FreeBSD Developers’ Handbook

The FreeBSD Documentation Project

FreeBSD Developers’ Handbook

by The FreeBSD Documentation Project

Published August 2000

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2000822009, 2010 The FreeBSD Documentation
Project

Welcome to the Developers’ Handbook. This manualigak in progressaand is the work of many individuals.
Many sections do not yet exist and some of those that do exéxt to be updated. If you are interested in helping
with this project, send email to the FreeBSD documentatiofept mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebdde).

The latest version of this document is always available ftioenFreeBSD World Wide Web server
(http://www.FreeBSD.org/index.html). It may also be ddeaded in a variety of formats and compression options
from the FreeBSD FTP server (ftp://ftp.FreeBSD.org/pue@BSD/doc/) or one of the numerous mirror sites
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boo&rttbook/mirrors-ftp.html).

Copyright

Redistribution and use in source (XML DocBook) and 'comgiitorms (XML, HTML, PDF, PostScript, RTF and so forth) with without
modification, are permitted provided that the following ditions are met:

1. Redistributions of source code (XML DocBook) must rethi@ above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file wdified.

2. Redistributions in compiled form (transformed to oth&i13, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, thi®fi conditions and the following disclaimer in the
documentation and/or other materials provided with th&idigtion.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

FreeBSD is a registered trademark of the FreeBSD Foundation
Apple, AirPort, FireWire, Mac, Macintosh, Mac OS, Quickémand TrueType are trademarks of Apple Computer, Inc.stegid in the United
States and other countries.

IBM, AlX, EtherJet, Netfinity, 0S/2, PowerPC, PS/2, S/3989d &hinkPad are trademarks of International Business MashCorporation in the
United States, other countries, or both.

IEEE, POSIX, and 802 are registered trademarks of Instafiilectrical and Electronics Engineers, Inc. in the Unidtes.

Intel, Celeron, EtherExpress, i386, 486, Itanium, Pentiand Xeon are trademarks or registered trademarks ofQatgloration or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Winds Media and Windows NT are either registered trademarksadetmarks of
Microsoft Corporation in the United States and/or othemtoas.

Motif, OSF/1, and UNIX are registered trademarks and IT Doake and The Open Group are trademarks of The Open Group Wnited States
and other countries.

Sun, Sun Microsystems, Java, Java Virtual Machine, JavaBBages, JDK, JRE, JSP, JVM, Netra, OpenJDK, SolarisD8tee, Sun Blade,
Sun Enterprise, Sun Fire, SunOS, Ultra and VirtualBox a@gmarks or registered trademarks of Sun Microsystemsinitice United States
and other countries.

Many of the designations used by manufacturers and selielistinguish their products are claimed as trademarks.révihese designations
appear in this document, and the FreeBSD Project was awdie gfademark claim, the designations have been followettidoy™” or the “®”

symbol.

Table of Contents

IR = T T oSS PPPPPTRPRRRPPIS ¥/ ||
IR g1 (o T 8 Tox 1 o] o TSP PRPPOP 1.
1.1 Developing 0N FrEEBSD.........uuiiiie ettt e e e e e e e r e e e e s e nanne e e e e e nnnne 1
1.2 THE BSD VISION....eiiiiitiiie ettt ettt ettt ettt e e e ea bttt e e ettt e e enb e e e samee e e ebbeee e e ennbeeeeennees 1
1.3 ArchiteCtural GUIAEINESoeiiiiiiiie ettt e et e e s sree e e st ee e e 1
O I oo oo 10) (£ PSSR 1
y22 md (ol = T 4] 0T o T e To £ EER R ST 3.
P S} Y o] o LU PP T USUPUUPPRTRR 3.
A [1o To VT4 o] 4 PR TP 3.
2.3 INtroduction tO Programiming.........ooioiueuieeiiee et ee e et e e e e e e e e s e aabbeeeeeeaaaaasaaannreseeaaaaannes 3
2.4 COMPIIING WILNCE ..ottt e e e e e e s s snnnbeeeeeeenennreeneaeeeeeenenned 6.
AT 1Y = L R TP 12
Al B =T o 10T [1o Lo PSP E PP PTPPPRUUT 16
2.7 Using Emacs as a Development ENVIFONMENT.ccuuuiiiiiieae i e 20
2.8 FUIMNEI REAMING. ...ttt e e ettt e e e e e e e e e e eeeee e e s e nbbbneeeeaaaeas 28
3 SECUIE PrOGIraMIMIIG. ... eeteeeeeee e ettt e e e e e e emeee e e e e s e be b be et eeaee e s e aannee e st eeea e e s sammnmeeeeeeeeaansbsbeeeeaaaanns 30
TN S} Y g o] o S LTS UPRURR 30
3.2 Secure Design MethodoIOgY...........uueeiiiiiiiiii et s e 30
3.3 BUEIr OVEITIOWS. ...ttt e e e e smnnee e e e e e sanneeeeeeas 30
34 SEEUID ISSUBS ...ttt ettt ettt e e oo e e ek bbbttt e e e e e e e e e abb b et e e e aeeeanbaeeeeaeeeeaaannnbeneeaas 32
3.5 Limiting your program’s €NVIFONMEILL..........uiiiee ittt e e e et ee e e et e e e e e e e e s e sennbeeeeaeaens 33
T I 1] TP PPPPPP P PPPPP 34
I A S = (o1 =X @0 (o 11 o] o £ T PP UTRRP 34
4 Localization and Internationalization - LLON and I18N..........ccuutiiiiiiiiiiiiiiieee e 35
4.1 Programming 118N Compliant APPlICALIONS.cveeeiiiiiieiiiiie e e s see e e e e serer e e e 35
4.2 Localized Messages with POSIX.1 Native Language SUgNQS)..........cccocvvveeeriivciiiiiieneeeenn, 35.
5 Source Tree GUIdelines and POICIES.o.uuiiiiiiiiie et ee e e 40
N] Y L= 0o = 1T TS 40
5.2MAINTAINERON MaAKETIES......eeiiiiiiiiiee et 40
5.3 CoNtribUted SOWALE.........eeiiei e et erneee e seb e e e enee 40
5.4 ENCUMDEIEA FIlES....cciiiiiiie ettt ettt et eeeneee s snba e e e snnnee e 43
RIS T (=To I T o= T4 =TSP TRRP 44
6 Regression and Performance TESHNGuuuiuiiriiieiiiiiiie e ee e s reeee e e e e s s e s e e e e e e s e ssras e e eee e e ensnnnees 46
6.1. Micro Benchmark CheCKIISt.uviiiiiiiiieeiiie e e 46
6.2. The FreeBSD SoUrce TINGEIDOX......cciiiiiiiiiiiiiiie ettt 47
[1. INtErproCeSS COMMUINICALION.c.itiiieiiii e ettt e e e rmtee e e e e e bbb et e e e e e e s e e sannbeeeeeeeeeseanmnmeeeeeeeeansenneees 51
T SOCKELS. ..ottt e e — et ee e e e e et e bbb et te e e e e e e e nnrbeeeeeaaaas 52
A S} Y o] ¢ S LTRSS RUUT 52
7.2 NetwOrking @nd DIVEISILY.coii ittt eete e e e e e e et e e e e e e e e anbebbeeeeeeeseeeeees 52
RS d (0] (o Tolo] =TSP PR 52
7.4 The SOCKETS MOUEL.......eeiiiiiiii ettt ettt e e e e e smnneee e e e e nee e e 54
7.5 Essential SOCKET FUNCHONS.cuiiiiiiii ittt sttt e e e e e e e ennnneee e s 55
7.6 HEIPEI FUNCHIONS ...cciiiii ittt ettt e ekttt e e e e e e s e st bbb eeeeeaaesbbneeaeaeaeaanannes 67
7.7 CONCUITENT SEIVEIS. ...ttt e e e e e e aee bbb s s e e e e e e e e e e e e e e e e e aeeee s aans 69
B IPVG INTEINAIS. ... ettt e e e ettt e e e e e e s aname e e e e e e e e nsbbbeeeee e e e s e s snnnbeneeas 71

LTI =Y £ 1 O OO POOP TRt 88
9 Building and Installing a FreeBSD KEIMEl.........cooi it 89
9.1 Building a Kernel the “Traditional” Way.............uueiiiiaiiiiieieie et 89

9.2 Building @ Kernel the “NEW” WaY...........uueiiiiaiaiiiiiii ettt et e e e e e e e e e e 89

10 KerNEI DEDUGGING ...cc e e ettt e e ettt e e e e e e e e e bbbt e e et e e s senbe e e e e e e e e s e annnnnnneeaaanns 90
10.1 Obtaining a Kernel Crash DUMP.cooai et e e a0

10.2 Debugging a Kernel Crash Dump WRIIIDoouuiiiiiiiiiiieie e a1

10.3 Debugging a Crash Dump With DDD............ueiiiiiiiiiiii e 96

10.4 On-Line Kernel Debugging USING DDB..........cooiiiiiiiiiiiiieaiieeieeee e 96

10.5 On-Line Kernel Debugging Using Remote GDB.............coooiiiiiiiiieeee e 99

10.6 Debugging @ CONSOIE DIIVEL........euiiiiiiiiiiiieee et e et e e e e e e e e e e snneeeas 100

10.7 Debugging DEAAIOCKS........ciiiiii it e e e e e 100

10.8 Kernel debugging With DCOMS.........c.uuuiiiiiiiie et iee e e e s st e e e e e st e e e e e e s s s nnnnnreeeeesenan 101

10.9 Glossary of Kernel Options for DebugQing............uuvviiieieiiiiciiiiee e 103

A AN (o] o 11 (=0 (0 (< 106
11 x86 Assembly Language ProgramimiNg........c..eeeeiuueeeiiiiieeesiiieeeseees s seieee e snebee e s eeesnsaeeeessnens 107
0 1Y T o L1 PP PRPROPUPRRPPRTRI 107

8t 2 I 4 1= o o] S 107

L11.3 SYSLEM CAIIS....eiiiiiiiiiie ettt et e ettt e e sttt enena et e e e s aran e e 108

N o T (U [Y= 11U = 110

11.5 Creating Portable COOE.........ooiiiiiie ettt saeeeneeeee s 111

SN O T T =3 o (o =T o PP RS 115

11.7 WItiING UNIX® FIEIS ... eeieeeiieeee ettt e et eeee e e e s s st e et e e e e e st e e e e e e e e snmnnneeeee s 116

11.8 Buffered INpuUt @and OULPLILc..uuiieeiie ettt e e e e 119

11.9 CommMaNd LiN@ AFQUMIENLIS.uueiiiieeiaii ittt e ettt e e e ettt e e e e e e e e e abnbb e e ee e e e e s e annnnaeaeas 126
1120 UNDX ENVIFONMENL. ... oottt eee e e e e et e e e e e ettt e e e e e e aeba s e eeaeaeeesesesanns 130
11.11 WOTKING WIth FIIES ...ttt e e e e ae e e e e s e 134
i B @ T T= R =] (=T W\ 110 o TP RPSOR 145
L1123 USING the FPLL ..ot e e e e e e e e e ete e e e e anrae e e e e 153
O N 8= V=T (PSPPSR 180
11.15 ACKNOWIEUGEIMENES ...ttt e ettt e e e e e e e e n bbb e e e e s eebeeeeaaaens 182

RV N o] 01T o To [Tt T TSP PPP PR 183
2710 1o o [ic=T o]0} V2T RRTRT TP 184

List of Examples

2-1. A sampleemacs file

vi

|. Basics

Chapter 1 Introduction

Contributed by Murray Stokely and Jeroen Ruigrok van denMer

1.1 Developing on FreeBSD

So here we are. System all installed and you are ready tgpstagtamming. But where to start? What does FreeBSD
provide? What can it do for me, as a programmer?

These are some questions which this chapter tries to an®@iveourse, programming has different levels of
proficiency like any other trade. For some it is a hobby, ftieos it is their profession. The information in this
chapter might be aimed toward the beginning programmeeéddit could serve useful for the programmer
unfamiliar with the FreeBSD platform.

1.2 The BSD Vision

To produce the best UNIX® like operating system packageiplessvith due respect to the original software tools
ideology as well as usability, performance and stability.

1.3 Architectural Guidelines

Our ideology can be described by the following guidelines

- Do not add new functionality unless an implementor cannotgete a real application without it.

- Itis as important to decide what a system is not as to decid ivts. Do not serve all the world’s needs; rather,
make the system extensible so that additional needs cantia ereupwardly compatible fashion.

- The only thing worse than generalizing from one example iegaizing from no examples at all.

- If a problem is not completely understood, it is probablytthegrovide no solution at all.

- If you can get 90 percent of the desired effect for 10 percétiteowork, use the simpler solution.

- Isolate complexity as much as possible.

« Provide mechanism, rather than policy. In particular, plaser interface policy in the client’s hands.

From Scheifler & Gettys: "X Window System"

1.4 The Layout of /usr/src

The complete source code to FreeBSD is available from ouiqrdpository. The source code is normally installed
in /usr/src which contains the following subdirectories:

Directory Description
bin/ Source for files irfbin

Directory
cddl/

contrib/
crypto/
etc/
games/
gnu/
include/
kerberos5/
lib/
libexec/
release/
rescue/
shin/
secure/
share/
sys/
tools/
usr.bin/
usr.shin/

Chapter 1 Introduction

Description

Utilities covered by the Common Development and
Distribution License

Source for files from contributed software.
Cryptographical sources

Source for files irfetc

Source for files irfusr/games

Utilities covered by the GNU Public License
Source for files irfusr/include

Source for Kerberos version 5

Source for files irfusr/lib

Source for files irfusr/libexec

Files required to produce a FreeBSD release
Build system for thérescue utilities

Source for files irfshin

FreeSec sources

Source for files irfusr/share

Kernel source files

Tools used for maintenance and testing of FreeBSD
Source for files irusr/bin

Source for files irfusr/shin

Chapter 2 Programming Tools

Contributed by James Raynard and Murray Stokely.

2.1 Synopsis

This chapter is an introduction to using some of the programgrools supplied with FreeBSD, although much of it
will be applicable to many other versions of UNIX. It dagst attempt to describe coding in any detail. Most of the
chapter assumes little or no previous programming knovdedighough it is hoped that most programmers will find
something of value in it.

2.2 Introduction

FreeBSD offers an excellent development environment. Glensdor C and C++ and an assembler come with the
basic system, not to mention classic UNIX tools suckeasandawk. If that is not enough, there are many more
compilers and interpreters in the Ports collection. Thiowaihg section]ntroduction to Programmindjsts some of
the available options. FreeBSD is very compatible with déaids such as POSIX® and ANSI C, as well with its own
BSD heritage, so it is possible to write applications that @ampile and run with little or no modification on a wide
range of platforms.

However, all this power can be rather overwhelming at firgbifi have never written programs on a UNIX platform
before. This document aims to help you get up and runnindpouitgetting too deeply into more advanced topics.
The intention is that this document should give you enough@basics to be able to make some sense of the
documentation.

Most of the document requires little or no knowledge of pesgming, although it does assume a basic competence
with using UNIX and a willingness to learn!

2.3 Introduction to Programming

A program is a set of instructions that tell the computer tovaidous things; sometimes the instruction it has to
perform depends on what happened when it performed a piiristruction. This section gives an overview of the
two main ways in which you can give these instructions, onfotands” as they are usually called. One way uses an
interpreter, the other a&zompiler. As human languages are too difficult for a computer to uridedsin an

unambiguous way, commands are usually written in one or ¢dnguages specially designed for the purpose.

2.3.1 Interpreters

With an interpreter, the language comes as an environméstenyou type in commands at a prompt and the
environment executes them for you. For more complicatednaros, you can type the commands into a file and get
the interpreter to load the file and execute the commandsliraitything goes wrong, many interpreters will drop
you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of younands immediately, and mistakes can be corrected
readily. The biggest disadvantage comes when you want te sioar programs with someone. They must have the
same interpreter, or you must have some way of giving it tmthend they need to understand how to use it. Also

Chapter 2 Programming Tools

users may not appreciate being thrown into a debugger ifghess the wrong key! From a performance point of
view, interpreters can use up a lot of memory, and generallyad generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way tbistayu have not done any programming before. This
kind of environment is typically found with languages likesp, Smalltalk, Perl and Basic. It could also be argued
that the UNIX shell ¢h, csh) is itself an interpreter, and many people do in fact writellstscripts” to help with
various “housekeeping” tasks on their machine. Indeed,gidine original UNIX philosophy was to provide lots of
small utility programs that could be linked together in $kefipts to perform useful tasks.

2.3.2 Interpreters available with FreeBSD

Here is a list of interpreters that are available from theeB®D Ports Collection, with a brief discussion of some of
the more popular interpreted languages.

Instructions on how to get and install applications fromRwets Collection can be found in the Ports section
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boo&rttbook/ports-using.html) of the handbook.

BASIC

Short for Beginner’s All-purpose Symbolic Instruction @developed in the 1950s for teaching University
students to program and provided with every self-respg@ersonal computer in the 1980s, BASIC has been
the first programming language for many programmers. ltss #tie foundation for Visual Basic.

The Bywater Basic Interpreter can be found in the Ports Ctifla aslang/bwbasic ~ and the Phil Cockroft's
Basic Interpreter (formerly Rabbit Basic) is availabléaag/pbasic

Lisp
A language that was developed in the late 1950s as an altertathe “number-crunching” languages that

were popular at the time. Instead of being based on numbisgsjd.based on lists; in fact the name is short for
“List Processing”. Very popular in Al (Artificial Intelligece) circles.

Lisp is an extremely powerful and sophisticated languagecan be rather large and unwieldy.

Various implementations of Lisp that can run on UNIX systeresavailable in the Ports Collection for
FreeBSD. GNU Common Lisp can be foundasy/gcl . CLISP by Bruno Haible and Michael Stoll is
available agang/clisp . For CMUCL, which includes a highly-optimizing compileratoor simpler Lisp
implementations like SLisp, which implements most of ther@won Lisp constructs in a few hundred lines of
C codejang/cmucl andlang/slisp are available respectively.

Perl

Very popular with system administrators for writing scsipalso often used on World Wide Web servers for
writing CGI scripts.

Perl is available in the Ports Collectionlasg/perl5.16 for all FreeBSD releases.

Scheme

A dialect of Lisp that is rather more compact and cleaner dammon Lisp. Popular in Universities as it is
simple enough to teach to undergraduates as a first langwhde it has a high enough level of abstraction to
be used in research work.

Chapter 2 Programming Tools

Scheme is available from the Ports Collectionaag/elk for the EIk Scheme Interpreter. The MIT Scheme
Interpreter can be found iang/mit-scheme and the SCM Scheme Interpretedang/scm

Icon

Icon is a high-level language with extensive facilities joocessing strings and structures. The version of Icon
for FreeBSD can be found in the Ports Collectionaag/icon

Logo

Logo is a language that is easy to learn, and has been usedrasodnictory programming language in various
courses. It is an excellent tool to work with when teachingggamming in small ages, as it makes the creation
of elaborate geometric shapes an easy task even for veryamidten.

The latest version of Logo for FreeBSD is available from tbet$Collection inang/logo

Python

Python is an Object-Oriented, interpreted language. lseates argue that it is one of the best languages to
start programming with, since it is relatively easy to steith, but is not limited in comparison to other popular
interpreted languages that are used for the developmeartgd,|lcomplex applications (Perl and Tcl are two
other languages that are popular for such tasks).

The latest version of Python is available from the Ports&ibn inlang/python

Ruby

Ruby is an interpreter, pure object-oriented programmamgliage. It has become widely popular because of its
easy to understand syntax, flexibility when writing coded #re ability to easily develop and maintain large,
complex programs.

Ruby is available from the Ports Collectionlasg/ruby18

Tcland Tk

Tclis an embeddable, interpreted language, that has bew@es/ used and became popular mostly because
of its portability to many platforms. It can be used both faiakly writing small, prototype applications, or
(when combined with Tk, a GUI toolkit) fully-fledged, feagdul programs.

Various versions of Tcl are available as ports for FreeBSik [atest version, Tcl 8.5, can be found in
lang/tcl85

2.3.3 Compilers

Compilers are rather different. First of all, you write yaade in a file (or files) using an editor. You then run the
compiler and see if it accepts your program. If it did not cdmmrit your teeth and go back to the editor; if it did
compile and gave you a program, you can run it either at a shelmand prompt or in a debugger to see if it works

properly.

Obviously, this is not quite as direct as using an interprétewever it allows you to do a lot of things which are
very difficult or even impossible with an interpreter, sushaaiting code which interacts closely with the operating
system—or even writing your own operating system! It is alseful if you need to write very efficient code, as the
compiler can take its time and optimize the code, which wowldhe acceptable in an interpreter. Moreover,

Chapter 2 Programming Tools

distributing a program written for a compiler is usually raatraightforward than one written for an interpreter—you
can just give them a copy of the executable, assuming they thawsame operating system as you.

As the edit-compile-run-debug cycle is rather tedious wiging separate programs, many commercial compiler
makers have produced Integrated Development Environnii&s for short). FreeBSD does not include an IDE in
the base system, bdével/kdevelop is available in the Ports Collection and many &wgacsfor this purpose.
UsingEmacsas an IDE is discussed Bection 2.7

2.4 Compiling with cc

This section deals with thgccandclang compilers for C and C++, since they come with the FreeBSD bgstem.
Starting with FreeBSD 10.Xlang is installed asc . The details of producing a program with an interpreter vary
considerably between interpreters, and are usually weéreal in the documentation and on-line help for the
interpreter.

Once you have written your masterpiece, the next step isrteerdit into something that will (hopefully!) run on
FreeBSD. This usually involves several steps, each of wisidone by a separate program.

1. Pre-process your source code to remove comments andeotiatks like expanding macrosin C.

2. Check the syntax of your code to see if you have obeyed ths ofithe language. If you have not, it will
complain!

3. Convert the source code into assembly language—thisyscl@se to machine code, but still understandable by
humans. Allegedly.

4. Convert the assembly language into machine code—yepremal&ing bits and bytes, ones and zeros here.

5. Check that you have used things like functions and globaélbles in a consistent way. For example, if you
have called a non-existent function, it will complain.

6. If you are trying to produce an executable from several@®aode files, work out how to fit them all together.
7. Work out how to produce something that the system’s nnetbader will be able to load into memory and run.
8. Finally, write the executable on the filesystem.

The wordcompilingis often used to refer to just steps 1 to 4—the others areresféo adinking. Sometimes step 1
is referred to apre-processin@nd steps 3-4 aassembling

Fortunately, almost all this detail is hidden from youcass a front end that manages calling all these programs
with the right arguments for you; simply typing

% cc foobar.c

will causefoobar.c to be compiled by all the steps above. If you have more tharfiti® compile, just do
something like

% cc foo.c bar.c

Note that the syntax checking is just that—checking theasyrit will not check for any logical mistakes you may
have made, like putting the program into an infinite loop,<ing a bubble sort when you meant to use a binary $ort.

Chapter 2 Programming Tools

There are lots and lots of options far, which are all in the manual page. Here are a few of the mospitapt ones,
with examples of how to use them.

-0 filenane

The output name of the file. If you do not use this optianwill produce an executable callecbut . °

% cc foobar.c executable is. out
% cc -o foobar foobar.c executable i$ oobar

Just compile the file, do not link it. Useful for toy programbeve you just want to check the syntax, or if you
are using aMakefile

% cc -c foobar.c

This will produce arobject file(not an executable) callédobar.o . This can be linked together with other
object files into an executable.

Create a debug version of the executable. This makes theileompt information into the executable about
which line of which source file corresponds to which functiati. A debugger can use this information to show
the source code as you step through the program, whigérjauseful; the disadvantage is that all this extra
information makes the program much bigger. Normally, yompite with-g while you are developing a
program and then compile a “release version” withgutvhen you are satisfied it works properly.

% cc -g foobar.c

This will produce a debug version of the prograém.

Create an optimized version of the executable. The compdegbrms various clever tricks to try to produce an
executable that runs faster than normal. You can add a nuafieethe-O to specify a higher level of
optimization, but this often exposes bugs in the compilgpsmizer.

% cc -O -0 foobar foobar.c

This will produce an optimized version @fobar .

The following three flags will forcec to check that your code complies to the relevant internatistandard, often
referred to as the ANSI standard, though strictly speakiigan ISO standard.

-Wall

Enable all the warnings which the authorsofbelieve are worthwhile. Despite the name, it will not enatile
the warninggc is capable of.

Chapter 2 Programming Tools

-ansi

Turn off most, but not all, of the non-ANSI C features prowddsy cc . Despite the name, it does not guarantee
strictly that your code will comply to the standard.

-pedantic
Turn off all cc’s non-ANSI C features.

Without these flags;c will allow you to use some of its non-standard extensions¢ostandard. Some of these are
very useful, but will not work with other compilers—in facne of the main aims of the standard is to allow people
to write code that will work with any compiler on any systennigis known agortable code

Generally, you should try to make your code as portable asilplesas otherwise you may have to completely rewrite
the program later to get it to work somewhere else—and whavknvehat you may be using in a few years time?

% cc -Wall -ansi -pedantic -o foobar foobar.c

This will produce an executabfeobar after checkingoobar.c for standard compliance.

-l library
Specify a function library to be used at link time.

The most common example of this is when compiling a prograhukes some of the mathematical functions
in C. Unlike most other platforms, these are in a separatarlifrom the standard C one and you have to tell
the compiler to add it.

The rule is that if the library is callelib sonet hi ng.a , you givecc the argumemt sonet hi ng. For example,
the math library idibm.a , so you givecc the argumeniim . A common “gotcha” with the math library is that
it has to be the last library on the command line.

% cc -0 foobar foobar.c -Im

This will link the math library functions intéoobar .

If you are compiling C++ code, you need to adtg++ , or-Istdc++ if you are using FreeBSD 2.2 or later, to
the command line argument to link the C++ library functioflternatively, you can rur++ instead ofc,
which does this for yow++ can also be invoked as+ on FreeBSD.

% cc -o foobar foobar.cc -Ig++ For FreeBSD 2.1.6 and earlier
% cc -o foobar foobar.cc -Istdc++ For FreeBSD 2.2 and later
% c++ -0 foobar foobar.cc

Each of these will both produce an executabtiar from the C++ source filéoobar.cc . Note that, on

UNIX systems, C++ source files traditionally end @, .cxx or.cc , rather than the MS-DOS® stylepp
(which was already used for something elggey. used to rely on this to work out what kind of compiler to use
on the source file; however, this restriction no longer & lso you may now call your C++ filepp with
impunity!

Chapter 2 Programming Tools
2.4.1 Common cc Queries and Problems

1.1 am trying to write a program which uses thie() function and | get an error like this. What does it mean?

/var/tmp/cc0143941.0: Undefined symbol ‘_sin’ reference d from text segment

When using mathematical functions likia() , you have to teltc to link in the math library, like so:

% cc -0 foobar foobar.c -Im

2. All right, I wrote this simple program to practice usifg . All it does is raise 2.1 to the power of 6.

#include <stdio.h>

int main() {
float f;
f = pow(2.1, 6);
printf("2.1 ~ 6 = %f\n", f);
return O;

}

and | compiled it as:

% cc tenp.c -Im

like you said | should, but | get this when | run it:

% ./ a.out
2.1 ~ 6 = 1023.000000

This isnotthe right answer! What is going on?

When the compiler sees you call a function, it checks if it dlasady seen a prototype for it. If it has not, it assumes
the function returns an int, which is definitely not what yoantshere.

Chapter 2 Programming Tools

3. So how do | fix this?

The prototypes for the mathematical functions arméth.h . If you include this file, the compiler will be able to
find the prototype and it will stop doing strange things torycaiculation!

#include <math.h>
#include <stdio.h>

int main() {

After recompiling it as you did before, run it:

% ./ a.out
21 "~ 6 = 85.766121

If you are using any of the mathematical functioalyaysincludemath.n and remember to link in the math library.

4.1 compiled a file calledoobar.c and | cannot find an executable calfedbar . Where has it gone?

Remembergc will call the executable.out unless you tell it differently. Use the fil enane option:

% cc -o foobar foobar.c

5. OK, I have an executable callésbbar , | can see it when | ruts , but when | type irfoobar at the command
prompt it tells me there is no such file. Why can it not find it?

Unlike MS-DOS, UNIX does not look in the current directoryevhit is trying to find out which executable you
want it to run, unless you tell it to. Either typéoobar , which means “run the file callefdobar in the current
directory”, or change youPATHenvironment variable so that it looks something like

bin:/usr/bin:/usr/local/bin:.

The dot at the end means “look in the current directory if itag in any of the others”.

6.1 called my executablest , but nothing happens when | run it. What is going on?
Most UNIX systems have a program calledt in /usr/bin and the shell is picking that one up before it gets to
checking the current directory. Either type:

% ./test

or choose a better name for your program!

10

Chapter 2 Programming Tools

7.1 compiled my program and it seemed to run all right at firsgntthere was an error and it said something about
core dumped . What does that mean?

The namecore dumpdates back to the very early days of UNIX, when the machined aere memory for storing
data. Basically, if the program failed under certain caonds, the system would write the contents of core memory
to disk in a file callectore , which the programmer could then pore over to find out whattweang.

8. Fascinating stuff, but what | am supposed to do now?

Usegdb to analyze the core (s&ection 2.5

9. When my program dumped core, it said something abaetmentation fault . What is that?

This basically means that your program tried to perform seareof illegal operation on memory; UNIX is designed
to protect the operating system and other programs fromerpgograms.

Common causes for this are:

« Trying to write to a NULL pointer, eg

char =*foo = NULL;
strepy(foo, "bang!");

- Using a pointer that has not been initialized, eg

char =foo;
strepy(foo, "bang!");

The pointer will have some random value that, with luck, wdint into an area of memory that is not available to
your program and the kernel will kill your program beforedincdo any damage. If you are unlucky, it will point
somewhere inside your own program and corrupt one of yoar statictures, causing the program to fail
mysteriously.

- Trying to access past the end of an array, eg

int bar[20];
bar[27] = 6;

- Trying to store something in read-only memory, eg

char *foo = "My string";
strepy(foo, "bang!");

UNIX compilers often put string literals likeMy string” into read-only areas of memory.
- Doing naughty things witlmalloc() andfree() ,eg

char bar[80];
free(bar);

or

char *foo = malloc(27);
free(foo);
free(foo);

11

Chapter 2 Programming Tools

Making one of these mistakes will not always lead to an elnatrthey are always bad practice. Some systems and
compilers are more tolerant than others, which is why progrenat ran well on one system can crash when you try
them on an another.

10.Sometimes when | get a core dump it says error . It says in my UNIX book that this means a hardware
problem, but the computer still seems to be working. Is thig?

No, fortunately not (unless of course you really do have aWware problem...). This is usually another way of
saying that you accessed memory in a way you should not have.
11.This dumping core business sounds as though it could be uggfel, if | can make it happen when | want to.

Can | do this, or do | have to wait until there is an error?

Yes, just go to another console or xterm, do

% ps

to find out the process ID of your program, and do

% kill -ABRT pid

wherepi d is the process ID you looked up.

This is useful if your program has got stuck in an infinite lpfiw instance. If your program happens to trap
SIGABRT, there are several other signals which have a sireffact.

Alternatively, you can create a core dump from inside yoogpam, by calling thebort() function. See the
manual page of abort(3) to learn more.

If you want to create a core dump from outside your prograrngbunot want the process to terminate, you can use
thegcore program. See the manual page of gcore(1) for more informatio

2.5 Make

2.5.1 What is make?

When you are working on a simple program with only one or twarse files, typing in
%cc filel.c file2.c

is not too bad, but it quickly becomes very tedious when thaeeeseveral files—and it can take a while to compile,
too.

One way to get around this is to use object files and only redertiye source file if the source code has changed. So
we could have something like:

12

Chapter 2 Programming Tools

% cc filel.o file2.0 ... file37.c ...

if we had changeélle37.c , but not any of the others, since the last time we compiled tay speed up the
compilation quite a bit, but does not solve the typing proble

Or we could write a shell script to solve the typing problent, ibwould have to re-compile everything, making it
very inefficient on a large project.

What happens if we have hundreds of source files lying abot&t\Wwe are working in a team with other people
who forget to tell us when they have changed one of their sofiles that we use?

Perhaps we could put the two solutions together and writeeiuing like a shell script that would contain some kind
of magic rule saying when a source file needs compiling. Néwalneed now is a program that can understand
these rules, as it is a bit too complicated for the shell.

This program is callechake. It reads in a file, called makefile that tells it how different files depend on each other,
and works out which files need to be re-compiled and which doetot. For example, a rule could say something
like “if fromboz.o is older tharfromboz.c , that means someone must have charigetboz.c |, so it needs to be
re-compiled.” The makefile also has rules telling makeavto re-compile the source file, making it a much more
powerful tool.

Makefiles are typically kept in the same directory as the sathiey apply to, and can be calledkefile
Makefile or MAKEFILE Most programmers use the naiviekefile , as this puts it near the top of a directory
listing, where it can easily be seéen.

2.5.2 Example of using nake

Here is a very simple make file:

foo: foo.c
cc -0 foo foo.c

It consists of two lines, a dependency line and a creatian lin

The dependency line here consists of the name of the produramw(as thearget), followed by a colon, then
whitespace, then the name of the source file. Wheke reads this line, it looks to seefifo exists; if it exists, it
compares the timo was last modified to the timieo.c was last modified. Ifoo does not exist, or is older than
foo.c , it then looks at the creation line to find out what to do. Inestivords, this is the rule for working out when
foo.c needs to be re-compiled.

The creation line starts with a tab (press thle key) and then the command you would type to créade if you
were doing it at a command promptfélo is out of date, or does not exisbake then executes this command to
create it. In other words, this is the rule which tells maker o re-compilefoo.c

So, when you typeake, it will make sure thafoo is up to date with respect to your latest changesda . This
principle can be extended makefile s with hundreds of targets—in fact, on FreeBSD, it is posdiblcompile the
entire operating system just by typingke wor | d in the appropriate directory!

Another useful property of makefiles is that the targets ddawe to be programs. For instance, we could have a
make file that looks like this:

foo: foo.c
cc -o foo foo.c

13

Chapter 2 Programming Tools

install:
cp foo /home/me

We can tell make which target we want to make by typing:
% make target
make will then only look at that target and ignore any others. Baraple, if we typerake f oo with the makefile

above, make will ignore thiastall ~ target.

If we just typenake on its own, make will always look at the first target and thepstithout looking at any others.
So if we typedrake here, it will just go to thdoo target, re-compiléoo if necessary, and then stop without going
on to theinstall target.

Notice that thenstall target does not actually depend on anything! This meangtibatommand on the
following line is always executed when we try to make thagéaiby typingmake i nst al | . In this case, it will
copyfoo into the user's home directory. This is often used by appiicanakefiles, so that the application can be
installed in the correct directory when it has been coryemtimpiled.

This is a slightly confusing subject to try to explain. If yda not quite understand hawake works, the best thing
to do is to write a simple program like “hello world” and a médHe like the one above and experiment. Then
progress to using more than one source file, or having thesdile include a header file. Theuch command is
very useful here—it changes the date on a file without yourttato edit it.

2.5.3 Make and include-files

C code often starts with a list of files to include, for exangiliio.h. Some of these files are system-include files,
some of them are from the project you are now working on:

#include <stdio.h>
#include "foo.h"

int main(....
To make sure that this file is recompiled the monfeath is changed, you have to add it in yauakefile
foo: foo.c foo.h

The moment your project is getting bigger and you have modaaore own include-files to maintain, it will be a
pain to keep track of all include files and the files which angeteling on it. If you change an include-file but forget
to recompile all the files which are depending on it, the rsswill be devastatinggcc has an option to analyze your
files and to produce a list of include-files and their depenbstMM

If you add this to your Makefile:

depend:
gcc -E -MM *.c > .depend

and runmake depend, the file.depend will appear with a list of object-files, C-files and the incausfiles:
foo.o: foo.c foo.h

If you changé€foo.h , next time you rumimake all files depending ofoo.h will be recompiled.

14

Chapter 2 Programming Tools

Do not forget to rutimake depend each time you add an include-file to one of your files.

2.5.4 FreeBSD Makefiles

Makefiles can be rather complicated to write. Fortunate§Boased systems like FreeBSD come with some very
powerful ones as part of the system. One very good examplesistthe FreeBSD ports system. Here is the
essential part of a typical portsakefile

MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/L OCAL_PORTS/
DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz

.include <bsd.port.mk>

Now, if we go to the directory for this port and typeke, the following happens:

1. Acheckis made to see if the source code for this port imdiren the system.
2. Ifitis not, an FTP connection to the URL in MASTER_SITES& up to download the source.

3. The checksum for the source is calculated and comparethibwe for a known, good, copy of the source. This
is to make sure that the source was not corrupted while irsitran

4. Any changes required to make the source work on FreeBSBpaleed—this is known agatching

Any special configuration needed for the source is donanfMUNIX program distributions try to work out
which version of UNIX they are being compiled on and whichiopal UNIX features are present—this is
where they are given the information in the FreeBSD portaage).

6. The source code for the program is compiled. In effect, mange to the directory where the source was
unpacked and dmake—the program’s own make file has the necessary informatibuoild the program.

7. We now have a compiled version of the program. If we wishcartest it now; when we feel confident about
the program, we can typeake i nst al | . This will cause the program and any supporting files it neede
copied into the correct location; an entry is also made irja@kage database, so that the port can easily be
uninstalled later if we change our mind about it.

Now I think you will agree that is rather impressive for a féine script!

The secret lies in the last line, which teftgke to look in the system makefile callédd.port.mk . Itis easy to
overlook this line, but this is where all the clever stuff asrirom—someone has written a makefile that teb&e
to do all the things above (plus a couple of other things | diimention, including handling any errors that may
occur) and anyone can get access to that just by putting keding in their own make file!

If you want to have a look at these system makefiles, they atsifshare/mk , but it is probably best to wait
until you have had a bit of practice with makefiles, as theyarg complicated (and if you do look at them, make
sure you have a flask of strong coffee handy!)

2.5.5 More advanced uses of nake

Make is a very powerful tool, and can do much more than the simpdengte above shows. Unfortunately, there are
several different versions afake, and they all differ considerably. The best way to learn vihay can do is

15

Chapter 2 Programming Tools
probably to read the documentation—hopefully this intrtthn will have given you a base from which you can do
this.

The version of make that comes with FreeBSD isBlegkeley make there is a tutorial for it in
Jusr/share/doc/psd/12.make . To view it, do

% znore paper.ascii.gz

in that directory.

Many applications in the ports u&NU make, which has a very good set of “info” pages. If you have insthlny
of these portsGNU make will automatically have been installed gmake. It is also available as a port and package
in its own right.

To view the info pages foENU make, you will have to edit thelir file in the/usr/local/info directory to add
an entry for it. This involves adding a line like

* Make: (make). The GNU Make utility.

to the file. Once you have done this, you can typ&o and then seleanake from the menu (or irEmacs doC- h

).

2.6 Debugging

2.6.1 The Debugger
The debugger that comes with FreeBSD is cafleld (GNU debuggel)). You start it up by typing

% gdb prognane
although many people prefer to run it insilenacs You can do this by:

M x gdb RET progname RET

Using a debugger allows you to run the program under moreaited circumstances. Typically, you can step
through the program a line at a time, inspect the value oatées, change them, tell the debugger to runup to a
certain point and then stop, and so on. You can even attachrmgaam that is already running, or load a core file to
investigate why the program crashed. It is even possiblelbod the kernel, though that is a little trickier than the
user applications we will be discussing in this section.

gdb has quite good on-line help, as well as a set of info pages$isséction will concentrate on a few of the basic
commands.

Finally, if you find its text-based command-prompt style-piftting, there is a graphical front-end for it
(devel/xxgdb) in the Ports Collection.

This section is intended to be an introduction to ugidy and does not cover specialized topics such as debugging
the kernel.

16

Chapter 2 Programming Tools

2.6.2 Running a program in the debugger

You will need to have compiled the program with tye option to get the most out of usinglb . It will work
without, but you will only see the name of the function you exenstead of the source code. If you see a line like:

... (no debugging symbols found) ...

whengdb starts up, you will know that the program was not compiledwliie-g option.

At thegdb prompt, typebr eak nai n. This will tell the debugger that you are not interested ichang the
preliminary set-up code in the program being run, and thettdtuld stop execution at the beginning of your code.
Now typer un to start the program—it will start at the beginning of the-gptcode and then get stopped by the
debugger when it callsain() . (If you have ever wondered whetrein() gets called from, now you know!).

You can now step through the program, a line at a time, by prgss If you get to a function call, you can step into
it by pressings. Once you are in a function call, you can return from stepjitga function call by pressing. You
can also usep anddown to take a quick look at the caller.

Here is a simple example of how to spot a mistake in a programmgalb . This is our program (with a deliberate
mistake):

#include <stdio.h>
int bazz(int anint);

main() {
int i;

printf("This is my program\n");
bazz(i);
return O;

}

int bazz(int anint) {
printf("You gave me %d\n", anint);
return anint;

}

This program sets i to bg and passes it to a functidmazz() which prints out the number we gave it.

When we compile and run the program we get
% cc -g -0 tenp tenp.c
% ./temp

This is my program
anint = 4231

That was not what we expected! Time to see what is going on!

% gdb tenp

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the con ditions.

There is absolutely no warranty for GDB; type "show warranty " for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Soft ware Foundation, Inc.
(gdb) break main Skip the set-up code

17

Chapter 2 Programming Tools

Breakpoint 1 at 0x160f: file temp.c, line 9. gdb puts breakpoint atrai n()
(gdb) run Run as far asmi n()

Starting program: /home/james/tmp/temp Program starts running
Breakpoint 1, main () at temp.c:9 gdb stops atrai n()

(gdb) n Go to next line
This is my program Program prints out

(gdb) s step intobazz()
bazz (anint=4231) at temp.c:17 gdb displays stack frame
(gdb)

Hang on a minute! How did anint get to B231 ? Did we not we set it to b in main() ? Let’'s move up tanain()
and have a look.

(gdb) up Move up call stack

#1 0x1625 in main () at temp.c:11 gdb displays stack frame
(gdb) p i Show us the value of i

$1 = 4231 gdb displays4231

Oh dear! Looking at the code, we forgot to initialize i. We me@® put

main() {
int i;
i = 5;
printf("This is my program\n");

but we left thei=5; line out. As we did not initialize i, it had whatever numbeppaned to be in that area of
memory when the program ran, which in this case happened4a3ie

Note: gdb displays the stack frame every time we go into or out of a function, even if we are using up and down to
move around the call stack. This shows the name of the function and the values of its arguments, which helps us
keep track of where we are and what is going on. (The stack is a storage area where the program stores
information about the arguments passed to functions and where to go when it returns from a function call).

2.6.3 Examining a core file

A core file is basically a file which contains the completessti#tthe process when it crashed. In “the good old
days”, programmers had to print out hex listings of core filed sweat over machine code manuals, but now life is a
bit easier. Incidentally, under FreeBSD and other 4.4BSidesys, a core file is called ognane.core instead of
justcore , to make it clearer which program a core file belongs to.

To examine a core file, start @b in the usual way. Instead of typirigeak orrun , type
(gdb) core prognane. core

If you are not in the same directory as the core file, you willhto dodi r / pat h/t o/ core/ fil e first.

You should see something like this:

18

Chapter 2 Programming Tools

% gdb a. out

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the con ditions.

There is absolutely no warranty for GDB; type "show warranty " for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Soft ware Foundation, Inc.

(gdb) core a.out.core

Core was generated by ‘a.out’.

Program terminated with signal 11, Segmentation fault.
Cannot access memory at address 0x7020796d.

#0 Oxl164a in bazz (anint=0x5) at temp.c:17

(gdb)
In this case, the program was calledut , so the core file is callea.out.core . We can see that the program
crashed due to trying to access an area in memory that wasaitzttde to it in a function calledazz .

Sometimes it is useful to be able to see how a function wasdadils the problem could have occurred a long way up
the call stack in a complex program. Thie command causesgib to print out a back-trace of the call stack:

(gdb) bt

#0 Ox164a in bazz (anint=0x5) at temp.c:17
#1 Oxefbfd888 in end ()

#2 0x162c in main () at temp.c:11

(gdb)

Theend() function is called when a program crashes; in this casehdhg) function was called fronmain() .

2.6.4 Attaching to a running program

One of the neatest features abgdib is that it can attach to a program that is already running.dbfse, that
assumes you have sufficient permissions to do so. A commdrgunds when you are stepping through a program
that forks, and you want to trace the child, but the debuggiéowly let you trace the parent.

What you do is start up anothedb, useps to find the process ID for the child, and do
(gdb) attach pid

in gdb, and then debug as usual.

“That is all very well,” you are probably thinking, “but byehtime | have done that, the child process will be over the
hill and far away”. Fear not, gentle reader, here is how ta doaurtesy of theydb info pages):

if ((pid = fork()) < 0) / * _Always_ check this * [

error();
else if (pid == 0) { / * child */

int PauseMode = 1;

while (PauseMode)
sleep(10); / * Wait until someone attaches to us */

} else { /[* parent */

19

Chapter 2 Programming Tools

Now all you have to do is attach to the child, set PauseMode &md wait for thesleep() call to return!

2.7 Using Emacs as a Development Environment

2.7.1 Emacs

Emacs is a highly customizable editor—indeed, it has bestomized to the point where it is more like an operating
system than an editor! Many developers and sysadmins datisfi@nd practically all their time working inside
Emacs, leaving it only to log out.

Itis impossible even to summarize everything Emacs can d® bat here are some of the features of interest to
developers:

- Very powerful editor, allowing search-and-replace on txitings and regular expressions (patterns), jumping to
start/end of block expression, etc, etc.

« Pull-down menus and online help.

- Language-dependent syntax highlighting and indentation.

« Completely customizable.

« You can compile and debug programs within Emacs.

- On a compilation error, you can jump to the offending lineafixe code.

- Friendly-ish front-end to thinfo program used for reading GNU hypertext documentationuitiolg the
documentation on Emacs itself.

- Friendly front-end tagydb, allowing you to look at the source code as you step througin pmgram.
And doubtless many more that have been overlooked.
Emacs can be installed on FreeBSD usingdii®ors/emacs port.

Once itis installed, start it up and d@oh t to read an Emacs tutorial—that means hold dowrcthvrol key, press
h, let go of thecontrol key, and then preds (Alternatively, you can use the mouse to seleetacs Tutorial from
theHelp menu.)

Although Emacs does have menus, it is well worth learnindk#yebindings, as it is much quicker when you are
editing something to press a couple of keys than to try to fiechtouse and then click on the right place. And, when
you are talking to seasoned Emacs users, you will find thenafasually throw around expressions lilk@x

replace-s RET foo RET bar RET " soitis useful to know what they mean. And in any case, Emassfar too
many useful functions for them to all fit on the menu bars.

Fortunately, it is quite easy to pick up the key-bindingshey are displayed next to the menu item. My advice is to
use the menu item for, say, opening a file until you understamdit works and feel confident with it, then try doing
C-x C-f. When you are happy with that, move on to another me&mimand.

If you can not remember what a particular combination of lagess, seledDescribe Key from theHelp menu and
type it in—Emacs will tell you what it does. You can also use@mmand Apropos menu item to find out all the
commands which contain a particular word in them, with thelki@ding next to it.

20

Chapter 2 Programming Tools

By the way, the expression above means hold down the Metakess x, release the Meta key, typpl ace- s
(short forreplace-string —another feature of Emacs is that you can abbreviate comshgoess the return key,
typef oo (the string you want replaced), press the return key, typétba string you want to repladeo with) and
press return again. Emacs will then do the search-andeaeplaeration you have just requested.

If you are wondering what on earth the Meta key is, it is a sgéa@y that many UNIX workstations have.
Unfortunately, PC’s do not have one, so it is usuallyaltekey (or if you are unlucky, the escape key).

Oh, and to get out of Emacs, dox C-c (that means hold down the control key, press x, press c aedselthe
control key). If you have any unsaved files open, Emacs wklyasi if you want to save them. (Ignore the bit in the
documentation where it saysz is the usual way to leave Emacs—that leaves Emacs hangingaio the
background, and is only really useful if you are on a systerntkvtoes not have virtual terminals).

2.7.2 Configuring Emacs
Emacs does many wonderful things; some of them are builbimesof them need to be configured.

Instead of using a proprietary macro language for configamaEmacs uses a version of Lisp specially adapted for
editors, known as Emacs Lisp. Working with Emacs Lisp canlb&dpelpful if you want to go on and learn
something like Common Lisp. Emacs Lisp has many featuresafr@on Lisp, although it is considerably smaller
(and thus easier to master).

The best way to learn Emacs Lisp is to download the Emacs ialitor
(ftp://ftp.gnu.org/old-gnu/emacs/elisp-manual-18-tar.gz)

However, there is no need to actually know any Lisp to getetarith configuring Emacs, as | have included a
sampleemacs file, which should be enough to get you started. Just copyatynur home directory and restart
Emacs if it is already running; it will read the commands frttva file and (hopefully) give you a useful basic setup.

2.7.3 A sample . enacs file

Unfortunately, there is far too much here to explain it inadehowever there are one or two points worth
mentioning.

- Everything beginning with a is a comment and is ignored by Emacs.

+ Inthe first line, the »- Emacs-Lisp - *- is so that we can edit themacs file itself within Emacs and get all
the fancy features for editing Emacs Lisp. Emacs usualg tiv guess this based on the filename, and may not get
it right for .emacs .

- The tab key is bound to an indentation function in some magteshen you press the tab key, it will indent the
current line of code. If you want to put a tab character in what you are writing, hold the control key down
while you are pressing the tab key.

- This file supports syntax highlighting for C, C++, Perl, Lapd Scheme, by guessing the language from the
filename.

- Emacs already has a pre-defined function calked-error . In a compilation output window, this allows you to
move from one compilation error to the next by domen; we define a complementary function,
previous-error , that allows you to go to a previous error by doivigp. The nicest feature of all is thatc

C-c will open up the source file in which the error occurred andgumthe appropriate line.

21

Chapter 2 Programming Tools

+ We enable Emacs'’s ability to act as a server, so that if yodeireg something outside Emacs and you want to
edit a file, you can just type in

% enmacsclient filenane

and then you can edit the file in your Emags!

Example 2-1. A sample enuacs file
;v - *-Emacs-Lisp- -

;; This file is designed to be re-evaled; use the variable fir st-time
;; to avoid any problems with this.
(defvar first-time t
"Flag signifying this is the first time that .emacs has been e valed")

;. Meta

(global-set-key "\M- " ’'set-mark-command)
(global-set-key "\M-\C-h" 'backward-kill-word)
(global-set-key "\M-\C-r* 'query-replace)
(global-set-key "\M-r" 'replace-string)
(global-set-key "\M-g" ’goto-line)
(global-set-key "\M-h" ’help-command)

;; Function keys

(global-set-key [f1] 'manual-entry)
(global-set-key [f2] ’info)
(global-set-key [f3] 'repeat-complex-command)
(global-set-key [f4] 'advertised-undo)
(global-set-key [f5] ’eval-current-buffer)
(global-set-key [f6] ’buffer-menu)
(global-set-key [f7] 'other-window)
(global-set-key [f8] ’find-file)
(global-set-key [f9] ’'save-buffer)
(global-set-key [f10] 'next-error)
(global-set-key [f11] 'compile)
(global-set-key [f12] 'grep)
(global-set-key [C-f1] 'compile)
(global-set-key [C-f2] 'grep)
(global-set-key [C-f3] ’'next-error)
(global-set-key [C-f4] ’previous-error)
(global-set-key [C-f5] ’display-faces)
(global-set-key [C-f8] ’dired)
(global-set-key [C-f10] ’kill-compilation)

;; Keypad bindings
(global-set-key [up] "\C-p")
(global-set-key [down] "\C-n")
(global-set-key [left] "\C-b")
(global-set-key [right] "\C-f")
(global-set-key [home] "\C-a")
(global-set-key [end] "\C-e")
(global-set-key [prior] "\M-v")

22

Chapter 2 Programming Tools

(global-set-key [next] "\C-v")
(global-set-key [C-up] "\M-\C-b")
(global-set-key [C-down] "\M-\C-f")
(global-set-key [C-left] "\M-b")
(global-set-key [C-right] "\M-f")
(global-set-key [C-home] "\M-<")
(global-set-key [C-end] "\M->")
(global-set-key [C-prior] "\M-<")
(global-set-key [C-next] "\M->")

:» Mouse
(global-set-key [mouse-3] 'imenu)

;1 Misc
(global-set-key [C-tab] "\C-g\t") ; Control tab quotes a ta b.
(setq backup-by-copying-when-mismatch t)

;v Treat 'y’ or <CR> as yes, 'n’ as no.
(fset 'yes-or-no-p 'y-or-n-p)

(define-key query-replace-map [return] 'act)
(define-key query-replace-map [?\C-m] 'act)

;; Load packages
(require 'desktop)
(require ’tar-mode)

., Pretty diff mode
(autoload ’ediff-buffers "ediff" "Intelligent Emacs inte rface to diff" t)
(autoload ’ediff-files "ediff* "Intelligent Emacs interf ace to diff" t)
(autoload ’ediff-files-remote "ediff"

"Intelligent Emacs interface to diff")

(if first-time
(setq auto-mode-alist

(append ’(("\.cpp$" . c++-mode)
("\.hpp$" . c++-mode)
("\.Isp$" . lisp-mode)
("\.scm$" . scheme-mode)
("\.pI$" . perl-mode)
) auto-mode-alist)))

;; Auto font lock mode

(defvar font-lock-auto-mode-list
(list 'c-mode ’'c++-mode ’'c++-c-mode 'emacs-lisp-mode ’li sp-mode 'perl-mode ’'scheme-mode)
"List of modes to always start in font-lock-mode")

(defvar font-lock-mode-keyword-alist
'((c++-c-mode . c-font-lock-keywords)
(perl-mode . perl-font-lock-keywords))
"Associations between modes and keywords")

(defun font-lock-auto-mode-select ()
"Automatically select font-lock-mode if the current major mode is in font-lock-auto-mode-list"

23

Chapter 2 Programming Tools

(if (memq major-mode font-lock-auto-mode-list)
(progn
(font-lock-mode t))
)
)

(global-set-key [M-f1] 'font-lock-fontify-buffer)

;v New dabbrev stuff
;(require 'new-dabbrev)
(setq dabbrev-always-check-other-buffers t)
(setq dabbrev-abbrev-char-regexp "\sw\\\\\s_")
(add-hook ’emacs-lisp-mode-hook
‘(lambda ()
(set (make-local-variable 'dabbrev-case-fold-search) n il)
(set (make-local-variable 'dabbrev-case-replace) nil)))
(add-hook ’'c-mode-hook
‘(lambda ()
(set (make-local-variable 'dabbrev-case-fold-search) n il)
(set (make-local-variable 'dabbrev-case-replace) nil)))
(add-hook 'text-mode-hook
‘(lambda ()
(set (make-local-variable 'dabbrev-case-fold-search) t)
(set (make-local-variable 'dabbrev-case-replace) t)))

;7 C++ and C mode...

(defun my-c++-mode-hook ()
(setq tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline -and-indent)
(define-key c++-mode-map "\C-ce" 'c-comment-edit)
(setq c++-auto-hungry-initial-state 'none)
(setq c++-delete-function 'backward-delete-char)
(setq c++-tab-always-indent t)
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c++-empty-arglist-indent 4))

(defun my-c-mode-hook ()
(setq tab-width 4)
(define-key c-mode-map "\C-m" ’'reindent-then-newline-a nd-indent)
(define-key c-mode-map "\C-ce" ’'c-comment-edit)
(setq c-auto-hungry-initial-state 'none)
(setq c-delete-function 'backward-delete-char)
(setq c-tab-always-indent t)
;; BSD-ish indentation style
(setq c-indent-level 4)
(setq c-continued-statement-offset 4)
(setq c-brace-offset -4)
(setq c-argdecl-indent 0)
(setq c-label-offset -4))

;. Perl mode
(defun my-perl-mode-hook ()

24

(setq tab-width 4)

(define-key c++-mode-map "\C-m" ’reindent-then-newline
(setq perl-indent-level 4)

(setq perl-continued-statement-offset 4))

;7 Scheme mode...
(defun my-scheme-mode-hook ()
(define-key scheme-mode-map "\C-m" 'reindent-then-newl

;; Emacs-Lisp mode...

(defun my-lisp-mode-hook ()
(define-key lisp-mode-map "\C-m" 'reindent-then-newlin
(define-key lisp-mode-map "\C-i" ’lisp-indent-line)
(define-key lisp-mode-map "\C-j" ’eval-print-last-sexp

;; Add all of the hooks...

(add-hook ’c++-mode-hook 'my-c++-mode-hook)
(add-hook ’c-mode-hook 'my-c-mode-hook)

(add-hook ’'scheme-mode-hook 'my-scheme-mode-hook)
(add-hook ’emacs-lisp-mode-hook 'my-lisp-mode-hook)
(add-hook ’lisp-mode-hook 'my-lisp-mode-hook)
(add-hook ’perl-mode-hook 'my-perl-mode-hook)

;; Complement to next-error
(defun previous-error (n)

"Visit previous compilation error message and correspondi

(interactive "p")
(next-error (- n)))

;1 Misc...

(transient-mark-mode 1)

(setq mark-even-if-inactive t)

(setq visible-bell nil)

(setq next-line-add-newlines nil)

(setq compile-command "make")

(setq suggest-key-bindings nil)

(put ’eval-expression 'disabled nil)

(put 'narrow-to-region ’disabled nil)

(put ’set-goal-column ’disabled nil)

(if (>= emacs-major-version 21)
(setq show-trailing-whitespace t))

;; Elisp archive searching

(autoload 'format-lisp-code-directory "lispdir" nil t)
(autoload '’lisp-dir-apropos "lispdir" nil t)
(autoload 'lisp-dir-retrieve "lispdir" nil t)
(autoload ’lisp-dir-verify "lispdir" nil t)

;; Font lock mode

(defun my-make-face (face color &optional bold)
"Create a face from a color and optionally make it bold"
(make-face face)
(copy-face ’'default face)

Chapter 2 Programming Tools

-and-indent)

ine-and-indent))

e-and-indent)

)

ng source code."

25

Chapter 2 Programming Tools

(set-face-foreground face color)
(if bold (make-face-bold face))

)

(if (eq window-system ’x)
(progn

(my-make-face ’'blue "blue")
(my-make-face 'red "red")
(my-make-face ’'green "dark green")
(setq font-lock-comment-face ’blue)
(setq font-lock-string-face 'bold)
(setq font-lock-type-face ’bold)
(setq font-lock-keyword-face ’bold)
(setq font-lock-function-name-face ’'red)
(setq font-lock-doc-string-face ’'green)
(add-hook ’find-file-hooks ’font-lock-auto-mode-selec t)

(setq baud-rate 1000000)
(global-set-key "\C-cmm" 'menu-bar-mode)
(global-set-key "\C-cms" ’scroll-bar-mode)
(global-set-key [backspace] 'backward-delete-char)
; (global-set-key [delete] 'delete-char)
(standard-display-european t)
(load-library "iso-transl")))

;; X11 or PC using direct screen writes
(if window-system
(progn
" (global-set-key [M-f1] ’hilit-repaint-command)
(global-set-key [M-f2] [?\C-u M-f1])
(setq hilit-mode-enable-list
‘(not text-mode c-mode c++-mode emacs-lisp-mode lisp-mod e
scheme-mode)
hilit-auto-highlight nil
hilit-auto-rehighlight 'visible
hilit-inhibit-hooks nil
hilit-inhibit-rebinding t)
(require ’hilit19)
(require 'paren))
(setq baud-rate 2400) ; For slow serial connections

)

;o TTY type terminal
(if (and (not window-system)
(not (equal system-type 'ms-dos)))
(progn
(if first-time
(progn
(keyboard-translate ?2\C-h ?\C-?)
(keyboard-translate ?2\C-? ?\C-h)))))

;- Under UNIX
(if (not (equal system-type 'ms-dos))

26

Chapter 2 Programming Tools

(progn
(if first-time
(server-start))))

;; Add any face changes here
(add-hook ’term-setup-hook 'my-term-setup-hook)
(defun my-term-setup-hook ()

(if (eq window-system ’'pc)

(progn
(set-face-background ’'default "red")

)

;; Restore the "desktop" - do this as late as possible
(if first-time
(progn
(desktop-load-default)
(desktop-read)))

;v Indicate that this file has been read at least once
(setq first-time nil)

;; No need to debug anything now
(setq debug-on-error nil)

;; All done
(message "All done, %s%s" (user-login-name) ".")

2.7.4 Extending the Range of Languages Emacs Understands

Now, this is all very well if you only want to program in the lgimmages already catered for in tleenacs file (C, C++,
Perl, Lisp and Scheme), but what happens if a new languatgel¢athizbang” comes out, full of exciting features?

The first thing to do is find out if whizbang comes with any filbatttell Emacs about the language. These usually
end in.el , short for “Emacs Lisp”. For example, if whizbang is a FreEB®rt, we can locate these files by doing

% find /usr/ports/lang/ whizbang -nanme "*.el" -print

and install them by copying them into the Emacs site Lispaig. On FreeBSD, this is
/usr/local/share/emacs/site-lisp

So for example, if the output from the find command was
lusr/ports/lang/whizbang/work/misc/whizbang.el
we would do

cp /usr/ports/|ang/ whi zbang/ wor k/ m sc/ whi zbang. el /usr/local/share/emacs/site-lisp

27

Chapter 2 Programming Tools

Next, we need to decide what extension whizbang source files.lLet's say for the sake of argument that they all
end in.wiz . We need to add an entry to oemacs file to make sure Emacs will be able to use the information in
whizbang.el

Find the auto-mode-alist entry iamacs and add a line for whizbang, such as:

("\.Isp$" . lisp-mode)
("\.wiz$" . whizbang-mode)
("W.scm$" . scheme-mode)

This means that Emacs will automatically go imthizbang-mode when you edit a file ending inviz .

Just below this, you will find the font-lock-auto-mode-Bsttry. Addwhizbang-mode to it like so:

;; Auto font lock mode

(defvar font-lock-auto-mode-list
(list 'c-mode ’'c++-mode ’'c++-c-mode 'emacs-lisp-mode 'wh izbang-mode ’lisp-mode ’perl-mode ’scheme-mode
"List of modes to always start in font-lock-mode")

This means that Emacs will always enatfalet-lock-mode (ie syntax highlighting) when editing.aiz file.

And that is all that is needed. If there is anything else yontdne automatically when you open upnvz file,
you can add &hizbang-mode hook (seemy-scheme-mode-hook for a simple example that adds
auto-indent).

2.8 Further Reading

For information about setting up a development environrf@ntontributing fixes to FreeBSD itself, please see
development(7).

- Brian Harvey and Matthew Wrigigimply Schem®lIT 1994. ISBN 0-262-08226-8
- Randall Schwarttearning PerlO’Reilly 1993 ISBN 1-56592-042-2

« Patrick Henry Winston and Berthold Klaus Paul Haisp (3rd Edition)Addison-Wesley 1989 ISBN
0-201-08319-1

- Brian W. Kernighan and Rob Pikehe Unix Programming EnvironmeRtentice-Hall 1984 ISBN 0-13-937681-X

- Brian W. Kernighan and Dennis M. Ritchighe C Programming Language (2nd EditidPrentice-Hall 1988
ISBN 0-13-110362-8

« Bjarne Stroustruffhe C++ Programming Languag&ddison-Wesley 1991 ISBN 0-201-53992-6
« W. Richard Steven&dvanced Programming in the Unix Environméadison-Wesley 1992 ISBN 0-201-56317-7
« W. Richard Stevengnix Network Programmin@rentice-Hall 1990 ISBN 0-13-949876-1

Notes

1. Ifyourunitinthe shell, you may get a core dump.

28

Chapter 2 Programming Tools

In case you did not know, a binary sort is an efficient wayosfisg things into order and a bubble sort is not.

The reasons for this are buried in the mists of history.

Note, we did not use the flag to specify the executable name, so we will get an exelitalieda.out .
Producing a debug version callembbar is left as an exercise for the reader!

They do not use thdAKEFILE form as block capitals are often used for documentationlflesREADME

Many Emacs users set theibITORenvironment temacsclient ~ so this happens every time they need to edit a
file.

29

Chapter 3 Secure Programming

Contributed by Murray Stokely.

3.1 Synopsis

This chapter describes some of the security issues thattageed UNIX programmers for decades and some of the
new tools available to help programmers avoid writing eitplde code.

3.2 Secure Design Methodology

Writing secure applications takes a very scrutinous andipestic outlook on life. Applications should be run with
the principle of “least privilege” so that no process is examing with more than the bare minimum access that it
needs to accomplish its function. Previously tested codaldghbe reused whenever possible to avoid common
mistakes that others may have already fixed.

One of the pitfalls of the UNIX environment is how easy it ist@ke assumptions about the sanity of the
environment. Applications should never trust user inpug{l its forms), system resources, inter-process
communication, or the timing of events. UNIX processes doemecute synchronously so logical operations are
rarely atomic.

3.3 Buffer Overflows

Buffer Overflows have been around since the very beginnihtieedvon-Neumar architecture. They first gained
widespread notoriety in 1988 with the Morris Internet wotsmfortunately, the same basic attack remains effective
today. By far the most common type of buffer overflow attackdsed on corrupting the stack.

Most modern computer systems use a stack to pass argum@ntstmiures and to store local variables. A stack is a
last in first out (LIFO) buffer in the high memory area of a pgss image. When a program invokes a function a new
"stack frame"is created. This stack frame consists of tharaents passed to the function as well as a dynamic
amount of local variable space. The "stack pointer" is astegthat holds the current location of the top of the stack.
Since this value is constantly changing as new values ateeplumnto the top of the stack, many implementations
also provide a "frame pointer" that is located near the b@gmof a stack frame so that local variables can more
easily be addressed relative to this valu&he return address for function calls is also stored on teksand this

is the cause of stack-overflow exploits since overflowingcal@ariable in a function can overwrite the return
address of that function, potentially allowing a maliciauiger to execute any code he or she wants.

Although stack-based attacks are by far the most commomtdalso be possible to overrun the stack with a
heap-based (malloc/free) attack.

The C programming language does not perform automatic ocimecking on arrays or pointers as many other
languages do. In addition, the standard C library is fillethwi handful of very dangerous functions.

strcpy (char *dest, const char *src) May overflow the dest buffer
strcat (char *dest, const char *src) May overflow the dest buffer
getwd (char *buf) May overflow the buf buffer

30

Chapter 3 Secure Programming

gets (char *s) May overflow the s buffer
[vflscanf (constchar *format, ...) May overflow its arguments.
realpath (char *path, char resolved_path[]) May overflow the patHdauf
[V]sprintf (char *str, const char *format, ...) May overflow the str lauff

3.3.1 Example Buffer Overflow

The following example code contains a buffer overflow des@io overwrite the return address and skip the
instruction immediately following the function call. (Ipised by4)

#include <stdio.h>

void manipulate(char * buffer) {
char newbuffer[80];
strcpy(newbuffer,buffer);

}

int main() {
char ch,buffer[4096];
int i=0;

while ((buffer[i++] = getchar()) '= \n’) {};

i=1;

manipulate(buffer);

i=2;

printf("The value of i is : %d\n",i);
return O;

}

Let us examine what the memory image of this process wouklllke if we were to input 160 spaces into our little
program before hitting return.

[XXX figure here!]

Obviously more malicious input can be devised to executgshcompiled instructions (such as exec(/bin/sh)).

3.3.2 Avoiding Buffer Overflows

The most straightforward solution to the problem of stagkrfiows is to always use length restricted memory and
string copy functionsstrncpy andstrncat are part of the standard C library. These functions accegngth

value as a parameter which should be no larger than the sthe destination buffer. These functions will then copy
up to ‘length’ bytes from the source to the destination. Hasvehere are a number of problems with these functions.
Neither function guarantees NUL termination if the sizehaf input buffer is as large as the destination. The length
parameter is also used inconsistently between strncpytemzhs so it is easy for programmers to get confused as to
their proper usage. There is also a significant performarssedompared tstrcpy when copying a short string into

a large buffer sincetrncpy NUL fills up the size specified.

In OpenBSD, another memory copy implementation has beeatertéo get around these problem. Biréepy
andstricat functions guarantee that they will always null terminate destination string when given a non-zero

31

Chapter 3 Secure Programming

length argument. For more information about these funstgm®. The OpenBSDBtricpy andstricat
instructions have been in FreeBSD since 3.3.

3.3.2.1 Compiler based run-time bounds checking

Unfortunately there is still a very large assortment of cimdeublic use which blindly copies memory around
without using any of the bounded copy routines we just disedsFortunately, there is a way to help prevent such
attacks — run-time bounds checking, which is implementeddweral C/C++ compilers.

ProPolice is one such compiler feature, and is integratedjoc(1) versions 4.1 and later. It replaces and extends the
earlier StackGuard gcc(1) extension.

ProPolice helps to protect against stack-based buffeflowesrand other attacks by laying pseudo-random numbers
in key areas of the stack before calling any function. Whamation returns, these “canaries” are checked and if
they are found to have been changed the executable is imtalyddborted. Thus any attempt to modify the return
address or other variable stored on the stack in an attengett tmalicious code to run is unlikely to succeed, as the
attacker would have to also manage to leave the pseudo{racaitaries untouched.

Recompiling your application with ProPalice is an effeetimeans of stopping most buffer-overflow attacks, but it
can still be compromised.

3.3.2.2 Library based run-time bounds checking

Compiler-based mechanisms are completely useless forybamdy software for which you cannot recompile. For
these situations there are a number of libraries which dament the unsafe functions of the C-librasyr¢py
fscanf , getwd , etc..) and ensure that these functions can never writelpastack pointer.

- libsafe
« libverify
. libparanoia

Unfortunately these library-based defenses have a nunfilséoaicomings. These libraries only protect against a
very small set of security related issues and they negldot tbe actual problem. These defenses may fail if the
application was compiled with -fomit-frame-pointer. AlJtbe LD _PRELOAD and LD_LIBRARY_PATH
environment variables can be overwritten/unset by the user

3.4 SetUID issues

There are at least 6 different IDs associated with any givengss. Because of this you have to be very careful with
the access that your process has at any given time. In partiall seteuid applications should give up their
privileges as soon as it is no longer required.

The real user ID can only be changed by a superuser proceskdih program sets this when a user initially logs
in and it is seldom changed.

The effective user ID is set by tlexec() functions if a program has its seteuid bit set. An applicatan call
seteuid() at any time to set the effective user ID to either the real IBear the saved set-user-ID. When the
effective user ID is set bgxec() functions, the previous value is saved in the saved setilser

32

Chapter 3 Secure Programming

3.5 Limiting your program’s environment

The traditional method of restricting a process is withdheot() system call. This system call changes the root
directory from which all other paths are referenced for a&pss and any child processes. For this call to succeed the
process must have execute (search) permission on theatiréxaing referenced. The new environment does not
actually take effect until youhdir() into your new environment. It should also be noted that agsscan easily
break out of a chroot environment if it has root privilegeisiéould be accomplished by creating device nodes to
read kernel memory, attaching a debugger to a process eutkite chroot(8) environment, or in many other

creative ways.

The behavior of thehroot() system call can be controlled somewhat with the kern.chadlmw_open_directories
sysctl variable. When this value is set todhroot() will fail with EPERM if there are any directories open. If set
to the default value of 1, therhroot() will fail with EPERM if there are any directories open and ffrecess is
already subject to ehroot() call. For any other value, the check for open directorieslvalbypassed completely.

3.5.1 FreeBSD's jail functionality

The concept of a Jail extends upon tieoot() by limiting the powers of the superuser to create a trueuairt
server’. Once a prison is set up all network communicatiostrtake place through the specified IP address, and the
power of "root privilege" in this jail is severely constraih

While in a prison, any tests of superuser power within the&kusing thesuser() call will fail. However, some
calls tosuser() have been changed to a new interfaaser_xxx() . This function is responsible for recognizing
or denying access to superuser power for imprisoned presess

A superuser process within a jailed environment has the ptove

- Manipulate credential witketuid , seteuid ,setgid , setegid ,setgroups ,setreuid ,setregid
setlogin

+ Set resource limits witketrlimit

« Modify some sysctl nodes (kern.hostname)

« chroot()

- Set flags on a vnodehflags , fchflags

- Set attributes of a vnode such as file permission, ownerpgirze, access time, and modification time.
- Bind to privileged ports in the Internet domain (ports < 1024

Jail is a very useful tool for running applications in a secureimment but it does have some shortcomings.
Currently, the IPC mechanisms have not been converted wutlese xxx so applications such as MySQL cannot
be run within a jail. Superuser access may have a very linmitedning within a jail, but there is no way to specify
exactly what "very limited" means.

3.5.2 POSIX®.1le Process Capabilities

POSIX has released a working draft that adds event auddagss control lists, fine grained privileges, information
labeling, and mandatory access control.

This is a work in progress and is the focus of the TrustedBS:(fwww.trustedbsd.org/) project. Some of the
initial work has been committed to FreeBSD-CURRENT (cap m®c(3)).

33

Chapter 3 Secure Programming

3.6 Trust

An application should never assume that anything aboutdbestenvironment is sane. This includes (but is certainly
not limited to): user input, signals, environment variagblesources, IPC, mmaps, the filesystem working directory,
file descriptors, the # of open files, etc.

You should never assume that you can catch all forms of icafiut that a user might supply. Instead, your
application should use positive filtering to only allow a sifie subset of inputs that you deem safe. Improper data
validation has been the cause of many exploits, especidly®GI scripts on the world wide web. For filenames
you need to be extra careful about paths ("../", "/"), symlatks, and shell escape characters.

Perl has a really cool feature called "Taint" mode which camged to prevent scripts from using data derived
outside the program in an unsafe way. This mode will checkroand line arguments, environment variables, locale
information, the results of certain syscallsgddir() ,readlink() , getpwxxx()), and all file input.

3.7 Race Conditions

A race condition is anomalous behavior caused by the unéxgpeependence on the relative timing of events. In
other words, a programmer incorrectly assumed that a péatievent would always happen before another.

Some of the common causes of race conditions are signatsschecks, and file opens. Signals are asynchronous
events by nature so special care must be taken in dealinglveith. Checking access witlecess(2) then

open(2) is clearly non-atomic. Users can move files in between thecalis. Instead, privileged applications
shouldseteuid() and then calbpen() directly. Along the same lines, an application should alsvest a proper
umask befor@pen() to obviate the need for spurioasmod() calls.

34

Chapter 4 Localization and Internationalization
- L10ON and 118N

4.1 Programming 118N Compliant Applications

To make your application more useful for speakers of otheguages, we hope that you will program 118N
compliant. The GNU gcc compiler and GUI libraries like QT &ad@K support 118N through special handling of
strings. Making a program I18N compliant is very easy. lbwh contributors to port your application to other
languages quickly. Refer to the library specific 118N docatagon for more details.

In contrast with common perception, 118N compliant codeaisyeto write. Usually, it only involves wrapping your
strings with library specific functions. In addition, pledse sure to allow for wide or multibyte character support.

4.1.1 A Call to Unify the I118N Effort

It has come to our attention that the individual I18N/L10foef for each country has been repeating each others’
efforts. Many of us have been reinventing the wheel rep&atet inefficiently. We hope that the various major
groups in 118N could congregate into a group effort simitatite Core Team'’s responsibility.

Currently, we hope that, when you write or port I18N prograyas would send it out to each country’s related
FreeBSD mailing list for testing. In the future, we hope teate applications that work in all the languages
out-of-the-box without dirty hacks.

The FreeBSD internationalization mailing list (httpsts.FreeBSD.org/mailman/listinfo/freebsd-i18n) hasrbe
established. If you are an I18N/L10N developer, please gendcomments, ideas, questions, and anything you
deem related to it.

4.1.2 Perl and Python

Perl and Python have 118N and wide character handling iksaPlease use them for I18N compliance.

4.2 Localized Messages with POSIX.1 Native Language Suppor t
(NLS)
Contributed by Gabor Kévesdan.

Beyond the basic 118N functions, like supporting varioysinencodings or supporting national conventions, such
as the different decimal separators, at a higher level dfl|1i§s possible to localize the messages written to the
output by the various programs. A common way of doing thissiagithe POSIX.1 NLS functions, which are
provided as a part of the FreeBSD base system.

35

Chapter 4 Localization and Internationalization - L10N ai@N

4.2.1 Organizing Localized Messages into Catalog Files

POSIX.1 NLS is based on catalog files, which contain the Ipzedimessages in the desired encoding. The messages
are organized into sets and each message is identified byegeimumber in the containing set. The catalog files are
conventionally named after the locale they contain loealimessages for, followed by thresg extension. For

instance, the Hungarian messages for ISO8859-2 encodiulsbe stored in a file calleldi_ HU.ISO8859-2 .

These catalog files are common text files that contain the Buedkmessages. It is possible to write comments by
starting the line with & sign. Set boundaries are also separated by special commiete the keywordet must
directly follow the$ sign. Theset keyword is then followed by the set number. For example:

$set 1

The actual message entries start with the message numbfilaadced by the localized message. The well-known
modifiers from printf(3) are accepted:

15 "File not found: %s\n"

The language catalog files have to be compiled into a binarg fiefore they can be opened from the program. This

conversion is done with the gencat(1) utility. Its first amggnt is the filename of the compiled catalog and its further

arguments are the input catalogs. The localized messagedstabe organized into more catalog files and then all of
them can be processed with gencat(1).

4.2.2 Using the Catalog Files from the Source Code

Using the catalog files is simple. To use the related funstigntypes.h must be included. Before using a catalog,
it has to be opened with catopen(3). The function takes t@oraents. The first parameter is the name of the
installed and compiled catalog. Usually, the name of thgmm is used, such @sep. This name will be used when
looking for the compiled catalog file. The catopen(3) catis for this file in/usr/share/nls/ I ocal e/ cat nanme

and in/usr/local/share/nls/ | ocal e/ cat name, wherelocale s the locale set anchtname is the catalog

name being discussed. The second parameter is a constétt,aah have two values:

« NL_CAT_LOCALEwhich means that the used catalog file will be based@rMESSAGES
« 0, which means thatANGhas to be used to open the proper catalog.

The catopen(3) call returns a catalog identifier of typeatd . Please refer to the manual page for a list of possible
returned error codes.

After opening a catalog catgets(3) can be used to retrievessage. The first parameter is the catalog identifier
returned by catopen(3), the second one is the number of thiéasehird one is the number of the messages, and the
fourth one is a fallback message, which will be returnedefrtaquested message cannot be retrieved from the
catalog file.

After using the catalog file, it must be closed by calling tzge(3), which has one argument, the catalog id.

4.2.3 A Practical Example
The following example will demonstrate an easy solution ow o use NLS catalogs in a flexible way.

The below lines need to be put into a common header file of thgrpm, which is included into all source files
where localized messages are necessary:

36

Chapter 4 Localization and Internationalization - L10N ai@N

#ifdef WITHOUT_NLS

#define getstr(n) nlsstr[n]
telse

#include <nl_types.h>

extern nl_catd catalog;

#define getstr(n) catgets(catalog, 1, n, nlsstr[n])
#endif

extern char * nlsstr(];

Next, put these lines into the global declaration part ofrttaén source file:

#ifndef WITHOUT_NLS
#include <nl_types.h>

nl_catd catalog;

#endif

| *

+ Default messages to use when NLS is disabled or no catalog
* is found.

*/

char *nlsstr[] = {

/* 1%/ "some random message",
[+ 2x/ "some other message"

2
Next come the real code snippets, which open, read, and ttlesmatalog:

#ifndef WITHOUT_NLS
catalog = catopen("myapp", NL_CAT_LOCALE);
#endif

printf(getstr(1));

#ifndef WITHOUT_NLS
catclose(catalog);
#endif

4.2.3.1 Reducing Strings to Localize

There is a good way of reducing the strings that need to bdizecktby usingibc error messages. This is also useful
to just avoid duplication and provide consistent error rages for the common errors that can be encountered by a
great many of programs.

First, here is an example that does not lilse error messages:

#include <err.h>

37

Chapter 4 Localization and Internationalization - L10N ai@N

if (!S_ISDIR(st.st_mode))
errx(1, "argument is not a directory");

This can be transformed to print an error message by reading and printing an error message accordingly:

#include <err.h>
#include <errno.h>

if (!S_ISDIR(st.st_mode)) {
errno = ENOTDIR;
err(1, NULL);

In this example, the custom string is eliminated, thus tedoss will have less work when localizing the program and
users will see the usual “Not a directory” error message vthey encounter this error. This message will probably
seem more familiar to them. Please note that it was necessargludeerrno.h in order to directly accessrno .

It is worth to note that there are cases whkemno is set automatically by a preceding call, so it is not neagdsa
set it explicitly:

#include <err.h>

|f ((p = malloc(size)) == NULL)
err(1, NULL);

4.2.4 Making use of bsd. nl s. nk

Using the catalog files requires few repeatable steps, sucbrapiling the catalogs and installing them to the proper
location. In order to simplify this process even mdr&d.nls.mk introduces some macros. It is not necessary to
includebsd.nls.mk explicitly, it is pulled in from the common Makefiles, suchtasl.prog.mk or bsd.lib.mk

Usually it is enough to defindLSNAMEwhich should have the catalog name mentioned as the fingtraagt of
catopen(3) and list the catalog filesNihSwithout their.msg extension. Here is an example, which makes it possible
to to disable NLS when used with the code examples beforeWlmeOUT_NL3nake(1) variable has to be defined

in order to build the program without NLS support.

if defined(WITHOUT_NLS)

NLS= es ES.ISO8859-1

NLS+= hu_HU.ISO8859-2

NLS+= pt_BR.ISO8859-1

.else

CFLAGS+= -DWITHOUT_NLS
.endif

Conventionally, the catalog files are placed undemthesubdirectory and this is the default behaviour of
bsd.nls.mk . Itis possible, though to override the location of the azgalwith theNLSSRCDIRmake(1) variable.
The default name of the precompiled catalog files also fotlmsmnaming convention mentioned before. It can be

38

Chapter 4 Localization and Internationalization - L10N ai@N
overridden by setting theLSNAM®&ariable. There are other options to fine tune the processitite catalog files

but usually it is not needed, thus they are not described Rerdurther information omsd.nls.mk , please refer to
the file itself, it is short and easy to understand.

39

Chapter 5 Source Tree Guidelines and Policies

Contributed by Poul-Henning Kamp and Giorgos Keramidas.

This chapter documents various guidelines and policiesriceffor the FreeBSD source tree.

5.1 Style Guidelines

Consistent coding style is extremely important, partidyleith large projects like FreeBSD. Code should follow
the FreeBSD coding styles described in style(9) and styd&elle(5).

5.2 MAI NTAI NER on Makefiles

If a particular portion of the FreeBS&c/ distribution is being maintained by a person or group of pessthis is
communicated through an entry in thre/MAINTAINERS file. Maintainers of ports within the Ports Collection
express their maintainership to the world by addingfdNTAINERIine to theMakefile of the port in question:

MAINTAINER= emi | - addr esses

Tip: For other parts of the repository, or for sections not listed as having a maintainer, or when you are unsure
who the active maintainer is, try looking at the recent commit history of the relevant parts of the source tree. It is
quite often the case that a maintainer is not explicitly named, but the people who are actively working in a part of
the source tree for, say, the last couple of years are interested in reviewing changes. Even if this is not specifically
mentioned in the documentation or the source itself, asking for a review as a form of courtesy is a very
reasonable thing to do.

The role of the maintainer is as follows:

« The maintainer owns and is responsible for that code. Thansithat he or she is responsible for fixing bugs and
answering problem reports pertaining to that piece of tlteecand in the case of contributed software, for
tracking new versions, as appropriate.

- Changes to directories which have a maintainer defined ksbaaént to the maintainer for review before being
committed. Only if the maintainer does not respond for arcaeptable period of time, to several emails, will it be
acceptable to commit changes without review by the maiatatfowever, it is suggested that you try to have the
changes reviewed by someone else if at all possible.

- Itis of course not acceptable to add a person or group as azéntunless they agree to assume this duty. On the
other hand it does not have to be a committer and it can easitydvoup of people.

40

Chapter 5 Source Tree Guidelines and Policies

5.3 Contributed Software
Contributed by Poul-Henning Kamp, David O’Brien, and Gaitkinson.

Some parts of the FreeBSD distribution consist of softwhaag is actively being maintained outside the FreeBSD
project. For historical reasons, we call tesntributedsoftware. Some examples aendmail gccandpatch.

Over the last couple of years, various methods have beenusedling with this type of software and all have some
number of advantages and drawbacks. No clear winner hagjether

Since this is the case, after some debate one of these méthstigen selected as the “official” method and will be
required for future imports of software of this kind. Funtm®re, it is strongly suggested that existing contributed
software converge on this model over time, as it has sigmifiadvantages over the old method, including the ability
to easily obtain diffs relative to the “official” versions tife source by everyone (even without direct repository
access). This will make it significantly easier to returnrdes to the primary developers of the contributed software.

Ultimately, however, it comes down to the people actuallinddhe work. If using this model is particularly unsuited
to the package being dealt with, exceptions to these rulgdmgranted only with the approval of the core team and
with the general consensus of the other developers. Thigyabiimaintain the package in the future will be a key
issue in the decisions.

Note: Because it makes it harder to import future versions minor, trivial and/or cosmetic changes are strongly
discouraged on files that are still tracking the vendor branch.

5.3.1 Vendor Imports with SVN
Contributed by Dag-Erling Smgrgrav.

This section describes the vendor import procedure &ithversionin details.

1. Preparing the Tree

If this is your first import after the switch to SVN, you will tia to flatten and clean up the vendor tree, and
bootstrap merge history in the main tree. If not, you canlgafeit this step.

During the conversion from CVS to SVN, vendor branches wegoirted with the same layout as the main tree.
For example, théoo vendor sources ended upvandor/ f oo/dist/contrib/ f oo, but it is pointless and
rather inconvenient. What we really want is to have the vesdarce directly irvendor/ foo/dist , like this:

% cd vendor/fool/ di st/ contrib/foo
% svn move $(svn list) ../..
Y% cd ../..

% svn renove contrib

% svn propdel -R svn:nergeinfo
% svn conmmit

Note that, thepropdel bit is necessary because starting with 1.5, Subversiorawibbmatically add
svn:mergeinfo to any directory you copy or move. In this case, you will noedi¢his information, since you
are not going to merge anything from the tree you deleted.

Note: You may want to flatten the tags as well. The procedure is exactly the same. If you do this, put off the
commit until the end.

41

Chapter 5 Source Tree Guidelines and Policies

Check thalist tree and perform any cleanup that is deemed to be necessarmay want to disable keyword
expansion, as it makes no sense on unmodified vendor codami@ cases, it can be even be harmful.

% svn propdel svn:keywords -R .
% svn commit

Bootstrapping oévn:mergeinfo on the target directory (in the main tree) to the revisior tmaresponds to
the last change was made to the vendor tree prior to impangémgsources is also needed:

% cd head/ contrib/foo
% svn merge --record-only svn_base/ vendor/foo/ di st @2345678 .
% svn commit

wheresvn_base is the base directory of your SVN repository, esgn+ssh://svn.FreeBSD.org/base
Importing New Sources

Prepare a full, clean tree of the vendor sources. With SVNcavekeep a full distribution in the vendor tree
without bloating the main tree. Import everything but meogéy what is needed.

Note that you will need to add any files that were added sinedast vendor import, and remove any that were
removed. To facilitate this, you should prepare sorted li§the contents of the vendor tree and of the sources
you are about to import:

% cd vendor/foo/ di st

% svn list -R| grep -v '/$ | sort > ../old
% cd ../foo0-9.9
% find . -type f | cut -c 3- | sort > ../new

With these two files, the following command will list list reved files (files only irol d):
% comm -23 ../old ../new

While the command below will list added files (files onlyriew):

% comm -13 ../old ../new

Let'’s put this together:

% cd vendor/ foo/ foo-9.9

%tar cf - . | tar xf - -C ../dist

% cd ../dist

% comm -23 ../old ../new | xargs svn renove
% conm -13 ../old ../new | xargs svn add

Warning: If there are new directories in the new distribution, the last command will fail. You will have to add
the directories, and run it again. Conversely, if any directories were removed, you will have to remove them
manually.

Check properties on any new files:
« All text files should havevn:eol-style set tonative

« All binary files should havevn:mime-type set toapplication/octet-stream , unless there is a more
appropriate media type.

- Executable files should hagen:executable set tox.

42

Chapter 5 Source Tree Guidelines and Policies

« There should be no other properties on any file in the tree.

Note: You are ready to commit, but you should first check the output of svn stat and svn diff to make
sure everything is in order.

Once you have committed the new vendor release, you shayltlfta future reference. The best and quickest
way is to do it directly in the repository:

% svn copy svn_base/ vendor/foo/ di st svn_base/ vendor/foo/ 9.9

To get the new tag, you can update your working copyepfior/ f oo.

Note: If you choose to do the copy in the checkout instead, do not forget to remove the generated
svn:mergeinfo as described above.

Merging to-HEAD
After you have prepared your import, it is time to merge. Optiaccept=postpone tells SVN not to handle
merge conflicts yet, because they will be taken care of mgnual

% cd head/ contrib/foo
% svn update
% svn merge --accept=postpone svn_base/ vendor/ foo/ di st

Resolve any conflicts, and make sure that any files that wetedaol removed in the vendor tree have been
properly added or removed in the main tree. It is always a goeal to check differences against the vendor
branch:

% svn diff --no-diff-deleted --ol d=svn_base/ vendor/foo/ dist --new=.

The--no-diff-deleted option tells SVN not to check files that are in the vendor tngienot in the main tree.

Note: With SVN, there is no concept of on or off the vendor branch. If a file that previously had local
modifications no longer does, just remove any left-over cruft, such as FreeBSD version tags, so it no longer
shows up in diffs against the vendor tree.

If any changes are required for the world to build with the m®urces, make them now — and test until you are
satisfied that everything build and runs correctly.

Commit

Now, you are ready to commit. Make sure you get everythingie @o. Ideally, you would have done all steps
in a clean tree, in which case you can just commit from the fdapat tree. That is the best way to avoid
surprises. If you do it properly, the tree will move atomigdfom a consistent state with the old code to a
consistent state with the new code.

43

Chapter 5 Source Tree Guidelines and Policies

5.4 Encumbered Files

It might occasionally be necessary to include an encumbdedd the FreeBSD source tree. For example, if a
device requires a small piece of binary code to be loadeddefdre the device will operate, and we do not have the
source to that code, then the binary file is said to be encusdb@&he following policies apply to including
encumbered files in the FreeBSD source tree.

1. Any file which is interpreted or executed by the system GpE(d not in source format is encumbered.
2. Any file with a license more restrictive than BSD or GNU i€embered.

3. A file which contains downloadable binary data for use lgy/tthrdware is not encumbered, unless (1) or (2)
apply to it. It must be stored in an architecture neutral AS@imat (file2c or uuencoding is recommended).

4. Any encumbered file requires specific approval from theeQaam
(http://www.FreeBSD.org/administration.html#t-cobefore it is added to the repository.

5. Encumbered files go irc/contrib or src/sys/contrib

6. The entire module should be kept together. There is na posplitting it, unless there is code-sharing with
non-encumbered code.

7. Object files are named ch/ fi | ename.o.uu> .
8. Kernelfiles:
a. Should always be referencedcionf/files. = (for build simplicity).

b. Should always be inINT , but the Core Team (http://www.FreeBSD.org/adminisbratitml#t-core)
decides per case if it should be commented out or not. The Tz
(http://www.FreeBSD.org/administration.html#t-cocah, of course, change their minds later on.

c. TheRelease Engineeatecides whether or not it goes into the release.

9. User-land files:
a.

The Core team (http://www.FreeBSD.org/administratiomlkt-core) decides if the code should be part of
make world .

The Release Engineering (http://www.FreeBSD.org/adstriaiion.html#t-re) decides if it goes into the
release.

5.5 Shared Libraries

Contributed by Satoshi Asami, Peter Wemm, and David O'Brien

If you are adding shared library support to a port or otheceiaf software that does not have one, the version
numbers should follow these rules. Generally, the resyhitnmbers will have nothing to do with the release version
of the software.

The three principles of shared library building are:

44

Chapter 5 Source Tree Guidelines and Policies

- Start from1.0

- If there is a change that is backwards compatible, bump rmoorber (note that ELF systems ignore the minor
number)

. Ifthere is an incompatible change, bump major number

For instance, added functions and bugfixes result in the mvieision number being bumped, while deleted
functions, changed function call syntax, etc. will force thajor version number to change.

Stick to version numbers of the form major.minary(). Our a.out dynamic linker does not handle version numbers
of the formx.y .z well. Any version number after the (i.e. the third digit) is totally ignored when comparing st

lib version numbers to decide which library to link with. @ivtwo shared libraries that differ only in the “micro”
revision,ld.so will link with the higher one. That is, if you link wittibfoo.s0.3.3.3 , the linker only records

3.3 inthe headers, and will link with anything starting withbf oo. so. 3.(anyt hi ng >= 3) .(hi ghest

avai | abl e) .

Note: Id.so will always use the highest “minor” revision. For instance, it will use libc.s0.2.2 in preference to
libc.s0.2.0 , even if the program was initially linked with libc.s0.2.0

In addition, our ELF dynamic linker does not handle minorsien numbers at all. However, one should still specify
a major and minor version number as ®Makefile s “do the right thing” based on the type of system.

For non-port libraries, it is also our policy to change thargld library version number only once between releases.
In addition, it is our policy to change the major shared ligngersion number only once between major OS releases
(i.e. from 6.0 to 7.0). When you make a change to a systenriilthat requires the version number to be bumped,
check theMakefile ’'s commit logs. It is the responsibility of the committer toseire that the first such change since
the release will result in the shared library version nunibéne Makefile to be updated, and any subsequent
changes will not.

45

Chapter 6 Regression and Performance Testing

Regression tests are used to exercise a particular bit afygtem to check that it works as expected, and to make
sure that old bugs are not reintroduced.

The FreeBSD regression testing tools can be found in theBRBesource tree in the directory
src/tools/regression

6.1. Micro Benchmark Checklist

This section contains hints for doing proper micro-benctiing on FreeBSD or of FreeBSD itself.

Itis not possible to use all of the suggestions below evenglsitime, but the more used, the better the benchmark’s
ability to test small differences will be.

- Disable APM and any other kind of clock fiddling (ACPI ?).

- Runin single user mode. E.g., cron(8), and other daemomsanola noise. The sshd(8) daemon can also cause
problems. If ssh access is required during testing eitreatidie the SSHv1 key regeneration, or kill the parent
sshd daemon during the tests.

- Do not run ntpd(8).

- If syslog(3) events are generated, run syslogd(8) with aptgratc/syslogd.conf , otherwise, do not run it.
- Minimize disk-1/0, avoid it entirely if possible.

- Do not mount file systems that are not needed.

« Mount/, /usr , and any other file system as read-only if possible. This mEsatime updates to disk (etc.) from
the 1/O picture.

- Reinitialize the read/write test file system with newfs(8§l gopulate it from a tar(1) or dump(8) file before every
run. Unmount and mount it before starting the test. Thisltesua consistent file system layout. For a worldstone
test this would apply téusr/obj (just reinitialize withnewfs and mount). To get 100% reproducibility, populate
the file system from a dd(1) file (i.edd if= myimage of= /dev/adOsih bs=1m)

- Use malloc backed or preloaded md(4) partitions.
- Reboot between individual iterations of the test, this gi@enore consistent state.

- Remove all non-essential device drivers from the kernealifgiance if USB is not needed for the test, do not put
USB in the kernel. Drivers which attach often have timeoigtdanig away.

- Unconfigure hardware that are not in use. Detach disks wéttoatrol(8) and camcontrol(8) if the disks are not
used for the test.

- Do not configure the network unless it is being tested, or wil after the test has been performed to ship the
results off to another computer.

If the system must be connected to a public network, watcliamgpikes of broadcast traffic. Even though it is
hardly noticeable, it will take up CPU cycles. Multicast Isasilar caveats.

- Put each file system on its own disk. This minimizes jittenfroead-seek optimizations.

46

Chapter 6 Regression and Performance Testing

Minimize output to serial or VGA consoles. Running outpubifiles gives less jitter. (Serial consoles easily
become a bottleneck.) Do not touch keyboard while the tasinsing, everspaceor back-spaceshows up in the
numbers.

Make sure the test is long enough, but not too long. If theisasio short, timestamping is a problem. If it is too
long temperature changes and drift will affect the freqyesfedhe quartz crystals in the computer. Rule of thumb:
more than a minute, less than an hour.

Try to keep the temperature as stable as possible aroundatigime. This affects both quartz crystals and disk
drive algorithms. To get real stable clock, consider siaduil clock injection. E.g., geta OCXO + PLL, inject
output into clock circuits instead of motherboard xtal. @Gat Poul-Henning Kampphk@FreeBSD.org > for
more information about this.

Run the test at least 3 times but it is better to run more thaim®s both for “before” and “after” code. Try to
interleave if possible (i.e.: do not run 20 times before tB@rimes after), this makes it possible to spot
environmental effects. Do not interleave 1:1, but 3:3, thékes it possible to spot interaction effects.

A good pattern isbababa{bbbaaa} *. This gives hint after the first 1+1 runs (so it is possibletapghe test if it
goes entirely the wrong way), a standard deviation aftefithe3+3 (gives a good indication if it is going to be
worth a long run) and trending and interaction numbers later

Use ministat(1) to see if the numbers are significant. Camdidying “Cartoon guide to statistics” ISBN:
0062731025, highly recommended, if you have forgotten senkearned about standard deviation and Student’s
T.

Do not use background fsck(8) unless the test is a benchmadc&groundsck . Also, disable

background_fsck in /etc/rc.conf unless the benchmark is not started at least &@k"“ runtime” seconds
after the boot, as rc(8) wakes up and checkscit needs to run on any file systems when backgrdseid is
enabled. Likewise, make sure there are no snapshots lyinmdunless the benchmark is a test with snapshots.

If the benchmark show unexpected bad performance, chechkifags like high interrupt volume from an
unexpected source. Some versions of ACPI have been repfortetsbehave” and generate excess interrupts. To
help diagnose odd test results, take a few snapshoetasiét -i and look for anything unusual.

Make sure to be careful about optimization parameters forekend userspace, likewise debugging. It is easy to
let something slip through and realize later the test wasowiparing the same thing.

Do not ever benchmark with th&ITNESSandINVARIANTS kernel options enabled unless the test is interested to
benchmarking those featur&gITNESScan cause 400%+ drops in performance. Likewise, userspalteafs)
parameters default differently in -CURRENT from the wawtk&ip in production releases.

6.2. The FreeBSD Source Tinderbox

The source Tinderbox consists of:

+ A build script,tinderbox , that automates checking out a specific version of the FrBeféfsirce tree and

building it.

- A supervisor scripttbmaster , that monitors individual Tinderbox instances, logs tlmeitput, and emails failure

notices.

« A CGl script namedndex.cgi that reads a set of tbmaster logs and presents an easyetérfédl. summary of

them.

a7

Chapter 6 Regression and Performance Testing

- A set of build servers that continually test the tip of the tiogportant FreeBSD code branches.
- A webserver that keeps a complete set of Tinderbox logs aplagis an up-to-date summary.

The scripts are maintained and were developed by Dag-Elingrgrav des@FreeBSD.org >, and are now written
in Perl, a move on from their original incarnation as shefipgs. All scripts and configuration files are kept in
/projects/tinderbox/ (http://www.freebsd.org/cgi/axeh.cgi/projects/tinderbox/).

For more information about the tinderbox and tbmaster scapthis stage, see their respective man pages:
tinderbox(1) and tbmaster(1).

6.2.1. The i ndex. cgi Script

Theindex.cgi script generates the HTML summary of tinderbox and tbmdstg. Although originally intended

to be used as a CGl script, as indicated by its name, thistgaipalso be run from the command line or from a
cron(8) job, in which case it will look for logs in the direcyowhere the script is located. It will automatically detect
context, generating HTTP headers when itis run as a CGltsérrgpnforms to XHTML standards and is styled
using CSS.

The script starts in thmain() block by attempting to verify that it is running on the officianderbox website. If it
is not, a page indicating it is not an official website is proeld, and a URL to the official site is provided.

Next, it scans the log directory to get an inventory of confagions, branches and architectures for which log files
exist, to avoid hard-coding a list into the script and pdaglytending up with blank rows or columns. This
information is derived from the names of the log files matgttire following pattern:

tinderbox-$config-$branch-$arch-$machine.{brief,ful 1}

The configurations used on the official Tinderbox build seage named for the branches they build. For example,
thereleng_8 configuration is used to buildELENG_8as well as all still-supported release branches.

Once all of this startup procedure has been successfullpleted,do_config() is called for each configuration.
Thedo_config() function generates HTML for a single Tinderbox configuratio

It works by first generating a header row, then iterating @aah branch build with the specified configuration,
producing a single row of results for each in the followingmar:

+ For each item:
- For each machine within that architecture:
- If a brief log file exists, then:
. Callsuccess() to determine the outcome of the build.
- Output the modification size.
- Output the size of the brief log file with a link to the log filsétf.
- If a full log file also exists, then:

- Output the size of the full log file with a link to the log file &.

. Otherwise:

48

Chapter 6 Regression and Performance Testing

- No output.

Thesuccess() function mentioned above scans a brief log file for the stftimglerbox run completed” in order to
determine whether the build was successful.

Configurations and branches are sorted according to themchrrank. This is computed as follows:

« HEADandCURRENHave rank 9999.
+ RELENGx has rankx 99.
« RELENGx_y has rankxyy.

This means thatiEADalways ranks highest, amELENGranches are ranked in numerical order, with e8iCABLE
branch ranking higher than the release branches forked ifffeor instance, for FreeBSD 8, the order from highest
to lowest would be:

« RELENG_gbranch rank 899).

« RELENG_8_3(branch rank 803).
« RELENG_8_2(branch rank 802).
« RELENG_8_1(branch rank 801).
« RELENG_8_0(branch rank 800).

The colors that Tinderbox uses for each cell in the table efiaed by CSS. Successful builds are displayed with
green text; unsuccessful builds are displayed with red Tehe color fades as time passes since the corresponding
build, with every half an hour bringing the color closer tegr

6.2.2. Official Build Servers

The official Tinderbox build servers are hosted by Sentexa@ammunications (http://www.sentex.ca), who also
host the FreeBSD Netperf Cluster (http://www.freebsdmnajects/netperf/cluster.html).

Three build servers currently exist:

freebsd-current.sentex.tailds:

« HEADfor amd64, arm, i386, i386/pc98, ia64, mips, powerpc, p@ee4, and sparc64.

« RELENG_%and supported S.branches for amd64, arm, i386, i386/pc98, ia64, mips, ppeygrowerpc64, and
sparc64.

freebsd-stable.sentex.bailds:

« RELENG_8and supported 8.branches for amd64, i386, i386/pc98, ia64, mips, powerpcsparc64.

freebsd-legacy.sentex.bailds:

49

Chapter 6 Regression and Performance Testing

+ RELENG_7and supported X.branches for amd64, i386, i386/pc98, ia64, powerpc, anctéga

6.2.3. Official Summary Site

Summaries and logs from the official build servers are avkglanline at http://tinderbox.FreeBSD.org, hosted by
Dag-Erling Smargravdes@FreeBSD.org > and set up as follows:

- A cron(8) job checks the build servers at regular intervats @ownloads any new log files using rsync(1).

- Apacheis set up to usedex.cgi asDirectorylndex

50

ll. Interprocess Communication

Chapter 7 Sockets

Contributed by G. Adam Stanislav.

7.1 Synopsis

BSD sockets take interprocess communications to a new. lkveho longer necessary for the communicating
processes to run on the same machine. Theycsiiil but they do not have to.

Not only do these processes not have to run on the same matifegalo not have to run under the same operating
system. Thanks to BSD sockets, your FreeBSD software cantbifgya@ooperate with a program running on a
Macintosh®, another one running on a Sun™ workstation, getteer one running under Windows® 2000, all
connected with an Ethernet-based local area network.

But your software can equally well cooperate with processering in another building, or on another continent,
inside a submarine, or a space shuttle.

It can also cooperate with processes that are not part of auiem(at least not in the strict sense of the word), but of
such devices as printers, digital cameras, medical equipriiest about anything capable of digital communications.

7.2 Networking and Diversity

We have already hinted on tldéversityof networking. Many different systems have to talk to eadteatAnd they
have to speak the same language. They also hawederstandhe same language the same way.

People often think thdiody languagés universal. But it is not. Back in my early teens, my fatrwak me to
Bulgaria. We were sitting at a table in a park in Sofia, whenradee approached us trying to sell us some roasted
almonds.

I had not learned much Bulgarian by then, so, instead of gayin | shook my head from side to side, the
“universal” body language famo. The vendor quickly started serving us some almonds.

I then remembered | had been told that in Bulgaria shaking iead sideways meapés Quickly, | started nodding
my head up and down. The vendor noticed, took his almondsyaltictd away. To an uninformed observer, | did not
change the body language: | continued using the languade&irgy and nodding my head. What changed was the
meaningof the body language. At first, the vendor and | interpretedsime language as having completely
different meaning. | had to adjust my own interpretationhaftianguage so the vendor would understand.

It is the same with computers: The same symbols may haveeliffeeven outright opposite meaning. Therefore, for
two computers to understand each other, they must not onéeam the samkanguage but on the same
interpretationof the language.

7.3 Protocols

While various programming languages tend to have completagyand use a number of multi-letter reserved words
(which makes them easy for the human programmer to undelstae languages of data communications tend to be
very terse. Instead of multi-byte words, they often usevilddial bits. There is a very convincing reason for it: While
data travelsnsideyour computer at speeds approaching the speed of lighteih dfavels considerably slower
between two computers.

52

Chapter 7 Sockets

Because the languages used in data communications arsspwerusually refer to them psotocolsrather than
languages.

As data travels from one computer to another, it always us#s than one protocol. These protocols lagered
The data can be compared to the inside of an onion: You havediooff several layers of “skin” to get to the data.
This is best illustrated with a picture:

Ethernet

In this example, we are trying to get an image from a web pagereeonnected to via an Ethernet.

The image consists of raw data, which is simply a sequencé&d fRalues that our software can process, i.e.,
convert into an image and display on our monitor.

Alas, our software has no way of knowing how the raw data iswoized: Is it a sequence of RGB values, or a
sequence of grayscale intensities, or perhaps of CMYK estadlors? |Is the data represented by 8-bit quanta, or
are they 16 bits in size, or perhaps 4 bits? How many rows aluncts does the image consist of? Should certain
pixels be transparent?

| think you get the picture...

To inform our software how to handle the raw data, it is encdoaiea PNG file. It could be a GIF, or a JPEG, butitis
a PNG.

And PNG is a protocol.
At this point, | can hear some of you yellintiNo, it is not! It is a file format!”

Well, of course it is a file format. But from the perspectivedata communications, a file format is a protocol: The
file structure is danguage a terse one at that, communicating to ptocesshow the data is organized. Ergo, itis a
protocol

Alas, if all we received was the PNG file, our software wouldd@ng a serious problem: How is it supposed to
know the data is representing an image, as opposed to somertprrhaps a sound, or what not? Secondly, how is it
supposed to know the image is in the PNG format as opposedR00BIPEG, or some other image format?

To obtain that information, we are using another protocdlTR. This protocol can tell us exactly that the data
represents an image, and that it uses the PNG protocol. llsariell us some other things, but let us stay focused on
protocol layers here.

So, now we have some data wrapped in the PNG protocol, wrdpghd HTTP protocol. How did we get it from
the server?

By using TCP/IP over Ethernet, that is how. Indeed, thatrisgimore protocols. Instead of continuing inside out, |
am now going to talk about Ethernet, simply because it issedsiexplain the rest that way.

Ethernetis an interesting system of connecting computeafacal area networLAN). Each computer has a
network interface cardgNIC), which has a unique 48-bit ID called igldressNo two Ethernet NICs in the world
have the same address.

These NICs are all connected with each other. Whenever anputer wants to communicate with another in the
same Ethernet LAN, it sends a message over the network. Bll€rgees the message. But as part of the Ethernet
protocol the data contains the address of the destination NIC (amitrey things). So, only one of all the network
interface cards will pay attention to it, the rest will igedt.

53

Chapter 7 Sockets

But not all computers are connected to the same networkb&gsiuse we have received the data over our Ethernet
does not mean it originated in our own local area networkolild have come to us from some other network (which
may not even be Ethernet based) connected with our own nletiathe Internet.

All data is transferred over the Internet using IP, whicmdtaforinternet Protocal Its basic role is to let us know
where in the world the data has arrived from, and where itfppesed to go to. It does nguaranteeve will receive
the data, only that we will know where it came frofrwe do receive it.

Even if we do receive the data, IP does not guarantee we waive various chunks of data in the same order the
other computer has sent it to us. So, we can receive the agfrdar image before we receive the upper left corner
and after the lower right, for example.

Itis TCP (Transmission Control Protocpthat asks the sender to resend any lost data and that pladeisto the
proper order.

All'in all, it took fivedifferent protocols for one computer to communicate to hapthat an image looks like. We
received the data wrapped into the PNG protocol, which wapped into the HTTP protocol, which was wrapped
into the TCP protocol, which was wrapped into the IP protpatlich was wrapped into the Ethernet protocol.

Oh, and by the way, there probably were several other prig@omlved somewhere on the way. For example, if our
LAN was connected to the Internet through a dial-up callsgdithe PPP protocol over the modem which used one
(or several) of the various modem protocols, et cetera,tet@eet cetera...

As a developer you should be asking by ntiow am | supposed to handle it all?”

Luckily for you, you arenotsupposed to handle it all. Yare supposed to handle some of it, but not all of it.
Specifically, you need not worry about the physical conmectin our case Ethernet and possibly PPP, etc). Nor do
you need to handle the Internet Protocol, or the TransmmigSantrol Protocol.

In other words, you do not have to do anything to receive tha fitam the other computer. Well, you do haveask
for it, but that is almost as simple as opening a file.

Once you have received the data, it is up to you to figure out tehdo with it. In our case, you would need to
understand the HTTP protocol and the PNG file structure.

To use an analogy, all the internetworking protocols becamry area: Not so much because we do not understand
how it works, but because we are no longer concerned abdttgtsockets interface takes care of this gray area for
us:

HTTP
PNG |

DATA

We only need to understand any protocols that tell us hawtespret the datanot how toreceiveit from another
process, nor how teendit to another process.

7.4 The Sockets Model

BSD sockets are built on the basic UNIX modglierything is a fileln our example, then, sockets would let us
receive arHTTP filg so to speak. It would then be up to us to extractRhS filefrom it.

Because of the complexity of internetworking, we cannat jise theopen system call, or thepen() C function.
Instead, we need to take several steps to “opening” a socket.

54

Chapter 7 Sockets

Once we do, however, we can start treatinggbekethe same way we treat afije descriptor We canread from
it, write to it, pipe it, and, eventuallylose it.

7.5 Essential Socket Functions

While FreeBSD offers different functions to work with sotkewve onlyneedfour to “open” a socket. And in some
cases we only need two.

7.5.1 The Client-Server Difference

Typically, one of the ends of a socket-based data commuaitataserver, the other is alient
7.5.1.1 The Common Elements

7.5.1.1.1 socket

The one function used by both, clients and servers, is s(@kétis declared this way:

int socket(int domain, int type, int protocol);

The return value is of the same type as thatj@fn, an integer. FreeBSD allocates its value from the same ool a
that of file handles. That is what allows sockets to be tretitedame way as files.

Thedomain argument tells the system whabtocol familyyou want it to use. Many of them exist, some are vendor
specific, others are very common. They are declaragisfsocket.h

UsePF_INET for UDP, TCP and other Internet protocols (IPv4).

Five values are defined for thype argument, again, igys/socket.h . All of them start with ‘SOCK”. The most
common one iISOCK_STREAMvhich tells the system you are asking faiediable stream delivery servidavhich is
TCP when used witlPF_INET).

If you asked forSOCK_DGRAMou would be requesting@nnectionless datagram delivery serviageour case,
UDP).

If you wanted to be in charge of the low-level protocols (sashP), or even network interfaces (e.g., the Ethernet),
you would need to specifgOCK_RAW

Finally, theprotocol ~argument depends on the previous two arguments, and iswaysmeaningful. In that case,
useo for its value.

The Unconnected Socket: Nowhere, in the socket function have we specified to what other system we should
be connected. Our newly created socket remains unconnected.

This is on purpose: To use a telephone analogy, we have just attached a modem to the phone line. We have
neither told the modem to make a call, nor to answer if the phone rings.

55

Chapter 7 Sockets

7.5.1.1.2 sockaddr

Various functions of the sockets family expect the addrégsrgointer to, to use C terminology) a small area of the
memory. The various C declarations in #ya/socket.h refer to it asstruct sockaddr . This structure is
declared in the same file:

| *
* Structure used by kernel to store most
* addresses.

*/
struct sockaddr {
unsigned char sa_len; / * total length */
sa_family_t sa_family; / * address family */
char sa_data[14]; / * actually longer; address value */
2
#define SOCK_MAXADDRLEN 255 /+ longest possible addresses */

Please note theagueneswith which thesa_data field is declared, just as an arrayXef bytes, with the comment
hinting there can be more thaa of them.

This vagueness is quite deliberate. Sockets is a very paletérface. While most people perhaps think of it as
nothing more than the Internet interface—and most apjdicatprobably use it for that nowadays—sockets can be
used for just abowtnykind of interprocess communications, of which the Intefoetmore precisely, IP) is only
one.

Thesys/socket.h refers to the various types of protocols sockets will haadigddress familiesand lists them
right before the definition afockaddr :

| *

* Address families.

*/

#define AF_UNSPEC 0 | * unspecified */

#define AF_LOCAL 1 / * local to host (pipes, portals) */
#define AF_UNIX AF_LOCAL / * backward compatibility */

#define AF_INET 2 |/ * internetwork: UDP, TCP, etc. */
#define AF_IMPLINK 3 [/ arpanet imp addresses */

#define AF_PUP 4 | * pup protocols: e.g. BSP */

#define AF_CHAOS 5 / = mit CHAOS protocols */

#define AF_NS 6 / * XEROX NS protocols =/

#define AF_ISO 7 |/ * 1SO protocols */

#define AF_0OsI AF_ISO

#define AF_ECMA 8 | = European computer manufacturers */
#define AF_DATAKIT 9 [* datakit protocols */

#define AF_CCITT 10 |/« CCITT protocols, X.25 etc */
#define AF_SNA 11 / * IBM SNA */

#define AF_DECnet 12 | * DECnet */

#define AF_DLI 13 / = DEC Direct data link interface */

#define AF_LAT 14 [* LAT =/

#define AF_HYLINK 15 [/ * NSC Hyperchannel =/

#define AF_APPLETALK 16 | += Apple Talk =/

#define AF_ROUTE 17 / = Internal Routing Protocol */
#define AF_LINK 18 /= Link layer interface */

#define pseudo_AF_XTP 19 |+ eXpress Transfer Protocol (no AF) */
#define AF_COIP 20 |/ % connection-oriented IP, aka ST Il x /[

56

Chapter 7 Sockets

#define AF_CNT 21 [+ Computer Network Technology */
#define pseudo_AF_RTIP 22 [* Help Identify RTIP packets */
#define AF_IPX 23 /' * Novell Internet Protocol */
#define AF_SIP 24 / * Simple Internet Protocol */
#define pseudo_AF_PIP 25 * Help Identify PIP packets */
#define AF_ISDN 26 | * Integrated Services Digital Network */
#define AF_E164 AF_ISDN /| *= CCITT E.164 recommendation */
#define pseudo_AF_KEY 27 /= Internal key-management function */
#define AF_INET6 28 [* IPv6 x/
#define AF_NATM 29 * pative ATM access */
#define AF_ATM 30 [* ATM */
#define pseudo_AF_HDRCMPLT 31 /| * Used by BPF to not rewrite headers
* in interface output routine
*/
#define AF_NETGRAPH 32 / = Netgraph sockets */
#define AF_SLOW 33 / » 802.3ad slow protocol */
#define AF_SCLUSTER 34 | = Sitara cluster protocol */
#define AF_ARP 35
#define AF_BLUETOOTH 36 | = Bluetooth sockets */
#define AF_MAX 37

The one used for IP is AF_INET. It is a symbol for the constant

Itis theaddress familyisted in thesa_family
of sa_data will be used.

Specifically, whenever thaddress familys AF_INET, we can usstruct sockaddr_in

netinet/in.h , Whereversockaddr is expected:

| *

* Socket address, internet style.

*/

struct sockaddr_in {
uint8_t sin_len;
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zerol[8];

h

We can visualize its organization this way:

0 1 2 3
0 | Family | Port

4 IP Address

0

12 0

The three important fields asin_family
bytes 2 and 3, ansin_addr

, which is byte 1 of the structurein_port
, a 32-bit integer representation of the IP address, storbgites 4-7.

field of sockaddr that decides how exactly the vaguely named bytes

found in

, a 16-bit value found in

Now, let us try to fill it out. Let us assume we are trying to writ client for thedaytimeprotocol, which simply states

that its server will write a text string representing thereat date and time to port 13. We want to use TCP/IP, so we

57

Chapter 7 Sockets

need to specifAF_INET in the address family fieldAF_INET is defined ag. Let us use the IP address of
192.43.244.18 , which is the time server of US federal governmeinte.nist.gov).

0 1 2 3
0 | | 13

4 192.43.244.18

0

12 0

By the way thesin_addr field is declared as being of tleuct in_addr type, which is defined in
netinet/in.h

| *
* Internet address (a structure for historical reasons)
*/
struct in_addr {
in_addr_t s_addr;

J3
In addition,in_addr_t is a 32-bit integer.

The192.43.244.18 s just a convenient notation of expressing a 32-bit intdxydrsting all of its 8-bit bytes,
starting with themost significanbne.

So far, we have viewesbckaddr as an abstraction. Our computer does not sthoet integers as a single 16-bit
entity, but as a sequence of 2 bytes. Similarly, it storebiBiitegers as a sequence of 4 bytes.

Suppose we coded something like this:

sa.sin_family = AF_INET,;

sa.sin_port = 13;

sa.sin_addr.s_addr = (((((192 << 8) | 43) << 8) | 244) << 8) | 18 ;
What would the result look like?

Well, that depends, of course. On a Pentium®, or other x8&dbaomputer, it would look like this:

0 1 2 3
2 13 0
4 18 244 43 192

12 0

On a different system, it might look like this:

0 1 2 3
0 2 0 13
192 43 244 18

S}

© &

12 0

And on a PDP it might look different yet. But the above two dre tnost common ways in use today.

Ordinarily, wanting to write portable code, programmerstend that these differences do not exist. And they get
away with it (except when they code in assembly language&)s Alou cannot get away with it that easily when
coding for sockets.

Why?

58

Chapter 7 Sockets

Because when communicating with another computer, youlysimnot know whether it stores dataost
significant byt§ MSB) orleast significant bytél SB) first.

You might be wonderind'So, will sockets not handle it for me?”
It will not.

While that answer may surprise you at first, remember thagéimeral sockets interface only understands the
sa_len andsa_family fields of thesockaddr structure. You do not have to worry about the byte order thafre
course, on FreeBSEa_family is only 1 byte anyway, but many other UNIX systems do not lsavéen and use
2 bytes forsa_family , and expect the data in whatever order is native to the canput

But the rest of the data is jusa_data[14] as far as sockets goes. Depending orettid@ress familysockets just
forwards that data to its destination.

Indeed, when we enter a port number, it is because we wanthlee @mputer to know what service we are asking
for. And, when we are the server, we read the port number sawe kvhat service the other computer is expecting
from us. Either way, sockets only has to forward the port neinals data. It does not interpret it in any way.

Similarly, we enter the IP address to tell everyone on the wlagre to send our data to. Sockets, again, only
forwards it as data.

That is why, we (th@grogrammersnot thesockety have to distinguish between the byte order used by our ctenpu
and a conventional byte order to send the data in to the otimeputer.

We will call the byte order our computer uses tiwst byte orderor just thehost order

There is a convention of sending the multi-byte data oveM 8B first This, we will refer to as theetwork byte
order, or simply thenetwork order

Now, if we compiled the above code for an Intel based compatehost byte ordewould produce:

0 1 2 3
2 13 0
4 18 244 43 192

12 0

But thenetwork byte orderequires that we store the data MSB first:

0 1 2 3

0 0 2 0 13
4 192 43 244 18
0
12 0

Unfortunately, ouhost orderis the exact opposite of theetwork order
We have several ways of dealing with it. One would beeteersethe values in our code:
sa.sin_family = AF_INET,;

sa.sin_port = 13 << §;
sa.sin_addr.s_addr = (((((18 << 8) | 244) << 8) | 43) << 8) | 192

This will trick our compiler into storing the data in tinetwork byte orderin some cases, this is exactly the way to
do it (e.g., when programming in assembly language). In masts, however, it can cause a problem.

Suppose, you wrote a sockets-based program in C. You knewgding to run on a Pentium, so you enter all your
constants in reverse and force them tonkeéwvork byte orderlt works well.

59

Chapter 7 Sockets

Then, some day, your trusted old Pentium becomes a rustyesitiuPn. You replace it with a system whdsest
orderis the same as theetwork order You need to recompile all your software. All of your softwarontinues to
perform well, except the one program you wrote.

You have since forgotten that you had forced all of your camistto the opposite of tHeost order You spend some
quality time tearing out your hair, calling the names of altlg you ever heard of (and some you made up), hitting
your monitor with a nerf bat, and performing all the othedtt@nal ceremonies of trying to figure out why
something that has worked so well is suddenly not workindlat a

Eventually, you figure it out, say a couple of swear words, stad rewriting your code.

Luckily, you are not the first one to face the problem. Somesse has created the htons(3) and htonl(3) C functions
to convert ashort andlong respectively from théost byte ordeto thenetwork byte orderand the ntohs(3) and
ntohl(3) C functions to go the other way.

On MSB-firstsystems these functions do nothing. C8B-firstsystems they convert values to the proper order.

So, regardless of what system your software is compiled aur, gata will end up in the correct order if you use
these functions.

7.5.1.2 Client Functions

Typically, the client initiates the connection to the servde client knows which server it is about to call: It knows
its IP address, and it knows tipert the server resides at. It is akin to you picking up the phorkdaling the
number (theaddres$, then, after someone answers, asking for the person igelwdmwingdings (thgort).

7.5.1.2.1 connect

Once a client has created a socket, it needs to connect ifeciis port on a remote system. It uses connect(2):

int connect(int s, const struct sockaddr *name, socklen_t namelen);

Thes argument is the socket, i.e., the value returned bytloket function. Thenameis a pointer tasockaddr
the structure we have talked about extensively. Finallyselen informs the system how many bytes are in our
sockaddr structure.

If connect is successful, it returr®. Otherwise it returnsl and stores the error codeénno .

There are many reasons wignnect may fail. For example, with an attempt to an Internet conpacthe IP
address may not exist, or it may be down, or just too busy,rmaif not have a server listening at the specified port.
Or it may outrightrefuseany request for specific code.

7.5.1.2.2 Our First Client

We now know enough to write a very simple client, one that g&it current time from92.43.244.18 and print it
to stdout

| *
* daytime.c

*

* Programmed by G. Adam Stanislav
*/

60

Chapter 7 Sockets

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main() {
register int s;
register int bytes;
struct sockaddr_in sa;
char buffer[BUFSIZ+1];

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);

sa.sin_addr.s_addr = htonl((((((192 << 8) | 43) << 8) | 244) < < 8) | 18);
if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {

perror(“connect");

close(s);

return 2;
}

while ((bytes = read(s, buffer, BUFSIZ)) > 0)
write(1, buffer, bytes);

close(s);
return O;

}
Go ahead, enter it in your editor, save itdagtime.c , then compile and run it:

% cc -3 -0 daytinme daytine.c
% ./ daytine

52079 01-06-19 02:29:25 50 0 1 543.9 UTC(NIST) *
%

In this case, the date was June 19, 2001, the time was 02:RI:25Naturally, your results will vary.

7.5.1.3 Server Functions

The typical server does not initiate the connection. Irtstéavaits for a client to call it and request services. Itsloe
not know when the client will call, nor how many clients willlt It may be just sitting there, waiting patiently, one
moment, The next moment, it can find itself swamped with retagom a number of clients, all calling in at the
same time.

61

Chapter 7 Sockets

The sockets interface offers three basic functions to leaitnat.

7.5.1.3.1 bi nd

Ports are like extensions to a phone line: After you dial a lneiqyou dial the extension to get to a specific person or
department.

There are 65535 IP ports, but a server usually processessecghat come in on only one of them. Itis like telling
the phone room operator that we are now at work and availatdagwer the phone at a specific extension. We use
bind(2) to tell sockets which port we want to serve.

int bind(int s, const struct sockaddr +addr, socklen_t addrlen);

Beside specifying the port iaddr , the server may include its IP address. However, it can gestiie symbolic
constant INADDR_ANY to indicate it will serve all requeststhe specified port regardless of what its IP address is.
This symbol, along with several similar ones, is declaredgkiinet/in.h

#define INADDR_ANY (u_int32_t)0x00000000

Suppose we were writing a server for ith@ytimeprotocol over TCP/IP. Recall that it uses port 13. Our
sockaddr_in structure would look like this:

olo|o

12

7.5.1.3.21isten

To continue our office phone analogy, after you have told tiene central operator what extension you will be at,
you now walk into your office, and make sure your own phonetggéd in and the ringer is turned on. Plus, you
make sure your call waiting is activated, so you can hear io@e ring even while you are talking to someone.

The server ensures all of that with the listen(2) function.

int listen(int s, int backlog);

In here, thebacklog variable tells sockets how many incoming requests to asebite you are busy processing the
last request. In other words, it determines the maximumadiziee queue of pending connections.

7.5.1.3.3 accept

After you hear the phone ringing, you accept the call by anis\gehe call. You have now established a connection
with your client. This connection remains active until eitlyou or your client hang up.

The server accepts the connection by using the accept(@jidun
int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Note that this timeddrlen is a pointer. This is necessary because in this case it iothesthat fills outddr , the
sockaddr_in structure.

62

Chapter 7 Sockets

The return value is an integer. Indeed, tHteept returns anew socketYou will use this new socket to communicate
with the client.

What happens to the old socket? It continues to listen foemequests (remember thecklog variable we passed
tolisten ?) until weclose it.

Now, the new socket is meant only for communications. It lyfconnected. We cannot pass itlisten again,
trying to accept additional connections.

7.5.1.3.4 Our First Server

Our first server will be somewhat more complex than our firgintiwas: Not only do we have more sockets
functions to use, but we need to write it as a daemon.

This is best achieved by creatinghild processafter binding the port. The main process then exits andmstur
control to theshell (or whatever program invoked it).

The child calldisten , then starts an endless loop, which accepts a connectimessé and eventually closes its
socket.

| *

* daytimed - a port 13 server
*

* Programmed by G. Adam Stanislav
* June 19, 2001

*/

#include <stdio.h>

#include <string.h>

#include <time.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>
#include <netinet/in.h>

#define BACKLOG 4

int main() {
register int s, c;
int b;
struct sockaddr_in sa;
time_t t;
struct tm *tm;
FILE =xclient;

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET,;
sa.sin_port = htons(13);

63

Chapter 7 Sockets

if (INADDR_ANY)
sa.sin_addr.s_addr = htonl(INADDR_ANY);

if (bind(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
perror("bind");
return 2;

}

switch (fork()) {

case -1:
perror(“fork™);
return 3;
break;

default:
close(s);
return O;
break;

case O:
break;

}

listen(s, BACKLOG);

for ;) {
b = sizeof sa;

if ((c = accept(s, (struct sockaddr *)&sa, &b)) < 0) {
perror("daytimed accept");
return 4;

}

if ((client = fdopen(c, "w")) == NULL) {
perror("daytimed fdopen");
return 5;

}

if ((t = time(NULL)) < 0) {
perror("daytimed time");

return 6;

}

tm = gmtime(&t);
fprintf(client, "%.4i-%.2i-%.2iT%.2i:%.2i:%.2iZ\n",
tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec);

fclose(client);

64

Chapter 7 Sockets

}

We start by creating a socket. Then we fill out lsekaddr_in structure insa. Note the conditional use of
INADDR_ANY:

if (INADDR_ANY)
sa.sin_addr.s_addr = htonl(INADDR_ANY);

Its value is0. Since we have just usédero on the entire structure, it would be redundant to set @ &mgain. But if
we port our code to some other system where INADDR_ANY is gpsmot a zero, we need to assign it to
sa.sin_addr.s_addr . Most modern C compilers are clever enough to notice thaDRR_ANY is a constant.
As long as it is a zero, they will optimize the entire condigbstatement out of the code.

After we have calledbind successfully, we are ready to becom#e@mon\We usefork to create a child process. In
both, the parent and the child, thevariable is our socket. The parent process will not needii, sallsclose , then
it returnso to inform its own parent it had terminated successfully.

Meanwhile, the child process continues working in the baokgd. It callsisten and sets its backlog . It does
not need a large value here becadagtimeis not a protocol many clients request all the time, and bee#can
process each request instantly anyway.

Finally, the daemon starts an endless loop, which perfoneéallowing steps:

1. Callaccept . It waits here until a client contacts it. At that point, itegves a new socket, which it can use to
communicate with this particular client.

2. ltuses the C functiofopen to turn the socket from a low-levéle descriptorto a C-styleFILE pointer. This
will allow the use offprintf later on.

3. Itchecks the time, and prints it in th8O 8601format to theclient “file”. It then usesfclose to close the
file. That will automatically close the socket as well.

We cangeneralizehis, and use it as a model for many other servers:

Create Top Socket

Daemon
Process

Bind Port

Initialize Daemon

Close Top Socket

Accept

Close Accepted
Socket

65

Chapter 7 Sockets

This flowchart is good fosequential servers.e., servers that can serve one client at a time, just aseve able to
with our daytimeserver. This is only possible whenever there is no real “ecsation” going on between the client
and the server: As soon as the server detects a connectioa ¢tti¢nt, it sends out some data and closes the
connection. The entire operation may take nanosecondst arfdhished.

The advantage of this flowchart is that, except for the briefimrant after the pareffdrk s and before it exits, there is
always only ongrocessactive: Our server does not take up much memory and othezraygtsources.

Note that we have addéuitialize daemonin our flowchart. We did not need to initialize our own daemiaut, this is
a good place in the flow of the program to set up sigyial handlers, open any files we may need, etc.

Just about everything in the flow chart can be used literailyn@any different servers. Tteerveentry is the
exception. We think of it as @lack box”, i.e., something you design specifically for your own seraad just “plug
it into the rest.”

Not all protocols are that simple. Many receive a requeshftioe client, reply to it, then receive another request
from the same client. Because of that, they do not know in ackv&ow long they will be serving the client. Such
servers usually start a new process for each client. Whilen#w process is serving its client, the daemon can
continue listening for more connections.

Now, go ahead, save the above source codiagsned.c (it is customary to end the names of daemons with the
letterd). After you have compiled it, try running it:

% ./ dayti med
bind: Permission denied
%

What happened here? As you will recall, theeytimeprotocol uses port 13. But all ports below 1024 are resemwved t
the superuser (otherwise, anyone could start a daemomgietgto serve a commonly used port, while causing a
security breach).

Try again, this time as the superuser:

./daytined
#

What... Nothing? Let us try again:

./daytined

bind: Address already in use
#

Every port can only be bound by one program at a time. Our fitstrgpt was indeed successful: It started the child
daemon and returned quietly. It is still running and will Gooe to run until you either Kill it, or any of its system
calls fail, or you reboot the system.

Fine, we know it is running in the background. But is it worgthHow do we know it is a propelaytimeserver?
Simple:

% tel net |ocal host 13
Trying ::1...

telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...

66

Chapter 7 Sockets

Connected to localhost.

Escape character is "]
2001-06-19T21:04:427Z

Connection closed by foreign host.
%

telnet tried the new IPv6, and failed. It retried with IPv4 and swemed. The daemon works.

If you have access to another UNIX system talnet, you can use it to test accessing the server remotely. My
computer does not have a static IP address, so this is whéit | di

% who
whizkid ttyp0 Jun 19 16:59 (216.127.220.143)
XXX ttypl Jun 19 16:06 (XX.XX.XX.XX)

% tel net 216.127.220.143 13

Trying 216.127.220.143...
Connected to r47.bfm.org.

Escape character is "]
2001-06-19T21:31:11Z

Connection closed by foreign host.
%

Again, it worked. Will it work using the domain name?

% telnet rd47.bfmorg 13

Trying 216.127.220.143...
Connected to r47.bfm.org.

Escape character is "]
2001-06-19T21:31:40Z

Connection closed by foreign host.
%

By the way telnet prints theConnection closed by foreign hasessage after our daemon has closed the socket. This
shows us that, indeed, usifidpse(client); in our code works as advertised.

7.6 Helper Functions

FreeBSD C library contains many helper functions for saekebgramming. For example, in our sample client we
hard coded théme.nist.gov IP address. But we do not always know the IP address. Evendfoyeur software
is more flexible if it allows the user to enter the IP addresgven the domain name.

7.6.1 get host bynane

While there is no way to pass the domain name directly to atlgeofockets functions, the FreeBSD C library comes
with the gethostbyname(3) and gethostbyname2(3) funstaeclared imetdb.h

67

Chapter 7 Sockets

struct hostent * gethostbyname(const char * name);
struct hostent * gethostbyname2(const char *name, int af);

Both return a pointer to thieostent structure, with much information about the domain. For aunppses, the
h_addr_list[0] field of the structure points &t length bytes of the correct address, already stored in the
network byte order

This allows us to create a much more flexible—and much moreibseersion of ourdaytime program:

| *

* daytime.c

*

* Programmed by G. Adam Stanislav
* 19 June 2001

*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

int main(int argc, char +=argv[]) {
register int s;
register int bytes;
struct sockaddr_in sa;

struct hostent * he;
char buf[BUFSIZ+1];
char =*host;

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
return 1;

}

bzero(&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);

host = (argc > 1) ? (char *)argv[l] : "time.nist.gov";

if ((he = gethostbyname(host)) == NULL) {
herror(host);
return 2;

}
bcopy(he->h_addr_list[0],&sa.sin_addr, he->h_length)
if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {

perror(“connect");
return 3;

}

68

Chapter 7 Sockets

while ((bytes = read(s, buf, BUFSIZ)) > 0)
write(1, buf, bytes);

close(s);
return O;

}

We now can type a domain name (or an IP address, it works bote)wa the command line, and the program will
try to connect to itglaytimeserver. Otherwise, it will still default tome.nist.gov . However, even in this case we
will use gethostbyname rather than hard codintp2.43.244.18 . That way, even if its IP address changes in the
future, we will still find it.

Since it takes virtually no time to get the time from your Ibsarver, you could rudaytime twice in a row: First to
get the time fromime.nist.gov , the second time from your own system. You can then comparesults and
see how exact your system clock is:

% daytime ; daytine |ocal host

52080 01-06-20 04:02:33 50 0 0 390.2 UTC(NIST) *
2001-06-20T04:02:35Z
%

As you can see, my system was two seconds ahead of the NIST time

7.6.2 get ser vbynane

Sometimes you may not be sure what port a certain service Tisegjetservbyname(3) function, also declared in
netdb.h comes in very handy in those cases:

struct servent * getservbyname(const char *name, const char * proto);

Theservent structure contains the port , which contains the proper port, alreadynietwork byte order

Had we not known the correct port for thaytimeservice, we could have found it this way:

struct servent * Se,

if ((se = getservbyname("daytime”, "tcp")) == NULL ({
fprintf(stderr, "Cannot determine which port to use.\n");
return 7;

}

sa.sin_port = se->s_port;

You usually do know the port. But if you are developing a neatpcol, you may be testing it on an unofficial port.
Some day, you will register the protocol and its port (if n@ndnelse, at least in youstc/services , which is
wheregetservbyname looks). Instead of returning an error in the above code, ystijse the temporary port
number. Once you have listed the protocafete/services , your software will find its port without you having to
rewrite the code.

69

Chapter 7 Sockets

7.7 Concurrent Servers

Unlike a sequential servercancurrent servehas to be able to serve more than one client at a time. For dgaanp
chat servemmay be serving a specific client for hours—it cannot walittti#tops serving a client before it serves the
next one.

This requires a significant change in our flowchart:

Create Top Socket

Daemon
Process

Bind Port

Initialize Daemon

Close Top Socket

Server
Process

Close Top Socket
Close Accepted
Socket
Close Accepted
Socket

| Process Signals |

We moved theservefrom thedaemon proces® its ownserver processHowever, because each child process
inherits all open files (and a socket is treated just like 3, filee new process inherits not only ttexcepted
handle,”i.e., the socket returned by thecept call, but also theéop socketi.e., the one opened by the top process
right at the beginning.

However, theserver procesdoes not need this socket and shotitde it immediately. Similarly, thelaemon
processo longer needs theccepted sockeaind not only should, buhustclose it—otherwise, it will run out of
availablefile descriptorssooner or later.

After theserver process done serving, it should close thecepted sockelnstead of returning taccept , it now
exits.

Under UNIX, a process does not readlyit Instead, itreturnsto its parent. Typically, a parent processit s for its
child process, and obtains a return value. Howeverdagmon processannot simply stop and wait. That would
defeat the whole purpose of creating additional proce&sesdf it never doeswait , its children will become
zombies—no longer functional but still roaming around.

For that reason, theaemon processeeds to setignal handlersn its initialize daemorphase. At least a SIGCHLD
signal has to be processed, so the daemon can remove theez@tush values from the system and release the
system resources they are taking up.

That is why our flowchart now containgsgocess signalbox, which is not connected to any other box. By the way,
many servers also process SIGHUP, and typically intergrét@signal from the superuser that they should reread
their configuration files. This allows us to change settingbaut having to kill and restart these servers.

70

Chapter 8 IPv6 Internals

8.1 IPv6/IPsec Implementation
Contributed by Yoshinobu Inoue.

This section should explain IPv6 and IPsec related impléatiom internals. These functionalities are derived from
KAME project (http://www.kame.net/)

8.1.1 IPv6

8.1.1.1 Conformance

The IPv6 related functions conforms, or tries to conformhlatest set of IPv6 specifications. For future reference
we list some of the relevant documents belWO[TE this is not a complete list - this is too hard to maintain...)

For details please refer to specific chapter in the docurits, manual pages, or comments in the source code.

Conformance tests have been performed on the KAME STABLEKIAHI project. Results can be viewed at
http://www.tahi.org/report/KAME/. We also attended Uro§ New Hampshire IOL tests (http://www.iol.unh.edu/)
in the past, with our past snapshots.

« RFC1639: FTP Operation Over Big Address Records (FOOBAR)
- RFC2428 is preferred over RFC1639. FTP clients will firstRC2428, then RFC1639 if failed.

- RFC1886: DNS Extensions to support IPv6
« RFC1933: Transition Mechanisms for IPv6 Hosts and Routers
- IPv4 compatible address is not supported.
. automatic tunneling (described in 4.3 of this RFC) is notpsarted.

. gif(4) interface implements IPv[46]-over-IPv[46] tunriela generic way, and it covers "configured tunnel”
described in the spec. S28.5.1.5n this document for details.

. RFC1981: Path MTU Discovery for IPv6
- RFC2080: RIPng for IPv6

. usr.shin/route6d support this.

« RFC2292: Advanced Sockets API for IPv6
- For supported library functions/kernel APIs, sg&/netinet6/ADVAPI

. RFC2362: Protocol Independent Multicast-Sparse Mode {BNY)
- RFC2362 defines packet formats for PIM-Sdvaft-ietf-pim-ipv6-01.txt is written based on this.

71

Chapter 8 IPv6 Internals

RFC2373: IPv6 Addressing Architecture

- supports node required addresses, and conforms to the smpEEmMent.

RFC2374: An IPv6 Aggregatable Global Unicast Address Forma
. supports 64-bit length of Interface ID.

RFC2375: IPv6 Multicast Address Assignments

- Userland applications use the well-known addresses assigrthe RFC.

RFC2428: FTP Extensions for IPv6 and NATs
- RFC2428 is preferred over RFC1639. FTP clients will firstRfC2428, then RFC1639 if failed.

RFC2460: IPv6 specification
RFC2461: Neighbor discovery for IPv6

. See23.5.1.2in this document for details.

RFC2462: IPv6 Stateless Address Autoconfiguration
- See23.5.1.4in this document for details.

RFC2463: ICMPV6 for IPv6 specification

. See?23.5.1.9n this document for details.

RFC2464: Transmission of IPv6 Packets over Ethernet Nédisvor
RFC2465: MIB for IPv6: Textual Conventions and General Grou

- Necessary statistics are gathered by the kernel. Actuél MAB support is provided as a patchkit for ucd-snmp.

RFC2466: MIB for IPv6: ICMPV6 group

- Necessary statistics are gathered by the kernel. Actu&l MAB support is provided as patchkit for ucd-snmp.

RFC2467: Transmission of IPv6 Packets over FDDI Networks
RFC2497: Transmission of IPv6 packet over ARCnet Networks
RFC2553: Basic Socket Interface Extensions for IPv6

- IPv4 mapped address (3.7) and special behavior of IPv6 arittleind socket (3.8) are supported. 28e5.1.12
in this document for details.

72

Chapter 8 IPv6 Internals

« RFC2675: IPv6 Jumbograms

. See?23.5.1.7n this document for details.

« RFC2710: Multicast Listener Discovery for IPv6
« RFC2711: IPv6 router alert option

- draft-ietf-ipngwg-router-renum-08 : Router renumbering for IPv6

- draft-ietf-ipngwg-icmp-namelookups-02 :IPv6 Name Lookups Through ICMP
- draft-ietf-ipngwg-icmp-name-lookups-03 : IPv6 Name Lookups Through ICMP
- draft-ietf-pim-ipv6-01.txt : PIM for IPv6

- pim6dd(8) implements dense mode. pim6sd(8) implementsspaode.

- draft-itojun-ipv6-tcp-to-anycast-00 : Disconnecting TCP connection toward IPv6 anycast address
« draft-yamamoto-wideipv6-comm-model-00

. See2?23.5.1.6in this document for details.

- draft-ietf-ipngwg-scopedaddr-format-00.txt : An Extension of Format for IPv6 Scoped Addresses

8.1.1.2 Neighbor Discovery

Neighbor Discovery is fairly stable. Currently Address 8asion, Duplicated Address Detection, and Neighbor
Unreachability Detection are supported. In the near futveavill be adding Proxy Neighbor Advertisement support
in the kernel and Unsolicited Neighbor Advertisement traission command as admin tool.

If DAD fails, the address will be marked "duplicated" and seege will be generated to syslog (and usually to
console). The "duplicated" mark can be checked with ifcqBjigt is administrators’ responsibility to check for and
recover from DAD failures. The behavior should be improwethie near future.

Some of the network driver loops multicast packets backsglfiteven if instructed not to do so (especially in
promiscuous mode). In such cases DAD may fail, because DAjihersees inbound NS packet (actually from the
node itself) and considers it as a sign of duplicate. You magtwo look at #if condition marked "heuristics" in
sys/netinet6/nd6_nbr.c:nd6_dad_timer() as workaronntk(that the code fragment in "heuristics" section is not
spec conformant).

Neighbor Discovery specification (RFC2461) does not tatkuaimeighbor cache handling in the following cases:

1. when there was no neighbor cache entry, node receivedicitestbRS/NS/NA/redirect packet without link-layer
address

2. neighbor cache handling on medium without link-layerradd (we need a neighbor cache entry for IsRouter bit)

For first case, we implemented workaround based on disassio IETF ipngwg mailing list. For more details, see
the comments in the source code and email thread startedfiromg 7155), dated Feb 6 1999.

73

Chapter 8 IPv6 Internals

IPv6 on-link determination rule (RFC2461) is quite diffetérom assumptions in BSD network code. At this
moment, no on-link determination rule is supported whefauwlerouter list is empty (RFC2461, section 5.2, last
sentence in 2nd paragraph - note that the spec misuse thé'nast and "node" in several places in the section).

To avoid possible DoS attacks and infinite loops, only 10arstion ND packet is accepted now. Therefore, if you
have 20 prefix options attached to RA, only the first 10 prefixdde recognized. If this troubles you, please ask it
on FREEBSD-CURRENT mailing list and/or modify nd6_maxntopsys/netinet6/nd6.c . If there are high
demands we may provide sysctl knob for the variable.

8.1.1.3 Scope Index

IPv6 uses scoped addresses. Therefore, it is very impaaapecify scope index (interface index for link-local
address, or site index for site-local address) with an IRidess. Without scope index, scoped IPv6 address is
ambiguous to the kernel, and kernel will not be able to deitegrthe outbound interface for a packet.

Ordinary userland applications should use advanced APCE2B2) to specify scope index, or interface index. For
similar purpose, sin6_scope_id member in sockaddr_in@tsire is defined in RFC2553. However, the semantics

for sin6_scope_id is rather vague. If you care about pditygbi your application, we suggest you to use advanced
API rather than sin6_scope_id.

In the kernel, an interface index for link-local scoped a&ddris embedded into 2nd 16bit-word (3rd and 4th byte) in
IPv6 address. For example, you may see something like:

fe80:1::200:f8ff:fe01:6317

in the routing table and interface address structure (sitnée ifaddr). The address above is a link-local unicast
address which belongs to a network interface whose inteitintifier is 1. The embedded index enables us to
identify IPv6 link local addresses over multiple interfaedfectively and with only a little code change.

Routing daemons and configuration programs, like route@{8 ifconfig(8), will need to manipulate the
"embedded" scope index. These programs use routing sakeisctls (like SIOCGIFADDR_ING) and the kernel
API will return IPv6 addresses with 2nd 16bit-word filled the APIs are for manipulating kernel internal structure.
Programs that use these APIs have to be prepared abouedifs in kernels anyway.

When you specify scoped address to the command line, NEVHR the embedded form (such as ff02:1::1 or
fe80:2::fedc). This is not supposed to work. Always usedsad form, like ff02::1 or fe80::fedc, with command line
option for specifying interface (likpingé -1 ne0 ff02::1). In general, if a command does not have command
line option to specify outgoing interface, that commandasneady to accept scoped address. This may seem to be
opposite from IPv6’s premise to support "dentist officetiation. We believe that specifications need some
improvements for this.

Some of the userland tools support extended numeric IPvésyas documented in
draft-ietf-ipngwg-scopedaddr-format-00.txt . You can specify outgoing link, by using name of the
outgoing interface like "fe80::1%ne0". This way you will Bble to specify link-local scoped address without much
trouble.

To use this extension in your program, you will need to usadginfo(3), and getnameinfo(3) with
NI_WITHSCOPEID. The implementation currently assumes-I-telationship between a link and an interface,
which is stronger than what specs say.

74

Chapter 8 IPv6 Internals

8.1.1.4 Plug and Play

Most of the IPv6 stateless address autoconfiguration issmehted in the kernel. Neighbor Discovery functions are
implemented in the kernel as a whole. Router Advertiseni®A) {nput for hosts is implemented in the kernel.
Router Solicitation (RS) output for endhosts, RS input farters, and RA output for routers are implemented in the
userland.

8.1.1.4.1 Assignment of link-local, and special addresses

IPv6 link-local address is generated from IEEE802 addiegsefnet MAC address). Each of interface is assigned an
IPv6 link-local address automatically, when the interfaeeomes up (IFF_UP). Also, direct route for the link-local
address is added to routing table.

Here is an output of netstat command:

Internet6:

Destination Gateway Flags Netif Expire
fe80:1::%ed0/64 link#1 ucC ed0
fe80:2::%ep0/64 link#2 uc ep0

Interfaces that has no IEEE802 address (pseudo interfixedsihnel interfaces, or ppp interfaces) will borrow
IEEEB02 address from other interfaces, such as Ethermefanes, whenever possible. If there is no IEEE802
hardware attached, a last resort pseudo-random value, MB&({@ame), will be used as source of link-local address.
If it is not suitable for your usage, you will need to configtine link-local address manually.

If an interface is not capable of handling IPv6 (such as |dekudlticast support), link-local address will not be
assigned to that interface. See section 2 for details.

Each interface joins the solicited multicast address aaditi-local all-nodes multicast addresses (e.g.
fe80::1:ff01:6317 and ff02::1, respectively, on the lihletinterface is attached). In addition to a link-local addre
the loopback address (::1) will be assigned to the loophatekface. Also, ::1/128 and ff01::/32 are automatically
added to routing table, and loopback interface joins noegalimulticast group ffO1::1.

8.1.1.4.2 Stateless address autoconfiguration on hosts

In IPv6 specification, nodes are separated into two categiooutersandhosts Routers forward packets addressed
to others, hosts does not forward the packets. net.inétéoipvarding defines whether this node is router or host
(routerifitis 1, hostifitis 0).

When a host hears Router Advertisement from the router, enh@g autoconfigure itself by stateless address
autoconfiguration. This behavior can be controlled by neté.ip6.accept_rtadv (host autoconfigures itself if #at

to 1). By autoconfiguration, network address prefix for treeidng interface (usually global address prefix) is
added. Default route is also configured. Routers periolgigeinerate Router Advertisement packets. To request an
adjacent router to generate RA packet, a host can transrateR8olicitation. To generate a RS packet at any time,
use thatsol command. rtsold(8) daemon is also available. rtsold(8gmes Router Solicitation whenever
necessary, and it works great for nomadic usage (noteHapksps). If one wishes to ignore Router Advertisements,
use sysctl to set net.inet6.ip6.accept_rtadv to O.

To generate Router Advertisement from a router, use thed(&)l daemon.

Note that, IPv6 specification assumes the following items,rronconforming cases are left unspecified:

« Only hosts will listen to router advertisements

75

Chapter 8 IPv6 Internals

- Hosts have single network interface (except loopback)

Therefore, this is unwise to enable net.inet6.ip6.acetguly on routers, or multi-interface host. A misconfigured
node can behave strange (nonconforming configuration addar those who would like to do some experiments).

To summarize the sysctl knob:

accept_rtadv forwarding role of the node

0 0 host (to be manually configured)
0 1 router

1 0 autoconfigured host

(spec assumes that host has single
interface only, autoconfigured host
with multiple interface is
out-of-scope)

1 1 invalid, or experimental
(out-of-scope of spec)

RFC2462 has validation rule against incoming RA prefix infation option, in 5.5.3 (e). This is to protect hosts
from malicious (or misconfigured) routers that advertisg/\ahort prefix lifetime. There was an update from Jim
Bound to ipngwg mailing list (look for "(ipng 6712)" in thedrive) and it is implemented Jim’s update.

See23.5.1.2in the document for relationship between DAD and autocomditjon.

8.1.1.5 Generic tunnel interface

GIF (Generic InterFace) is a pseudo interface for configtuedel. Details are described in gif(4). Currently

+ V6inv6
« V6inv4
+ v4inv6
« v4dinv4d

are available. Use gifconfig(8) to assign physical (outeudyse and destination address to gif interfaces.
Configuration that uses same address family for inner aner tRtheader (v4 in v4, or v6 in v6) is dangerous. It is
very easy to configure interfaces and routing tables to parfofinite level of tunnelingPlease be warned

gif can be configured to be ECN-friendly. S2&.5.4.5for ECN-friendliness of tunnels, and gif(4) for how to
configure.

If you would like to configure an IPv4-in-IPv6 tunnel with gifterface, read gif(4) carefully. You will need to
remove IPv6 link-local address automatically assignetieogif interface.

8.1.1.6 Source Address Selection

Current source selection rule is scope oriented (therecsme £xceptions - see below). For a given destination, a
source IPv6 address is selected by the following rule:

1. If the source address is explicitly specified by the usgy. (@a the advanced API), the specified address is used.

76

Chapter 8 IPv6 Internals

2. If there is an address assigned to the outgoing interfakil is usually determined by looking up the routing
table) that has the same scope as the destination addessldfess is used.

This is the most typical case.

3. If there is no address that satisfies the above conditfmuse a global address assigned to one of the interfaces
on the sending node.

4. If there is no address that satisfies the above conditrmhgastination address is site local scope, choose a site
local address assigned to one of the interfaces on the gendie.

5. If there is no address that satisfies the above conditfmgse the address associated with the routing table entry
for the destination. This is the last resort, which may cacsgpe violation.

For instance, ::1 is selected for ff01::1, fe80:1::20(:f801:6317 for fe80:1::2a0:24ff:feab:839b (note that
embedded interface index - describe@®$5.1.3 helps us choose the right source address. Those embediieekin
will not be on the wire). If the outgoing interface has mukipddress for the scope, a source is selected longest
match basis (rule 3). Suppose 2001:0DB8:808:1:200:&tf6317 and 2001:0DB8:9:124:200:8ff:fe01:6317 are
given to the outgoing interface. 2001:0DB8:808:1:200:f801:6317 is chosen as the source for the destination
2001:0DB8:800::1.

Note that the above rule is not documented in the IPv6 spéecctinsidered "up to implementation” item. There are
some cases where we do not use the above rule. One examphmiected TCP session, and we use the address kept
in tcb as the source. Another example is source address fghblar Advertisement. Under the spec (RFC2461

7.2.2) NA's source should be the target address of the quoreng NS'’s target. In this case we follow the spec
rather than the above longest-match rule.

For new connections (when rule 1 does not apply), deprecatébsses (addresses with preferred lifetime = 0) will
not be chosen as source address if other choices are agalfaid other choices are available, deprecated address
will be used as a last resort. If there are multiple choiceamfrdcated addresses, the above scope rule will be used to
choose from those deprecated addresses. If you would ligeotubit the use of deprecated address for some reason,
configure net.inet6.ip6.use_deprecatedto 0. The issateceilo deprecated address is described in RFC2462 5.5.4
(NOTE: there is some debate underway in IETF ipngwg on hovst"deprecated” address).

8.1.1.7 Jumbo Payload

The Jumbo Payload hop-by-hop option is implemented and earséd to send IPv6 packets with payloads longer
than 65,535 octets. But currently no physical interface seldTU is more than 65,535 is supported, so such
payloads can be seen only on the loopback interface (i.g. 100

If you want to try jumbo payloads, you first have to reconfigiekernel so that the MTU of the loopback interface
is more than 65,535 bytes; add the following to the kernefiganation file:

options "LARGE_LOMTU" #To test jumbo payload
and recompile the new kernel.

Then you can test jumbo payloads by the ping6(8) command-Witind -s options. The -b option must be specified
to enlarge the size of the socket buffer and the -s optionifigethe length of the packet, which should be more than
65,535. For example, type as follows:

% ping6 -b 70000 -s 68000 ::1

77

Chapter 8 IPv6 Internals

The IPv6 specification requires that the Jumbo Payload optiast not be used in a packet that carries a fragment
header. If this condition is broken, an ICMPv6 Parameteblra message must be sent to the sender. specification
is followed, but you cannot usually see an ICMPV6 error cdumsethis requirement.

When an IPv6 packet is received, the frame length is cheakd@@mpared to the length specified in the payload
length field of the IPv6 header or in the value of the Jumboday/bption, if any. If the former is shorter than the
latter, the packet is discarded and statistics are incrésdeMou can see the statistics as output of netstat(8)
command with ‘-s -p ip6’ option:

% netstat -s -p ip6
ip6:
(snip)
1 with data size < data length

So, kernel does not send an ICMPV6 error unless the errompealst is an actual Jumbo Payload, that is, its packet
size is more than 65,535 bytes. As described above, cunemfphysical interface with such a huge MTU is
supported, so it rarely returns an ICMPV6 error.

TCP/UDP over jumbogram is not supported at this moment. isHigcause we have no medium (other than
loopback) to test this. Contact us if you need this.

IPsec does not work on jumbograms. This is due to some sg@@ficwists in supporting AH with jumbograms
(AH header size influences payload length, and this makeslitvard to authenticate inbound packet with jumbo
payload option as well as AH).

There are fundamental issues in *BSD support for jumbogré&veswvould like to address those, but we need more
time to finalize these. To name a few:

- mbuf pkthdr.len field is typed as "int" in 4.4BSD, so it will leold jumbogram with len > 2G on 32bit
architecture CPUs. If we would like to support jumbogrampendy, the field must be expanded to hold 4G + IPv6
header + link-layer header. Therefore, it must be expanalatlieast int64_t (u_int32_tis NOT enough).

« We mistakingly use "int" to hold packet length in many plad&s need to convert them into larger integral type.
It needs a great care, as we may experience overflow durirkgplength computation.

- We mistakingly check for ip6_plen field of IPv6 header for ketqpayload length in various places. We should be
checking mbuf pkthdr.len instead. ip6_input() will perfosanity check on jumbo payload option on input, and
we can safely use mbuf pkthdr.len afterwards.

- TCP code needs a careful update in bunch of places, of course.

8.1.1.8 Loop prevention in header processing

IPv6 specification allows arbitrary number of extensiondeza to be placed onto packets. If we implement IPv6
packet processing code in the way BSD IPv4 code is implerdekégnel stack may overflow due to long function
call chain. sys/netinet6 code is carefully designed todkernel stack overflow. Because of this, sys/netinet6 code
defines its own protocol switch structure, as "struct ip6psa" (seeetinet6/ip6protosw.h). There is no such
update to IPv4 part (sys/netinet) for compatibility, butedinshange is added to its pr_input() prototype. So "struct
ipprotosw" is also defined. Because of this, if you receiaetRover-1Pv4 packet with massive number of IPsec
headers, kernel stack may blow up. IPsec-over-IPv6 is qkffrcourse, for those all IPsec headers to be processed,
each such IPsec header must pass each IPsec check. So amansiajtacker will not be able to do such an attack.)

78

Chapter 8 IPv6 Internals

8.1.1.9 ICMPv6

After RFC2463 was published, IETF ipngwg has decided tdldisd CMPV6 error packet against ICMPV6 redirect,
to prevent ICMPV6 storm on a network medium. This is alreadlylemented into the kernel.

8.1.1.10 Applications

For userland programming, we support IPv6 socket API asfipga RFC2553, RFC2292 and upcoming Internet
drafts.

TCP/UDP over IPv6 is available and quite stable. You canyetgmet(1), ftp(1), rlogin(1), rsh(1), ssh(1), etc. These
applications are protocol independent. That is, they aatmally chooses IPv4 or IPv6 according to DNS.

8.1.1.11 Kernel Internals

While ip_forward() calls ip_output(), ip6_forward() do#y calls if_output() since routers must not divide IPv6
packets into fragments.

ICMPV6 should contain the original packet as long as possiplto 1280. UDP6/IP6 port unreach, for instance,
should contain all extension headers and the *unchanged®8Jinhd IP6 headers. So, all IP6 functions except TCP
never convert network byte order into host byte order, t@ $he original packet.

tcp_input(), udp6_input() and icmp6_input() can not asstinat IP6 header is preceding the transport headers due to
extension headers. So, in6_cksum() was implemented tddpadkets whose IP6 header and transport header is not
continuous. TCP/IP6 nor UDP6/IP6 header structures doxisit fr checksum calculation.

To process IP6 header, extension headers and transpodrbexdsily, network drivers are now required to store
packets in one internal mbuf or one or more external mbufyp#cal old driver prepares two internal mbufs for 96 -
204 bytes data, however, now such packet data is stored iexdaemal mbuf.

netstat -s -p ip6 tells you whether or not your driver conforms such requireimia the following example,
"cce0" violates the requirement. (For more informatioffieréo Section 2.)

Mbuf statistics:
317 one mbuf
two or more mbuf:
lo0 = 8
cce0 = 10
3282 one ext mbuf
0 two or more ext mbuf

Each input function calls IP6_ EXTHDR _CHECK in the begirgio check if the region between IP6 and its header
is continuous. IP6_ EXTHDR_CHECK calls m_pullup() onlylietmbuf has M_LOOP flag, that is, the packet
comes from the loopback interface. m_pullup() is nevereckibr packets coming from physical network interfaces.

Both IP and IP6 reassemble functions never call m_pullup().

8.1.1.12 IPv4 mapped address and IPv6 wildcard socket

RFC2553 describes IPv4 mapped address (3.7) and specalibebf IPv6 wildcard bind socket (3.8). The spec
allows you to:

79

Chapter 8 IPv6 Internals

« Accept IPv4 connections by AF_INET6 wildcard bind socket.
- Transmit IPv4 packet over AF_INET6 socket by using spedahfof the address like ::ffff:10.1.1.1.

but the spec itself is very complicated and does not speciy the socket layer should behave. Here we call the
former one "listening side" and the latter one "initiatindes, for reference purposes.

You can perform wildcard bind on both of the address familiesthe same port.

The following table show the behavior of FreeBSD 4.x.

listening side initiating side
(AF_INET6 wildcard (connection to ::ffff:10.1.1.1)
socket gets IPv4 conn.)

FreeBSD 4.x configurable supported
default: enabled

The following sections will give you more details, and howyzan configure the behavior.
Comments on listening side:

It looks that RFC2553 talks too little on wildcard bind issaspecially on the port space issue, failure mode and
relationship between AF_INET/INET6 wildcard bind. Theende several separate interpretation for this RFC
which conform to it but behaves differently. So, to implergortable application you should assume nothing about
the behavior in the kernel. Using getaddrinfo(3) is the staf@y. Port number space and wildcard bind issues were
discussed in detail on ipv6imp mailing list, in mid March B%nd it looks that there is no concrete consensus
(means, up to implementers). You may want to check the ngglih archives.

If a server application would like to accept IPv4 and IPv6roections, there will be two alternatives.

Oneis using AF_INET and AF_INET6 socket (you will need twalsgts). Use getaddrinfo(3) with Al_PASSIVE
into ai_flags, and socket(2) and bind(2) to all the addrestasned. By opening multiple sockets, you can accept
connections onto the socket with proper address family Bdnnections will be accepted by AF_INET socket, and
IPv6 connections will be accepted by AF_INET6 socket.

Another way is using one AF_INET6 wildcard bind socket. Ustagdrinfo(3) with Al_PASSIVE into ai_flags and
with AF_INET®6 into ai_family, and set the 1st argument hastie to NULL. And socket(2) and bind(2) to the
address returned. (should be IPv6 unspecified addr). Yoaozept either of IPv4 and IPv6 packet via this one
socket.

To support only IPv6 traffic on AF_INET6 wildcard binded setkortably, always check the peer address when a
connection is made toward AF_INET® listening socket. Iféldelress is IPv4 mapped address, you may want to
reject the connection. You can check the condition by usig) IS ADDR_V4MAPPED() macro.

To resolve this issue more easily, there is system depesdestickopt(2) option, IPV6_BINDV6ONLY, used like
below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

When this call succeed, then this socket only receive IPe&gia.

80

Chapter 8 IPv6 Internals

Comments on initiating side:

Advise to application implementers: to implement a poedBv6 application (which works on multiple IPv6
kernels), we believe that the following is the key to the &ssc

- NEVER hardcode AF_INET nor AF_INET®6.

- Use getaddrinfo(3) and getnameinfo(3) throughout theesysNever use gethostby*(), getaddrby*(), inet_*() or
getipnodeby*(). (To update existing applications to bedRware easily, sometime getipnodeby*() will be useful.
But if possible, try to rewrite the code to use getaddrinf@{3d getnameinfo(3).)

- If you would like to connect to destination, use getaddr{8jand try all the destination returned, like telnet(1)
does.

- Some of the IPv6 stack is shipped with buggy getaddrinf&&Bjp a minimal working version with your
application and use that as last resort.

If you would like to use AF_INET®6 socket for both IPv4 and IRmtgoing connection, you will need to use
getipnodebyname(3). When you would like to update yourtigsapplication to be IPv6 aware with minimal effort,
this approach might be chosen. But please note that it is pdeahsolution, because getipnodebyname(3) itself is
not recommended as it does not handle scoped IPv6 addrésdkegar IPv6 name resolution, getaddrinfo(3) is the
preferred API. So you should rewrite your application to ge&addrinfo(3), when you get the time to do it.

When writing applications that make outgoing connectistsy goes much simpler if you treat AF_INET and
AF_INETE6 as totally separate address family. {set,getkeqt issue goes simpler, DNS issue will be made simpler.
We do not recommend you to rely upon IPv4 mapped address.

8.1.1.12.1 unified tcp and inpcb code

FreeBSD 4.x uses shared tcp code between IPv4 and IPv6 (fremesinet/tcp*) and separate udp4/6 code. It uses
unified inpchb structure.

The platform can be configured to support IPv4 mapped addfessel configuration is summarized as follows:

- By default, AF_INET6 socket will grab IPv4 connections intaén condition, and can initiate connection to IPv4
destination embedded in IPv4 mapped IPv6 address.

- You can disable it on entire system with sysctl like below.

sysctl net.inet6.ip6.mapped_addr=0

8.1.1.12.1.1 listening side

Each socket can be configured to support special AF_INET@card bind (enabled by default). You can disable it
on each socket basis with setsockopt(2) like below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char)&on, sizeof (on)) < 0));

Wildcard AF_INET®6 socket grabs IPv4 connection if and oihe following conditions are satisfied:

81

Chapter 8 IPv6 Internals

- thereis no AF_INET socket that matches the IPv4 connection
- the AF_INET®6 socket is configured to accept IPv4 traffic,getsockopt(IPV6_BINDV6ONLY) returns 0.

There is no problem with open/close ordering.

8.1.1.12.1.2 initiating side

FreeBSD 4.x supports outgoing connection to IPv4 mappereadd::ffff:10.1.1.1), if the node is configured to
support IPv4 mapped address.

8.1.1.13 sockaddr_storage

When RFC2553 was about to be finalized, there was discuseibow struct sockaddr_storage members are named.
One proposal is to prepend " " to the members (like " 88) ks they should not be touched. The other proposal
was not to prepend it (like "ss_len") as we need to touch thommbers directly. There was no clear consensus on it.

As a result, RFC2553 defines struct sockaddr_storage asvill

struct sockaddr_storage {
u_char __ss_len; / * address length */
u_char __ss_family; / * address family */
/* and bunch of padding */

On the contrary, XNET draft defines as follows:

struct sockaddr_storage {
u_char ss_len; / * address length */
u_char ss_family; / * address family */
/* and bunch of padding */

In December 1999, it was agreed that RFC2553bis should pelatter (XNET) definition.
Current implementation conforms to XNET definition, basadk#-C2553bis discussion.

If you look at multiple IPv6 implementations, you will be alib see both definitions. As an userland programmer,
the most portable way of dealing with it is to:

1. ensure ss_family and/or ss_len are available on theopfatby using GNU autoconf,
2. have -Dss_family=__ss_family to unify all occurrendesl(iding header file) into __ss_family, or
3. never touch __ss_family. cast to sockaddr * and use salyfke:

struct sockaddr_storage ss;
family = ((struct sockaddr *)&ss)->sa_family

82

Chapter 8 IPv6 Internals

8.1.2 Network Drivers

Now following two items are required to be supported by staddirivers:

1. mbuf clustering requirement. In this stable release, aged MINCLSIZE into MHLEN+1 for all the
operating systems in order to make all the drivers behavesasxpect.

2. multicast. If ifmcstat(8) yields no multicast group foinderface, that interface has to be patched.

If any of the drivers do not support the requirements, therdttivers can not be used for IPv6 and/or IPsec
communication. If you find any problem with your card using®RPsec, then, please report it to the FreeBSD
problem reports mailing list (http://lists.FreeBSD.anglilman/listinfo/freebsd-bugs).

(NOTE: In the past we required all PCMCIA drivers to have d tain6_ifattach(). We have no such requirement
any more)

8.1.3 Translator

We categorize IPv4/IPv6 translator into 4 types:

« Translator A--- It is used in the early stage of transition to make it polesio establish a connection from an IPv6
host in an IPv6 island to an IPv4 host in the IPv4 ocean.

- Translator B--- It is used in the early stage of transition to make it poigsio establish a connection from an IPv4
host in the IPv4 ocean to an IPv6 host in an IPv6 island.

- Translator C--- It is used in the late stage of transition to make it pdsgib establish a connection from an IPv4
host in an IPv4 island to an IPv6 host in the IPv6 ocean.

« Translator D--- It is used in the late stage of transition to make it pdsdib establish a connection from an IPv6
host in the IPv6 ocean to an IPv4 host in an IPv4 island.

TCP relay translator for category A is supported. This isecBlIFAITH". We also provide IP header translator for
category A. (The latter is not yet put into FreeBSD 4.x yet.)

8.1.3.1 FAITH TCP relay translator

FAITH system uses TCP relay daemon called faithd(8) helyettié kernel. FAITH will reserve an IPv6 address
prefix, and relay TCP connection toward that prefix to IPv4idason.

For example, if the reserved IPv6 prefix is 2001:0DB8:0€Q;fand the IPv6 destination for TCP connection is
2001:0DB8:0200:ffff::163.221.202.12, the connectiofi e relayed toward IPv4 destination 163.221.202.12.

destination IPv4 node (163.221.202.12)

N

| IPv4 tcp toward 163.221.202.12
FAITH-relay dual stack node

AN

| IPv6 TCP toward 2001:0DB8:0200:ffff::163.221.202.12
source IPv6 node

faithd(8) must be invoked on FAITH-relay dual stack node.

83

Chapter 8 IPv6 Internals

For more details, consudtc/usr.sbin/faithd/README

8.1.4 IPsec

IPsec is mainly organized by three components.

1. Policy Management
2. Key Management

3. AH and ESP handling

8.1.4.1 Policy Management

The kernel implements experimental policy management.chaere are two way to manage security policy. One is
to configure per-socket policy using setsockopt(2). In ¢hises, policy configuration is described in
ipsec_set_policy(3). The other is to configure kernel ptifikker-based policy using PF_KEY interface, via
setkey(8).

The policy entry is not re-ordered with its indexes, so ttaeoof entry when you add is very significant.

8.1.4.2 Key Management

The key management code implemented in this kit (sys/ngtkeyhome-brew PFKEY v2 implementation. This
conforms to RFC2367.

The home-brew IKE daemon, "racoon" is included in the kingkedame/racoon). Basically you will need to run
racoon as daemon, then set up a policy to require keysiike -P 'out ipsec esp/transport//use’). The
kernel will contact racoon daemon as necessary to exchage k

8.1.4.3 AH and ESP handling

IPsec module is implemented as "hooks" to the standard lIPv@rocessing. When sending a packet,
ip{,6}_output() checks if ESP/AH processing is requireddhecking if a matching SPD (Security Policy Database)
is found. If ESP/AH is needed, {esp,ah}4,6} output() wile called and mbuf will be updated accordingly. When a
packet is received, {esp,ah}4_input() will be called basadrotocol number, i.e. (*inetsw[proto])().
{esp,ah}4_input() will decrypt/check authenticity of thacket, and strips off daisy-chained header and padding for
ESP/AH. Itis safe to strip off the ESP/AH header on packegpéon, since we will never use the received packet in
"as is" form.

By using ESP/AH, TCP4/6 effective data segment size willfiected by extra daisy-chained headers inserted by
ESP/AH. Our code takes care of the case.

Basic crypto functions can be found in directory "sys/coypESP/AH transform are listed in {esp,ah} _core.c with
wrapper functions. If you wish to add some algorithm, addppea function in {esp,ah} core.c, and add your crypto
algorithm code into sys/crypto.

Tunnel mode is partially supported in this release, withfthlewing restrictions:

84

Chapter 8 IPv6 Internals
- IPsec tunnel is not combined with GIF generic tunnelingrfiaiee. It needs a great care because we may create an
infinite loop between ip_output() and tunnelifp->if _outuOpinion varies if it is better to unify them, or not.
- MTU and Don’t Fragment bit (IPv4) considerations need mdwec&ing, but basically works fine.

- Authentication model for AH tunnel must be revisited. Welw#ed to improve the policy management engine,
eventually.

8.1.4.4 Conformance to RFCs and IDs
The IPsec code in the kernel conforms (or, tries to confoothé following standards:

"old IPsec" specification documentedrfn182[5-9].txt

"new IPsec" specification documentedficR40[1-6].txt , rfc241[01].txt , rfc2451..txt and
draft-mcdonald-simple-ipsec-api-01.txt (draft expired, but you can take from
ftp://ftp.kame.net/publ/internet-drafts/ (ftp://ftpuke.net/publ/internet-drafts/)). (NOTE: IKE specificatp
rfc241[7-9].txt are implemented in userland, as "racoon" IKE daemon)

Currently supported algorithms are:

- old IPsec AH
« null crypto checksum (no document, just for debugging)
- keyed MD5 with 128bit crypto checksunfq1828.txt)
- keyed SHA1 with 128bit crypto checksum (no document)
« HMAC MD5 with 128bit crypto checksunrfc2085.txt)
« HMAC SHA1 with 128bit crypto checksum (no document)

- old IPsec ESP
- null encryption (no document, similar t&&2410.txt)

- DES-CBC moderfc1829.txt)

« new IPsec AH
« null crypto checksum (no document, just for debugging)
- keyed MD5 with 96bit crypto checksum (no document)
- keyed SHA1 with 96bit crypto checksum (no document)
- HMAC MD5 with 96bit crypto checksunmric2403.txt)
- HMAC SHAZ1 with 96bit crypto checksumf¢2404.txt)

- new IPsec ESP

- null encryption (fc2410.txt)
- DES-CBC with derived IV draft-ietf-ipsec-ciph-des-derived-01.txt , draft expired)

85

Chapter 8 IPv6 Internals

- DES-CBC with explicit IV fc2405.txt)

- 3DES-CBC with explicit IV (fc2451.txt)

. BLOWFISH CBC (fc2451.txt)

- CAST128 CBC (fc2451.txt)

. RC5 CBC (fc2451.txt)

- each of the above can be combined with:
- ESP authentication with HMAC-MD5(96bit)
. ESP authentication with HMAC-SHA1(96bit)

The following algorithms are NOT supported:

« old IPsec AH
- HMAC MD5 with 128bit crypto checksum + 64bit replay prevemti(fc2085.txt)
- keyed SHA1 with 160bit crypto checksum + 32bit paddirigi@52.txt)

IPsec (in kernel) and IKE (in userland as "racoon") has bested at several interoperability test events, and it is
known to interoperate with many other implementations waBo, current IPsec implementation as quite wide
coverage for IPsec crypto algorithms documented in RFC @wercalgorithms without intellectual property issues
only).

8.1.4.5 ECN consideration on IPsec tunnels
ECN-friendly IPsec tunnel is supported as describattaft-ipsec-ecn-00.txt

Normal IPsec tunnel is described in RFC2401. On encapsuldfv4 TOS field (or, IPv6 traffic class field) will be
copied from inner IP header to outer IP header. On decapsulatiter IP header will be simply dropped. The
decapsulation rule is not compatible with ECN, since ECNbhithe outer IP TOS/traffic class field will be lost.

To make IPsec tunnel ECN-friendly, we should modify encégigan and decapsulation procedure. This is described
in http://www.aciri.org/floyd/papers/draft-ipsec-e@0:txt
(http://www.aciri.org/floyd/papers/draft-ipsec-ecd&t), chapter 3.

IPsec tunnel implementation can give you three behavigrseliing net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) t
some value:

« RFC2401: no consideration for ECN (sysctl value -1)
- ECN forbidden (sysctl value 0)
- ECN allowed (sysctl value 1)

Note that the behavior is configurable in per-node manneép@&eSA manner (draft-ipsec-ecn-00 wants per-SA
configuration, but it looks too much for me).

The behavior is summarized as follows (see source code fog detail):

86

encapsulate

copy all TOS bits
from inner to outer.

RFC2401

ECN forbidden copy TOS bits except for ECN
(masked with 0xfc) from inner
to outer. set ECN bits to O.

ECN allowed copy TOS bits except for ECN
CE (masked with Oxfe) from
inner to outer.

set ECN CE bit to O.

General strategy for configuration is as follows:

Chapter 8 IPv6 Internals

decapsulate
drop TOS bits on outer
(use inner TOS bits as is)

drop TOS bits on out er
(use inner TOS bhits as is)

use inner TOS bits wit h some
change. if outer ECN CE bit
is 1, enable ECN CE bit on

the inner.

- if both IPsec tunnel endpoint are capable of ECN-friendlyaheor, you should better configure both end to “ECN

allowed” (sysctl value 1).

- ifthe other end is very strict about TOS bit, use "RFC240%5¢4 value -1).

- in other cases, use "ECN forbidden" (sysctl value 0).
The default behavior is "ECN forbidden" (sysctl value 0).

For more information, please refer to:

http://www.aciri.org/floyd/papers/draft-ipsec-ecn80(http://www.aciri.org/floyd/papers/draft-ipsecre00.txt),
RFC2481 (Explicit Congestion Notification), src/sys/net6/{ah,esp}_input.c

(Thanks goes to Kenjiro Chokie@csl.sony.co.jp

8.1.4.6 Interoperability

> for detailed analysis)

Here are (some of) platforms that KAME code have tested /R§Ednteroperability in the past. Note that both ends
may have modified their implementation, so use the follovistgust for reference purposes.

Altiga, Ashley-laurent (vpcom.com), Data Fellows (F-SejuEricsson ACC, FreeS/WAN, HITACHI, IBM AIX®,
[1J, Intel, Microsoft® Windows NT®, NIST (linux IPsec + plaplus), Netscreen, OpenBSD, RedCreek, Routerware,
SSH, Secure Computing, Soliton, Toshiba, VPNet, YamahaRir 1

87

l1l. Kernel

Chapter 9 Building and Installing a FreeBSD
Kernel

Being a kernel developer requires understanding of thegkénild process. To debug the FreeBSD kernel it is
required to be able to build one. There are two known ways teodo

- The “Traditional” Way
« The “New” Way

Note: It is supposed that the reader of this chapter is familiar with the information described in the Building and
Installing a Custom Kernel (../handbook/kernelconfig-building.html) chapter of the FreeBSD Handbook. If this is
not the case, please read through the above mentioned chapter to understand how the build process works.

9.1 Building a Kernel the “Traditional” Way

Up to version 4.X of FreeBSD this was the recommended wayitd buinew kernel. It can still be used on newer
versions (instead of the “buildkernel” target of the toBusr/src/ makefiles). Building the kernel this way may
be useful when working on the kernel code and it may actualiabter than the “New” procedure when only a
single option or two were tweaked in the kernel configurafilen On the other hand, it might lead to unexpected
kernel build breakage when used by beginners on newer warsfd-reeBSD.

1. Run config(8) to generate the kernel source code:
[usr/sbin/config MYKERNEL

2. Change into the build directory. config(8) will print thame of this directory after being run as above.
cd ../ conpil e/ MYPKERNEL

3. Compile the kernel:

make depend
make

4. Install the new kernel:

make install

9.2 Building a Kernel the “New” Way

This procedure is well supported and recommended undeatbst IFreeBSD releases and is documented in the
Building and Installing a Custom Kernel (../handbook/ldconfig-building.html) chapter of the FreeBSD
Handbook.

89

Chapter 10 Kernel Debugging

Contributed by Paul Richards, J6rg Wunsch, and Robert Watso

10.1 Obtaining a Kernel Crash Dump

When running a development kernel (e.g., FreeBSD-CURREBLIGh as a kernel under extreme conditions (e.g.,
very high load averages, tens of thousands of connectigosedingly high number of concurrent users, hundreds of
jail(8)s, etc.), or using a new feature or device driver ogedBSD-STABLE (e.g., PAE), sometimes a kernel will
panic. In the event that it does, this chapter will demonsthaw to extract useful information out of a crash.

A system reboot is inevitable once a kernel panics. Oncetarsyis rebooted, the contents of a system’s physical
memory (RAM) is lost, as well as any bits that are on the swajicédoefore the panic. To preserve the bits in
physical memory, the kernel makes use of the swap deviceeam@otary place to store the bits that are in RAM
across a reboot after a crash. In doing this, when FreeBSB adter a crash, a kernel image can now be extracted
and debugging can take place.

Note: A swap device that has been configured as a dump device still acts as a swap device. Dumps to non-swap
devices (such as tapes or CDRWs, for example) are not supported at this time. A “swap device” is synonymous
with a “swap partition.”

Several types of kernel crash dumps are available: full mgmiomps, which hold the complete contents of physical
memory, minidumps, which hold only memory pages in use bkérael (FreeBSD 6.2 and higher), and textdumps,
which hold captured scripted or interactive debugger autiprteeBSD 7.1 and higher). Minidumps are the default
dump type as of FreeBSD 7.0, and in most cases will capturea#tssary information present in a full memory
dump, as most problems can be isolated only using kernel stat

10.1.1 Configuring the Dump Device

Before the kernel will dump the contents of its physical meyrio a dump device, a dump device must be
configured. A dump device is specified by using the dumpord8jmand to tell the kernel where to save kernel
crash dumps. The dumpon(8) program must be called aftemthp partition has been configured with swapon(8).
This is normally handled by setting thlempdev variable in rc.conf(5) to the path of the swap device (the
recommended way to extract a kernel dumpAomOto use the first configured swap device. The default for
dumpdev is AUTOIn HEAD, and changed toon RELENG_* branches (except for RELENG_7, which was left se
to AUTQ. On FreeBSD 9.0-RELEASE and later versiomsglinstall will ask whether crash dumps should be enabled
on the target system during the install process.

Tip: Check /etc/fstab or swapinfo(8) for a list of swap devices.

Important: Make sure the dumpdir specified in rc.conf(5) exists before a kernel crash!

nkdir /var/crash
chrmod 700 /var/crash

90

Chapter 10 Kernel Debugging

Also, remember that the contents of /var/crash is sensitive and very likely contains confidential information
such as passwords.

10.1.2 Extracting a Kernel Dump

Once a dump has been written to a dump device, the dump mustraeted before the swap device is mounted. To
extract a dump from a dump device, use the savecore(8) progirdumpdev has been set in rc.conf(5), savecore(8)
will be called automatically on the first multi-user booteafthe crash and before the swap device is mounted. The
location of the extracted core is placed in the rc.conf(fR)edumpdir , by defaultivar/crash ~ and will be named
vmcore.0 .

In the event that there is already a file call@acore.0 in /var/crash (or whatevedumpdir is set to), the kernel
will increment the trailing number for every crash to avoigonriting an existinggmcore (e.g.,vmcore.1). While
debugging, it is highly likely that you will want to use theghiest versiowmcore in /var/crash ~ when searching
for the rightvmcore .

Tip: If you are testing a new kernel but need to boot a different one in order to get your system up and running
again, boot it only into single user mode using the -s flag at the boot prompt, and then perform the following

steps:

fsck -p

mount -a -t ufs # make sure /var/crash is writable
savecore /var/crash /dev/adOslb

exit # exit to multi-user

This instructs savecore(8) to extract a kernel dump from /dev/adOslb and place the contents in /var/crash . Do
not forget to make sure the destination directory /var/crash has enough space for the dump. Also, do not forget
to specify the correct path to your swap device as it is likely different than /dev/adOs1b !

10.2 Debugging a Kernel Crash Dump with kgdb

Note: This section covers kgdb(1) as found in FreeBSD 5.3 and later. In previous versions, one must use gdb -k
to read a core dump file.

Once a dump has been obtained, getting useful informatibafdbe dump is relatively easy for simple problems.
Before launching into the internals of kgdb(1) to debug ttask dump, locate the debug version of your kernel
(normally calleckernel.debug) and the path to the source files used to build your kernehfaty
{usr/objlusr/src/sys/ KERNCONF, whereKERNCONF is theident specified in a kernel config(5)). With those two
pieces of info, let the debugging commence!

To enter into the debugger and begin getting informatiomftbe dump, the following steps are required at a
minimum:

91

cd /usr/obj/usr/src/sys/ KERNCONF
kgdb kernel . debug /var/crash/vnctore. 0

Chapter 10 Kernel Debugging

You can debug the crash dump using the kernel sources jesgdild can for any other program.

This first dump is from a 5.2-BETA kernel and the crash comesfdeep within the kernel. The output below has
been modified to include line numbers on the left. This fitérinspects the instruction pointer and obtains a back
trace. The address that is used on line 41 fotithe command is the instruction pointer and can be found on line
17. Most developers will request having at least this infation sent to them if you are unable to debug the problem
yourself. If, however, you do solve the problem, make sua¢ your patch winds its way into the source tree via a

problem report, mailing lists, or by being able to commit it!

1:# cd /usr/obj/usr/src/sys/ KERNCONF

2: # kgdb kernel . debug /var/crash/vntore.0

3:GNU gdb 5.2.1 (FreeBSD)

4:Copyright 2002 Free Software Foundation, Inc.

5:GDB is free software, covered by the GNU General Public Lic
6:welcome to change it and/or distribute copies of it under ¢
7:Type "show copying" to see the conditions.

8:There is absolutely no warranty for GDB. Type "show warran
9:This GDB was configured as "i386-undermydesk-freebsd".
10:panic: page fault

11:panic messages:

12:---

13:Fatal trap 12: page fault while in kernel mode

14:cpuid = 0; apic id = 00

15:fault virtual address = 0x300

16:fault code: = supervisor read, page not present

17:instruction pointer = 0x8:0xc0713860

18:stack pointer = 0x10:0xdc1d0b70

19:frame pointer = 0x10:0xdc1d0b7c

20:code segment = base 0xO, limit Oxfffff, type Ox1b
21: = DPL O, pres 1, def32 1, gran 1
22:processor eflags = resume, IOPL = 0

23:current process = 14394 (uname)

24:trap number =12

25:panic: page fault

26 cpuid = 0;

27:Stack backtrace:

28

29:syncing disks, buffers remaining... 2199 2199 panic: mi
30:cpuid = 0;

31:Uptime: 2h43m19s

32:Dumping 255 MB

33: 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
34:---

35:Reading symbols from /boot/kernel/snd_maestro3.ko.. .done.

36:Loaded symbols for /boot/kernel/snd_maestro3.ko
37:Reading symbols from /boot/kernel/snd_pcm.ko...done
38:Loaded symbols for /boot/kernel/snd_pcm.ko

39:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:2
40:240 dumping++;

41: (kgdb) 1ist *0xc0713860

ense, and you are
ertain conditions.

ty" for detalils.

_switch: switch in a critical section

92

Chapter 10 Kernel Debugging

42:0xc0713860 is in lapic_ipi_wait (/usr/src/sys/i386/i 386/local_apic.c:663).
43:658 incr = O;

44:659 delay = 1;

45:660 } else

46:661 incr = 1;

47:662 for (x = 0; x < delay; x += incr) {

48:663 if ((lapic->icr_lo & APIC_DELSTAT_MASK) == APIC_DE LSTAT_IDLE)
49:664 return (1);

50:665 ia32_pause();

51:666 }

52:667 return (0);

53: (kgdb) backtrace

54:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:2 40

55:#1 0xc055fd9b in boot (howto=260) at /usr/src/sys/kern /kern_shutdown.c:372
56:#2 0xc056019d in panic () at /usr/src/sys/kern/kern_sh utdown.c:550

57:#3 0xc0567ef5 in mi_switch () at /usr/src/sys/kern/ker n_synch.c:470

58:#4 0xc055fa87 in boot (howto=256) at /usr/src/sys/kern /kern_shutdown.c:312
59:#5 0xc056019d in panic () at /usr/src/sys/kern/kern_sh utdown.c:550

60:#6 0xc0720c66 in trap_fatal (frame=0xdc1d0b30, eva=0)

61: at /usr/src/sys/i386/i386/trap.c:821

62:#7 0xc07202b3 in trap (frame=

63: {tf_fs = -1065484264, tf_es = -1065484272, tf ds = -1065 484272, tf_edi = 1, tf esi = 0, tf_ebp
64: at /usr/src/sys/i386/i386/trap.c:250

65:#8 0xc070c9f8 in calltrap () at {standard input}:94

66:#9 O0xc07139f3 in lapic_ipi_vectored (vector=0, dest=0)

67: at /usr/src/sys/i386/i386/local_apic.c:733

68:#10 0xc0718b23 in ipi_selected (cpus=1, ipi=1)

69: at /usr/src/sys/i386/i386/mp_machdep.c:1115

70:#11 0xc057473e in kseq_notify (ke=0xcc05e360, cpu=0)

71: at /usr/src/sys/kern/sched_ule.c:520

72:#12 0xc0575cad in sched_add (td=0xchcf5c80)

73: at /usr/src/sys/kern/sched_ule.c:1366

74:#13 0xc05666¢6 in setrunqueue (td=0xcc05e360)

75: at /usr/src/sys/kern/kern_switch.c:422

76:#14 0xc05752f4 in sched_wakeup (td=0xcbcf5c80)

77: at /usr/src/sys/kern/sched_ule.c:999

78:#15 0xc056816¢ in setrunnable (td=0xcbcf5c80)

79: at /usr/src/sys/kern/kern_synch.c:570

80:#16 0xc0567d53 in wakeup (ident=0xcbcf5c80)

81: at /usr/src/sys/kern/kern_synch.c:411

82:#17 0xc05490a8 in exitl (td=0xcbcf5b40, rv=0)

83: at /usr/src/sys/kern/kern_exit.c:509

84:#18 0xc0548011 in sys_exit () at /usr/src/sys/kern/ker n_exit.c:102
85:#19 0xc0720fd0 in syscall (frame=

86: {tf fs = 47, tf_ es = 47, tf ds = 47, tf edi = O, tf esi = -1, t f_ebp = -1077940712, tf_isp
87: at /usr/src/sys/i386/i386/trap.c:1010

88:#20 0xc070ca4d in XintOx80_syscall () at {standard inpu t}:136
89:---Can't read userspace from dump, or kernel process---

90: (kgdb) quit

This next trace is an older dump from the FreeBSD 2 time framgeis more involved and demonstrates more of the
features ofydb. Long lines have been folded to improve readability, anditiess are numbered for reference.
Despite this, it is a real-world error trace taken duringdegelopment of the pcvt console driver.

93

1:Script started on Fri Dec 30 23:15:22 1994
2:# cd /sys/conpil e/ URI AH
3:# gdb -k kernel /var/crash/vntore.1l

Chapter 10 Kernel Debugging

4:Reading symbol data from /usr/src/sys/compile/URIAH/k ernel

...done.

5:1dlePTD 1f3000

6:panic: because you said to!

T:current pcb at 1e3f70

8:Reading in symbols for ../../i386/i386/machdep.c...do ne.

9: (kgdb) backtrace

10:#0 boot (arghowto=256) (../../i386/i386/machdep.c li ne 767)

11:#1 0xf0115159 in panic ()

12:#2 0xf01955bd in diediedie () (../../i386/i386/machde p.c line 698)

13:#3 0xf010185e in db_fncall ()

14:#4 0xf0101586 in db_command (-266509132, -266509516, - 267381073)

15:#5 0xf0101711 in db_command_loop ()

16:#6 0xf01040a0 in db_trap ()

17:#7 0xf0192976 in kdb_trap (12, 0, -272630436, -26674372 3)

18:#8 0xf019d2eb in trap_fatal (...)

19:#9 0xf019ce60 in trap_pfault (...)

20:#10 0xf019ch2f in trap (...)

21:#11 0xf01932al in exception:calltrap ()

22:#12 0xf0191503 in cnopen (...)

23:#13 0xf0132c34 in spec_open ()

24:#14 0xf012d014 in vn_open ()

25:#15 0xf012a183 in open ()

26:#16 0xf019d4eb in syscall (...)

27: (kgdb) up 10

28:Reading in symbols for ../../i386/i386/trap.c...done

29:#10 0xf019ch2f in trap (frame={tf_es = -260440048, tf_d s = 16, tf\
30:edi = 3072, tf_esi = -266445372, tf_ebp = -272630356, tf_ isp = -27\
31:2630396, tf_ebx = -266427884, tf_edx = 12, tf_ecx = -2664 27884, tf\
32:_eax = 64772224, tf _trapno = 12, tf_err = -272695296, tf_ eip = -26\
33:6672343, tf_cs = -266469368, tf_eflags = 66066, tf_esp = 3072, tf_\
34:ss = -266427884}) (../../i386/i386/trap.c line 283)

35:283 (void) trap_pfault(&frame, FALSE);

36: (kgdb) frame franme->tf_ebp frane->tf_eip

37:Reading in symbols for ../../i386/isa/pcvt/pcvt_drv. c...done.

38:#0 0xf0lae729 in pcopen (dev=3072, flag=3, mode=8192, p =(struct p\

39:roc *) 0xf07c0c00) (../../i386/isa/pcvt/pevt_drv.c line 403)

* cannot be a modem (:-) */

40:403 return ((* linesw([tp->t_line].l_open)(dev, tp));

41: (kgdb) i st

42:398

43:399 tp->t_state |= TS_CARR_ON;

44:400 tp->t_cflag |= CLOCAL; /

45:401

46:402 #if PCVT_NETBSD || (PCVT_FREEBSD >= 200)

47:403 return ((* linesw([tp->t_line].l_open)(dev, tp));
48:404 #else

49:405 return ((* linesw([tp->t_line].l_open)(dev, tp, flag));
50:406 #endif / +* PCVT_NETBSD || (PCVT_FREEBSD >= 200) */

51:407 }
52: (kgdb) print tp

94

Chapter 10 Kernel Debugging

53:Reading in symbols for ../../i386/i386/cons.c...done

54:$1 = (struct tty *) Oxlbae

55: (kgdb) print tp->t_line

56:$2 = 1767990816

57: (kgdb) up

58:#1 0xf0191503 in cnopen (dev=0x00000000, flag=3, mode= 8192, p=(st\
59:ruct proc *) 0xf07c0c00) (../../i386/i386/cons.c line 126)

60: return ((* cdevsw[major(dev)].d_open)(dev, flag, mode, p));
61: (kgdb) up

62:#2 0xf0132c34 in spec_open ()

63: (kgdb) up

64:#3 0xf012d014 in vn_open ()

65: (kgdb) up

66:#4 0xf012a183 in open ()

67: (kgdb) up

68:#5 0xf019d4eb in syscall (frame={tf_es = 39, tf ds = 39, t f_edi =\
69: 2158592, tf_esi = 0, tf_ebp = -272638436, tf_isp = -27262 9788, tf

70:_ebx = 7086, tf edx = 1, tf ecx = O, tf_eax = 5, tf _trapno = 5 82, \
71:tf_err = 582, tf_eip = 75749, tf cs = 31, tf_eflags = 582, t f esp \
72:= -272638456, tf_ss = 39}) (../../i386/i386/trap.c lin e 673)

73:673 error = (=*callp->sy_call)(p, args, rval);

74: (kgdb) up
75:Initial frame selected; you cannot go up.
76: (kgdb) quit

Comments to the above script:

line 6:

This is a dump taken from within DDB (see below), hence thégemmment “because you said to!”, and a
rather long stack trace; the initial reason for going intoEitas been a page fault trap though.

line 20:

This is the location of functiotrap() in the stack trace.

line 36:

Force usage of a new stack frame; this is no longer nece§da\stack frames are supposed to point to the
right locations now, even in case of a trap. From looking atdbde in source line 403, there is a high
probability that either the pointer access for “tp” was neglssp, or the array access was out of bounds.

line 52:

The pointer looks suspicious, but happens to be a valid addre

line 56:

However, it obviously points to garbage, so we have founceotar! (For those unfamiliar with that particular
piece of codetp->t_line refers to the line discipline of the console device heregcimust be a rather small
integer number.)

Tip: If your system is crashing regularly and you are running out of disk space, deleting old vmcore files in
Ivar/crash could save a considerable amount of disk space!

95

Chapter 10 Kernel Debugging

10.3 Debugging a Crash Dump with DDD

Examining a kernel crash dump with a graphical debuggerdikeis also possible (you will need to install the
devel/ddd portin order to use thedd debugger). Add thek option to theddd command line you would use
normally. For example;

ddd --debugger kgdb kernel.debug /var/crash/vntore.0

You should then be able to go about looking at the crash durmg ddd’s graphical interface.

10.4 On-Line Kernel Debugging Using DDB

While kgdb as an off-line debugger provides a very high level of userfate, there are some things it cannot do.
The most important ones being breakpointing and singlepstg kernel code.

If you need to do low-level debugging on your kernel, therarion-line debugger available called DDB. It allows
setting of breakpoints, single-stepping kernel functi@xamining and changing kernel variables, etc. However, it
cannot access kernel source files, and only has access tlotize gnd static symbols, not to the full debug
information likegdb does.

To configure your kernel to include DDB, add the options
options KDB
options DDB

to your config file, and rebuild. (See The FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boc&stibook/index.html) for details on configuring the
FreeBSD kernel).

Note: If you have an older version of the boot blocks, your debugger symbols might not be loaded at all. Update
the boot blocks; the recent ones load the DDB symbols automatically.

Once your DDB kernel is running, there are several ways terdDDB. The first, and earliest way is to type the boot
flag-d right at the boot prompt. The kernel will start up in debug madd enter DDB prior to any device probing.
Hence you can even debug the device probe/attach functisess of FreeBSD-CURRENT will need to use the
boot menu option, six, to escape to a command prompt.

The second scenario is to drop to the debugger once the shistebooted. There are two simple ways to accomplish
this. If you would like to break to the debugger from the comohprompt, simply type the command:

sysctl debug. kdb. enter=1

Note: To force a panic on the fly, issue the following command:

sysctl debug. kdb. pani c=1

96

Chapter 10 Kernel Debugging

Alternatively, if you are at the system console, you may uketakey on the keyboard. The default
break-to-debugger sequenceis] +Alt +ESC. For syscons, this sequence can be remapped and some of the
distributed maps out there do this, so check to make sure yow khe right sequence to use. There is an option
available for serial consoles that allows the use of a sin@BREAK on the console line to enter DDBgtions
BREAK_TO_DEBUGGHRthe kernel config file). It is not the default since thereatet of serial adapters around that
gratuitously generate a BREAK condition, for example whelipg the cable.

The third way is that any panic condition will branch to DDBhE kernel is configured to use it. For this reason, it is
not wise to configure a kernel with DDB for a machine runningttended.

To obtain the unattended functionality, add:

options KDB_UNATTENDED

to the kernel configuration file and rebuild/reinstall.

The DDB commands roughly resemble sogde commands. The first thing you probably need to do is to set a
breakpoint:

break function-nane address

Numbers are taken hexadecimal by default, but to make thstimcli from symbol names; hexadecimal numbers
starting with the lettera-f need to be preceded witk (this is optional for other numbers). Simple expressioes ar
allowed, for examplefunction-name + 0x103

To exit the debugger and continue execution, type:
conti nue
To get a stack trace, use:

trace

Note: Note that when entering DDB via a hot-key, the kernel is currently servicing an interrupt, so the stack trace
might be not of much use to you.

If you want to remove a breakpoint, use

del
del address-expression

The first form will be accepted immediately after a breakpbity and deletes the current breakpoint. The second
form can remove any breakpoint, but you need to specify theteaddress; this can be obtained from:

show b
or:

show br eak

To single-step the kernel, try:

97

Chapter 10 Kernel Debugging
S

This will step into functions, but you can make DDB trace thamil the matching return statement is reached by:
n

Note: This is different from gdb’s next statement; it is like gdb’s finish . Pressing n more than once will cause a
continue.

To examine data from memory, use (for example):

x/ wx Oxf0133f e0, 40
x/ hd db_syntab_space
x/ bc termbuf, 10

x/'s stringbuf

for word/halfword/byte access, and hexadecimal/decthaliacter/ string display. The number after the comma is
the object count. To display the next 0x10 items, simply use:

x , 10
Similarly, use
x/ia foofunc, 10

to disassemble the first 0x10 instructionsaffunc , and display them along with their offset from the beginnifig
foofunc

To modify memory, use the write command:

w b ternbuf Oxa Oxb O
w w Oxf 0010030 0 O

The command modifieth(h/w) specifies the size of the data to be written, the first folimpexpression is the
address to write to and the remainder is interpreted as datate to successive memory locations.

If you need to know the current registers, use:

show reg

Alternatively, you can display a single register value liy. e.

p $eax

and modify it by:

set $eax new val ue

Should you need to call some kernel functions from DDB, singaly:
call func(argl, arg2, ...)

The return value will be printed.

98

Chapter 10 Kernel Debugging
For a ps(1) style summary of all running processes, use:
ps

Now you have examined why your kernel failed, and you wistetmiot. Remember that, depending on the severity
of previous malfunctioning, not all parts of the kernel ntigtill be working as expected. Perform one of the
following actions to shut down and reboot your system:

pani c

This will cause your kernel to dump core and reboot, so youatan analyze the core on a higher level wgittb .
This command usually must be followed by anotbmttinue statement.

call boot (0)

Might be a good way to cleanly shut down the running systmg() all disks, and finally, in some cases, reboot.
As long as the disk and filesystem interfaces of the kernehardamaged, this could be a good way for an almost
clean shutdown.

call cpu_reset()

This is the final way out of disaster and almost the same asdnitie Big Red Button.

If you need a short command summary, simply type:

hel p

Itis highly recommended to have a printed copy of the ddb@)ual page ready for a debugging session.
Remember that it is hard to read the on-line manual whilelsistepping the kernel.

10.5 On-Line Kernel Debugging Using Remote GDB

This feature has been supported since FreeBSD 2.2, anctitially a very neat one.

GDB has already supporteemote debuggintpr a long time. This is done using a very simple protocol glan

serial line. Unlike the other methods described above, yilineed two machines for doing this. One is the host
providing the debugging environment, including all thersas, and a copy of the kernel binary with all the symbols
in it, and the other one is the target machine that simply eusignilar copy of the very same kernel (but stripped of
the debugging information).

You should configure the kernel in question withnfig -g i building the “traditional” way. If building the “new”
way, make sure thatakeoptions DEBUG=-g is in the configuration. In both cases, incluneBin the

configuration, and compile it as usual. This gives a largatyirdue to the debugging information. Copy this kernel
to the target machine, strip the debugging symbols off wiib -x , and boot it using thed boot option. Connect
the serial line of the target machine that has "flags 080" sésaiart device to any serial line of the debugging host.
See uart(4) for information on how to set the flags on an uasitdeNow, on the debugging machine, go to the
compile directory of the target kernel, and staib:

% kgdb ker nel

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the con ditions.
There is absolutely no warranty for GDB; type "show warranty " for details.

99

Chapter 10 Kernel Debugging

GDB 4.16 (i386-unknown-freebsd),
Copyright 1996 Free Software Foundation, Inc...
(kgdb)

Initialize the remote debugging session (assuming thesknsal port is being used) by:

(kgdb) target remote /dev/cuauO

Now, on the target host (the one that entered DDB right befees starting the device probe), type:
Debugger("Boot flags requested debugger")

Stopped at Debugger+0x35: movb $0, edata+0x51bc

db> gdb

DDB will respond with:

Next trap will enter GDB remote protocol mode

Every time you typedb, the mode will be toggled between remote GDB and local DDRurlier to force a next
trap immediately, simply type (step). Your hosting GDB will now gain control over the targernel:

Remote debugging using /dev/cuau0

Debugger (msg=0xf01b0383 "Boot flags requested debugger”)
at ../../i386/i386/db _interface.c:257
(kgdb)

You can use this session almost as any other GDB sessioundinglfull access to the source, running it in gud-mode
inside an Emacs window (which gives you an automatic sourde display in another Emacs window), etc.

10.6 Debugging a Console Driver

Since you need a console driver to run DDB on, things are mamgticated if the console driver itself is failing.
You might remember the use of a serial console (either wittifieal boot blocks, or by specifying at theBoot:
prompt), and hook up a standard terminal onto your first spag. DDB works on any configured console driver,
including a serial console.

10.7 Debugging Deadlocks

You may experience so called deadlocks, the situation wheystem stops doing useful work. To provide a helpful
bug report in this situation, use ddb(4) as described allnekide the output ofs andtrace for suspected
processes in the report.

If possible, consider doing further investigation. Thegiptbelow is especially useful if you suspect that a deddloc
occurs in the VFS layer. Add the following options

makeoptions DEBUG=-g
options INVARIANTS
options INVARIANT_SUPPORT
options WITNESS
options DEBUG_LOCKS

100

Chapter 10 Kernel Debugging

options DEBUG_VFS_LOCKS
options DIAGNOSTIC

to the kernel configuration file. When a deadlock occurs, fitaah to the output of th@s command, provide
information from theshow pcpu , show allpcpu , show locks ,show alllocks , show lockedvnods and
alltrace

To obtain meaningful backtraces for threaded processeshread thread-id to switch to the thread stack, and
do a backtrace witkvhere .

10.8 Kernel debugging with Dcons

dcons(4) is a very simple console driver that is not directlgnected with any physical devices. It just reads and
writes characters from and to a buffer in a kernel or loadae @ its simple nature, it is very useful for kernel
debugging, especially with a FireWire® device. CurrerfiggeBSD provides two ways to interact with the buffer
from outside of the kernel using dconschat(8).

10.8.1 Dcons over FireWire®

Most FireWire (IEEE1394) host controllers are based on tHE€Ospecification that supports physical access to the
host memory. This means that once the host controller igiiziéed, we can access the host memory without the help
of software (kernel). We can exploit this facility for ingation with dcons(4). dcons(4) provides similar functilitya

as a serial console. It emulates two serial ports, one focaéhsole and DDB, the other for GDB. Because remote
memory access is fully handled by the hardware, the dcohs®r is accessible even when the system crashes.

FireWire devices are not limited to those integrated intdhratboards. PCI cards exist for desktops, and a cardbus
interface can be purchased for laptops.

10.8.1.1 Enabling FireWire and Dcons support on the targetm achine

To enable FireWire and Dcons support in the kernel oténget machine

« Make sure your kernel supporsons , dcons_crom andfirewire . Dcons should be statically linked with the
kernel. Fordcons_crom andfirewire , modules should be OK.

- Make sure physical DMA is enabled. You may need to direwire.phydma_enable=1 to
/boot/loader.conf

- Add options for debugging.
« Adddcons_gdb=1 in /boot/loader.conf if you use GDB over FireWire.
- Enabledcons in /etc/ttys

- Optionally, to forcedcons to be the high-level console, atid.firewire.dcons_crom.force_console=1 to
loader.conf

To enable FireWire and Dcons support in loader(8) on i386 &4
Add LOADER_FIREWIRE_SUPPORT=YHS$/etc/make.conf and rebuild loader(8):

cd /sys/boot/i 386 && make cl ean && make && nake install

101

Chapter 10 Kernel Debugging

To enable dcons(4) as an active low-level console bmdd multicons="YES" to /boot/loader.conf

Here are a few configuration examples. A sample kernel coraigun file would contain:

device dcons

device dcons_crom

options KDB

options DDB

options GDB

options ALT_BREAK_TO_DEBUGGER

And a sampléboot/loader.conf would contain:

dcons_crom_load="YES"

dcons_gdb=1

boot_multicons="YES"
hw.firewire.phydma_enable=1
hw.firewire.dcons_crom.force_console=1

10.8.1.2 Enabling FireWire and Dcons support on the host mac hine

To enable FireWire support in the kernel on tiest machine

kldload firewire

Find out the EUI64 (the unique 64 bit identifier) of the Fire@/host controller, and use fwcontrol(8)amesg to
find the EUI64 of the target machine.

Run dconschat(8), with:

dconschat -e \# -br -G 12345 -t 00-11-22-33-44-55-66-77

The following key combinations can be used once dconschiat(@nning:

~. Disconnect

~ Ctrl+B ALT BREAK

~ Ctrl+R RESET target

~ Ctrl+z Suspend dconschat

Attach remote GDB by starting kgdb(1) with a remote debuggiession:

kgdb -r :12345 kernel

10.8.1.3 Some general tips
Here are some general tips:

To take full advantage of the speed of FireWire, disableratieev console drivers:

conscontrol delete ttydO # serial console
conscontrol delete consolectl # video/keyboard

102

Chapter 10 Kernel Debugging

There exists a GDB mode for emacs(1); this is what you wildeeadd to youremacs :

(setq gud- gdba- comrand-nanme "kgdb -a -a -a -r :12345")
(setq gdb-many-wi ndows t)

(xterm nouse- node 1)

M x gdba

And for DDD (devel/ddd):

remote serial protocol

LANG=C ddd --debugger kgdb -r :12345 kernel

live core debug

LANG=C ddd --debugger kgdb kernel /dev/fwmem0.2

10.8.2 Dcons with KVM

We can directly read the dcons(4) buffer ydav/mem for live systems, and in the core dump for crashed systems.
These give you similar output timesg -a , but the dcons(4) buffer includes more information.

10.8.2.1 Using Dcons with KVM
To use dcons(4) with KVM:

Dump a dcons(4) buffer of a live system:
dconschat -1

Dump a dcons(4) buffer of a crash dump:
dconschat -1 -M vntore. XX

Live core debugging can be done via:

fwcontrol -mtarget_eui 64
kgdb kernel /dev/fwren0.2

10.9 Glossary of Kernel Options for Debugging

This section provides a brief glossary of compile-time koptions used for debugging:

- options KDB : compiles in the kernel debugger framework. Requirecfions DDB andoptions GDB .
Little or no performance overhead. By default, the debuggkbe entered on panic instead of an automatic
reboot.

« options KDB_UNATTENDED: change the default value of thiebug.debugger_on_panic sysctl to 0, which
controls whether the debugger is entered on panic. dhtons KDB is not compiled into the kernel, the
behavior is to automatically reboot on panic; when it is cdetpinto the kernel, the default behavior is to drop

103

Chapter 10 Kernel Debugging

into the debugger unlesptions KDB_UNATTENDED is compiled in. If you want to leave the kernel debugger
compiled into the kernel but want the system to come back lgsaryou’re on-hand to use the debugger for
diagnostics, use this option.

options KDB_TRACE : change the default value of tidebug.trace_on_panic sysctl to 1, which controls
whether the debugger automatically prints a stack traceaoicpEspecially if running witloptions
KDB_UNATTENDEDhis can be helpful to gather basic debugging informatiothe serial or firewire console
while still rebooting to recover.

options DDB : compile in support for the console debugger, DDB. Thisraxttve debugger runs on whatever the
active low-level console of the system is, which includes\tldeo console, serial console, or firewire console. It
provides basic integrated debugging facilities, suchaskdracing, process and thread listing, dumping of lock
state, VM state, file system state, and kernel memory managiemDB does not require software running on a
second machine or being able to generate a core dump or fulbggng kernel symbols, and provides detailed
diagnostics of the kernel at run-time. Many bugs can be flilygnosed using only DDB output. This option
depends options KDB .

options GDB : compile in support for the remote debugger, GDB, which gaerate over serial cable or firewire.
When the debugger is entered, GDB may be attached to indpectige contents, generate stack traces, etc. Some
kernel state is more awkward to access than in DDB, whichlestalgenerate useful summaries of kernel state
automatically, such as automatically walking lock debaggir kernel memory management structures, and a
second machine running the debugger is required. On the loéimel, GDB combines information from the kernel
source and full debugging symbols, and is aware of full diatecgire definitions, local variables, and is scriptable.
This option is not required to run GDB on a kernel core dumps Diption depends ooptions KDB .

options BREAK_TO_DEBUGGERoptions ALT_BREAK_TO_DEBUGGERallow a break signal or alternative
signal on the console to enter the debugger. If the systemshaithout a panic, this is a useful way to reach the
debugger. Due to the current kernel locking, a break sigeaégated on a serial console is significantly more
reliable at getting into the debugger, and is generallymeoended. This option has little or no performance
impact.

options INVARIANTS : compile into the kernel a large number of run-time assentivzecks and tests, which
constantly test the integrity of kernel data structurestaednvariants of kernel algorithms. These tests can be
expensive, so are not compiled in by default, but help pmuiseful "fail stop™" behavior, in which certain classes
of undesired behavior enter the debugger before kernelbdataption occurs, making them easier to debug. Tests
include memory scrubbing and use-after-free testing, wiione of the more significant sources of overhead.
This option depends aoptions INVARIANT_SUPPORT .

options INVARIANT_SUPPORT : many of the tests presentaptions INVARIANTS require modified data
structures or additional kernel symbols to be defined.

options WITNESS : this option enables run-time lock order tracking and vesitiion, and is an invaluable tool for
deadlock diagnosis. WITNESS maintains a graph of acquaekidrders by lock type, and checks the graph at
each acquire for cycles (implicit or explicit). If a cycledstected, a warning and stack trace are generated to the
console, indicating that a potential deadlock might haveuoed. WITNESS is required in order to use thew

locks , show witness andshow alllocks ~ DDB commands. This debug option has significant performance
overhead, which may be somewhat mitigated through the usgtiohs WITNESS_SKIPSPIN . Detailed
documentation may be found in witness(4).

options WITNESS_SKIPSPIN : disable run-time checking of spinlock lock order with WIESS. As spin locks
are acquired most frequently in the scheduler, and scheewdats occur often, this option can significantly speed
up systems running with WITNESS. This option dependsgions WITNESS .

104

Chapter 10 Kernel Debugging

options WITNESS_KDB : change the default value of thiebug.witness.kdb sysctl to 1, which causes
WITNESS to enter the debugger when a lock order violatioretected, rather than simply printing a warning.
This option depends asptions WITNESS .

options SOCKBUF_DEBUG. perform extensive run-time consistency checking on sool#ers, which can be
useful for debugging both socket bugs and race conditiopsdtocols and device drivers that interact with
sockets. This option significantly impacts network perfanoe, and may change the timing in device driver races.

options DEBUG_VFS_LOCKS: track lock acquisition points for lockmgr/vnode lockspaxding the amount of
information displayed bghow lockedvnods in DDB. This option has a measurable performance impact.

options DEBUG_MEMGUARDa replacement for the malloc(9) kernel memory allocatat tfses the VM system
to detect reads or writes from allocated memory after fresalls may be found in memguard(9). This option has
a significant performance impact, but can be very helpfukibutyging kernel memory corruption bugs.

options DIAGNOSTIC : enable additional, more expensive diagnostic tests dlom{ines ofoptions
INVARIANTS.

105

V. Architectures

Chapter 11 x86 Assembly Language
Programming

This chapter was written by G. Adam Stanislaadanm@ edpri nce. net >.

11.1 Synopsis

Assembly language programming under UNIX is highly undoentad. It is generally assumed that no one would
ever want to use it because various UNIX systems run on diftanicroprocessors, so everything should be written
in C for portability.

In reality, C portability is quite a myth. Even C programs dée be modified when ported from one UNIX to
another, regardless of what processor each runs on. Tipwath a program is full of conditional statements
depending on the system it is compiled for.

Even if we believe that all of UNIX software should be writi@nC, or some other high-level language, we still need
assembly language programmers: Who else would write th@eesf C library that accesses the kernel?

In this chapter | will attempt to show you how you can use asdgimanguage writing UNIX programs, specifically
under FreeBSD.

This chapter does not explain the basics of assembly lamgTdgre are enough resources about that (for a complete
online course in assembly language, see Randall Hyde'sfAssembly Language (http://webster.cs.ucr.edu/); or if
you prefer a printed book, take a look at Jeff Duntemann’'sAdsy Language Step-by-Step
(http://www.int80h.org/cgi-bin/isbn?isbn=0471375288lowever, once the chapter is finished, any assembly
language programmer will be able to write programs for FRBjuickly and efficiently.

Copyright © 2000-2001 G. Adam Stanislav. All rights resetve

11.2 The Tools

11.2.1 The Assembler

The most important tool for assembly language programnsitigg assembler, the software that converts assembly
language code into machine language.

Two very different assemblers are available for FreeBSe Smms(1), which uses the traditional UNIX assembly
language syntax. It comes with the system.

The other idusr/ports/devel/nasm It uses the Intel syntax. Its main advantage is that it caarable code for many
operating systems. It needs to be installed separatelis bompletely free.

This chapter usesasmsyntax because most assembly language programmers cantinggBSD from other
operating systems will find it easier to understand. Andahbse, quite frankly, that is what | am used to.

11.2.2 The Linker

The output of the assembler, like that of any compiler, needh® linked to form an executable file.

107

Chapter 11 x86 Assembly Language Programming

The standard Id(1) linker comes with FreeBSD. It works wiite tode assembled with either assembler.

11.3 System Calls

11.3.1 Default Calling Convention

By default, the FreeBSD kernel uses the C calling convenkarther, although the kernel is accessed using
80h, it is assumed the program will call a function that issines30h , rather than issuingit 80h directly.

This convention is very convenient, and quite superior &oNficrosoft convention used by MS-DOS. Why? Because
the UNIX convention allows any program written in any lange&o access the kernel.

An assembly language program can do that as well. For exampleould open a file:

kernel:
int 80h ;. Call kernel
ret

open:
push dword mode

push dword flags
push dword path

mov eax, 5

call kernel

add esp, byte 12
ret

This is a very clean and portable way of coding. If you needoid fhe code to a UNIX system which uses a different
interrupt, or a different way of passing parameters, all yead to change is the kernel procedure.

But assembly language programmers like to shave off cy€Cles above example requiresall/ret combination.
We can eliminate it bypush ing an extra dword:

open:
push dword mode
push dword flags
push dword path

mov eax, 5

push eax ; Or any other dword
int 80h

add esp, byte 16

Thes that we have placed iBAXidentifies the kernel function, in this casgen .

11.3.2 Alternate Calling Convention

FreeBSD is an extremely flexible system. It offers other wafysalling the kernel. For it to work, however, the
system must have Linux emulation installed.

108

Chapter 11 x86 Assembly Language Programming

Linux is a UNIX like system. However, its kernel uses the saystem-call convention of passing parameters in
registers MS-DOS does. As with the UNIX convention, the tiorcnumber is placed iBAX The parameters,
however, are not passed on the stack b&EBX, ECX, EDX, ESI, EDI, EBP

open:
mov eax, 5
mov ebx, path
mov ecx, flags
mov edx, mode
int 80h

This convention has a great disadvantage over the UNIX wdgaat as far as assembly language programming is
concerned: Every time you make a kernel call you npush the registers, thepop them later. This makes your
code bulkier and slower. Nevertheless, FreeBSD gives ydwie.

If you do choose the Linux convention, you must let the sydtaow about it. After your program is assembled and
linked, you need to brand the executable:

% brandel f -t Linux filenane

11.3.3 Which Convention Should You Use?

If you are coding specifically for FreeBSD, you should alwags the UNIX convention: It is faster, you can store
global variables in registers, you do not have to brand tlee@table, and you do not impose the installation of the
Linux emulation package on the target system.

If you want to create portable code that can also run on Ligiaw,will probably still want to give the FreeBSD users
as efficient a code as possible. | will show you how you canmagdish that after | have explained the basics.

11.3.4 Call Numbers

To tell the kernel which system service you are calling, elide number irEAX Of course, you need to know what
the number is.

11.3.4.1 The syscal | s File

The numbers are listed Byscalls . locate syscalls finds this file in several different formats, all produced
automatically fromsyscalls.master

You can find the master file for the default UNIX calling contien in /usr/src/sys/kern/syscalls.master
If you need to use the other convention implemented in theskemulation mode, read
lusr/src/sys/i386/linux/syscalls.master

Note: Not only do FreeBSD and Linux use different calling conventions, they sometimes use different numbers
for the same functions.

syscalls.master describes how the call is to be made:

0 STD NOHIDE { int nosys(void); } syscall nosys_args int

109

Chapter 11 x86 Assembly Language Programming

1 STD NOHIDE { void exit(int rval); } exit rexit_args void

2 STD POSIX { int fork(void); }

3 STD POSIX { ssize_t read(int fd, void *buf, size_t nbyte); }

4 STD POSIX { ssize_t write(int fd, const void *buf, size_t nbyte); }
5 STD POSIX { int open(char *path, int flags, int mode); }

6 STD POSIX { int close(int fd); }

etc...

It is the leftmost column that tells us the number to placEAxX

The rightmost column tells us what parametergush . They arepush edfrom right to left

For example, tapen a file, we need tpush themode first, thenflags , then the address at which thath is
stored.

11.4 Return Values

A system call would not be useful most of the time if it did neturn some kind of a value: The file descriptor of an
open file, the number of bytes read to a buffer, the system ttace

Additionally, the system needs to inform us if an error oscié file does not exist, system resources are exhausted,
we passed an invalid parameter, etc.

11.4.1 Man Pages

The traditional place to look for information about vari@ystem calls under UNIX systems are the manual pages.
FreeBSD describes its system calls in section 2, sometimsescition 3.

For example, open(2) says:

If successfulppen() returns a non-negative integer, termed a file descripteogtlirns-1 on failure, and setsrrmo to
indicate the error.

The assembly language programmer new to UNIX and FreeBSDmvilediately ask the puzzling question: Where
iserrno and how do | get to it?

Note: The information presented in the manual pages applies to C programs. The assembly language
programmer needs additional information.

11.4.2 Where Are the Return Values?

Unfortunately, it depends... For most system calls it iEAX but not for all. A good rule of thumb, when working
with a system call for the first time, is to look for the retumdwe inEAX If it is not there, you need further research.

110

Chapter 11 x86 Assembly Language Programming

Note: | am aware of one system call that returns the value in EDX SYS_fork . All others | have worked with use
EAX But | have not worked with them all yet.

Tip: If you cannot find the answer here or anywhere else, study libc source code and see how it interfaces with
the kernel.

11.4.3 Where Is errno?

Actually, nowhere...

errno is part of the C language, not the UNIX kernel. When accedsingel services directly, the error code is
returned inEAX the same register the proper return value generally ends up

This makes perfect sense. If there is no error, there is o eode. If there is an error, there is no return value. One
register can contain either.

11.4.4 Determining an Error Occurred
When using the standard FreeBSD calling conventioncéihg flag is cleared upon success, set upon failure.

When using the Linux emulation mode, the signed valugAKis non-negative upon success, and contains the return
value. In case of an error, the value is negative, Jeetmo

11.5 Creating Portable Code

Portability is generally not one of the strengths of assgrasiguage. Yet, writing assembly language programs for
different platforms is possible, especially withsm | have written assembly language libraries that can be
assembled for such different operating systems as Windo@$eeeBSD.

Itis all the more possible when you want your code to run oniatforms which, while different, are based on
similar architectures.

For example, FreeBSD is UNIX, Linux is UNIX like. | only mentied three differences between them (from an
assembly language programmer’s perspective): The calbngention, the function numbers, and the way of
returning values.

11.5.1 Dealing with Function Numbers

In many cases the function numbers are the same. Howeverpdwn they are not, the problem is easy to deal with:
Instead of using numbers in your code, use constants whiglhgee declared differently depending on the target
architecture:

%ifdef LINUX
%define SYS_execve 11
%else

111

Chapter 11 x86 Assembly Language Programming

%define SYS_execve 59
%endif

11.5.2 Dealing with Conventions

Both, the calling convention, and the return value @heo problem) can be resolved with macros:
%ifdef LINUX

%macro system O

call kernel
%endmacro
align 4
kernel:
push ebx
push ecx
push edx
push esi
push edi
push ebp
mov ebx, [esp+32]
mov ecx, [esp+36]
mov edx, [esp+40]
mov esi, [esp+44]
mov ebp, [esp+48]
int 80h
pop ebp
pop edi
pop esi
pop edx
pop ecx
pop ebx
or eax, eax
IS .errno
clc
ret
.errno:
neg eax
stc
ret
%else

%macro system O
int 80h
%endmacro

112

Chapter 11 x86 Assembly Language Programming

%endif

11.5.3 Dealing with Other Portability Issues

The above solutions can handle most cases of writing codelderbetween FreeBSD and Linux. Nevertheless, with
some kernel services the differences are deeper.

In that case, you need to write two different handlers fos¢hparticular system calls, and use conditional assembly.
Luckily, most of your code does something other than calfivegkernel, so usually you will only need a few such
conditional sections in your code.

11.5.4 Using a Library

You can avoid portability issues in your main code altogellyewriting a library of system calls. Create a separate
library for FreeBSD, a different one for Linux, and yet otlibraries for more operating systems.

In your library, write a separate function (or procedurggdti prefer the traditional assembly language terminology)
for each system call. Use the C calling convention of pagsargmeters. But still useAXto pass the call number in.
In that case, your FreeBSD library can be very simple, as maagningly different functions can be just labels to the
same code:

sys.open:
sys.close:
[etc...]
int 80h
ret

Your Linux library will require more different functions.u® even here you can group system calls using the same
number of parameters:

sys.exit:
sys.close:
[etc... one-parameter functions]
push ebx
mov ebx, [esp+12]
int 80h
pop ebx
jmp sys.return
sys.return:
or eax, eax
IS sys.err
clc
ret
sys.err:
neg eax
stc
ret

113

Chapter 11 x86 Assembly Language Programming

The library approach may seem inconvenient at first becausguires you to produce a separate file your code
depends on. But it has many advantages: For one, you onlytoeeite it once and can use it for all your programs.
You can even let other assembly language programmers use#rhaps use one written by someone else. But
perhaps the greatest advantage of the library is that yale can be ported to other systems, even by other
programmers, by simply writing a new library without any ngas to your code.

If you do not like the idea of having a library, you can at lgalsice all your system calls in a separate assembly
language file and link it with your main program. Here, agalhporters have to do is create a new object file to link
with your main program.

11.5.5 Using an Include File

If you are releasing your software as (or with) source code,gan use macros and place them in a separate file,
which you include in your code.

Porters of your software will simply write a new include filo library or external object file is necessary, yet your
code is portable without any need to edit the code.

Note: This is the approach we will use throughout this chapter. We will name our include file system.inc , and
add to it whenever we deal with a new system call.

We can start ousystem.inc by declaring the standard file descriptors:

%define stdin 0
%define stdout 1
%define stderr 2

Next, we create a symbolic name for each system call:

%define SYS_nosys 0
%define SYS_exit 1
%define SYS_fork 2
%define SYS read 3
%define SYS_write 4

; [ete...]

We add a short, non-global procedure with a long name, so wetlaccidentally reuse the name in our code:

section text

align 4

access.the.bsd.kernel:
int 80h
ret

We create a macro which takes one argument, the syscall numbe

%macro system 1

mov eax, %l
call access.the.bsd.kernel
%endmacro

114

Chapter 11 x86 Assembly Language Programming

Finally, we create macros for each syscall. These macrestalarguments.

%macro sys.exit

%macro sys.fork

0

system SYS_exit
%endmacro

0

system SYS_fork
%endmacro

%macro sys.read 0
system SYS_read
%endmacro

%macro sys.write 0
system SYS_write
%endmacro

; [etc...]

Go ahead, enter it into your editor and save isysem.inc

11.6 Our First Program

. We will add more to it as we discuss more syscalls.

We are now ready for our first program, the mandatéejlo, World!

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

%include 'system.inc’

section .data

hello
hbytes

db 'Hello, World!", 0Ah
equ $-hello

section .text

globa
_start:
push
push
push

_start

dword hbytes
dword hello
dword stdout

sys.write

push

sys.exit

dword 0

Here is what it does: Line 1 includes the defines, the macrmkttee code fronsystem.inc

Lines 3-5 are the data: Line 3 starts the data section/segiriea 4 contains the string "Hello, World!" followed by
a new line QAh). Line 5 creates a constant that contains the length of thregdrom line 4 in bytes.

Lines 7-16 contain the code. Note that FreeBSD useslfhfide format for its executables, which requires every

program to start at the point labelestart

(or, more precisely, the linker expects that). This label taebe global.

Lines 10-13 ask the system to wrlibytes bytes of thehello string tostdout

115

Chapter 11 x86 Assembly Language Programming

Lines 15-16 ask the system to end the program with the retitrewof0. TheSYS_exit syscall never returns, so
the code ends there.

Note: If you have come to UNIX from MS-DOS assembly language background, you may be used to writing
directly to the video hardware. You will never have to worry about this in FreeBSD, or any other flavor of UNIX. As
far as you are concerned, you are writing to a file known as stdout . This can be the video screen, or a telnet
terminal, or an actual file, or even the input of another program. Which one it is, is for the system to figure out.

11.6.1 Assembling the Code

Type the code (except the line numbers) in an editor, andisava file namechello.asm . You neechasmto
assemble it.

11.6.1.1 Installing nasm

If you do not havenasm type:

% su

Password: your root password
cd /usr/ports/devel / nasm
make install

exit

%

You may typemake install clean instead of justrake i nstall if you do not want to keepasmsource code.

Either way, FreeBSD will automatically downloadsmfrom the Internet, compile it, and install it on your system.

Note: If your system is not FreeBSD, you need to get nasm from its home page
(https://sourceforge.net/projects/nasm). You can still use it to assemble FreeBSD code.

Now you can assemble, link, and run the code:

% nasm -f elf hello.asm
%Ild -s -o hello hello.o
% ./hello

Hello, World!

%

11.7 Writing UNIX® Filters

A common type of UNIX application is a filter—a program thaads data from thetdin , processes it somehow,
then writes the result tetdout

In this chapter, we shall develop a simple filter, and leanu teoread fromstdin ~ and write tostdout . This filter
will convert each byte of its input into a hexadecimal nunfloiowed by a blank space.

116

%include 'system.inc’

section .data

hex db '0123456789ABCDEF’
buffer db 0,0, "’

section text

global _start

_start:

; read a byte from stdin
push dword 1

push dword buffer
push dword stdin

sys.read

add esp, byte 12
or eax, eax

je .done

; convert it to hex
movzx eax, byte [buffer]

mov edx, eax
shr dl, 4

mov dl, [hex+edx]
mov [buffer], dl
and al, OFh

mov al, [hex+eax]
mov [buffer+1], al
; print it

push dword 3
push dword buffer

push dword stdout
sys.write

add esp, byte 12
jmp short _start

.done:
push dword 0O
sys.exit

Chapter 11 x86 Assembly Language Programming

In the data section we create an array calfiexl. It contains the 16 hexadecimal digits in ascending ordee. drray
is followed by a buffer which we will use for both input and put. The first two bytes of the buffer are initially set
to 0. This is where we will write the two hexadecimal digits (thestfbyte also is where we will read the input). The

third byte is a space.

The code section consists of four parts: Reading the bytejerting it to a hexadecimal number, writing the result,

and eventually exiting the program.

To read the byte, we ask the system to read one bytedtdim , and store it in the first byte of thauffer . The
system returns the number of bytes rea@Ax This will be 1 while data is coming, 00, when no more input data is
available. Therefore, we check the valueeaix If it is 0, we jump to.done , otherwise we continue.

Note: For simplicity sake, we are ignoring the possibility of an error condition at this time.

117

Chapter 11 x86 Assembly Language Programming

The hexadecimal conversion reads the byte fronbthiier into EAX or actually justL, while clearing the
remaining bits oEAXto zeros. We also copy the byteE@Xbecause we need to convert the upper four bits (nibble)
separately from the lower four bits. We store the result efitst two bytes of the buffer.

Next, we ask the system to write the three bytes of the buféerthe two hexadecimal digits and the blank space, to
stdout . We then jump back to the beginning of the program and prabessext byte.

Once there is no more input left, we ask the system to exit mgnam, returning a zero, which is the traditional
value meaning the program was successful.

Go ahead, and save the code in a file namedasm , then type the following (theD means press the control key
and typeD while holding the control key down):

% nasm -f elf hex.asm

%1ld -s -0 hex hex.o

% . / hex

Hel I o, Worl d!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 OA Here | cone!
48 65 72 65 20 49 20 63 6F 6D 65 21 OA "D %

Note: If you are migrating to UNIX from MS-DOS, you may be wondering why each line ends with 0A instead of
0D OA. This is because UNIX does not use the cr/If convention, but a "new line" convention, which is 0A in
hexadecimal.

Can we improve this? Well, for one, it is a bit confusing bessaance we have converted a line of text, our input no
longer starts at the beginning of the line. We can modify jprimt a new line instead of a space after eash

%include 'system.inc’
section .data
hex db '0123456789ABCDEF’
buffer db 0, 0, "’
section text
global _start
_start:
mov cl, '’
.loop:

; read a byte from stdin
push dword 1

push dword buffer
push dword stdin

sys.read

add esp, byte 12
or eax, eax

je .done

; convert it to hex
movzx eax, byte [buffer]

118

Chapter 11 x86 Assembly Language Programming

mov [buffer+2], cl

cmp al, OAh

jne .hex

mov [buffer+2], al
.hex:

mov edx, eax

shr dl, 4

mov dl, [hex+edx]

mov [buffer], dl

and al, OFh

mov al, [hex+eax]

mov [buffer+1], al

; print it

push dword 3

push dword buffer

push dword stdout

sys.write

add esp, byte 12

jmp short .loop
.done:

push dword 0O
sys.exit

We have stored the space in theregister. We can do this safely because, unlike Microsoftddivs, UNIX system
calls do not modify the value of any register they do not usetorn a value in.

That means we only need to s&it once. We have, therefore, added a new labep and jump to it for the next
byte instead of jumping atstart . We have also added theex label so we can either have a blank space or a new
line as the third byte of thibuffer

Once you have changééx.asm to reflect these changes, type:

% nasm -f elf hex.asm

%1ld -s -0 hex hex.o

% . / hex

Hel o, Worl d!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 OA
Here | cone!

48 65 72 65 20 49 20 63 6F 6D 65 21 OA

"D %

That looks better. But this code is quite inefficient! We at@king a system call for every single byte twice (once to
read it, another time to write the output).

11.8 Buffered Input and Output

We can improve the efficiency of our code by buffering our ingmd output. We create an input buffer and read a
whole sequence of bytes at one time. Then we fetch them onadfram the buffer.

119

Chapter 11 x86 Assembly Language Programming

We also create an output buffer. We store our output in itl itng full. At that time we ask the kernel to write the
contents of the buffer tetdout

The program ends when there is no more input. But we still he@gk the kernel to write the contents of our output
buffer tostdout one last time, otherwise some of our output would make it éodiitput buffer, but never be sent
out. Do not forget that, or you will be wondering why some ofiyoutput is missing.

%include 'system.inc’
%define BUFSIZE 2048
section .data
hex db '0123456789ABCDEF’
section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE
section text
global _start
_start:

sub eax, eax

sub ebx, ebx

sub ecx, ecx

mov edi, obuffer
.loop:

; read a byte from stdin
call getchar

; convert it to hex

mov dl, al
shr al, 4
mov al, [hex+eax]
call putchar
mov al, di
and al, OFh
mov al, [hex+eax]
call putchar
mov al, '’
cmp dl, OAh
jne .put
mov al, dl
.put:
call putchar
jmp short .loop
align 4
getchar:
or ebx, ebx

120

jne
call

fetch:
lodsb
dec
ret

read:
push
mov
push
push
sys.read
add
mov
or
je
sub
ret

align 4

.done:
call
push
sys.exit

align 4
putchar:
stosb
inc
cmp
je
ret

align 4

write:
sub
push
push
push
sys.write
add
sub
sub
ret

fetch

read

ebx

dword BUFSIZE
esi, ibuffer

esi

dword stdin

esp, byte 12
ebx, eax
eax, eax
.done

eax, eax

write

dword 0

ecx
ecx, BUFSIZE
write

edi, ecx

ecx

ed

dword stdout

esp, byte 12
eax, eax
€cx, ecx

; flush output buffer

. start of buffer

; buffer is empty now

Chapter 11 x86 Assembly Language Programming

We now have a third section in the source code, namsxd . This section is not included in our executable file, and,
therefore, cannot be initialized. We ussb instead ofdb. It simply reserves the requested size of uninitialized
memory for our use.

121

Chapter 11 x86 Assembly Language Programming

We take advantage of the fact that the system does not mdifsegisters: We use registers for what, otherwise,
would have to be global variables stored in thata section. This is also why the UNIX convention of passing
parameters to system calls on the stack is superior to theobtift convention of passing them in the registers: We
can keep the registers for our own use.

We useEDI andESI as pointers to the next byte to be read from or written to. VéeEBXandECXto keep count of
the number of bytes in the two buffers, so we know when to dumeputput to, or read more input from, the system.

Let us see how it works now:

% nasm -f el f hex.asm

%ld -s -0 hex hex.o

% . / hex

Hel I o, Worl d!

Here | cone!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 OA
48 65 72 65 20 49 20 63 6F 6D 65 21 OA

"D %

Not what you expected? The program did not print the outptitwe pressed D. That is easy to fix by inserting
three lines of code to write the output every time we have edrd a new line tOA. | have marked the three lines
with > (do not copy the > in youtiex.asm).

%include 'system.inc’
%define BUFSIZE 2048
section .data
hex db '0123456789ABCDEF’
section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE
section text
global _start
_start:

sub eax, eax

sub ebx, ebx

sub ecx, ecx

mov edi, obuffer
.loop:

; read a byte from stdin
call getchar

; convert it to hex

mov dl, al

shr al, 4

mov al, [hex+eax]
call putchar

mov al, dl

and al, OFh

122

.put:

\

align 4
getchar:

fetch:

read:

align 4
.done:

align 4
putchar:

mov al, [hex+eax]
call putchar

mov al, '’

cmp dl, OAh

jne .put

mov al, di

call putchar

cmp al, OAh

jne .loop

call write

jmp short .loop
or ebx, ebx

jne fetch

call read

lodsb

dec ebx

ret

push dword BUFSIZE
mov esi, ibuffer
push esi

push dword stdin
sys.read

add esp, byte 12
mov ebx, eax

or eax, eax

je .done

sub eax, eax

ret

call write

push dword 0O
sys.exit

stosb

inc ecx

cmp ecx, BUFSIZE
je write

ret

; flush output buffer

Chapter 11 x86 Assembly Language Programming

123

Chapter 11 x86 Assembly Language Programming

align 4
write:
sub edi, ecx . start of buffer
push ecx
push edi
push dword stdout
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

Now, let us see how it works:

% nasm -f elf hex.asm

%1ld -s -0 hex hex.o

% . / hex

Hel o, Worl d!

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 OA
Here | cone!

48 65 72 65 20 49 20 63 6F 6D 65 21 OA

D %

Not bad for a 644-byte executable, is it!

Note: This approach to buffered input/output still contains a hidden danger. | will discuss—and fix—it later, when
| talk about the dark side of buffering.

11.8.1 How to Unread a Character

Warning: This may be a somewhat advanced topic, mostly of interest to programmers familiar with the theory of
compilers. If you wish, you may skip to the next section, and perhaps read this later.

While our sample program does not require it, more soplaitgitfilters often need to look ahead. In other words,
they may need to see what the next character is (or even seliaracters). If the next character is of a certain value,
it is part of the token currently being processed. Otherwisgs not.

For example, you may be parsing the input stream for a tegtudag (e.g., when implementing a language
compiler): If a character is followed by another charaateperhaps a digit, it is part of the token you are
processing. If it is followed by white space, or some othdéueathen it is not part of the current token.

This presents an interesting problem: How to return the cleatacter back to the input stream, so it can be read
again later?

One possible solution is to store it in a character varighkn set a flag. We can modifgtchar to check the flag,
and if it is set, fetch the byte from that variable insteadhef input buffer, and reset the flag. But, of course, that
slows us down.

124

Chapter 11 x86 Assembly Language Programming

The C language has angetc() function, just for that purpose. Is there a quick way to impdat it in our code? |
would like you to scroll back up and take a look at tieechar procedure and see if you can find a nice and fast
solution before reading the next paragraph. Then come barekdnd see my own solution.

The key to returning a character back to the stream is in hoaregetting the characters to start with:
First we check if the buffer is empty by testing the valu€&BkK If it is zero, we call theead procedure.

If we do have a character available, we ustsb |, then decrease the valueE#X Thelodsb instruction is
effectively identical to:

mov al, [esi]
inc esi

The byte we have fetched remains in the buffer until the rimé tead is called. We do not know when that
happens, but we do know it will not happen until the next aafjdtchar . Hence, to "return” the last-read byte back
to the stream, all we have to do is decrease the val&Spfand increase the value BBX

ungetc:
dec esi
inc ebx
ret

But, be careful! We are perfectly safe doing this if our lcatkead is at most one character at a time. If we are
examining more than one upcoming character andugittc several times in a row, it will work most of the time,
but not all the time (and will be tough to debug). Why?

Because as long agtchar does not have to calkad , all of the pre-read bytes are still in the buffer, and our
ungetc works without a glitch. But the momepgtchar callsread , the contents of the buffer change.

We can always rely onngetc working properly on the last character we have read wéthar , but not on
anything we have read before that.

If your program reads more than one byte ahead, you havesittiea choices:
If possible, modify the program so it only reads one byte dh&his is the simplest solution.

If that option is not available, first of all determine the rmaMm number of characters your program needs to return
to the input stream at one time. Increase that number slightit to be sure, preferably to a multiple of 16—so it
aligns nicely. Then modify thevss section of your code, and create a small "spare” buffer bgftre your input
buffer, something like this:

section .bss

resb 16 ; or whatever the value you came up with
ibuffer resb BUFSIZE
obuffer resb BUFSIZE

You also need to modify youmgetc to pass the value of the byte to ungetin

ungetc:
dec esi
inc ebx
mov [esi], al
ret

125

Chapter 11 x86 Assembly Language Programming

With this modification, you can calingetc up to 17 times in a row safely (the first call will still be withthe
buffer, the remaining 16 may be either within the buffer othivi the "spare").

11.9 Command Line Arguments

Our hex program will be more useful if it can read the names of an imat output file from its command line, i.e.,
if it can process the command line arguments. But... Wher¢haay?

Before a UNIX system starts a programpiish es some data on the stack, then jumps at tet label of the
program. Yes, | said jumps, not calls. That means the dathe@ccessed by readifegp+offset] , or by simply
pop ping it.

The value at the top of the stack contains the number of cordiira@arguments. It is traditionally calledlgc , for
"argument count."

Command line arguments follow next, algc of them. These are typically referred toagv , for "argument
value(s)." That is, we getrgv[0] ,argv[l] ,.. ,argvlargc-l] . These are notthe actual arguments, but
pointers to arguments, i.e., memory addresses of the againents. The arguments themselves are
NUL-terminated character strings.

Theargv listis followed by a NULL pointer, which is simply & There is more, but this is enough for our purposes
right now.

Note: If you have come from the MS-DOS programming environment, the main difference is that each argument
is in a separate string. The second difference is that there is no practical limit on how many arguments there can
be.

Armed with this knowledge, we are almost ready for the nexsio@ ofhex.asm . First, however, we need to add a
few lines tosystem.inc

First, we need to add two new entries to our list of systemroathbers:

%define SYS_open 5
%define SYS_close 6

Then we add two new macros at the end of the file:

%macro sys.open 0
system SYS_open

%endmacro

%macro sys.close 0
system SYS_close

%endmacro

Here, then, is our modified source code:

%include 'system.inc’

%define BUFSIZE 2048

126

Chapter 11 x86 Assembly Language Programming

section .data

fd.in dd stdin

fd.out dd stdout

hex db '0123456789ABCDEF’

section .bss

ibuffer resb BUFSIZE

obuffer resb BUFSIZE

section text

align 4

err:
push dword 1 . return failure
sys.exit

align 4

global _start

_start:
add esp, byte 8 ; discard argc and argv[0]
pop ecx
jecxz .init ; N0 more arguments

; ECX contains the path to input file

push dword O ; O_RDONLY
push ecx

sys.open

ic err ; open failed

add esp, byte 8

mov [fd.in], eax

pop ecx

jecxz .init ; N0 more arguments

; ECX contains the path to output file

push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h

; O_CREAT | O_TRUNC | O_WRONLY

push ecx

sys.open

ic err

add esp, byte 12

mov [fd.out], eax
.init:

sub eax, eax

sub ebx, ebx

sub ecx, ecx

mov edi, obuffer
.loop:

127

.put:

align 4
getchar:

fetch:

read:

align 4
.done:

; read a byte from input file or stdin
call getchar

; convert it to hex

mov dl, al

shr al, 4

mov al, [hex+eax]
call putchar
mov al, di

and al, OFh
mov al, [hex+eax]
call putchar
mov al, '’
cmp dl, OAh
jne .put

mov al, dl

call putchar
cmp al, dl

jne .loop

call write

jmp short .loop
or ebx, ebx
jne fetch

call read

lodsb

dec ebx

ret

push dword BUFSIZE

mov esi, ibuffer

push esi

push dword [fd.in]
sys.read

add esp, byte 12
mov ebx, eax

or eax, eax

je .done

sub eax, eax

ret

Chapter 11 x86 Assembly Language Programming

128

Chapter 11 x86 Assembly Language Programming
call write ; flush output buffer
; close files
push dword [fd.in]

sys.close

push dword [fd.out]
sys.close

; return success
push dword 0O

sys.exit
align 4
putchar:
stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret
align 4
write:
sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret

In our.data section we now have two new variablé&sin andfd.out . We store the input and output file
descriptors here.

Inthe.text section we have replaced the referencesdm andstdout with [fd.in] and[fd.out]

The.text section now starts with a simple error handler, which dodking but exit the program with a return
value of1. The error handler is beforestart so we are within a short distance from where the errors occur.

Naturally, the program execution still begins atart . First, we removeargc andargv[0] from the stack: They
are of no interest to us (in this program, that is).

We popargv[l] to ECX This register is particularly suited for pointers, as wa bandle NULL pointers with

jecxz . If argv[1] is not NULL, we try to open the file named in the first argumerith&wise, we continue the
program as before: Reading frawlin , writing to stdout . If we fail to open the input file (e.g., it does not exist),
we jump to the error handler and quit.

If all went well, we now check for the second argument. If ithsre, we open the output file. Otherwise, we send the
output tostdout . If we fail to open the output file (e.g., it exists and we do nate the write permission), we,
again, jump to the error handler.

The rest of the code is the same as before, except we closeptleaind output files before exiting, and, as
mentioned, we usgd.in] and[fd.out]

129

Chapter 11 x86 Assembly Language Programming

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be imprb Here are a few ideas of what we could do:

- Have our error handler print a messagattterr
« Add error handlers to thead andwrite functions.
« Closestdin when we open an input filgtdout when we open an output file.

- Add command line switches, such-dsand- o, so we can list the input and output files in any order, or pggsha
read fromstdin and write to a file.

- Print a usage message if command line arguments are intorrec

| shall leave these enhancements as an exercise to the:réadeiready know everything you need to know to
implement them.

11.10 UNIX Environment

An important UNIX concept is the environment, which is defiy environment variablesSome are set by the
system, others by you, yet others by #iell, or any program that loads another program.

11.10.1 How to Find Environment Variables

| said earlier that when a program starts executing, th&stastainsargc followed by the NULL-terminatedrgv
array, followed by something else. The "something elsdiéehvironmentor, to be more precise, a
NULL-terminated array of pointers ®nvironment variablesThis is often referred to asv .

The structure oénv is the same as that afgv , a list of memory addresses followed by a NULQ) (In this case,
there is ndenvc" —we figure out where the array ends by searching for the findlINU

The variables usually come in thame=value format, but sometimes thevalue part may be missing. We need to
account for that possibility.

11.10.2 webvars

| could just show you some code that prints the environmeanséme way the UNIXnvcommand does. But |
thought it would be more interesting to write a simple asdgriamguage CGI utility.

11.10.2.1 CGlI: A Quick Overview

| have a detailed CGl tutorial (http://www.whizkidtectdggince.net/cgi-bin/tutorial) on my web site, but here is a
very quick overview of CGlI:

« The web server communicates with the CGI program by seétiMyonment variables
- The CGI program sends its outputdlout . The web server reads it from there.
« It must start with an HTTP header followed by two blank lines.

« Itthen prints the HTML code, or whatever other type of daia firoducing.

130

Chapter 11 x86 Assembly Language Programming

Note: While certain environment variables use standard names, others vary, depending on the web server. That
makes webvars quite a useful diagnostic tool.

11.10.2.2 The Code

Ourwebvarsprogram, then, must send out the HTTP header followed by $6féL mark-up. It then must read
theenvironment variablesne by one and send them out as part of the HTML page.

The code follows. | placed comments and explanations ritditle the code:

o webvars.asm nnnnnnnnnnn, F1113113ra91311100000 0

; Copyright (c) 2000 G. Adam Stanislav
; All rights reserved.

1

; Redistribution and use in source and binary forms, with or w ithout

; modification, are permitted provided that the following ¢ onditions

; are met:

; 1. Redistributions of source code must retain the above cop yright

; notice, this list of conditions and the following disclaim er.

; 2. Redistributions in binary form must reproduce the above copyright

; notice, this list of conditions and the following disclaim er in the
; documentation and/or other materials provided with the di stribution.

; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS I& AND

; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE

; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A RACULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUSCOBE LIABLE

; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY , OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SJIBITUTE GOODS

; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTRERUPTION)

; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INTRACT, STRICT
; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARSING IN ANY WAY

; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSBIBY OF

; SUCH DAMAGE.

; Version 1.0
; Started: 8-Dec-2000
; Updated: 8-Dec-2000
%include 'system.inc’
section .data
http db ‘Content-type: text/html’, 0Ah, OAh
db '<?xml version="1.0" encoding="utf-8"?>’, 0Ah
db '<IDOCTYPE html PUBLIC "-//W3C/DTD XHTML Strict//EN" ’
db "'DTD/xhtml1-strict.dtd">’, OAh
db '<html xmlns="http://www.w3.0rg/1999/xhtml" ’

131

Chapter 11 x86 Assembly Language Programming

db 'xml.lang="en" lang="en">', 0Ah
db '<head>’, 0Ah
db '<titte>Web Environment</title>’, 0Ah
db '<meta name="author" content="G. Adam Stanislav" />’, 0
db '</head>’, 0Ah, 0Ah
db '<body bgcolor="#ffffff" text="#000000" link="#0000f
db 'vlink="#840084" alink="#0000ff">’, 0Ah
db '<div class="webvars">', 0Ah
db '<h1>Web Environment</h1>’, 0Ah
db '<p>The following environment variables are def
db ‘on this web server:</p>', 0Ah, 0Ah
db '<table align="center" width="80" border="0" cellpadd
db ‘cellspacing="0" class="webvars">’, 0Ah
httplen equ $-http
left db <tr>’, 0Ah
db '<td class="name"><tt>’
leftlen equ $-left
middle db </tt></td>’, 0OAh
db '<td class="value"><tt>’
midlen equ $-middle
undef db '<i>(undefined)</i>’
undeflen equ $-undef
right db '</tt></td>', 0Ah
db '</tr>", OAh
rightlen equ $-right
wrap db '</table>’, OAh
db '</div>’, OAh
db '</body>’, 0OAh
db '</html>’, OAh, OAh
wraplen equ $-wrap
section text
global _start

start:
; First, send out all the http and xhtml stuff that is
; needed before we start showing the environment
push dword httplen
push dword http
push dword stdout
sys.write

; Now find how far on the stack the environment pointers
; are. We have 12 bytes we have pushed before "argc"
mov eax, [esp+12]

; We need to remove the following from the stack:
; The 12 bytes we pushed for sys.write

; The 4 bytes of argc

; The EAX=+*4 bytes of argv

; The 4 bytes of the NULL after argv

. Total:

132

Chapter 11 x86 Assembly Language Programming

; 20 + eax * 4

1

; Because stack grows down, we need to ADD that many bytes

;. to ESP.
lea esp, [esp+20+eax *4]
cld ; This should already be the case, but let's be sure.

; Loop through the environment, printing it out

.loop:
pop edi
or edi, edi ; Done yet?
je near .wrap
; Print the left part of HTML
push dword leftlen
push dword left
push dword stdout
sys.write
; It may be tempting to search for the '=" in the env string next
; But it is possible there is no =", so we search for the
; terminating NUL first.
mov esi, edi ; Save start of string
sub ecx, ecx
not ecx . ECX = FFFFFFFF
sub eax, eax
repne scasb
not ecx ; ECX = string length + 1
mov ebx, ecx ; Save it in EBX
; Now is the time to find '=
mov edi, esi ; Start of string
mov al, =
repne scasb
not ecx
add ecx, ebx ; Length of name
push ecx
push esi
push dword stdout
sys.write

; Print the middle part of HTML table code

push dword midlen
push dword middle
push dword stdout
sys.write

; Find the length of the value
not ecx
lea ebx, [ebx+ecx-1]

; Print "undefined" if O

133

Chapter 11 x86 Assembly Language Programming

or ebx, ebx
jne .value
mov ebx, undeflen
mov edi, undef
.value:
push ebx
push edi
push dword stdout
sys.write
; Print the right part of the table row
push dword rightlen
push dword right
push dword stdout
sys.write
; Get rid of the 60 bytes we have pushed
add esp, byte 60
;. Get the next variable
jmp .loop
.wrap:
; Print the rest of HTML
push dword wraplen
push dword wrap
push dword stdout
sys.write

; Return success
push dword 0
sys.exit

This code produces a 1,396-byte executable. Most of it &, d&t, the HTML mark-up we need to send out.

Assemble and link it as usual:

% nasm -f el f webvars.asm
%ld -s -0 webvars webvars. o

To use it, you need to uploatkbvars to your web server. Depending on how your web server is sgtaipmay
have to store it in a speciagji-bin directory, or perhaps rename it withagi extension.

Then you need to use your browser to view its output. To semutisut on my web server, please go to
http://www.int80h.org/webvars/ . If curious about the additional environment variablespre in a password
protected web directory, go tatp://www.int80h.org/private/ , using the nameasmand password

pr ogr anmer .

134

Chapter 11 x86 Assembly Language Programming

11.11 Working with Files

We have already done some basic file work: We know how to opémclase them, how to read and write them using
buffers. But UNIX offers much more functionality when it cesto files. We will examine some of it in this section,
and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file conwersiility. It always makes programming easier when we
know from the start what the end product is supposed to do.

One of the first programs | wrote for UNIX wasc (ftp:/ftp.int80h.org/unix/tuc/), a text-to-UNIX file cwerter. It
converts a text file from other operating systems to a UNIXfiéx In other words, it changes from different kind of
line endings to the newline convention of UNIX. It saves thipoit in a different file. Optionally, it converts a UNIX
text file to a DOS text file.

| have useduc extensively, but always only to convert from some other OBNbX, never the other way. | have
always wished it would just overwrite the file instead of meihg to send the output to a different file. Most of the
time, | end up using it like this:

% tuc nyfile tenpfile
% nmv tenpfile nyfile

It would be nice to have #uc, i.e.,fast tug and use it like this:

% ftuc nyfile

In this chapter, then, we will writéuc in assembly language (the origirtat is in C), and study various
file-oriented kernel services in the process.

At first sight, such a file conversion is very simple: All yowkdo do is strip the carriage returns, right?

If you answered yes, think again: That approach will work hadghe time (at least with MS DOS text files), but
will fail occasionally.

The problem is that not all non UNIX text files end their lingtwihe carriage return / line feed sequence. Some use
carriage returns without line feeds. Others combine sébéak lines into a single carriage return followed by
several line feeds. And so on.

A text file converter, then, must be able to handle any possiie endings:

- carriage return/ line feed
- carriage return

- line feed / carriage return
« line feed

It should also handle files that use some kind of a combinati¢ine above (e.g., carriage return followed by several
line feeds).

11.11.1 Finite State Machine

The problem is easily solved by the use of a technique céiltéte state machineoriginally developed by the

designers of digital electronic circuits. fhkite state machine a digital circuit whose output is dependent not only

on its input but on its previous input, i.e., on its state. Mieroprocessor is an example ofiaite state machineur
assembly language code is assembled to machine languageécim some assembly language code produces a single

135

Chapter 11 x86 Assembly Language Programming

byte of machine language, while others produce severasbptethe microprocessor fetches the bytes from the
memory one by one, some of them simply change its state rditheiproduce some output. When all the bytes of the
op code are fetched, the microprocessor produces sometpatghanges the value of a register, etc.

Because of that, all software is essentially a sequencat sistructions for the microprocessor. Nevertheless, th
concept ofiinite state machine useful in software design as well.

Our text file converter can be designed dmde state machinwith three possible states. We could call them states
0-2, but it will make our life easier if we give them symboliames:

- ordinary
. Cr
o If

Our program will start in the ordinary state. During thiststdhe program action depends on its input as follows:

- If the input is anything other than a carriage return or lieed, the input is simply passed on to the output. The
state remains unchanged.

- Ifthe inputis a carriage return, the state is changed tolee.ifiput is then discarded, i.e., no output is made.
- Ifthe inputis aline feed, the state is changed to If. The tnpthen discarded.

Whenever we are in the cr state, it is because the last inmiawarriage return, which was unprocessed. What our
software does in this state again depends on the currertt inpu

- Ifthe inputis anything other than a carriage return or lieed, output a line feed, then output the input, then
change the state to ordinary.

- If the input is a carriage return, we have received two (orejoarriage returns in a row. We discard the input, we
output a line feed, and leave the state unchanged.

- Ifthe inputis a line feed, we output the line feed and chahgestate to ordinary. Note that this is not the same as
the first case above — if we tried to combine them, we would lpudting two line feeds instead of one.

Finally, we are in the If state after we have received a lirglfdhat was not preceded by a carriage return. This will
happen when our file already is in UNIX format, or wheneveesaMines in a row are expressed by a single
carriage return followed by several line feeds, or when éinds with a line feed / carriage return sequence. Here is
how we need to handle our input in this state:

- Ifthe inputis anything other than a carriage return or lieed, we output a line feed, then output the input, then
change the state to ordinary. This is exactly the same aat@mthe cr state upon receiving the same kind of input.

- Ifthe inputis a carriage return, we discard the input, weata line feed, then change the state to ordinary.

- Ifthe inputis a line feed, we output the line feed, and leéeestate unchanged.

11.11.1.1 The Final State

The abovdinite state machineorks for the entire file, but leaves the possibility that final line end will be
ignored. That will happen whenever the file ends with a sicgleiage return or a single line feed. | did not think of
it when | wrotetuc, just to discover that occasionally it strips the last lineliag.

136

Chapter 11 x86 Assembly Language Programming

This problem is easily fixed by checking the state after theefile was processed. If the state is not ordinary, we
simply need to output one last line feed.

Note: Now that we have expressed our algorithm as a finite state machine, we could easily design a dedicated
digital electronic circuit (a "chip") to do the conversion for us. Of course, doing so would be considerably more
expensive than writing an assembly language program.

11.11.1.2 The Output Counter

Because our file conversion program may be combining twoadters into one, we need to use an output counter.
We initialize it to0, and increase it every time we send a character to the odtptite end of the program, the
counter will tell us what size we need to set the file to.

11.11.2 Implementing FSM in Software

The hardest part of working withfanite state machine analyzing the problem and expressing it dde state
machine That accomplished, the software almost writes itself.

In a high-level language, such as C, there are several mphoaghes. One is to usesaitch statement which
chooses what function should be run. For example,

switch (state) {

default:

case REGULAR:
regular(inputchar);
break;

case CR:
cr(inputchar);
break;

case LF:
If(inputchar);
break;

}

Another approach is by using an array of function pointessjething like this:
(output[state])(inputchar);

Yet another is to havstate be a function pointer, set to point at the appropriate fuomcti
(* state)(inputchar);

This is the approach we will use in our program because itnig @asy to do in assembly language, and very fast,
too. We will simply keep the address of the right procedurgBix, and then just issue:

call ebx

137

Chapter 11 x86 Assembly Language Programming

This is possibly faster than hardcoding the address in the because the microprocessor does not have to fetch the
address from the memory—it is already stored in one of itsstecs. | saidpossiblybecause with the caching
modern microprocessors do, either way may be equally fast.

11.11.3 Memory Mapped Files

Because our program works on a single file, we cannot use fireagh that worked for us before, i.e., to read from
an input file and to write to an output file.

UNIX allows us to map a file, or a section of a file, into memony.db that, we first need to open the file with the
appropriate read/write flags. Then we usertimeapsystem call to map it into the memory. One nice thing about
mmapis that it automatically works with virtual memory: We canpnaore of the file into the memory than we have
physical memory available, yet still access it through fagonemory op codes, such amsv, lods , andstos .
Whatever changes we make to the memory image of the file willfiitéen to the file by the system. We do not even
have to keep the file open: As long as it stays mapped, we cdrinea it and write to it.

The 32-bit Intel microprocessors can access up to four gigalof memory — physical or virtual. The FreeBSD
system allows us to use up to a half of it for file mapping.

For simplicity sake, in this tutorial we will only convertdi that can be mapped into the memory in their entirety.
There are probably not too many text files that exceed twolyigs in size. If our program encounters one, it will
simply display a message suggesting we use the origicahstead.

If you examine your copy ofyscalls.master , you will find two separate syscalls nam@ehap This is because
of evolution of UNIX: There was the traditional BSbmap syscall 71. That one was superseded by the POSIX
mmap syscall 197. The FreeBSD system supports both becausepotiigrams were written by using the original
BSD version. But new software uses the POSIX version, whiathat we will use.

Thesyscalls.master file lists the POSIX version like this:

197 STD BSD { caddr_t mmap(caddr_t addr, size_t len, int prot o\
int flags, int fd, long pad, off_t pos); }
This differs slightly from what mmap(2) says. That is be@osnap(2) describes the C version.

The difference is in théong pad argument, which is not present in the C version. However-teeBSD syscalls
add a 32-bit pad aftqrush ing a 64-bit argument. In this casgf t is a 64-bit value.

When we are finished working with a memory-mapped file, we ymitnaith the munmapsyscall:

Tip: For an in-depth treatment of mmap see W. Richard Stevens’ Unix Network Programming, Volume 2, Chapter
12 (http://www.int80h.org/cgi-bin/isbn?isbn=0130810819).

11.11.4 Determining File Size

Because we need to tetimaphow many bytes of the file to map into the memory, and becausgam¢to map the
entire file, we need to determine the size of the file.

We can use théstat syscall to get all the information about an open file that tretesm can give us. That includes
the file size.

138

Chapter 11 x86 Assembly Language Programming

Again, syscalls.master lists two versions ofstat , a traditional one (syscall 62), and a POSIX one (syscall
189). Naturally, we will use the POSIX version:

189 STD POSIX { int fstat(int fd, struct stat *sh); }
This is a very straightforward call: We pass to it the addodssstat structure and the descriptor of an open file. It

will fill out the contents of the stat structure.

| do, however, have to say that | tried to declare the statttra in thebss section, andstat did not like it: It set
the carry flag indicating an error. After | changed the codallimcate the structure on the stack, everything was
working fine.

11.11.5 Changing the File Size

Because our program may combine carriage return / line fegdesces into straight line feeds, our output may be
smaller than our input. However, since we are placing oyp@iLinto the same file we read the input from, we may
have to change the size of the file.

Theftruncate system call allows us to do just that. Despite its somewhsakgading name, thigruncate
system call can be used to both truncate the file (make it smalhd to grow it.

And yes, we will find two versions dfruncate in syscalls.master , an older one (130), and a newer one (201).
We will use the newer one:

201 STD BSD { int ftruncate(int fd, int pad, off_t length); }

Please note that this one containstapad again.

11.11.6 ftuc

We now know everything we need to writteic. We start by adding some new linessiystem.inc . First, we define
some constants and structures, somewhere at or near tminegof the file:

s open flags

%define O_RDONLY 0
%define O_WRONLY 1
%define O RDWR 2

s mmap flags

%define PROT_NONE 0
%define PROT_READ 1
%define PROT_WRITE 2
%define PROT_EXEC 4
%define MAP_SHARED 0001h
%define MAP_PRIVATE 0002h
oy stat structure

struc stat

st_dev resd 1 =0
st_ino resd 1 ;= 4
st_mode resw 1 ; = 8, size is 16 bits

139

st_nlink resw 1 ;= 10, ditto
st_uid resd 1 =12
st_gid resd 1 ; = 16
st_rdev resd 1 ;=
st_atime resd 1 ;= 24
st_atimensec resd 1 = 28
st_mtime resd 1 ;= 32
st_mtimensec resd 1 = 36
st_ctime resd 1 ;=40
st_ctimensec resd 1 ;= 44
st_size resd 2

st_blocks resd 2 ; = 56, ditto
st_blksize resd 1 = 64
st_flags resd 1 ; = 68
st_gen resd 1 =72
st_Ispare resd 1 = 76
st_gspare resd 4 ;= 80
endstruc

We define the new syscalls:

%define SYS_mmap 197
%define SYS_munmap 73
%define SYS_fstat 189
%define SYS_ftruncate 201

We add the macros for their use:

%macro sys.mmap 0
system SYS_mmap

%endmacro

%macro sys.munmap 0
system SYS_munmap

%endmacro

%macro sys.ftruncate 0
system SYS_ftruncate

%endmacro

%macro sys.fstat 0
system SYS_fstat

%endmacro

And here is our code:

12l

;; Started:
;; Updated:

21-Dec-2000
22-Dec-2000

;; Copyright 2000 G. Adam Stanislav.
. All rights reserved.

12}

20

Chapter 11 x86 Assembly Language Programming

;= 48, size is 64 bits

11919999393939393939999

140

Chapter 11 x86 Assembly Language Programming

o VL B I
%include 'system.inc’
section .data
db 'Copyright 2000 G. Adam Stanislav.’, 0Ah
db 'All rights reserved.’, 0Ah
usg db 'Usage: ftuc filename’, OAh
usglen equ $-usg
co db "ftuc: Can’t open file.", OAh
colen equ $-co
fae db 'ftuc: File access error.’, OAh
faelen equ $-fae
ftl db 'ftuc: File too long, use regular tuc instead.’, OAh
ftilen equ $-ftl
mae db 'ftuc: Memory allocation error.’, 0OAh
maelen equ $-mae
section text
align 4
memerr:
push dword maelen
push dword mae
jmp short error
align 4
toolong:
push dword ftllen
push dword ftl
jmp short error
align 4
facerr:
push dword faelen
push dword fae
jmp short error
align 4
cantopen:
push dword colen
push dword co
jmp short error
align 4
usage:
push dword usglen
push dword usg
error:
push dword stderr
sys.write

push dword 1

141

align 4

sys.exit

global _start

_start:

pop eax ; argc
pop eax ; program name
pop ecx ; file to convert
jecxz usage

pop eax

or eax, eax ; Too many arguments?
jne usage

; Open the file

push dword O_RDWR

push ecx

sys.open

ic cantopen

mov ebp, eax ; Save fd

sub esp, byte stat_size

mov ebx, esp

; Find file size

push ebx

push ebp ; fd

sys.fstat

ic facerr

mov edx, [ebx + st_size + 4]

; File is too long if EDX = 0 ...
or edx, edx

jne near toolong

mov ecx, [ebx + st_size]
;... or if it is above 2 GB
or ecx, ecx

is near toolong

; Do nothing if the file is O bytes in size
jecxz .quit

; Map the entire file in memory

push edx

push edx ; starting at offset 0
push edx ; pad

push ebp ; fd

push dword MAP_SHARED

push dword PROT_READ | PROT_WRITE

push ecx . entire file size

push edx ; let system decide on

Chapter 11 x86 Assembly Language Programming

the address

142

Chapter 11 x86 Assembly Language Programming

sys.mmap
jc near memerr
mov edi, eax
mov esi, eax
push ecx ; for SYS_munmap
push edi
; Use EBX for state machine
mov ebx, ordinary
mov ah, OAh
cld
.loop:
lodsb
call ebx
loop .loop
cmp ebx, ordinary
je filesize
; Output final If
mov al, ah
stosb
inc edx
filesize:
; truncate file to new size
push dword 0O ; high dword
push edx ; low dword
push eax ; pad
push ebp
sys.ftruncate
; close it (ebp still pushed)
sys.close
add esp, byte 16
sys.munmap
.quit:
push dword 0
sys.exit
align 4
ordinary:
cmp al, ODh
je .cr
cmp al, ah
e Af
stosb

143

align 4
.cr:

align 4

align 4
cr:

align 4
.cr:

align 4

inc edx

ret

mov ebx, cr
ret

mov ebx, If
ret

cmp al, 0Dh
je .cr

cmp al, ah
e Af

xchg al, ah
stosh

inc edx
xchg al, ah

; fall through
stosh

inc edx
mov ebx, ordinary
ret

mov al, ah
stosb

inc edx

ret

cmp al, ah
e Af

cmp al, ODh
je .cr

xchg al, ah
stosh

inc edx

Chapter 11 x86 Assembly Language Programming

144

Chapter 11 x86 Assembly Language Programming

xchg al, ah
stosb
inc edx
mov ebx, ordinary
ret
align 4
.Cr:
mov ebx, ordinary
mov al, ah
; fall through
Af:
stosb
inc edx
ret

Warning: Do not use this program on files stored on a disk formatted by MS-DOS or Windows. There seems to
be a subtle bug in the FreeBSD code when using mmapon these drives mounted under FreeBSD: If the file is over
a certain size, mmapwill just fill the memory with zeros, and then copy them to the file overwriting its contents.

11.12 One-Pointed Mind

As a student of Zen, | like the idea of a one-pointed mind: De thing at a time, and do it well.

This, indeed, is very much how UNIX works as well. While a ggdiWindows application is attempting to do
everything imaginable (and is, therefore, riddled with §u@ typical UNIX program does only one thing, and it
does it well.

The typical UNIX user then essentially assembles his owtiegdfons by writing a shell script which combines the
various existing programs by piping the output of one progtathe input of another.

When writing your own UNIX software, it is generally a goocalto see what parts of the problem you need to
solve can be handled by existing programs, and only write gaun programs for that part of the problem that you
do not have an existing solution for.

11.12.1 CSV

I will illustrate this principle with a specific real-life enple | was faced with recently:

| needed to extract the 11th field of each record from a datab@dswnloaded from a web site. The database was a
CSV file, i.e., a list ocomma-separated valuebhat is quite a standard format for sharing data among pesipb
may be using different database software.

The first line of the file contains the list of various fields aegied by commas. The rest of the file contains the data
listed line by line, with values separated by commas.

| tried awk, using the comma as a separator. But because several linesnam a quoted commawk was
extracting the wrong field from those lines.

145

Chapter 11 x86 Assembly Language Programming

Therefore, | needed to write my own software to extract thté figld from the CSV file. However, going with the
UNIX spirit, | only needed to write a simple filter that would the following:

« Remove the first line from the file;
- Change all unquoted commas to a different character;
- Remove all quotation marks.

Strictly speaking, | could ussedto remove the first line from the file, but doing so in my own parg was very
easy, so | decided to do it and reduce the size of the pipeline.

At any rate, writing a program like this took me about 20 m@wtWriting a program that extracts the 11th field from
the CSV file would take a lot longer, and | could not reuse itkivact some other field from some other database.

This time | decided to let it do a little more work than a typitgorial program would:

. It parses its command line for options;
- It displays proper usage if it finds wrong arguments;
- It produces meaningful error messages.

Here is its usage message:
Usage: csv [-t<delim>] [-cccomma>] [-p] [-0 <outfile>] [-i <infile>]

All parameters are optional, and can appear in any order.

The-t parameter declares what to replace the commas withtabhés the default here. For example,; will
replace all unquoted commas with semicolons.

| did not need the ¢ option, but it may come in handy in the future. It lets me dexthat | want a character other
than a comma replaced with something else. For exampt@will replace all at signs (useful if you want to split a
list of email addresses to their user names and domains).

The- p option preserves the first line, i.e., it does not deleteytdBfault, we delete the first line because in a CSV
file it contains the field names rather than data.

The-i and- o options let me specify the input and the output files. Defaarfestdin - andstdout , so thisis a
regular UNIX filter.

I made sure that bothi fi | enane and-i fil enane are accepted. | also made sure that only one input and one
output files may be specified.

To get the 11th field of each record, | can now do:
% csv '-t;' data.csv | awk '-F;' {print $11}’

The code stores the options (except for the file descriptoispPX The comma irbH the new separator ibL, and
the flag for the p option in the highest bit dEDX so a check for its sign will give us a quick decision what to do

Here is the code:

nasen CSVLASIM s iisiaiininsiinssiigg R I T
; Convert a comma-separated file to a something-else separa ted file.
; Started: 31-May-2001

146

Chapter 11 x86 Assembly Language Programming
; Updated: 1-Jun-2001

; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.

119999999999595939199999999999991999999393937979193 IRERERRE R RERERREREREREREE]

%include 'system.inc’
%define BUFSIZE 2048
section .data
fd.in dd stdin
fd.out dd stdout
usg db 'Usage: csv [-t<delim>] [-cccomma>] [-p] [-0 <oultfil e>] [-i <infile>]", 0OAh
usglen equ $-usg
iemsg db "csv: Can't open input file", OAh
iemlen equ $-iemsg
oemsg db "csv: Can't create output file", 0OAh
oemlen equ $-oemsg
section .bss
ibuffer resb BUFSIZE
obuffer resb BUFSIZE
section text
align 4
ierr:
push dword iemlen
push dword iemsg
push dword stderr
sys.write
push dword 1 ; return failure
sys.exit
align 4
oerr:
push dword oemlen
push dword oemsg
push dword stderr
sys.write
push dword 2
sys.exit
align 4
usage:
push dword usglen
push dword usg
push dword stderr
sys.write
push dword 3
sys.exit

147

Chapter 11 x86 Assembly Language Programming

align 4
global _start
_start:
add esp, byte 8 ; discard argc and argv[0]
mov edx, (y << 8) | 9
.arg:
pop ecx
or ecx, ecx
je near .init ; N0 more arguments
; ECX contains the pointer to an argument
cmp byte [ecx], -
jne usage
inc ecx
mov ax, [ecx]
.0
cmp al, 'o’
jne i
; Make sure we are not asked for the output file twice
cmp dword [fd.out], stdout
jne usage
; Find the path to output file - it is either at [ECX+1],
; ie., -ofile --
; or in the next argument,
; ie., -o file
inc ecx
or ah, ah
jne .openoutput
pop ecx
jecxz usage
.openoutput:

push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01lh
; O_CREAT | O_TRUNC | O_WRONLY

push ecx
sys.open
ic near oerr
add esp, byte 12
mov [fd.out], eax
jmp short .arg

i
cmp al, "
jne p

148

.openinput:
push dword 0 ; O_RDONLY
push ecx
sys.open
ic near ierr
add esp, byte 8
mov [fd.in], eax
jmp .arg

.p:
cmp al, 'p’
jne .t
or ah, ah
jne near usage
or edx, 1 << 31
jmp .arg

A
cmp al, 't ; redefine output delimiter
jne .c
or ah, ah
je near usage
mov dl, ah
jmp .arg

.Cc:
cmp al, 'c
jne near usage
or ah, ah
je near usage
mov dh, ah
jmp .arg

align 4

.init:
sub eax, eax
sub ebx, ebx
sub ecx, ecx
mov edi, obuffer

; Make sure we are not asked twice
cmp dword [fd.in], stdin
jne near usage

; Find the path to the input file
inc ecx

or ah, ah
jne .openinput
pop ecx

or ecx, ecx

je near usage

Chapter 11 x86 Assembly Language Programming

149

firstline:

.loop:

.put:

.quote:

.gloop:

align 4
getchar:

fetch:

; See if we are to preserve the first line

; is it a comma (or whatever the user asked for)?

Chapter 11 x86 Assembly Language Programming

; Replace the comma with a tab (or whatever the user wants)

; Print everything until you get another quote or EOL. If it

; is a quote, skip it. If it is EOL, print it.

or edx, edx

is Joop

; get rid of the first line
call getchar

cmp al, OAh
jne firstline

; read a byte from stdin
call getchar

cmp al, dh

jne .quote

mov al, dl

call putchar

jmp short .loop
cmp al, ™

jne .put

call getchar

cmp al, ™

je loop

cmp al, OAh

je .put

call putchar

jmp short .gloop
or ebx, ebx
jne fetch

call read

lodsb

dec ebx

ret

150

Chapter 11 x86 Assembly Language Programming

read:
jecxz .read
call write
.read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .done
sub eax, eax
ret
align 4
.done:
call write ; flush output buffer
; close files
push dword [fd.in]
sys.close
push dword [fd.out]
sys.close
; return success
push dword 0O
sys.exit
align 4
putchar:
stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret
align 4
write:
jecxz .ret ; nothing to write
sub edi, ecx . start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret:

151

Chapter 11 x86 Assembly Language Programming
ret

Much of it is taken fromhex.asm above. But there is one important difference: | no longerweale whenever |
am outputting a line feed. Yet, the code can be used intesdyti

I have found a better solution for the interactive problentsil first started writing this chapter. | wanted to make
sure each line is printed out separately only when neededr All, there is no need to flush out every line when used
non-interactively.

The new solution | use now is to caltite every time | find the input buffer empty. That way, when rurgnim the
interactive mode, the program reads one line from the ukeyboard, processes it, and sees its input buffer is
empty. It flushes its output and reads the next line.

11.12.1.1 The Dark Side of Buffering

This change prevents a mysterious lockup in a very specifie.daefer to it as thdark side of bufferingmostly
because it presents a danger that is not quite obvious.

Itis unlikely to happen with a program like tlesvabove, so let us consider yet another filter: In this case \we&x
our input to be raw data representing color values, sucheagthgreen andblueintensities of a pixel. Our output
will be the negative of our input.

Such afilter would be very simple to write. Most of it would lojust like all the other filters we have written so far,
so | am only going to show you its inner loop:

.loop:
call getchar
not al ; Create a negative
call putchar
jmp short .loop

Because this filter works with raw data, it is unlikely to bedsnteractively.

But it could be called by image manipulation software. Analess it callsvrite before each call teead , chances
are it will lock up.

Here is what might happen:

The image editor will load our filter using the C functigspen() .

It will read the first row of pixels from a bitmap or pixmap.

It will write the first row of pixels to th@ipeleading to thed.in of our filter.

Ouir filter will read each pixel from its input, turn it to agegive, and write it to its output buffer.
Ouir filter will call getchar to fetch the next pixel.

getchar will find an empty input buffer, so it will caltead .

read will call the SYS_read system call.

Thekernelwill suspend our filter until the image editor sends more dathe pipe.

© © N o o M w DR

The image editor will read from the other pipe, conneotettiéfd.out of our filter so it can set the first row of
the output imagéeforeit sends us the second row of the input.

152

Chapter 11 x86 Assembly Language Programming

10. Thekernelsuspends the image editor until it receives some output &onfilter, so it can pass it on to the
image editor.

At this point our filter waits for the image editor to send itreaata to process, while the image editor is waiting for
our filter to send it the result of the processing of the first.ut the result sits in our output buffer.

The filter and the image editor will continue waiting for eaxther forever (or, at least, until they are killed). Our
software has just enteredace condition

This problem does not exist if our filter flushes its outpufeubeforeasking thekernelfor more input data.

11.13 Using the FPU

Strangely enough, most of assembly language literature nlateeven mention the existence of the FPU]aating
point unit, let alone discuss programming it.

Yet, never does assembly language shine more than when ate tiighly optimized FPU code by doing things that
can be donenlyin assembly language.

11.13.1 Organization of the FPU

The FPU consists of 8 80-bit floating—point registers. Ttaeseorganized in a stack fashion—you qaish a value
on TOS (op of stack and you camop it.

That said, the assembly language op codes arpustt andpop because those are already taken.

You canpush a value on TOS by usiniid , fild , andfbld . Several other op codes let ypush many common
constants—such agpi—on the TOS.

Similarly, you carpop a value by usingst , fstp ,fist ,fistp , andfbstp . Actually, only the op codes that end
with ap will literally pop the value, the rest willtore it somewhere else without removing it from the TOS.

We can transfer the data between the TOS and the computermeitier as a 32—bit, 64—bit, or 80—bdital, a
16-bit, 32—hit, or 64—biinteger, or an 80—bipacked decimal

The 80-bitpacked decimak a special case difinary coded decimakhich is very convenient when converting
between the ASCII representation of data and the interntalafdhe FPU. It allows us to use 18 significant digits.

No matter how we represent data in the memory, the FPU alwayasssit in the 80-biteal format in its registers.

Its internal precision is at least 19 decimal digits, so @f/are choose to display results as ASCII in the full 18—digit
precision, we are still showing correct results.

We can perform mathematical operations on the TOS: We canleg¢ itssing we canscaleit (i.e., we can multiply
or divide it by a power of 2), we can calculate its basgarithm and many other things.

We can alsanultiply or divideit by, addit to, or subtractit from, any of the FPU registers (including itself).

The official Intel op code for the TOS & , and for theregistersst(0) —st(7) .st andst(0) ,then, referto the
same register.

For whatever reasons, the original authonafmhas decided to use different op codes, nanstly-st7 . In other
words, there are no parentheses, and the TOS is akt@ysever jusst .

153

Chapter 11 x86 Assembly Language Programming

11.13.1.1 The Packed Decimal Format

Thepacked decimdbrmat uses 10 bytes (80 bits) of memory to represent 18ddigiie number represented there is
always arinteger.

Tip: You can use it to get decimal places by multiplying the TOS by a power of 10 first.

The highest bit of the highest byte (byte 9) is #ign bit If it is set, the number isegative otherwise, it igpositive
The rest of the bits of this byte are unused/ignored.

The remaining 9 bytes store the 18 digits of the number: 2ggr byte.
Themore significant digits stored in the higimibble (4 bits), theless significant digiin the lownibble
That said, you might think thal234567 would be stored in the memory like this (using hexadecimédtian):

80 00 00 00 00 00 01 23 45 67

Alas it is not! As with everything else of Intel make, even paeked decimak little—endian

That means ow1234567 is stored like this:
67 45 23 01 00 00 00 00 00 80

Remember that, or you will be pulling your hair out in despierd

Note: The book to read—if you can find it—is Richard Startz’ 8087/80287/80387 for the IBM PC & Compatibles
(http://lwww.int80h.org/cgi-bin/isbn?isbn=013246604X). Though it does seem to take the fact about the
little—endian storage of the packed decimal for granted. | kid you not about the desperation of trying to figure out
what was wrong with the filter | show below before it occurred to me | should try the little—endian order even for
this type of data.

11.13.2 Excursion to Pinhole Photography

To write meaningful software, we must not only understandowagramming tools, but also the field we are creating
software for.

Our next filter will help us whenever we want to builgpehole cameraso, we need some backgrounginhole
photographybefore we can continue.

11.13.2.1 The Camera

The easiest way to describe any camera ever built is as sopty space enclosed in some lightproof material, with
a small hole in the enclosure.

The enclosure is usually sturdy (e.g., a box), though sonetit is flexible (the bellows). It is quite dark inside the
camera. However, the hole lets light rays in through a sipglat (though in some cases there may be several).
These light rays form an image, a representation of whais\artside the camera, in front of the hole.

If some light sensitive material (such as film) is placeddeshe camera, it can capture the image.

154

Chapter 11 x86 Assembly Language Programming

The hole often containslans or a lens assembly, often called thigjective

11.13.2.2 The Pinhole

But, strictly speaking, the lens is not necessary: The waigiameras did not use a lens buytiahole Even today,
pinholesare used, both as a tool to study how cameras work, and tovachigpecial kind of image.

The image produced by thenholeis all equally sharp. Oblurred. There is an ideal size for a pinhole: If it is either
larger or smaller, the image loses its sharpness.

11.13.2.3 Focal Length
This ideal pinhole diameter is a function of the square rddboal length which is the distance of the pinhole from
the film.

D = PC=* sqgrt(FL)

In here,Dis the ideal diameter of the pinhole., is the focal length, angCis a pinhole constant. According to Jay
Bender, its value i6.04 , while Kenneth Connors has determined it ta0k@s7 . Others have proposed other values.
Plus, this value is for the daylight only: Other types of lighll require a different constant, whose value can only be
determined by experimentation.

11.13.2.4 The F—=Number

The f—-number is a very useful measure of how much light reattefilm. A light meter can determine that, for
example, to expose a film of specific sensitivity with f5.6 neguire the exposure to last 1/1000 sec.

It does not matter whether it is a 35—mm camera, or a 6x9cmiegrmee. As long as we know the f-number, we can
determine the proper exposure.

The f—-number is easy to calculate:
F=FL/D

In other words, the f—-number equals the focal length dividethe diameter of the pinhole. It also means a higher
f—-number either implies a smaller pinhole or a larger foéstladhce, or both. That, in turn, implies, the higher the
f—-number, the longer the exposure has to be.

Furthermore, while pinhole diameter and focal distanceoase-dimensional measurements, both, the film and the
pinhole, are two—dimensional. That means that if you havesmed the exposure at f-numbaast , then the
exposure at f-numb&is:

t » B/ A 2

11.13.2.5 Normalized F—-Number

While many modern cameras can change the diameter of tindioja, and thus their f-number, quite smoothly and
gradually, such was not always the case.

To allow for different f~-numbers, cameras typically contad a metal plate with several holes of different sizes
drilled to them.

155

Chapter 11 x86 Assembly Language Programming

Their sizes were chosen according to the above formula in aweay that the resultant f-number was one of
standard f-numbers used on all cameras everywhere. Foipéxaarvery old Kodak Duaflex IV camera in my
possession has three such holes for f-numbers 8, 11, and 16.

A more recently made camera may offer f-numbers of 2.8, 48.851, 16, 22, and 32 (as well as others). These
numbers were not chosen arbitrarily: They all are powerb®@tguare root of 2, though they may be rounded
somewhat.

11.13.2.6 The F-Stop

A typical camera is designed in such a way that setting angehbrmalized f-numbers changes the feel of the dial.
It will naturally stopin that position. Because of that, these positions of thkead@called f—stops.

Since the f-numbers at each stop are powers of the squarefrdainoving the dial by 1 stop will double the
amount of light required for proper exposure. Moving it byt@ps will quadruple the required exposure. Moving the
dial by 3 stops will require the increase in exposure 8 tire&s,

11.13.3 Designing the Pinhole Software

We are now ready to decide what exactly we want our pinholgvsoé to do.

11.13.3.1 Processing Program Input

Since its main purpose is to help us design a working pinhenesra, we will use théocal lengthas the input to the
program. This is something we can determine without soffwroper focal length is determined by the size of the
film and by the need to shoot "regular” pictures, wide angtéupes, or telephoto pictures.

Most of the programs we have written so far worked with indial characters, or bytes, as their input: Ties
program converted individual bytes into a hexadecimal nemthecsvprogram either let a character through, or
deleted it, or changed it to a different character, etc.

One programftuc used the state machine to consider at most two input bytesraea
But ourpinhole program cannot just work with individual characters, it kmdeal with larger syntactic units.

For example, if we want the program to calculate the pinh@enéter (and other values we will discuss later) at the
focal lengths 0fLl00 mm 150 mm and210 mm we may want to enter something like this:

100, 150, 210

Our program needs to consider more than a single byte of atutime. When it sees the firstit must understand
it is seeing the first digit of a decimal number. When it seedthnd the othe®, it must know it is seeing more
digits of the same number.

When it encounters the first comma, it must know it is no lorrgeeiving the digits of the first number. It must be
able to convert the digits of the first number into the valueaif. And the digits of the second number into the value
of 150. And, of course, the digits of the third number into the nuimealue 0f210.

We need to decide what delimiters to accept: Do the input reumibave to be separated by a comma? If so, how do
we treat two numbers separated by something else?

156

Chapter 11 x86 Assembly Language Programming

Personally, | like to keep it simple. Something either is anber, so | process it. Or it is not a number, so | discard it.
| do not like the computer complaining about me typing in atr&egharacter when it isbviousthat it is an extra
character. Duh!

Plus, it allows me to break up the monotony of computing apeé in a query instead of just a number:

What is the best pinhole dianmeter for the focal |ength of 150?

There is no reason for the computer to spit out a number of &intp:

Syntax error: What
Syntax error: is
Syntax error: the
Syntax error: best

Et cetera, et cetera, et cetera.

Secondly, | like thet character to denote the start of a comment which extendgterttl of the line. This does not
take too much effort to code, and lets me treat input files fpisoftware as executable scripts.

In our case, we also need to decide what units the input stoonie in: We choosmillimetersbecause that is how
most photographers measure the focus length.

Finally, we need to decide whether to allow the use of therdakpoint (in which case we must also consider the
fact that much of the world uses a decimamma.

In our case allowing for the decimal point/comma would offd¢alse sense of precision: There is little if any
noticeable difference between the focus lengthg0odnd51, so allowing the user to input something lige.5 is

not a good idea. This is my opinion, mind you, but | am the oniéing this program. You can make other choices in
yours, of course.

11.13.3.2 Offering Options

The most important thing we need to know when building a pi@lsamera is the diameter of the pinhole. Since we
want to shoot sharp images, we will use the above formulaltulzde the pinhole diameter from focal length. As
experts are offering several different values for B@onstant, we will need to have the choice.

Itis traditional in UNIX programming to have two main waysabfoosing program parameters, plus to have a
default for the time the user does not make a choice.

Why have two ways of choosing?

One is to allow a (relativelypermanenthoice that applies automatically each time the softwarerisvithout us
having to tell it over and over what we want it to do.

The permanent choices may be stored in a configuration fppesdlly found in the user’'s home directory. The file
usually has the same name as the application but is startecgwiot. Ofterf'rc” is added to the file name. So, ours
could be~/.pinhole or ~/.pinholerc . (The~/ means current user’'s home directory.)

The configuration file is used mostly by programs that haveyncanfigurable parameters. Those that have only one
(or a few) often use a different method: They expect to findotli@meter in aenvironment variableln our case, we
might look at an environment variable nanmf@diHOLE

Usually, a program uses one or the other of the above metlhsrwise, if a configuration file said one thing, but
an environment variable another, the program might getussd (or just too complicated).

157

Chapter 11 x86 Assembly Language Programming
Because we only need to choasgesuch parameter, we will go with the second method and selechrivironment
for a variable name8INHOLE

The other way allows us to maleel hocdecisions!'Though | usually want you to use 0.039, this time | want
0.03872."In other words, it allows us toverridethe permanent choice.

This type of choice is usually done with command line paramset

Finally, a progranalwaysneeds alefault The user may not make any choices. Perhaps he does not kretviovh
choose. Perhaps he is "just browsing." Preferably, theutteféll be the value most users would choose anyway.
That way they do not need to choose. Or, rather, they can elthesdefault without an additional effort.

Given this system, the program may find conflicting optiomsl handle them this way:

1. Ifitfinds anad hocchoice (e.g., command line parameter), it should accepttiwce. It must ignore any
permanent choice and any default.

2. Otherwiseif it finds a permanent option (e.g., an environment vagght should accept it, and ignore the
default.

3. Otherwise it should use the default.

We also need to decide whiarmatour PCoption should have.

At first site, it seems obvious to use tAlNHOLE=0.04 format for the environment variable, and0. 04 for the
command line.

Allowing that is actually a security risk. THeC constant is a very small number. Naturally, we will test caftware
using various small values &C. But what will happen if someone runs the program choosinggelvalue?

It may crash the program because we have not designed it thehlange numbers.

Or, we may spend more time on the program so it can handle hugbkers. We might do that if we were writing
commercial software for computer illiterate audience.

Or, we might say, Tough! The user should know better.

Or, we just may make it impossible for the user to enter a hwgeler. This is the approach we will take: We will
use animplied O.prefix.

In other words, if the user wan@s04 , we will expect him to type p04, or setPINHOLE=04 in his environment. So,
if he says p9999999, we will interpret it a9.9999999 —still ridiculous but at least safer.

Secondly, many users will just want to go with either Benslednstant or Connors’ constant. To make it easier on
them, we will interpret b as identical te p04, and- ¢ as identical te p037.

11.13.3.3 The Output
We need to decide what we want our software to send to the Hatpd in what format.

Since our input allows for an unspecified number of focal thremtries, it makes sense to use a traditional
database—style output of showing the result of the calculdor each focal length on a separate line, while
separating all values on one line byaa character.

Optionally, we should also allow the user to specify the Usb® CSV format we have studied earlier. In this case,
we will print out a line of comma—separated names describad field of every line, then show our results as
before, but substituting@mmafor thetab .

158

Chapter 11 x86 Assembly Language Programming

We need a command line option for the CSV format. We cannot adeecause that already mearse Connors’
constant For some strange reason, many web sites refer to CSV fildsxagl spreadshee(though the CSV format
predates Excel). We will, therefore, use theeswitch to inform our software we want the output in the CS\hiat.

We will start each line of the output with the focal lengthigmay sound repetitious at first, especially in the
interactive mode: The user types in the focal length, andreeepeating it.

But the user can type several focal lengths on one line. Tingt ican also come in from a file or from the output of
another program. In that case the user does not see the irgdlt a

By the same token, the output can go to a file which we will warexamine later, or it could go to the printer, or
become the input of another program.

So, it makes perfect sense to start each line with the fongtheas entered by the user.

No, wait! Not as entered by the user. What if the user typesinething like this:

00000000150

Clearly, we need to strip those leading zeros.

So, we might consider reading the user input as is, conggittio binary inside the FPU, and printing it out from
there.

But...
What if the user types something like this:

17459765723452353453534535353530530534563507309676764423
Ha! The packed decimal FPU format lets us input 18—digit newrsbBut the user has entered more than 18 digits.
How do we handle that?

Well, we could modify our code to read the first 18 digits, enter it to the FBlgn read more, multiply what we
already have on the TOS by 10 raised to the number of additibigits, thenadd to it.

Yes, we could do that. But ithis program it would be ridiculous (in a different one it may bstjthe thing to do):
Even the circumference of the Earth expressed in millinsatefy takes 11 digits. Clearly, we cannot build a camera
that large (not yet, anyway).

So, if the user enters such a huge number, he is either bartsktimg us, or trying to break into the system, or
playing games—doing anything but designing a pinhole camer

What will we do?

We will slap him in the face, in a manner of speaking:

174597657234523534535345353535305305345635073096767 64423 ??? ??7? ??7? ?7??

To achieve that, we will simply ignore any leading zeros. ©we find a non—zero digit, we will initialize a counter
to 0 and start taking three steps:

1. Send the digit to the output.
2. Append the digit to a buffer we will use later to produceplaeked decimal we can send to the FPU.

3. Increase the counter.

Now, while we are taking these three steps, we also need tthwait for one of two conditions:

159

277

Chapter 11 x86 Assembly Language Programming
- If the counter grows above 18, we stop appending to the biifercontinue reading the digits and sending them
to the output.
- If, or ratherwhen the next input character is not a digit, we are done inpgifiin now.

Incidentally, we can simply discard the non—digit, unléss a#, which we must return to the input stream. It
starts a comment, so we must see it after we are done produgipgt and start looking for more input.

That still leaves one possibility uncovered: If all the useters is a zero (or several zeros), we will never find a
non-zero to display.

We can determine this has happened whenever our countsragtayin that case we need to seddo the output,
and perform another "slap in the face":

0 ?7?7? ?7?7? ?7?? ?7?? ?7?7?
Once we have displayed the focal length and determined &lid {greater than but not exceeding 18 digits), we
can calculate the pinhole diameter.

Itis not by coincidence thatinholecontains the worgin. Indeed, many a pinhole literally is@n hole a hole
carefully punched with the tip of a pin.

That is because a typical pinhole is very small. Our formels ghe result in millimeters. We will multiply it by
1000, so we can output the resultinicrons

At this point we have yet another trap to faden much precision.

Yes, the FPU was designed for high precision mathematidsaBuare not dealing with high precision mathematics.
We are dealing with physics (optics, specifically).

Suppose we want to convert a truck into a pinhole camera (wedvmt be the first ones to do that!). Suppose its
box is12 meters long, so we have the focal lengtiLa@00 . Well, using Bender’s constant, it gives us square root of
12000 multiplied by0.04 , which is4.381780460 millimeters, 0r4381.780460 microns.

Put either way, the result is absurdly precise. Our trucloteractly12000 millimeters long. We did not measure its
length with such a precision, so stating we need a pinhole tvé diameter 04.381780460 millimeters is, well,
deceiving4.4 millimeters would do just fine.

Note: | "only" used ten digits in the above example. Imagine the absurdity of going for all 18!

We need to limit the number of significant digits of our res@he way of doing it is by using an integer representing
microns. So, our truck would need a pinhole with the diamet@s82 microns. Looking at that number, we still
decide tha#t400 microns, o4.4 millimeters is close enough.

Additionally, we can decide that no matter how big a resulget we only want to display four significant digits (or
any other number of them, of course). Alas, the FPU does et mfunding to a specific number of digits (after all,
it does not view the numbers as decimal but as binary).

We, therefore, must devise an algorithm to reduce the nuoitsgnificant digits.

Here is mine (I think it is awkward—if you know a better opédgase let me know):

1. Initialize a counter t@.

2. While the number is greater than or equal®000 , divide it by 10 and increase the counter.

160

Chapter 11 x86 Assembly Language Programming

Output the result.

4. While the counter is greater thanoutputo and decrease the counter.

Note: The 10000 is only good if you want four significant digits. For any other number of significant digits, replace
10000 with 10 raised to the number of significant digits.

We will, then, output the pinhole diameter in microns, roedaff to four significant digits.

At this point, we know thdocal lengthand thepinhole diameterThat means we have enough information to also
calculate thd—number

We will display the f-number, rounded to four significantitigChances are the f-number will tell us very little. To
make it more meaningful, we can find the nearesimalized f-numbet.e., the nearest power of the square root of 2.

We do that by multiplying the actual f-number by itself, whiof course, will give us itsquare . We will then
calculate its base—2 logarithm, which is much easier to dn tralculating the base—square—root—of—2 logarithm! We
will round the result to the nearest integer. Next, we wilbea2 to the result. Actually, the FPU gives us a good
shortcut to do that: We can use tiseale op code to "scale" 1, which is analogoustdft ing an integer left.

Finally, we calculate the square root of it all, and we hawertbarest normalized f-number.

If all that sounds overwhelming—or too much work, perhapsmay become much clearer if you see the code. It
takes 9 op codes altogether:

fmul st0, stO
fld1
fld stl

fyl2x
frndint

fldl

fscale

fsqrt

fstp stl

The first line,fmul st0, st0 , squares the contents of the TOS (top of the stack, sarmste, asilledst0 by nasm).
Thefldl pushed onthe TOS.

The nextlinefld st1 , pushes the square back to the TOS. At this point the squbnghsnst andst(2) (it will
become clear why we leave a second copy on the stack in a mprstét)t containsl.

Next,fyl2x calculates base-2 logarithmsif multiplied byst(1) . That is why we placed onst(1) before.

At this point,st contains the logarithm we have just calculatg(l)) contains the square of the actual f-number
we saved for later.

frndint rounds the TOS to the nearest intediel. pushes d. fscale shifts thel we have on the TOS by the
value inst(1) , effectively raising 2 tast(1)

Finally, fsqrt calculates the square root of the result, i.e., the neacestalized f—-number.

We now have the nearest normalized f—-number on the TOS, #ee-Bdogarithm rounded to the nearest integer in
st(1) , and the square of the actual f-numbest{2) . We are saving the value i(2) for later.

161

Chapter 11 x86 Assembly Language Programming

But we do not need the contentsspfl) anymore. The last lindstp st1 , places the contents ef tost(l) |,
and pops. As a result, what wsi$l) is nowst , what wasst(2) is nowst(1) , etc. The newgt contains the
normalized f-number. The nest(1) contains the square of the actual f-number we have storeel filveposterity.

At this point, we are ready to output the normalized f-numBecause it is normalized, we will not round it off to
four significant digits, but will send it out in its full presibn.

The normalized f-number is useful as long as it is reasorshBil and can be found on our light meter. Otherwise
we need a different method of determining proper exposure.

Earlier we have figured out the formula of calculating proggsosure at an arbitrary f-number from that measured
at a different f-number.

Every light meter | have ever seen can determine proper expas f5.6. We will, therefore, calculate &b.6
multiplier,” i.e., by how much we need to multiply the exposure measurésiéto determine the proper exposure
for our pinhole camera.

From the above formula we know this factor can be calculayedivading our f-number (the actual one, not the
normalized one) b%.6 , and squaring the result.

Mathematically, dividing the square of our f-number by thaare 0f5.6 will give us the same result.

Computationally, we do not want to square two numbers whenameonly square one. So, the first solution seems
better at first.

But...

5.6 is aconstantWe do not have to have our FPU waste precious cycles. We sate]lit to divide the square of
the f-number by whatevéi6 * equals to. Or we can divide the f-numbertg , and then square the result. The
two ways now seem equal.

But, they are not!

Having studied the principles of photography above, we raber that thés.6 is actually square root of 2 raised to
the fifth power. Anirrational number. The square of this numbeeisactly32.

Not only is32 an integer, it is a power of 2. We do not need to divide the sgjafthe f-number bg2. We only
need to uséscale to shift it right by five positions. In the FPU lingo it means wél fscale it with st(1) equal
to-5 . That ismuch fastethan a division.

So, now it has become clear why we have saved the square efrtbmber on the top of the FPU stack. The
calculation of the f5.6 multiplier is the easiest calcudatof this entire program! We will output it rounded to four
significant digits.

There is one more useful number we can calculate: The nunfilséss our f-number is from f5.6. This may help us
if our f-number is just outside the range of our light metet, e have a shutter which lets us set various speeds,
and this shutter uses stops.

Say, our f-number is 5 stops from 5.6, and the light metes s&/should use 1/1000 sec. Then we can set our
shutter speed to 1/1000 first, then move the dial by 5 stops.

This calculation is quite easy as well. All we have to do isdtcalate the base-2 logarithm of the f5.6 multiplier we
had just calculated (though we need its value from beforeowaded it off). We then output the result rounded to the
nearest integer. We do not need to worry about having moreftha significant digits in this one: The result is most
likely to have only one or two digits anyway.

162

Chapter 11 x86 Assembly Language Programming

11.13.4 FPU Optimizations
In assembly language we can optimize the FPU code in waysssilgle in high languages, including C.

Whenever a C function needs to calculate a floating—poinieval loads all necessary variables and constants into
FPU registers. It then does whatever calculation is requoet the correct result. Good C compilers can optimize
that part of the code really well.

It "returns” the value by leaving the result on the TOS. Hosveliefore it returns, it cleans up. Any variables and
constants it used in its calculation are now gone from the.FPU

It cannot do what we just did above: We calculated the squiateed—number and kept it on the stack for later use
by another function.

We knewwe would need that value later on. We also knew we had enowgh om the stack (which only has room
for 8 numbers) to store it there.

A C compiler has no way of knowing that a value it has on thekstelt be required again in the very near future.
Of course, the C programmer may know it. But the only recoheskas is to store the value in a memory variable.

That means, for one, the value will be changed from the 8@+bitision used internally by the FPU to alGuble
(64 bits) or eversingle(32 bits).

That also means that the value must be moved from the TOShatmémory, and then back again. Alas, of all FPU
operations, the ones that access the computer memory ssloittest.

So, whenever programming the FPU in assembly languagefdoake ways of keeping intermediate results on the
FPU stack.

We can take that idea even further! In our program we are wsgomstanithe one we name#C).

It does not matter how many pinhole diameters we are calogtat, 10, 20, 1000, we are always using the same
constant. Therefore, we can optimize our program by kegpie@gonstant on the stack all the time.

Early on in our program, we are calculating the value of thevalzonstant. We need to divide our inputigyfor
every digit in the constant.

It is much faster to multiply than to divide. So, at the stdrbor program, we divida0 into 1 to obtain0.1 , which
we then keep on the stack: Instead of dividing the input®yor every digit, we multiply it by0.1 .

By the way, we do not inpui.1 directly, even though we could. We have a reason for thati&\di can be
expressed with just one decimal place, we do not know how rbarary places it takes. We, therefore, let the FPU
calculate its binary value to its own high precision.

We are using other constants: We multiply the pinhole diamigf 1000 to convert it from millimeters to microns.
We compare numbers @000 when we are rounding them off to four significant digits. Se, keep both1000
and10000, on the stack. And, of course, we reuse@tie when rounding off numbers to four digits.

Last but not least, we keep on the stack. We need it to scale the square of the f-numiséeaid of dividing it by

32. Itis not by coincidence we load this constant last. Thatesakthe top of the stack when only the constants are
on it. So, when the square of the f-number is being scaled5theatst(1) , precisely wheréscale expects it to
be.

Itis common to create certain constants from scratch idstésading them from the memory. That is what we are
doing with-5 :

fld1 ; TOS = 1
fadd st0, stO ; TOS = 2

163

fadd
fldl

faddp

fchs

Chapter 11 x86 Assembly Language Programming

st0, stO ;. TOS = 4

; TOS = 1
stl, stO ; TOS = 5

; TOS = -5

We can generalize all these optimizations into one fié&p repeat values on the stack!

Tip: PostScript® is a stack—oriented programming language. There are many more books available about
PostScript than about the FPU assembly language: Mastering PostScript will help you master the FPU.

11.13.5 pinhole—The Code

; Find various parameters of a pinhole camera construction a

; Started:
; Updated:

9-Jun-2001
10-Jun-2001

; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.

%include
%define

section
align 4
ten dd
thousand
tthou dd
fd.in dd
fd.out dd
envar db
pinhole
connors
usg db
usglen equ
iemsg db
iemlen equ
oemsg db
oemlen equ
pinmsg db
pinlen equ
toobig db
biglen equ
huhmsg db

'system.inc’
BUFSIZE 2048
.data

10

dd 1000
10000
stdin
stdout
'PINHOLE=’ ; Exactly 8 bytes, or 2 dwords long
db '04,, ; Bender's constant (0.04)

db '037’, OAh ; Connors’ constant

'Usage: pinhole [-b] [-c] [-€] [-p <value>] [-0 <oulffi
$-usg

"pinhole: Can’t open input file", OAh

$-iemsg

"pinhole: Can't create output file", OAh

$-oemsg

"pinhole: The PINHOLE constant must not be 0", OAh
$-pinmsg
"pinhole: The PINHOLE constant may not exceed 18 de
$-toobig

9, 77

19191999999999939399191919

nd use

le>] [-i <infile>], OAh

cimal places", 0OAh

164

Chapter 11 x86 Assembly Language Programming

separ db 9, 2?7

sep2 db 9, 7?7

sep3 db 9, 72?7

sep4 db 9, '???', OAh

huhlen equ $-huhmsg

header db 'focal length in millimeters,pinhole diameter in microns,’
db 'F-number,normalized F-number,F-5.6 multiplier,stop s’
db 'from F-5.6', OAh

headlen equ $-header

section .bss

ibuffer resb BUFSIZE

obuffer resb BUFSIZE

dbuffer resb 20 ; decimal input buffer

bbuffer resb 10 : BCD buffer

section text

align 4

huh:
call write
push dword huhlen

push dword huhmsg
push dword [fd.out]

sys.write
add esp, byte 12
ret

align 4

perr:
push dword pinlen
push dword pinmsg
push dword stderr
sys.write
push dword 4 . return failure
sys.exit

align 4

consttoobig:
push dword biglen
push dword toobig

push dword stderr
sys.write
push dword 5 . return failure
sys.exit
align 4
ierr:
push dword iemlen
push dword iemsg
push dword stderr
sys.write
push dword 1 . return failure
sys.exit

165

Chapter 11 x86 Assembly Language Programming

align 4

oerr:
push dword oemlen
push dword oemsg
push dword stderr
sys.write
push dword 2
sys.exit

align 4

usage:
push dword usglen
push dword usg
push dword stderr
sys.write
push dword 3
sys.exit

align 4

global _start

_start:
add esp, byte 8 ; discard argc and argv[0]
sub esi, esi

.arg:
pop ecx
or ecx, ecx
e near .getenv ; N0 more arguments
; ECX contains the pointer to an argument
cmp byte [ecx], -
jne usage
inc ecx
mov ax, [ecx]
inc ecx

.0
cmp al, 'o’
jne i

; Make sure we are not asked for the output file twice
cmp dword [fd.out], stdout
jne usage

; Find the path to output file - it is either at [ECX+1],

. i.e., -ofile --

; or in the next argument,
. i.e., -0 file

or ah, ah

jne .openoutput

166

Chapter 11 x86 Assembly Language Programming

pop ecx
jecxz usage

.openoutput:
push dword 420 ; file mode (644 octal)
push dword 0200h | 0400h | 01h
; O_CREAT | O_TRUNC | O_WRONLY

push ecx
sys.open
ic near oerr
add esp, byte 12
mov [fd.out], eax
jmp short .arg

i
cmp al, "
jne p

; Make sure we are not asked twice

cmp dword [fd.in], stdin
jne near usage

; Find the path to the input file

or ah, ah
jne .openinput
pop ecx

or ecx, ecx

je near usage

.openinput:
push dword O ; O_RDONLY
push ecx
sys.open
ic near ierr ; open failed
add esp, byte 8
mov [fd.in], eax
jmp .arg
.p:
cmp al, 'p’
jne .c
or ah, ah
jne .pcheck
pop ecx
or ecx, ecx
je near usage
mov ah, [ecx]
.pcheck:

167

Chapter 11 x86 Assembly Language Programming

cmp ah, 'O’
jl near usage
cmp ah, 'Y
ja near usage
mov esi, ecx
jmp .arg
.C:
cmp al, 'c
jne .b
or ah, ah
jne near usage
mov esi, connors
jmp .arg
.b:
cmp al, b’
jne e
or ah, ah
jne near usage
mov esi, pinhole
jmp .arg
e
cmp al, ‘e’
jne near usage
or ah, ah
jne near usage
mov al, ')’
mov [huhmsg], al
mov [separ], al
mov [sep2], al
mov [sep3], al
mov [sep4], al
jmp .arg
align 4
.getenv:
; If ESI = 0, we did not have a -p argument,
; and need to check the environment for "PINHOLE="
or esi, esi
jne .init
sub ecx, ecx
.nextenv:
pop esi
or esi, esi
je .default ; no PINHOLE envar found

; check if this envar starts with 'PINHOLE=’
mov edi, envar
mov cl, 2 ; 'PINHOLE=" is 2 dwords long

168

Chapter 11 x86 Assembly Language Programming

rep cmpsd
jne .nextenv

; Check if it is followed by a digit

mov al, [esi]
cmp al, '0’
il .default
cmp al, '9’
jbe .init
; fall through
align 4
.default:
; We got here because we had no -p argument,
; and did not find the PINHOLE envar.
mov esi, pinhole
; fall through
align 4
.init:
sub eax, eax
sub ebx, ebx
sub ecx, ecx
sub edx, edx
mov edi, dbuffer+1
mov byte [dbuffer], '0’
; Convert the pinhole constant to real
.constloop:
lodsb
cmp al, '9’
ja .setconst
cmp al, '0’
je .processconst
jb .setconst
inc dl
.processconst:
inc cl
cmp cl, 18
ja near consttoobig
stosb
jmp short .constloop
align 4
.setconst:
or dl, dl
je near perr
finit

fild dword [tthou]

169

Chapter 11 x86 Assembly Language Programming
fld1
fild dword [ten]
fdivp stl, stO

fild dword [thousand]

mov edi, obuffer

mov ebp, ecx

call bcdload
.constdiv:

fmul st0, st2

loop .constdiv

fld1

fadd st0, stO
fadd st0, st0
fld1
faddp stl, stO
fchs

; If we are creating a CSV file,
; print header

cmp byte [separ], '/’

jne .bigloop

push dword headlen

push dword header

push dword [fd.out]

sys.write
.bigloop:

call getchar

jc near done

; Skip to the end of the line if you got '#

cmp al, '#

jne .num

call skiptoeol

jmp short .bigloop
.num:

; See if you got a number

cmp al, '0’

jl .bigloop

cmp al, 'y’

ja .bigloop

; Yes, we have a number

sub ebp, ebp

sub edx, edx
.number:

170

Chapter 11 x86 Assembly Language Programming

cmp al, '0’

je .number0

mov d, 1
.numberO0:

or dl, dl ; Skip leading 0O’s

je .nextnumber

push eax

call putchar

pop eax

inc ebp

cmp ebp, 19

jae .nextnumber

mov [dbuffer+ebp], al
.nextnumber:

call getchar

jc .work

cmp al, '#

je .ungetc

cmp al, '0’

jl .work

cmp al, '9’

ja .work

jmp short .number
.ungetc:

dec esi

inc ebx
.work:

; Now, do all the work

or dl, di

je near .work0

cmp ebp, 19

jae near .toobig

call bcdload

; Calculate pinhole diameter

fld st0 . save it

fsqrt

fmul st0, st3

fid st0

fmul st

sub ebp, ebp

; Round off to 4 significant digits
.diameter:

fcom stO, st7

fstsw ax

171

sahf

jb .printdiameter
fmul st0, st6

inc ebp

jmp short .diameter

.printdiameter:

call printnumber ; pinhole diameter

; Calculate F-number

fdivp stl, stO

fnumber:

fid st0

sub ebp, ebp
fcom st0, st6

fstsw ax

sahf

jb .printfnumber
fmul st0, st5

inc ebp

jmp short .fnumber

.printtnumber:

fmul:

call printnumber ;. F number

; Calculate normalized F-number

fmul st0, stO
fld1

fid stl

fyl2x

frndint

fld1

fscale

fsqrt

fstp stl

sub ebp, ebp
call printnumber

; Calculate time multiplier from F-5.6

fscale
fld st0

; Round off to 4 significant digits

fcom stO, st6
fstsw ax
sahf

Chapter 11 x86 Assembly Language Programming

172

Chapter 11 x86 Assembly Language Programming

jb .printfmul
inc ebp
fmul st0, st5
jmp short .fmul
printfmul:
call printnumber ; F multiplier

; Calculate F-stops from 5.6

fld1
fxch stl
fyl2x
sub ebp, ebp
call printnumber
mov al, OAh
call putchar
jmp .bigloop
.work0:
mov al, 'o
call putchar
align 4
.toobig:
call huh
jmp .bigloop
align 4
done:
call write ; flush output buffer
; close files
push dword [fd.in]
sys.close
push dword [fd.out]
sys.close
finit
; return success
push dword 0
sys.exit
align 4
skiptoeol:
; Keep reading until you come to cr, If, or eof
call getchar
jc done
cmp al, OAh

173

Chapter 11 x86 Assembly Language Programming

jne .cr
ret

.cr:
cmp al, ODh
jne skiptoeol
ret

align 4

getchar:
or ebx, ebx
jne fetch
call read

fetch:
lodsb
dec ebx
clc
ret

read:
jecxz .read
call write

.read:
push dword BUFSIZE
mov esi, ibuffer
push esi
push dword [fd.in]
sys.read
add esp, byte 12
mov ebx, eax
or eax, eax
je .empty
sub eax, eax
ret

align 4

.empty:
add esp, byte 4
stc
ret

align 4

putchar:
stosb
inc ecx
cmp ecx, BUFSIZE
je write
ret

align 4

174

Chapter 11 x86 Assembly Language Programming

write:
jecxz .ret ; nothing to write
sub edi, ecx ; start of buffer
push ecx
push edi
push dword [fd.out]
sys.write
add esp, byte 12
sub eax, eax
sub ecx, ecx ; buffer is empty now
ret:
ret
align 4
bcdload:
; EBP contains the number of chars in dbuffer
push ecx
push esi
push edi
lea ecx, [ebp+1]
lea esi, [dbuffer+ebp-1]
shr ecx, 1
std
mov edi, bbuffer
sub eax, eax
mov [edi], eax
mov [edi+4], eax
mov [edi+2], ax
.loop:
lodsw
sub ax, 3030h
shl al, 4
or al, ah
mov [edi], al
inc edi
loop .loop
fbld [bbuffer]
cld
pop edi
pop esi
pop ecx
sub eax, eax
ret
align 4
printnumber:
push ebp

175

Chapter 11 x86 Assembly Language Programming

mov al, [separ]
call putchar

; Print the integer at the TOS
mov ebp, bbuffer+9
fbstp [bbuffer]

; Check the sign

mov al, [ebp]
dec ebp

or al, al

jns leading

; We got a negative number (should never happen)

mov al, -’

call putchar
leading:

; Skip leading zeros

mov al, [ebp]

dec ebp

or al, al

jne first

cmp ebp, bbuffer

jae leading

;. We are here because the result was O.

; Print 0’ and return

mov al, '0’

jmp putchar
first:

; We have found the first non-zero.
; But it is still packed
test al, OFOh

jz .second

push eax

shr al, 4

add al, '0’

call putchar

pop eax

and al, OFh
.second:

add al, '0’

call putchar
.next:

cmp ebp, bbuffer

jb .done

mov al, [ebp]

push eax

176

Chapter 11 x86 Assembly Language Programming

shr al, 4

add al, '0’

call putchar

pop eax

and al, OFh

add al, '0’

call putchar

dec ebp

jmp short .next
.done:

pop ebp

or ebp, ebp

je .ret
.ZEeros:

mov al, '0’

call putchar

dec ebp

jne .Zeros
ret:

ret

The code follows the same format as all the other filters we Isaen before, with one subtle exception:
We are no longer assuming that the end of input implies theoéttungs to do, something we took for granted in the
character—orientedilters.

This filter does not process characters. It proces$asguage(albeit a very simple one, consisting only of numbers).

When we have no more input, it can mean one of two things:

« We are done and can quit. This is the same as before.

- The last character we have read was a digit. We have storethi and of our ASCll-to—float conversion buffer. We now
need to convert the contents of that buffer into a number aiité the last line of our output.

For that reason, we have modified @etchar and ounead routines to return with thearry flag clear whenever we
are fetching another character from the input, orddey flag setwhenever there is no more input.

Of course, we are still using assembly language magic toatb Take a good look ajetchar . It alwaysreturns with the
carry flag clear.

Yet, our main code relies on tlarry flag to tell it when to quit—and it works.

The magic is iread . Whenever it receives more input from the system, it justrres togetchar , which fetches a
character from the input buffetjearsthecarry flag and returns.

But whenread receives no more input from the system, it doesreturn togetchar at all. Instead, thadd esp, byte
4 op code addg to ESP, setsthecarry flag , and returns.

So, where does it return to? Whenever a program usesatheop code, the microprocessauish es the return address, i.e.,
it stores it on the top of the stack (not the FPU stack, theesysttack, which is in the memory). When a program uses the
ret op code, the microprocesspups the return value from the stack, and jumps to the address/ézastored there.

But since we added to ESP (which is the stack pointer register), we have effectivélyeg the microprocessor a minor case
of amnesialt no longer remembers it wagtchar thatcall edread .

177

Chapter 11 x86 Assembly Language Programming

And sincegetchar neverpush ed anything beforeall ingread , the top of the stack now contains the return address to
whatever or whoeverall edgetchar . As far as that caller is concerned, da edgetchar , whichret urned with the
carry flag set!

Other than that, thbecdload routine is caught up in the middle of a Lilliputian conflicttbeen the Big—Endians
and the Little—Endians.

It is converting the text representation of a number intd thenber: The text is stored in the big—endian order, but
thepacked decimak little—endian.

To solve the conflict, we use tled op code early on. We cancel it witihd later on: It is quite important we do not
call anything that may depend on the default setting ofdinection flagwhile std is active.

Everything else in this code should be quite clear, progdiou have read the entire chapter that precedes it.

Itis a classical example of the adage that programming regjai lot of thought and only a little coding. Once we
have thought through every tiny detail, the code almostesriitself.

11.13.6 Using pinhole

Because we have decided to make the proggamareany input except for numbers (and even those inside a
comment), we can actually perforiextual queriesWe do nothave tq but wecan

In my humble opinion, forming a textual query, instead ofihguo follow a very strict syntax, makes software
much more user friendly.

Suppose we want to build a pinhole camera to use the 4x5 imohTihe standard focal length for that film is about
150mm. We want tdine—tuneour focal length so the pinhole diameter is as round a nunpossible. Let us also
suppose we are quite comfortable with cameras but somentivatdated by computers. Rather than just have to
type in a bunch of numbers, we wantaska couple of questions.

Our session might look like this:
% pi nhol e
Conput er,

What size pinhole do | need for the focal |ength of 1507

150 490 306 362 2930 12
Hmm .. How about 1607

160 506 316 362 3125 12
Let’s make it 155, please.

155 498 311 362 3027 12
Ah, let’s try 157...

157 501 313 362 3066 12
1567

156 500 312 362 3047 12
That’'s it! Perfect! Thank you very nuch!

D

We have found that while for the focal length of 150, our pilehdiameter should be 490 microns, or 0.49 mm, if we
go with the almost identical focal length of 156 mm, we canayeay with a pinhole diameter of exactly one half of
a millimeter.

178

Chapter 11 x86 Assembly Language Programming

11.13.7 Scripting

Because we have chosen theharacter to denote the start of a comment, we can tregtioliole software as a
scripting language

You have probably seeshell scriptsthat start with:

#! /bin/sh

...or...

#1/bin/sh

...because the blank space after#heas optional.

Whenever UNIX is asked to run an executable file which staitts the#! , it assumes the file is a script. It adds the
command to the rest of the first line of the script, and triesxecute that.

Suppose now that we have instali@dhole in /usr/local/bin/, we can now write a script to calculate various pinhole
diameters suitable for various focal lengths commonly weitld the 120 film.

The script might look something like this:
#! Jusr/local/bin/pinhole -b -i

Find the best pinhole diameter
for the 120 film

Standard
80

Wide angle
30, 40, 50, 60, 70

Telephoto
100, 120, 140

Because 120 is a medium size film, we may name thigrféelium.

We can set its permissions to execute, and run it as if it w@regram:

% chnod 755 nedi um
% ./ medi um

UNIX will interpret that last command as:
% /usr/local/bin/pinhole -b -i ./nedium

It will run that command and display:

80 358 224 256 1562 11
30 219 137 128 586 9

40 253 158 181 781 10
50 283 177 181 977 10
60 310 194 181 1172 10
70 335 209 181 1367 10
100 400 250 256 1953 11

179

Chapter 11 x86 Assembly Language Programming

120 438 274 256 2344 11
140 473 296 256 2734 11

Now, let us enter:

% ./ medium -c

UNIX will treat that as:

% /usr/local/bin/pinhole -b -i ./nedium-c

That gives it two conflicting options:b and- ¢ (Use Bender’s constant and use Connors’ constant). We have
programmed it so later options override early ones—ouramogwill calculate everything using Connors’ constant:

80 331 242 256 1826 11
30 203 148 128 685 9
40 234 171 181 913 10
50 262 191 181 1141 10
60 287 209 181 1370 10
70 310 226 256 1598 11
100 370 270 256 2283 11
120 405 296 256 2739 11
140 438 320 362 3196 12

We decide we want to go with Bender’s constant after all. Waté@save its values as a comma-separated file:

% ./ medium -b -e > bender
% cat bender

focal length in millimeters,pinhole diameter in microns,F -number,normalized F-number,F-5.6 multiplier,stops
80,358,224,256,1562,11
30,219,137,128,586,9
40,253,158,181,781,10
50,283,177,181,977,10
60,310,194,181,1172,10
70,335,209,181,1367,10
100,400,250,256,1953,11
120,438,274,256,2344,11
140,473,296,256,2734,11

%

11.14 Caveats

Assembly language programmers who "grew up" under MS-D@S/indows often tend to take shortcuts. Reading
the keyboard scan codes and writing directly to video meraogytwo classical examples of practices which, under
MS-DOS are not frowned upon but considered the right thirgdpto

The reason? Both the PC BIOS and MS-DOS are notoriously slognyperforming these operations.

You may be tempted to continue similar practices in the UNiXinment. For example, | have seen a web site
which explains how to access the keyboard scan codes on dap&jiNiX clone.

That is generally &ery bad idean UNIX environment! Let me explain why.

180

Chapter 11 x86 Assembly Language Programming

11.14.1 UNIX Is Protected

For one thing, it may simply not be possible. UNIX runs in pied mode. Only the kernel and device drivers are

allowed to access hardware directly. Perhaps a particlidKldlone will let you read the keyboard scan codes, but
chances are a real UNIX operating system will not. And evemé version may let you do it, the next one may not,
so your carefully crafted software may become a dinosaumigfet.

11.14.2 UNIX Is an Abstraction

But there is a much more important reason not to try accessabardware directly (unless, of course, you are
writing a device driver), even on the UNIX like systems ttedtylou do it:

UNIX is an abstraction!

There is a major difference in the philosophy of design betw&S-DOS and UNIX. MS-DOS was designed as a
single-user system. It is run on a computer with a keyboaddsavideo screen attached directly to that computer.
User input is almost guaranteed to come from that keyboardr frogram’s output virtually always ends up on that
screen.

This is NEVER guaranteed under UNIX. It is quite common forMIX user to pipe and redirect program input and
output:

% progranl | progran2 | progranB8 > filel

If you have writtenprogram?2, your input does not come from the keyboard but from the dudpprogram1.
Similarly, your output does not go to the screen but becomegput forprogram3 whose output, in turn, goes to
filel

But there is more! Even if you made sure that your input comasfand your output goes to, the terminal, there is
no guarantee the terminal is a PC: It may not have its videoongmhere you expect it, nor may its keyboard be
producing PC-style scan codes. It may be a Macintosh, or #rgr computer.

Now you may be shaking your head: My software is in PC assefahlyuage, how can it run on a Macintosh? But |
did not say your software would be running on a Macintoshy tmt its terminal may be a Macintosh.

Under UNIX, the terminal does not have to be directly attaldieethe computer that runs your software, it can even
be on another continent, or, for that matter, on anothergblanis perfectly possible that a Macintosh user in
Australia connects to a UNIX system in North America (or ahgre else) videlnet. The software then runs on one
computer, while the terminal is on a different computer:dfitry to read the scan codes, you will get the wrong
input!

Same holds true about any other hardware: A file you are rgaday be on a disk you have no direct access to. A
camera you are reading images from may be on a space shattleected to you via satellites.

That is why under UNIX you must never make any assumptionstalibere your data is coming from and going to.
Always let the system handle the physical access to the taasdw

Note: These are caveats, not absolute rules. Exceptions are possible. For example, if a text editor has
determined it is running on a local machine, it may want to read the scan codes directly for improved control. | am
not mentioning these caveats to tell you what to do or what not to do, just to make you aware of certain pitfalls
that await you if you have just arrived to UNIX form MS-DOS. Of course, creative people often break rules, and it
is OK as long as they know they are breaking them and why.

181

Chapter 11 x86 Assembly Language Programming

11.15 Acknowledgements

This tutorial would never have been possible without th@ loéimany experienced FreeBSD programmers from the
FreeBSD technical discussions mailing list (http://listeeBSD.org/mailman/listinfo/freebsd-hackers), mahy
whom have patiently answered my questions, and pointed e iright direction in my attempts to explore the
inner workings of UNIX system programming in general andeB8D in particular.

Thomas M. Sommers opened the door for me. His How do | writdltHeorld" in FreeBSD assembler?
(http://lwww.codebreakers-journal.com/content/vies227/) web page was my first encounter with an example of
assembly language programming under FreeBSD.

Jake Burkholder has kept the door open by willingly answegsith of my questions and supplying me with example
assembly language source code.

Copyright © 2000-2001 G. Adam Stanislav. All rights resetve

182

V. Appendices

Bibliography

[1] Dave A Patterson and John L Hennessy, 1998, 1-5586064®8rgan Kaufmann Publishers, In€Gpmputer
Organization and Design: The Hardware / Software Interface.

[2] W. Richard Stevens, 1993, 0-201-56317-7, Addison Wektangman, Inc. Advanced Programming in the Unix
Environment, 1-2.

[3] Marshall Kirk McKusick and George Neville-Neil, 2004,2D1-70245-2, Addison-Wesleyhe Design and
Implementation of the FreeBSD Operating System, 1-2.

[4] Aleph One,Phrack 49; "Smashing the Stack for Fun and Profit".

[5] Chrispin Cowan, Calton Pu, and Dave MaiStackGuard; Automatic Adaptive Detection and Prevention o
Buffer-Overflow Attacks.

[6] Todd Miller and Theo de Raaditricpy and stricat -- consistent, safe string copy and edecation..

	FreeBSD Developers' Handbook
	Table of Contents
	List of Examples
	I. Basics
	Chapter 1 Introduction
	1.1 Developing on FreeBSD
	1.2 The BSD Vision
	1.3 Architectural Guidelines
	1.4 The Layout of /usr/src

	Chapter 2 Programming Tools
	2.1 Synopsis
	2.2 Introduction
	2.3 Introduction to Programming
	2.3.1 Interpreters
	2.3.2 Interpreters available with FreeBSD
	2.3.3 Compilers

	2.4 Compiling with cc
	2.4.1 Common cc Queries and Problems

	2.5 Make
	2.5.1 What is make?
	2.5.2 Example of using make
	2.5.3 Make and includefiles
	2.5.4 FreeBSD Makefiles
	2.5.5 More advanced uses of make

	2.6 Debugging
	2.6.1 The Debugger
	2.6.2 Running a program in the debugger
	2.6.3 Examining a core file
	2.6.4 Attaching to a running program

	2.7 Using Emacs as a Development Environment
	2.7.1 Emacs
	2.7.2 Configuring Emacs
	2.7.3 A sample .emacs file
	2.7.4 Extending the Range of Languages Emacs Understands

	2.8 Further Reading

	Chapter 3 Secure Programming
	3.1 Synopsis
	3.2 Secure Design Methodology
	3.3 Buffer Overflows
	3.3.1 Example Buffer Overflow
	3.3.2 Avoiding Buffer Overflows
	3.3.2.1 Compiler based runtime bounds checking
	3.3.2.2 Library based runtime bounds checking

	3.4 SetUID issues
	3.5 Limiting your program's environment
	3.5.1 FreeBSD's jail functionality
	3.5.2 POSIX®.1e Process Capabilities

	3.6 Trust
	3.7 Race Conditions

	Chapter 4 Localization and Internationalization L10N and I18N
	4.1 Programming I18N Compliant Applications
	4.1.1 A Call to Unify the I18N Effort
	4.1.2 Perl and Python

	4.2 Localized Messages with POSIX.1 Native Language Support (NLS)
	4.2.1 Organizing Localized Messages into Catalog Files
	4.2.2 Using the Catalog Files from the Source Code
	4.2.3 A Practical Example
	4.2.3.1 Reducing Strings to Localize

	4.2.4 Making use of bsd.nls.mk

	Chapter 5 Source Tree Guidelines and Policies
	5.1 Style Guidelines
	5.2 MAINTAINER on Makefiles
	5.3 Contributed Software
	5.3.1 Vendor Imports with SVN

	5.4 Encumbered Files
	5.5 Shared Libraries

	Chapter 6 Regression and Performance Testing
	6.1. Micro Benchmark Checklist
	6.2. The FreeBSD Source Tinderbox
	6.2.1. The index.cgi Script
	6.2.2. Official Build Servers
	6.2.3. Official Summary Site

	II. Interprocess Communication
	Chapter 7 Sockets
	7.1 Synopsis
	7.2 Networking and Diversity
	7.3 Protocols
	7.4 The Sockets Model
	7.5 Essential Socket Functions
	7.5.1 The ClientServer Difference
	7.5.1.1 The Common Elements
	7.5.1.2 Client Functions
	7.5.1.3 Server Functions

	7.6 Helper Functions
	7.6.1 gethostbyname
	7.6.2 getservbyname

	7.7 Concurrent Servers

	Chapter 8 IPv6 Internals
	8.1 IPv6/IPsec Implementation
	8.1.1 IPv6
	8.1.1.1 Conformance
	8.1.1.2 Neighbor Discovery
	8.1.1.3 Scope Index
	8.1.1.4 Plug and Play
	8.1.1.5 Generic tunnel interface
	8.1.1.6 Source Address Selection
	8.1.1.7 Jumbo Payload
	8.1.1.8 Loop prevention in header processing
	8.1.1.9 ICMPv6
	8.1.1.10 Applications
	8.1.1.11 Kernel Internals
	8.1.1.12 IPv4 mapped address and IPv6 wildcard socket
	8.1.1.13 sockaddrstorage

	8.1.2 Network Drivers
	8.1.3 Translator
	8.1.3.1 FAITH TCP relay translator

	8.1.4 IPsec
	8.1.4.1 Policy Management
	8.1.4.2 Key Management
	8.1.4.3 AH and ESP handling
	8.1.4.4 Conformance to RFCs and IDs
	8.1.4.5 ECN consideration on IPsec tunnels
	8.1.4.6 Interoperability

	III. Kernel
	Chapter 9 Building and Installing a FreeBSD Kernel
	9.1 Building a Kernel the Traditional Way
	9.2 Building a Kernel the New Way

	Chapter 10 Kernel Debugging
	10.1 Obtaining a Kernel Crash Dump
	10.1.1 Configuring the Dump Device
	10.1.2 Extracting a Kernel Dump

	10.2 Debugging a Kernel Crash Dump with kgdb
	10.3 Debugging a Crash Dump with DDD
	10.4 OnLine Kernel Debugging Using DDB
	10.5 OnLine Kernel Debugging Using Remote GDB
	10.6 Debugging a Console Driver
	10.7 Debugging Deadlocks
	10.8 Kernel debugging with Dcons
	10.8.1 Dcons over FireWire®
	10.8.1.1 Enabling FireWire and Dcons support on the target machine
	10.8.1.2 Enabling FireWire and Dcons support on the host machine
	10.8.1.3 Some general tips

	10.8.2 Dcons with KVM
	10.8.2.1 Using Dcons with KVM

	10.9 Glossary of Kernel Options for Debugging

	IV. Architectures
	Chapter 11 x86 Assembly Language Programming
	11.1 Synopsis
	11.2 The Tools
	11.2.1 The Assembler
	11.2.2 The Linker

	11.3 System Calls
	11.3.1 Default Calling Convention
	11.3.2 Alternate Calling Convention
	11.3.3 Which Convention Should You Use?
	11.3.4 Call Numbers
	11.3.4.1 The syscalls File

	11.4 Return Values
	11.4.1 Man Pages
	11.4.2 Where Are the Return Values?
	11.4.3 Where Is errno?
	11.4.4 Determining an Error Occurred

	11.5 Creating Portable Code
	11.5.1 Dealing with Function Numbers
	11.5.2 Dealing with Conventions
	11.5.3 Dealing with Other Portability Issues
	11.5.4 Using a Library
	11.5.5 Using an Include File

	11.6 Our First Program
	11.6.1 Assembling the Code
	11.6.1.1 Installing nasm

	11.7 Writing UNIX® Filters
	11.8 Buffered Input and Output
	11.8.1 How to Unread a Character

	11.9 Command Line Arguments
	11.10 UNIX Environment
	11.10.1 How to Find Environment Variables
	11.10.2 webvars
	11.10.2.1 CGI: A Quick Overview
	11.10.2.2 The Code

	11.11 Working with Files
	11.11.1 Finite State Machine
	11.11.1.1 The Final State
	11.11.1.2 The Output Counter

	11.11.2 Implementing FSM in Software
	11.11.3 Memory Mapped Files
	11.11.4 Determining File Size
	11.11.5 Changing the File Size
	11.11.6 ftuc

	11.12 OnePointed Mind
	11.12.1 CSV
	11.12.1.1 The Dark Side of Buffering

	11.13 Using the FPU
	11.13.1 Organization of the FPU
	11.13.1.1 The Packed Decimal Format

	11.13.2 Excursion to Pinhole Photography
	11.13.2.1 The Camera
	11.13.2.2 The Pinhole
	11.13.2.3 Focal Length
	11.13.2.4 The FNumber
	11.13.2.5 Normalized FNumber
	11.13.2.6 The FStop

	11.13.3 Designing the Pinhole Software
	11.13.3.1 Processing Program Input
	11.13.3.2 Offering Options
	11.13.3.3 The Output

	11.13.4 FPU Optimizations
	11.13.5 pinholeThe Code
	11.13.6 Using pinhole
	11.13.7 Scripting

	11.14 Caveats
	11.14.1 UNIX Is Protected
	11.14.2 UNIX Is an Abstraction

	11.15 Acknowledgements

	V. Appendices
	Bibliography

