Linux® emulation in FreeBSD

Roman Divacky
rdivacky@FreeBSD.org

$FreeBSD: head/en_US.ISO8859-1/articles/linux-emulat ion/article.xml 41645
2013-05-17 18:49:52Z gabor $

$FreeBSD: head/en_US.ISO8859-1/articles/linux-emulat ion/article.xml 41645
2013-05-17 18:49:52Z gabor $

Adobe, Acrobat, Acrobat Reader, and PostScript are either regi stered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other c ountries.

IBM, AIX, EtherJet, Netfinity, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International
Business Machines Corporation in the United States, other cou ntries, or both.

FreeBSD is a registered trademark of the FreeBSD Foundation.

Linux is a registered trademark of Linus Torvalds.

NetBSD is a registered trademark of the NetBSD Foundation.

RealNetworks, RealPlayer, and RealAudio are the registered trad emarks of RealNetworks, Inc.
Oracle is a registered trademark of Oracle Corporation.

Sun, Sun Microsystems, Java, Java Virtual Machine, JavaSer ver Pages, JDK, JRE, JSP, JVM, Netra,
OpendDK, Solaris, StarOffice, Sun Blade, Sun Enterprise, Sun Fire , SunOS, Ultra and VirtualBox are

trademarks or registered trademarks of Sun Microsystems, Inc. in t he United States and other
countries.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This masters thesis deals with updating the Linux® emufdtger (the so calletlinuxulator). The task

was to update the layer to match the functionality of Linuk Zs a reference implementation, the Linux
2.6.16 kernel was chosen. The concept is loosely based dtettBSD implementation. Most of the work
was done in the summer of 2006 as a part of the Google Summerydef &udents program. The focus was
on bringing theNPTL (new POSIX® thread library) support into the emulation layecludingTLS

(thread local storageftexeqfast user space mutexeB)D mangling and some other minor things. Many
small problems were identified and fixed in the process. Mykwaas integrated into the main FreeBSD
source repository and will be shipped in the upcoming 7.0&ae. We, the emulation development team,
are working on making the Linux 2.6 emulation the default Etion layer in FreeBSD.

Linux® emulation in FreeBSD

Table of Contents

I g1 4 oo (U Tt Ao o OSSO 2
P2 AN o) QT 1= Lo =TSRSS 2
I3 41U o o TSRS 9
ALINUX eMUIALION [AYEr -IM D PAITiiiieeieeieeiceee sttt e e et te e e e e e s e seesesaessessesaenenseesesseseenneneenens 14
5 LINUX eMUIAtION [QYEr M1 PAT......iiciieiiecie ettt et eseesessessese e seseeseesesreeeseenennnens 18
LS @o] 0 Tox U= o o SOOI 27
L= = U= TSSOSO 29

1 Introduction

In the last few years the open source UNIX® based operatisigBys started to be widely deployed on server and
client machines. Among these operating systems | woulddik@oint out two: FreeBSD, for its BSD heritage, time
proven code base and many interesting features and Linutsfaide user base, enthusiastic open developer
community and support from large companies. FreeBSD tembe tised on server class machines serving heavy
duty networking tasks with less usage on desktop class mesiior ordinary users. While Linux has the same usage
on servers, but it is used much more by home based users €Bldis 1o a situation where there are many binary only
programs available for Linux that lack support for FreeBSD.

Naturally, a need for the ability to run Linux binaries on @BSD system arises and this is what this thesis deals
with: the emulation of the Linux kernel in the FreeBSD opegsystem.

During the Summer of 2006 Google Inc. sponsored a projeatinoicused on extending the Linux emulation layer
(the so called Linuxulator) in FreeBSD to include Linux 2a@ifities. This thesis is written as a part of this project.

2 A look inside. ..

In this section we are going to describe every operatingegayst question. How they deal with syscalls, trapframes
etc., all the low-level stuff. We also describe the way thaegerstand common UNIX primitives like what a PID is,
what a thread is, etc. In the third subsection we talk abowttblIX on UNIX emulation could be done in general.

2.1 What is UNIX®

UNIX is an operating system with a long history that has infleedd almost every other operating system currently in
use. Starting in the 1960s, its development continues sodidy (although in different projects). UNIX development
soon forked into two main ways: the BSDs and System I1I/V fa@si They mutually influenced themselves by
growing a common UNIX standard. Among the contributiongimiated in BSD we can name virtual memory,
TCP/IP networking, FFS, and many others. The System V braagtributed to SysV interprocess communication
primitives, copy-on-write, etc. UNIX itself does not ex@ésty more but its ideas have been used by many other
operating systems world wide thus forming the so called UNK& operating systems. These days the most
influential ones are Linux, Solaris, and possibly (to sontery FreeBSD. There are in-company UNIX derivatives
(AIX, HP-UX etc.), but these have been more and more migratéide aforementioned systems. Let us summarize
typical UNIX characteristics.

Linux® emulation in FreeBSD

2.2 Technical details

Every running program constitutes a process that represestate of the computation. Running process is divided
between kernel-space and user-space. Some operations dandonly from kernel space (dealing with hardware
etc.), but the process should spend most of its lifetimeérutker space. The kernel is where the management of the
processes, hardware, and low-level details take placekdime| provides a standard unified UNIX API to the user
space. The most important ones are covered below.

2.2.1 Communication between kernel and user space process

Common UNIX API defines a syscall as a way to issue commandsdraser space process to the kernel. The most
common implementation is either by using an interrupt ocadized instruction (think 0SYSENTER/SYSCALL
instructions for ia32). Syscalls are defined by a numberekample in FreeBSD, the syscall number 85 is the
swapon(2) syscall and the syscall number 132 is mkfifo(2n&syscalls need parameters, which are passed from
the user-space to the kernel-space in various ways (impigtien dependant). Syscalls are synchronous.

Another possible way to communicate is by usirtgegn. Traps occur asynchronously after some event occurs
(division by zero, page fault etc.). A trap can be transpiigara process (page fault) or can result in a reaction like
sending asignal(division by zero).

2.2.2 Communication between processes

There are other APIs (System V IPC, shared memory etc.) bugitigle most important APl is signal. Signals are
sent by processes or by the kernel and received by proc&s®e. signals can be ignored or handled by a user
supplied routine, some result in a predefined action thataame altered or ignored.

2.2.3 Process management

Kernel instances are processed first in the system (so éaitcEvery running process can create its identical copy
using the fork(2) syscall. Some slightly modified versiohth@s syscall were introduced but the basic semantic is the
same. Every running process can morph into some other rasex the exec(3) syscall. Some modifications of this
syscall were introduced but all serve the same basic purposeesses end their lives by calling the exit(2) syscall.
Every process is identified by a unique number called PIDrEpeocess has a defined parent (identified by its PID).

2.2.4 Thread management

Traditional UNIX does not define any API nor implementationthreading, while POSIX defines its threading API
but the implementation is undefined. Traditionally thereentavo ways of implementing threads. Handling them as
separate processes (1:1 threading) or envelope the whiektiyroup in one process and managing the threading in
userspace (1:N threading). Comparing main features of @ajgfoach:

1:1 threading

« - heavyweight threads
- -the scheduling cannot be altered by the user (slightlygaiéd by the POSIX API)
- +no syscall wrapping necessary

« + can utilize multiple CPUs

Linux® emulation in FreeBSD

1:N threading

« + lightweight threads
- + scheduling can be easily altered by the user
« -syscalls must be wrapped

. - cannot utilize more than one CPU

2.3 What is FreeBSD?

The FreeBSD project is one of the oldest open source opgragstems currently available for daily use. Itis a direct
descendant of the genuine UNIX so it could be claimed thatattrue UNIX although licensing issues do not permit
that. The start of the project dates back to the early 199b&nna crew of fellow BSD users patched the 386BSD
operating system. Based on this patchkit a new operatirtgrsyarose named FreeBSD for its liberal license.
Another group created the NetBSD operating system witkedsfit goals in mind. We will focus on FreeBSD.

FreeBSD is a modern UNIX-based operating system with alféh&ires of UNIX. Preemptive multitasking,
multiuser facilities, TCP/IP networking, memory protectj symmetric multiprocessing support, virtual memory
with merged VM and buffer cache, they are all there. One ofritexesting and extremely useful features is the
ability to emulate other UNIX-like operating systems. Adadcember 2006 and 7-CURRENT development, the
following emulation functionalities are supported:

+ FreeBSD/i386 emulation on FreeBSD/amd64

« FreeBSD/i386 emulation on FreeBSD/ia64

« Linux-emulation of Linux operating system on FreeBSD
- NDIS-emulation of Windows networking drivers interface
« NetBSD-emulation of NetBSD operating system

- PECoff-support for PECoff FreeBSD executables

« SVR4-emulation of System V revision 4 UNIX

Actively developed emulations are the Linux layer and wasiBreeBSD-on-FreeBSD layers. Others are not
supposed to work properly nor be usable these days.

FreeBSD development happens in a central CVS repositoryandrdy a selected team of so called committers can
write. This repository possesses several branches; theimeesting are the HEAD branch, in FreeBSD
nomenclature called -CURRENT, and RELENG_ X branches, e/iestands for a number indicating a major
version of FreeBSD. As of December 2006, there are developbranches for 6.X development (RELENG_6) and
for the 5.X development (RELENG_5). Other branches areed@sd not actively maintained or only fed with
security patches by the Security Officer of the FreeBSD gtoje

Historically the active development was done in the HEADnstaso it was considered extremely unstable and
supposed to happen to break at any time. This is not true ang asathePer for ce (commercial version control
system) repository was introduced so that active developirappen there. There are many branchdeitfior ce
where development of certain parts of the system happenthasd branches are from time to time merged back to
the main CVS repository thus effectively putting the giveattire to the FreeBSD operating system. The same
happened with thedi vacky_I i nuxol at or branch where development of this thesis code was going on.

Linux® emulation in FreeBSD

More info about the FreeBSD operating system can be fourig] at [

2.3.1 Technical details

FreeBSD is traditional flavor of UNIX in the sense of dividitige run of processes into two halves: kernel space and
user space run. There are two types of process entry to thelkarsyscall and a trap. There is only one way to
return. In the subsequent sections we will describe thethages to/from the kernel. The whole description applies
to the i386 architecture as the Linuxulator only existséhaut the concept is similar on other architectures. The
information was taken from [1] and the source code.

2.3.1.1 System entries

FreeBSD has an abstraction called an execution class logllieh is a wedge into the execve(2) syscall. This
employs a structurgysent vec, which describes an executable ABI. It contains thingsdik@o translation table,
signal translation table, various functions to serve dyseds (stack fixup, coredumping, etc.). Every ABI the
FreeBSD kernel wants to support must define this structsri¢ jaused later in the syscall processing code and at
some other places. System entries are handled by trap hsnalere we can access both the kernel-space and the
user-space at once.

2.3.1.2 Syscalls

Syscalls on FreeBSD are issued by executing inteldu0 with register¥eax set to a desired syscall number with
arguments passed on the stack.

When a process issues an interrgp80, thei nt 0x80 syscall trap handler is issued (defined in

sys/ i 386/i 386/ exception. s), which prepares arguments (i.e. copies them on to the)sfaick call to a C

function syscall(2) (defined isys/ i 386/ i 386/ t r ap. c), which processes the passed in trapframe. The processing
consists of preparing the syscall (depending orstfevec entry), determining if the syscall is 32-bit or 64-bit one
(changes size of the parameters), then the parametersmeel cimcluding the syscall. Next, the actual syscall
function is executed with processing of the return codedisppeases fOERESTART andEJUSTRETURN errors).

Finally anuserret () is scheduled, switching the process back to the users-phegarameters to the actual

syscall handler are passed in the fornsof uct thread =td,struct syscall args * arguments where the
second parameter is a pointer to the copied in structurerafpeters.

2.3.1.3 Traps

Handling of traps in FreeBSD is similar to the handling ofcajls. Whenever a trap occurs, an assembler handler is
called. Itis chosen between alltraps, alltraps with regshpd or calltrap depending on the type of the trap. This
handler prepares arguments for a call to a C fundticap() (defined insys/i 386/ i 386/t rap. c), which then
processes the occurred trap. After the processing it magid a signal to the process and/or exit to userland using
userret ().

2.3.1.4 Exits

Exits from kernel to userspace happen using the assembinedor et i regardless of whether the kernel was
entered via a trap or via a syscall. This restores the progtatus from the stack and returns to the userspace.

Linux® emulation in FreeBSD

2.3.1.5 UNIX primitives

FreeBSD operating system adheres to the traditional UNhésee, where every process has a unique identification
number, the so calleBID (Process ID). PID numbers are allocated either linearlandomly ranging fron® to

PI D_MAX. The allocation of PID numbers is done using linear seagcbfPID space. Every thread in a process
receives the same PID number as result of the getpid(2) call.

There are currently two ways to implement threading in F&@BThe first way is M:N threading followed by the
1:1 threading model. The default library used is M:N thregdi i bpt hr ead) and you can switch at runtime to 1:1
threading (i bt hr). The plan is to switch to 1:1 library by default soon. Altlghuthose two libraries use the same
kernel primitives, they are accessed through differen{@$)l The M:N library uses these_= family of syscalls
while the 1:1 library uses thenhr _+ family of syscalls. Because of this, there is no general ephof thread ID
shared between kernel and userspace. Of course, bothithgdiadaries implement the pthread thread ID API.
Every kernel thread (as describedday uct t hr ead) has td tid identifier but this is not directly accessiblenfro
userland and solely serves the kernel's needs. It is alsbfosd.:1 threading library as pthread’s thread ID but
handling of this is internal to the library and cannot bee@lon.

As stated previously there are two implementations of tirepin FreeBSD. The M:N library divides the work
between kernel space and userspace. Thread is an entigetisacheduled in the kernel but it can represent various
number of userspace threads. M userspace threads get ntapyp&ernel threads thus saving resources while
keeping the ability to exploit multiprocessor paralleligharther information about the implementation can be
obtained from the man page or [1]. The 1:1 library directlypsia userland thread to a kernel thread thus greatly
simplifying the scheme. None of these designs implemernitiagiss mechanism (such a mechanism was
implemented but it was removed recently because it causeiseslowdown and made the code more difficult to
deal with).

2.4 What is Linux

Linux is a UNIX-like kernel originally developed by Linus fealds, and now being contributed to by a massive
crowd of programmers all around the world. From its mere tgigigs to todays, with wide support from companies
such as IBM or Google, Linux is being associated with its feestelopment pace, full hardware support and
benevolent dictator model of organization.

Linux development started in 1991 as a hobbyist project atéssity of Helsinki in Finland. Since then it has
obtained all the features of a modern UNIX-like OS: multigessing, multiuser support, virtual memory,
networking, basically everything is there. There are algblly advanced features like virtualization etc.

As of 2006 Linux seems to be the most widely used open soureebtpg system with support from independent
software vendors like Oracle, RealNetworks, Adobe, etcstvbd the commercial software distributed for Linux can
only be obtained in a binary form so recompilation for othge@ting systems is impossible.

Most of the Linux development happens iGé version control systengit is a distributed system so there is no
central source of the Linux code, but some branches aredemesi prominent and official. The version number
scheme implemented by Linux consists of four numbers AB.Currently development happensin 2.6.C.D, where
C represents major version, where new features are addé@oged while D is a minor version for bugfixes only.

More information can be obtained from [4].

Linux® emulation in FreeBSD

2.4.1 Technical details

Linux follows the traditional UNIX scheme of dividing themwf a process in two halves: the kernel and user space.
The kernel can be entered in two ways: via a trap or via a dygd# return is handled only in one way. The further
description applies to Linux 2.6 on the i386™ architectiifgs information was taken from [3].

2.4.1.1 Syscalls

Syscalls in Linux are performed (in userspace) usipgical | X macros where X substitutes a number representing
the number of parameters of the given syscall. This macnskates to a code that loa#sax register with a number

of the syscall and executes interr@s80. After this syscall return is called, which translates rniegaeturn values

to positiveer r no values and setses to - 1 in case of an error. Whenever the interraps0 is called the process
enters the kernel in system call trap handler. This routaves all registers on the stack and calls the selected syscal
entry. Note that the Linux calling convention expects pagtars to the syscall to be passed via registers as shown
here:

1. parameter -ebx
2. parameter -%ecx
3. parameter -%edx
4. parameter -%esi
5. parameter -%edi
6. parameter -%»ebp

There are some exceptions to this, where Linux uses diffealing convention (most notably thé one syscall).

2.4.1.2 Traps

The trap handlers are introduceddnch/ i 386/ ker nel / t r aps. ¢ and most of these handlers live in
arch/ i 386/ kernel / entry. S, where handling of the traps happens.

2.4.1.3 Exits

Return from the syscall is managed by syscall exit(3), witthicks for the process having unfinished work, then
checks whether we used user-supplied selectors. If thigdregostack fixing is applied and finally the registers are
restored from the stack and the process returns to the asersp

2.4.1.4 UNIX primitives

In the 2.6 version, the Linux operating system redefined sofitige traditional UNIX primitives, notably PID, TID
and thread. PID is defined not to be unique for every procesersome processes (threads) getppid(2) returns the
same value. Unique identification of process is provided Iy This is becaus&lPTL (New POSIX Thread

Library) defines threads to be normal processes (so callethdeading). Spawning a new process in Linux 2.6
happens using thel one syscall (fork variants are reimplemented using it). Thanel syscall defines a set of flags
that affect behaviour of the cloning process regardingathimplementation. The semantic is a bit fuzzy as there is
no single flag telling the syscall to create a thread.

Implemented clone flags are:

Linux® emulation in FreeBSD

« CLONE_VM- processes share their memory space

« CLONE_FS - share umask, cwd and namespace

« CLONE_FI LES - share open files

« CLONE_SI GHAND - share signal handlers and blocked signals
« CLONE_PARENT - share parent

« CLONE_THREAD - be thread (further explanation below)
+ CLONE_NEWNS - new namespace

« CLONE_SYSVSEM- share SysV undo structures

« CLONE_SETTLS- setup TLS at supplied address

« CLONE_PARENT_SETTI D- set TID in the parent

« CLONE_CHI LD _CLEARTI D- clear TID in the child

« CLONE CHI LD SETTI D-set TID in the child

CLONE_PARENT sets the real parent to the parent of the caller. This is Umfthreads because if thread A creates
thread B we want thread B to be parented to the parent of théewihiead groupCLONE_THREAD does exactly the
same thing aSLONE_PARENT, CLONE_VMandCLONE_SI GHAND, rewrites PID to be the same as PID of the caller,
sets exit signal to be none and enters the thread gu@NE SETTLS sets up GDT entries for TLS handling. The
CLONE_»_=TI Dset of flags sets/clears user supplied address to TID or 0.

As you can see theL ONE_THREAD does most of the work and does not seem to fit the scheme vekryhhel

original intention is unclear (even for authors, accordmgomments in the code) but | think originally there was
one threading flag, which was then parcelled among many @#uer but this separation was never fully finished. It
is also unclear what this partition is good for as glibc dogtsuse that so only hand-written use of the clone permits
a programmer to access this features.

For non-threaded programs the PID and TID are the same. Feadld programs the first thread PID and TID are
the same and every created thread shares the same PID aadgjgired a unique TID (becaudsONE_THREADis
passed in) also parent is shared for all processes formisithtteaded program.

The code that implements pthread_create(3) in NPTL defireeslone flags like this:
int clone_flags = (CLONE_ VM| CLONE_FS | CLONE_FILES | CLONE_SI GNAL
| CLONE_SETTLS | CLONE_PARENT_SETTI D

| CLONE_CHI LD_CLEARTID | CLONE_SYSVSEM
f __ ASSUME_NO CLONE_DETACHED ==

| CLONE_DETACHED
#endi f

| 0);
TheCLONE_SI GNAL is defined like
#define CLONE_SI GNAL (CLONE_SI GHAND | CLONE_THREAD)

the last 0 means no signal is sent when any of the threads exits

Linux® emulation in FreeBSD

2.5 What is emulation

According to a dictionary definition, emulation is the ayilof a program or device to imitate another program or
device. This is achieved by providing the same reaction twengstimulus as the emulated object. In practice, the
software world mostly sees three types of emulation - a pnogrsed to emulate a machine (QEMU, various game
console emulators etc.), software emulation of a hardveaniity (OpenGL emulators, floating point units emulation
etc.) and operating system emulation (either in kernel @fojperating system or as a userspace program).

Emulation is usually used in a place, where using the origiomponent is not feasible nor possible at all. For
example someone might want to use a program developed féfiesedit operating system than he uses. Then
emulation comes in handy. Sometimes there is no other watphuge emulation - e.g. when the hardware device
you try to use does not exist (yet/anymore) then there is heratay but emulation. This happens often when
porting an operating system to a new (non-existent) platf@ometimes it is just cheaper to emulate.

Looking from an implementation point of view, there are twaimapproaches to the implementation of emulation.
You can either emulate the whole thing - accepting possitgats of the original object, maintaining inner state and
emitting correct output based on the state and/or inpus Kinid of emulation does not require any special
conditions and basically can be implemented anywhere fpdamice/program. The drawback is that implementing
such emulation is quite difficult, time-consuming and efpoone. In some cases we can use a simpler approach.
Imagine you want to emulate a printer that prints from leftitnt on a printer that prints from right to left. It is
obvious that there is no need for a complex emulation layesibuply reversing of the printed text is sufficient.
Sometimes the emulating environment is very similar to thelated one so just a thin layer of some translation is
necessary to provide fully working emulation! As you can#ggis much less demanding to implement, so less
time-consuming and error-prone than the previous apprdadithe necessary condition is that the two
environments must be similar enough. The third approachawoes the two previous. Most of the time the objects
do not provide the same capabilities so in a case of emuld#tegiore powerful one on the less powerful we have to
emulate the missing features with full emulation describleove.

This master thesis deals with emulation of UNIX on UNIX, whis exactly the case, where only a thin layer of
translation is sufficient to provide full emulation. The UNAPI consists of a set of syscalls, which are usually self
contained and do not affect some global kernel state.

There are a few syscalls that affect inner state but this eadellt with by providing some structures that maintain
the extra state.

No emulation is perfect and emulations tend to lack somesauttthis usually does not cause any serious
drawbacks. Imagine a game console emulator that emulagegtieing but music output. No doubt that the games
are playable and one can use the emulator. It might not bedmafortable as the original game console but its an
acceptable compromise between price and comfort.

The same goes with the UNIX API. Most programs can live witleantlimited set of syscalls working. Those
syscalls tend to be the oldest ones (read(2)/write(2) (B)family, signal(3) handling, exit(3), socket(2) API)riwe
it is easy to emulate because their semantics is shared aafidiglXes, which exist todays.

3 Emulation

3.1 How emulation works in FreeBSD

As stated earlier, FreeBSD supports running binaries frewargl other UNIXes. This works because FreeBSD has
an abstraction called the execution class loader. This eiigo the execve(2) syscall, so when execve(2) is about to

Linux® emulation in FreeBSD

execute a binary it examines its type.

There are basically two types of binaries in FreeBSD. Silaltext scripts which are identified By as their first
two characters and normal (typicalit F) binaries, which are a representation of a compiled exéteitbject. The
vast majority (one could say all of them) of binaries in Fr&&Bare from type ELF. ELF files contain a header,
which specifies the OS ABI for this ELF file. By reading thisarmhation, the operating system can accurately
determine what type of binary the given file is.

Every OS ABI must be registered in the FreeBSD kernel. Thidiepto the FreeBSD native OS ABI, as well. So
when execve(2) executes a binary it iterates through thefliggistered APIs and when it finds the right one it starts
to use the information contained in the OS ABI descriptits gyscall tablegr r no translation table, etc.). So every
time the process calls a syscall, it uses its own set of dgsoatead of some global one. This effectively provides a
very elegant and easy way of supporting execution of varnery formats.

The nature of emulation of different OSes (and also some atlitesystems) led developers to invite a handler event
mechanism. There are various places in the kernel, whese@f event handlers are called. Every subsystem can
register an event handler and they are called accordinghye¥ample, when a process exits there is a handler called
that possibly cleans up whatever the subsystem needs tedmed.

Those simple facilities provide basically everything tisateeded for the emulation infrastructure and in fact these
are basically the only things necessary to implement thexLeémulation layer.

3.2 Common primitives in the FreeBSD kernel

Emulation layers need some support from the operatingmsydtam going to describe some of the supported
primitives in the FreeBSD operating system.

3.2.1 Locking primitives
Contributed by: Attilio Rao «ttil i o@r eeBSD. or g>

The FreeBSD synchronization primitive set is based on tha td supply a rather huge number of different
primitives in a way that the better one can be used for evemycpiéar, appropriate situation.

To a high level point of view you can consider three kinds afdyronization primitives in the FreeBSD kernel:

- atomic operations and memory barriers
+ locks
- scheduling barriers

Below there are descriptions for the 3 families. For evecklyou should really check the linked manpage (where
possible) for more detailed explanations.

3.2.1.1 Atomic operations and memory barriers

Atomic operations are implemented through a set of funstmerforming simple arithmetics on memory operands in
an atomic way with respect to external events (interruptgmption, etc.). Atomic operations can guarantee
atomicity just on small data types (in the magnitude ordehef | ong. architecture C data type), so should be
rarely used directly in the end-level code, if not only forwsimple operations (like flag setting in a bitmap, for
example). In fact, it is rather simple and common to write d@awrong semantic based on just atomic operations
(usually referred as lock-less). The FreeBSD kernel offiersy to perform atomic operations in conjunction with a

10

Linux® emulation in FreeBSD

memory barrier. The memory barriers will guarantee thattama operation will happen following some specified
ordering with respect to other memory accesses. For exaihple need that an atomic operation happen just after
all other pending writes (in terms of instructions reordgribuffers activities) are completed, we need to explicitly
use a memory barrier in conjunction to this atomic operat8mit is simple to understand why memory barriers play
a key role for higher-level locks building (just as refcaaimhutexes, etc.). For a detailed explanatory on atomic
operations, please refer to atomic(9). It is far, howewveting that atomic operations (and memory barriers as well)
should ideally only be used for building front-ending lo¢ks mutexes).

3.2.1.2 Refcounts

Refcounts are interfaces for handling reference couniéesy are implemented through atomic operations and are
intended to be used just for cases, where the referencearasitihe only one thing to be protected, so even
something like a spin-mutex is deprecated. Using the refcimterface for structures, where a mutex is already used
is often wrong since we should probably close the referenuater in some already protected paths. A manpage
discussing refcount does not exist currently, just chal r ef count . h for an overview of the existing API.

3.2.1.3 Locks

FreeBSD kernel has huge classes of locks. Every lock is defipsome peculiar properties, but probably the most
important is the event linked to contesting holders (or lmeoterms, the behaviour of threads unable to acquire the
lock). FreeBSD’s locking scheme presents three differehliiours for contenders:

1. spinning
2. blocking
3. sleeping

Note: numbers are not casual

3.2.1.4 Spinning locks

Spin locks let waiters to spin until they cannot acquire thekl An important matter do deal with is when a thread
contests on a spin lock if it is not descheduled. Since theB®® kernel is preemptive, this exposes spin lock at the
risk of deadlocks that can be solved just disabling intaewghile they are acquired. For this and other reasons (like
lack of priority propagation support, poorness in load beiag schemes between CPUs, etc.), spin locks are
intended to protect very small paths of code, or ideally adid¢ used at all if not explicitly requested (explained
later).

3.2.1.5 Blocking

Block locks let waiters to be descheduled and blocked umilock owner does not drop it and wakes up one or
more contenders. In order to avoid starvation issues, bigdkcks do priority propagation from the waiters to the
owner. Block locks must be implemented through the tumstilerface and are intended to be the most used kind of
locks in the kernel, if no particular conditions are met.

11

Linux® emulation in FreeBSD

3.2.1.6 Sleeping

Sleep locks let waiters to be descheduled and fall asleethmtock holder does not drop it and wakes up one or
more waiters. Since sleep locks are intended to protea lgaths of code and to cater asynchronous events, they do
not do any form of priority propagation. They must be impleteel through the sleepqueue(9) interface.

The order used to acquire locks is very important, not onfyttie possibility to deadlock due at lock order reversals,
but even because lock acquisition should follow specifieslihked to locks natures. If you give a look at the table
above, the practical rule is that if a thread holds a lock ell@ (where the level is the number listed close to the

kind of lock) it is not allowed to acquire a lock of superiovdds, since this would break the specified semantic for a
path. For example, if a thread holds a block lock (level 2y dllowed to acquire a spin lock (level 1) but not a sleep
lock (level 3), since block locks are intended to protectlé&n@aths than sleep lock (these rules are not about atomic
operations or scheduling barriers, however).

This is a list of lock with their respective behaviours:

« spin mutex - spinning - mutex(9)

« sleep mutex - blocking - mutex(9)

« pool mutex - blocking - mtx_pool(9)

- sleep family - sleeping - sleep(9) pause tsleep msleep msfga msleep rw msleep sx
- condvar - sleeping - condvar(9)

« rwlock - blocking - rwlock(9)

- sxlock - sleeping - sx(9)

- lockmgr - sleeping - lockmgr(9)

- semaphores - sleeping - sema(9)

Among these locks only mutexes, sxlocks, rwlocks and lodlsmage intended to handle recursion, but currently
recursion is only supported by mutexes and lockmgrs.

3.2.1.7 Scheduling barriers

Scheduling barriers are intended to be used in order to ddlreduling of threading. They consist mainly of three
different stubs:

- critical sections (and preemption)
- sched_bind
« sched_pin

Generally, these should be used only in a particular comtectteven if they can often replace locks, they should be
avoided because they do not let the diagnose of simple eafgarinblems with locking debugging tools (as
witness(4)).

3.2.1.8 Critical sections

The FreeBSD kernel has been made preemptive basically tavithanterrupt threads. In fact, in order to avoid high
interrupt latency, time-sharing priority threads can begpnpted by interrupt threads (in this way, they do not need to

12

Linux® emulation in FreeBSD

wait to be scheduled as the normal path previews). Preemtawvever, introduces new racing points that need to
be handled, as well. Often, in order to deal with preemptio@ simplest thing to do is to completely disable it. A
critical section defines a piece of code (borderlined by tieqf functions critical_enter(9) and critical_exit(9),
where preemption is guaranteed to not happen (until thegpted code is fully executed). This can often replace a
lock effectively but should be used carefully in order to lose the whole advantage that preemption brings.

3.2.1.9 sched_pin/sched_unpin

Another way to deal with preemption is tekehed_pi n() interface. If a piece of code is closed in the

sched_pi n() andsched_unpi n() pair of functions it is guaranteed that the respective thregen if it can be
preempted, it will always be executed on the same CPU. Ringivery effective in the particular case when we have
to access at per-cpu datas and we assume other threadstweiiarge those data. The latter condition will
determine a critical section as a too strong condition faromae.

3.2.1.10 sched_bind/sched_unbind

sched_bi nd is an APl used in order to bind a thread to a particular CPU ifdha time it executes the code, until a
sched_unbi nd function call does not unbind it. This feature has a key molsituations where you cannot trust the
current state of CPUs (for example, at very early stages of) bas you want to avoid your thread to migrate on
inactive CPUs. Sinceched_bi nd andsched_unbi nd manipulate internal scheduler structures, they need to be
enclosed irsched_| ock acquisition/releasing when used.

3.2.2 Proc structure

Various emulation layers sometimes require some additfmeraprocess data. It can manage separate structures (a
list, a tree etc.) containing these data for every procesthimitends to be slow and memory consuming. To solve
this problem the FreeBSpr oc structure containg_enul dat a, which is a void pointer to some emulation layer
specific data. Thigr oc entry is protected by the proc mutex.

The FreeBSpr oc structure containsa_sysent entry that identifies, which ABI this process is running. et it
is a pointer to theysent vec described above. So by comparing this pointer to the addresee thesysent vec
structure for the given ABI is stored we can effectively detime whether the process belongs to our emulation
layer. The code typically looks like:

if (__predict_true(p->p_sysent != &elf_Linux_sysvec))
return;

As you can see, we effectively use thepr edi ct _t r ue modifier to collapse the most common case (FreeBSD
process) to a simple return operation thus preserving hégtopnance. This code should be turned into a macro
because currently it is not very flexible, i.e. we do not suppmux64 emulation nor A.OUT Linux processes on
i386.

3.2.3VFS

The FreeBSD VFS subsystem is very complex but the Linux etionlégayer uses just a small subset via a well
defined API. It can either operate on vnodes or file handlensdé represents a virtual vnode, i.e. representation of a
node in VFS. Another representation is a file handler, wheglieésents an opened file from the perspective of a

13

Linux® emulation in FreeBSD

process. A file handler can represent a socket or an ordinaryffile handler contains a pointer to its vnode. More
then one file handler can point to the same vnode.

3.2.3.1 namei

The namei(9) routine is a central entry point to pathnamkupand translation. It traverses the path point by point
from the starting point to the end point using lookup funetiahich is internal to VFS. The namei(9) syscall can
cope with symlinks, absolute and relative paths. When aigdttoked up using namei(9) it is inputed to the name
cache. This behaviour can be suppressed. This routinedsalisever the kernel and its performance is very critical.

3.2.3.2 vn_fullpath

The vn_fullpath(9) function takes the best effort to traeVFS name cache and returns a path for a given (locked)
vnode. This process is unreliable but works just fine for tlestncommon cases. The unreliability is because it relies
on VFS cache (it does not traverse the on medium structureg)ks not work with hardlinks, etc. This routine is
used in several places in the Linuxulator.

3.2.3.3 Vnode operations

- fgetvp - given a thread and a file descriptor number it returns thecist®d vnode
« vn_lock(9) - locks a vnode

« vn_unl ock - unlocks a vhode

- VOP_READDIR(9) - reads a directory referenced by a vhode

- VOP_GETATTR(9) - gets attributes of a file or a directory refeced by a vnode

« VOP_LOOKUP(9) - looks up a path to a given directory

+ VOP_OPEN(9) - opens a file referenced by a vhode

« VOP_CLOSE(9) - closes a file referenced by a vnode

- vput(9) - decrements the use count for a vnode and unlocks it

- vrele(9) - decrements the use count for a vnode

- vref(9) - increments the use count for a vnode

3.2.3.4 File handler operations

- fget - given athread and a file descriptor number it returns aatextfile handler and references it
- fdrop - drops a reference to a file handler

- fhol d - references a file handler

14

Linux® emulation in FreeBSD

4 Linux emulation layer -MD part

This section deals with implementation of Linux emulatiagpdr in FreeBSD operating system. It first describes the
machine dependent part talking about how and where interalsetween userland and kernel is implemented. It
talks about syscalls, signals, ptrace, traps, stack fixbs Jart discusses i386 but it is written generally so other
architectures should not differ very much. The next patésrhachine independent part of the Linuxulator. This
section only covers i386 and ELF handling. A.OUT is obsoéetd untested.

4.1 Syscall handling

Syscall handling is mostly written ini nux_sysvec. ¢, which covers most of the routines pointed out in the
sysent vec structure. When a Linux process running on FreeBSD issugscals, the general syscall routine calls
linux prepsyscall routine for the Linux ABI.

4.1.1 Linux prepsyscall

Linux passes arguments to syscalls via registers (thatysitiglimited to 6 parameters on i386) while FreeBSD
uses the stack. The Linux prepsyscall routine must copynpetiexrs from registers to the stack. The order of the

registers is¥ebx, ¥ecx, ¥edx, ¥%esi , %edi , Yebp. The catch is that this is true for onigostof the syscalls. Some
(most notably!| one) uses a different order but it is luckily easy to fix by insegta dummy parameter in the

I'i nux_cl one prototype.

4.1.2 Syscall writing

Every syscall implemented in the Linuxulator must have itg@type with various flags isyscal | s. mast er. The
form of the file is:
AUE_FORK STD { int linux_fork(void); }

AUE_CLOSE NOPROTO { int close(int fd); }

The first column represents the syscall number. The secdathads for auditing support. The third column
represents the syscall type. It is eitlsD, OBSOL, NOPROTOandUNI MPL. STD is a standard syscall with full
prototype and implementatio@BSCOL is obsolete and defines just the prototyg@PROTOmeans that the syscall is
implemented elsewhere so do not prepend ABI prefix,UNcMPL means that the syscall will be substituted with the
nosys syscall (a syscall just printing out a message about theaflysat being implemented and returniayosYs).

Fromsyscal | s. mast er a script generates three filés:nux_syscal | . h,|i nux_proto. hand
| i nux_sysent.c. Thel i nux_syscal | . h contains definitions of syscall names and their numeridaleya.g.:

#define LINUX SYS linux fork 2

#define LI NUX _SYS cl ose 6

Thel i nux_pr ot 0. h contains structure definitions of arguments to every sy;seaj.

struct linux_fork_args {

15

Linux® emulation in FreeBSD

register_t dumy;
b

And finally, | i nux_sysent . c contains structure describing the system entry table, tzsadtually dispatch a
syscall, e.g.:

{ 0, (sy_call _t *)linux_fork, AUE_FORK, NULL, 0, 03}, /* 2 = linux_fork =/
{ AS(cl ose_args), (sy_call_t *)close, AUE CLOSE, NULL, 0, 0}, /* 6 = close */

As you can seei nux_f or k is implemented in Linuxulator itself so the definition is®iD type and has no
argument, which is exhibited by the dummy argument striectOn the other hand ose is just an alias for real
FreeBSD close(2) so it has no linux arguments structurecagsd and in the system entry table it is not prefixed
with linux as it calls the real close(2) in the kernel.

4.1.3 Dummy syscalls

The Linux emulation layer is not complete, as some syscedlsiat implemented properly and some are not
implemented at all. The emulation layer employs a facilityrtark unimplemented syscalls with tbeMvw macro.
These dummy definitions resideliinux_dumy. ¢ in a form ofDUMW(syscal |) ; , which is then translated to
various syscall auxiliary files and the implementation ¢stisof printing a message saying that this syscall is not
implemented. Th&NI MPL prototype is not used because we want to be able to idengfpdime of the syscall that
was called in order to know what syscalls are more importaithplement.

4.2 Signal handling

Signal handling is done generally in the FreeBSD kernel lidsinary compatibilities with a call to a
compat-dependent layer. Linux compatibility layer definesux_sendsi g routine for this purpose.

4.2.1 Linux sendsig

This routine first checks whether the signal has been iestalith aSA_SI G NFOin which case it calls

|'i nux_rt_sendsi g routine instead. Furthermore, it allocates (or reusesraaay existing) signal handle context,
then it builds a list of arguments for the signal handlerdnslates the signal number based on the signal translation
table, assigns a handler, translates sigset. Then it sanésxt for thesi gr et ur n routine (various registers,

translated trap number and signal mask). Finally, it copigghe signal context to the userspace and prepares
context for the actual signal handler to run.

4.2.2 linux_rt_sendsig

This routine is similar td i nux_sendsi g just the signal context preparation is different. It addgi nf o,
ucont ext , and some POSIX parts. It might be worth considering whethese two functions could not be merged
with a benefit of less code duplication and possibly everefastecution.

4.2.3 linux_sigreturn

This syscall is used for return from the signal handler. Bglsome security checks and restores the original process
context. It also unmasks the signal in process signal mask.

16

Linux® emulation in FreeBSD

4.3 Ptrace

Many UNIX derivates implement the ptrace(2) syscall in ottdeallow various tracking and debugging features.
This facility enables the tracing process to obtain variaf@mation about the traced process, like register dumps,
any memory from the process address space, etc. and alsaédatie process like in stepping an instruction or
between system entries (syscalls and traps). ptrace@)edtsyou set various information in the traced process
(registers etc.). ptrace(2) is a UNIX-wide standard impated in most UNIXes around the world.

Linux emulation in FreeBSD implements the ptrace(2) facili | i nux_pt r ace. c. The routines for converting
registers between Linux and FreeBSD and the actual ptrasg¢2all emulation syscall. The syscall is a long switch
block that implements its counterpart in FreeBSD for evergqe(2) command. The ptrace(2) commands are mostly
equal between Linux and FreeBSD so usually just a small noadiifin is needed. For examph, GETREGS in

Linux operates on direct data while FreeBSD uses a pointietdata so after performing a (native) ptrace(2)
syscall, a copyout must be done to preserve Linux semantics.

The ptrace(2) implementation in Linuxulator has some knawgaknesses. There have been panics seen when using
st race (which is a ptrace(2) consumer) in the Linuxulator envir@emtn AlISOPT_SYSCALL is not implemented.

4.4 Traps

Whenever a Linux process running in the emulation layerstthp trap itself is handled transparently with the only
exception of the trap translation. Linux and FreeBSD déffieropinion on what a trap is so this is dealt with here.
The code is actually very short:

static int
translate_traps(int signal, int trap_code)
{

if (signal != SIGBUS)

return signal;
switch (trap_code) {

case T_PROTFLT:
case T_TSSFLT:
case T_DOUBLEFLT:
case T_PAGEFLT:
return Sl GSEGVY,

defaul t:
return signal;

4.5 Stack fixup

The RTLD run-time link-editor expects so called AUX tags ¢eck during arexecve so a fixup must be done to
ensure this. Of course, every RTLD system is different seethalation layer must provide its own stack fixup
routine to do this. So does Linuxulator. Taef _I i nux_f i xup simply copies out AUX tags to the stack and adjusts
the stack of the user space process to point right after tiagse So RTLD works in a smart way.

17

Linux® emulation in FreeBSD

4.6 A.OUT support

The Linux emulation layer on i386 also supports Linux A.OUmdries. Pretty much everything described in the
previous sections must be implemented for A.OUT suppodileetraps translation and signals sending). The
support for A.OUT binaries is no longer maintained, esgicihe 2.6 emulation does not work with it but this does
not cause any problem, as the linux-base in ports probabhotieupport A.OUT binaries at all. This support will
probably be removed in future. Most of the stuff necessaryof@ding Linux A.OUT binaries is in

i mgact _| i nux. c file.

5 Linux emulation layer -MI part

This section talks about machine independent part of thextifator. It covers the emulation infrastructure needed
for Linux 2.6 emulation, the thread local storage (TLS) iementation (on i386) and futexes. Then we talk briefly
about some syscalls.

5.1 Description of NPTL

One of the major areas of progress in development of Linuxa$threading. Prior to 2.6, the Linux threading
support was implemented in thi@muxthreadslibrary. The library was a partial implementation of POSh¥dading.
The threading was implemented using separate processeadoithread using the one syscall to let them share
the address space (and other things). The main weaknesbés approach was that every thread had a different
PID, signal handling was broken (from the pthreads persmgcetc. Also the performance was not very good (use
of SI GUSR signals for threads synchronization, kernel resourcewnpsion, etc.) so to overcome these problems a
new threading system was developed and named NPTL.

The NPTL library focused on two things but a third thing carteang so it is usually considered a part of NPTL.
Those two things were embedding of threads into a procasstste and futexes. The additional third thing was
TLS, which is not directly required by NPTL but the whole NPUiterland library depends on it. Those
improvements yielded in much improved performance andistals conformance. NPTL is a standard threading
library in Linux systems these days.

The FreeBSD Linuxulator implementation approaches thelNRThree main areas. The TLS, futexes and PID
mangling, which is meant to simulate the Linux threads. frentsections describe each of these areas.

5.2 Linux 2.6 emulation infrastructure

These sections deal with the way Linux threads are manageldamwe simulate that in FreeBSD.

5.2.1 Runtime determining of 2.6 emulation

The Linux emulation layer in FreeBSD supports runtime sgttf the emulated version. This is done via sysctl(8),
namelyconpat . | i nux. osr el ease, which is set to 2.4.2 by default (as of April 2007) and withLahux versions

up to 2.6 it just determined what uname(1) outputs. It isedéht with 2.6 emulation where setting this sysctl(8)
affects runtime behaviour of the emulation layer. Whens@t6.x it sets the value of nux_use_I i nux26 while
setting to something else keeps it unset. This variables(péu-prison variables of the very same kind) determines
whether 2.6 infrastructure (mainly PID mangling) is usethie code or not. The version setting is done system-wide

18

Linux® emulation in FreeBSD

and this affects all Linux processes. The sysctl(8) shoatdr changed when running any Linux binary as it might
harm things.

5.2.2 Linux processes and thread identifiers

The semantics of Linux threading are a little confusing asesientirely different nomenclature to FreeBSD. A
process in Linux consists ofsa ruct t ask embedding two identifier fields - PID and TGID. PIDrista process

ID butitis a thread ID. The TGID identifies a thread group ihatwords a process. For single-threaded process the
PID equals the TGID.

The thread in NPTL is just an ordinary process that happehave TGID not equal to PID and have a group leader
not equal to itself (and shared VM etc. of course). Everyladlse happens in the same way as to an ordinary
process. There is no separation of a shared status to soereabdtructure like in FreeBSD. This creates some
duplication of information and possible data inconsisgefitie Linux kernel seems to use task -> group information
in some places and task information elsewhere and it isyreativery consistent and looks error-prone.

Every NPTL thread is created by a call to tHleone syscall with a specific set of flags (more in the next subse}tio
The NPTL implements strict 1:1 threading.

In FreeBSD we emulate NPTL threads with ordinary FreeBS¢sses that share VM space, etc. and the PID
gymnastic is just mimicked in the emulation specific struetttached to the process. The structure attached to the
process looks like:

struct |inux_enuldata {
pid_t pid;

int *child_set_tid; /+ in clone(): Child.s TIDto set on clone */
int *child_clear_tid;/* in clone(): Child.s TIDto clear on exit */

struct |inux_enul data_shared *shared;
int pdeath_signal; /* parent death signal */

LI ST_ENTRY(!li nux_enul data) threads; /* list of linux threads */
b

The PID is used to identify the FreeBSD process that attattieestructure. Thehi | d_se_ti d and

chil d_cl ear _tidare used for TID address copyout when a process exits anedtect. Thahar ed pointer

points to a structure shared among threads.pldeat h_si gnal variable identifies the parent death signal and the
t hr eads pointer is used to link this structure to the list of threallse! i nux_enul dat a_shar ed structure looks
like:

struct |inux_emul data_shared {
int refs;
pid_t group_pid;

LI ST_HEAD(, |inux_enuldata) threads; /* head of list of |inux threads */
s

19

Linux® emulation in FreeBSD

Ther ef s is a reference counter being used to determine when we cathieestructure to avoid memory leaks. The
group_pi d is to identify PID (= TGID) of the whole process (= thread godpuThet hr eads pointer is the head of
the list of threads in the process.

Thel i nux_enul dat a structure can be obtained from the process using i nd. The prototype of the function is:

struct |inux_emuldata *em find(struct proc *, int |ocked);

Here,pr oc is the process we want the emuldata structure from and tlkedgearameter determines whether we
want to lock or not. The accepted values Bk&JL_DOLOCK andEMJL_DOUNLOCK. More about locking later.

5.2.3 PID mangling

Because of the described different view knowing what a ggete and thread ID is between FreeBSD and Linux we
have to translate the view somehow. We do it by PID mangliings leans that we fake what a PID (=TGID) and
TID (=PID) is between kernel and userland. The rule of thusiihat in kernel (in Linuxulator) PID = PID and

TGID = shared -> group pid and to userland we pregeit = shared -> group_pidandTID = proc ->

p_pi d. The PID member ofi nux_enul data structureisaFreeBSD PID.

The above affects mainly getpid, getppid, gettid sysci¥sere we use PID/TGID respectively. In copyout of TIDs
inchild_clear_tidandchild_set_tidwe copy outFreeBSD PID.

5.2.4 Clone syscall

Thecl one syscall is the way threads are created in Linux. The syscaibfype looks like this:

int linux_clone(l_int flags, void *stack, void *parent_tidptr, int dumy,
void * child_tidptr);

Thef | ags parameter tells the syscall how exactly the processesdibeutioned. As described above, Linux can
create processes sharing various things independentbx&mple two processes can share file descriptors but not
VM, etc. Last byte of thé | ags parameter is the exit signal of the newly created processsTack parameter if
nonNULL tells, where the thread stack is and if iNSLL we are supposed to copy-on-write the calling process stack
(i.e. do what normal fork(2) routine does). Tper ent _t i dpt r parameter is used as an address for copying out
process PID (i.e. thread id) once the process is sufficieamshantiated but is not runnable yet. Tihenmy parameter

is here because of the very strange calling convention sfsygcall on i386. It uses the registers directly and does
not let the compiler do it what results in the need of a dumnsgal). Thechi | d_ti dptr parameter is used as an
address for copying out PID once the process has finishethfpand when the process exits.

The syscall itself proceeds by setting corresponding flagedding on the flags passed in. For exampléeNE_VM

maps to RFMEM (sharing of VM), etc. The only nit heredsONE_FS andCLONE_FI LES because FreeBSD does

not allow setting this separately so we fake it by not setfg-DG (copying of fd table and other fs information) if
either of these is defined. This does not cause any problesnaube those flags are always set together. After setting
the flags the process is forked using the intefralk 1 routine, the process is instrumented not to be put on a run
gueue, i.e. not to be set runnable. After the forking is doagussibly reparent the newly created process to emulate
CLONE_PARENT semantics. Next part is creating the emulation data. Thergrldinux does not signal their parents so
we set exit signal to be 0 to disable this. After that settihgto | d_set _ti d andchi | d_cl ear _ti d is performed
enabling the functionality later in the code. At this poirg wopy out the PID to the address specified by

par ent _ti dptr. The setting of process stack is done by simply rewritingaldrframe/esp register ¢4 sp on

amd64). Next part is setting up TLS for the newly created psscAfter this vfork(2) semantics might be emulated

20

Linux® emulation in FreeBSD

and finally the newly created process is put on a run queue@mdng out its PID to the parent process wisone
return value is done.

Thecl one syscall is able and in fact is used for emulating classic(®rknd vfork(2) syscalls. Newer glibc in a
case of 2.6 kernel uses$ one to implement fork(2) and vfork(2) syscalls.

5.2.5 Locking

The locking is implemented to be per-subsystem because wetdexpect a lot of contention on these. There are

two locks:emul _I ock used to protect manipulating bf nux_enul dat a andenul _shar ed_| ock used to

manipulate i nux_enul dat a_shar ed. Theenul _I ock is a nonsleepable blocking mutex while

emul _shar ed_| ock is a sleepable blockingx_| ock. Because of the per-subsystem locking we can coalesce some
locks and that is why the em find offers the non-locking access

5.3 TLS

This section deals with TLS also known as thread local strag

5.3.1 Introduction to threading

Threads in computer science are entities within a procesgs#n be scheduled independently from each other. The
threads in the process share process wide data (file dessriptc.) but also have their own stack for their own data.
Sometimes there is a need for process-wide data specificiteatipread. Imagine a name of the thread in execution
or something like that. The traditional UNIX threading APthreads provides a way to do it via

pthread_key create(3), pthread_setspecific(3) andaudhgetspecific(3) where a thread can create a key to the
thread local data and using pthread_getspecific(3) or @thigetspecific(3) to manipulate those data. You can easily
see that this is not the most comfortable way this could beraptished. So various producers of C/C++ compilers
introduced a better way. They defined a new modifier keywaehiththat specifies that a variable is thread specific.
A new method of accessing such variables was developed ataviglast on i386). Thpthreads method tends to

be implemented in userspace as a trivial lookup table. THemeance of such a solution is not very good. So the
new method uses (on i386) segment registers to address &isggvhere TLS area is stored so the actual accessing
of a thread variable is just appending the segment regstletaddress thus addressing via it. The segment registers
are usuallygs and% s acting like segment selectors. Every thread has its ownvaneae the thread local data are
stored and the segment must be loaded on every context sWhihmethod is very fast and used almost exclusively
in the whole i386 UNIX world. Both FreeBSD and Linux implentéiis approach and it yields very good results.
The only drawback is the need to reload the segment on evatgxdswitch which can slowdown context switches.
FreeBSD tries to avoid this overhead by using only 1 segmestriptor for this while Linux uses 3. Interesting

thing is that almost nothing uses more than 1 descriptoy(dfihe seems to use 2) so Linux pays this unnecessary
price for context switches.

5.3.2 Segments on i386

The 1386 architecture implements the so called segmentsgient is a description of an area of memory. The base
address (bottom) of the memory area, the end of it (ceilitypl, protection, etc. The memory described by a
segment can be accessed using segment selector redisterses, %ss, ¥%es, % s, ¥gs). For example let us

suppose we have a segment which base address is 0x1234 gtiddad this code:

21

Linux® emulation in FreeBSD
nov %edx, %gs: 0x10

This will load the content of theedx register into memory location 0x1244. Some segment ragiki@v/e a special
use, for examplées is used for code segment atisls is used for stack segment igts and%gs are generally
unused. Segments are either stored in a global GDT tablezoloical LDT table. LDT is accessed via an entry in the
GDT. The LDT can store more types of segments. LDT can be peegs. Both tables define up to 8191 entries.

5.3.3 Implementation on Linux i386

There are two main ways of setting up TLS in Linux. It can bevsi®tn cloning a process using tbieone syscall or

it can callset _t hr ead_ar ea. When a process passeisONE_SETTLS flag tocl one, the kernel expects the
memory pointed to by theesi register a Linux user space representation of a segmerthwgleits translated to the
machine representation of a segment and loaded into a GDTTsle GDT slot can be specified with a number or -1
can be used meaning that the system itself should chooseghfde slot. In practice, the vast majority of programs
use only one TLS entry and does not care about the number efithe We exploit this in the emulation and in fact
depend on it.

5.3.4 Emulation of Linux TLS

5.3.4.1i386

Loading of TLS for the current thread happens by calbeg_t hr ead_ar ea while loading TLS for a second

process irtl one is done in the separate blockdéhone. Those two functions are very similar. The only difference
being the actual loading of the GDT segment, which happernkenext context switch for the newly created
process whileset _t hr ead_ar ea must load this directly. The code basically does this. liesghe Linux form
segment descriptor from the userland. The code checksdarimber of the descriptor but because this differs
between FreeBSD and Linux we fake it a little. We only suppuaiexes of 6, 3 and -1. The 6 is genuine Linux
number, 3 is genuine FreeBSD one and -1 means autoselettien.we set the descriptor number to constant 3 and
copy out this to the userspace. We rely on the userspacegsrasang the number from the descriptor but this works
most of the time (have never seen a case where this did no)astke userspace process typically passes in 1. Then
we convert the descriptor from the Linux form to a machineathelant form (i.e. operating system independent form)
and copy this to the FreeBSD defined segment descriptoilly-ima can load it. We assign the descriptor to threads
PCB (process control block) and load tgs segment usingoad_gs. This loading must be done in a critical
section so that nothing can interrupt us. THENE_SETTLS case works exactly like this just the loading using

| oad_gs is not performed. The segment used for this (segment numbesBared for this use between FreeBSD
processes and Linux processes so the Linux emulation laes mbot add any overhead over plain FreeBSD.

5.3.4.2 amd64

The amd64 implementation is similar to the i386 one but thexe initially no 32bit segment descriptor used for this
purpose (hence not even native 32bit TLS users worked) saai¢chadd such a segment and implement its loading
on every context switch (when a flag signaling use of 32biets $\part from this the TLS loading is exactly the
same just the segment numbers are different and the desdopinat and the loading differs slightly.

22

Linux® emulation in FreeBSD

5.4 Futexes

5.4.1 Introduction to synchronization

Threads need some kind of synchronization and POSIX prewdadme of them: mutexes for mutual exclusion,
read-write locks for mutual exclusion with biased ratio @fds and writes and condition variables for signaling a
status change. It is interesting to note that POSIX threpdil lacks support for semaphores. Those
synchronization routines implementations are heavilyedelant on the type threading support we have. In pure 1:M
(userspace) model the implementation can be solely donseirspace and thus be very fast (the condition variables
will probably end up being implemented using signals, id@.fast) and simple. In 1:1 model, the situation is also
quite clear - the threads must be synchronized using keagities (which is very slow because a syscall must be
performed). The mixed M:N scenario just combines the firstsacond approach or rely solely on kernel. Threads
synchronization is a vital part of thread-enabled programgrand its performance can affect resulting program a lot.
Recent benchmarks on FreeBSD operating system showecdhtimpeoved sx_lock implementation yielded 40%
speedup irZFS(a heavy sx user), this is in-kernel stuff but it shows clpadw important the performance of
synchronization primitives is.

Threaded programs should be written with as little contentin locks as possible. Otherwise, instead of doing
useful work the thread just waits on a lock. Because of thessptost well written threaded programs show little locks
contention.

5.4.2 Futexes introduction

Linux implements 1:1 threading, i.e. it has to use in-kesyegichronization primitives. As stated earlier, well varit
threaded programs have little lock contention. So a tygeguience could be performed as two atomic
increase/decrease mutex reference counter, which is astyafs presented by the following example:

pt hr ead_mut ex_| ock(&t ex) ;
pt hr ead_nut ex_unl ock(&rut ex) ;

1:1 threading forces us to perform two syscalls for thoseemaalls, which is very slow.

The solution Linux 2.6 implements is called futexes. Fusaraplement the check for contention in userspace and
call kernel primitives only in a case of contention. Thustiyyacal case takes place without any kernel intervention.
This yields reasonably fast and flexible synchronizatiomftives implementation.

5.4.3 Futex API

The futex syscall looks like this:

int futex(void xuaddr, int op, int val, struct tinespec *tinmeout, void »uaddr2, int val3);

In this examplauaddr is an address of the mutex in userspageis an operation we are about to perform and the
other parameters have per-operation meaning.

Futexes implement the following operations:

« FUTEX WAI T
« FUTEX_WAKE

23

Linux® emulation in FreeBSD

. FUTEX_FD
« FUTEX_REQUEUE
. FUTEX_CWMP_REQUEUE
. FUTEX_WAKE_OP

5.4.3.1 FUTEX_WAIT

This operation verifies that on addressidr the valueval is written. If not, EWOULDBLOCK is returned, otherwise
the thread is queued on the futex and gets suspended. Ifghmantt i meout is non-zero it specifies the maximum
time for the sleeping, otherwise the sleeping is infinite.

5.4.3.2 FUTEX_WAKE

This operation takes a futex @addr and wakes upal first futexes queued on this futex.

5.4.3.3 FUTEX_FD

This operations associates a file descriptor with a giveaxfut

5.4.3.4 FUTEX_REQUEUE

This operation takegal threads queued on futexadddr , wakes them up, and takeal 2 next threads and
requeues them on futex @addr 2.

5.4.3.5 FUTEX_CMP_REQUEUE
This operation does the sameRAS EX_REQUEUE but it checks thatal 3 equals toval first.

5.4.3.6 FUTEX_WAKE_OP

This operation performs an atomic operationvaih 3 (which contains coded some other value) aaddr . Then it
wakes upval threads on futex ataddr and if the atomic operation returned a positive number itegakpval 2
threads on futex ataddr 2.

The operations implemented RUTEX_WAKE_OP:

. FUTEX_OP_SET
. FUTEX_OP_ADD
.« FUTEX OP_OR

. FUTEX_OP_AND
. FUTEX_OP_XOR

Note: There is no val 2 parameter in the futex prototype. The val 2 is taken from the struct ti nespec
=t i meout parameter for operations FUTEX_REQUEUE, FUTEX_CMP_REQUEUE and FUTEX_WAKE_OP.

24

Linux® emulation in FreeBSD

5.4.4 Futex emulation in FreeBSD

The futex emulation in FreeBSD is taken from NetBSD and ferr#hxtended by us. It is placedlin nux_f ut ex. c
andl i nux_f ut ex. hfiles. Thef ut ex structure looks like:

struct futex {
voi d *=f_uaddr;
int f_refcount;

LI ST_ENTRY(futex) f_list;

TAI LQ HEAD(| f _wai ti ng_paroc, waiting_proc) f_waiting_proc;
s

And the structurevai t i ng_pr oc is:

struct waiting _proc {
struct thread *wp_t;
struct futex *wp_new_futex;

TAI LQ ENTRY(wai ti ng_proc) wp_Ilist;
S

5.4.4.1 futex_get / futex_put

A futex is obtained using thieut ex_get function, which searches a linear list of futexes and rettine found one
or creates a new futex. When releasing a futex from the usealéhef ut ex_put function, which decreases a
reference counter of the futex and if the refcount reachesizes released.

5.4.4.2 futex_sleep

When a futex queues a thread for sleeping it creates &i ng_pr oc structure and puts this structure to the list
inside the futex structure then it just performs a tsleef{$uspend the thread. The sleep can be timed out. After
tsleep(9) returns (the thread was woken up or it timed oet)vh ki ng_pr oc structure is removed from the list and
is destroyed. All this is done in thfeut ex_sl eep function. If we got woken up fromhut ex_wake we have
wp_new_f ut ex set so we sleep on it. This way the actual requeueing is dotmégsifunction.

5.4.4.3 futex_wake

Waking up a thread sleeping on a futex is performed irf tlteex_wake function. First in this function we mimic the
strange Linux behaviour, where it wakes up N threads forrations, the only exception is that the REQUEUE
operations are performed on N+1 threads. But this usualyg dot make any difference as we are waking up all
threads. Next in the function in the loop we wake up n threafisr this we check if there is a new futex for
requeueing. If so, we requeue up to n2 threads on the new:. flitéx cooperates withut ex_sl eep.

25

Linux® emulation in FreeBSD

5.4.4.4 futex_wake_op

The FUTEX_WAKE_OP operation is quite complicated. First we obtain two futexeaddressesaddr anduaddr 2
then we perform the atomic operation using 3 anduaddr 2. Thenval waiters on the first futex is woken up and
if the atomic operation condition holds we wakewg 2 (i.e.t i neout) waiter on the second futex.

5.4.4.5 futex atomic operation

The atomic operation takes two parametarsoded_op anduaddr . The encoded operation encodes the operation
itself, comparing value, operation argument, and comgarmgument. The pseudocode for the operation is like this
one:

ol dval = xuaddr2
*uaddr2 = ol dval OP oparg

And this is done atomically. First a copying in of the numbtraddr is performed and the operation is done. The
code handles page faults and if no page fault oceudval is compared t@npar g argument with cmp comparator.

5.4.4.6 Futex locking

Futex implementation uses two lock lists protectixg | ock and global locks (either Giant or anothet_| ock).
Every operation is performed locked from the start to the eerd.

5.5 Various syscalls implementation

In this section | am going to describe some smaller sysdadiisare worth mentioning because their implementation
is not obvious or those syscalls are interesting from otbértf view.

5.5.1 *at family of syscalls

During development of Linux 2.6.16 kernel, the *at syscalése added. Those syscaltspénat for example) work
exactly like their at-less counterparts with the slighteption of thedi r f d parameter. This parameter changes
where the given file, on which the syscall is to be perform&dMhen thé i | enane parameter is absoluté r f d is
ignored but when the path to the file is relative, it comes eoptlay. Thedi r f d parameter is a directory relative to
which the relative pathname is checked. Bihef d parameter is a file descriptor of some directorypor FDCWD. So
for example thepenat syscall can be like this:

file descriptor 123 = /tnp/foo/, current working directory = /tnp/

openat (123, /tnp/bah\, flags, node) /* opens /tnp/bah */

openat (123, bah\, flags, node) /= opens /tnp/foolbah */
openat (AT_FDWOWD, bah\, flags, node) [+ opens /tnp/bah */
openat (stdi o, bah\, flags, nopde) /* returns error because stdio is not a directory x/

This infrastructure is necessary to avoid races when opédit@s outside the working directory. Imagine that a
process consists of two threads, thread A and thread B. Gifxéssuesopen(. / t np/ f oo/ bah., flags, node)
and before returning it gets preempted and thread B rungathB does not care about the needs of thread A and

26

Linux® emulation in FreeBSD

renames or removes np/ f oo/ . We got a race. To avoid this we can ogemp/ f oo and use it adi r f d for
openat syscall. This also enables user to implement per-threakingdirectories.

Linux family of *at syscalls containg:i nux_openat, | i nux_nkdi rat, | i nux_nknodat, | i nux_f chownat,
linux_futinmesat,linux fstatat64,linux_unlinkat,linux_renaneat,!linux_|inkat,

I'i nux_syniinkat,linux_readlinkat,!linux_fchmodat andl i nux_f accessat . All these are implemented
using the modified namei(9) routine and simple wrappingraye

5.5.1.1 Implementation

The implementation is done by altering the namei(9) roufitesscribed above) to take additional parametetrf d in

its nanei dat a structure, which specifies the starting point of the pathefookup instead of using the current
working directory every time. The resolutiondifr f d from file descriptor number to a vnode is done in native *at
syscalls. Whenli r f d is AT_FDCWD thedvp entry innanei dat a structure isNULL but whendi r f d is a different
number we obtain a file for this file descriptor, check whetherfile is valid and if there is vnode attached to it then
we get a vnode. Then we check this vnode for being a dirediotiie actual namei(9) routine we simply substitute
thedvp vnode fordp variable in the namei(9) function, which determines thetistg point. The namei(9) is not used
directly but via a trace of different functions on variougdks. For example thepenat goes like this:

openat () --> kern_openat() --> vn_open() -> nanei ()

For this reasoker n_open andvn_open must be altered to incorporate the additiodial f d parameter. No compat
layer is created for those because there are not many usthis ahd the users can be easily converted. This general
implementation enables FreeBSD to implement their ownystalls. This is being discussed right now.

5.5.2 loctl

The ioctl interface is quite fragile due to its generalitye Wave to bear in mind that devices differ between Linux
and FreeBSD so some care must be applied to do ioctl emulatdaright. The ioctl handling is implemented in

I'i nux_ioctl.c,wherelinux_ioctl functionis defined. This function simply iterates over s#t®ctl handlers
to find a handler that implements a given command. The iostayhas three parameters, the file descriptor,
command and an argument. The command is a 16-bit numbehwhibeory is divided into high 8 bits determining
class of the ioctl command and low 8 bits, which are the acoailmand within the given set. The emulation takes
advantage of this division. We implement handlers for eathli&e sound_handl er ordi sk_handl er . Each
handler has a maximum command and a minimum command defitéeh 18 used for determining what handler is
used. There are slight problems with this approach becaunss does not use the set division consistently so
sometimes ioctls for a different set are inside a set theulshwot belong to (SCSI generic ioctls inside cdrom set,
etc.). FreeBSD currently does not implement many Linuxiso@ompared to NetBSD, for example) but the plan is
to port those from NetBSD. The trend is to use Linux ioctlsrewvethe native FreeBSD drivers because of the easy
porting of applications.

5.5.3 Debugging

Every syscall should be debuggable. For this purpose wednte a small infrastructure. We have the Idebug
facility, which tells whether a given syscall should be dgdped (settable via a sysctl). For printing we have LMSG
and ARGS macros. Those are used for altering a printablegsior uniform debugging messages.

27

Linux® emulation in FreeBSD

6 Conclusion

6.1 Results

As of April 2007 the Linux emulation layer is capable of entirg the Linux 2.6.16 kernel quite well. The

remaining problems concern futexes, unfinished *at famfilgyscalls, problematic signals delivery, missigpl |

andi not i fy and probably some bugs we have not discovered yet. Desste/¢hare capable of running basically
all the Linux programs included in FreeBSD Ports Collectidth Fedora Core 4 at 2.6.16 and there are some
rudimentary reports of success with Fedora Core 6 at 2.68H&Fedora Core 6 linux_base was recently committed
enabling some further testing of the emulation layer anthgius some more hints where we should put our effort in
implementing missing stuff.

We are able to run the most used applications\e/ | i nux-fi ref ox, ww/ | i nux- oper a, net -i i skype and
some games from the Ports Collection. Some of the prograhibiekad behaviour under 2.6 emulation but this is
currently under investigation and hopefully will be fixedbsoThe only big application that is known not to work is
the Linux Java™ Development Kit and this is because of thairement ofepol | facility which is not directly
related to the Linux kernel 2.6.

We hope to enable 2.6.16 emulation by default some time BfeBSD 7.0 is released at least to expose the 2.6
emulation parts for some wider testing. Once this is doneamesgvitch to Fedora Core 6 linux_base, which is the
ultimate plan.

6.2 Future work

Future work should focus on fixing the remaining issues witkexXes, implement the rest of the *at family of
syscalls, fix the signal delivery and possibly implementdpel | andi not i f y facilities.

We hope to be able to run the most important programs flawlassin, so we will be able to switch to the 2.6
emulation by default and make the Fedora Core 6 the default libase because our currently used Fedora Core 4 is
not supported any more.

The other possible goal is to share our code with NetBSD alagj@nflyBSD. NetBSD has some support for 2.6
emulation but its far from finished and not really tested.donaflyBSD has expressed some interest in porting the 2.6
improvements.

Generally, as Linux develops we would like to keep up withirtHevelopment, implementing newly added syscalls.
Splice comes to mind first. Some already implemented sysagdl also heavily crippled, for exampheenap and
others. Some performance improvements can also be madegfiieed locking and others.

6.3 Team

| cooperated on this project with (in alphabetical order):

- John Baldwin £ hb@r eeBSD. or g>

- Konstantin Belousov ki b@r eeBSD. or g>
- Emmanuel Dreyfus

« Scot Hetzel

- Jung-uk Kim € ki m@rr eeBSD. or g>

28

Linux® emulation in FreeBSD

- Alexander Leidinger et chi | d@r eeBSD. or g>
« Suleiman Souhlalssouhl al @r eeBSD. or g>

+ LiXiao

- David Xu <davi dxu@r eeBSD. or g>

I would like to thank all those people for their advice, codeiews and general support.

7 Literatures

1. Marshall Kirk McKusick - George V. Nevile-Neil. Design@itmplementation of the FreeBSD operating
system. Addison-Wesley, 2005.

2. http://www.FreeBSD.org
3. http://tldp.org

4. http://www.linux.org

29

	Table of Contents
	1 Introduction
	2 A look inside
	2.1 What is UNIX®
	2.2 Technical details
	2.2.1 Communication between kernel and user space process
	2.2.2 Communication between processes
	2.2.3 Process management
	2.2.4 Thread management

	2.3 What is FreeBSD?
	2.3.1 Technical details

	2.4 What is Linux
	2.4.1 Technical details

	2.5 What is emulation

	3 Emulation
	3.1 How emulation works in FreeBSD
	3.2 Common primitives in the FreeBSD kernel
	3.2.1 Locking primitives
	3.2.2 Proc structure
	3.2.3 VFS

	4 Linux emulation layer MD part
	4.1 Syscall handling
	4.1.1 Linux prepsyscall
	4.1.2 Syscall writing
	4.1.3 Dummy syscalls

	4.2 Signal handling
	4.2.1 Linux sendsig
	4.2.2 linuxrtsendsig
	4.2.3 linuxsigreturn

	4.3 Ptrace
	4.4 Traps
	4.5 Stack fixup
	4.6 A.OUT support

	5 Linux emulation layer MI part
	5.1 Description of NPTL
	5.2 Linux 2.6 emulation infrastructure
	5.2.1 Runtime determining of 2.6 emulation
	5.2.2 Linux processes and thread identifiers
	5.2.3 PID mangling
	5.2.4 Clone syscall
	5.2.5 Locking

	5.3 TLS
	5.3.1 Introduction to threading
	5.3.2 Segments on i386
	5.3.3 Implementation on Linux i386
	5.3.4 Emulation of Linux TLS

	5.4 Futexes
	5.4.1 Introduction to synchronization
	5.4.2 Futexes introduction
	5.4.3 Futex API
	5.4.4 Futex emulation in FreeBSD

	5.5 Various syscalls implementation
	5.5.1 *at family of syscalls
	5.5.2 Ioctl
	5.5.3 Debugging

	6 Conclusion
	6.1 Results
	6.2 Future work
	6.3 Team

	7 Literatures

