggestions and Bugs

If you would like to make suggestions about GPS, or if you encountered a bug, please report it to
mailto:report@gnat.com if you are a supported user, and to mailto:gps-devel@lists.act-europe.fr otherwise.

Please try to include a detailed description of the problem, including sources to reproduce it if possible/needed, and/or
a scenario describing the actions performed to reproduce the problem, as well as the tools (e.g debugger, compiler,
call graph) involved.

The files $HOME/.gps/log may also bring some useful information when reporting a bug.

In case GPS generates a bug box, the log file will be kept under a separate name ($HOME/.gps/log.<pid> so that
it does not get erased by further sessions. Be sure to include the right log file when reporting a bug box.

17.6 Solving Problems

This section addresses some common problems that may arise when using or installing GPS.

Non-privileged users cannot start GPS Q: I have installed GPS originally as super user, and ran GPS successfully,
but normal users can’t.

238 Chapter 17. Environment

mailto:report@gnat.com
mailto:gps-devel@lists.act-europe.fr

GPS Documentation, Release 5.2.1

A: You should check the permissions of the directory $HOME/.gps and its subdirectories, they should be owned
by the user.

GPS crashes whenever I open a source editor This is usually due to font problems. Editing the file
$HOME/.gps/preferences and changing the name of the fonts, e.g changing Courier by Courier Medium,
and Helvetica by Sans should solve the problem.

GPS refuses to start the debugger If GPS cannot properly initialize the debugger (using the menu Debug-
>Initialize), it is usually because the underlying debugger (gdb) cannot be launched properly. To verify this, try
to launch the ‘gdb’ command from a shell (i.e outside GPS). If gdb cannot be launched from a shell, it usually
means that you are using a wrong version of gdb (e.g a version of gdb built for Solaris 8, but run on Solaris 2.6).

GPS is frozen during a debugging session If GPS is no longer responding while debugging an application you
should first wait a little bit, since some communications between GPS and gdb can take a long time to fin-
ish. If GPS is still not responding after a few minutes, you can usually get the control back in GPS by either
typing Ctrl-C in the shell where you’ve started GPS: this should unblock it; if it does not work, you can kill
the gdb process launched by GPS using the ps and kill, or the top command under Unix,

and the Task Manager under Windows: this will terminate your debugging session, and will unblock GPS.

My Ada program fails during elaboration. How can I debug it ? If your program was compiled with GNAT, the
main program is generated by the binder. This program is an ordinary Ada (or C if the -C switch was used)
program, compiled in the usual manner, and fully debuggable provided that the -g switch is used on the gnatlink
command (or -g is used in the gnatmake command itself).

The name of this package containing the main program is b~xxx.ads/adb where xxx is the name of the Ada
main unit given in the gnatbind command, and you can edit and debug this file in the normal manner. You will
see a series of calls to the elaboration routines of the packages, and you can debug these in the usual manner,
just as if you were debugging code in your application.

How can I debug the Ada run-time library ?

The run time distributed in binary versions of GNAT hasn’t been compiled with debug information. Thus,
it needs to be recompiled before you can actually debug it.

The simplest is to recompile your application by adding the switches -a and -f to the gnatmake command
line. This extra step is then no longer required, assuming that you keep the generated object and ali files
corresponding to the GNAT run time available.

Another possibility on Unix systems is to use the file Makefile.adalib that can be found in the adalib
directory of your GNAT installation and specify e.g -g -O2 for the CFLAGS switches.

The GPS main window is not displayed

If when launching GPS, nothing happens, you can try to rename the .gps directory (see Files) to start
from a fresh set up.

My project have several files with the same name. How can I import it in GPS?

GPS’s projects do not allow implicit overriding of sources file, i.e. you cannot have multiple times the
same file name in the project hierarchy. The reason is that GPS needs to know exactly where the file is,
and cannot reliably guess which occurrence to use.

There are several solutions to handle this issue:

Put all duplicate files in the same project

There is one specific case where a project is allowed to have duplicate source files: if the list of
source directories is specified explicitly. All duplicate files must be in the same project. With
these conditions, there is no ambiguity for GPS and the GNAT tools which file to use, and the
first file found on the source path is the one hiding all the others. GPS only shows the first file.

17.6. Solving Problems 239

GPS Documentation, Release 5.2.1

You can then have a scenario variable that changes the order of source directories to give
visibility on one of the other duplicate files.

Use scenario variables in the project

The idea is that you define various scenarios in your project (For instance compiling in “debug”
mode or “production” mode), and change the source directories depending on this setup. Such
projects can be edited directly from GPS (in the project properties editor, this is the right part
of the window, as described in this documentation). On top of the project view (left part of
the GPS main window), you have a combo box displayed for each of the variable, allowing a
simple switch between scenarios depending on what you want to build.

Use extending projects

These projects cannot currently be created through GPS, so you will need to edit them by hand.
See the GNAT user’s guide for more information on extending projects.

The idea behind this approach is that you can have a local overriding of some source files from
the common build/source setup (if you are working on a small part of the whole system, you
may not want to have a complete copy of the code on your local machine).

GPS is very slow compared to previous versions under unix (GPS < 4.0.0)

GPS versions 4.x need the X RENDER extension when running under unix systems to perform at a
reasonable speed, so you need to make sure your X server properly supports this extension.

Using the space key brings the smart completion window under Ubuntu

This is specific to the way GNOME is configured on Ubuntu distributions. To address this incompatibility,
close GPS, then go to the GNOME menu System->Preferences->Keyboard (or launch gnome-keyboard-
properties).

Select the Layout tab, click on Layout Options. Then click twice on Using space key to input non-
breakable space character and then select Usual space at any level and then close the dialogs.

GPS crashes on some GNU/Linux distributions at start up

Look at the ~/.gps/log.xxx file and if there is a message that looks like:

[GPS.MAIN_WINDOW] 1/16 loading gps-animation.png [UNEXPECTED_EXCEPTION]
1/17 Unexpected exception: Exception name: CONSTRAINT_ERROR _UNEX-
PECTED_EXCEPTION_ Message: gtk-image.adb:281 access check failed

Then it means there is a conflict with ~/.local/share/mime/mime.cache. Removing this file
will solve this conflict.

240 Chapter 17. Environment

CHAPTER

EIGHTEEN

SCRIPTING API REFERENCE FOR GPS

This package groups all the classes and functions exported by the GNAT Programming System.

These functions are made available through various programming languages (Python and the GPS shell at the moment).
The documentation in this package is mostly oriented towards Python, but it can also be used as a reference for the
GPS shell

18.1 Function description

For all functions, the list of parameters is given. The first parameter will often be called “self”, and refers to the
instance of the class to which the method applies. In Python, the parameter is generally put before the method’s name,
as in:

self.method(arg1, arg2)

Although it could also be called as in:

method(self, arg1, arg2)

For all other parameters, their name and type are specified. An additional default value is given when the parameter is
optional. If no default value is specified, the parameter is mandatory and should always be specified. The name of the
parameter is relevant if you chose to use Python’s named parameters feature, as in:

self.method(arg1="value1", arg2="value2")

which makes the call slightly more readable. The method above would be defined with three parameters in this
documentation (resp. “self”, “arg1” and “arg2”).

Some examples are also provides for several functions, to help clarify the use of the function.

18.2 User data in instances

A very useful feature of python is that all class instances can be associated with any number of user data fields. For
example, if you create an instance of the class GPS.EditorBuffer, you can associate two fields “field1” and “field2” to
it (the names and number are purely for demonstration purposes, and you can use your own), as in:

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.field1 = "value1"
ed.field2 = 2

241

GPS Documentation, Release 5.2.1

GPS takes great care for most classes of always returning the same python instance for a given GUI object. For
instance, if you were to get another instance of GPS.EditorBuffer for the same file as above, you would in fact receive
the same Python instance, and thus the two fields are available to you, as in:

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.field1 is still "value1"

This is a very convenient way to store your own data associated with the various objects exported by GPS. These
data will cease to exist when the GPS object itself is destroyed (for instance when the editor is closed in the example
above).

18.3 Hooks

In a lot of cases, you will need to connect to specific hooks exported by GPS to be aware of events happening in
GPS (loading of a file, closing a file,...). These hooks and their use are described in the GPS manual (see also the
GPS.Hook class).

Here is a small example, where the function on_gps_started is called when the GPS window is fully visible to the user:

import GPS
def on_gps_started(hook):

pass

GPS.Hook("gps_started").add(on_gps_started)

The list of parameters for the hooks is described for each hook below. The first parameter is always the name of the
hook, so that the same function can be used for multiple hooks if necessary.

There are two categories of hooks: the standard hooks and the action hooks. The former return nothing, the latter
return a boolean indicating whether your callback was able to perform the requested action. They are used to override
some of GPS’s internal behavior.

18.4 Functions

GPS.add_location_command(command)
Add a command to the navigation buttons in the toolbar. When the user presses the back button, this command
will be executed, and should put GPS in a previous state. This is for instance used while navigating in the HTML
browsers to handle the back button

Parameters command – A string

GPS.base_name(filename)
Returns the base name for the given full path name

Parameters filename – A string

GPS.cd(dir)
Change the current directory to dir

Parameters dir – A string

GPS.compute_xref()
Update the cross-reference information stored in GPS. This needs to be called after major changes to the sources
only, since GPS itself is able to work with partially up-to-date information

242 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.contextual_context()
Returns the context at the time the contextual menu was open.

This function will only return a valid context while the menu is open, or while an action executed from that menu
is executed. You can store your own data in the returned instance, so that for instance you can precompute some
internal data in the filters for the contextual actions (see <filter> in the XML files), and reuse that precomputed
data when the menu is executed. See also the documentation for “contextual_menu_open” hook.

Returns An instance of GPS.FileContext, GPS.AreaContext,...

See Also:

GPS.current_context()

Here is an example that shows how to precompute some data when we
decide whether a menu entry should be displayed in a contextual menu,
and reuse that data when the action executed through the menu is
reused.

import GPS

def on_contextual_open(name):
context = GPS.contextual_context()
context.private = 10
GPS.Console().write("creating data " + ‘context.private‘ + ’\n’)

def on_contextual_close(name):
context = GPS.contextual_context()
GPS.Console().write("destroying data " + ‘context.private‘ + ’\n’)

def my_own_filter():
context = GPS.contextual_context()
context.private += 1
GPS.Console().write("context.private=" + ‘context.private‘ + ’\n’)
return 1

def my_own_action():
context = GPS.contextual_context()
GPS.Console().write("my_own_action " + ‘context.private‘ + ’\n’)

GPS.parse_xml(’’’
<action name="myaction%gt;"

<filter shell_lang="python"
shell_cmd="contextual.my_own_filter()" />

<shell lang="python">contextual.my_own_action()</shell>
</action>

<contextual action="myaction">
<Title>Foo1</Title>

</contextual>
<contextual action="myaction">

<Title>Foo2</Title>
</contextual>

’’’)

GPS.Hook("contextual_menu_open").add(on_contextual_open)
GPS.Hook("contextual_menu_close").add(on_contextual_close)

The following example does almost the same thing as the above, but
without relying on the hooks to initialize the value. We set the value

18.4. Functions 243

GPS Documentation, Release 5.2.1

in the context the first time we need it, instead of every time the
menu is open.

import GPS

def my_own_filter2():
try:

context = GPS.contextual_context()
context.private2 += 1

except AttributeError:
context.private2 = 1

GPS.Console().write("context.private2=" + ‘context.private2‘ + ’\n’)
return 1

def my_own_action2():
context = GPS.contextual_context()
GPS.Console().write(

"my_own_action, private2=" + ‘context.private2‘ + ’\n’)

GPS.parse_xml(’’’
<action name="myaction2">

<filter shell_lang="python"
shell_cmd="contextual.my_own_filter2()" />

<shell lang="python">contextual.my_own_action2()</shell>
</action>
<contextual action="myaction2">

<Title>Bar1</Title>
</contextual>
<contextual action="myaction2">

<Title>Bar2</Title>
</contextual>

’’’)

GPS.current_context()
Returns the current context in GPS. This is the currently selected file, line, column, project,... depending on
what window is currently active. From one call of this function to the next, a different instance is returned, and
therefore you shouldn’t store your own data in the instance, since you will not be able to recover it later on

Returns An instance of GPS.FileContext, GPS.AreaContext,...

See Also:

GPS.Editor.get_line()

GPS.MDI.current:() Access the current window

GPS.contextual_context()

GPS.delete(name)
Delete file/directory name from the file system

Parameters name – A string

GPS.dir(pattern=’‘)
list files following pattern (all files by default)

Parameters pattern – A string

Returns A list of strings

244 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.dir_name(filename)
Returns the directory name for the given full path name

Parameters filename – A string

GPS.dump(string, add_lf=False)
Dump string to a temporary file. Return the name of the file. If add_lf is TRUE, append a line feed at end of file

Parameters

• string – A string

• add_lf – A boolean

Returns A string, the name of the output file

GPS.dump_file(text, filename)
Writes text to filename on the disk. This is mostly intended for poor shells like the GPS shell which do not have
better solutions. In python, it is recommended to use python’s own mechanisms

Parameters

• text – A string

• filename – A string

GPS.dump_xref_db()
Dump in the file $HOME/.gps/db_dump the current contents of the cross-references database. This is intended
for debugging purposes only

GPS.exec_in_console(noname)
This function is specific to python. It executes the string given in argument in the context of the GPS Python
console. If you use the standard python’s exec() function instead, the latter will only modify the current context,
which generally will have no impact on the GPS console itself.

Parameters noname – A string

Import a new module transparently in the console, so that users can
immediately use it
GPS.exec_in_console("import time")

GPS.execute_action(action, *args)
Execute one of the actions defined in GPS. Such actions are either predefined by GPS or defined by the users
through customization files. See the GPS documentation for more information on how to create new actions.
GPS will wait until the command completes to return the control to the caller, whether you execute a shell
command, or an external process.

The action’s name can start with a ‘/’, and be a full menu path. As a result, the menu itself will be executed, just
as if the user had pressed it.

The extra arguments must be strings, and are passed to the action, which can use them through $1, $2,...

The list of existing actions can be found through the Edit->Actions menu.

The action will not be executed if the current context is not appropriate for this action.

Parameters

• action – Name of the action to execute

• args – Any number of string parameters

See Also:

GPS.execute_asynchronous_action()

18.4. Functions 245

GPS Documentation, Release 5.2.1

GPS.execute_action(action="Split vertically")
will split the current window vertically

GPS.execute_asynchronous_action(action, *args)
This command is similar to GPS.execute_action. However, commands that execute external applications or
menus are executed asynchronously: GPS.execute_asynchronous_action will immediately return, although the
external application might not have completed its execution

Parameters

• action – Name of the action to execute

• args – Any number of string parameters

See Also:

GPS.execute_action()

GPS.exit(force=False, status=‘0’)
Exit GPS, asking for confirmation if any file is currently modified and unsaved. If force is True, no check is
done.

Status is the exit status to return to the calling shell. 0 will generally mean success on all architectures.

Parameters

• force – A boolean

• status – An integer

GPS.freeze_xref()
Forces GPS to use the cross-reference information it already has in memory. GPS will no longer check on the
disk whether more recent information is available. This can provide a significant speedup in complex scripts
or scripts that need to analyze the cross-reference information for lots of files. In such cases, the script should
generally call GPS.Project.update_xref to first load all the required information in memory.

You need to explicitly call GPS.thaw_xref to go back to the default GPS behavior. Note the use of the “finally”
exception handling in the following example, which ensures that even if there is some unexpected exception,
the script always restores properly the default behavior.

See Also:

GPS.Project.update_xref()

GPS.thaw_xref()

try:
GPS.Project.root().update_xref(recursive=True)
GPS.freeze_xref()
... complex computation

finally:
GPS.thaw_xref()

GPS.get_build_mode()
Return the name of the current build mode. Return an empty string if no mode is registered.

GPS.get_build_output(target_name, shadow, background, as_string)
Return the result of the last compilation command

Parameters

• target_name – (optional) a string

246 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• shadow – (optional) a Boolean, indicating whether we want the output of shadow builds

• background – (optional) a Boolean, indicating whether we want the output of background
builds

• as_string – (optional) a Boolean, indicating whether the output should be returned as a
single string. By default the output is returned as a list in script languages that support it.

Returns A string or list, the output of the latest build for the corresponding target.

See Also:

GPS.File.make()

GPS.File.compile()

GPS.get_busy()
Return the “busy” state

See Also:

GPS.set_busy()

GPS.unset_busy()

GPS.get_home_dir()
Return the directory that contains the user-specific files. This directory always ends with a directory separator

Returns The user’s GPS directory

See Also:

GPS.get_system_dir()

log = GPS.get_home_dir() + "log"
will compute the name of the log file generated by GPS

GPS.get_system_dir()
Return the installation directory for GPS. This directory always ends with a directory separator

Returns The install directory for GPS

See Also:

GPS.get_home_dir()

html = GPS.get_system_dir() + "share/doc/gps/html/gps.html"
will compute the location of GPS’s documentation

GPS.get_tmp_dir()
Return the directory where gps creates temporary files. This directory always ends with a directory separator

Returns The install directory for GPS

GPS.insmod(shared_lib, module)
Dynamically register a new module, reading its code from shared_lib.

The library must define the following two symbols:

•_init: This is called by GPS to initialize the library itself

•__register_module: This is called to do the actual module registration, and should call the Register_Module
function in the GPS source code

This is work in progress, and not fully supported on all systems.

Parameters

18.4. Functions 247

GPS Documentation, Release 5.2.1

• shared_lib – Library containing the code of the module

• module – Name of the module

See Also:

GPS.lsmod()

GPS.is_server_local(server)
Tell if the specified server is the local machine.

Parameters server – The server. Possible values are “Build_Server”, “Debug_Server”, “Execu-
tion_Server” and “Tools_Server”.

Returns A boolean

GPS.last_command()
This function returns the name of the last action executed by GPS. This name is not ultra-precise: it will be
accurate only when the action is executed through a key binding. Otherwise, an empty string is returned.
However, the intent here is for a command to be able to check whether it is called multiple times in a row. For
this, this command will return the command set by GPS.set_last_command() if it was set.

Returns A string

See Also:

GPS.set_last_command()

def kill_line():
’’’Emulates Emacs behavior: when called multiple times, the cut line must be

appended to the previously cut one.’’’

The name of the command below is unknown to GPS. This is just a
string we use in this implementation to detect multiple consecutive
calls to this function. Note that this works whether the function is
called from the same key binding or not, and from the same GPS action
or not

append = GPS.last_command() == "my-kill-line":
GPS.set_last_command("my-kill-line")

GPS.lookup_actions()
This command returns the list of all known GPS actions. This doesn’t include menu names. All actions are
lower-cased, but the order in the list is not significant.

Returns A list of strings

See Also:

GPS.lookup_actions_from_key()

GPS.lookup_actions_from_key(key)
Given a key binding, for instance “control-x control-b”, this function returns the list of actions that could be
executed. Not all actions would be executed, though, since only the ones for which the filter matches are
executed. The name of the actions is always in lower cases.

Parameters key – A string

Returns A list of strings

See Also:

GPS.lookup_actions()

248 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.ls(pattern=’‘)
list files following pattern (all files by default)

Parameters pattern – A string

Returns A list of strings

GPS.lsmod()
Return the list of modules that are currently registered in GPS. Each facility in GPS is provided in a separate
module, so that users can choose whether to activate specific modules or not. Some modules can also be
dynamically loaded

Returns List of strings

See Also:

GPS.insmod()

GPS.parse_xml(xml)
Load an XML customization string. This string should contain one or more toplevel tags similar to what is
normally found in custom files, such as <key>, <alias>, <action>,..

Optionally you can also pass the full contents of an XML file, starting from the <?xml?> header.

Parameters xml – The XML string to parse

GPS.parse_xml(
’’’<action name="A"><shell>my_action</shell></action>

<menu action="A"><title>/Edit/A</title></menu>’’’)
Adds a new menu in GPS, which executes the command my_action

GPS.pwd()
Print name of current/working directory

Returns A string

This command will have the same return value as the standard Python command os.getcwd(). The current
directory can also be changed through a call to os.chdir(“dir”).

GPS.repeat_next(count)
This action will execute the next one <count> times.

Parameters count – An integer

GPS.reset_xref_db()
Reset the internal cross-reference database that GPS is using for most of its navigation facilities. You shouldn’t
have to call that yourself, since in general GPS should know by itself when it is necessary to refresh its database.
However, this might be used as a workaround if you think you have troubles with the cross-reference information
which isn’t accurate.

GPS.save_persistent_properties()
Forces an immediate save of the persistent properties that GPS maintains for files and projects (for instance the
text encoding, the programming language, the debugger breakpoints,...).

You do not have to call this subprogram explicitly in general, since this is done automatically by GPS on exit.

GPS.set_build_mode(mode=’‘)
Set the current build mode. If specified mode is not a registered mode, do nothing.

Parameters mode – Name of the mode to set

GPS.set_busy()
Activate the “busy” state in GPS by animating the GPS icon. This command can be called recursively, and
GPS.unset_busy should be called a corresponding number of time to stop the animation.

18.4. Functions 249

GPS Documentation, Release 5.2.1

See Also:

GPS.unset_busy()

GPS.get_busy()

GPS.set_last_command(command)
This function overrides the name of the last command executed by GPS. This new name will be the one returned
by GPS.last_command() until the user performs a different action. Thus, multiple calls of the same action in a
row will always return the value of the command parameter. See the example in GPS.last_command()

Parameters command – A string

See Also:

GPS.last_command()

GPS.supported_languages()
Return the list of languages for which GPS has special handling. Any file can be open in GPS, but some
extensions are recognized specially by GPS to provide syntax highlighting, cross-references, or other special
handling. See the GPS documentation on how to add support for new languages in GPS.

The returned list is sorted alphabetically, and the name of the language has been normalized (start with an upper
case, and use lowercases for the rest except after an underscore character)

Returns List of strings

GPS.supported_languages()[0]
=> return the name of the first supported language

GPS.thaw_xref()
See GPS.freeze_xref for more information

See Also:

GPS.freeze_xref()

GPS.unset_busy()
Reset the “busy” state

See Also:

GPS.set_busy()

GPS.get_busy()

GPS.version()
Return GPS version as a string.

Returns A string

18.5 Classes

18.5.1 GPS.Action

class GPS.Action(name)
This class gives access to the interactive commands in GPS. These are the commands to which the user can bind
a key shortcut, or for which we can create a menu. Another way to manipulate those commands is through the
XML tag <action>, but it might be more convenient to use python since you do not have to qualify the function
name as a result

250 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.ActionGPS.GUI

__init__(name)
Creates a new instance of Action. This is bound with either an existing action, or with an action that will
be created through GPS.Action.create(). The name of the action can either be a simple name, or a path
name to reference a menu, as in /Edit/Copy for instance.

Parameters name – A string

contextual(path, ref=’‘, add_before=True)
Create a new contextual menu associated with the command. This function is somewhat a duplicate of
GPS.Contextual.create, but with one major difference: the callback for the action is a python function that
takes no argument, whereas the callback for GPS.Contextual receives one argument.

Parameters

• path – A string

• ref – A string

• add_before – A boolean

create(on_activate, filter=’‘, category=’General’, description=’‘)
Export the function on_activate and make it interactive so that users can bind keys and menus to it. The
function should not require any argument, since it will be called with none.

filter is either the name of a predefined filter (a string), or a subprogram that receives the context as
a parameter, and should return True if the command can be executed within that context. This is used to
disable menu items when they are not available.

category is the category of the command in the /Edit/Key Shortcuts dialog.

description is the description of the command that appears in that dialog. If you are using python, a
convenient value is on_activate.__doc__, which avoids duplicating the comment.

The package gps_utils.py provides a somewhat more convenient python interface to make function inter-
actives (see gps_utils.interactive).

Parameters

• on_activate – A subprogram

• filter – A string or subprogram

• category – A string

• description – A string

key(key)
Associate a default key binding with the action. This will be ignored if the user has defined his own key
binding. Possible values for key can be experimented with by using the /Edit/Key Shortcuts dialog

Parameters key – A string

menu(path, ref=’‘, add_before=True)
Create a new menu associated with the command. This function is somewhat a duplicate of

18.5. Classes 251

GPS Documentation, Release 5.2.1

GPS.Menu.create(), but with one major difference: the callback for the action is a python function
that takes no argument, whereas the callback for GPS.Menu() receives one argument.

Parameters

• path – A string

• ref – A string

• add_before – A boolean

18.5.2 GPS.Activities

class GPS.Activities(name)
General interface to version control activities systems

__init__(name)
Creates a new activity and returns its instance

Parameters name – Activity’s name to be given to this instance

a=GPS.Activities("Fix loading order")
print a.id()

add_file(file)
Adds the file into the activity

Parameters file – An instance of GPS.File

commit()
Commit the activity

files()
Returns the activity’s files list

Returns A list of files

static from_file(file)
Returns the activity containing the given file

Parameters file – An instance of GPS.File

Returns An instance of GPS.Activities

static get(id)
Returns the activity given its id

Parameters id – The unique activity’s id

Returns An instance of GPS.Activities()

See Also:

GPS.Activities.list()

group_commit()
Returns true if the activity will be commit atomically

Returns A boolean

has_log()
Returns true if the activity has a log present

Returns A boolean

252 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

id()
Returns the activity’s unique id

Returns A string

is_closed()
Returns true if the activity is closed

Returns A boolean

static list()
Returns the list of all activities’s id

Returns A list of all activities’s id defined

log()
Returns the activity’s log content

Returns A string

log_file()
Returns the activity’s log file

Returns A file

name()
Returns the activity’s name :return: A string

remove_file(file)
Removes the file into the activity

Parameters file – An instance of GPS.File

set_closed(status)
Set the activity’s closed status

Parameters status – A boolean

toggle_group_commit()
Change the activity’s group commit status

vcs()
Returns the activity’s VCS name

Returns A string

18.5.3 GPS.AreaContext

class GPS.AreaContext
Represents a context that contains file information and a range of lines currently selected

See Also:

GPS.AreaContext.__init__()

GPS.Context GPS.FileContext GPS.AreaContext

18.5. Classes 253

GPS Documentation, Release 5.2.1

__init__()
Dummy function, whose goal is to prevent user-creation of a GPS.AreaContext instance. Such instances
can only be created internally by GPS

end_line()
Return the last selected line in the context

Returns An integer

start_line()
Return the first selected line in the context

Returns An integer

18.5.4 GPS.Bookmark

class GPS.Bookmark
This class provides access to the bookmarks of GPS. These are special types of markers that are saved across
sessions, and can be used to save a context within GPS. They are generally associated with a specific location in
an editor, but can also be used to location special boxes in a graphical browser for instance.

__init__()
This function prevents the creation of a bookmark instance directly. You must use
GPS.Bookmark.get() instead, which will always return the same instance for a given book-
mark, thus allowing you to save your own custom data with the bookmark

See Also:

GPS.Bookmark.get()

static create(name)
This function creates a new bookmark at the current location in GPS. If the current window is an editor, it
creates a bookmark that will save the exact line and column, so that the user can go back to them easily.
Name is the string that appears in the bookmarks window, and that can be used later to query the same
instance using GPS.Bookmark.get(). This function emits the hook bookmark_added.

Parameters name – A string

Returns An instance of GPS.Bookmark

See Also:

GPS.Bookmark.get()

GPS.MDI.get("file.adb").raise_window()
bm = GPS.Bookmark.create("name")

delete()
Delete an existing bookmark. This emits the hook bookmark_removed

static get(name)
This function retrieves a bookmark by its name. If no such bookmark exists, an exception is raised. The
same instance of GPS.Bookmark is always return for a given bookmark, so that you can store your own
user data within the instance. Note however that this custom data will not be automatically preserved
across GPS sessions, so you might want to save all your data when GPS exits

Parameters name – A string

Returns An instance of GPS.Bookmark

254 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

See Also:

GPS.Bookmark.create()

GPS.Bookmark.get("name").my_own_field = "GPS"
print GPS.Bookmark.get("name").my_own_field # prints "GPS"

goto()
Change the current context in GPS so that it matches the one saved in the bookmark. In particular, if the
bookmark is inside an editor, this editor is raised, and the cursor moved to the correct line and column.
You cannot query directly the line and column from the bookmark, since these might not exist, for instance
when the editor points inside a browser.

static list()
Return the list of all existing bookmarks

Returns A list of GPS.Bookmark instances

The following command returns a list with the name of all
existing purposes
names = [bm.name() for bm in GPS.Bookmark.list()]

name()
Return the current name of the bookmark. It might not be the same one that was used to create or get the
bookmark, since the user might have used the bookmarks view to rename it

Returns A string

rename(name)
Rename an existing bookmark. This updates the bookmarks view automatically, and emits the hooks
bookmark_removed and bookmark_added

Parameters name – A string

18.5.5 GPS.BuildTarget

class GPS.BuildTarget(name)
This class provides an interface to the GPS build targets. Build targets can be configured through XML or
through the Target Configuration dialog.

__init__(name)
Initializes a new instance of the class BuildTarget. Name must correspond to an existing target.

Parameters name – Name of the target associated with this instance

compile_file_target=GPS.BuildTarget("Compile File")
compile_file_target.execute()

clone(new_name, new_category)
Clone the target to a new target. All the properties of the new target are copied from the target. Any
graphical element corresponding to this new target is created.

Parameters

• new_name – The name of the new target

• new_category – The category in which to place the new target

execute(main_name=’‘, file=’‘, force=False, extra_args=’‘, build_mode=’‘, synchronous=True, di-
rectory=’‘, quiet=False)

Launch the build target:

18.5. Classes 255

GPS Documentation, Release 5.2.1

•main_name indicates the base name of the main source to build, if this target acts on a main file.

•file indicates the file to build if this targets acts on a file.

•if force is True, this means that the target should be launched directly, even if its parameters indicate
that it should be launched through an intermediary dialog.

•extra_args contains any extra parameters to pass to the command line.

•build_mode indicates build mode to be used for build.

•if synchronous is False, build target is launched asynchronously. compilation_finished
hook will be called when build target execution is completed.

param main_name A String

param file A GPS.File

param force A Boolean

param extra_args A String

param build_mode A String

param synchronous A Boolean

param directory A String

param quiet A Boolean

hide()
Hide target from menus and toolbar.

remove()
Remove target from the list of known targets. Any graphical element corresponding to this target is also
removed.

show()
Show target in menus and toolbar where it was before hiding.

18.5.6 GPS.Button

class GPS.Button(id, label, on_click)
This class represents a button that can be pressed to trigger various actions

See Also:

GPS.Button.__init__()

GPS.GUI GPS.Button

__init__(id, label, on_click)
Initializes a new button. When the button is pressed by the user, on_click is called with the a single
parameter, self.

Parameters

256 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• id – A string, a unique identifier for the button

• label – A string, the text that appears on the button

• on_click – A subprogram, see the GPS documentation

def on_click (button):
print "Button pressed"

button = GPS.Button ("my_id", label="Press me", on_click=on_click)
GPS.Toolbar().append (button)

set_text(label)
Change the text that appears on the button

Parameters label – A string

18.5.7 GPS.Clipboard

class GPS.Clipboard
This class provides an interface to the GPS clipboard. This clipboard contains the previous selections that were
copied or cut from a text editor. Several older selections are also saved so that they can be pasted later on

static contents()
This function returns the contents of the clipboard. Each item in the list corresponds to a past selection,
the one at position 0 being the most recent. If you want to paste text in a buffer, you should paste the text
at position GPS.Clipboard.current‘() rather than the first in the list

Returns A list of strings

static copy(text, append=False)
Copies a given static text into the clipboard. It is better in general to use GPS.EditorBuffer.copy(),
but it might happen that you need to append text that doesn’t exist in the buffer.

Parameters

• text – A string

• append – A boolean

See Also:

GPS.EditorBuffer.copy()

static current()
This function returns the index, in GPS.Clipboard.contents(), of the text that was last pasted by
the user. If you were to select the menu /Edit/Paste, that would be the text pasted by GPS. If you select
/Edit/Paste Previous, current will be incremented by 1, and the next selection in the clipboard will be pasted

Returns An integer

static merge(index1, index2)
This function merges two levels of the clipboard, so that the one at index index1 now contains the
concatenation of both. The one at index2 is removed.

Parameters

• index1 – A null or positive integer

• index2 – A null or positive integer

18.5. Classes 257

GPS Documentation, Release 5.2.1

18.5.8 GPS.CodeAnalysis

class GPS.CodeAnalysis
This class is a toolset that allows to handle CodeAnalysis instances.

__init__()
Raises an exception to prevent users from creating new instances.

add_all_gcov_project_info()
Adds coverage information of every source files referenced in the current project loaded in GPS, and every
imported projects.

See Also:

GPS.CodeAnalysis.add_gcov_project_info()

GPS.CodeAnalysis.add_gcov_file_info()

add_gcov_file_info(src, cov)
Adds coverage information provided by a .gcov file parsing. The data is read from the cov parameter, that
should have been created from the specified src file.

Parameters

• src – A GPS.File instance

• cov – A GPS.File instance

See Also:

GPS.CodeAnalysis.add_all_gcov_project_info()

GPS.CodeAnalysis.add_gcov_project_info()

a = GPS.CodeAnalysis.get ("Coverage Report")
a.add_gcov_file_info (src=GPS.File ("source_file.adb"), cov=GPS.File ("source_file.adb.gcov"))

add_gcov_project_info(prj)
Adds coverage information of every source files referenced in the given ‘prj’ gnat project file (.gpr).

Parameters prj – A GPS.File instance

See Also:

GPS.CodeAnalysis.add_all_gcov_project_info()

GPS.CodeAnalysis.add_gcov_file_info()

clear()
Removes all code analysis information from memory.

dump_to_file(xml)
Create an xml-formated file that contains a representation of the given code analysis.

Parameters xml – A GPS.File instance

See Also:

GPS.CodeAnalysis.load_from_file()

a = GPS.CodeAnalysis.get ("Coverage")
a.add_all_gcov_project_info ()
a.dump_to_file (xml=GPS.File ("new_file.xml"))

258 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

static get(name)
Creates an empty code analysis data structure. Data can be put in this structure by using one of the primitive
operations.

Parameters name – The name of the code analysis data structure to get or create

Returns An instance of GPS.CodeAnalysis associated to a code analysis data structure in
GPS.

a = GPS.CodeAnalysis.get ("Coverage")
a.add_all_gcov_project_info ()
a.show_coverage_information ()

hide_coverage_information()
Removes from the Locations view any listed coverage locations, and remove from the source editors their
annotation column if any.

See Also:

GPS.CodeAnalysis.show_coverage_information()

load_from_file(xml)
Replace the current coverage information in memory with the given xml-formated file one.

Parameters xml – A GPS.File instance

See Also:

GPS.CodeAnalysis.dump_to_file()

a = GPS.CodeAnalysis.get ("Coverage")
a.add_all_gcov_project_info ()
a.dump_to_file (xml=GPS.File ("new_file.xml"))
a.clear ()
a.load_from_file (xml=GPS.File ("new_file.xml"))

show_analysis_report()
Displays the data stored in the CodeAnalysis instance into a new MDI window. This window contains a
tree view that can be interactively manipulated to analyze the results of the code analysis (Coverage, ...).

show_coverage_information()
Lists in the Locations view the lines that are not covered in the files loaded in the CodeAnalysis instance.
The lines are also highlighted in the corresponding source file editors, and an annotation column is added
to the source editors.

See Also:

GPS.CodeAnalysis.hide_coverage_information()

18.5.9 GPS.Codefix

class GPS.Codefix(category)
This class gives access to GPS’s features for automatically fixing compilation errors

See Also:

GPS.CodefixError()

GPS.Codefix.__init__()

__init__(category)
Return the instance of codefix associated with the given category

18.5. Classes 259

GPS Documentation, Release 5.2.1

Parameters category – A string

error_at(file, line, column, message=’‘)
Return a specific error at a given location. If message is null, then the first matching error will be taken.
None is returned if no such fixable error exists.

Parameters

• file – The file where the error is

• line – The line where the error is

• column – The column where the error is

• message – The message of the error

Returns An instance of GPS.CodefixError

errors()
List the fixable errors in that session

Returns A list of instances of GPS.CodefixError

static parse(category, output, regexp=’‘, file_index=-1, line_index=-1, column_index=-1,
style_index=-1, warning_index=-1)

Parse the output of a tool, and suggests auto-fix possibilities whenever possible. This adds small icons
in the location window, so that the user can click on it to fix compilation errors. You should call Loca-
tions.parse with the same output prior to calling this command.

The regular expression specifies how locations are recognized. By default, it matches file:line:column.
The various indexes indicate the index of the opening parenthesis that contains the relevant information in
the regular expression. Set it to 0 if that information is not available.

Access the various suggested fixes through the methods of the Codefix class

Parameters

• category – A string

• output – A string

• regexp – A string

• file_index – An integer

• line_index – An integer

• column_index – An integer

• style_index – An integer

• warning_index – An integer

See Also:

GPS.Editor.register_highlighting()

static sessions()
List all the existing Codefix sessions. The returned values can all be used to create a new instance of
Codefix through its constructor.

Returns A list of strings

After a compilation failure:
>>> GPS.Codefix.sessions()
=> [’Builder results’]

260 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

18.5.10 GPS.CodefixError

class GPS.CodefixError(codefix, file, message=’‘)
This class represents a fixable error in the compilation output

See Also:

GPS.Codefix()

GPS.CodefixError.__init__()

__init__(codefix, file, message=’‘)
Describe a new fixable error. If the message is not specified, the first error at that location is returned

Parameters

• codefix – An instance of GPS.Codefix

• file – An instance of GPS.FileLocation

• message – A string

fix(choice=‘0’)
Fix the error, using one of the possible fixes. The index given in parameter is the index in the list returned
by “possible_fixes. By default, the first choice is taken. Choices start at index 0.

Parameters choice – The index of the fix to apply, see output of
GPS.CodefixError.possible_fixes()

for err in GPS.Codefix ("Builder results").errors():
print err.fix()

will automatically fix all fixable errors in the last compilation
output

location()
Return the location of the error

Returns An instance of GPS.FileLocation

message()
Return the error message, as issues by the tool

Returns A string

possible_fixes()
List the possible fixes for the specific error

Returns A list of strings

for err in GPS.Codefix ("Builder results").errors():
print err.possible_fixes()

18.5.11 GPS.Combo

class GPS.Combo(id, label=’‘, on_changed=None)
This class represents a combo box, ie a text entry widget with a number of predefined possible values. The user
can interactively select one of multiple values through this widget

See Also:

GPS.Toolbar

18.5. Classes 261

GPS Documentation, Release 5.2.1

GPS.Combo.__init__()

GPS.GUI GPS.Combo

__init__(id, label=’‘, on_changed=None)
Create a new combo. The combo will graphically be preceded by some text if label was specified.
on_changed will be called every time the user selects a new value for the combo box. Its parameters are
the following:

•$1 = The instance of GPS.Combo (self)

•$2 = The newly selected text (a string)

Parameters

• id – A string, the name of the combo to create

• label – A string, the label to add next to the entry

• on_changed – A subprogram, see the GPS documentaion on Subprogram parameters

See Also:

GPS.Toolbar.append()

GPS.Toolbar.ge()

add(choice, on_selected=None)
Add a choice to specified entry, on_selected will be executed whenever this choice is selected. It is
called with the following parameters:

•$1 = The instance of GPS.Combo (self)

•$2 = The newly selected text (a string)

Parameters

• choice – A string

• on_selected – A subprogram, see the GPS documentation on Subprogram parameters

clear()
Remove all choices from specified entry

get_text()
Return the current selection in specified entry

Returns A string

remove(choice)
Remove a choice from specified entry

Parameters choice – A string

262 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

See Also:

GPS.Combo.clear()

set_text(choice)
Set the current selection in specified entry

Parameters choice – A string

18.5.12 GPS.Command

class GPS.Command
Interface to GPS command. This class is abstract, and shall be subclassed.

static get(name)
Return the list of commands of the name given in parameter, scheduled or running in the task manager

Parameters name – A string

Returns a list of GPS.Command

get_result()
Return the result of the command, if any. Must be overriden by children

interrupt()
Interrupt the current command

static list()
Return the list of commands scheduled or running in the task manager

Returns a list of GPS.Command

name()
Return The name of the command

progress()
Return a list representing the current progress of the command. If current = total, then the command is
finished.

Returns a list [current, total]

18.5.13 GPS.CommandWindow

class GPS.CommandWindow(prompt=’‘, global_window=False, on_changed=None, on_activate=None,
on_cancel=None, on_key=None, close_on_activate=True)

This class gives access to a command-line window that pops up on the screen. This window is short-lived (in
fact there can be only one such window at any given time), and any key press is redirected to that window. As a
result, it should be used to interactively query a parameter for an action, for instance.

Among other things, it is used in the implementation of the interactive search facility, where each key pressed
should be added to the search pattern instead of to the editor.

class Isearch(CommandWindow):
def __init__(self):

CommandWindow.__init__(
self, prompt="Pattern",
on_key=self.on_key,
on_changed=self.on_changed)

def on_key(self, input, key, cursor_pos):

18.5. Classes 263

GPS Documentation, Release 5.2.1

if key == "control-w":
.... # Copy current word from editor into the window
self.write(input[:cursor_pos + 1] + "FOO" + input[cursor_pos + 1:])
return True ## No further processing needed

return False

def on_changed(self, input, cursor_pos):
Search for next occurrence of input in buffer
....

GPS.CommandWindowGPS.GUI

__init__(prompt=’‘, global_window=False, on_changed=None, on_activate=None,
on_cancel=None, on_key=None, close_on_activate=True)

This function initializes an instance of a command window. An exception is raised if such a window is
already active in GPS. Otherwise, the new window is popped up on the screen. Its location depends on
the global_window parameter: if true, the command window is displayed at the bottom of the GPS
window and occupies its whole width. If false, it is displayed at the bottom of the currently selected
window.

The prompt is the short string displayed just before the command line itself. Its goal is to indicate to the
user what he is entering.

The last four parameters are callbacks:

•on_changed is called when the user has entered one or more new characters in the command line.
This function is given two parameters: the current input string, and the last cursor position in this
string. See the example above on how to get the part of the input before and after the cursor.

•on_activate is called when the user has pressed enter. The command window has already been
closed at that point if close_on_activate is True, and the focus given back to the initial MDI window
that had it. This callback is given a single parameter, the final input string

•on_cancel is called when the user has pressed a key that closed the dialog, for instance Esc. It is
given a single parameter, the final input string. This callback is also called when you explicitly destroy
the window yourself by calling self.destroy().

•on_key is called when the user has pressed a new key on his keyboard, but before the corresponding
character has been added to the command line. This can be used to filter out some characters, or pro-
vide special behavior for some key combination (see the example above). It is given three parameters,
the current input string, the key that was pressed, and the current cursor position.

param prompt A string

param global_window A boolean

param on_changed A subprogram

param on_activate A subprogram

param on_cancel A subprogram

param on_key A subprogram

264 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

param close_on_activate A boolean

read()
This function returns the current contents of the command window

Returns A string

set_background(color=’‘)
Change the background color of the command window. In most cases, this can be used to make the
command window more obvious, or to point out errors by changing the color. If the color parameter is not
specified, the color reverts to its default

Parameters color – A string

set_prompt(prompt)
Changes the prompt that is displayed before the text field

Parameters prompt – A string

write(text, cursor=-1)
This function replaces the current content of the command line. As a result, you should make sure to
preserve the character you want, as in the on_key callback in the example above. Calling this function will
also result in several calls to the on_changed callback, one of them with an empty string (since gtk first
deletes the contents and then writes the new contents.

The cursor parameter can be used to specify where the cursor should be left after the insertion. -1 indicates
the end of the string.

param text A string

param cursor An integer

18.5.14 GPS.Console

class GPS.Console(name, force=False, on_input=None, on_destroy=None, accept_input=True,
on_resize=None, on_interrupt=None, on_completion=None, on_key=’‘, man-
age_prompt=True, ansi=False)

This class is used to create and interact with the interactive consoles in GPS. It can be used to redirect the output
of scripts to various consoles in GPS, or to get input from the user has needed.

See Also:

GPS.Process

GPS.Console.__init__()

The following example shows how to redirect the output of a script to
a new console in GPS:

console = GPS.Console("My_Script")
console.write("Hello world") # Explicit redirection

The usual python’s standard output can also be redirected to this
console:

sys.stdout = GPS.Console("My_Script")
print "Hello world, too" # Implicit redirection
sys.stdout = GPS.Console("Python") # Back to python’s console
sys.stdout = GPS.Console() # Or back to GPS’s console

18.5. Classes 265

GPS Documentation, Release 5.2.1

The following example shows an integration between the GPS.Console
and GPS.Process classes, so that a window containing a shell can be
added to GPS.

Note that this class is in fact available directly through "from
gps_utils.console_process import Console_Process" if you need it in
your own scripts.

import GPS
class Console_Process(GPS.Console, GPS.Process):

def on_output(self, matched, unmatched):
self.write(unmatched + matched)

def on_exit(self, status, unmatched_output):
try:

self.destroy()
except:

pass # Might already have been destroyed

def on_input(self, input):
self.send(input)

def on_destroy(self):
self.kill() # Will call on_exit

def __init__(self, process, args=""):
GPS.Console.__init__(

self, process,
on_input=Console_Process.on_input,
on_destroy=Console_Process.on_destroy,
force=True)

GPS.Process.__init__(
self, process + ’ ’ + args, ".+",
on_exit=Console_Process.on_exit,
on_match=Console_Process.on_output)

bash = Console_Process("/bin/sh", "-i")

GPS.ConsoleGPS.GUI

__init__(name, force=False, on_input=None, on_destroy=None, accept_input=True,
on_resize=None, on_interrupt=None, on_completion=None, on_key=’‘, man-
age_prompt=True, ansi=False)

Create a new instance of GPS.Console. GPS will try to reuse any existing console with the same name. If
none exists yet, or the parameter force is set to True, then GPS will create a new console.

You cannot create the Python and Shell consoles through this call. If you do, an exception is raised. In-
stead, use GPS.execute_action (“/Tools/Consoles/Python”), and then get a handle on the console through
GPS.Console. This is because these two consoles are tightly associated with each of the scripting lan-
guages.

266 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

If GPS reuses an existing console, on_input overrides the callback that was already set on the console,
whereas on_destroy will be called in addition to the one that was already set on the console.

If this is not the desired behavior, you can also call destroy() on the console, and call the constructor again.

•The subprogram on_input is called whenever the user has entered a new command in the console
and pressed <enter> to execute it. It is called with the following parameters:

–$1: The instance of the GPS.Console

–$2: The command to execute

See the subprogram GPS.Console.set_prompt_regexp for proper handling of input in the console.

•The subprogram on_destroy is called whenever the user closes the console. It is called with a
single parameter:

–$1: The instance of the GPS.Console

•The subprogram on_completion is called whenever the user presses tab in the console. It is called
with a single parameter:

–$1: The instance of the GPS.Console

The default implementation is to insert a tab character, but you could choose to add some user input
through GPS.Console.add_input for instance.

•The subprogram on_resize is called whenever the console is resized by the user. It is passed three
parameters:

–$1 is the instance of GPS.Console

–$2 is the number of visible rows in the console,

–and $3 is the number of visible columns.

This is mostly useful when a process is running in the console, in which case you can use
GPS.Process.set_size to let the process know about the size. Note that the size passed to this call-
back is conservative: since all characters might not have the same size, GPS tries to compute the
maximal number of visible characters and pass this to the callback, but the exact number of characters
might depend on the font.

•The subprogram on_interrupt is called when the user presses control-c in the console. It receives
a single parameter, which is the instance of GPS.Console. By default a control-c is handled by GPS
itself and will kill the last process that was started.

As described above, GPS provides a high-level handling of consoles, where it manages histories, comple-
tion, command line editing and execution on its own through the callbacks described above. This is in
general a good thing and provides advanced functionalities to some programs that lack them. However,
there are cases where this gets in the way. For instance, if you want to run a Unix shell or a program that
manipulates the console by moving the cursor around on its own, the high-level handling of GPS gets in
the way. In such a case, the following parameters can be used: on_key, manage_prompt and ansi.

•ansi should be set to true if GPS should emulate an ANSI terminal. These are terminals that un-
derstand certain escape sequences that applications sent to move the cursor to specific positions on
screen or to change the color and attributes of text.

•manage_prompt should be set to False to disable GPS’s handling of prompt. In general, this is
incompatible with using the on_input callback, since GPS no longer distinguishes what was typed by
the user and what was written by the external application. This also means that the application is free
to write anywhere on the screen. This should in general be set to True if you expect your application
to send ANSI sequences.

18.5. Classes 267

GPS Documentation, Release 5.2.1

•on_key is a subprogram that is called every time the user presses a key in the console. This is much
lower-level than the other callbacks above, but if you are driving external applications you might have
a need to send the keys as they happen, and not wait for a newline. on_key receives four parameters:

–$1: the instance of GPS.Console

–$2: “keycode”: this is the internal keycode for the key that the user pressed. All keys can be
represented this way, but this will occasionaly be left to 0 when the user input was simulated
and no real key was pressed.

–$3: “key”: this is the unicode character that the user entered. This will be 0 when the char-
acter is not printable (for instance return, tab, key up,...). In python, you can manipulate it with
code like unichr(key).encode("utf8") to get a string representation that can be sent
to an external process

–$4: “modifier”: these are the state of the control, shift, mod1 and lock keys. This is a bit-
mask, where shift is 1, lock is 2, control is 4 and mod1 is 8.

Parameters

• name – A string

• force – A boolean

• on_input – A subprogram, see the description below

• on_destroy – A subprogram

• accept_input – A boolean

• on_resize – A subprogram

• on_interrupt – A subprogram

• on_completion – A subprogram

• on_key – A subprogram

• manage_prompt – A boolean

• ansi – A boolean

accept_input()
Return True if the console accepts input, False otherwise

Returns A boolean

add_input(text)
Add some extra text to the console as if the user had typed it. As opposed to text inserted with
GPS.Console.write, this text remains editable by the user

Parameters text – A string

clear()
Clear the current contents of the console

clear_input()
Removes any user input that the user has started typing (ie since the last output inserted through
GPS.Console.write

copy_clipboard()
Copy the selection to the clipboard

268 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

create_link(regexp, on_click)
Register a regular expression that should be highlight in this console to provide hyper links. These links are
searched for when calling GPS.Console.write_with_links. The part of the text that matches any of the link
registered in the console through GPS.Console.create_link gets highlighted in blue and underlined, just
like an hyper link in a web browser. If the user clicks on that text, on_click gets called with one parameter,
the text that was clicked on. This can for instance be used to jump to an editor, open a web browser,...

If the regular expression does not contain any parenthesis, the text that matches the whole regexp is high-
lighted as a link. Otherwise, only the part of the text that matches the first parenthesis group is highlighted
(so that you can test for the presence of text before or after the actual hyper link).

Parameters

• regexp – A string

• on_click – A subprogram

See Also:

GPS.Console.write_with_links()

enable_input(enable)
Make the console accept / reject input according to the value of “enable”

Parameters enable – A boolean

flush()
Do nothing, needed for compatibility with Python’s file class

get_text()
Return the content of the console

Returns A string

isatty()
Return True if the console behaves like a terminal. Mostly needed for compatibility with Python’s file
class

Returns A boolean

read()
Read the available input in the console. Currently, this behaves exactly like readline()

Returns A String

readline()
Ask the user to enter a new line in the console, and returns that line. GPS is blocked until enter has been
pressed in the console

Returns A String

select_all()
Select the complete contents of the console

write(text, mode=“‘text”’)
Output some text on the console. This text is read-only. If the user had started typing some text, that text
is temporarily remove, the next text is inserted (read-only), and the user text is put back afterward.

The optional parameter mode specifies the kind of the output text: “text” for ordinary messages (this is
default), “log” for log messages, and “error” for error messages.

Parameters

• text – A utf8 string

18.5. Classes 269

GPS Documentation, Release 5.2.1

• mode – A string, one of “text”, “log”, “error”

See Also:

GPS.Console.write_with_links()

Console().write(u"\N{LATIN CAPITAL LETTER E WITH ACUTE}".encode("utf-8"))

write_with_links(text)
Output some text on the console, highlight the parts of it that matches the regular expression registered by
GPS.Console.create_link.

Parameters text – A utf8 string

import re

console = GPS.Console("myconsole")
console.create_link("(([\w-]+):(\d+))", open_editor)
console.write_with_link("a file.adb:12 location in a file")

def open_editor(text):
matched = re.match("([\w+-]+):(\d+)", text)
buffer = GPS.EditorBuffer.get(GPS.File (matched.group(1)))
buffer.current_view().goto(

GPS.EditorLocation(buffer, int(matched.group(2)), 1))

18.5.15 GPS.Context

class GPS.Context
Represents a context in GPS. Depending on the currently selected window, an instance of one of the derived
classes will be used.

module_name = None
The name (a string) of the GPS module which created the context.

18.5.16 GPS.Contextual

class GPS.Contextual(name)
This class is a general interface to the contextual menus in GPS. It gives you control over which menus should
be displayed when the user right clicks in parts of GPS

See Also:

GPS.Contextual.__init__()

__init__(name)
Initializes a new instance of GPS.Contextual. The name is the name that was given to the contextual menu
when it was created, and is a static string independent of the actual label used when the menu is displayed
(and which is dynamic, depending on the context). You can get the list of valid names by checking the list
of names returned by GPS.Contextual.list

Parameters name – A string

See Also:

GPS.Contextual.list()

270 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

You could for instance decide to always hide the "Goto
declaration" contextual menu with the following call:

GPS.Contextual (’Goto declaration of entity’).hide()

After this, the menu will never be displayed again.

create(on_activate, label=None, ref=’‘, add_before=True, filter=None, group=‘0’)
Create a new contextual menu entry. Whenever this menu entry is selected by the user, GPS will execute
on_activate, passing one parameter which is the context for which the menu is displayed (this is generally
the same as GPS.current_contextual()).

If on_activate is None, a separator will be created.

The filter parameter can be used to filter when the entry should be displayed in the menu. It is a
subprogram that receives one parameter, an instance of GPS.Context, and returns a boolean. If it returns
True, the entry will be displayed, otherwise it is hidden.

The label parameter can be used to control the text displayed in the contextual menu. By default, it is
the same as the contextual name (used in the constructor to GPS.Contextual.__init__). If specified, it must
be a subprogram that takes an instance of GPS.Context in parameter, and returns a string, which will be
displayed in the menu.

The parameters group, ref and add_before can be used to control the location of the entry within
the contextual menu. group allows you to create groups of contextual menus that will be put together.
Items of the same group appear before all items with a greater group number. ref is the name of another
contextual menu entry, and add_before indicates whether the new entry is put before or after that second
entry.

Parameters

• on_activate – A subprogram with one parameter context

• label – A subprogram

• ref – A string

• add_before – A boolean

• filter – A subprogram

• group – An integer

This example demonstrates how to create a contextual
menu with global functions

def on_contextual(context):
GPS.Console("Messages").write("You selected the custom entry")

def on_filter(context):
return isinstance(context, GPS.EntityContext)

def on_label(context):
global count
count += 1
return "Custom " + count

GPS.Contextual("Custom").create(
on_activate=on_contextual, filter=on_filter, label=on_label)

18.5. Classes 271

GPS Documentation, Release 5.2.1

This example is similar to the one above, but uses a python
class to encapsulate date.
Note how the extra parameter self can be passed to the callbacks
thanks to the call to self.create

class My_Context(GPS.Contextual):
def on_contextual(self, context):

GPS.Console("Messages").write(
"You selected the custom entry " + self.data)

def on_filter(self, context):
return isinstance(context, GPS.EntityContext)

def on_label(self, context):
return self.data

def __init__(self):
GPS.Contextual.__init__(self, "Custom")
self.data = "Menu Name"
self.create(on_activate=self.on_contextual,

filter=self.on_filter,
label=self.label)

create_dynamic(factory, on_activate, label=’‘, filter=None, ref=’‘, add_before=True, group=‘0’)
Create a new dynamic contextual menu.

This is a submenu of a contextual menu, where the entries are generated by the factory parameter. This
parameter should return a list of strings, which will be converted to menus by GPS. These strings can
contain ‘/’ characters to indicate submenus.

filter is a subprogram that takes the GPS.Context as a parameter, and returns a boolean indicating
whether the submenu should be displayed.

label can be used to specify the label to use for the menu entry. It can include directory-like syntax to
indicate submenus. This label can include standard macro substitution (see the GPS documentation), for
instance %e for the current entity name.

on_activate is called whenever any of the entry of the menu is selected, and is passed three parameters,
the context in which the contextual menu was displayed, the string representing the selected entry and the
index of the selected entry within the array returned by factory (index starts at 0).

The parameters ref and add_before can be used to control the location of the entry within the con-
textual menu. ref is the name of another contextual menu entry, and add_before indicates whether the new
entry is put before or after that second entry.

Parameters

• factory – A subprogram

• on_activate – A subprogram

• label – A string

• filter – A subprogram

• ref – A string

• add_before – A boolean

• group – A integer

272 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

This example shows how to create a contextual menu
through global functions

def build_contextual(context):
return ["Choice1", "Choice2"]

def on_activate(context, choice, choice_index):
GPS.Console("Messages").write("You selected " + choice)

def filter(contextl):
return isinstance(context, GPS.EntityContext)

GPS.Contextual("My_Dynamic_Menu").create_dynamic(
on_activate=on_activate, factory=build_contextual, filter=filter)

This example is similar to the one above, but shows how
to create the menu through a python class.
Note how self can be passed to the callbacks thanks to the
call to self.create_dynamic.

class Dynamic(GPS.Contextual):
def __init__(self):

GPS.Contextual.__init__(self, "My Dynamic Menu")
self.create_dynamic(on_activate=self.on_activate,

label="References/My menu",
filter=self.filter,
factory=self.factory)

def filter(self, context):
return isinstance(context, GPS.EntityContext)

def on_activate(self, context, choice):
GPS.Console("Messages").write("You selected " + choice)

def factory(self, context):
return ["Choice1", "Choice2"]

hide()
Make sure the contextual menu will never appear when the user right clicks anywhere in GPS. This is the
standard way to disable contextual menus

See Also:

GPS.Contextual.show()

static list()
Return the list of all registered contextual menus. This is a list of strings which are valid names that can
be passed to the constructor of GPS.Contextual. These names were created when the contextual menu was
registered in GPS.

Returns a list of strings

See Also:

GPS.Contextual.__init__()

set_sensitive(Sensitivity)
Control whether the contextual menu is grayed-out: False if it should be grayed-out, True otherwise.

Parameters Sensitivity – Boolean value

18.5. Classes 273

GPS Documentation, Release 5.2.1

show()
Make sure the contextual menu will be shown when appropriate. The entry might still be invisible if you
right clicked on a context where it doesn’t apply, but it will be checked

See Also:

GPS.Contextual.hide()

18.5.17 GPS.Debugger

class GPS.Debugger
Interface to debugger related commands. This class allows you to start a debugger and send commands to it. By
connection to the various debugger_* hooks, you can also monitor the state of the debugger.

By connecting to the “debugger_command_action_hook”, you can also create your own debugger commands,
that the user can then type in the debugger console. This is a nice way to implement debugger macros.

While developping such debugger interfaces, it might be useful to modify the file $HOME/.gps/traces.cfg, and
add a line “GVD.Out=yes” in it. This will copy all input/output with the debuggers into the GPS log file.

See Also:

GPS.Debugger.__init__()

import GPS

def debugger_stopped(hook, debugger):
GPS.Console("Messages").write(

"hook=" + hook + " on debugger="
+ ‘debugger.get_num()‘ + "\n")

def start():
d = GPS.Debugger.spawn(GPS.File("../obj/parse"))
d.send("begin")
d.send("next")
d.send("next")
d.send("graph display A")

GPS.Hook("debugger_process_stopped").add(debugger_stopped)

__init__()
It is an error to create a Debugger instance directly. Instead, use GPS.Debugger.get() or
GPS.Debugger.spawn()

See Also:

GPS.Debugger.get()

GPS.Debugger.spawn()

close()
Closes the given debugger. This also closes all associated windows (call stack, console,...)

command()
Return the command that is being executed in the debugger. This is often only available when called from
the debugger_state_changed hook, where it might also indicate the command that just finished

Returns A string

static get(id=None)
This command gives access to an already running debugger, and will return an instance of GPS.Debugger

274 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

attached to it. The parameter can be null, in which case the current debugger is returned; it can be an
integer, in which case the corresponding debugger is returned (starting at 1); or it can be a file, in which
case this function returns the debugger currently debugging that file.

Parameters id – Either an integer or an instance of GPS.File

Returns An instance of GPS.Debugger

get_executable()
Returns the name of the executable currently debugged in that debugger

Returns An instance of GPS.File

See Also:

GPS.Debugger.get_num()

get_num()
Returns the index of the debugger. This can be used later on to retrieve the debugger from
GPS.Debugger.get(), or to get access to other windows associated with that debugger

Returns An integer

See Also:

GPS.Debugger.get_file()

is_break_command()
Return true if the command returned by GPS.Debugger.command is likely to modify the list of breakpoints
after it has finished executing

Returns A boolean

is_busy()
Returns true if the debugger is currently executing a command. In this case, it is an error to send a new
command to it

Returns A boolean

is_context_command()
Return true if the command returned by GPS.Debugger.command is likely to modify the current context
(current task, thread,...) after it has finished executing

Returns A boolean

is_exec_command()
Return true if the command returned by GPS.Debugger.command is likely to modify the stack trace in the
debugger (“next”, “cont”, ...)

Returns A boolean

static list()
This command returns the list of currently running debuggers

Returns A list of GPS.Debugger instances

non_blocking_send(cmd, output=True)
This command works like send, but is not blocking, and does not return the result.

Parameters

• cmd – A string

• output – A boolean

18.5. Classes 275

GPS Documentation, Release 5.2.1

See Also:

GPS.Debugger.send()

send(cmd, output=True, show_in_console=False)
This command executes cmd in the debugger. GPS is blocked while cmd is executing on the debugger. If
output is true, the command is displayed in the console.

If show_in_console is True, the output of the command is displayed in the debugger console, but is
not returned by this function. If show_in_console is False, the result is not displayed in the console,
but is returned by this function

Parameters

• cmd – A string

• output – A boolean

• show_in_console – A boolean

Returns A string

See Also:

GPS.Debugger.non_blocking_send()

static spawn(executable, args=’‘)
This command starts anew debugger. It will debug file. When file is executed, the extra arguments args
are passed

Parameters

• executable – An instance of GPS.File

• args – A string

Returns An instance of GPS.Debugger

18.5.18 GPS.Docgen

class GPS.Docgen
Interface for handling customized documentation generation. This class is used in conjunction
with GPS.DocgenTagHandler. You cannot create directly this class, but use the ones furnished in
GPS.DocgenTagHandler callbacks.

See Also:

GPS.DocgenTagHandler()

generate_index_file(name, filename, content)
Create a new Index file. The file ‘filename’ will be titled ‘name’, and will contain the general decoration
along with ‘content’.

All other generated documentation file will have a link to it for convenience.

Parameters

• name – The name of the new index file.

• filename – The created file name.

• content – The content of the created file.

276 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

get_current_file()
Retrieves the current analysed source file. You should call this method only from a
GPS.DocgenTagHandler.on_match() callback.

Returns A GPS.File instance

get_doc_dir()
Retrieves the directory that will contain the documentation. You should call this method only from a
GPS.DocgenTagHandler.on_match() callback.

Returns A GPS.File instance

static register_css(filename)
Registers a new CSS file to use when generating the documentation. This allows either to override a default
style, or add new ones for custom tags handling

Parameters filename – A file name

static register_main_index(filename)
Registers the file to be used as main page (e.g. index.html). By default, the first page generated in the
Table of Contents is used.

Parameters filename – A file name

static register_tag_handler(handler)
Registers a new tag handler. This handler will be used each time a new documentation is generated and
the corresponding tag is found

Parameters handler – The handler to register

register a default handler for tag <description>
that is, -- <description>sth</description>
will be translated as <div class="description">sth</div>
GPS.Docgen.register_tag_handler(GPS.DocgenTagHandler ("description"))

18.5.19 GPS.DocgenTagHandler

class GPS.DocgenTagHandler(tag, on_start=None, on_match=None, on_exit=None)
This class is used to handle user-defined documentation tags. This allows custom handling of comments such as

-- <summary>This fn does something</summary>

See Also:

GPS.Docgen()

import GPS

class ScreenshotTagHandler(GPS.DocgenTagHandler):
"Handling for <screenshot>screen.jpg</screenshot>"

def __init__(self):
GPS.DocgenTagHandler.__init__(
self, "screenshot",
on_match=self.on_match, on_start=self.on_start, on_exit=self.on_exit)

def on_start(self, docgen):
self.list = {}

def on_match(self, docgen, attrs, value, entity_name, entity_href):

18.5. Classes 277

GPS Documentation, Release 5.2.1

In this examples, images are in the directory _project_root_/doc/imgs/

dir = docgen.get_current_file().project().file().directory()+"doc/imgs/"
img = ’"’ % (dir, value, value)
self.list[entity_name] = [entity_href, img]
return "<h3>Screenshot</h3><p>%s</p>" % (img)

def on_exit(self, docgen):
content=""

for pict in sorted(self.list.keys()):
content += "<div class=’subprograms’>"
content += " <div class=’class’>"
content += " <h3>%s</h3>" % (pict)
content += " <div class=’comment’>"
content += " %s" % (self.list[pict][0], self.list[pict][1])
content += " </div>"
content += " </div>"
content += "</div>"

if content != "":
docgen.generate_index_file("Screenshots", "screenshots.html", content)

def on_gps_start(hook):
GPS.Docgen.register_css(GPS.get_system_dir() + "share/mycustomfiles/custom.css")
GPS.Docgen.register_tag_handler(ScreenshotTagHandler())

GPS.Hook("gps_started").add(on_gps_start)

__init__(tag, on_start=None, on_match=None, on_exit=None)

Create a new GPS.DocgenTagHandler instance handling the tag “tag”. You need to register it after-
wards using GPS.Docgen.register_tag_handler.

on_match is a callback that is called each time a tag corresponding to the GPS.DocgenTagHandler is
analysed. It takes the following parameters:

•$1 = the instance of GPS.Docgen.

•$2 = the eventual attributes of the tag.

•$3 = the value of the tag.

•$4 = the entity name linked to the analysed tag.

•$5 = the href to the entity documentation location.

on_start is a callback that is called each time a documentation generation starts. It takes the following
parameters:

•$1 = the instance of GPS.Docgen.

on_exit is a callback that is called each time a documentation generation finishes. It takes the following
parameters:

•$1 = the instance of GPS.Docgen.

Using the default values of the callbacks (e.g. None), the GPS.DocgenTagHandler handler will translate
comments of the form “– <tag>value</tag>” by “<div class=”tag”>value</div>”.

Parameters

• tag – The tag that is handled

278 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• on_start – A subprogram

• on_match – A subprogram

• on_exit – A subprogram

18.5.20 GPS.Editor

class GPS.Editor
Deprecated interface to all editor-related commands

static add_blank_lines(file, start_line, number_of_lines, category=’‘)
OBSOLESCENT.

Adds number_of_lines non-editable lines to the buffer editing file, starting at line start_line. If category is
specified, use it for highlighting. Create a mark at beginning of block and return its ID

Parameters

• file – A string

• start_line – An integer

• number_of_lines – An integer

• category – A string

static add_case_exception(name)
OBSOLESCENT.

Add name into the case exception dictionary

Parameters name – A string

static block_fold(file, line=None)
OBSOLESCENT.

Fold the block around line. If line is not specified, fold all blocks in the file.

Parameters

• file – A string

• line – An integer

static block_get_end(file, line)
OBSOLESCENT.

Returns ending line number for block enclosing line

Parameters

• file – A string

• line – An integer

Returns An integer

static block_get_level(file, line)
OBSOLESCENT.

Returns nested level for block enclosing line

Parameters

• file – A string

18.5. Classes 279

GPS Documentation, Release 5.2.1

• line – An integer

Returns An integer

static block_get_name(file, line)
OBSOLESCENT.

Returns name for block enclosing line

Parameters

• file – A string

• line – An integer

Returns A string

static block_get_start(file, line)
OBSOLESCENT.

Returns ending line number for block enclosing line

Parameters

• file – A string

• line – An integer

Returns An integer

static block_get_type(file, line)
OBSOLESCENT.

Returns type for block enclosing line

Parameters

• file – A string

• line – An integer

Returns A string

static block_unfold(file, line=None)
OBSOLESCENT.

Unfold the block around line. If line is not specified, unfold all blocks in the file.

Parameters

• file – A string

• line – An integer

static close(file)
OBSOLESCENT.

Close all file editors for file

Parameters file – A string

static copy()
OBSOLESCENT.

Copy the selection in the current editor

280 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

static create_mark(filename, line=1, column=1, length=0)
Create a mark for file_name, at position given by line and column. Length corresponds to the text length
to highlight after the mark. The identifier of the mark is returned. Use the command goto_mark to jump
to this mark

Parameters

• filename – A string

• line – An integer

• column – An integer

• length – An integer

Returns A string

See Also:

GPS.Editor.goto_mark()

GPS.Editor.delete_mark()

static cursor_center(file)
OBSOLESCENT.

Scroll the view to center cursor

Parameters file – A string

static cursor_get_column(file)
OBSOLESCENT.

Returns current cursor column number

Parameters file – A string

Returns An integer

static cursor_get_line(file)
OBSOLESCENT.

Returns current cursor line number

Parameters file – A string

Returns An integer

static cursor_set_position(file, line, column=1)
OBSOLESCENT.

Set cursor to position line/column in buffer file

Parameters

• file – A string

• line – An integer

• column – An integer

static cut()
OBSOLESCENT.

Cut the selection in the current editor

18.5. Classes 281

GPS Documentation, Release 5.2.1

static delete_mark(identifier)
OBSOLESCENT.

Delete the mark corresponding to identifier

Parameters identifier – A string

See Also:

GPS.Editor.create_mark()

static edit(filename, line=1, column=1, length=0, force=False, position=5)
OBSOLESCENT.

Open a file editor for file_name. Length is the number of characters to select after the cursor. If line and
column are set to 0, then the location of the cursor is not changed if the file is already opened in an editor.
If force is set to true, a reload is forced in case the file is already open. Position indicates the MDI position
to open the child in (5 for default, 1 for bottom).

The filename can be a network file name, with the following general format:

protocol://username@host:port/full/path

where protocol is one of the recognized protocols (http, ftp,.. see the GPS documentation), and the user-
name and port are optional.

Parameters

• filename – A string

• line – An integer

• column – An integer

• length – An integer

• force – A boolean

• position – An integer

static get_buffer(file)
OBSOLESCENT.

Returns the text contained in the current buffer for file

Parameters file – A string

static get_chars(filename, line=0, column=1, before=-1, after=-1)
OBSOLESCENT.

Get the characters around a certain position. Returns string between “before” characters before the mark
and “after” characters after the position. If “before” or “after” is omitted, the bounds will be at the begin-
ning and/or the end of the line.

If the line and column are not specified, then the current selection is returned, or the empty string if there
is no selection

Parameters

• filename – A string

• line – An integer

• column – An integer

• before – An integer

282 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• after – An integer

Returns A string

static get_column(mark)
OBSOLESCENT.

Returns the current column of mark

Parameters mark – An identifier

Returns An integer

static get_file(mark)
OBSOLESCENT.

Returns the current file of mark

Parameters mark – An identifier

Returns A file

static get_last_line(file)
OBSOLESCENT.

Returns the number of the last line in file

Parameters file – A string

Returns An integer

static get_line(mark)
OBSOLESCENT.

Returns the current line of mark

Parameters mark – An identifier

Returns An integer

static goto_mark(identifier)
OBSOLESCENT.

Jump to the location of the mark corresponding to identifier

Parameters identifier – A string

See Also:

GPS.Editor.create_mark()

static highlight(file, category, line=0)
OBSOLESCENT

Marks a line as belonging to a highlighting category. If line is not specified, mark all lines in file.

Parameters

• file – A string

• category – A string

• line – An integer

See Also:

GPS.Editor.unhighlight()

18.5. Classes 283

GPS Documentation, Release 5.2.1

static highlight_range(file, category, line=0, start_column=0, end_column=-1)
OBSOLESCENT>

Highlights a portion of a line in a file with the given category

Parameters

• file – A string

• category – A string

• line – An integer

• start_column – An integer

• end_column – An integer

static indent(current_line_only=False)
OBSOLESCENT.

Indent the selection (or the current line if requested) in current editor. Do nothing if the current GPS
window is not an editor

Parameters current_line_only – A boolean

static indent_buffer()
OBSOLESCENT.

Indent the current editor. Do nothing if the current GPS window is not an editor

static insert_text(text)
OBSOLESCENT.

Insert a text in the current editor at the cursor position

Parameters text – A string

static mark_current_location()
OBSOLESCENT.

Push the location in the current editor in the history of locations. This should be called before jumping to
a new location on a user’s request, so that he can easily choose to go back to the previous location.

static paste()
OBSOLESCENT.

Paste the selection in the current editor

static print_line_info(file, line)
OBSOLESCENT.

Print the contents of the items attached to the side of a line. This is used mainly for debugging and testing
purposes.

Parameters

• file – A string

• line – An integer

static redo(file)
OBSOLESCENT.

Redo the last undone edition command for file

Parameters file – A string

284 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

static refill()
OBSOLESCENT.

Refill selected (or current) editor lines. Do nothing if the current GPS window is not an editor

static register_highlighting(category, color, speedbar=False)
OBSOLESCENT.

Create a new highlighting category with the given color. The format for color is “#RRGGBB”. If speedbar
is true, then a mark will be inserted in the speedbar to the left of the editor to give a fast overview to the
user of where the highlighted lines are.

Parameters

• category – A string

• color – A string

• speedbar – A boolean

static remove_blank_lines(mark, number=0)
OBSOLESCENT

Remove blank lines located at mark. If number is specified, remove only the number first lines

Parameters

• mark – A string

• number – An integer

static remove_case_exception(name)
OBSOLESCENT.

Remove name from the case exception dictionary

Parameters name – A string

static replace_text(file, line, column, text, before=-1, after=-1)
OBSOLESCENT.

Replace the characters around a certain position. “before” characters before (line, column), and up to
“after” characters after are removed, and the new text is inserted instead. If “before” or “after” is omitted,
the bounds will be at the beginning and/or the end of the line

Parameters

• file – A string

• line – An integer

• column – An integer

• text – A string

• before – An integer

• after – An integer

static save(interactive=True, all=True)
OBSOLESCENT.

Save current or all files. If interactive is true, then prompt before each save. If all is true, then all files are
saved

Parameters

• interactive – A boolean

18.5. Classes 285

GPS Documentation, Release 5.2.1

• all – A boolean

static save_buffer(file, to_file=None)
OBSOLESCENT.

Saves the text contained in the current buffer for file. If to_file is specified, the file will be saved as to_file,
and the buffer status will not be modified

Parameters

• file – A string

• to_file – A string

static select_all()
OBSOLESCENT.

Select the whole editor contents

static select_text(first_line, last_line, start_column=1, end_column=0)
OBSOLESCENT.

Select a block in the current editor

Parameters

• first_line – An integer

• last_line – An integer

• start_column – An integer

• end_column – An integer

static set_background_color(file, color)
OBSOLESCENT.

Set the background color for the editors for file

Parameters

• file – A string

• color – A string

static set_synchronized_scrolling(file1, file2, file3=’‘)
OBSOLESCENT.

Synchronize the scrolling between multiple editors

Parameters

• file1 – A string

• file2 – A string

• file3 – A string

static set_title(file, title, filename)
OBSOLESCENT.

Change the title of the buffer containing the given file

Parameters

• file – A string

• title – A string

286 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• filename – A string

static set_writable(file, writable)
OBSOLESCENT.

Change the Writable status for the editors for file

Parameters

• file – A string

• writable – A boolean

static subprogram_name(file, line)
OBSOLESCENT.

Returns the name of the subprogram enclosing line

Parameters

• file – A string

• line – An integer

Returns A string

static undo(file)
OBSOLESCENT.

Undo the last edition command for file

Parameters file – A string

static unhighlight(file, category, line=0)
OBSOLESCENT.

Unmarks the line for the specified category. If line is not specified, unmark all lines in file

Parameters

• file – A string

• category – A string

• line – An integer

See Also:

GPS.Editor.highlight()

static unhighlight_range(file, category, line=0, start_column=0, end_column=-1)
OBSOLESCENT.

Remove highlights for a portion of a line in a file

Parameters

• file – A string

• category – A string

• line – An integer

• start_column – An integer

• end_column – An integer

18.5. Classes 287

GPS Documentation, Release 5.2.1

18.5.21 GPS.EditorBuffer

class GPS.EditorBuffer
This class represents the physical contents of a file. It is always associated with at least one view (a
GPS.EditorView instance), which makes it visible to the user. The contents of the file can be manipulated
through this class

__init__()
This function prevents the direct creation of instances of EditorBuffer. Use
GPS.EditorBuffer.get() instead

add_special_line(start_line, text, category=’‘, name=’‘)
Adds one non-editable line to the buffer, starting at line start_line and contains string text. If category is
specified, use it for highlighting. Create a mark at beginning of block and return it. If name is specified,
retuned mark will have this name

Parameters

• start_line – An integer

• text – A string

• category – A string

• name – A string

Returns An instance of GPS.EditorMark

See Also:

GPS.EditorBuffer.get_mark()

apply_overlay(overlay, frm=’begining of buffer’, to=’end of buffer’)
Applies the overlay to the given range of text. This immediately changes the rendering of the text based
on the properties of the overlay

Parameters

• overlay – An instance of GPS.EditorOverlay

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

See Also:

GPS.EditorBuffer.remove_overlay()

beginning_of_buffer()
Returns a location pointing to the first character in the buffer

Returns An instance of GPS.EditorLocation

blocks_fold()
Folds all the blocks in all the views of the buffer. Block folding is a language-dependent feature, whereby
one can hide part of the source code temporarily, by keeping only the first line of the block (for instance
the first line of a subprogram body, the rest is hidden). A small icon is displayed to the left of the first line
so that it can be unfolded later on

See Also:

GPS.EditorBuffer.blocks_unfold()

GPS.EditorLocation.block_fold()

288 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

blocks_unfold()
Unfolds all the blocks that were previously folded in the buffer, ie make the whole source code visible.
This is a language dependent feature

See Also:

GPS.EditorBuffer.blocks_fold()

GPS.EditorLocation.block_unfold()

characters_count()
Returns the total number of characters in the buffer

Returns An integer

close(force=False)
Closes the editor and all its views. If the buffer has been modified and not saved, a dialog is open asking
the user whether to save. If force is True, do not save and do not ask the user. All changes are lost

Parameters force – A boolean

copy(frm=’beginning of buffer’, to=’end of buffer’, append=False)
Copy the given range of text into the clipboard, so that it can be further pasted into other applications or
other parts of GPS. If append is True, the text is appended to the last clipboard entry instead of generating
a new one

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

• append – A boolean

See Also:

GPS.Clipboard.copy()

create_overlay(name=’‘)
Create a new overlay. Properties can be set on this overlay, which can then be applied to one or more
ranges of text to changes its visual rqendering or to associate user data with it. If name is specified, this
function will return an existing overlay with the same name in this buffer if any can be found. If the name
is not specified, a new overlay is created. Changing the properties of an existing overlay results in an
immediate graphical update of the views associated with the buffer.

A number of predefined overlay exits. Among these are the ones used for syntax highlighting by GPS
itself, which are “keyword”, “comment”, “string”, “character”. You can use these to navigate from one
comment section to the next for instance.

Parameters name – A string

Returns An instance of GPS.EditorOverlay

current_view()
Returns the last view used for this buffer, ie the last view that had the focus and through which the user
might have edited the buffer’s contents

Returns An instance of GPS.EditorView

cut(frm=’beginning of buffer’, to=’end of buffer’, append=False)
Copy the given range of text into the clipboard, so that it can be further pasted into other applications or
other parts of GPS. The text is removed from the edited buffer. If append is True, the text is appended to
the last clipboard entry instead of generating a new one

Parameters

18.5. Classes 289

GPS Documentation, Release 5.2.1

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

• append – A boolean

delete(frm=’beginning of buffer’, to=’end of buffer’)
Delete the given range of text from the buffer

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

end_of_buffer()
Returns a location pointing to the last character in the buffer

Returns An instance of GPS.EditorLocation

file()
Returns the name of the file edited in this buffer

Returns An instance of GPS.File

finish_undo_group()
Cancels the grouping of commands on the editor. See GPS.EditorBuffer.start_undo_group

static get(file=’current editor’, force=False, open=True)
If file is already opened in an editor, get a handle on its buffer. This instance is then shared with all other
buffers referencing the same file. As a result, you can for instance associate your own data with the buffer,
and retrieve it at any time until the buffer is closed. If the file is not opened yet, it is loaded in a new editor,
and a new view is opened at the same time (and thus the editor becomes visible to the user). If file is not
specified, the current editor is returned, ie the last one that had the keyboard focus.

If the file is not currently open, the behavior depends on the open parameter: if true, a new editor is created
for that file, otherwise None is returned.

When a new file is open, it has received the focus. But if the editor already existed, it is not raised explicitly,
and you need to do it yourself through a call to GPS.MDIWindow.raise_window (see the example below).

If force is set to true, a reload is forced in case the file is already open.

Parameters

• file – An instance of GPS.File

• force – A boolean

• open – A boolean

Returns An instance of GPS.EditorBuffer

ed = GPS.EditorBuffer.get(GPS.File ("a.adb"))
GPS.MDI.get_by_child(ed.current_view()).raise_window()
ed.data = "whatever"

... Whatever, including modifying ed

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
ed.data # => "whatever"

get_chars(frm=’beginning of buffer’, to=’end of buffer’)
Returns the contents of the buffer between the two locations given in parameter. Modifying the returned
value has no effect on the buffer

290 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

Returns A string

get_mark(name)
Check whether there is a mark with that name in the buffer, and return it. An exception is raised if there is
no such mark

Parameters name – A string

Returns An instance of GPS.EditorMark

See Also:

GPS.EditorLocation.create_mark()

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = GPS.EditorLocation(ed, 4, 5)
mark = loc.create_mark("name")
mark.data = "whatever"

.. anything else

mark = ed.get_mark("name")
mark.data is still "whatever"

static get_new()
Open a new editor on a blank file. This file has no name, and you’ll have to provide one when you save it

Returns An instance of GPS.EditorBuffer

indent(frm=’beginning of buffer’, to=’end of buffer’)
Recompute the indentation of the given range of text. This feature is language-dependent

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

insert(location, text)
Inserts some text in the buffer

Parameters

• location – An instance of GPS.EditorLocation

• text – A string

See Also:

GPS.EditorBuffer.delete()

is_modified()
Tests whether the buffer has been modified since it was last open or saved

Returns A boolean

is_read_only()
Whether the buffer is editable or not.

Returns A boolean

18.5. Classes 291

GPS Documentation, Release 5.2.1

See Also:

GPS.EditorBuffer.set_read_only()

lines_count()
Returns the total number of lines in the buffer

Returns An integer

static list()
This function returns the list of all editors that are currently open in GPS.

Returns A list of instances of GPS.EditorBuffer

It is possible to close all editors at once using a command like

for ed in GPS.EditorBuffer.list():
ed.close()

paste(location)
Paste the contents of the clipboard at the given location in the buffer

Parameters location – An instance of GPS.EditorLocation

redo()
Redo the last undone command on the editor

refill(frm=’beginning of buffer’, to=’end of buffer’)
Refill the given range of text, ie cut long lines if necessary so that they fit in the limit specified in the GPS
preferences

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

remove_overlay(overlay, frm=’begining of buffer’, to=’end of buffer’)
Removes all instances of the overlay in the given range of text. It isn’t an error if the overlay is not applied
to any of the character in the range, it just has no effect in that case.

Parameters

• overlay – An instance of GPS.EditorOverlay

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

See Also:

GPS.EditorBuffer.apply_overlay()

remove_special_lines(mark, lines)
Removes specified number of special lines at the specified mark. It doesn’t delete the mark

Parameters

• mark – An instance of GPS.EditorMark

• lines – An integer

save(interactive=True, file=’Same file as edited by the buffer’)
Saves the buffer to the given file. If interactive is true, a dialog is open to ask for confirmation from the
user first, which gives him a chance to cancel the saving. “interactive” is ignored if file is specified.

Parameters

292 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• interactive – A boolean

• file – An instance of GPS.File

select(frm=’beginning of buffer’, to=’end of buffer’)
Selects an area in the buffer. The boundaries are included in the selection. The order of the boundaries is
irrelevant, but the cursor will be left on to

Parameters

• frm – An instance of GPS.EditorLocation

• to – An instance of GPS.EditorLocation

selection_end()
Return the character after the end of the selection. This will always be located after the start of the
selection, no matter the order of parameters given to GPS.EditorBuffer.select. If the selection is empty,
EditorBuffer.selection_start and EditorBuffer.selection_end will be equal.

Returns An instance of GPS.EditorLocation

To get the contents of the current selection, one would use:

buffer = GPS.EditorBuffer.get()
selection = buffer.get_chars(

buffer.selection_start(), buffer.selection_end() - 1)

selection_start()
Return the start of the selection. This will always be located before the end of the selection, no matter the
order of parameters given to GPS.EditorBuffer.select

Returns An instance of GPS.EditorLocation

set_read_only(read_only=True)
Indicates whether the user should be able to edit the buffer interactively (through any view).

Parameters read_only – A boolean

See Also:

GPS.EditorBuffer.is_read_only()

start_undo_group()
Starts grouping commands on the editor. All future editions will be considered as belonging to the same
group. finish_undo_group should be called once for every call to start_undo_group.

undo()
Undo the last command on the editor

unselect()
Cancel the current selection in the buffer

views()
Returns the list of all views currently editing the buffer. There is always at least one such view. When the
last view is destroyed, the buffer itself is destroyed

Returns A list of GPS.EditorView instances

18.5.22 GPS.EditorHighlighter

class GPS.EditorHighlighter(pattern, action, index=0, secondary_action=None)
This class can be used to transform source editor text into hyperlinks when the Control key is pressed. Two

18.5. Classes 293

GPS Documentation, Release 5.2.1

actions can then be associated with this hyperlink: clicking with the left mouse button on the hyperlink triggers
the primary action, and clicking with the middle mouse button on the hyperlink triggers the alternate action.

__init__(pattern, action, index=0, secondary_action=None)
Register a highlighter. The action is a Python function that takes a string as a parameter: the string being
passed is the section of text which is highlighted.

Parameters

• pattern – A regular expression representing the patterns on which we want to create hy-
perlinks.

• action – The primary action for this hyperlink

• index – This indicate the number of the parenthesized group in pattern that needs to be
highlighted.

• secondary_action – The alternate action for this hyperlink

Define an action
def view_html(url):

GPS.HTML.browse (url)

def wget_url(url):
def on_exit_cb(self, code, output):

GPS.Editor.edit (GPS.dump (output))
p=GPS.Process("wget %s -O -" % url, on_exit=on_exit_cb)

Register a highlighter to launch a browser on any URL
left-clicking on an URL will open the default browser to this URL
middle-clicking will call "wget" to get the source of this URL and
open the output in a new editor

h=GPS.EditorHighlighter ("http(s)?://[^\s:,]*", view_html, 0, wget_url)

Remove the highlighter
h.remove()

remove()
Unregister the highlighter. This cannot be called while the hyper-mode is active.

18.5.23 GPS.EditorLocation

class GPS.EditorLocation(buffer, line, column)
This class represents a location in a specific editor buffer. This location is not updated when the buffer changes,
but will keep pointing to the same line/column even if new lines are added in the buffer. This location is no
longer valid when the buffer itself is destroyed, and the use of any of these subprograms will raise an exception.

See Also:

GPS.EditorMark()

__init__(buffer, line, column)
Initializes a new instance. Creating two instances at the same location will not return the same instance of
GPS.EditorLocation, and therefore any user data you have stored in the location will not be available in
the second instance

Parameters

• buffer – The instance of GPS.EditorBuffer

294 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• line – An integer

• column – An integer

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = GPS.EditorLocation(ed, line=4, column=5)
loc.data = "MY OWN DATA"
loc2 = GPS.EditorLocation(ed, line=4, column=5)
loc2.data is not defined at this point

backward_overlay(overlay=None)
Same as GPS.EditorLocation.forward_overlay, but moves backward instead. If there are no more changes,
the location is left at the beginning of the buffer.

Parameters overlay – An instance of GPS.EditorOverlay

Returns An instance of GPS.EditorLocation

beginning_of_line()
Return a location located at the beginning of the line on which self is.

Returns A new instance of GPS.EditorLocation

block_end()
Return the location of the end of the current block

Returns An instance of GPS.EditorLocation

block_end_line()
Return the last line of the block surrounding the location. The definition of a block depends on the specific
language of the source file

Returns An integer

block_fold()
Fold the block containing the location, ie make it invisible on the screen, except for its first line. Clicking
on the icon next to this first line will unfold the block and make it visible to the user

See Also:

GPS.EditorLocation.block_unfold()

block_level()
Return the nesting level of the block surrounding the location. The definition of a block depends on the
specific programming language

Returns An integer

block_name()
Return the name of the bock surrounding the location. The definition of a block depends on the specific
language of the source file

Returns A string

block_start()
Return the location of the beginning of the current block

Returns An instance of GPS.EditorLocation

block_start_line()
Return the first line of the block surrounding the location. The definition of a block depends on the
programming language

Returns An integer

18.5. Classes 295

GPS Documentation, Release 5.2.1

block_type()
Return the type of the block surrounding the location. This type indicates whether the block is a subpro-
gram, an if statement,...

Returns A string

block_unfold()
Unfold the block containing the location, ie make it visible any information that was hidden as a result of
running GPS.EditorLocation.block_fold

See Also:

GPS.EditorLocation.block_fold()

buffer()
Return the buffer in which the location is found

Returns An instance of GPS.EditorBuffer

column()
Return the column of the location

Returns An integer

create_mark(name=’‘)
Create a mark at that location in the buffer. The mark will stay permanently at that location, and follows if
the buffer is modified. If the name is specified, this creates a named mark, which can be retrieved through
a call to GPS.EditorBuffer.get_mark. If a mark with the same name already exists, it is moved to the new
location, and then returned

Parameters name – A string

Returns An instance of GPS.EditorMark

See Also:

GPS.EditorBuffer.get_mark()

buffer = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = GPS.EditorLocation(buffer, 3, 4)
mark = loc.create_mark()
buffer.insert(loc, "text")
loc = mark.location()
loc.column() is now 8

end_of_line()
Return a location located at the end of the line on which self is.

Returns A new instance of GPS.EditorLocation

ends_word()
Return true if self is currently at the end of a word. The definition of a word depends on the language used

Returns A boolean

forward_char(count)
Return a new location located count characters after self. If count is negative, the location is moved
backward instead

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

296 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

forward_line(count)
Return a new location located count lines after self. The location is moved back to the beginning of the
line. In case self is on the last line, the beginning of the last line is returned.

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

forward_overlay(overlay=’‘)
Moves to the next change in the list of overlays applying to the character. If overlay is specified, go to the
next change for this specific overlay (ie the next beginning or end of range where it applies). If there are
no more changes, the location is left at the end of the buffer.

Parameters overlay – An instance of GPS.EditorOverlay

Returns An instance of GPS.EditorLocation

See Also:

GPS.EditorLocation.backward_overlay()

forward_word(count)
Return a new location located count words after self. If count is negative, the location is moved backward
instead. The definition of a word depends on the language used

Parameters count – An integer

Returns A new instance of GPS.EditorLocation

get_char()
Return the character at that location in the buffer. An exception is raised when trying to read past the end
of the buffer. The character might be encoded on several bytes, since it is a UTF8 string.

Returns A UTF8 string

char = buffer.beginning_of_buffer().get_char()
GPS.Console().write (char) ## Prints the character
To manipulate in python, convert the string to a unicode string:
unicode = char.decode("utf-8")

get_overlays()
This function returns the list of all the overlays that apply at this specific location. The color and font of
the text is composed through the contents of these overlays.

Returns A list of GPS.EditorOverlay instances

has_overlay(overlay)
This function returns True if the given overlay applies to the character at that location

Parameters overlay – An instance of GPS.EditorOverlay

Returns A boolean

inside_word()
Return true if self is currently inside a word. The definition of a word depends on the language used

Returns A boolean

line()
Return the line of the location

Returns An integer

18.5. Classes 297

GPS Documentation, Release 5.2.1

offset()
Return the offset of the location in the buffer, ie the number of characters from the beginning of the buffer
to the location

Returns An integer

search(pattern, backward=False, case_sensitive=False, regexp=False, whole_word=False,
scope=’Whole’, dialog_on_failure=True)

This function searches for the next occurrence of Pattern in the editor, starting at the given location. If
there is such a match, this function returns the two locations for the beginning of the match and the end of
the match. Typically, these would be used to highlight the match in the editor.

When no match is found, this function returns null. Additionally, if dialog_on_failure is true then a dialog
is displayed to the user asking whether the search should restart at the beginning of the buffer.

Parameters

• pattern – A string

• backward – A boolean

• case_sensitive – A boolean

• regexp – A boolean

• whole_word – A boolean

• scope – A string

• dialog_on_failure – A boolean

Returns A list of two GPS.EditorLocation

See Also:

GPS.File.search()

starts_word()
Return true if self is currently at the start of a word. The definition of a word depends on the language used

Returns A boolean

subprogram_name()
Return the name of the subprogram enclosing the location

Returns A string

18.5.24 GPS.EditorMark

class GPS.EditorMark
This class represents a specific location in an open editor. As opposed to the GPS.EditorLocation class, the
exact location is updated whenever the buffer is modified. For instance, if you add a line before the mark, then
the mark is moved one line forward as well, so that it still points to the same character in the buffer.

The mark remains valid even if you close the buffer; or if you reopen it and modify it. It will always point to the
same location in the file, while you have kept the python object.

GPS.EditorLocation.create_mark() allows you to create named marks which you can then retrieve
through GPS.EditorBuffer.get_mark. Such named marks are only valid while the editor exists. As soon as you
close the editor, you can no longer use get_mark to retrieve it (but the mark is still valid if you have kept a
python object referencing it).

See Also:

298 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.EditorLocation()

__init__()
This subprogram will always raise an exception, thus preventing the direct creation of a mark. Instead, you
should use GPS.EditorLocation.create_mark() to create such a mark

delete()
Delets the physical mark from the buffer. All instances referencing the same mark will no longer be
valid. If you haven’t given a name to the mark in the call to GPS.EditorLocation.create_mark(), it will
automatically be destroyed when the last instance referencing it goes out of scope. Therefore, calling
delete() is not mandatory in the case of unnamed marks, although it is still recommanded

is_present()
Returns True if mark’s location is still present in the buffer

location()
Returns the current location of the mark. This location will vary depending on the changes that take place
in the buffer

Returns An instance of GPS.EditorLocation

ed = GPS.EditorBuffer.get(GPS.File("a.adb"))
loc = GPS.EditorLocation(ed, 3, 5)
mark = loc.create_mark()
...
loc = mark.location()

move(location)
Moves the mark to a new location in the buffer. This is slightly less expensive that destroying the mark
and creating a new one through GPS.EditorLocation.create_mark(), although the result is the
same

Parameters location – An instance of GPS.EditorLocation

18.5.25 GPS.EditorOverlay

class GPS.EditorOverlay
This class represents properties that can be applied to one or more ranges of text. This can be used to change
the display properties of the text (colors, fonts,...) or store any user-specific attributes that can be retrieved later.
GPS itself uses overlays to do syntax highlighting. If two or more overlays are applied to the same range of text,
the final colors and fonts of the text depends on the priorities of these overlays and the order in which they were
applied to the buffer.

__init__()
This subprogram is used to prevent the direct creation of overlays. Overlays need to be created through
GPS.EditorBuffer.create_overlay()

See Also:

GPS.EditorBuffer.create_overlay()

get_property(name)
This subprogram is used to retrieve one of the predefined properties of the overlay. This list of these
properties is described for GPS.EditorOverlay.set_property

Parameters name – A string

Returns A string or a boolean, depending on the property

name()
Return the name associated with this overlay, as given to GPS.EditorBuffer.create_overlay()

18.5. Classes 299

GPS Documentation, Release 5.2.1

Returns A string

See Also:

GPS.EditorBuffer.create_overlay()

set_property(name, value)
This function is used to change some of the predefined properties of the overlay. These are mostly used to
change the visual rendering of the text,... The following attribute names are currently recognized:

•foreground (value is a string with the color name)

Change the foreground color of the text.

•background (value is a string with the color name)

Change the background color of the text.

•font (value is a string with the font name)

Changes the font of the text

•weight (value is a string, one of “light”, “normal” and “bold”)

•style (value is a string, one of “normal”, “oblique” and “italic”)

•editable (value is a boolean): Indicates whether this range of text is editable or not

The set of predefined attributes is fixed. However, overlays are especially useful to store your own user
data in the usual python manner, which you can retrieve later. This can be used to mark specially specific
ranges of text which you want to be able to find easily later on, even if the buffer has been modified since
then (see GPS.EditorLocation.forward_overlay)

param name A string

param value A string or a boolean, depending on the property

18.5.26 GPS.EditorView

class GPS.EditorView(buffer)
One view of an editor, ie the visible part through which users can modify text files. A given GPS.EditorBuffer
can be associated with multiple views. Closing the last view associated with a buffer will also close the buffer

To get a handle on the current editor, use the following code:
view = GPS.EditorBuffer.get().current_view()

GPS.EditorViewGPS.GUI

__init__(buffer)
This constructor is called implicitly whenever you create a new view. It creates a new view for the given
buffer, and is automatically inserted into the GPS MDI

Parameters buffer – An instance of GPS.EditorBuffer

300 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

buffer()
Returns the buffer to which the view is attached. Editing the text of the file should be done through this
instance

Returns An instance of GPS.EditorBuffer

center(location=’location of cursor’)
Scrolls the view so that the location is centered

Parameters location – An instance of GPS.EditorLocation

cursor()
Return the current location of the cursor in this view

Returns An instance of GPS.EditorLocation

goto(location, extend_selection)
Moves the cursor at the given location. Each view of a particular buffer has its own cursor position, which
is where characters typed by the user will be inserted. If extend_selection is True, extend the selection
from the current bound to the new location.

Parameters

• location – An instance of GPS.EditorLocation

• extend_selection – A Boolean

is_read_only()
Whether the view is editable or not. This property is in fact shared by all views of the same buffer.

Returns A boolean

See Also:

GPS.EditorBuffer.is_read_only()

set_read_only(read_only=True)
Indicates whether the user should be able to edit interactively through this view. Setting a view
Writable/Read Only will also modify the status of the other views of the same buffer.xx

Parameters read_only – A boolean

See Also:

GPS.EditorBuffer.get_read_only()

title(short=False)
Returns the view’s title, the short title is returned if short is set to True

Parameters short – A boolean

18.5.27 GPS.Entity

class GPS.Entity(name, file=None, line=1, column=1)
Represents an entity from the source, based on the location of its declaration

See Also:

GPS.Entity.__init__()

__init__(name, file=None, line=1, column=1)
Initializes a new instance of the Entity class, from any reference to the entity. The file parameter should
only be omitted for a predefined entity of the language. This will only work for languages for which a
cross-reference engine has been defined

18.5. Classes 301

GPS Documentation, Release 5.2.1

Parameters

• name – A string, the name of the entity

• file – An instance of GPS.File, in which the entity is referenced

• line – An integer, the line at which the entity is referenced

• column – An integer, the column at which the entity is referenced

>>> GPS.Entity("foo", GPS.File("a.adb"), 10, 23).declaration().file().name()
=> will return the full path name of the file in which the entity "foo",

referenced in a.adb at line 10, column 23, is defined.

attributes()
Return various boolean attributes of the entity: is the entity global, static, static for a class, protected,...

Returns A htable

body(nth=‘1’)
Return the location at which the implementation of the entity is found. For Ada subprograms and packages,
this corresponds to the body of the entity. For Ada private types, this is the location of the full declaration
for the type. For entities which do not have a notion of body, this returns the location of the declaration
for the entity. Some entities have several bodies. This is for instance the case of a separate subprogram
in Ada, where the first body just indicates the subprogram is separate, and the second body provides the
actual implementation. The nth parameter gives access to the other bodies. An exception is raised when
there are not at least nth bodies.

Parameters nth – An integer

Returns An instance of GPS.FileLocation

entity = GPS.Entity("bar", GPS.File("a.adb"), 10, 23)
body = entity.body()
print "The subprogram bar’s implementation is found at " + body.file.name() + ’:’ + body.line() + ’:’ + body.column()

called_by(dispatching_calls=False)
Display the list of entities that call the entity. The returned value is a dictionary whose keys are instances of
Entity calling this entity, and whose value is a list of FileLocation instances where the entity is referenced.
This command might take a while to execute, since GPS needs to get the cross-reference information for
lots of source files. If dispatching_calls is true, then calls to self that might occur through dispatching are
also listed.

Parameters dispatching_calls – A boolean

Returns A dictionary, see below

called_by_browser()
Open the call graph browser to show what entities call self

calls(dispatching_calls=False)
Display the list of entities called by the entity. The returned value is a dictionary whose keys are instances
of Entity called by this entity, and whose value is a list of FileLocation instances where the entity is
referenced. If dispatching_calls is true, then calls done through dispatching will result in multiple entities
being listed (ie all the possible subprograms that are called at that location)

Parameters dispatching_calls – A boolean

Returns A dictionary, see below

See Also:

GPS.Entity.is_called_by()

302 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

category()
Return the category of a given entity. Possible values include: label, literal, object, subprogram, pack-
age/namespace, type, unknown.

Returns A string

declaration()
Return the location of the declaration for the entity. The file’s name is is “<predefined>” for predefined
entities

Returns An instance of GPS.FileLocation, where the entity is declared

entity=GPS.Entity("integer")
if entity.declaration().file().name() == "<predefined>":

print "This is a predefined entity"

derived_types()
Return a list of all the entities that are derived from self. For object-oriented languages, this includes types
that extend self. In Ada, this also includes subtypes of self.

Returns List of GPS.Entity

discriminants()
Return the list of discriminants for entity. This is a list of entities, empty if the type has no discriminant or
if this notion doesn’t apply to that language

Returns List of instances of GPS.Entity

documentation(extended=False)
Return the documentation for the entity. This is the comment block found just before or just after the
declaration of the entity (if any such block exists). This is also the documentation string displayed in the
tooltips when you leave the mouse cursor over an entity for a while. If extended is true, then the returned
documentation will include formatting and full entity description.

Parameters extended – A boolean

Returns A string

end_of_scope()
Return the location at which the end of the entity is found.

Returns An instance of GPS.FileLocation

fields()
Return the list of fields for entity. This is a list of entities. This applies to Ada record and tagged types, or
C structs for instance.

Returns List of instances of GPS.Entity

find_all_refs(include_implicit=False)
Display in the location window all the references to the entity. If include_implicit is true, then implicit
uses of the entity will also be referenced, for instance when the entity appears as an implicit parameter to
a generic instantiation in Ada

Parameters include_implicit – A boolean

See Also:

GPS.Entity.references()

full_name()
Return the full name of the entity that it to say the name of the entity prefixed with its callers and parent
packages names. The casing of the name has been normalized to lower-cases for case-insensitive languages

18.5. Classes 303

GPS Documentation, Release 5.2.1

Returns A string, the full name of the entity

methods(include_inherited=False)
Return the list of primitive operations (aka methods) for self. This list is not sorted

Parameters include_inherited – A boolean

Returns A list of instances of GPS.Entity

name()
Return the name of the entity. The casing of the name has been normalized to lower-cases for case-
insensitive languages

Returns A string, the name of the entity

name_parameters(location)
Refactor the code at the location, to add named parameters. This only work if the language has support for
such parameters, namely Ada for the time being

Parameters location – An instance of GPS.FileLocation

GPS.Entity("foo", GPS.File("decl.ads")).rename_parameters(
GPS.FileLocation(GPS.File("file.adb"), 23, 34))

parameters()
Return the list of parameters for entity. This is a list of entities. This applies to subprograms.

Returns List of instances of GPS.Entity

pointed_type()
Return the type pointed to by entity. If self is not a pointer (or an Ada access type), None is returned. This
function also applies to variables, and returns the same information as their type would

Returns An instance of GPS.Entity

Given the following Ada code:
type Int is new Integer;
type Ptr is access Int;
P : Ptr;
the following requests would apply:

f = GPS.File("file.adb")
GPS.Entity("P", f).type() # Ptr
GPS.Entity("P", f).pointed_type() # Int
GPS.Entity("Ptr", f).pointed_type() # Int

primitive_of()
Return the type for which self is a primitive operation (or a method, in other languages than Ada)

Returns An instance of GPS.Entity or None

references(include_implicit=False, synchronous=True, show_kind=False, in_file=’None’,
kind_in=’‘)

List all references to the entity in the project sources. If include_implicit is true, then implicit uses of the
entity will also be referenced, for instance when the entity appears as an implicit parameter to a generic
instantiation in Ada.

If synchronous is True, then the result will be directly returned, otherwise a command will be returned
and its result will be accessible with get_result(). The result, then, is either a list of locations (if show_kind
is False), or a htable indexed by location, and whose value is a string indicating the kind of the reference
(declaration, body, label, end-of-spec,...). The parameter in_file can be used to limit the search to
references in a particular file. This is a lot faster. The parameter kind_in is a list of comma-separated

304 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

list of reference kinds (as would be returned when show_kind is True). Only such references are returned,
as opposed to all references.

Parameters

• include_implicit – A boolean

• synchronous – A boolean

• show_kind – A boolean

• in_file – An instance of GPS.File

• kind_in – A string

Returns List of GPS.FileLocation, htable or GPS.Command

See Also:

GPS.Entity.find_all_refs()

for r in GPS.Entity("GPS", GPS.File("gps.adb")).references():
print "One reference in " + r.file().name()

rename(name, include_overriding=True, make_writable=False, auto_save=False)
Rename the entity every where in the application. The source files should have been compiled first, since
this operation relies on the cross-reference information which have been generated by the compiler. If
include_overriding is true, then subprograms that override or are overridden by self are also renamed.
Likewise, if self is a parameter to a subprogram then parameters with the same name in overriding or
overridden subprograms are also renamed.

If some renaming should be performed in a read-only file, the behavior depends on the make_writable pa-
rameter: if true, the file is made writable and the renaming is performed; if false, no renaming is performed
in that file, and a dialog is displayed asking whether you want to do the other renamings.

The files will be saved automatically if auto_save is true, otherwise they are left edited.

Parameters

• name – A string

• include_overriding – A boolean

• make_writable – A boolean

• auto_save – A boolean

return_type()
Return the return type for entity. This applies to subprograms.

Returns An instance of GPS.Entity

show()
Display in the type browser the informations known about the entity: list of fields for records, list of
primitive subprograms or methods, list of parameters, ...

type()
Return the type of the entity. For a variable, it is its type

Returns An instance of GPS.Entity

18.5. Classes 305

GPS Documentation, Release 5.2.1

18.5.28 GPS.EntityContext

class GPS.EntityContext
Represents a context that contains entity information

See Also:

GPS.EntityContext.__init__()

GPS.EntityContextGPS.FileContextGPS.Context

__init__()
Dummy function, whose goal is to prevent user-creation of a GPS.EntityContext instance. Such instances
can only be created internally by GPS

entity()
Return the entity stored in the context

Returns An instance of GPS.Entity

18.5.29 GPS.Exception

class GPS.Exception
One of the exceptions that can be raised by GPS. It is a general error message, and its semantic depends on what
subprogram raised the exception.

GPS.Exception

18.5.30 GPS.File

class GPS.File(name, local=False)
Represents a source file of your application

See Also:

GPS.File.__init__()

__init__(name, local=False)
Initializes a new instance of the class File. This doesn’t need to be called explicitly, since GPS will call
it automatically when you create such an instance. If name is a base file name (no directory is specified),
then GPS will attempt to search for this file in the list of source directories of the project. If a directory is
specified, or the base file name wasn’t found in the source directories, then the file name is considered as

306 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

relative to the current directory. If local is “true” the specified file name is to be considered as local to the
current directory.

Parameters

• name – Name of the file associated with this instance

• local – A boolean

See Also:

GPS.File.name()

file=GPS.File("/tmp/work")
print file.name()

compile(extra_args=’‘)
Compile current file. This call will return only once the compilation is completed. Additional arguments
can be added to the command line.

Parameters extra_args – A string

See Also:

GPS.File.make()

GPS.File("a.adb").compile()

directory()
Return the directory in which the file is found

Returns A string

Sorting files by TN is easily done with a loop like
dirs={}
for s in GPS.Project.root().sources():

if dirs.has_key (s.directory()):
dirs[s.directory()].append (s)

else:
dirs[s.directory()] = [s]

entities(local=True)
Return the list of entities that are either referenced (if local is false) or declared (if local is true) in self.

Parameters local – A boolean

Returns A list of GPS.Entity

generate_doc()
Generate the documentation of the file, and display it with the default browser

See Also:

GPS.Project.generate_doc()

get_property(name)
Return the value of the property associated with the file. This property might have been set in a previous
GPS session if it is persistent. An exception is raised if no such property already exists for the file

Parameters name – A string

Returns A string

See Also:

GPS.File.set_property()

18.5. Classes 307

GPS Documentation, Release 5.2.1

imported_by(include_implicit=False, include_system=True)
Return the list of files that depends on file_name. This command might take some time to execute since
GPS needs to parse the cross-reference information for multiple source files. If include_implicit is true,
then implicit dependencies are also returned. If include_system is true, then system files from the compiler
runtime are also returned.

Parameters

• include_implicit – A boolean

• include_system – A boolean

Returns A list of files

See Also:

GPS.File.imports()

imports(include_implicit=False, include_system=True)
Return the the list of files that self depends on. If include_implicit is true, then implicit dependencies are
also returned. If include_system is true, then system files from the compiler runtime are also returned.

Parameters

• include_implicit – A boolean

• include_system – A boolean

Returns A list of files

See Also:

GPS.File.imported_by()

language()
Return the name of the language this file is written in. This is based on the file extension and the naming
scheme defined in the project files or the XML files. The empty string is returned when the language is
unknown

Returns A string

make(extra_args=’‘)
Compile and link the file and all its dependencies. This call will return only once the compilation is
completed. Additional arguments can be added to the command line.

Parameters extra_args – A string

See Also:

GPS.File.compile()

name(remote_server=’GPS_Server’)
Return the name of the file associated with self. This is an absolute file name, including directories from
the root of the filesystem.

If remote_server is set, then the function returns the equivalent path on the specified server. GPS_Server
(default) is always the local machine.

Parameters remote_server – A string. Possible values are “GPS_Server” (or empty string),
“Build_Server”, “Debug_Server”, “Execution_Server” and “Tools_Server”.

Returns A string, the name of the file

other_file()
Return the name of the other file semantically associated with this one. In Ada this is the spec or body of

308 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

the same package depending on the type of this file. In C, this will generally be the .c or .h file with the
same base name.

Returns An instance of GPS.File

GPS.File("tokens.ads").other_file().name()
=> will print "/full/path/to/tokens.adb" in the context of the project
=> file used for the GPS tutorial.

project(default_to_root=True)
Return the project to which file belongs. If file is not one of the souces of the project, the returned value
depends on default_to_none: if false, None is returned. Otherwise, the root project is returned.

Parameters default_to_root – A boolean

Returns An instance of GPS.Project

GPS.File("tokens.ads").project().name()
=> will print "/full/path/to/sdc.gpr" in the context of the project file
=> used for the GPS tutorial

remove_property(name)
Removes a property associated with a file

Parameters name – A string

See Also:

GPS.File.set_property()

search(pattern, case_sensitive=False, regexp=False, scope=’whole’)
Return the list of matches for pattern in the file. Default values are False for case_sensitive and regexp.
Scope is a string, and should be any of ‘whole’, ‘comments’, ‘strings’, ‘code’. The latter will match only
for text outside of comments

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

• scope – One of (“whole”, “comments”, “strings”, “code”)

Returns List of GPS.FileLocation instances

See Also:

GPS.EditorLocation.search()

GPS.File.search_next()

search_next(pattern, case_sensitive=False, regexp=False)
Return the next match for pattern in the file. Default values are False for case_sensitive and regexp. Scope
is a string, and should be any of ‘whole’, ‘comments’, ‘strings’, ‘code’. The latter will match only for text
outside of comments

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

Returns An instance of GPS.FileLocation

18.5. Classes 309

GPS Documentation, Release 5.2.1

See Also:

GPS.File.search_next()

set_property(name, value, persistent=False)
Associates a string property with the file. This property is retrievable during the whole GPS session, or
across GPS sessions if persistent is set to True.

This is different than setting instance properties through Python’s standard mechanism in that there is no
garantee that the same instance of GPS.File will be created for each physical file on the disk, and therefore
you would not be able to associate a property with the physical file itself

Parameters

• name – A string

• value – A string

• persistent – A boolean

See Also:

GPS.File.get_property()

GPS.Project.set_property()

used_by()
Display in the dependency browser the list of files that depends on file_name. This command might take
some time to execute since GPS needs to parse the cross-reference information for multiple source files

See Also:

GPS.File.uses()

uses()
Display in the dependency browser the list of files that file_name depends on.

See Also:

GPS.File.used_by()

18.5.31 GPS.FileContext

class GPS.FileContext
Represents a context that contains file information

See Also:

GPS.FileContext.__init__()

GPS.Context GPS.FileContext

__init__()
Dummy function, whose goal is to prevent user-creation of a GPS.FileContext instance. Such instances
can only be created internally by GPS

310 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

directory()
Return the current directory in the context

Returns A string

file()
Return the name of the file in the context

Returns An instance of GPS.File

files()
Return the list of selected files in the context

Returns A list of GPS.File

location()
Return the file location stored in the context

Returns An instance of GPS.FileLocation

project()
Return the project in the context, or the root project if none was specified in the context. Return an error if
no project can be determined from the context

Returns An instance of GPS.Project

18.5.32 GPS.FileLocation

class GPS.FileLocation(filename, line, column)
Represents a location in a file

See Also:

GPS.FileLocation.__init__()

__init__(filename, line, column)
Initializes a new instance of GPS.FileLocation.

Parameters

• filename – An instance of GPS.File

• line – An integer

• column – An integer

location = GPS.FileLocation(GPS.File("a.adb"), 1, 2)

column()
Return the column of the location

Returns An integer, the column of the location

See Also:

GPS.FileLocation.file()

GPS.FileLocation.line()

file()
Return the file of the location

Returns An instance of GPS.File, the file of the location

18.5. Classes 311

GPS Documentation, Release 5.2.1

See Also:

GPS.FileLocation.line()

GPS.FileLocation.column()

line()
Return the line of the location

Returns An integer, the line of the location

See Also:

GPS.FileLocation.file()

GPS.FileLocation.column()

18.5.33 GPS.GUI

class GPS.GUI
This is an abstract class (ie no instances of it can be created from your code, which represents a graphical
element of the GPS interface

See Also:

GPS.GUI.__init__()

__init__()
Prevents the creation of instances of GPS.GUI. Such instances are created automatically by GPS as a result
of calling other functions

See Also:

GPS.Toolbar.append()

See Also:

GPS.Toolbar.entry()

See Also:

GPS.Menu.get()

destroy()
Destroy the graphical element. It will disappear from the interface, and cannot necessarily be recreated
later on

hide()
Temporarily hide the graphical element. It can be shown again through a call to GPS.GUI.show()

See Also:

GPS.GUI.show()

is_sensitive()
Return False if the widget is currently greyed out, and is not clickable by users

Returns A boolean

See Also:

GPS.GUI.set_sensitive()

312 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

pywidget()
This function is only available if GPS was compiled with support for pygtk, and the latter was found at run
time. It returns a widget that can be manipulated through the usual PyGtk functions. PyGtk is a binding
to the gtk+ toolkit, and allows you to create your own windows easily, or manipulate the entire GPS GUI
from python

Returns An instance of PyWidget

See Also:

GPS.MDI.add()

The following example makes the project view inactive. One could easily
change the contents of the project view as well
widget = GPS.MDI.get("Project View")
widget.pywidget().set_sensitive False)

set_sensitive(sensitive=True)
Indicate whether the associated graphical element should respond to user interaction or not. If the element
is not sensitive, then the user will not be able to click on it

Parameters sensitive – A boolean

See Also:

GPS.GUI.is_sensitive()

show()
Show again the graphical element that was hidden by hide()

See Also:

GPS.GUI.hide()

18.5.34 GPS.HTML

class GPS.HTML
This class gives access to the help system of GPS, as well as to the integrated browser

static add_doc_directory(directory)
Add a new directory to the GPS_DOC_PATH environment variable. This directory is searched for docu-
mentation files. If this directory contains a gps_index.xml file, it is parsed to find the list of documentation
files to add to the Help menu. See the GPS documentation for more information on the format of the
gps_index.xml files

Parameters directory – Directory that contains the documentation

static browse(URL, anchor=’‘, navigation=True)
Open the GPS html viewer, and load the given URL. If anchor matches a <a> tag in this file, GPS will
jump to it. If URL isn’t an absolute file name, it is searched in the path set by the environment variable
GPS_DOC_PATH.

If navigation is True, then the URL is saved in the navigation list, so that users can move back and forward
from and to this location later on.

The URL can be a network file name, with the following general format:

protocol://username@host:port/full/path

where protocol is one of the recognized protocols (http, ftp,.. see the GPS documentation), and the user-
name and port are optional.

18.5. Classes 313

GPS Documentation, Release 5.2.1

Parameters

• URL – Name of the file to browse

• anchor – Location in the file where to jump to

• navigation – A boolean

See Also:

GPS.HTML.add_doc_directory()

GPS.HTML.browse("gps.html")
=> will open the GPS documentation in the internal browser

GPS.HTML.browse("http://host.com/my/document")
=> will download documentation from the web

18.5.35 GPS.Help

class GPS.Help
This class gives access to the external documentation for shell commands. This external documentation is stored
in the file shell_commands.xml, part of the GPS installation, and is what you are currently seeing.

You almost never need to use this class yourself, since it is used implicitly by Python when you call the
help(object) command at the GPS prompt.

The help browser understands the standard http urls, with links to specific parts of the document. For instance:

"http://remote.com/my_document"
or "#link"

As a special case, it also supports links starting with ‘%’. These are shell commands to execute within GPS,
instead of a standard html file. For instance:

GNAT.OS_Lib%lt;/a%gt;

The first word after ‘%’ is the language of the shell command, the rest of the text is the command to execute

See Also:

GPS.Help.__init__()

__init__()
Initializes the instance of the Help class. This parses the XML file that contains the description of all the
commands. With python, the memory occupied by this XML tree will be automatically freed. However,
with the GPS shell you need to explicitly call GPS.Help.reset()

See Also:

GPS.Help.reset()

file()
Return the name of the file that contains the description of the shell commands. You shouldn’t have to
access it yourself, since you can do so through GPS.Help().getdoc() instead

Returns A string

See Also:

GPS.Help.getdoc()

314 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

getdoc(name, html=False)
Search, into the XML file shell_commands.xml, the documentation for this specific command or entity. If
no documentation is found, an error is raised. If html is true, the documentation is formated in HTML

Parameters

• name – The fully qualified name of the command

• html – A boolean

Returns A string, containing the help for the command

print GPS.Help().getdoc("GPS.Help.getdoc")

Help
Help.getdoc %1 "GPS.Help.getdoc"
Help.reset %2

reset()
Free the memory occupied by this instance. This frees the XML tree that is kept in memory. As a result,
you can no longer call GPS.Help.getdoc() afterward.

18.5.36 GPS.Hook

class GPS.Hook(name)
General interface to hooks. Hooks are commands executed when some specific events occur in GPS, and allow
you to customize some of the aspects of GPS

See Also:

GPS.Hook.__init__()

The available hooks are:

•activity_checked_hook(hookname)

Hook called when an activity has been checked, this is the last step done after the activity has been com-
mitted. It is at this point that the activity closed status is updated.

•after_character_added(hookname, file, character)

Hook called when a character has been added in the editor. This hook is also called for the backspace key.

param file An instance of GPS.File

param character A character

See Also:

Hook: character_added

Hook: word_added

•annotation_parsed_hook(hookname)

Hook called when the last file annotation has been parsed after the corresponding VCS action.

•before_exit_action_hook(hookname)

This hook is called when GPS is about to exit. If it returns 0, this exit will be prevented (it is recommended
that you display a dialog to explain why, in such a case)

return A boolean

18.5. Classes 315

GPS Documentation, Release 5.2.1

•before_file_saved(hookname, file)

Hook called right before a file is saved

param file An instance of GPS.File

•bookmark_added(hookname, bookmark_name)

Hook called when a new bookmark has been created by the user

param bookmark_name A string, the name of the bookmark that has been added

•bookmark_removed(hookname, bookmark_name)

Hook called when a new bookmark has been removed by the user

param bookmark_name A string, the name of the bookmark that has been removed

•buffer_edited(hookname, file)

Hook called after the user has stopped modifying the contents of an editor

param file An instance of GPS.File

•build_server_connected_hook(hookname)

Hook called when GPS connects to the build server in remote mode

•character_added(hookname, file, character)

Hook called when a character is going to be added in the editor. It is also called when a character is going
to be removed, in which case the last parameter is 8 (control-h)

param file An instance of GPS.File

param character A character

See Also:

Hook after_character_added

Hook word_added

•clipboard_changed(hookname)

Hook called when the contents of the clipboard has changed, either because the user has done a Copy
or Cut operation, or because he called Paste Previous which changes the current entry in the multi-level
clipboard.

•commit_done_hook(hookname)

Hook called when a commit has been done.

•compilation_finished(hookname, category, target_name, mode_name, status)

Hook called when a compile operation has finished.

Among the various tasks that GPS connects to this hook are the automatic reparsing of all xref information,
and the activation of the automatic-error fixes

param category A string, the location/highlighting category that contains the compilation out-
put.

param target_name A string, name of the executed build target.

param mode_name A string, name of the executed build mode.

param status An integer, exit status of the execuded program.

316 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

•compilation_starting(hookname, category, quiet, shadow)

Hook called when a compile operation is about to start.

Among the various tasks that GPS connects to this hook are: check whether unsaved editors should be
saved (asking the user), and stop the background task that parses all xref info. If quiet is True, then no
visible modification should be done in the MDI, like raising consoles, clearing their content,..., since the
compilation should happen in background mode.

Funtions connected to this hook should return False if the compilation should not occur for some reason,
True if it is OK to start the compilation. Typically, the reason to reject a compilation would be because the
user has explicitly cancelled it through a graphical dialog, or because running a background compilation
is not suitable at this time.

param category A string, the location/highlighting category that contains the compilation out-
put.

param quiet A boolean, if True then the GUI should advertise the compilation, otherwise noth-
ing should be reported to the user, unless there is an error.

param shadow A boolean, indicates whether the build launched was a Shadow builds, ie a “sec-
ondary” build launched automatically by GPS after a “real” build. For instance, when the
multiple toolchains mode is activated, the builds generating cross-references are Shadow
builds.

return A boolean

The following code adds a confirmation dialog to all
compilation commands.
def on_compilation_started(hook, category, quiet, shadow):

if not quiet:
return MDI.yes_no_dialog("Confirm compilation ?")

else:
return True

Hook("compilation_starting").add(on_compilation_started)

If you create a script to execute your own build script, you
should always do the following as part of your script. This
ensures a better integration in GPS (saving unsaved editors,
reloading xref information automatically in the end, raising
the GPS console, parsing error messages for automatically
fixable errors,...)

if notHook ("compilation_starting").run_until_failure(
"Builder results", False, False):

return

... spawn your command

Hook("compilation_finished").run("Builder results")

•compute_build_targets(hookname, name)

Hook called whenever GPS needs to compute a list of subtargets for a given build target. The handler
should check whether name is a known build target, and if so, return a list of tuples, where each tuple
corresponds to one target and contains a display name (used in the menus, for instance) and the name of
the target. If name is not known, it should return an empty list.

param name A string, the target type

18.5. Classes 317

GPS Documentation, Release 5.2.1

return A string

def compute_targets(hook, name):
if name == "my_target":

return [(display_name_1, target_1),
(display_name_2, target_2)]

return ""
GPS.Hook("compute_build_targets").add(compute_targets)

•context_changed(hookname, context)

Hook called when the current context changes in GPS, ie a new file is selected, or a new entity, or a new
window,...

param context An instance of GPS.Context

•contextual_menu_close(hookname)

Hook called just before a contextual menu is destroyed. At this time, the value returned by
GPS.contextual_context() is still the one used in the hook contextual_menu_open, and therefore you can
still reference the data you stored in the context. This hook is called even if no action was selected by the
user. However, it is always called before the action is executed, since the menu itself is closed first.

See Also:

contextual_menu_open hook()

•contextual_menu_open(hookname)

Hook called just before a contextual menu is created. It is called before any of the filters is evalu-
ated, and can be used to precomputed data shared by multiple filters to speed up the computation. Use
GPS.contextual_context() to get the context of the contextual menu and store precomputed data in it.

See Also:

contextual_menu_close hook()

•debugger_breakpoints_changed(hookname, debugger)

Hook called when the list of breakpoints has been refreshed. This might occur whether or not the list has
changed, but is a good time to refresh any view that might depend on an up-to-date list

param debugger An instance of GPS.Debugger

•debugger_command_action_hook(hookname, debugger, command)

This hook is emitted when the user types a command in the debugger console, or emits the console through
the GPS.Debugger API. It gives you a chance to override the behavior for the command, or even define
your own commands. Note that you must ensure that any debugger command you execute this way does
finish with a prompt. The function should return the output of your custom command

param debugger An instance of GPS.Debugger

param command A string, the command the user wants to execute

return A boolean

The following example implements a new gdb command, "hello". When the
user types this command in the console, we end up executing "print A"
instead. This can be used for instance to implement convenient
macros

def debugger_commands(hook, debugger, command):
if command == "hello":

return ’A=’ + debugger.send("print A", False)

318 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

else:
return ""

GPS.Hook("debugger_command_action_hook").add(debugger_commands)

•debugger_context_changed(hookname, debugger)

Called when the debugger context has changed, for instance after the user has switched the current thread,
has selected a new frame,...

param debugger An instance of GPS.Debugger

•debugger_executable_changed(hookname, debugger)

Called when the file being debugged has changed

param debugger An instance of GPS.Debugger

•debugger_process_stopped(hookname, debugger)

Called when the debugger ran and has stopped, for instance when hitting a breakpoint, or after a next
command. If you need to know when the debugger just started processing a command, you can connect to
the debugger_state_changed hook instead. Conceptually, you could connect to debugger_state_changed at
all times instead of debugger_process_stopped and check when the state is now “idle”

param debugger An instance of GPS.Debugger

See Also:

Hook debugger_state_changed

•debugger_process_terminated(hookname, debugger)

Called when the program being debugged has terminated

param debugger An instance of GPS.Debugger

•debugger_question_action_hook(hookname, debugger, question)

Action hook called just before displaying an interactive dialog, when the debugger is asking a question to
the user. This hook can be used to disable the dialog (and send the rreply directly to the debugger instead).
It should return a non-empty string to pass to the debugger if the dialog should not be displayed. You
cannot send commands to the debugger when inside this hook, since the debugger is blocked waiting for
an answer

param debugger An instance of GPS.Debugger

param question A string

return A string

def gps_question(hook, debugger, str):
return "1" ## Always choose choice 1

GPS.Hook("debugger_question_action_hook").add(gps_question)

debug=GPS.Debugger.get()
deubg.send("print &foo")

•debugger_started(hookname, debugger)

Hook called when a new debugger has been started

param debugger An instance of GPS.Debugger

18.5. Classes 319

GPS Documentation, Release 5.2.1

See Also:

Hook debugger_state_changed

•debugger_state_changed(hookname, debugger, new_state)

Indicates a change in the status of the debugger: new_state can be one of “none” (the debugger is now
terminated), “idle” (the debugger is now waiting for user input) or “busy” (the debugger is now processing
a command, and the process is running). As opposed to debugger_process_stopped, this hook is called
when the command is just starting its executing (hence the debugger is busy while this hook is called,
unless the process immediately stopped).

This hook is in fact emitted also when internal commands are sent to the debugger, and thus much more
often than if it was just reacting to user input. It is therefore recommended that the callback does the
minimal amount of work, possibly doing the rest of the work in an idle callback to be executed when GPS
is no longer busy.

If the new state is “busy”, you cannot send additional commands to the debugger.

When the state is either “busy” or “idle”, GPS.Debugger.command will return the command that is about
to be executed or the command that was just executed and just completed.

param debugger An instance of GPS.Debugger

param new_state A string

•debugger_terminated(hookname, debugger)

Hook called when the debugger session has been terminated. It is now recommended that you connect to
the debugger_state_changed hook and test whether the new state is “none”.

param debugger An instance of GPS.Debugger

See Also:

Hook debugger_state_changed

•diff_action_hook(hookname, vcs_file, orig_file, ref_file, diff_file, title)

Hook called to request the display of the comparison window

param vcs_file An instance of GPS.File

param orig_file An instance of GPS.File

param ref_file An instance of GPS.File

param diff_file An instance of GPS.File

param title Buffer title

return A boolean

•file_changed_detected(hookname, file)

Hook called whenever GPS detects that an opened file changed on the disk. You can connect to this hook if
you want to change the default behavior, which is asking if the user wants to reload the file. Your function
should return 1 if the action is handled by the function, and return 0 if the default behavior is desired.

param file An instance of GPS.File

return A boolean

import GPS

def on_file_changed(hook, file):
automatically reload the file without prompting the user

320 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

ed = GPS.EditorBuffer.get(file, force = 1)
return 1

install a handler on "file_changed_detected" hook
GPS.Hook("file_changed_detected").add(on_file_changed)

•file_changed_on_disk(hookname, file)

Hook called when some external action has changed the contents of a file on the disk, such as a VCS
operation. The parameter might be a directory instead of a file, indicating that any file in that directory
might have changed

param file An instance of GPS.File

•file_closed(hookname, file)

Hook called just before the last editor for a file is closed. You can still use EditorBuffer.get() and cur-
rent_view() to access the last editor for file.

param file An instance of GPS.File

•file_deleted(hookname, file)

Hook called whenever GPS detects that a file was deleted on the disk. The parameter might be a directory
instead of a file, indicating that any file within that directory has been deleted.

param file An instance of GPS.File

•file_edited(hookname, file)

Hook called when a file editor has been opened for a file that wasn’t already opened before. Do not confuse
with the hook open_file_action, which is used to request the opening of a file.

param file An instance of GPS.File

See Also:

open_file_action hook()

•file_line_action_hook(hookname, identifier, file, every_line, normalize)

Hook called to request the display of new information on the side of the editors. It isn’t expected that you
connect to this hook, but you might want to run it yourself to ask GPS to display some information on the
side of its editors

param identifier A string

param file An instance of GPS.File

param every_line A boolean

param normalize A boolean

return A boolean

•file_renamed(hookname, file, renamed)

Hook called whenever a GPS action renamed a file on the disk. The file parameter indicates the initial
location of the file, while the renamed parameter indicates the new location. The parameters might be
directories instead of files, indicating that the directory has been renamed, and thus any file within that
directory have their path changed.

param file An instance of GPS.File

param renamed An instance of GPS.File

18.5. Classes 321

GPS Documentation, Release 5.2.1

•file_saved(hookname, file)

Hook called whenever a file has been saved

param file An instance of GPS.File

•file_status_changed_action_hook(hookname, file, status)

Hook called when a file status has changed

param file An instance of GPS.File

param status A string, the new status for the file. This is the status has displyed into the GPS
status line. The value is either Unmodified, Modified or Saved.

return A boolean

•gps_started(hookname)

Hook called when GPS is fully loaded, and its window is visible to the user.

It isn’t recommended to do any direct graphical action before this hook has been called, so it is recom-
mended that in most cases your start scripts connect to this hook.

•html_action_hook(hookname, url_or_file, enable_navigation, anchor)

Hook called to request the display of HTML files. It is generally useful if you want to open an HTML file,
and let GPS handle it in the usual manner

param url_or_file A string

param enable_navigation A boolean

param anchor A string

return A boolean

•location_action_hook(hookname, identifier, category, file, line, column, message)

Hook called to request the display of new information on the side of the location window

param identifier A string

param category A string

param file An instance of GPS.File

param line An integer

param column An integer

param message A string

return A boolean

•location_changed(hookname, file, line, column)

Hook called when the location in the current editor has changed, and the cursor has stopped moving.

param file An instance of GPS.File

param line An integer

param column An integer

•log_parsed_hook(hookname)

Hook called when the last file log has been parsed after the corresponding VCS action.

322 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

•marker_added_to_history(hookname)

Hook called when a new marker is added to the history list of previous locations, where the user can
navigate back and forward

•open_file_action_hook(hookname, file, line, column, column_end, enable_navigation, new_file,
force_reload, focus=False)

This hook is called when GPS needs to open a file. You can connect to this hook if you want to have your
own editor open, instead of the internal editor of GPS. Your function should return 1 if it did open the file,
0 if the next function connected to this hook should be called.

The file should be opened directly at line and column. If column_end is not 0, the given range should be
highlighted if possible. The enable_navigation parameter is set to True if the new location should be added
to the history list, so that the user can navigate forward and backward across previous locations. new_file
is set to True if a new file should be created when file is not found. If set to False, nothing should be done.
force_reload is set to true if the file should be reloaded from the disk, discarding any change the user might
have done. focus is set to true if the open editor should be given the keyboard focus

param file An instance of GPS.File

param line An integer

param column An integer

param column_end An integer

param enable_navigation A boolean

param new_file A boolean

param force_reload A boolean

param focus A boolean

return A boolean

See Also:

file_edited hook()

GPS.Hook(’open_file_action_hook’).run(
GPS.File("gps-kernel.ads"),
322, # line
5, # column
9, # column_end
1, # enable_navigation
1, # new_file
0) # force_reload

•preferences_changed(hookname)

Hook called when the value of some of the preferences changes. Modules should refresh themselves
dynamically

•project_changed(hookname)

Hook called when the project has changed. A new project has been loaded, and all previous settings and
caches are now obsolete. In the callbacks for this hook, the attribute values have not been computed from
the project yet, and will only return the default values. Connect to the project_view_changed hook instead
to query the actual values

See Also:

Hook project_view_changed

18.5. Classes 323

GPS Documentation, Release 5.2.1

•project_changing(hookname, file)

Hook called just before a new project is loaded.

param file An instance of GPS.File

•project_editor(hookname)

Hook called before the Project Editor is opened. This allows a custom module to perform specific actions
before the actual creation of this dialog.

•project_saved(hookname, project)

Hook called when a project is saved to disk. It is called for each project in the hierarchy

param project An instance of GPS.Project

•project_view_changed(hookname)

Hook called when the project view has been changed, for instance because one of the environment variables
has changed. This means that the list of directories, files or switches might now be different. In the
callbacks for this hook, you can safely query the new attribute values.

•revision_parsed_hook(hookname)

Hook called when the last file revision has been parsed after the corresponding VCS action.

•rsync_action_hook(hookname)

For internal use only

•search_functions_changed(hookname)

Hook called when the list of registered search functions changes.

•search_regexps_changed(hookname)

Hook called when a new regexp has been added to the list of predefined search patterns

•search_reset(hookname)

Hook called when the current search pattern is reset or changed by the user, or when the current search is
no longer possible because the setup of GPS has changed.

•server_config_hook(hookname, server_type, nickname)

Hook called when a server is assigned to a server operations category.

param server_type A string, the server operations category. Can take the values
“BUILD_SERVER”, “EXECUTION_SERVER” or “DEBUG_SERVER”

param nickname A string, the server’s nickname

•server_list_hook(hookname)

Hook called when the list of configured servers changed.

•source_lines_revealed(hookname, context)

Hook called when a range of line becomes visible on the screen

param context An instance of GPS.Context

•status_parsed_hook(hookname)

Hook called when the last file status has been parsed after the corresponding VCS action.

324 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

•stop_macro_action_hook(hookname)

You should run this hook to request that the macro currently being replayed be stopped. No more events
should be processed as part of this macro

•variable_changed(hookname)

Hook called when one of the scenario variables has been renamed, removed or when one of its possible
values has changed.

•word_added(hookname, file)

Hook called when a word has been added in the editor

param file An instance of GPS.File

See Also:

Hook character_added

__init__(name)
Create a new hook instance, which refers to one of the already defined hooks

Parameters name – A string, the name of the hook

add(function_name, last=True)
Connect a new function to a specific hook. Any time this hook is run through run_hook, this function will
be called with the same parameters passed to run_hook. If Last is True, then this function will be called
after all functions currently added to this hook. If Last is False, it will be called before.

Parameters

• function_name – A subprogram, see the “Subprogram Parameters” section in the GPS
documentation

• last – A boolean

See Also:

GPS.Hook.remove()

An example using the GPS shell:

in the GPS shell:

parse_xml ’<action name="edited"><shell>echo "File edited hook=$1 file=$2"</shell></action>’
Hook "file_edited"
Hook.add %1 "edited"

def filed_edited(hook_name, file):
print "File edited (hook=" + hook_name + " file=" + file.name()

GPS.Hook("file_edited").add(file_edited)

describe_functions()
List all the functions that are executed when the hook is executed. The returned list might contain <<inter-
nal> strings, which indicate that some Ada function is connected to this hook

Returns A list of strings

static list()
List all defined hooks. See also run_hook, register_hook and add_hook

Returns A list of strings

18.5. Classes 325

GPS Documentation, Release 5.2.1

See Also:

GPS.Hook.list_types()

static list_types()
List all defined type hooks

Returns A list of strings

See Also:

GPS.Hook.register()

static register(name, type=’‘)
Defines a new hook. This hook can take any number of parameters, the default is none. The type and num-
ber of parameters is called the type of the hook, and this is described by the” optional second parameter.
The value of this parameter should be either the empty string for a hook that doesn’t take any parameter.
Or it could be one of the predefined types exported by GPS itself (see list_hook_types). Finally, it could
be the word “”generic”” if this is a new type of hook purely defined for this scripting language

Parameters

• name – A string, the name of the hook to create

• type – A string, the type of the hook. See GPS.Hook.list_types()

remove(function_name)
Remove function_name from the list of functions executed when the hook is run. This is the reverse of
GPS.Hook.add

Parameters function_name – A subprogram, see the “Subprogram Parameters” section in the
GPS documentation

See Also:

GPS.Hook.add()

run(*args)
Run the hook. This will call all the functions that attached to that hook, and return the return value of the
last callback (this depends on the type of the hook, most often this is always None). When the callbacks
for this hook are expected to return a boolean, this command stops as soon as one the callbacks returns
True

Parameters args – Any number of parameters to pass to the hook.

See Also:

GPS.Hook.run_until_success()

GPS.Hook.run_until_failure()

run_until_failure(*args)
This only applies to hooks returning a boolean. This executes all functions attached to this hook, until
one returns False, in which case no further function is called. This returns the returned value of the last
executed function.

Parameters args – Any number of parameters to pass to the hook.

Returns A boolean

See Also:

GPS.Hook.run_until_success()

GPS.Hook.run()

326 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

run_until_success(*args)
This only applies to hooks returning a boolean. This executes all functions attached to this hook, until
one returns True, in which case no further function is called. This returns the returned value of the last
executed function. This is mostly the same as GPS.Hook.run, but makes the halt condition more explicit.

Parameters args – Any number of parameters to pass to the hook.

Returns A boolean

See Also:

GPS.Hook.run_until_failure()

GPS.Hook.run()

18.5.37 GPS.Invalid_Argument

class GPS.Invalid_Argument
An exception raised by GPS. Raised when calling a subprogram from the GPS module with an invalid argument
type (passing an integer when a string is expected, for instance)

GPS.Exception GPS.Invalid_Argument

18.5.38 GPS.Locations

class GPS.Locations
General interface to the locations window

static add(category, file, line, column, message, highlight=’‘, length=‘0’, look_for_secondary=False)
Add a new entry in the location window. Nodes are created as needed for the category or file. If Highlight is
specified to a non-empty string, the whole line is highlighted in the file, with a color given by that highlight
category (see register_highlighting for more information). Length is the length of the highlighting. The
default value of 0 indicates that the whole line should be highlighted

Parameters

• category – A string

• file – An instance of GPS.File

• line – An integer

• column – An integer

• message – A string

• highlight – A string, the name of the highlight category

• length – An integer

• look_for_secondary – A boolean

18.5. Classes 327

GPS Documentation, Release 5.2.1

GPS.Editor.register_highlighting("My_Category", "blue")
GPS.Locations.add(category="Name in location window",

file=GPS.File("foo.c"),
line=320,
column=2,
message="message",
highlight="My_Category")

static dump(file)
Dump the contents of the Locations View to the specified file, in XML format.

Parameters file – A string

static list_categories()
Return the list of all categories currently displayed in the Locations window. These are the top-level nodes
used to group information generally related to one command, like the result of a compilation.

Returns A list of strings

See Also:

GPS.Locations.remove_category()

static list_locations(category, file)
Return the list of all file locations currently listed in the given category and file.

Parameters

• category – A string

• file – A string

Returns A list of EditorLocation

See Also:

GPS.Locations.remove_category()

static parse(output, category, regexp=’‘, file_index=-1, line_index=-1, column_index=-1,
msg_index=-1, style_index=-1, warning_index=-1, highlight_category=’Builder re-
sults’, style_category=’Style errors’, warning_category=’Builder warnings’)

Parse the contents of the string, which is supposedly the output of some tool, and add the errors and
warnings to the locations window. A new category is created in the locations window if it doesn’t exist.
Preexisting contents for that category is not removed, see locations_remove_category.

The regular expression specifies how locations are recognized. By default, it matches file:line:column. The
various indexes indicate the index of the opening parenthesis that contains the relevant information in the
regular expression. Set it to 0 if that information is not available. style_index and warning_index,
if they match, force the error message in a specific category.

highlight_category, style_category and warning_category reference the colors to use
in the editor to highlight the messages when the regexp has matched. If they are set to the empty string,
no highlighting is done in the editor. The default values match those by GPS itself to highlight the error
messages. Create these categories with GPS.Editor.register_highlighting().

Parameters

• output – A string

• category – A string

• regexp – A string

• file_index – An integer

328 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• line_index – An integer

• column_index – An integer

• msg_index – An integer

• style_index – An integer

• warning_index – An integer

• highlight_category – A string

• style_category – A string

• warning_category – A string

See Also:

GPS.Editor.register_highlighting()

static remove_category(category)
Remove a category from the location window. This removes all associated files

Parameters category – A string

See Also:

GPS.Locations.list_categories()

static set_sort_order_hint(category)
Sets desired sorting order for file nodes of the category. Actual sort order can be overrided by user.

Parameters category – A string (“Chronological” or “Alphabetical”)

18.5.39 GPS.Logger

class GPS.Logger(name)
This class provides an interface to the GPS logging mechanism. This can be used when debugging scripts, or
even be left in production scripts for post-mortem analysis for instance. All output through this class is done in
the GPS log file, in $HOME/.gps/log.

GPS comes with some predefined logging streams, which can be used to configure the format of the log file,
such as whether colors should be used, whether timestamps should be logged with each message,...

count = None

__init__(name)
Create a new logging stream. Each stream is associated with a name, which is displayed before each line
in the GPS log file, and is used to distinguish between various parts of GPS. Calling this constructor with
the same name multiple times will create a new class instance.

Parameters name – A string

log = GPS.Logger("my_script")
log.log("A message")

check(condition, error_message, success_message=’‘)
If condition evaluates to False, then error_message will be logged in the log file. If the condition evaluates
to True, then success_message is logged if it was specified

Parameters

• condition – A boolean

• error_message – A string

18.5. Classes 329

GPS Documentation, Release 5.2.1

• success_message – A string

log=GPS.Logger("my_script")
log.check(1 == 2, "Invalid addition")

log(message)
Logs a message in the GPS log file

Parameters message – A string

set_active(active)
Activate or deactivate a logging stream. The default for a sttream depends on the file
$HOME/.gps/traces.cfg, and will generally be active. When a stream is inactive, no message is sent to
the log file

Parameters active – A boolean

18.5.40 GPS.MDI

class GPS.MDI
Represents GPS’s Multiple Document Interface. This gives access to general graphical commands for GPS, as
well as control over the current layout of the windows within GPS

See Also:

GPS.MDIWindow

If you have installed the pygtk package (see GPS’s documentation}, GPS will export a few more functions to
python so that it is easier to interact with GPS itself. In particular, the GPS.MDI.add function allows you to put
a widget created by pygtk under control of GPS’s MDI, so that users can interact with it as with all other GPS
windows.

import GPS

The following three lines are the usual to make pygtk visible
import pygtk
pygtk.require(’2.0’)
import gtk

def on_clicked(*args):
GPS.Console().write("button was pressed\n")

def create():
button=gtk.Button(’press’)
button.connect(’clicked’, on_clicked)
GPS.MDI.add(button, "From testgtk", "testgtk")
win = GPS.MDI.get(’testgtk’)
win.split()

create()

static add(widget, title, short)
This function is only available if pygtk could be loaded in the python shell. You must install this library
first, see the documentation for GPS.MDI itself.

This function adds a widget inside the MDI of GPS. The resulting window can then be manipulated by the
user like any other standard GPS window. It can be split, floated, resized,... Title is the string used in the
title bar of the window, short is the string used in the notebook tabs. You can immediately retrieve a handle
to the created window by calling GPS.MDI.get (short).

330 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

Parameters

• widget – A widget, created by pygtk

• title – A string

• short – A string

See Also:

GPS.MDI.get()

GPS.GUI.pywidget()

GPS.MDI()

static children()
Return all the windows currently in the MDI

Returns A list of GPS.MDIWindow

static current()
Return the window that currently has the focus, or raise an error if there is none

Returns An instance of GPS.MDIWindow

static dialog(msg)
Display a modal dialog to report information to a user. This blocks the interpreter until the dialog is closed

Parameters msg – A string

static file_selector(file_filter=’empty’)
Display a modal file selector. The user selected file is returned, or a file with an empty name if ‘Cancel’ is
pressed.

A file filter can be defined (such as “*.ads”) to show only a category of files.

Parameters file_filter – A string

Returns An instance of GPS.File

static get(name)
Return the window whose name is name. If there is no such window, None is returned

Parameters name – A string

Returns An instance of GPS.MDIWindow

static get_by_child(child)
Return the window that contains child, or raise an error if there is none

Parameters child – An instance of GPS.GUI

Returns An instance of GPS.MDIWindow

static hide()
Hides the graphical interface of GPS.

static input_dialog(msg, *args)
Display a modal dialog and request some input from the user. The message is displayed at the top, and one
input field is displayed for each remaining argument. The arguments can take the form “”label=value””,
in which case “”value”” is used as default for this entry. If argument is prepend with ‘multiline:’ prefix
field is edited as multi-line text. The return value is the value that the user has input for each of these
parameters.

An empty list is returned if the user presses Cancel

18.5. Classes 331

GPS Documentation, Release 5.2.1

Parameters

• msg – A string

• args – Any number of strings

Returns A list of strings

a, b = GPS.MDI.input_dialog("Please enter values", "a", "b")
print a, b

static save_all(force=False)
Save all currently unsaved windows. This includes open editors, the project, and any other window that
has registered some save callbacks.

If the force parameter is false, then a confirmation dialog is displayed so that the user can select which
windows to save

Parameters force – A boolean

static show()
Shows the graphical interface of GPS.

static yes_no_dialog(msg)
Display a modal dialog to ask a question to the user. This blocks the interpreter until the dialog is closed.
The dialog has two buttons Yes and No, and the selected button is returned to the caller

Parameters msg – A string

Returns A boolean

if GPS.MDI.yes_no_dialog("Do you want to print?"):
print "You pressed yes"

18.5.41 GPS.MDIWindow

class GPS.MDIWindow
This class represents one of the windows currently displayed in GPS. This includes both the windows currently
visible to the user, and the ones that are temporarily hidden, for instance because they are displayed below
another window. Windows acts as containers for other widgets

GPS.MDIWindowGPS.GUI

__init__()
Prevents the creation of instances of GPS.MDIWindow. This is done by calling the various subprograms
in the GPS.MDI class

float(float=True)
Float the window, ie create a new toplevel window to display it. It is then under control of the user’s
operating system or window manager. If float is False, the window is reintegrated within the GPS MDI
instead

Parameters float – A boolean

332 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

get_child()
Return the child contained in the window. The returned value might be an instance of a subclass of
GPS.GUI, if that window was created from a shell command

Returns An instance of GPS.GUI

Accessing the GPS.Console instance used for python can be done with:
GPS.MDI.get("Python").get_child()

is_floating()
Return whether the window is currently floating (ie in its own toplevel window), or False if the window is
integrated into the main GPS window

Returns A boolean

name(short=False)
Return the name of the window. If short is False, the long name is returned, ie the one that appears in the
title bar. If short is True, the short name is returned, ie the one that appears in the notebook tabs.

Parameters short – A boolean

Returns A string

next(visible_only=True)
Return the next window in the MDI, or window itself if there is no other window. If visible_only is true,
then only the windows currently visible to the user are visible. This always returns floating windows

Parameters visible_only – A boolean

Returns An instance of GPS.MDIWindow

raise_window()
Raise the window so that it becomes visible to the user. The window also gains the focus

rename(name, short=’‘)
Change the title used for a window. Name is the long title, as it appears in the title bar for instance, and
short, if specified, is the name that appears in the notebook tabs.

Using this function might be dangereous in some contexts, since GPS keeps track of editors through their
name.

Parameters

• name – A string

• short – A string

split(vertically=True, reuse=False)
Split the window in two parts, either horizontally (side by side), or vertically (one below the other). If
reuse is true, attempt to reuse an existing space rather than splitting the current window. This should be
used to avoid ending up with too small windows

Parameters

• vertically – A boolean

• reuse – A boolean

See Also:

GPS.MDIWindow.single()

18.5. Classes 333

GPS Documentation, Release 5.2.1

18.5.42 GPS.Menu

class GPS.Menu
This class is a general interface to the menu system in GPS. It gives you control over which menus should be
active, what should be executed when the menu is selected by the user,...

See Also:

GPS.Menu.__init__()

GPS.MenuGPS.GUI

__init__()
Prevents the creation of a menu instance. Such instances can only be created internally by GPS as a
result of calling GPS.Menu.get or GPS.Menu.create. This is so that you always get the same instance of
GPS.Menu when you are refering to a given menu in GPS, and so that you can store your own specific
data with the menu

static create(path, on_activate=’‘, ref=’‘, add_before=True, filter=None, group=’‘)
Create a new menu in the GPS system. The menu is added at the given location (see GPS.Menu.get for
more information on the path parameter). Submenus are created as necessary so that path is valid.

If on_activate is specified, it will be executed every time the user selects that menu. It is called with
only one parameter, the instance of GPS.Menu that was just created.

If ref and add_before are specified, they specify the name of another item in the parent menu (and
not a full path) before or after which the new menu should be added.

If the name of the menu starts with a ‘-‘ sign, as in “/Edit/-”, then a menu separator is inserted instead. In
this case, on_activate is ignored.

Underscore characters (‘_’) need to be duplicated in the path. A single underscore indicates the mnemonic
to be used for that menu. For instance, if you create the menu “/_File”, then the user can open the menu
by pressing alt-F. But the underscore itself will not be displayed in the name of the menu.

If group is specified, create a radio menu item in given group.

Parameters

• path – A string

• on_activate – A subprogram, see the GPS documentation on subprogram parameters

• ref – A string

• add_before – A boolean

• filter – A subprogram

• group – A string

Returns The instance of GPS.Menu

def on_activate(self):
print "A menu was selected: " + self.data

334 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

menu = GPS.Menu.create("/Edit/My Company/My Action", on_activate)
menu.data = "my own data" ## Store your own data in the instance

static get(path)
Return the menu found at the given path. Path is similar to what one finds on a hard disk, starting with the
main GPS menu (‘/’), down to each submenus. For instance, ‘/VCS/Directory/Update Directory’ refers to
the submenu ‘Update Directory’ of the submenu ‘Directory’ of the menu ‘VCS’. Path is case-sensitive

Parameters path – A string

Returns The instance of GPS.Menu

The following example will prevent the user from using the VCS
menu and all its entries:

GPS.Menu.get(’/VCS’).set_sensitive (False)

get_active()
Return True if the widget is a currently active radio menu item

Returns A boolean

rename(name)
Change the name of a menu. The first underscore character seen in name will be used as the keyboard
shortcut to access this menu from now on. If you actually want to insert an underscore in the name, you
need to double it

Parameters name – A string

set_active(is_active=True)
Set the active state of a radio menu item

Parameters is_active – A boolean

18.5.43 GPS.Message

class GPS.Message(category, file, line, column, text, flags)
This class is used to manipulate GPS messages: build errors, editor annotations, etc.

__init__(category, file, line, column, text, flags)
Add a Message in GPS.

Parameters

• category – A String indicating the message category

• file – A File indicating the file

• line – An integer indicating the line

• column – An integer indicating the column

• text – A pango markup String containg the message text

• flags – An integer representing the location of the message

Create a message

m=GPS.Message("default", GPS.File("gps-main.adb"),
1841, 20, "test message", 0)

18.5. Classes 335

GPS Documentation, Release 5.2.1

Remove the message
m.remove()

execute_action()
If the message has an associated action, execute it.

get_category()
Return the message’s category.

get_column()
Return the message’s column.

get_file()
Return the message’s file.

get_flags()
Return an integer which represents the location of the message

get_line()
Return the message’s line.

get_mark()
Return an EditorMark which was created with the message and keeps track of the location when the file is
edited.

get_text()
Return the message’s text.

static list(file=None, category=None)
Return a list of all messages currently stored in GPS.

Parameters

• file – a GPS File. Specifying this parameter restricts the output to messages to this file
only.

• category – a String. Specifying this parameter restricts the output to messages of this
category only

Returns a list of GMS.Message

remove()
Remove the message from GPS.

set_action(action, image, tooltip=None)
Add an action item to the message. This will add an icon to the message, and clicking on this icon will
execute action.

Parameters

• action – A String corresponding to a registered GPS action.

• image – A String corresponding to the id of a registered GPS image. See icons.xml for an
example of how to register icons in GPS.

• tooltip – A string which contains the tooltip to display when the mouse is on the icon.

static set_sort_order_hint(category, hint)
Sets default sorting method for files in Locations view.

Parameters

• category – Name of messages category

• hint – Default sorting method (“chronological” or “alphabetical”)

336 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

set_style(style)
Set the style of the message. The second parameter indicates the length in number of characters to high-
light. If 0, then highlight the whole line. If left out, this means the length of the message highlighting is
not modified.

Parameters style – An Integer

set_subprogram(subprogram, image, tooltip=None)
Add an action item to the message. This will add an icon to the message, and clicking on this icon will
execute the subprogram, with the messaged passed as parameter of the subprogram.

Parameters

• subprogram – A subprogram in the scripting language. This subprogram takes as a pa-
rameter one message.

• image – A String corresponding to the id of a registered GPS image. See icons.xml for an
example of how to register icons in GPS.

• tooltip – A string which contains the tooltip to display when the mouse is on the icon.

This adds a "close" button to all the messages
[msg.set_subprogram(lambda m : m.remove(), "gtk-close", "")

for msg in GPS.Message.list()]

18.5.44 GPS.Missing_Arguments

class GPS.Missing_Arguments
An exception raised by GPS. Raised when calling a subprogram from the GPS module with missing arguments

GPS.Missing_ArgumentsGPS.Exception

18.5.45 GPS.Preference

class GPS.Preference(name)
Interface to the GPS preferences, as set in the Edit/Preferences dialog. New preferences are created through
XML customization files (or calls to GPS.parse_xml(), see the GPS documentation

See Also:

GPS.Preference.__init__()

GPS.parse_xml(’’’
<preference name="custom-adb-file-color"

label="Background color for .adb files"
page="Editor:Fonts & Colors"
default="yellow"
type="color" />’’’)

print "color is " + GPS.Preference("custom-adb-file-color").get()

18.5. Classes 337

GPS Documentation, Release 5.2.1

__init__(name)
Initializes an instance of the GPS.Preference class, associating it with the preference given in parameter.
The name is the one that can be found in the $HOME/.gps/preferences file. When you are creating a new
preference, this name can include ‘/’ characters, which will result in subpages created in the Preferences
dialog. The name after the last ‘/’ should only include letters and ‘-‘ characters.

Parameters name – A string

create(label, type, doc=’‘, default=’‘, *args)
This function creates a new preference, and makes it visible in the preferences dialog. In the dialog, the
preference appears in the page given by the name used when creating the instance of GPS.Preference. The
label is used to qualify the preference, and doc will appear as a tooltip to explain the preference to users.
The type describes the type of preference, and therefore how it should be edited by users.

The additional parameters depend on the type of preference you are creating:

•For an “integer”, the default value is 0, and the two additional parameters are the minimum and
maximum possible values. These are integers.

•For a “boolean”, the default is True.

•For a “string”, the default is the empty string.

•A “multiline” behaves the same as a string except it is edited on multiple lines in the Preferences
dialog.

•For a “color”, the default is “black”.

•For a “font”, the default is “sans 9”.

•For a “enum”, any number of additional parameters can be specified. They are all the possible values
of the preference. The default is the index in the list of possible values, starting at 0.

Parameters

• label – A string

• type – A string, one of “integer”, “boolean”, “string”, “color”, “font”, “enum”, “multiline”

• doc – A string

• default – Depends on the type

• args – Additional parameters depending on the type

get()
Get value for the given preference. The exact returned type depends on the type of the preference. Note
that boolean values are returned as integers, for compatibility with older versions of Pythons

Returns A string or an integer

if GPS.Preference("MDI-All-Floating"):
print "We are in all-floating mode"

set(value, save=True)
Set value for the given preference. The type of the parameter depends on the type of the preference. If
the save parameter is true, the new value is immediately saved for future GPS sessions, and the new value
is taken into account by GPS itself. Otherwise, if set to false, you will need to call the hook “prefer-
ences_changed” to force it

Parameters

• value – A string, boolean or integer

338 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• save – A boolean

18.5.46 GPS.Process

class GPS.Process(command, regexp=’‘, on_match=None, on_exit=None, task_manager=True,
progress_regexp=’‘, progress_current=1, progress_total=1, before_kill=None,
remote_server=’‘, show_command=False, single_line_regexp=False,
case_sensitive_regexp=True, strip_cr=True)

Interface to expect-related commands. This class can be used to spawn new processes and communicate
with them later on. It is similar to what GPS uses to communicate with gdb. This class is a subclass of
GPS.Command.

See Also:

GPS.Process.__init__()

GPS.Command()

The following example launches a gdb process, let it print its welcome
message, and kills it as soon as a prompt is seen in the output. In
addition, it displays debugging messages in a new GPS window. As you
might note, some instance-specific data is stored in the instance of
the process, and can be retrieve in each callback.

import GPS, sys

def my_print(msg):
sys.stdout.set_console("My gdb")
print(msg)
sys.stdout.set_console()

def on_match(self, matched, unmatched):
my_print "on_match (" + self.id + ")=" + matched
self.kill()

def on_exit(self, status, remaining_output):
my_print "on_exit (" + self.id + ")"

def run():
proc = GPS.Process("gdb", "^\(gdb\)", on_match=on_match,

on_exit=on_exit)
proc.id = "first session"

run()

A similar example can be implemented by using a new class. This is
slightly cleaner, since it doesn’t pollute the global namespace.

class My_Gdb(GPS.Process):
def matched(self, matched, unmatched):

my_print("matched " + self.id)
self.kill()

def exited(self, status, output):
my_print("exited " + self.id)

def __init__(self):
self.id = "from class"

18.5. Classes 339

GPS Documentation, Release 5.2.1

GPS.Process.__init__(self, "gdb",
"^\(gdb\)",
on_match=My_Gdb.matched,
on_exit=My_Gdb.exited)

My_Gdb()

GPS.ProcessGPS.Command

__init__(command, regexp=’‘, on_match=None, on_exit=None, task_manager=True,
progress_regexp=’‘, progress_current=1, progress_total=1, before_kill=None,
remote_server=’‘, show_command=False, single_line_regexp=False,
case_sensitive_regexp=True, strip_cr=True)

Spawn specified command. Command can include triple-quoted strings, similar to python, which will
always be preserved as one argument.

If regexp is not-empty and on_match_action is specified, launch on_match_action when
regexp is found in the process output. If on_exit_action is specified, execute it when the pro-
cess terminates. Return the ID of the spawned process.

regexp is always compiled with the multi_line option, so that “^” and “$” also match at the beginning
and end of each line, not just the whole output. You can optionally compile it with the single_line option
whereby ”.” also matches the newline character. Likewise you can set the regexp to be case insensitive by
setting case_sensitive_regexp to False.

on_match is a subprogram called with the parameters:

•$1 = the instance of GPS.Process

•$2 = the string which matched the regexp

•$3 = the string since the last match

before_kill is a subprogram called just before the process is about to be killed. It is called when the
user is interrupting the process through the task manager, or when GPS exits. It is not called when the
process terminates normally. When it is called, the process is still valid and can be send commands. Its
parameters are:

•$1 = the instance of GPS.Process

•$2 = the entire output of the process

on_exit is a subprogram called when the process has exited. You can no longer send input to it at this
stage. Its parameters are:

•$1 = the instance of GPS.Process

•$2 = the exit status

•$3 = the output of the process since the last call to on_match

If task_manager is set to True, the process will be visible in the GPS task manager, and can be in-
terrupted or paused by users. Otherwise, it will simply be running in the background, and never visible
to the user. If progress_regexp is specified, then the output of the process will be scanned for this

340 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

regexp. The part that match will not be returned to on_match. Instead, they will be used to guess the cur-
rent progress of the command. Two groups of parenthesis are parsed, the one at progress_current,
and the one at progress_total. The number returned for each of these groups indicate the current
progress of the command, and the total that must be reached for this command to complete. For instance,
if your process outputs lines like “done 2 out of 5”, you should create a regular expression that matches
the 2 and the 5 to guess the current progress. As a result, a progress bar is displayed in the task manager
of GPS, and will allow users to monitor commands.

remote_server represents the server used to spawn the process. By default, the GPS_Server is used,
which is always the local machine. See the section “Using GPS for Remote Development” in the GPS
documentation for more information on this field.

If show_command is set, then the command line used to spawn the new Process is displayed in the
“Messages” console.

If strip_cr is true, the output of the process will have all its ASCII.CR removed before the string is
passed on to GPS and your script. This in general provides better portability to Windows systems, but
might not be suitable for applications for which CR is relevant (for instance those that drive an ANSI
terminal).

An exception is raised if the process could not be spawned.

Parameters

• command – A string

• regexp – A string

• on_match – A subprogram, see the section “Subprogram parameters” in the GPS docu-
mentation

• on_exit – A subprogram

• task_manager – A boolean

• progress_regexp – A string

• progress_current – An integer

• progress_total – An integer

• before_kill – A subprogram

• remote_server – A string. Possible values are “GPS_Server”, the empty string
(equivalent to “GPS_Server”), “Build_Server”, “Debug_Server”, “Execution_Server” and
“Tools_Server”.

• show_command – A boolean

• single_line_regexp – A boolean

• case_sensitive_regexp – A boolean

• strip_cr – A boolean

See Also:

GPS.Process()

expect(regexp, timeout=-1)
Block the execution of the script until either regexp has been seen in the output of the command, or the
timeout has expired. If the timeout is negative, wait forever until we see the regexp or the process finishes
its execution.

18.5. Classes 341

GPS Documentation, Release 5.2.1

While in such a call, the usual on_match callback is called as usual, so you might need to add an explicit
test in your on_match callback not to do anything in this case.

This command returns the output of the process since the start of the call to expect and up to the end of the
text that matched regexp. Note that it will also include the output that was sent to the on_match callback
while expect was running. It will not however include output already returned by a previous call to expect
(nor does it guarantee that two successive calls to expect will return the full output of the process, since
some output might have been matched by on_match between the two calls, and would not be returned by
the second expect).

If a timeout occurred or the process terminated, an exception is raised

Parameters

• regexp – A string

• timeout – An integer, in milliseconds

Returns A string

proc = GPS.Process("/bin/sh")
print("Output till prompt=" + proc.expect (">"))
proc.send("ls")

get_result()
Wait till the process terminates, and return its output. This is the output since the call to get_result, ie if
you call get_result after performing some calls to expect, the returned string does not return the output that
was already returned by expect.

Returns A string

interrupt()
Interrupt a process controlled by GPS

kill()
Terminate a process controlled by GPS

send(command, add_lf=True)
Send a line of text to the process. If you need to close the input stream to an external process, it often
works to send the character ASCII 4, for instance through the python command chr(4).

Parameters

• command – A string

• add_lf – A boolean

set_size(rows, columns)
Tells the process about the size of its terminal. Rows and columns should (but need not) be the number of
visible rows and columns of the terminal in which the process is running.

Parameters

• rows – An integer

• columns – An integer

wait()
Block the execution of the script until the process has finished executing. The exit callback registered
when the process was started will be called before returning from this function.

This function returns the exit status of the command.

Returns An integer

342 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

18.5.47 GPS.Project

class GPS.Project(name)
Represents a project file. See also the GPS documentation on how to create new project attributes.

See Also:

GPS.Project.__init__()

Related hooks:

•“project_view_changed”: Called whenever the project is recomputed, ie one of its attributes was changed
by the user, the environment variables are changed,...

Then is a good time to test the list of languages (GPS.Project.languages()) that the project supports, and
do language-specific customizations

•“project_changed”: A new project was loaded. The hook above will be called after this one

__init__(name)
Initializes an instance of GPS.Project. The project must be currently loaded in GPS

Parameters name – The project name

See Also:

GPS.Project.name()

add_attribute_values(attribute, package, index, value)

Add some values to an attribute. You can add as much as many values you need at the end of the
param list. If the package is not specified, the attribute at the toplevel of the project is queried. The
index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

• value – A string, the name of the first value to add

See Also:

GPS.Project.set_attribute_as_string()

GPS.Project.remove_attribute_values()

GPS.Project.clear_attribute_values()

GPS.Project.root().add_attribute_values(
"Default_Switches", "Compiler", "ada", "-gnatwa", "-gnatwe");

add_dependency(path)
This commands adds a new dependency from self to the project file pointed to by path. This is the equiva-
lent of putting a with clause in self, and means that the source files in self can depend on source files from
the imported project

Parameters path – The path to another project to depend on

See Also:

GPS.Project.remove_dependency()

18.5. Classes 343

GPS Documentation, Release 5.2.1

add_main_unit(*args)
Add some main units to the current project, and for the current scenario. The project is not saved automat-
ically

Parameters args – Any number of arguments, at least one

static add_predefined_paths(sources=’‘, objects=’‘)
Add some predefined directories to the source path or the objects path. These will be searched when GPS
needs to open a file by its base name, in particular from the File->Open From Project dialog. The new
paths are added in front, so that they have priorities over previously defined paths.

Parameters

• sources – A list of directories separated by the appropriate separator (‘:’ or ‘;’ depending
on the system

• objects – As above

GPS.Project.add_predefined_paths(os.pathsep.join(sys.path))

add_source_dir(directory)
Add a new source directory to the project. The new directory is added in front of the source path. You
should call recompute() after calling this method, to recompute the list of source files. The directory is
added for the current value of the scenario variables only. Note that if the current source directory for the
project is not specified explicitly in the .gpr file), it will be overriden by the new directory you are adding.
If the directory is already part of the source directories for the project, it is not added a second time.

Parameters directory – A string

See Also:

GPS.Project.source_dirs()

GPS.Project.remove_source_dir()

ancestor_deps()
Return the list of projects that might contain sources that depend on the project’s sources. When doing
extensive searches it isn’t worth checking other projects. Project itself is included in the list.

This is also the list of projects that import self.

Returns A list of instances of GPS.Project

for p in GPS.Project("kernel").ancestor_deps():
print p.name()

will print the name of all the projects that import kernel.gpr

clear_attribute_values(attribute, package, index)
Clear the values list of an attribute.

If the package is not specified, the attribute at the toplevel of the project is queried.

The index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

344 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

dependencies(recursive=False)
Return the list of projects on which self depends (either directly if recursive is False, or including indirect
dependencies if recursive is True).

Parameters recursive – A boolean

Returns A list of GPS.Project instances

file()
Return the project file

Returns An instance of GPS.File

generate_doc(recursive=False)
Generate the documentation of the project and its subprojects if recursive is True, and display it with the
default browser

Parameters recursive – A boolean

See Also:

GPS.File.generate_doc()

get_attribute_as_list(attribute, package=’‘, index=’‘)
Fetch the value of the attribute in the project.

If the package is not specified, the attribute at the toplevel of the project is queried.

The index only needs to be specified if it applies to that attribute.

If the attribute value is stored as a simple string, a list with a single element is returned. This function
always returns the value of the attribute in the currently selected scenario.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

Returns A list of strings

See Also:

GPS.Project.scenario_variables()

GPS.Project.get_attribute_as_string()

GPS.Project.get_tool_switches_as_list()

If the project file contains the following text:
#
project Default is
for Exec_Dir use "exec/";
package Compiler is
for Switches ("file.adb") use ("-c", "-g");
end Compiler;
end Default;

Then the following commands;

a = GPS.Project("default").get_attribute_as_list("exec_dir")
=> a = ("exec/")

b = GPS.Project("default").get_attribute_as_list(

18.5. Classes 345

GPS Documentation, Release 5.2.1

"switches", package="compiler", index="file.adb")
=> b = ("-c", "-g")

get_attribute_as_string(attribute, package=’‘, index=’‘)
Fetch the value of the attribute in the project.

If the package is not specified, the attribute at the toplevel of the project is queried.

The index only needs to be specified if it applies to that attribute.

If the attribute value is stored as a list, the result string is a concatenation of all the elements of the list.
This function always returns the value of the attribute in the currently selected scenario.

When the attribute is not explicitely overridden in the project, the default value is returned. This default
value is the one described in an XML file (see the GPS documentation for more information). This default
value is not necessarily valid, and could for instance be a string starting with a parenthesis, as explained in
the GPS documentation.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

Returns A string, the value of this attribute

See Also:

GPS.Project.scenario_variables()

GPS.Project.get_attribute_as_list()

GPS.Project.get_tool_switches_as_string()

If the project file contains the following text:
project Default is
for Exec_Dir use "exec/";
package Compiler is
for Switches ("file.adb") use ("-c", "-g");
end Compiler;
end Default;

a = GPS.Project("default").get_attribute_as_string("exec_dir")
=> a = "exec/"

b = GPS.Project("default").get_attribute_as_string(
"switches", package="compiler", index="file.adb")

=> b = "-c -g"

get_executable_name(main)
Return the name of the executable, either read from the project or computed from main

Parameters main – GPS.File

Returns A string

get_property(name)
Return the value of the property associated with the project. This property might have been set in a previous
GPS session if it is persistent. An exception is raised if no such property already exists for the project

Parameters name – A string

Returns A string

346 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

See Also:

GPS.Project.set_property()

get_tool_switches_as_list(tool)
Same as get_attribute_as_list, but specialized for the switches of a specific tool. Tools are defined through
XML customization files, see the GPS documentation for more information

Parameters tool – The name of the tool whose switches you want to get

Returns A list of strings

See Also:

GPS.Project.get_attribute_as_list()

GPS.Project.get_tool_switches_as_string()

If GPS has loaded a customization file that contains the following
tags:
#
<?xml version="1.0" ?>
<toolexample>
<tool name="Find">
<switches>
<check label="Follow links" switch="-follow" />
</switches>
</tool>
</toolexample>

The user will as a result be able to edit the switches for Find in
the standard Project Properties editor.

Then the python command

GPS.Project("default").get_tool_switches_as_list("Find")

will return the list of switches that were set by the user in the
Project Properties editor.

get_tool_switches_as_string(tool)
Same as GPS.Project.get_attribute_as_string, but specialized for a specific tool.

Parameters tool – The name of the tool whose switches you want to get

Returns A string

See Also:

GPS.Project.get_tool_switches_as_list()

is_modified(recursive=False)
Return True if the project has been modified but not saved yet. If recursive is true, then the return value
takes into account all projects imported by self

Parameters recursive – A boolean

Returns A boolean

languages(recursive=False)
Return the list of languages that are used for the sources of the project (and its subprojects if recursive is
True). This can be used to detect whether some specific action in a module should be activated or not.
Language names are always lowercase

18.5. Classes 347

GPS Documentation, Release 5.2.1

Parameters recursive – A boolean

Returns A list of strings

The following example adds a new menu only if the current project
supports C. This is refreshed every time the project is changed by
the user.

import GPS
c_menu=None

def project_recomputed(hook_name):
global c_menu
try:

Check whether python is supported
GPS.Project.root().languages(recursive=True).index("c")
if c_menu == None:

c_menu = GPS.Menu.create("/C support")
except:

if c_menu:
c_menu.destroy()
c_menu = None

GPS.Hook("project_view_changed").add(project_recomputed)

static load(filename, force=False, keep_desktop=False)
Load a new project, which replaces the current root project, and return a handle to it. All imported projects
are also loaded at the same time. If the project is not found, a default project is loaded.

If force is True, then the user will not be asked whether to save the current project, whether it was
modified or not.

If keep_desktop is False, then load saved desktop configuration, keep current otherwise

Parameters

• filename – A string, the full path to a project file

• force – A boolean

• keep_desktop – A boolean

Returns An instance of GPS.Project

name()
Return the name of the project. This doesn’t include directory information, see self.file().name() if you
wish to access that information

Returns A string, the name of the project

object_dirs(recursive=False)
Return the list of object directories for this project. If Recursive is True, the source directories of imported
projects is also returned. There might be duplicate directories in the returned list

Parameters recursive – A boolean

Returns A list of strings

properties_editor()
Launch a graphical properties editor for the project

static recompute()
Recompute the contents of a project, including the list of source files that are automatically loaded from

348 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

the source directories. The project file is not reloaded from the disk, and this should only be used if you
have created new source files outside of GPS for instance

GPS.Project.recompute()

remove_attribute_values(attribute, package, index, value)

Removes some specific values from an attribute. You can set as much as many values you need at the
end of the param list.

If the package is not specified, the attribute at the toplevel of the project is queried.

The index only needs to be specified if it applies to that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

• value – A string, the name of the first value to remove

See Also:

GPS.Project.set_attribute_as_string()

GPS.Project.add_attribute_values()

GPS.Project.clear_attribute_values()

GPS.Project.root().remove_attribute_values(
"Default_Switches", "Compiler", "ada", "-gnatwa", "-gnatwe");

remove_dependency(imported)
Remove a dependency between two projects. You must call GPS.Project.recompute() once you are done
doing all the modifications on the projects

Parameters imported – An instance of GPS.Project

See Also:

GPS.Project.add_dependency()

remove_property(name)
Removes a property associated with a project

Parameters name – A string

See Also:

GPS.Project.set_property()

remove_source_dir(directory)
Remove a source directory from the project. You should call recompute() after calling this method, to
recompute the list of source files. The directory is added for the current value of the scenario variables
only

Parameters directory – A string

See Also:

GPS.Project.add_source_dir()

18.5. Classes 349

GPS Documentation, Release 5.2.1

rename(name, path=’<current path>’)
Rename and move a project file (the project will only be put in the new directory when it is saved, but
will not be removed from its original directory). You must call GPS.Project.recompute() sometime after
changing the name.

Parameters

• name – A string

• path – A string

static root()
Return the root project currently loaded in GPS

Returns An instance of GPS.Project

print "Current project is " + GPS.Project.root().name()

static scenario_variables()
Return the list of scenario variables for the current project hierarchy, and their current value. These vari-
ables are visible at the top of the Project View in the GPS window. The initial value for these variables
is set from the environment variables’ value when GPS is started. However, changing the value of the
environment variable later on doesn’t change the value of the scenario variable.

Returns hash table associating variable names and values

See Also:

GPS.Project.set_scenario_variable()

GPS.Project.scenario_variables()["foo"]
=> returns the current value for the variable foo

static scenario_variables_cmd_line(prefix=’‘)
Return a concatenation of VARIABLE=VALUE, each preceded by the given prefix. This string will gen-
erally be used when calling external tools, for instance make or GNAT

Parameters prefix – String to print before each variable in the output

Returns a string

The following GPS action can be defined in an XML file, and will launch
the make command with the appropriate setup for the environment
variables:
<action name="launch make"> # <shell lang="python">GPS.scenario_variables_cmd_line()</shell> # <external>make %1</external> # </action>

static scenario_variables_values()
Return a hash table where keys are the various scenario variables defined in the current project and values
the different values that this variable can get.

Returns A hash table of strings

search(pattern, case_sensitive=False, regexp=False, scope=’whole’, recursive=True)
Return the list of matches for pattern in all the files belonging to the project (and its imported projects if
recursive is true (default). Scope is a string, and should be any of ‘whole’, ‘comments’, ‘strings’, ‘code’.
The latter will match only for text outside of comments

Parameters

• pattern – A string

• case_sensitive – A boolean

• regexp – A boolean

350 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• scope – One of (“whole”, “comments”, “strings”, “code”)

• recursive – A boolean

Returns A list of GPS.FileLocation instances

set_attribute_as_string(attribute, package, index, value)
Sets the value of an attribute. The attribute has to be stored as a single value. If the package is not specified,
the attribute at the toplevel of the project is queried. The index only needs to be specified if it applies to
that attribute.

Parameters

• attribute – A string, the name of the attribute

• package – A string, the name of the attribute’s package

• index – A string, the name of the index for the specific value of this attribute

• value – A string, the name of the value to set

See Also:

GPS.Project.add_attribute_values()

GPS.Project.remove_attribute_values()

GPS.Project.clear_attribute_values()

set_property(name, value, persistent=False)
Associates a string property with the project. This property is retrievable during the whole GPS session,
or across GPS sessions if persistent is set to True.

This is different than setting instance properties through Python’s standard mechanism in that there is no
garantee that the same instance of GPS.Project will be created for each physical project on the disk, and
therefore you would not be able to associate a property with the physical project itself

Parameters

• name – A string

• value – A string

• persistent – A boolean

See Also:

GPS.Project.get_property()

GPS.Project.remove_property()

GPS.File.set_property()

static set_scenario_variable(name, value)
Change the value of a scenario variable. You need to call GPS.Project.recompute() to activate this change
(so that multiple changes to the project can be grouped

Parameters

• name – A string

• value – A string

See Also:

GPS.Project.scenario_variables()

18.5. Classes 351

GPS Documentation, Release 5.2.1

source_dirs(recursive=False)
Return the list of source directories for this project. If Recursive is True, the source directories of imported
projects is also returned. There might be duplicate directories in the returned list

Parameters recursive – A boolean

Returns A list of strings

See Also:

GPS.Project.add_source_dir()

sources(recursive=False)
Return the list of source files for this project. If recursive is true, then all sources from imported projects
are also returned. Otherwise, only the direct sources are returned. The basenames of the returned files are
always unique: not two files with the same basenames are returned, and the one returned is the first one
see while traversing the project hierarchy

Parameters recursive – A boolean

Returns A list of instances of GPS.File

update_xref(recursive=False)
Updates the cross-reference information in memory for all files of the project. This doesn’t regenerate that
information, just read all the .ali files found in the object directory of the project (and all imported projects
if recursive is True). This should generally be called before calling GPS.freeze_xref, for efficiency.

Parameters recursive – A boolean

18.5.48 GPS.ProjectTemplate

class GPS.ProjectTemplate
This class is used to manipulate GPS Project Templates.

static add_templates_dir(noname)
Add a directory to the path in which GPS looks for templates. GPS will look for project templates in
immediate subdirectories of this directory.

Parameters noname – A GPS.File pointing to a directory.

18.5.49 GPS.ReferencesCommand

class GPS.ReferencesCommand
This is the type of the commands returned by the references extractor.

See Also:

GPS.Command()

GPS.Entity.references()

GPS.ReferencesCommandGPS.Command

352 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

get_result()
Returns the references that have been found so far by the command.

Returns A list of strings

See Also:

GPS.Entity.references()

18.5.50 GPS.Revision

class GPS.Revision
General interface to the revision browser

static add_link(file, revision_1, revision_2)
Create a link between revision_1 and revision_2 for the given file

Parameters

• file – A string

• revision_1 – A string

• revision_2 – A string

static add_log(file, revision, author, date, log)
Add a new log entry into the revision browser

Parameters

• file – A string

• revision – A string

• author – A string

• date – A string

• log – A string

static add_revision(file, revision, symbolic_name)
Register a new symbolic name (tag or branches) corresponding to the specified revision of file

Parameters

• file – A string

• revision – A string

• symbolic_name – A string

static clear_view(file)
Clear file’s revision view

Parameters file – A string

18.5.51 GPS.Style

class GPS.Style(name, create)
This class is used to manipulate GPS Styles, which are used for instance to represent graphical attributes given
to Messages.

__init__(name, create)
Create a Style

18.5. Classes 353

GPS Documentation, Release 5.2.1

Parameters

• name – A String indicating the name of the Style

• create – A File indicating the file

Create a new style
s=GPS.Style("my new style")

Set the background color to yellow
s.set_background("#ffff00")

Apply the style to all the messages
[m.set_style(s) for m in GPS.Message.list()]

get_background()

Returns a string, background of the style

get_foreground()

Returns a string, foreground of the style

get_in_speedbar()
Return a Boolean indicating whether this style is shown in the speedbar.

Returns a boolean

get_name()

Returns a string, the name of the style.

static list()
Return a list of all styles currently registered in GPS.

Returns a list of GPS.Style

set_background(noname)
Set the background of style to the given color.

Parameters noname – A string representing a color, for instance “blue” or “#0000ff”

set_foreground(noname)
Set the foreground of style to the given color.

Parameters noname – A string representing a color, for instance “blue” or “#0000ff”

set_in_speedbar(noname)
Whether this style should appear in the speedbar.

Parameters noname – A Boolean

18.5.52 GPS.SwitchesChooser

class GPS.SwitchesChooser(name, xml)
This class represents a gtk widget that can be used to edit a tool’s command line.

354 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.SwitchesChooserGPS.GUI

__init__(name, xml)
Creates a new SwitchesChooser widget from the tool’s name and switch description in xml format.

Parameters

• name – A string

• xml – A string

get_cmd_line()
Return the tool’s command line parameter

Returns A string

set_cmd_line(cmd_line)
Modify the widget’s aspect to reflect the command line.

Parameters cmd_line – A string

18.5.53 GPS.Task

class GPS.Task
This class provides an interface to the background tasks being handled by GPS, such as the build commands,
the query of cross references, etc. These are the same tasks that are visible through the GPS Task Manager.

Note that the classes represented with this class cannot be stored.

interrupt()
Interrupt the task

static list()

Returns a list of GPS.Task, all running tasks

name()
Return the name of the task

Returns A string

pause()
Pause the task

resume()
Resume the paused task

status()
Return the status of the task

Returns A string

18.5. Classes 355

GPS Documentation, Release 5.2.1

18.5.54 GPS.Timeout

class GPS.Timeout(timeout, action)
This class gives access to actions that must be executed regularly at specific intervals

See Also:

GPS.Timeout.__init__()

Execute callback three times and remove it
import GPS;

def callback(timeout):
timeout.occur += 1
print "A timeout occur=" + ‘timeout.occur‘
if timeout.occur == 3:

timeout.remove()

t = GPS.Timeout(500, callback)
t.occur = 0

__init__(timeout, action)
A timeout object executes a specific action repeatedly, at a specified interval, as long as it is registered.
The action takes a single argument, which is the instance of GPS.Timeout that called it.

Parameters

• timeout – The timeout in milliseconds at which to execute the action

• action – A subprogram parameter to execute periodically

remove()
Unregister a timeout

18.5.55 GPS.ToolButton

class GPS.ToolButton(stock_id, label, on_click)
This class represents a button that can be inserted in the toolbar

See Also:

GPS.ToolButton.__init__()

GPS.GUI GPS.ToolButton

__init__(stock_id, label, on_click)
Initializes a new button. When the button is pressed by the user, on_click is called with the following
single parameter:

•$1 = The instance of GPS.Button

Parameters

356 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

• stock_id – A string identifying the icon

• label – A string, the text that appears on the button

• on_click – A subprogram, see the GPS documentation

b = GPS.ToolButton("gtk-new", "New File",
lambda x : GPS.execute_action("/File/New"))

GPS.Toolbar().insert(b, 0)

18.5.56 GPS.Toolbar

class GPS.Toolbar
Interface to commands related to the toolbar. This allows you to add new combo boxes to the GPS toolbars.
Note that this can also be done through XML files, see the GPS documentation

See Also:

GPS.Toolbar.__init__()

import GPS

def on_changed(entry, choice):
print "changed " + choice + ’ ’ + entry.custom

def on_selected(entry, choice):
print "on_selected " + choice + ’ ’ + entry.custom

ent = GPS.Combo("foo", label="Foo", on_changed=on_changed)

GPS.Toolbar().append(ent, tooltip => "What it does")

ent.custom = "Foo" ## Create any field you want
ent.add(choice="Choice1", on_selected=on_selected)
ent.add(choice="Choice2", on_selected=on_selected)
ent.add(choice="Choice3", on_selected=on_selected)

It is easier to use this interface through XML customization files, see the GPS documentation. However, this
can also be done through standard GPS shell commands:

Combo "foo" "Foo" "on_changed_action"
Toolbar
Toolbar.append %1 %2 "What it does"

Toolbar
Toolbar.get %1 "foo"
Combo.add %1 "Choice1" "on_selected"action"

GPS.GUI GPS.Toolbar

18.5. Classes 357

GPS Documentation, Release 5.2.1

__init__()
Initializes a new instance of the toolbar, associated with the default toolbar of GPS. This is called implicitly
from python

append(widget, tooltip=’‘)
Add a new widget in the toolbar. This can be an instance of GPS.Combo, or a GPS.Button, or a
GPS.ToolButton.

Parameters

• widget – An instance of GPS.GUI

• tooltip – A string

get(id)
Return the toolbar entry matching the given id. An error is raised if no such entry exists. The same
instance of GPS.Combo is always returned for each specific id, therefore you can store your own fields in
this instance and access it later.

Parameters id – A string, the name of the entry to get

Returns An instance of GPS.Combo

ent = GPS.Combo("foo")
GPS.Toolbar().append(ent)
ent.my_custom_field = "Whatever"

print GPS.Toolbar().get("foo").my_custom_field
=> "Whatever"

get_by_pos(position)
Return the position-th widget in the toolbar. If the widget was created from a scripting language, its
instance is returned. Otherwise, a generic instance of GPS.GUI is returned. This can be used to remove
some items from the toolbar for instance

Parameters position – An integer, starting at 0

Returns An instance of a child of GPS.GUI

GPS.Toolbar().get_by_pos(0).set_sensitive(False)
can be used to gray out the first item in the toolbar

insert(widget, pos=-1, tooltip=’‘)
Add a new widget in the toolbar. This can be an instance of GPS.Combo, or a GPS.Button, or a
GPS.ToolButton.

Parameters

• widget – An instance of GPS.GUI

• pos – The position at which to insert the widget

• tooltip – A string

18.5.57 GPS.Unexpected_Exception

class GPS.Unexpected_Exception
An exception raised by GPS. It indicates an internal error in GPS, raised by the Ada code itself. This exception
is unexpected and indicates a bug in GPS itself, not in the python script, although it might be possible to modify
the latter to work around the issue

358 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

GPS.Unexpected_ExceptionGPS.Exception

18.5.58 GPS.VCS

class GPS.VCS
General interface to version control systems

static annotate(file)
Display the annotations for file

Parameters file – A string

static annotations_parse(vcs_identifier, file, output)
Parses the output of the annotations command (cvs annotate for instance), and add the corresponding
information to the left of the editor

Parameters

• vcs_identifier – A string

• file – A string

• output – A string

static commit(file)
Commit file

Parameters file – A string

static diff_head(file)
Show differences between local file and the head revision

Parameters file – A string

static diff_working(file)
Show differences between local file and the working revision

Parameters file – A string

static get_current_vcs()
Return the system supported for the current project

Returns A string

static get_log_file(file)
Returns the GPS File corresponding to the log file for given file.

Parameters file – A string

static get_status(file)
Query the status for file

Parameters file – A string

18.5. Classes 359

GPS Documentation, Release 5.2.1

static log(file, revision)
Get the revision changelog for file. If revision is specified, query the changelog for this specific revision,
otherwise query the entire changelog

Parameters

• file – A string

• revision – A string

static log_parse(vcs_identifier, file, string)
Parses string to find log entries for file. This command uses the parser in the XML description node for
the VCS corresponding to vcs_identifier.

Parameters

• vcs_identifier – A string

• file – A string

• string – A string

static remove_annotations(file)
Remove the annotations for file

Parameters file – A string

static repository_dir(tag_name=’‘)
Returns the repository root directory, or if tag_name is specified the repository directory for the given tag
or branch.

Parameters tag_name – A string

static repository_path(file, tag_name=’‘)
Returns the trunk repository path for file or if tag_name is specified the repository path on the given tag or
branch path.

Parameters

• file – A string

• tag_name – A string

static revision_parse(vcs_identifier, file, string)
Parses string to find revisions tags and branches information for file. This command uses the parser in the
XML description node for the VCS corresponding to vcs_identifier.

Parameters

• vcs_identifier – A string

• file – A string

• string – A string

static set_reference(file, reference)
Record a reference file (the file on which a diff buffer is based for example) for a given file

Parameters

• file – A string

• reference – A string

static status_parse(vcs_identifier, string, clear_logs, local, dir=’‘)
Parses a string for VCS status. This command uses the parsers defined in the XML description node for
the VCS corresponding to vcs_identifier.

360 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

•When local is FALSE, the parser defined by the node status_parser is used.

•When local is TRUE, the parser defined by the node local_status_parser is used.

If clear_logs is TRUE, the revision logs editors are closed for files that have the VCS status “up-to-date”.
Parameter dir indicates the directory in which the files matched in string are located.

Parameters

• vcs_identifier – A string

• string – A string

• clear_logs – A boolean

• local – A boolean

• dir – A string

static supported_systems()
Show the list of supported VCS systems

Returns List of strings

static update(file)
Update file

Parameters file – A string

static update_parse(vcs_identifier, string, dir=’‘)
Parses a string for VCS status. This command uses the parsers defined in the XML description node for
the VCS corresponding to vcs_identifier.

Parameter dir indicates the directory in which the files matched in string are located.

Parameters

• vcs_identifier – A string

• string – A string

• dir – A string

18.5.59 GPS.Vdiff

class GPS.Vdiff
This class provides access to the graphical comparison between two or three files or two versions of the same
file within GPS. A visual diff is a group of two or three editors with synchronized scrolling. Differences are
rendered using blank lines and color highlighting.

static __init__()
This function prevents the creation of a visual diff instance directly. You must use GPS.Vdiff.create() or
GPS.Vdiff.get() instead.

See Also:

GPS.Vdiff.create()

GPS.Vdiff.get()

close_editors()
Close all editors implied in a visual diff.

18.5. Classes 361

GPS Documentation, Release 5.2.1

static create(file1, file2, file3=’‘)
If none of the files given as parameter is already used in a visual diff, this function creates a new visual diff
and returns it. Otherwise, None is returned.

Parameters

• file1 – An instance of GPS.File

• file2 – An instance of GPS.File

• file3 – An instance of GPS.File

Returns An instance of GPS.Vdiff

files()
Return the list of files used in a visual diff.

Returns A list of GPS.File

static get(file1, file2=’‘, file3=’‘)
Return an instance of an already exisiting visual diff. If an instance already exists for this visual diff, it is
returned. All files passed as parameters have to be part of the visual diff but not all files of the visual diff
have to be passed for the visual diff to be returned. For example if only one file is passed the visual diff
that contains it, if any, will be returned no matter it is a two or three files visual diff.

Parameters

• file1 – An instance of GPS.File

• file2 – An instance of GPS.File

• file3 – An instance of GPS.File

static list()
This function returns the list of visual diff currently opened in GPS.

Returns A list GPS.Vdiff

Here is an example that demonstrates how to use GPS.Vdiff.list to
close all the visual diff.

First two visual diff are created
vdiff1 = GPS.Vdiff.create(GPS.File("a.adb"), GPS.File("b.adb"))
vdiff2 = GPS.Vdiff.create(GPS.File("a.adb"), GPS.File("b.adb"))

Then we get the list of all current visual diff
vdiff_list = GPS.Vdiff.list()

And we iterate on that list in order to close all editors used in
each visual diff from the list.

for vdiff in vdiff_list:
files = vdiff.files()

But before each visual diff is actually closed, we just inform
the user of the files that will be closed.

for file in files:
print "Beware! " + file.name () + "will be closed."

Finally, we close the visual diff

vdiff.close_editors()

362 Chapter 18. Scripting API reference for GPS

GPS Documentation, Release 5.2.1

recompute()
Recompute a visual diff. The content of each editor used in the visual diff is saved. The files are recom-
pared and the display is redone (blank lines and color highlighting).

18.5.60 GPS.XMLViewer

class GPS.XMLViewer(name, columns=3, parser=None, on_click=None, on_select=None, sorted=False)
This class represents Tree-based views for XML files

__init__(name, columns=3, parser=None, on_click=None, on_select=None, sorted=False)
Create a new XMLViewer, with the given name.

columns is the number of columns that the table representation should have. The first column is always
the one used for sorting the table.

parser is a subprogram called for each XML node that is parsed. It takes three arguments: the name of
the XML node being visited, its attributes (in the form “attr=’foo’ attr=”bar””), and the text value of that
node. This subprogram should return a list of strings, one per visible column create for the table. Each
element will be put in the corresponding column.

If parser is unspecified, the default is to display in the first column the tag name, in the second column
the list of attributes, and in the third column when it exists the textual contents of the node.

on_click is an optional subprogram. It is called every time the user double-click on a line, and is passed
the same arguments as Parser. It has no return value.

on_select has the same profile as on_click, but is called when the user has selected a new line, not
double-clicked on it.

If sorted is True, then the resulting graphical list is sorted on the first column.

Parameters

• name – A string

• columns – An integer

• parser – A subprogram

• on_click – A subprogram

• on_select – A subprogram

• sorted – A boolean

Display a very simply tree. If you click on the file name,
the file will be edited.
import re

xml = ’’’<project name=’foo’>
<file>source.adb</file>

</project>’’’

view = GPS.XMLViewer("Dummy", 1, parser, on_click)
view.parse_string(xml)

def parser(node_name, attrs, value):
attr = dict()
for a in re.findall(’’’(\w+)=[’"](.*?)[’"]\B’’’, attrs):

attr[a[0]] = a[1]

if node_name == "project":

18.5. Classes 363

GPS Documentation, Release 5.2.1

return [attr["name"]]

elif node_name == "file":
return [value]

def on_click(node_Name, attrs, value):
if node_name == "file":

GPS.EditorBuffer.get(GPS.File(value))

create_metric(name)
Create a new XMLViewer for an XML file generated by gnatmetric. Name is used as the name for the
window

Parameters name – A string

parse(filename)
Replace the contents of self by that of the XML file

Parameters filename – An XML file

parse_string(str)
Replace the contents of self by that of the XML string

Parameters str – A string

364 Chapter 18. Scripting API reference for GPS

CHAPTER

NINETEEN

GNU FREE DOCUMENTATION LICENSE

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

19.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ‘free’ in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

19.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The ‘Document’, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as ‘you’.

A ‘Modified Version’ of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

365

GPS Documentation, Release 5.2.1

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released under this License.

The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not ‘Transparent’ is called
‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, La-
TeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, ‘Title Page’ means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

19.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

19.4 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy of the Document, free of added mate-
rial, which the general network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of

366 Chapter 19. GNU Free Documentation License

GPS Documentation, Release 5.2.1

Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

19.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public permission to use the Modi-
fied Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled ‘History’, and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled ‘History’
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• In any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• Delete any section entitled ‘Endorsements’. Such a section may not be included in the Modified Version.

• Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

19.5. MODIFICATIONS 367

GPS Documentation, Release 5.2.1

You may add a section entitled ‘Endorsements’, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties – for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

19.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in the various original documents, forming
one section entitled ‘History’; likewise combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

19.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

19.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a compilation is called an ‘aggregate’, and
this License does not apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

368 Chapter 19. GNU Free Documentation License

GPS Documentation, Release 5.2.1

19.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version of this License, the
original English version will prevail.

19.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.
Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

19.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

19.12 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled ’GNU
Free Documentation License’.

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which ones are invariant. If
you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of ‘Front-Cover Texts being LIST’; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

19.9. TRANSLATION 369

http://www.gnu.org/copyleft/

GPS Documentation, Release 5.2.1

370 Chapter 19. GNU Free Documentation License

CHAPTER

TWENTY

INDICES AND TABLES

• genindex

This document may be copied, in whole or in part, in any form or by any means, as is or with alterations, provided that
(1) alterations are clearly marked as alterations and (2) this copyright notice is included unmodified in any copy.

371

GPS Documentation, Release 5.2.1

372 Chapter 20. Indices and tables

PYTHON MODULE INDEX

g
GPS, 241

373

GPS Documentation, Release 5.2.1

374 Python Module Index

INDEX

Symbols
–eval, 210
–load, 210
-c, 155
-g, 239
-gnatQ, 49
-k, 49
-u, 155
__init__() (GPS.Action method), 251
__init__() (GPS.Activities method), 252
__init__() (GPS.AreaContext method), 253
__init__() (GPS.Bookmark method), 254
__init__() (GPS.BuildTarget method), 255
__init__() (GPS.Button method), 256
__init__() (GPS.CodeAnalysis method), 258
__init__() (GPS.Codefix method), 259
__init__() (GPS.CodefixError method), 261
__init__() (GPS.Combo method), 262
__init__() (GPS.CommandWindow method), 264
__init__() (GPS.Console method), 266
__init__() (GPS.Contextual method), 270
__init__() (GPS.Debugger method), 274
__init__() (GPS.DocgenTagHandler method), 278
__init__() (GPS.EditorBuffer method), 288
__init__() (GPS.EditorHighlighter method), 294
__init__() (GPS.EditorLocation method), 294
__init__() (GPS.EditorMark method), 299
__init__() (GPS.EditorOverlay method), 299
__init__() (GPS.EditorView method), 300
__init__() (GPS.Entity method), 301
__init__() (GPS.EntityContext method), 306
__init__() (GPS.File method), 306
__init__() (GPS.FileContext method), 310
__init__() (GPS.FileLocation method), 311
__init__() (GPS.GUI method), 312
__init__() (GPS.Help method), 314
__init__() (GPS.Hook method), 325
__init__() (GPS.Logger method), 329
__init__() (GPS.MDIWindow method), 332
__init__() (GPS.Menu method), 334
__init__() (GPS.Message method), 335

__init__() (GPS.Preference method), 337
__init__() (GPS.Process method), 340
__init__() (GPS.Project method), 343
__init__() (GPS.Style method), 353
__init__() (GPS.SwitchesChooser method), 355
__init__() (GPS.Timeout method), 356
__init__() (GPS.ToolButton method), 356
__init__() (GPS.Toolbar method), 357
__init__() (GPS.Vdiff static method), 361
__init__() (GPS.XMLViewer method), 363
<Language>, 179
<action>, 163
<alias>, 183
<button>, 175
<case_exceptions>, 192
<check>, 203
<choice>, 188
<combo-entry>, 203
<combo>, 203
<contextual>, 174
<default-value-dependency>, 204
<dependency>, 204
<doc_path>, 193
<documentation_file>, 192
<entry>, 175, 204
<expansion>, 204
<external>, 163
<field>, 203
<filter_and>, 170
<filter_or>, 170
<filter>, 163, 170
<index>, 188
<initial-cmd-line>, 201
<key>, 176
<language>, 200
<menu>, 172
<popup>, 203
<pref>, 178
<preference>, 176
<project_attribute>, 185
<radio>, 203
<shell>, 163, 188

375

GPS Documentation, Release 5.2.1

<specialized_index>, 188
<spin>, 203
<stock_icons>, 193
<string>, 187
<submenu>, 172
<switches>, 201
<theme>, 178
<title>, 172, 202
<tool>, 200
<vsearch-pattern>, 179

A
a2ps, 154
accept_input() (GPS.Console method), 268
action, 163
Action (class in GPS), 250
action_hooks, 224
Activities (class in GPS), 252
activity, 237
activity log template, 237
Ada, 30, 49–51, 78, 101, 150
Ada xrefs heuristics, 50
ADA_PROJECT_PATH, 55
add configuration variable, 61
add symbols, 96
Add To Extending Project, 61
add() (GPS.Combo method), 262
add() (GPS.Hook method), 325
add() (GPS.Locations static method), 327
add() (GPS.MDI static method), 330
add_all_gcov_project_info() (GPS.CodeAnalysis

method), 258
add_attribute_values() (GPS.Project method), 343
add_blank_lines() (GPS.Editor static method), 279
add_case_exception() (GPS.Editor static method), 279
add_dependency() (GPS.Project method), 343
add_doc_directory() (GPS.HTML static method), 313
add_file() (GPS.Activities method), 252
add_gcov_file_info() (GPS.CodeAnalysis method), 258
add_gcov_project_info() (GPS.CodeAnalysis method),

258
add_input() (GPS.Console method), 268
add_link() (GPS.Revision static method), 353
add_location_command() (in module GPS), 242
add_log() (GPS.Revision static method), 353
add_main_unit() (GPS.Project method), 343
add_predefined_paths() (GPS.Project static method), 344
add_revision() (GPS.Revision static method), 353
add_source_dir() (GPS.Project method), 344
add_special_line() (GPS.EditorBuffer method), 288
add_templates_dir() (GPS.ProjectTemplate static

method), 352
ALI, 49
alias, 36

aliases, 100, 153, 183, 237
align, 100
all floating, 22
analyze other file, 93
ancestor_deps() (GPS.Project method), 344
annotate() (GPS.VCS static method), 359
annotations_parse() (GPS.VCS static method), 359
append() (GPS.Toolbar method), 358
apply_overlay() (GPS.EditorBuffer method), 288
AreaContext (class in GPS), 253
argument, 166
arguments, 98
as-directory, 203
as-file, 203
ASCII, 28, 105
assembly, 97
attach, 96
attributes() (GPS.Entity method), 302
auto, 113
auto highlighting, 27
auto refresh, 100
auto save, 27, 146
autosave delay, 148

B
Back, 51
background color, 146
background tasks, 17
backward_overlay() (GPS.EditorLocation method), 295
base_name() (in module GPS), 242
beginning_of_buffer() (GPS.EditorBuffer method), 288
beginning_of_line() (GPS.EditorLocation method), 295
block, 27
block folding, 148
block highlighting, 148
block_end() (GPS.EditorLocation method), 295
block_end_line() (GPS.EditorLocation method), 295
block_fold() (GPS.Editor static method), 279
block_fold() (GPS.EditorLocation method), 295
block_get_end() (GPS.Editor static method), 279
block_get_level() (GPS.Editor static method), 279
block_get_name() (GPS.Editor static method), 280
block_get_start() (GPS.Editor static method), 280
block_get_type() (GPS.Editor static method), 280
block_level() (GPS.EditorLocation method), 295
block_name() (GPS.EditorLocation method), 295
block_start() (GPS.EditorLocation method), 295
block_start_line() (GPS.EditorLocation method), 295
block_type() (GPS.EditorLocation method), 295
block_unfold() (GPS.Editor static method), 280
block_unfold() (GPS.EditorLocation method), 296
blocks_fold() (GPS.EditorBuffer method), 288
blocks_unfold() (GPS.EditorBuffer method), 288
board, 96

376 Index

GPS Documentation, Release 5.2.1

body() (GPS.Entity method), 302
bookmark, 15, 123
Bookmark (class in GPS), 254
breakpoint, 97, 103, 106, 107, 153
breakpoint editor, 103
breakpoints, 105
browse() (GPS.HTML static method), 313
browsers, 52, 60
buffer() (GPS.EditorLocation method), 296
buffer() (GPS.EditorView method), 300
build, 6, 15–17, 81
BuildTarget (class in GPS), 255
Button (class in GPS), 256

C
C, 49, 63, 83, 101, 105, 152
C++, 49, 63, 78, 83, 152
call graph, 52, 60, 90
call stack, 97, 98
called by, 52
called_by() (GPS.Entity method), 302
called_by_browser() (GPS.Entity method), 302
callgraph, 14
calls, 52
calls() (GPS.Entity method), 302
case exceptions, 39
case indentation, 150
case preserving, 80
case sensitive, 80
case_exceptions, 192
casing, 39
category, 16
category() (GPS.Entity method), 302
cd() (in module GPS), 242
center() (GPS.EditorView method), 301
ChangeLog file, 120
character set, 39, 146
characters_count() (GPS.EditorBuffer method), 289
check() (GPS.Logger method), 329
children() (GPS.MDI static method), 331
clear, 32, 100
clear() (GPS.CodeAnalysis method), 258
clear() (GPS.Combo method), 262
clear() (GPS.Console method), 268
clear_attribute_values() (GPS.Project method), 344
clear_cache command, 211
clear_input() (GPS.Console method), 268
clear_view() (GPS.Revision static method), 353
ClearCase, 113
ClearCase Native, 113
client/server, 139
clipboard, 45, 147
Clipboard (class in GPS), 257
clipboard view, 13

clone, 100
clone() (GPS.BuildTarget method), 255
close, 21, 32
close dialog on match, 80
close() (GPS.Debugger method), 274
close() (GPS.Editor static method), 280
close() (GPS.EditorBuffer method), 289
close_editors() (GPS.Vdiff method), 361
Code Coverage, 130
code coverage, 124
code fix, 147
code fixing, 126
CodeAnalysis (class in GPS), 258
Codefix (class in GPS), 259
Codefix.errors, 208
CodefixError (class in GPS), 261
CodefixError.fix, 208
CodefixError.possible_fixes, 208
Coding Standard, 124
coding standard, 124
color, 147, 149, 154–156
column index, 156
column() (GPS.EditorLocation method), 296
column() (GPS.FileLocation method), 311
Combo (class in GPS), 261
command, 15, 97
Command (class in GPS), 263
command line, 4, 235
command() (GPS.Debugger method), 274
CommandWindow (class in GPS), 263
comment, 35
commit() (GPS.Activities method), 252
commit() (GPS.VCS static method), 359
compare, 118
compilation, 16, 81
compile, 58
compile() (GPS.File method), 307
complete identifier, 35
completion, 27, 33
compute_xref() (in module GPS), 242
conditional line, 150
configuration variable, 8, 58
connect, 96
Console (class in GPS), 265
contents() (GPS.Clipboard static method), 257
Context (class in GPS), 270
context length, 156
Contextual (class in GPS), 270
contextual menu, 51, 98–100, 106
contextual menus, 222
contextual() (GPS.Action method), 251
contextual_context() (in module GPS), 242
continuation line, 150
continue, 96

Index 377

GPS Documentation, Release 5.2.1

continue until, 107
copy, 32, 45
copy() (GPS.Clipboard static method), 257
copy() (GPS.Editor static method), 280
copy() (GPS.EditorBuffer method), 289
copy_clipboard() (GPS.Console method), 268
core file, 96
count (GPS.Logger attribute), 329
create() (GPS.Action method), 251
create() (GPS.Bookmark static method), 254
create() (GPS.Contextual method), 271
create() (GPS.Menu static method), 334
create() (GPS.Preference method), 338
create() (GPS.Vdiff static method), 361
create_dynamic() (GPS.Contextual method), 272
create_link() (GPS.Console method), 268
create_mark() (GPS.Editor static method), 280
create_mark() (GPS.EditorLocation method), 296
create_metric() (GPS.XMLViewer method), 364
create_overlay() (GPS.EditorBuffer method), 289
creating, 225
creating configuration variable, 58
cross debugger, 96
cross environment, 137
cross-references, 49
current line, 27, 106
current location, 107
current() (GPS.Clipboard static method), 257
current() (GPS.MDI static method), 331
current_context() (in module GPS), 244
current_view() (GPS.EditorBuffer method), 289
cursor() (GPS.EditorView method), 301
cursor_center() (GPS.Editor static method), 281
cursor_get_column() (GPS.Editor static method), 281
cursor_get_line() (GPS.Editor static method), 281
cursor_set_position() (GPS.Editor static method), 281
custom editor, 45
customization, 1, 145, 160
cut, 32, 45
cut() (GPS.Editor static method), 281
cut() (GPS.EditorBuffer method), 289
CVS, 113

D
data, 97, 98
Data Window, 98
data window, 98
debug, 58, 95, 106
debugger, 6, 95, 109, 138, 239
Debugger (class in GPS), 274
debugger console, 109
debugger windows, 153
debugging, 95
declaration line, 150

declaration() (GPS.Entity method), 303
default, 238
default desktop, 238
default project, 238
Default VCS, 155
delete() (GPS.Bookmark method), 254
delete() (GPS.EditorBuffer method), 290
delete() (GPS.EditorMark method), 299
delete() (in module GPS), 244
delete_mark() (GPS.Editor static method), 281
delimiter, 27
dependencies() (GPS.Project method), 344
dependency browser, 92
derived_types() (GPS.Entity method), 303
describe_functions() (GPS.Hook method), 325
description, 166
desktop, 146, 238
destroy() (GPS.GUI method), 312
detach, 96
dialog() (GPS.MDI static method), 331
diff, 155
diff3, 155
diff_head() (GPS.VCS static method), 359
diff_working() (GPS.VCS static method), 359
dir() (in module GPS), 244
dir_name() (in module GPS), 244
directory, 8, 32
directory() (GPS.File method), 307
directory() (GPS.FileContext method), 310
discriminants() (GPS.Entity method), 303
dispatching, 53
display, 106
display expression, 98, 100
display line numbers, 148
Display subprogram names, 148
display type hierarchy, 51
Docgen (class in GPS), 276
DocgenTagHandler (class in GPS), 277
documentation, 124
documentation generation, 127
documentation() (GPS.Entity method), 303
drag-n-drop, 6, 23
dump() (GPS.Locations static method), 328
dump() (in module GPS), 245
dump_file() (in module GPS), 245
dump_to_file() (GPS.CodeAnalysis method), 258
dump_xref_db() (in module GPS), 245
Dynamic Key Binding, 237

E
edit, 32
edit project source file, 61
edit() (GPS.Editor static method), 282
editing, 25, 28, 106

378 Index

GPS Documentation, Release 5.2.1

editing configuration variable, 59
editor, 39, 44
Editor (class in GPS), 279
EditorBuffer (class in GPS), 288
EditorHighlighter (class in GPS), 293
EditorLocation (class in GPS), 294
EditorMark (class in GPS), 298
EditorOverlay (class in GPS), 299
EditorView (class in GPS), 300
emacs, 28, 44, 45
emacsclient, 44
enable_input() (GPS.Console method), 269
End Of Statement, 51
end_line() (GPS.AreaContext method), 254
end_of_buffer() (GPS.EditorBuffer method), 290
end_of_line() (GPS.EditorLocation method), 296
end_of_scope() (GPS.Entity method), 303
ends_word() (GPS.EditorLocation method), 296
entities() (GPS.File method), 307
entity, 8
Entity (class in GPS), 301
entity browser, 93
Entity View, 11
entity() (GPS.EntityContext method), 306
EntityContext (class in GPS), 306
environment, 235
environment variables, 235
error_at() (GPS.Codefix method), 260
errors, 15, 156
errors() (GPS.Codefix method), 260
examine entity, 94
examine projects imported by, 76
example, 169, 235
exception, 153
Exception (class in GPS), 306
exec directory, 66
exec_in_console() (in module GPS), 245
execute() (GPS.BuildTarget method), 255
execute_action, 211
execute_action() (GPS.Message method), 336
execute_action() (in module GPS), 245
execute_asynchronous_action() (in module GPS), 246
execution, 15, 17, 153, 154
execution window, 15, 17
exit, 32
exit() (in module GPS), 246
expect() (GPS.Process method), 341
export, 89
export locations, 32
extending, 60
external, 164
external editor, 44, 148
external tool, 200

F
fast project loading, 157
fields() (GPS.Entity method), 303
file, 8, 16
File (class in GPS), 306
file index, 156
file pattern, 156
file selector, 28
File View, 10
file view, 8
file() (GPS.EditorBuffer method), 290
file() (GPS.FileContext method), 311
file() (GPS.FileLocation method), 311
file() (GPS.Help method), 314
file() (GPS.Project method), 345
file_selector() (GPS.MDI static method), 331
FileContext (class in GPS), 310
FileLocation (class in GPS), 311
files, 236
files() (GPS.Activities method), 252
files() (GPS.FileContext method), 311
files() (GPS.Vdiff method), 362
filter, 166
find, 8, 50, 77
find all local references, 52
find all references, 50, 52
find next, 50
find previous, 50
find_all_refs() (GPS.Entity method), 303
finish, 96
finish_undo_group() (GPS.EditorBuffer method), 290
fix() (GPS.CodefixError method), 261
float, 147
float() (GPS.MDIWindow method), 332
floating, 22
flush() (GPS.Console method), 269
fold, 36
font, 146, 149
format selection, 33
Forward, 51
forward_char() (GPS.EditorLocation method), 296
forward_line() (GPS.EditorLocation method), 296
forward_overlay() (GPS.EditorLocation method), 297
forward_word() (GPS.EditorLocation method), 297
freeze_xref() (in module GPS), 246
from_file() (GPS.Activities static method), 252
ftp, 46
full_name() (GPS.Entity method), 303

G
generate body, 36
generate_doc() (GPS.File method), 307
generate_doc() (GPS.Project method), 345
generate_index_file() (GPS.Docgen method), 276

Index 379

GPS Documentation, Release 5.2.1

generic_vcs, 226
get() (GPS.Activities static method), 252
get() (GPS.Bookmark static method), 254
get() (GPS.CodeAnalysis static method), 258
get() (GPS.Command static method), 263
get() (GPS.Debugger static method), 274
get() (GPS.EditorBuffer static method), 290
get() (GPS.MDI static method), 331
get() (GPS.Menu static method), 335
get() (GPS.Preference method), 338
get() (GPS.Toolbar method), 358
get() (GPS.Vdiff static method), 362
get_active() (GPS.Menu method), 335
get_attribute_as_list, 206
get_attribute_as_list() (GPS.Project method), 345
get_attribute_as_string, 206
get_attribute_as_string() (GPS.Project method), 346
get_background() (GPS.Style method), 354
get_buffer() (GPS.Editor static method), 282
get_build_mode() (in module GPS), 246
get_build_output() (in module GPS), 246
get_busy() (in module GPS), 247
get_by_child() (GPS.MDI static method), 331
get_by_pos() (GPS.Toolbar method), 358
get_category() (GPS.Message method), 336
get_char() (GPS.EditorLocation method), 297
get_chars() (GPS.Editor static method), 282
get_chars() (GPS.EditorBuffer method), 290
get_child() (GPS.MDIWindow method), 332
get_cmd_line() (GPS.SwitchesChooser method), 355
get_column() (GPS.Editor static method), 283
get_column() (GPS.Message method), 336
get_current_file() (GPS.Docgen method), 276
get_current_vcs() (GPS.VCS static method), 359
get_doc_dir() (GPS.Docgen method), 277
get_executable() (GPS.Debugger method), 275
get_executable_name() (GPS.Project method), 346
get_file() (GPS.Editor static method), 283
get_file() (GPS.Message method), 336
get_flags() (GPS.Message method), 336
get_foreground() (GPS.Style method), 354
get_home_dir() (in module GPS), 247
get_in_speedbar() (GPS.Style method), 354
get_last_line() (GPS.Editor static method), 283
get_line() (GPS.Editor static method), 283
get_line() (GPS.Message method), 336
get_log_file() (GPS.VCS static method), 359
get_mark() (GPS.EditorBuffer method), 291
get_mark() (GPS.Message method), 336
get_name() (GPS.Style method), 354
get_new() (GPS.EditorBuffer static method), 291
get_num() (GPS.Debugger method), 275
get_overlays() (GPS.EditorLocation method), 297
get_property() (GPS.EditorOverlay method), 299

get_property() (GPS.File method), 307
get_property() (GPS.Project method), 346
get_result() (GPS.Command method), 263
get_result() (GPS.Process method), 342
get_result() (GPS.ReferencesCommand method), 352
get_status() (GPS.VCS static method), 359
get_system_dir() (in module GPS), 247
get_text() (GPS.Combo method), 262
get_text() (GPS.Console method), 269
get_text() (GPS.Message method), 336
get_tmp_dir() (in module GPS), 247
get_tool_switches_as_list, 206
get_tool_switches_as_list() (GPS.Project method), 347
get_tool_switches_as_string, 206
get_tool_switches_as_string() (GPS.Project method), 347
getdoc() (GPS.Help method), 314
gif, 175, 238
Git, 113
global ChangeLog, 120
GNAT, 8, 49, 55, 56
GNAT_CODE_PAGE, 236
gnatmake, 239
gnatpp, 36
gnatstub, 36
gnattest, 124
gnuclient, 44
gnuserv url, 44
goto body, 50, 51
goto declaration, 50, 51
goto entity, 50
goto file spec/body, 50, 51
goto line, 50
goto matching delimiter, 50
goto type declaration, 51
goto() (GPS.Bookmark method), 255
goto() (GPS.EditorView method), 301
goto_mark() (GPS.Editor static method), 283
GPS (module), 241
gps shell, 211
GPS_CHANGELOG_USER, 236
GPS_CUSTOM_PATH, 236
GPS_DOC_PATH, 236
GPS_HOME, 236
gps_index.xml, 20
GPS_MEMORY_MONITOR, 236
GPS_PYTHONHOME, 236
GPS_ROOT, 236
GPS_STARTUP_LD_LIBRARY_PATH, 236
GPS_STARTUP_PATH, 236
graph disable, 109
graph display, 109
graph enable, 109
graph print, 109
graph undisplay, 109

380 Index

GPS Documentation, Release 5.2.1

group_commit() (GPS.Activities method), 252
gtkrc, 237
GUI (class in GPS), 312

H
has_log() (GPS.Activities method), 252
has_overlay() (GPS.EditorLocation method), 297
help, 1, 19
Help (class in GPS), 314
hexadecimal, 28, 105
hidden directories pattern, 157
hide, 100
hide() (GPS.BuildTarget method), 256
hide() (GPS.Contextual method), 273
hide() (GPS.GUI method), 312
hide() (GPS.MDI static method), 331
hide_coverage_information() (GPS.CodeAnalysis

method), 259
highlight delimiter, 148
highlight() (GPS.Editor static method), 283
highlight_range() (GPS.Editor static method), 283
history, 97, 237
HOME, 236
Hook (class in GPS), 315
Hook.describe, 222
Hook.list, 222
Hook.list_types, 223
Hook.register, 225
Hook.run, 224
hooks, 222–225
HTML, 1, 19
html, 154
HTML (class in GPS), 313
http, 46
hyper mode, 146
hyperlinks, 53

I
icon, 102
icons for source language entities, 9
id() (GPS.Activities method), 252
image, 89
Implicit status, 155
imported entities, 52
imported_by() (GPS.File method), 307
imports() (GPS.File method), 308
indent() (GPS.Editor static method), 284
indent() (GPS.EditorBuffer method), 291
indent_buffer() (GPS.Editor static method), 284
indentation, 26, 150, 152
indentation level, 150
indexed, 188
indexed project attributes, 188
input_dialog, 206

input_dialog() (GPS.MDI static method), 331
insert() (GPS.EditorBuffer method), 291
insert() (GPS.Toolbar method), 358
insert_text() (GPS.Editor static method), 284
inside_word() (GPS.EditorLocation method), 297
insmod() (in module GPS), 247
interactive command, 15, 165
interactive search, 7, 115
interrupt, 96, 124
interrupt() (GPS.Command method), 263
interrupt() (GPS.Process method), 342
interrupt() (GPS.Task method), 355
introduction, 1
Invalid_Argument (class in GPS), 327
is_break_command() (GPS.Debugger method), 275
is_busy() (GPS.Debugger method), 275
is_closed() (GPS.Activities method), 253
is_context_command() (GPS.Debugger method), 275
is_exec_command() (GPS.Debugger method), 275
is_floating() (GPS.MDIWindow method), 333
is_modified() (GPS.EditorBuffer method), 291
is_modified() (GPS.Project method), 347
is_present() (GPS.EditorMark method), 299
is_read_only() (GPS.EditorBuffer method), 291
is_read_only() (GPS.EditorView method), 301
is_sensitive() (GPS.GUI method), 312
is_server_local() (in module GPS), 248
isatty() (GPS.Console method), 269
ISO-8859-1, 146

J
jpeg, 175

K
key, 15–17, 28, 31, 77, 105, 176
key shortcuts, 36
key() (GPS.Action method), 251
kill, 96
kill() (GPS.Process method), 342

L
language, 39
language() (GPS.File method), 308
Languages, 66
languages, 57
languages() (GPS.Project method), 347
last_command() (in module GPS), 248
library projects, 67
limited with, 61
line index, 156
line terminator, 148
line() (GPS.EditorLocation method), 297
line() (GPS.FileLocation method), 312
lines_count() (GPS.EditorBuffer method), 292

Index 381

GPS Documentation, Release 5.2.1

list() (GPS.Activities static method), 253
list() (GPS.Bookmark static method), 255
list() (GPS.Command static method), 263
list() (GPS.Contextual static method), 273
list() (GPS.Debugger static method), 275
list() (GPS.EditorBuffer static method), 292
list() (GPS.Hook static method), 325
list() (GPS.Message static method), 336
list() (GPS.Style static method), 354
list() (GPS.Task static method), 355
list() (GPS.Vdiff static method), 362
list_categories() (GPS.Locations static method), 328
list_locations() (GPS.Locations static method), 328
list_types() (GPS.Hook static method), 326
load, 32, 96
Load xref info in memory, 49
load xref info on project load, 157
load() (GPS.Project static method), 348
load_from_file() (GPS.CodeAnalysis method), 259
local variables, 97
locate in Project View, 76
locate in project view, 8
location, 16, 146, 156
location() (GPS.CodefixError method), 261
location() (GPS.EditorMark method), 299
location() (GPS.FileContext method), 311
Locations (class in GPS), 327
locations view, 16, 51
log, 236
log template, 237
log() (GPS.Activities method), 253
log() (GPS.Logger method), 330
log() (GPS.VCS static method), 359
log_file() (GPS.Activities method), 253
log_parse() (GPS.VCS static method), 360
Logger (class in GPS), 329
look in, 78
lookup_actions() (in module GPS), 248
lookup_actions_from_key() (in module GPS), 248
ls() (in module GPS), 248
lsmod() (in module GPS), 249

M
Mac OS, 236
macros, 38, 124
main units, 67
main windows, 3
make() (GPS.File method), 308
mark_current_location() (GPS.Editor static method), 284
MDI, 6, 21, 80, 147
MDI (class in GPS), 330
MDI.save_all, 205
MDIWindow (class in GPS), 332
memory view, 97, 100, 105, 107

menu, 16, 17, 22, 30, 32, 45, 77, 80, 95, 97, 99, 101, 103,
117, 166

Menu (class in GPS), 334
menu bar, 5
menu separator, 174
menu() (GPS.Action method), 251
menus, 172
Mercurial, 113
merge() (GPS.Clipboard static method), 257
Message (class in GPS), 335
message() (GPS.CodefixError method), 261
messages, 15, 32
messages window, 15
methods, 52
methods() (GPS.Entity method), 304
Metrics, 130
metrics, 124
Missing_Arguments (class in GPS), 337
Mode, 86, 199
Model, 197
module_name (GPS.Context attribute), 270
move() (GPS.EditorMark method), 299
moving, 23
multi-unit source files, 68
Multiple Document Interface, 6, 21, 80, 147

N
name() (GPS.Activities method), 253
name() (GPS.Bookmark method), 255
name() (GPS.Command method), 263
name() (GPS.EditorOverlay method), 299
name() (GPS.Entity method), 304
name() (GPS.File method), 308
name() (GPS.MDIWindow method), 333
name() (GPS.Project method), 348
name() (GPS.Task method), 355
name_parameters() (GPS.Entity method), 304
naming scheme, 67
navigate, 50
navigation, 49
network, 139
new file, 30
new view, 30
next, 96
Next Subprogram, 51
next tag, 51
next() (GPS.MDIWindow method), 333
nexti, 96
non_blocking_send() (GPS.Debugger method), 275
normalization of projects, 55

O
object directory, 66
object_dirs() (GPS.Project method), 348

382 Index

GPS Documentation, Release 5.2.1

offset() (GPS.EditorLocation method), 297
old diff, 155
on-failure, 165
Online help, 19
opaque, 147
open, 30, 31
open_file_action_hook, 224
options, 235
other_file() (GPS.File method), 308
Outline View, 12
output, 207

P
parameters() (GPS.Entity method), 304
parse() (GPS.Codefix static method), 260
parse() (GPS.Locations static method), 328
parse() (GPS.XMLViewer method), 364
parse_string() (GPS.XMLViewer method), 364
parse_xml() (in module GPS), 249
password, 47, 114, 139, 164, 195
paste, 32, 45
paste previous, 32
paste() (GPS.Editor static method), 284
paste() (GPS.EditorBuffer method), 292
patch, 155
path, 196
pause() (GPS.Task method), 355
perspectives, 23
plug-ins, 124, 159
png, 89, 175, 238
pointed_type() (GPS.Entity method), 304
possible_fixes() (GPS.CodefixError method), 261
predefined patterns, 179
Preference (class in GPS), 337
preferences, 4, 22, 36, 44, 45, 106, 145, 237
pretty print, 36
Previous Subprogram, 51
previous tag, 51
primitive operation, 52
primitive operations, 52
primitive_of() (GPS.Entity method), 304
print, 32, 106, 154
print_line_info() (GPS.Editor static method), 284
PrintFile, 154
problems, 238
Process (class in GPS), 339
progress bar, 17
progress() (GPS.Command method), 263
project, 3, 4, 6, 8, 30, 49, 55, 137
Project (class in GPS), 343
project attribute, 58
project attributes, 185, 188
project browser, 76
project comments, 56

project dependencies, 71
project dependency, 61
project description, 55
project editing, 62
project file, 8, 55, 56
project menu, 62
project properties editor, 72
project templates, 234
project variable, 8, 58
project view, 6, 7, 9, 55, 61, 77
project wizard, 63
project() (GPS.File method), 309
project() (GPS.FileContext method), 311
projects, 60
ProjectTemplate (class in GPS), 352
properties_editor() (GPS.Project method), 348
protection domain, 97
pwd() (in module GPS), 249
pygtk, 222
python, 124, 212, 217
python window, 15
pywidget() (GPS.GUI method), 312

Q
quit, 32

R
raise_window() (GPS.MDIWindow method), 333
range size, 153
read() (GPS.CommandWindow method), 265
read() (GPS.Console method), 269
readline() (GPS.Console method), 269
recent, 31
recompute, 98
recompute dependencies, 93
recompute() (GPS.Project static method), 348
recompute() (GPS.Vdiff method), 362
record indentation, 150
rectangle, 36
redo, 32
redo() (GPS.Editor static method), 284
redo() (GPS.EditorBuffer method), 292
refactoring, 40
references, 52
references() (GPS.Entity method), 304
ReferencesCommand (class in GPS), 352
refill, 35
refill() (GPS.Editor static method), 284
refill() (GPS.EditorBuffer method), 292
register() (GPS.Hook static method), 326
register_css() (GPS.Docgen static method), 277
register_highlighting() (GPS.Editor static method), 285
register_main_index() (GPS.Docgen static method), 277
register_tag_handler() (GPS.Docgen static method), 277

Index 383

GPS Documentation, Release 5.2.1

registers, 98
regular expression, 79
relative project path, 156
reload project, 63
remote, 139, 194–196
remote copy, 154
remote files, 46
remote project, 142
remote shell, 154
remove() (GPS.BuildTarget method), 256
remove() (GPS.Combo method), 262
remove() (GPS.EditorHighlighter method), 294
remove() (GPS.Hook method), 326
remove() (GPS.Message method), 336
remove() (GPS.Timeout method), 356
remove_annotations() (GPS.VCS static method), 360
remove_attribute_values() (GPS.Project method), 349
remove_blank_lines() (GPS.Editor static method), 285
remove_case_exception() (GPS.Editor static method),

285
remove_category() (GPS.Locations static method), 329
remove_dependency() (GPS.Project method), 349
remove_file() (GPS.Activities method), 253
remove_overlay() (GPS.EditorBuffer method), 292
remove_property() (GPS.File method), 309
remove_property() (GPS.Project method), 349
remove_source_dir() (GPS.Project method), 349
remove_special_lines() (GPS.EditorBuffer method), 292
removing variable, 60
rename() (GPS.Bookmark method), 255
rename() (GPS.Entity method), 305
rename() (GPS.MDIWindow method), 333
rename() (GPS.Menu method), 335
rename() (GPS.Project method), 349
renaming entities, 90
repeat_next() (in module GPS), 249
replace, 50, 77, 154
replace with, 78
replace_text() (GPS.Editor static method), 285
repository_dir() (GPS.VCS static method), 360
repository_path() (GPS.VCS static method), 360
reset() (GPS.Help method), 315
reset_xref_db() (in module GPS), 249
resume() (GPS.Task method), 355
return_type() (GPS.Entity method), 305
Revision (class in GPS), 353
revision_parse() (GPS.VCS static method), 360
right margin, 148
root() (GPS.Project static method), 350
rsh, 46
rsync, 46, 196
run, 17, 95
run() (GPS.Hook method), 326
run_until_failure() (GPS.Hook method), 326

run_until_success() (GPS.Hook method), 326

S
save, 31
save all, 31
save as, 31, 32
save desktop, 32
save() (GPS.Editor static method), 285
save() (GPS.EditorBuffer method), 292
save_all() (GPS.MDI static method), 332
save_buffer() (GPS.Editor static method), 286
save_persistent_properties() (in module GPS), 249
saving, 45, 105
saving breakpoints, 105
saving projects, 61, 62
scenario_variables() (GPS.Project static method), 350
scenario_variables_cmd_line() (GPS.Project static

method), 350
scenario_variables_values() (GPS.Project static method),

350
screen shot, 3, 4, 6, 9–12, 15, 16, 18, 19, 25, 28, 30, 34,

46, 58, 59, 62, 63, 67, 69, 71, 72, 74, 76, 77, 79,
83, 86, 90, 92, 94, 97–99, 101, 103, 105–107,
114, 116, 121, 126, 128, 132, 134, 140, 143,
145, 158, 183

scripts, 210
search, 8, 16, 50, 77, 154
search context, 77, 78
search for, 77
search() (GPS.EditorLocation method), 298
search() (GPS.File method), 309
search() (GPS.Project method), 350
search_next() (GPS.File method), 309
select all, 33
select window on match, 80
select() (GPS.EditorBuffer method), 293
select_all() (GPS.Console method), 269
select_all() (GPS.Editor static method), 286
select_text() (GPS.Editor static method), 286
selection, 35
selection_end() (GPS.EditorBuffer method), 293
selection_start() (GPS.EditorBuffer method), 293
send() (GPS.Debugger method), 276
send() (GPS.Process method), 342
separate unit, 49
server, 196, 233
sessions() (GPS.Codefix static method), 260
set() (GPS.Preference method), 338
set_action() (GPS.Message method), 336
set_active() (GPS.Logger method), 330
set_active() (GPS.Menu method), 335
set_attribute_as_string() (GPS.Project method), 351
set_background() (GPS.CommandWindow method), 265
set_background() (GPS.Style method), 354

384 Index

GPS Documentation, Release 5.2.1

set_background_color() (GPS.Editor static method), 286
set_build_mode() (in module GPS), 249
set_busy() (in module GPS), 249
set_closed() (GPS.Activities method), 253
set_cmd_line() (GPS.SwitchesChooser method), 355
set_foreground() (GPS.Style method), 354
set_in_speedbar() (GPS.Style method), 354
set_last_command() (in module GPS), 250
set_prompt() (GPS.CommandWindow method), 265
set_property() (GPS.EditorOverlay method), 300
set_property() (GPS.File method), 310
set_property() (GPS.Project method), 351
set_read_only() (GPS.EditorBuffer method), 293
set_read_only() (GPS.EditorView method), 301
set_reference() (GPS.VCS static method), 360
set_scenario_variable() (GPS.Project static method), 351
set_sensitive() (GPS.Contextual method), 273
set_sensitive() (GPS.GUI method), 313
set_size() (GPS.Process method), 342
set_sort_order_hint() (GPS.Locations static method), 329
set_sort_order_hint() (GPS.Message static method), 336
set_style() (GPS.Message method), 336
set_subprogram() (GPS.Message method), 337
set_synchronized_scrolling() (GPS.Editor static method),

286
set_text() (GPS.Button method), 257
set_text() (GPS.Combo method), 263
set_title() (GPS.Editor static method), 286
set_writable() (GPS.Editor static method), 287
shell, 15, 124, 165
shell window, 15
show, 100
Show absolute paths, 8
show dependencies, 76
show dependencies for, 92
show files depending on, 93
show files depending on file, 93
Show flat view, 8
Show hidden directories, 8
show implicit dependencies, 93
show projects depending on, 76
show recursive dependencies, 76
show system files, 93
show type, 100
show value, 100
show() (GPS.BuildTarget method), 256
show() (GPS.Contextual method), 273
show() (GPS.Entity method), 305
show() (GPS.GUI method), 313
show() (GPS.MDI static method), 332
show_analysis_report() (GPS.CodeAnalysis method),

259
show_coverage_information() (GPS.CodeAnalysis

method), 259

smart completion, 149
solving problems, 238
source browsing, 89
source file, 28, 106
source navigation, 49
source_dirs() (GPS.Project method), 351
sources() (GPS.Project method), 352
spawn() (GPS.Debugger static method), 276
speed column policy, 148
splash screen, 146
split() (GPS.MDIWindow method), 333
Splitting, 22
ssh, 46
Stack Analysis, 133
stack analysis, 124
Start Of Statement, 51
start_line() (GPS.AreaContext method), 254
start_undo_group() (GPS.EditorBuffer method), 293
starts_word() (GPS.EditorLocation method), 298
status, 17
status bar, 17, 147
status line, 17
status() (GPS.Task method), 355
status_parse() (GPS.VCS static method), 360
step, 95
stepi, 95
stock_icons, 193
strip blanks, 148
style, 156
Style (class in GPS), 353
sub project, 56
submitting bugs, 238
subprogram parameters, 214
subprogram_name() (GPS.Editor static method), 287
subprogram_name() (GPS.EditorLocation method), 298
substitution, 166
Subversion, 113
Subversion Windows, 113
suggestions, 238
supported_languages() (in module GPS), 250
supported_systems() (GPS.VCS static method), 361
svg, 89
switches, 69
switches editor, 74
SwitchesChooser (class in GPS), 354
syntax highlighting, 106

T
tabulation, 150, 152
tag, 51
Target, 197
target, 96
Targets, 83
targets, 237

Index 385

GPS Documentation, Release 5.2.1

task, 97
Task (class in GPS), 355
task manager, 17
tasks, 17
telnet, 46
terminate, 96
text files, 57
thaw_xref() (in module GPS), 250
themes, 158
themes creation, 178
thread, 97
Timeout (class in GPS), 356
tip of the day, 4, 147
title bar, 21, 99
title() (GPS.EditorView method), 301
toggle_group_commit() (GPS.Activities method), 253
tool bar, 6, 146, 147, 175
Toolbar (class in GPS), 357
ToolButton (class in GPS), 356
Toolchains, 83, 86
tools, 123
tooltip, 26, 106, 148
tooltip timeout, 148
top level, 22
tty, 153
type, 223
type() (GPS.Entity method), 305

U
uncomment, 35
undo, 32
undo() (GPS.Editor static method), 287
undo() (GPS.EditorBuffer method), 293
Unexpected_Exception (class in GPS), 358
unfold, 36
unhighlight() (GPS.Editor static method), 287
unhighlight_range() (GPS.Editor static method), 287
Unix, 59, 239
unselect() (GPS.EditorBuffer method), 293
unset_busy() (in module GPS), 250
update value, 100
update() (GPS.VCS static method), 361
update_parse() (GPS.VCS static method), 361
update_xref() (GPS.Project method), 352
url, 45, 238
used_by() (GPS.File method), 310
uses() (GPS.File method), 310

V
variable, 8, 58
variables used, 52
VCS, 66, 113
VCS (class in GPS), 359
VCS activities, 116

VCS explorer, 114
vcs() (GPS.Activities method), 253
Vdiff (class in GPS), 361
version control, 113, 114, 116, 117
Version Control System, 66
version() (in module GPS), 250
vertical layout, 155
vi, 44, 45
view, 8, 30
views() (GPS.EditorBuffer method), 293
vim, 45
visual diff, 124, 125
VxWorks, 57
VxWorks AE, 104

W
wait() (GPS.Process method), 342
warning index, 156
welcome dialog, 3, 146
whole word, 79
window manager, 21
window selection, 21
Window View, 12
Windows, 8, 28, 30, 45, 236, 239
work space, 6, 21
wrench icon, 126
write() (GPS.CommandWindow method), 265
write() (GPS.Console method), 269
write_with_links() (GPS.Console method), 270

X
X-Window, 45
XMLViewer (class in GPS), 363
xpm, 175

Y
yank, 32, 45
yes_no_dialog, 206
yes_no_dialog() (GPS.MDI static method), 332

Z
zoom, 100
zoom in, 100
zoom out, 100

386 Index

	Introduction
	Description of the Main Windows
	The Welcome Dialog
	The Tip of the Day
	The Menu Bar
	The Tool Bar
	The Work Space
	The Project View
	The File View
	The Entity View
	The Window View
	The Outline View
	The Clipboard View
	The Callgraph View
	Bookmarks
	The Messages Window
	The Shell and Python Windows
	The Locations View
	The Execution Window
	The Status Line
	The Task Manager

	Online Help
	The Help Menu
	Adding New Help Files

	Multiple Document Interface
	Selecting Windows
	Closing Windows
	Splitting Windows
	Floating Windows
	Moving Windows
	Perspectives

	Editing Files
	General Information
	Editing Sources
	The File Selector
	Menu Items
	Rectangles
	Recording and replaying macros
	Contextual Menus for Editing Files
	Handling of case exceptions
	Refactoring
	Using an External Editor
	Using the Clipboard
	Saving Files
	Remote Files

	Source Navigation
	Support for Cross-References
	The Navigate Menu
	Contextual Menus for Source Navigation
	Navigating with hyperlinks
	Highlighting dispatching calls

	Project Handling
	Description of the Projects
	Supported Languages
	Scenarios and Configuration Variables
	Extending Projects
	The Project View
	Disabling Project Edition Features
	The Project Menu
	The Project Wizard
	The Project Dependencies Editor
	The Project Properties Editor
	The Switches Editor
	The Project Browser

	Searching and Replacing
	Compilation/Build
	The Build Menu
	The Target Configuration Dialog
	The Build Mode
	Working with two compilers

	Source Browsing
	General Issues
	Call Graph
	Dependency Browser
	Entity Browser

	Debugging
	The Debug Menu
	The Call Stack Window
	The Data Window
	The Breakpoint Editor
	The Memory Window
	Using the Source Editor when Debugging
	The Assembly Window
	The Debugger Console
	Customizing the Debugger

	Version Control System
	The VCS Explorer
	The VCS Activities
	The VCS Menu
	The Version Control Contextual Menu
	Working with global ChangeLog file
	The Revision View

	Tools
	The Tools Menu
	Coding Standard
	Visual Comparison
	Code Fixing
	Documentation Generation
	Working With Unit Tests
	Metrics
	Code Coverage
	Stack Analysis

	Working in a Cross Environment
	Customizing your Projects
	Debugger Issues

	Using GPS for Remote Development
	Requirements
	Setup the remote servers
	Setup a remote project
	Limitations

	Customizing and Extending GPS
	The Preferences Dialog
	GPS Themes
	The Key Manager Dialog
	The Plug-ins Editor
	Customizing through XML and Python files
	Adding support for new tools
	Customization examples
	Scripting GPS
	Adding support for new Version Control Systems
	The Server Mode
	Adding project templates

	Environment
	Command Line Options
	Environment Variables
	Running GPS on Mac OS X
	Files
	Reporting Suggestions and Bugs
	Solving Problems

	Scripting API reference for GPS
	Function description
	User data in instances
	Hooks
	Functions
	Classes

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

	Indices and tables
	Python Module Index
	Index

