Pluggable Authentication Modules

Dag-Erling Smargrav
$FreeBSD: head/en_US.ISO8859-1/articles/pam/article. xml 42094 2013-06-30
14:17:41Z blackend $

Copyright © 2001, 2002, 2003 Networks Associates Technolog v, Inc.

This article was written for the FreeBSD Project by ThinkSec AS and Network Associates Laboratories,
the Security Research Division of Network Associates, Inc. un der DARPA/SPAWAR contract
N66001-01-C-8035 (“CBOSS”), as part of the DARPA CHATS resea rch program.

FreeBSD is a registered trademark of the FreeBSD Foundation.

Linux is a registered trademark of Linus Torvalds.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTonea nd The Open Group are trademarks
of The Open Group in the United States and other countries.

Sun, Sun Microsystems, Java, Java Virtual Machine, JavaSer ver Pages, JDK, JRE, JSP, JVM, Netra,
OpenJDK, Solaris, StarOffice, Sun Blade, Sun Enterprise, Sun Fire , SunOS, Ultra and VirtualBox are

trademarks or registered trademarks of Sun Microsystems, Inc. in t he United States and other
countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was

aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This article describes the underlying principles and maigmas of the Pluggable Authentication Modules
(PAM) library, and explains how to configure PAM, how to intatg PAM into applications, and how to
write PAM modules.

Table of Contents

I 1 o To 18 ox 1T o AT PPPR PRI 1
A L= 1 g ES3= g o It 1Y/ =T 0 11T o LSRRI 2.
. PAM ESSENTIAIS ...ttt ettt ettt e e e oo ookttt et e et e e e s e ane et e e e e e e e bbb e et ee e e e e e e e nnnreeaeeeaean 5.
v Y @fo] 01 o U] =1 1 o] o H PR PRSP 8..
5. FreeBSD PAM MOUUIES....... ..ottt ettt e e e e e ookttt e e e e e e s e amnmeeee e e aaannbbbeeaeaeaeeeaann 10
(SR 272NV Vo] o] ITor= Vi o] o md (oTo | = 1o o1 0 011 oo [P RS PPERPRT 13
7. PAM MOAUIE PrOgramIMINg......uueeeeeeeiisiiuteieieteeessessssteesssssassesteeeeeeeessasssssaeseeeaeesssassssessessaesssssnnseeeeeennannes 13
PN Y= Ta] o] [l 2 AN 1Y Y o] o] 7= 1T RSO 14
B. SAMPIE PAM MOUUIE.........oeiiiiiiieie ettt eee e e s et e et e e e s e et teeeeeeeeessamnnaeeeeeesannsnsnnnneaaeeeanane 17
C. Sample PAM CoNversation FUNCHIOMN...........uuiiiiiiee e eiiiciiieeie e e e e e s s eemeeee e s st er e e e e e e asanneasaeeaeeeesessnnnnneeeseas 21
LT T gl == o (1 o OSSR 23

Pluggable Authentication Modules

1. Introduction

The Pluggable Authentication Modules (PAM) library is a galized API for authentication-related services which
allows a system administrator to add new authenticatiomatkt simply by installing new PAM modules, and to
modify authentication policies by editing configuratiore$l

PAM was defined and developed in 1995 by Vipin Samar and Ghiaali of Sun Microsystems, and has not changed
much since. In 1997, the Open Group published the X/Open&Bign-on (XSSO) preliminary specification, which
standardized the PAM API and added extensions for singleafber integrated) sign-on. At the time of this writing,
this specification has not yet been adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x, @thuses OpenPAM, it should be equally applicable to
FreeBSD 4.x, which uses Linux-PAM, and other operatingesystsuch as Linux and Solaris™.

2. Terms and conventions

2.1. Definitions

The terminology surrounding PAM is rather confused. Neitb@mar and Lai’s original paper nor the XSSO
specification made any attempt at formally defining termgHervarious actors and entities involved in PAM, and
the terms that they do use (but do not define) are sometimésanisg and ambiguous. The first attempt at
establishing a consistent and unambiguous terminologyawasitepaper written by Andrew G. Morgan (author of
Linux-PAM) in 1999. While Morgan’s choice of terminology wa huge leap forward, it is in this author’s opinion
by no means perfect. What follows is an attempt, heavilyinesiby Morgan, to define precise and unambiguous
terms for all actors and entities involved in PAM.

account

The set of credentials the applicant is requesting from thigrator.

applicant

The user or entity requesting authentication.

arbitrator

The user or entity who has the privileges necessary to vidréfyapplicant’s credentials and the authority to
grant or deny the request.

chain

A sequence of modules that will be invoked in response to a R&duest. The chain includes information about
the order in which to invoke the modules, what arguments $3 pathem, and how to interpret the results.

Pluggable Authentication Modules

client

The application responsible for initiating an authentmatequest on behalf of the applicant and for obtaining
the necessary authentication information from him.

facility

One of the four basic groups of functionality provided by PAddthentication, account management, session
management and authentication token update.

module

A collection of one or more related functions implementinggaticular authentication facility, gathered into a
single (normally dynamically loadable) binary file and itléed by a single name.

policy

The complete set of configuration statements describingthdwandle PAM requests for a particular service. A
policy normally consists of four chains, one for each fagihough some services do not use all four facilities.

server

The application acting on behalf of the arbitrator to coseerith the client, retrieve authentication information,
verify the applicant’s credentials and grant or deny retgues

service

A class of servers providing similar or related functiotyadind requiring similar authentication. PAM policies
are defined on a per-service basis, so all servers that di@isetme service name will be subject to the same

policy.

session

The context within which service is rendered to the applibgrthe server. One of PAM's four facilities, session
management, is concerned exclusively with setting up aaihig down this context.

token

A chunk of information associated with the account, such password or passphrase, which the applicant
must provide to prove his identity.

Pluggable Authentication Modules
transaction

A sequence of requests from the same applicant to the sataadesof the same server, beginning with
authentication and session set-up and ending with sessaoitbwn.

2.2. Usage examples

This section aims to illustrate the meanings of some of thagalefined above by way of a handful of simple
examples.

2.2.1. Client and server are one

This simple example showeice su(1)’ing toroot .

% whoam

alice

%ls -1 “which su

-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
% su -

Password: xi 3ki une

whoami

root

- The applicant islice

« The accountisoot .

« The su(1) process is both client and server.
« The authentication token ig3kiune

- The arbitrator isoot , which is why su(1) is setuitbot .

2.2.2. Client and server are separate

The example below shovese try to initiate an ssh(1) connection kagin.example.com , ask to log in asob,
and succeed. Bob should have chosen a better password!

% whoam

eve

% ssh bob@ ogi n. exanpl e. com
bob@login.example.com’s password: god

Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights rese rved.
FreeBSD 4.4-STABLE (LOGIN) #4: Tue Nov 27 18:10:34 PST 2001

Welcome to FreeBSD!

Pluggable Authentication Modules

%

- The applicantigve.

- Theclientis Eve’s ssh(1) process.

« The server is the sshd(8) procesdagin.example.com
« The account i®ob.

- The authentication token imd.

- Although this is not shown in this example, the arbitratooist .

2.2.3. Sample policy
The following is FreeBSD'’s default policy fashd :

sshd auth required pam_nologin.so no_warn

sshd auth required pam_unix.so no_warn try_first_pass
sshd account required pam_login_access.so

sshd account required pam_unix.so

sshd session required pam_lastlog.so no_fail

sshd password required pam_permit.so

« This policy applies to theshd service (which is not necessarily restricted to the ssheBjer.)
- auth , account ,session andpassword are facilities.

« pam_nologin.so , pam_unix.so , pam_login_access.so , pam_lastlog.so andpam_permit.so are
modules. It is clear from this example thatm_unix.so provides at least two facilities (authentication and
account management.)

3. PAM Essentials

3.1. Facilities and primitives

The PAM API offers six different authentication primitivgsouped in four facilities, which are described below.

auth

AuthenticationThis facility concerns itself with authenticating the appht and establishing the account
credentials. It provides two primitives:

- pam_authenticate(3) authenticates the applicant, ysoyallequesting an authentication token and
comparing it with a value stored in a database or obtained & authentication server.

« pam_setcred(3) establishes account credentials sucleaygroup membership and resource limits.

Pluggable Authentication Modules

account

Account managemerithis facility handles non-authentication-related issofesccount availability, such as
access restrictions based on the time of day or the serverlsiaad. It provides a single primitive:

« pam_acct_mgmt(3) verifies that the requested account i biea

session

Session managemeiitis facility handles tasks associated with session setrgptear-down, such as login
accounting. It provides two primitives:

- pam_open_session(3) performs tasks associated witlosesstiup: add an entry in themp andwtmp
databases, start an SSH agent, etc.

. pam_close_session(3) performs tasks associated witloisésar-down: add an entry in thieemp andwtmp
databases, stop the SSH agent, etc.

password

Password managemeitthis facility is used to change the authentication tokewaased with an account,
either because it has expired or because the user wishearigelit. It provides a single primitive:

- pam_chauthtok(3) changes the authentication token, mgdtioverifying that it is sufficiently hard to guess,
has not been used previously, etc.

3.2. Modules

Modules are a very central concept in PAM; after all, theythee"M” in “PAM”. A PAM module is a self-contained
piece of program code that implements the primitives in anaare facilities for one particular mechanism; possible
mechanisms for the authentication facility, for instarioelude the UNIX® password database, NIS, LDAP and
Radius.

3.2.1. Module Naming

FreeBSD implements each mechanism in a single module, npan@drechani smso (for instancepam_unix.so

for the UNIX mechanism.) Other implementations sometinmegelseparate modules for separate facilities, and
include the facility name as well as the mechanism name imth@ule name. To name one example, Solaris has a
pam_dial_auth.so.1 module which is commonly used to authenticate dialup users.

3.2.2. Module Versioning

FreeBSD’s original PAM implementation, based on Linux-PAMI not use version numbers for PAM modules.
This would commonly cause problems with legacy applicajovhich might be linked against older versions of the
system libraries, as there was no way to load a matchingoreddithe required modules.

Pluggable Authentication Modules

OpenPAM, on the other hand, looks for modules that have tine sersion number as the PAM library (currently 2),
and only falls back to an unversioned module if no versionedute could be loaded. Thus legacy modules can be
provided for legacy applications, while allowing new (o built) applications to take advantage of the most
recent modules.

Although Solaris PAM modules commonly have a version nunthey are not truly versioned, because the number
is a part of the module name and must be included in the comatiigur

3.3. Chains and policies

When a server initiates a PAM transaction, the PAM libraigstito load a policy for the service specified in the
pam_start(3) call. The policy specifies how authenticatémjuests should be processed, and is defined in a
configuration file. This is the other central concept in PAMe possibility for the admin to tune the system security
policy (in the wider sense of the word) simply by editing attie.

A policy consists of four chains, one for each of the four PAddifities. Each chain is a sequence of configuration
statements, each specifying a module to invoke, some (ugd)iparameters to pass to the module, and a control flag
that describes how to interpret the return code from the rfeodu

Understanding the control flags is essential to understarfehM configuration files. There are four different control
flags:

binding

If the module succeeds and no earlier module in the chaindiles!f the chain is immediately terminated and
the request is granted. If the module fails, the rest of tleércis executed, but the request is ultimately denied.

This control flag was introduced by Sun in Solaris 9 (SunOS9%Y, &and is also supported by OpenPAM.

required
If the module succeeds, the rest of the chain is executedham@quest is granted unless some other module
fails. If the module fails, the rest of the chain is also extedubut the request is ultimately denied.

requisite
If the module succeeds, the rest of the chain is executedhamgquest is granted unless some other module
fails. If the module fails, the chain is immediately terntgdand the request is denied.

sufficient

If the module succeeds and no earlier module in the chaindiles!f the chain is immediately terminated and
the request is granted. If the module fails, the module isiigd and the rest of the chain is executed.

As the semantics of this flag may be somewhat confusing, &dlyaghen it is used for the last module in a
chain, it is recommended that thiading control flag be used instead if the implementation suppbrts i
optional

The module is executed, but its result is ignored. If all medin a chain are markembtional , all requests
will always be granted.

When a server invokes one of the six PAM primitives, PAM mteis the chain for the facility the primitive belongs
to, and invokes each of the modules listed in the chain, imtter they are listed, until it reaches the end, or

Pluggable Authentication Modules

determines that no further processing is necessary (ditearuse ainding or sufficient module succeeded, or
because &equisite module failed.) The request is granted if and only if at least module was invoked, and all
non-optional modules succeeded.

Note that it is possible, though not very common, to have #meesmodule listed several times in the same chain. For
instance, a module that looks up user names and passwordiractory server could be invoked multiple times

with different parameters specifying different directsgrvers to contact. PAM treat different occurrences of the
same module in the same chain as different, unrelated madule

3.4. Transactions

The lifecycle of a typical PAM transaction is described elblote that if any of these steps fails, the server should
report a suitable error message to the client and abortdhedction.

1. If necessary, the server obtains arbitrator credenhatsigh a mechanism independent of PAM—most
commonly by virtue of having been startedogt , or of being setuidoot .

2. The server calls pam_start(3) to initialize the PAM lityrand specify its service name and the target account,
and register a suitable conversation function.

3. The server obtains various information relating to thes$action (such as the applicant’s user name and the
name of the host the client runs on) and submits it to PAM uperg_set_item(3).

4. The server calls pam_authenticate(3) to authenticateptplicant.

5. The server calls pam_acct_mgmt(3) to verify that the estpd account is available and valid. If the password is
correct but has expired, pam_acct_mgmt(3) will reteian_NEW_AUTHTOK_RE@Btead ofPAM_SUCCESS

6. If the previous step return&hM_NEW_AUTHTOK_RE@tz server now calls pam_chauthtok(3) to force the
client to change the authentication token for the requestedunt.

7. Now that the applicant has been properly authenticatedserver calls pam_setcred(3) to establish the
credentials of the requested account. It is able to do thdadme it acts on behalf of the arbitrator, and holds the
arbitrator’s credentials.

8. Once the correct credentials have been establishedetber £alls pam_open_session(3) to set up the session.
9. The server now performs whatever service the client rei@de—for instance, provide the applicant with a shell.
10. Once the server is done serving the client, it calls pdmsec session(3) to tear down the session.

11. Finally, the server calls pam_end(3) to notify the PAbtdiry that it is done and that it can release whatever
resources it has allocated in the course of the transaction.

4. PAM Configuration

4.1. PAM policy files

4.1.1. The / et c/ pam conf file

The traditional PAM policy file igetc/pam.conf . This file contains all the PAM policies for your system. Each

Pluggable Authentication Modules

line of the file describes one step in a chain, as shown below:

login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name, cdffiteg, module name, and module arguments. Any
additional fields are interpreted as additional module @eyputs.

A separate chain is constructed for each service / facifify, po while the order in which lines for the same service
and facility appear is significant, the order in which theiwidlial services and facilities are listed is not. The
examples in the original PAM paper grouped configuratioedihy facility, and the Solaris stoglam.conf still

does that, but FreeBSD'’s stock configuration groups cordigun lines by service. Either way is fine; either way
makes equal sense.

4.1.2. The / et c/ pam d directory

OpenPAM and Linux-PAM support an alternate configuratiochagism, which is the preferred mechanism in
FreeBSD. In this scheme, each policy is contained in a sephllabearing the name of the service it applies to.
These files are stored iatc/pam.d/

These per-service policy files have only four fields instefashen.conf ’s five: the service name field is omitted.
Thus, instead of the sampbam.conf line from the previous section, one would have the followling in
/etc/pam.d/login

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is possiblestthe same policy for multiple services by linking each
service name to a same policy file. For instance, to use the pafity for thesu andsudo services, one could do as
follows:

cd /etc/pamd
In -s su sudo

This works because the service name is determined from ¢ghedihe rather than specified in the policy file, so the
same file can be used for multiple differently-named sesrice

Since each service’s policy is stored in a separate filegpdghed mechanism also makes it very easy to install
additional policies for third-party software packages.

4.1.3. The policy search order

As we have seen above, PAM policies can be found in a numbdacép. What happens if policies for the same
service exist in multiple places?

It is essential to understand that PAM’s configuration systecentered on chains.

4.2. Breakdown of a configuration line

As explained irSection 4.1each line inetc/pam.conf ~ consists of four or more fields: the service name, the
facility name, the control flag, the module name, and zeroaremodule arguments.

Pluggable Authentication Modules

The service name is generally (though not always) the nartteeaipplication the statement applies to. If you are
unsure, refer to the individual application’s documertato determine what service name it uses.

Note that if you useéetc/pam.d/ instead ofetc/pam.conf , the service name is specified by the name of the
policy file, and omitted from the actual configuration linegiich then start with the facility name.

The facility is one of the four facility keywords describetdSection 3.1

Likewise, the control flag is one of the four keywords desadiin Section 3.3describing how to interpret the return
code from the module. Linux-PAM supports an alternate sytitat lets you specify the action to associate with each
possible return code, but this should be avoided as it isstandard and closely tied in with the way Linux-PAM
dispatches service calls (which differs greatly from theg Balaris and OpenPAM do it.) Unsurprisingly, OpenPAM
does not support this syntax.

4.3. Policies
To configure PAM correctly, it is essential to understand Ipalicies are interpreted.

When an application calls pam_start(3), the PAM librandethe policy for the specified service and constructs four
module chains (one for each facility.) If one or more of thelsains are empty, the corresponding chains from the
policy for theother service are substituted.

When the application later calls one of the six PAM primisivéhe PAM library retrieves the chain for the
corresponding facility and calls the appropriate servigefion in each module listed in the chain, in the order in
which they were listed in the configuration. After each calhtservice function, the module type and the error code
returned by the service function are used to determine wdyghdéns next. With a few exceptions, which we discuss
below, the following table applies:

Table 1. PAM chain execution summary

PAM_SUCCESS PAM | GNORE ot her
binding if ((fail) break; - fail = true;
required - - fail = true;
requisite - - fail = true; break;
sufficient if ((fail) break; - -
optional - - -

If fail is true at the end of a chain, or when a “break” is reached, iggatther returns the error code returned by
the first module that failed. Otherwise, it retuPsM_SUCCESS

The first exception of note is that the error catdeM_NEW_AUTHTOK_REQMreated like a success, except that if no
module failed, and at least one module returra_NEW_AUTHTOK_RE@ dispatcher will return
PAM_NEW_AUTHTOK_REQD

The second exception is that pam_setcred(3) tigadtng andsufficient modules as if they wenequired

The third and final exception is that pam_chauthtok(3) riessintire chain twice (once for preliminary checks and
once to actually set the password), and in the preliminaasglit treat®inding andsufficient modules as if
they wererequired

10

Pluggable Authentication Modules

5. FreeBSD PAM Modules

5.1. pam_deny(8)

The pam_deny(8) module is one of the simplest modules dlajlda responds to any request wRAM_AUTH_ERR
It is useful for quickly disabling a service (add it to the wipevery chain), or for terminating chains sffficient
modules.

5.2. pam_echo(8)

The pam_echo(8) module simply passes its arguments to tiversation function asRAM_TEXT_INFOmessage. It
is mostly useful for debugging, but can also serve to displagsages such as “Unauthorized access will be
prosecuted” before starting the authentication procedure

5.3. pam_exec(8)

The pam_exec(8) module takes its first argument to be the nadmprogram to execute, and the remaining
arguments are passed to that program as command-line antgir®®e possible application is to use it to run a
program at login time which mounts the user’s home directory

5.4. pam_ftpusers(8)

The pam_ftpusers(8) module

5.5. pam_group(8)

The pam_group(8) module accepts or rejects applicantseobaskis of their membership in a particular file group
(normallywheel for su(l)). Itis primarily intended for maintaining the ditional behaviour of BSD su(1), but has
many other uses, such as excluding certain groups of usensdiparticular service.

5.6. pam_guest(8)

The pam_guest(8) module allows guest logins using fixedhlogimes. Various requirements can be placed on the
password, but the default behaviour is to allow any passaseidng as the login name is that of a guest account. The
pam_guest(8) module can easily be used to implement anars/FEP logins.

5.7. pam_krb5(8)
The pam_krb5(8) module

5.8. pam_ksu(8)
The pam_ksu(8) module

11

Pluggable Authentication Modules

5.9. pam_lastlog(8)
The pam_lastlog(8) module

5.10. pam_login_access(8)

The pam_login_access(8) module provides an implementafithe account management primitive which enforces
the login restrictions specified in the login.access(5gtab

5.11. pam_nologin(8)

The pam_nologin(8) module refuses non-root logins wherirun/nologin exists. This file is normally created
by shutdown(8) when less than five minutes remain until thedualed shutdown time.

5.12. pam_opie(8)

The pam_opie(8) module implements the opie(4) autheritatethod. The opie(4) system is a challenge-response
mechanism where the response to each challenge is a dinetioiu of the challenge and a passphrase, so the
response can be easily computed “just in time” by anyoneqesesg the passphrase, eliminating the need for
password lists. Moreover, since opie(4) never reuses &eciga that has been correctly answered, it is not vulnerable
to replay attacks.

5.13. pam_opieaccess(8)

The pam_opieaccess(8) module is a companion module to gae{8p Its purpose is to enforce the restrictions
codified in opieaccess(5), which regulate the conditiordeumwhich a user who would normally authenticate herself
using opie(4) is allowed to use alternate methods. This istmiten used to prohibit the use of password
authentication from untrusted hosts.

In order to be effective, the pam_opieaccess(8) module beusted asequisite immediately after a
sufficient entry for pam_opie(8), and before any other modules, iratiie chain.

5.14. pam_passwdqc(8)

The pam_passwdqc(8) module

5.15. pam_permit(8)

The pam_permit(8) module is one of the simplest moduledabiati it responds to any request wRAM_SUCCESS
Itis useful as a placeholder for services where one or maashwould otherwise be empty.

5.16. pam_radius(8)

The pam_radius(8) module

12

Pluggable Authentication Modules

5.17. pam_rhosts(8)

The pam_rhosts(8) module

5.18. pam_rootok(8)

The pam_rootok(8) module reports success if and only iféla¢ wser id of the process calling it (which is assumed
to be run by the applicant) is 0. This is useful for non-netwalrservices such as su(1) or passwd(1), to which the
root should have automatic access.

5.19. pam_securetty(8)

The pam_securetty(8) module

5.20. pam_self(8)

The pam_self(8) module reports success if and only if theesanfithe applicant matches that of the target account.
It is most useful for non-networked services such as su(igrevthe identity of the applicant can be easily verified.

5.21. pam_ssh(8)

The pam_ssh(8) module provides both authentication arsibseservices. The authentication service allows users
who have passphrase-protected SSH secret keys in-tszsin ~ directory to authenticate themselves by typing their
passphrase. The session service starts ssh-agent(1)edoadsrit with the keys that were decrypted in the
authentication phase. This feature is particularly usiiulocal logins, whether in X (using xdm(1) or another
PAM-aware X login manager) or at the console.

5.22. pam_tacplus(8)

The pam_tacplus(8) module

5.23. pam_unix(8)

The pam_unix(8) module implements traditional UNIX passhauthentication, using getpwnam(3) to obtain the
target account’s password and compare it with the one peoMiy the applicant. It also provides account
management services (enforcing account and passwordérpitimes) and password-changing services. This is
probably the single most useful module, as the great mgjofiadmins will want to maintain historical behaviour
for at least some services.

6. PAM Application Programming

This section has not yet been written.

13

Pluggable Authentication Modules

7. PAM Module Programming

This section has not yet been written.

A. Sample PAM Application

The following is a minimal implementation of su(1) using PANbte that it uses the OpenPAM-specific
openpam_ttyconv(3) conversation function, which is prgied insecurity/openpam.h . If you wish build this
application on a system with a different PAM library, you Miave to provide your own conversation function. A
robust conversation function is surprisingly difficult taplement; the one presentedAppendix Cis a good
starting point, but should not be used in real-world appiices.

[*-
* Copyright (c) 2002,2003 Networks Associates Technology, | nc.
* All rights reserved.

* This software was developed for the FreeBSD Project by Think Sec AS and
* Network Associates Laboratories, the Security Research Di vision of
* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright
* notice, this list of conditions and the following disclaime r in the
* documentation and/or other materials provided with the dis tribution.
* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written
* permission.

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORSISARND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARILAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTBESLIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRIPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INTRAINT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARSING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSHIBY OF

* SUCH DAMAGE.

* $P4: //depot/projects/openpam/bin/su/su.c#10 $
* $FreeBSD: head/en_US.ISO8859-1/articles/pam/su.c 3882 6 2012-05-17 19:12:14Z hrs $

#include <sys/param.h>
#include <sys/wait.h>

14

#include
#include
#include
#include
#include
#include
#include

#include
#include

extern char

static pam_handle_t

<err.h>
<pwd.h>
<stdio.h>
<stdlib.h>
<string.h>
<syslog.h>
<unistd.h>

<security/pam_appl.h>
<security/openpam.h> / * for openpam_ttyconv()
** environ;

* pamh;

static struct pam_conv pamc;

static void
usage(void)

{

}

int
main(int

{

fprintf(stderr, "Usage: su [login [args]]\n");
exit(1);

argc, char *argv(])

char hostname[MAXHOSTNAMELEN];

const char =xuser, *ftty;
char =+ args, * pam_envlist, * pam_env;
struct passwd * pwd,;

int 0, pam_err, status;
pid_t pid;

while ((o = getopt(argc, argv, "h")) = -1)
switch (0) {
case 'h
default:
usage();

}

argc -= optind,;
argv += optind;

if (argc > 0) {

user = =*argv;
--argc;
++argy;
} else {
user = "root";
}

*/

Pluggable Authentication Modules

15

Pluggable Authentication Modules

[* initialize PAM */
pamc.conv = &openpam_ttyconv;
pam_start("su", user, &pamc, &pamh);

[+ set some items x/

gethostname(hostname, sizeof(hostname));

if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) ! = PAM_SUCCESS)
goto pamerr;

user = getlogin();

if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) = PAM _SUCCESS)
goto pamerr;

tty = ttyname(STDERR_FILENO);

if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) = PAM_SU CCESS)
goto pamerr;

/ = authenticate the applicant */
if ((pam_err = pam_authenticate(pamh, 0)) = PAM_SUCCESS)
goto pamerr;
if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK _REQD)
pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHT OK);
if (pam_err '= PAM_SUCCESS)
goto pamerr;

/ = establish the requested credentials */
if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)
goto pamerr;

/ = authentication succeeded; open a session */
if ((pam_err = pam_open_session(pamh, 0)) != PAM_SUCCESS)
goto pamerr;

/= get mapped user name; PAM may have changed it */
pam_err = pam_get_item(pamh, PAM_USER, (const void *+)&user);
if (pam_err '= PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)

goto pamerr;

/ = export PAM environment */
if ((pam_envlist = pam_getenvlist(pamh)) = NULL) {
for (pam_env = pam_envlist; *pam_env != NULL; ++pam_env) {
putenv(*pam_env);
free(*pam_env);

}
free(pam_envlist);
}
/* build argument list */
if ((args = calloc(argc + 2, sizeof *args)) == NULL) {
warn("calloc()");
goto err;
}
xargs = pwd->pw_shell;
memcpy(args + 1, argv, argc * sizeof args);

16

Pluggable Authentication Modules

/= fork and exec =/
switch ((pid = fork())) {
case -1:
warn("fork()");
goto err;
case O:
[+ child: give up privs and start a shell */

/* set uid and groups */

if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {
warn("initgroups()");
_exit(1);

}

if (setgid(pwd->pw_gid) == -1) {
warn("setgid()");
_exit(1);

}

if (setuid(pwd->pw_uid) == -1) {
warn("setuid()");
_exit(1);

}

execve(=*args, args, environ);

warn("execve()");

_exit(1);

default:
/= parent: wait for child to exit */
waitpid(pid, &status, 0);

/= close the session and release PAM resources */
pam_err = pam_close_session(pamh, 0);
pam_end(pamh, pam_err);

exitWEXITSTATUS(status));

pamerr:
fprintf(stderr, "Sorry\n");
err:
pam_end(pamh, pam_err);
exit(1);

B. Sample PAM Module

The following is a minimal implementation of pam_unix(8jfesing only authentication services. It should build
and run with most PAM implementations, but takes advantd@penPAM extensions if available: note the use of
pam_get_authtok(3), which enormously simplifies prongptire user for a password.

| *-
* Copyright (c) 2002 Networks Associates Technology, Inc.

17

Pluggable Authentication Modules

* All rights reserved.

* This software was developed for the FreeBSD Project by Think Sec AS and
* Network Associates Laboratories, the Security Research Di vision of
* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright
* notice, this list of conditions and the following disclaime r in the
* documentation and/or other materials provided with the dis tribution.
* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written
* permission.

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORSISARND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARJILAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTBESLIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRIPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INTRAINT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARSING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSHIBY OF

* SUCH DAMAGE.

* $P4: //depot/projects/openpam/modules/pam_unix/pam_u nix.c#3 $
* $FreeBSD: head/en_US.ISO8859-1/articles/pam/pam_unix .c 38826 2012-05-17 19:12:14Z hrs $
*/

#include <sys/param.h>

#include <pwd.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:";
#endif

#ifndef PAM_EXTERN

#define PAM_EXTERN
#endif

18

Pluggable Authentication Modules

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t *pamh, int flags,
int argc, const char *argVv[])
{
#ifndef _OPENPAM
struct pam_conv *CoNnv,
struct pam_message msg;
const struct pam_message * msgp;
struct pam_response *resp;
#endif
struct passwd * pwd;
const char *user;
char =*crypt_password, * password;
int pam_err, retry;

/ = identify user */

if ((pam_err = pam_get_user(pamh, &user, NULL)) = PAM_SUC CESS)
return (pam_err);

if ((pwd = getpwnam(user)) == NULL)
return (PAM_USER_UNKNOWN);

[+ get password */
#ifndef _OPENPAM
pam_err = pam_get_item(pamh, PAM_CONYV, (const void **)&conv);
if (pam_err '= PAM_SUCCESS)
return (PAM_SYSTEM_ERR);
msg.msg_style = PAM_PROMPT_ECHO_OFF;
msg.msg = password_prompt;
msgp = &msg;
#endif
for (retry = 0; retry < 3; ++retry) {
#ifdef _OPENPAM
pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,
(const char *+)&password, NULL);

#else
resp = NULL;
pam_err = (*conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
if (resp != NULL) {
if (pam_err == PAM_SUCCESS)
password = resp->resp;
else
free(resp->resp);
free(resp);
}
#endif

if (pam_err == PAM_SUCCESS)
break;
}
if (pam_err == PAM_CONV_ERR)
return (pam_err);
if (pam_err '= PAM_SUCCESS)
return (PAM_AUTH_ERR);

19

/ = compare passwords */
if (('pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AU
(crypt_password = crypt(password, pwd->pw_passwd)) == NU
strcmp(crypt_password, pwd->pw_passwd) != 0)
pam_err = PAM_AUTH_ERR,;
else
pam_err = PAM_SUCCESS;
#ifndef _OPENPAM
free(password);
#endif
return (pam_err);

}

PAM_EXTERN int
pam_sm_setcred(pam_handle_t
int argc, const char

*pamh, int flags,
*argv(])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t
int argc, const char

*pamh, int flags,
*argv(])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t
int argc, const char

*pamh, int flags,
*argv(])
{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t
int argc, const char *argVv[])

*pamh, int flags,

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t
int argc, const char

*pamh, int flags,
*argv(])
{

return (PAM_SERVICE_ERR);

Pluggable Authentication Modules

THTOK)) ||
LL ||

20

Pluggable Authentication Modules

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY ("pam_unix");
#endif

C. Sample PAM Conversation Function

The conversation function presented below is a greatly lifiegh version of OpenPAM’s openpam_ttyconv(3). Itis
fully functional, and should give the reader a good idea @ haonversation function should behave, but it is far too
simple for real-world use. Even if you are not using OpenPAd¢é| free to download the source code and adapt
openpam_ttyconv(3) to your uses; we believe it to be as t@sia tty-oriented conversation function can reasonably
get.

| *-
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.

* This software was developed for the FreeBSD Project by Think Sec AS and
* Network Associates Laboratories, the Security Research Di vision of
* Network Associates, Inc. under DARPA/SPAWAR contract N660 01-01-C-8035

* ("CBOSS"), as part of the DARPA CHATS research program.

* Redistribution and use in source and binary forms, with or wi thout

+ modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright
* notice, this list of conditions and the following disclaime r in the
* documentation and/or other materials provided with the dis tribution.
* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior written
* permission.

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORSISARND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARJILAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTBESLIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRIPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INTRAIN, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARSING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSHIBY OF

* SUCH DAMAGE.

* $FreeBSD: head/en_US.ISO8859-1/articles/pam/converse .c 38826 2012-05-17 19:12:14Z hrs $

#include <stdio.h>

21

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message ** MSQ,
struct pam_response ** resp, void * data)
{
struct pam_response *aresp;
char buf[PAM_MAX_RESP_SIZE];
int i;

data = data;
if (n <=0]| n > PAM_MAX_NUM_MSG)
return (PAM_CONV_ERR);
if ((aresp = calloc(n, sizeof *aresp)) ==
return (PAM_BUF_ERR);
for (i = 0; i < n; ++i) {
arespli].resp_retcode = O;
aresp[i].resp = NULL,;
switch (msg[i]->msg_style) {
case PAM_PROMPT_ECHO_OFF:

aresp[i].resp = strdup(getpass(msg[i]->msg));

if (aresplil.resp == NULL)
goto fail;
break;
case PAM_PROMPT_ECHO_ON:
fputs(msg[i]->msg, stderr);
if (fgets(buf, sizeof buf, stdin)
goto fail;
arespl[i].resp = strdup(buf);
if (aresplil.resp == NULL)
goto fail;
break;
case PAM_ERROR_MSG:
fputs(msg[i]->msg, stderr);

if (strlen(msg[i]->msg) > 0 &&
msg[i]->msg[strlen(msg][i]->msg) - 1] != \n’)

fputc(\n’, stderr);
break;
case PAM_TEXT_INFO:
fputs(msg[i]->msg, stdout);

if (strlen(msg[i]->msg) > 0 &&
msg[i]->msg|[strlen(msg[i]->msg) - 1] != "\n’)

fputc(\n’, stdout);
break;
default:
goto fail;
}
}

*resp = aresp;

Pluggable Authentication Modules

22

Pluggable Authentication Modules

return (PAM_SUCCESS);

fail:
for (i = 0; i < n; ++) {
if (aresp[i].resp != NULL) {
memset(arespli.resp, 0, strlen(arespli].resp));
free(arespli].resp);
}
}
memset(aresp, 0, n * sizeof xaresp);
*resp = NULL,;
return (PAM_CONV_ERR);
}

Further Reading

This is a list of documents relevant to PAM and related issliésby no means complete.

Papers

Making Login Services Independent of Authentication Teldyies
(http://mwww.sun.com/software/solaris/pam/pam.exiepdf), Vipin Samar and Charlie Lai, Sun Microsystems.

X/Open Single Sign-on Preliminary Specification (httppiwopengroup.org/pubs/catalog/p702.htife Open
Group, 1-85912-144-6, June 1997.

Pluggable Authentication Modules (http://www.kernad/pub/linux/libs/pam/pre/doc/current-draft.txfndrew G.
Morgan, October 6, 1999.

User Manuals

PAM Administration (http://www.sun.com/software/sfgram/pam.admin.pdfpun Microsystems.

Related Web pages

OpenPAM homepage (http://openpam.sourceforge, @df-Erling Smargrav, ThinkSec AS.
Linux-PAM homepage (http://www.kernel.org/publ/linibgipam/) Andrew G. Morgan.

Solaris PAM homepage (http://wwws.sun.com/softwara/sgbam/) Sun Microsystems.

23

	Table of Contents
	1. Introduction
	2. Terms and conventions
	2.1. Definitions

	account
	applicant
	arbitrator
	chain
	client
	facility
	module
	policy
	server
	service
	session
	token
	transaction
	2.2. Usage examples
	2.2.1. Client and server are one
	2.2.2. Client and server are separate
	2.2.3. Sample policy

	3. PAM Essentials
	3.1. Facilities and primitives
	3.2. Modules
	3.2.1. Module Naming
	3.2.2. Module Versioning

	3.3. Chains and policies
	3.4. Transactions

	4. PAM Configuration
	4.1. PAM policy files
	4.1.1. The /etc/pam.conf file
	4.1.2. The /etc/pam.d directory
	4.1.3. The policy search order

	4.2. Breakdown of a configuration line
	4.3. Policies

	5. FreeBSD PAM Modules
	5.1. pamdeny(8)
	5.2. pamecho(8)
	5.3. pamexec(8)
	5.4. pamftpusers(8)
	5.5. pamgroup(8)
	5.6. pamguest(8)
	5.7. pamkrb5(8)
	5.8. pamksu(8)
	5.9. pamlastlog(8)
	5.10. pamloginaccess(8)
	5.11. pamnologin(8)
	5.12. pamopie(8)
	5.13. pamopieaccess(8)
	5.14. pampasswdqc(8)
	5.15. pampermit(8)
	5.16. pamradius(8)
	5.17. pamrhosts(8)
	5.18. pamrootok(8)
	5.19. pamsecuretty(8)
	5.20. pamself(8)
	5.21. pamssh(8)
	5.22. pamtacplus(8)
	5.23. pamunix(8)

	6. PAM Application Programming
	7. PAM Module Programming

	A. Sample PAM Application
	B. Sample PAM Module
	C. Sample PAM Conversation Function
	Further Reading
	Papers
	User Manuals
	Related Web pages

