The build system of ABINIT 5.5
A definitive guide

Yann Pouillon

Draft version - December 2, 2007

Contents

| Users 1
1 Overview of the build system 3
1.1 Mainobjectives 3
1.2 Underlyingconcepts e 3

2 The configurescript 5
2.1 Runningconfigure
2.2 Compileroptions e

2.3 MPIloptions
2.4 Externallibraries 9
25 Otheroptions e 0
2.6 Options provided by Autoconf 10
2.7 Environmentvariables e 13
2.8 Theconfiguration process v v i v it e, 14
Il Developers 17
3 Preprocessing macros 19
3.1 Propagating information to the sourcecode 19
3.2 Namingconventions e 19
3.3 Ifstatements. 20
3.4 Preprocessingmacrosof ABINITS 20
3.4.1 GEeneriCmacroS v v v e e e e e e
3.4.2 Architecture-relatedmacros 20
3.4.3 Optional librarymacros 21

3.4.4 MPIMACroS o o e e e e e

3.45 Compilermacros
3.4.6 Fortran-specificmacros. 00 22

3.47 Renamedmacros i e e e

3.4.8 Unmaintained macrosS v v v v v v i e e e e e

3.49 Removed macros e e e e e e e

\lojo-'

20

ii Contents

4 Adding external libraries / plug-ins 25
4.1 Overallprocedure 25
4.2 Thelibrarymakefile. 26
4.3 Fine-tuningabinitamf L 27

[l Maintainers 29

5 Extending the build system 31
5.1 Prerequisites 31
52 AddINgSCriptS o 32
5.3 Adding M4 macros e 32
5.4 Editingconfigure.ac. e e 32

Part |

Users

Chapter 1

Overview of the build system

1.1 Main objectives

The build system of ABINIT is here to fulfill the following obg#ives:

o take care of the makefiles;

1.2 Underlying concepts

Build directory support
Config-file support

Chapter 2

The configure script

2.1 Running configure

Autoconf is a tool producing a shell script that automatycabnfigures software source code
to adapt to many kinds of environmeniBhe configuration script produced by Autoconf is
independent of Autoconf when it is run, so that its users do nbneed to install Autoconf.

In other words: you do not need have Autoconf installed tddoABINIT. Moreover this
configuration script requires no manual user interventitienvrun; it do not normally even
need an argument specifying the system type. Instead,ivtichuiclly tests for the presence of
each feature that the software package it is tuned to migéd.ndowever it does not yet have
paranormal powers, and in particular has no access to whiatgee in mind. You still have to
explicitely interact with it for now, and the best way to dasithrough the numerous options of
this configurescript.

Theconfigurescript accepts two classes of parameters:

e script-provided options, composed of triggerendble/disable and specifiers
(with/withou), plus a few special options;

e environment variables, which influence the overall behawvad the script.
A typical call looks like:
./lconfigure [OPTION] ... [VAR=VALUE]

Here is what [OPTION] stands for:

Type ... if you want to ...
- - enabl e- FEATURE[=AR{F | activate FEATURE [ARG=yes]
- - di sabl e- FEATURE do not activate FEATURE (same as

--enable-FEATURE=n0)

- -w t h- PACKAGE] =ARG use PACKAGE [ARG=yes]
- - W t hout - PACKAGE do not use PACKAGE (same as
--with-PACKAGE=n0)

5

6 Chapter 2. Theonfigurescript

To assign environment variables (e.g., CPP, FC, ...), youifgpdem asVAR=VALUE
couples on the command line. Please note that there must bpates around the '=’ sign.
Moreover,VALUE must be quoted when it contains spaces. If some assignearenitgnored
by the configure script, just try the other way around:

VAR=VALUE/configure [OPTION

If you run configurefrom a build directory, which we highly recommend, you willamurse
type. ./ confi gur e instead of / confi gure.

In this chapter, the defaults for the options are specifiesimare brackets. No brackets
means that there is no default value.

2.2 Compiler options

ABINIT provides an comprehensive database of optimizatiags! They will suit your needs
in most cases. You may however tune them using the optiotesl Isn table 2.1. When set,
they replace the flags that would automatically be fetchexhfthe database otherwise.

Linking additional libraries should be done through the akthe CC_LIBS (C programs),
CXXLIBS (C++ programs) andrC_LIBS (Fortran programs) environment variables. When
specified, they replace the settings provided by the buiktesy during the optimization
process.FC_LIBSis currently the only variable producing visible effectst this will change
in the future. More details may be found in the "Environmeatiables” section below.

The build system provides 3 different possible optimizatievels, controlled by the
--enable-optlevebption:

e safe
e standard

e aggressive

Their names are self-explanatory, and the default is ofssstandard which corresponds to
the optimization database present in the previous verodd@BINIT. It is obvious that the
aggressiveevel should be used with extreme care.

There are 3 levels of debugging as well, available throughable-debug

e no: do not produce debugging information (default);
e yes produce debugging information if the compilers suppahi turn-off optimizations;

e symbols produce debugging information whenever possible, whdeping optimiza-
tions.

Please note that the support for 64-bit architectureslisratomplete and will be reworked
during the next development cycle of ABINIT.

6

2.3. MPI options 7

Option Description

--enabl e-64-bit-fl ags Use 64-bit flags with all compilers

- -enabl e- debug Activate debug mode (no optimizations) [default=no]

--enabl e- opt | evel Set optimization level [default=standard]

--enabl e-tricks Enable compiler tips and tricks (recommended)
[default=yes]

--w t h- cppfl ags=FLAGS Set preprocessing options

--wW t h-cc-optfl ags=FLAGS Set optimizations of C routines

--with-cc-1d-optflags=FLAGS | Prepend flags when calling the C linker

--with-cc-1d-optlibs=LIBS Append libraries when calling the C linker

--W t h-cxx- opt fl ags=FLAGS Set optimizations of C++ routines

--wW t h-cxx-1d-optfl ags=FLAGS | Prepend flags when calling the C++ linker

--w th-cxx-1d-optlibs=LIBS Append libraries when calling the C++ linker

- -enabl e-f c- wr apper Wrap Fortran compiler calls [default=guessed]

--wi th-fc-optflags=FLAGS Set-up optimization of Fortran routines

--with-fc-1d-optflags=FLAGS | Prepend flags when calling the Fortran linker

--with-fc-1d-optlibs=LIBS Append libraries when calling the Fortran linker

Table 2.1: ABINIT compiler options.

2.3 MPI options

In addition to serial optimization, ABINIT provides pardlleinaries relying upon the MPI
library. If you do not know what MPI stands for, then you rgalkeed the help of a computer
scientist before reading this section. First let us makardieat we cannot provide you with
any support to install MPI. If you need to do it, we advise yoask help to your system and/or
network administrators, because it will likely require sia permissions and fair technical
skills. In many cases you will already have a working inst#in of MP1 at your disposal, and
will at most need some information about its location.

Providing extended support for MPI is extremely delicatieeré is no standard location
for the package, there are concurrent implementationsviilg different philosophies, and
Fortran support is compiler-dependent. Moreover, therghtnbe several versions of MPI
installed on your system, and you have to choose one of theafutlg. In particular, if you
want to enable the build of parallel code in ABINIT — which youlliikely do — you have
to build ABINIT with the same Fortran compiler that has beeadufor MPI. This is why the
configure script will tell you that it selected other compsléhan those you specified if it needs
to preserve self-consistency between the sequential aatlgdaersions of the code.

Up to ABINIT 5.3, the interface to MPI support in the build syst was a little bit
confusing, and was permanently undergoing a lot of chandgds users’ needs have first
been clarified in the lifespan of ABINIT 5.4, and the implenagidn has been heavily fixed
between ABINIT 5.5.1 and 5.5.2, leading to some more adjustsneThe user interface has
now reached a sufficient level of consistency to be frozere MRl options provided by the

8 Chapter 2. Theonfigurescript

Option Description

- - enabl e- npi Enable MPI support [default=guessed]

--enabl e-npi -fft Enable band/FFT parallelism [default=no]

--enabl e-npi-io Enable parallel /0O [default=no0]

--enabl e-npi -trace Enable MPI time tracing [default=no]

--wW t h-npi - prefi x=PATH Prefix for the MPI installation

--W t h-npi - cppf | ags=FLAGS MPI preprocessing flags for parallel code

--w t h-npi - cf | ags=FLAGS MPI compile flags for C parallel code

--wW t h-npi -cc-1dfl ags=FLAGS | MPI link flags to prepend for parallel C programs
--wi th-npi-cc-1ibs=LIBS MPI libraries to append for parallel C programs

--W t h-npi - cxxf | ags=FLAGS MPI compile flags for C++ parallel code

--w t h- npi - cxx- | df | ags=FLAGS | MPI link flags to prepend for parallel C++ programs
--W t h-npi - cxx- 11 bs=LI BS MPI libraries to append for parallel C++ programs
--w t h-npi -fcfl ags=FLAGS MPI compile flags for Fortran parallel code

--W th-npi-fc-1dfl ags=FLAGS | MPI link flags to prepend for parallel Fortran programs
--with-npi-fc-1ibs=LIBS MPI libraries to append for parallel Fortran programs
--W t h- npi - runner =PROG Full path to the MPI runner program

Table 2.2: MPI options of ABINIT.

build system are summarized in table 2.2. They are valid fitwerb.5.2 version of ABINIT on.

The "--enable-mpi” and "--with-mpi-prefix” options to thednfigure” script are controlling
all the others:

e "--enable-mpi=no” switches off the build of parallel codedais the default, because
misconfigured MPI installations may crash tbenfigurescript (see the "Environment
variables” section for a discussion about this);

e "--enable-mpi=yes” triggers MPI auto-detection, leavidpt of decisional freedom to
the build system;

e "--enable-mpi=manual” bypasses auto-detection and takesspecified build parame-
ters as-is; the parallel code will be built independentlyhaf relevance and correctness of
these parameters.

If "--enable-mpi” is set to "yes”, the parallel code will beuitt only if a usable MPI
implementation can be detected. If the "--with-mpi-prefogition is providedenablempi is
automatically set to "yes” and the build system tries to finagsable generic MPI installation
at the specified location very early during the configuratidhthis step is successful, the
compilers and the runner provided by MPI are usetian of the user-specified ones, and no
further test is performed. If "--with-mpi-prefix” is not psent, the build of parallel code will be
deactivated unless "--enable-mpi” is explicitely set t@sy).

If the first attempt fails, a second one is undertaken oncectimapilers have been
configured. The build system then checks whether the corsple able to build MPI source

8

2.4. External libraries 9

Library | Internal | Required | Depends Note
bigdft yes no —
etsf-io yes no netcdf
etsf-xc yes no — Needs more testing
ffitw no no —
fox yes no — Currently unsupported
linalg yes yes —
netcdf yes no —
wannier90, yes no — Test library for the plug-in feature
xmIf90 yes no — Soon replaced by FoX

Table 2.3: Specifications of the ABINIT libraries.

code natively, taking advantage of the user-specified petens1 If successful, a MPI runner
will be looked for using thé?ATH environment variable. If something goes wrong, the build of
parallel code will be automatically disabled. In such a casel as a last resort, the user may
force the build through the use of "--enable-mpi=manual”.

Additional levels of parallelization may be activated, ilgb they are still experimental and
meant to be used by developers only:

e "--enable-mpi-fft”: parallel FFT; this feature will be sodully integrated and replaced
by an input variable;

e "--enable-mpi-io”: parallel file I/O;
e "--enable-mpi-trace”: parallel time tracing.

You will find a detailed description of all these options ire tsource package of ABINIT,
within the MPI support section of the ” abinit/doc/configiideconfig.ac” template. We warmly
recommend you to have a close look at this file and to use it @hmsiyou will.

2.4 External libraries

The configurescript of ABINIT provides a unified way of dealing with extetridoraries, by
means of a trigger (enable/disable) and two specifiers (folude and link flags) for each
package. Below the surface, things are however much more lempome libraries are
required by ABINIT, others not; some are contained within foeirce package, others are
too big to be included; a few of them depend on other exterbedries, which may or may
not be found within the package. The current situation isreanzed in table 2.3, and the
corresponding options are described in table 2.4.

When a library is required and cannot be found outside thecequackage, the build system
systematically restores consistency by ignoring useresiguand disabling the corresponding

10 Chapter 2. Theonfigurescript

support.

Providing automatic external library detection lead to pboate the build system too much,
and jeopardized its maintainability. Hence we decided to ai maximum simplicity. This
means that you need to provide the include and link flags gdfujast as you would do when
directly calling the compiler, e.g.:

./configure \
--enabl e- net cdf \
--wi th-netcdf-includes="-1/opt/etsf/include/g95" \
--with-netcdf-libs="-L/opt/etsf/lib -Inetcdf"

2.5 Other options

The configurescript provides a few more options. Though most of them wilyde used in
specific situations, they might prove very convenient inrstheases. The full list of special
options may be found in table 2.5.

The build system of ABINIT makes it possible to use config files $tore
your preferred build parameters. A fully documented teneplés provided in the
source code under abinit/doc/config/build-config.ac along with a few examples in
abinit/doc/config/build-examples/After editing this file to suit your needs, you may save it
as $HOME/.abinit/buildkhostname-.ac to keep these parameters as per-user defaults. Just
replace<hostname- by the name of your machine, excluding the domain name. E.gour
machine is callednyhost.mydomajryou will save this file a$HOME/.abinit/build/myhost.ac
You may put this file at the top level of an ABINIT source tree asllwin which case its
definitions will apply to this particular tree only. Usingrdg files is highly recommended,
since it saves you from typing all the options on the commiareleach time you build a new
version of ABINIT.

2.6 Options provided by Autoconf

Every configurescript generated by Autoconf provides a basic set of optiarsatever the
package and the environment. They either give informatiothe tunable parameters of the
package or influence globally the build process. In most<gse will only need a few of
them, if any.

Overall configuration:

10

2.6. Options provided by Autoconf

11

Option

Description

- -enabl e- bi gdft

--w t h-bigdft-includes
--with-bigdft-libs

Enable support for the BigDFT wavelet library
[default=no0]

Include flags for the BigDFT library
Library flags for the BigDFT library

--enabl e-etsf-io
--with-etsf-io-includes
--with-etsf-io-libs

Enable support for the ETSF 1/O library [default=n
Include flags for the ETSF 1/O library
Library flags for the ETSF 1/O library

O

]

- -enabl e- et sf - xc

--with-etsf-xc-includes
--With-etsf-xc-1libs

Enable support for the ETSF exchange-correlation
library [default=no]

Include flags for the XC library
Library flags for the ETSF XC library

--enable-fftw
--enabl e-fftwt hr eads

--wWith-fftwlibs

Enable support for the FFTW library [default=no]
Enable support for the threaded FFTW library
[default=no0]

Library flags for the FFTW library

- -enabl e-f ox
--wi t h-fox-incl udes
--with-fox-1libs

Enable support for the FoX /O library [default=no]
Include flags for the FoX I/O library
Library flags for the FoX 1/O library

--with-linalg-libs

Library flags for the linalg library

- -enabl e- net cdf

--wi t h-net cdf -i ncl udes
--with-netcdf-Ilibs

Enable support for the NetCDF 1/O library [d
fault=no]

Include flags for the NetCDF library

Library flags for the NetCDF library

D
]

- - enabl e- wanni er 90
--w t h-wanni er 90-i ncl udes
--w t h-wanni er90-1i bs

Enable support for the Wannier90 library [default=no]
Include flags for the Wannier90 library
Library flags for the Wannier90 library

--enabl e-xm f 90

--with-xm f90-i ncl udes
--with-xm f90-1ibs

Enable support for the XML Fortran 90 1/O library
[default=no0]

Include flags for the XMLF9O0 library
Library flags for the XMLF90 library

Table 2.4: External library options of ABINIT.

Option

Description

--enabl e-config-file
--with-config-fil e=FILE

Read options from config files [default=yes]
Specify config file to read options from

--enabl e-ccl ock

Use C clock for timings [default=n0]

--enabl e-stdin

Read file lists from standard input [default=yes]

Table 2.5: Special options of ABINIT.

11

12 Chapter 2. Theonfigurescript

Option Description
-h, --help display all options and exit
--help=short display options specific to the ABINIT package
--help=recursive | display the short help of all the included packages
-V, --version display version information and exit

-, --quiet, --silent | do not print ‘checking... messages
--cache-file=FILE| cache test results in FILE [disabled]

-C, --config-cache alias for ‘--cache-file=config.cache’

-n, --no-create do not create output files
--srcdir=DIR find the sources in DIR [configure dir or *..']

Installation directories:

Option Description

- - pref i x=PREFI X install architecture-independent files in PRERIX
[/opt]

- - exec- prefi x=EPREFI X | install architecture-dependent files in EPRERIX
[PREFIX]

By default, make install wil install all the files in subdirectories of
/opt/abinit/<version>. You can specify an installation prefix other thaptusing- - pr ef i x,
for instance - pr ef i x=$HOVE.

For a finer-grained control, use the options below.

Fine tuning of the installation directories:

Option Description

--bindir=D R user executables [EPREFIX/bin]

--sbindir=D R system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]

--datadi r=DI R read-only architecture-independent data [PREFIX/share]
--sysconfdi r=DI R read-only single-machine data [PREFIX/etc]

- - shar edst at edi r =DI R | modifiable architecture-independent data [PREFIX/com]
- -l ocal st at edi r=DI R | modifiable single-machine data [PREFIX/var]

--libdir=DR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]

--ol di ncl udedi r=DI R | C header files for non-gcc [/usr/include]
--infodir=DIR info documentation [PREFIX/info]
--mandi r =DI R man documentation [PREFIX/man]

Program names:

12

2.7. Environment variables 13

Option Description
- - progr am pr ef i x=PREFI X prepend PREFIX to installed program
names
- - progr am suf f i x=SUFFI X append SUFFIX to installed program
names
- - programtransf or m nanme=PROGRAM | run sed PROGRAM on installed program
names
System types:
Option Description
--bui | d=BU LD configure for building on BUILD [guessed]
- - host =HOST cross-compile to build programs to run on HOST [BUILD]
- -target =TARGET | configure for building compilers for TARGET [HOST]

Developer options:

Option Description

- - enabl e- shar ed[=PKGS] build shared libraries [default=no]

- -enabl e- dependency-tracki ng | speeds up one-time build

- -enabl e- dependency-tracki ng | do not reject slow dependency extractors
--with-gnu-Id assume the C compiler uses GNU Id [default=no]

2.7 Environment variables

In table 2.6, you will find short descriptions of the most wusefariables recognized by the
configure script of ABINIT. Use these variables to override thoices made byonf i gur e

or to help it to find libraries and programs with nonstandaathas/locations. Please note that
they always have precedence over command-line options.

There are 2 environment variables of critical importancéh®build system, though they
cannot be managed lopnfigure
e PATH which defines the order in which the compilers will be fouadd the number of
hits;

e LD _LIBRARYPATH, which will greatly help the build system find usable extérna
libraries, in particular MPI.

Improper settings of these 2 variables may cause a greausionfto the configure script
in some cases, in particular when looking for MPI compilemsl #ibraries. A typical issue
encountered is the following crash:

checking for gcc... /hone/pouillon/hpc/opennpi-1.2.4-gcc4. 1/ bi n/ npi cc

checking for C conpiler default output file name... a.out
checki ng whether the C conpiler works... configure: error: cannot run C conpiled prograns.
If you neant to cross conpile, use ‘--host’.

See ‘config.log’ for nore details.

13

14 Chapter 2. Theonfigurescript

Option Description

AR Archiver
ARFLAGS Archiver flags
CPP C preprocessor

CPPFLAGS C/C++ preprocessor flags, e.g-| <i ncl ude_di r > if you have
headers in a non-standard directory name@aclude dir>

CcC C compiler command

CFLAGS C compiler flags

CC.LDFLAGS | Clink flags to prepend to the command line
CC.LIBS Libraries to append when linking a C program
CXX C++ compiler command

CXXFLAGS C++ compiler flags
CXX_LDFLAGS | C++ link flags to prepend to the command line

CXX_LIBS Libraries to append when linking a C++ program
FC Fortran compiler command

FCFLAGS Fortran compiler flags

FC_LDFLAGS Fortran link flags to prepend to the command line
FC_LIBS Libraries to append when linking a Fortran program

Table 2.6: Influencial environment variables for the buydtem of ABINIT.

And a look at config.log shows:

configure: 6613: checki ng whether the C conpiler works

configure: 6623: ./a.out

.la.out: error while |oading shared libraries: |ibnpi.so.0: cannot open shared
object file: No such file or directory

configure: 6626: $? = 127

configure: 6635: error: cannot run C conpiled prograns.

This kind of error results from a missing path in th®_LIBRARYPATH environment
variable, and can be solved very easily, in the present besa/ay:

export LD LI BRARY_PATH="/ hone/ poui | | on/ hpc/ opennpi - 1. 2. 4-gcc4. 1/ 1i b: ${LD_LI BRARY_PATH} "

in the case of a BASH shell, and by:

setenv LD LI BRARY_PATH "/ hone/ poui | | on/ hpc/ opennpi - 1. 2. 4-gcc4. 1/ 1i b: ${LD_LI BRARY_PATH} "

for a C shell.

2.8 The configuration process

Configuring ABINIT is a delicate step-by-step process, bee@ash component is interacting
permanently with most others. This is reflected in the outfputonfigure that we describe in

14

2.8. The configuration process 15

this section.

The process starts with an overall startup, where the basanpeters required by Autoconf
and Automake are set. During the second part of this stefyue system of ABINIT reads
the options from the command line and from a config file, maldgage that the environment
variables will always have precedence over the commaredptions, which in turn override
the options read from the config file. It then reports aboungkea in the user interface of the
build system, warning the user if they have used an obsofstero

The next step is about ensuring the overall consistencyeodphions provided to configure.
The build system takes the necessary decisions so that tieeroay be built safely. It then
parses the options, and issues an error if the user has ptowdalid options. The error
messages give all the information needed to fix the problems.

Then comes the MPI startup stage, which the first half of tigigoration of MPI support.
This must happen beforeny Autoconf compiler test, in order to give the build systdra
possibility to consistently select the MPI compilers thaivén been detected. This step is
mandatory to avoid configuration issues later on, due to rishes between the sequential
and parallel compilers.

The next step is to find the various utilities that the buildteyn may need along the rest of
the configuration process. This runs usually very smoofiige these tools are found on most
of the platforms ABINIT runs on.

The preprocessing step is where serious things really. staihe C preprocessor is
searched for, which involves in turn the search for a workth@ompiler. At this point,
all compilers must already have been selected. This is alpally where configure
may crash if the MPI installation detected is broken or midigured (see "Environment
variables” section within this chapter), because the C clempvill not be able to produce
executables. This is why MPI support is disabled by defamitl we are open to any suggestion.

The three next steps involve the search for suitable C, C++ antlalh compilers, the
detection of their type, and the application of tricks to édnélvem work properly on the user’s
platform. These are also stages where the configuration eagyrf particular if no suitable
Fortran compiler is found.

Then the build system configures the use of the archiver, ild Bue numerous libraries
that are part of ABINIT.

The two next steps are about fine-tuning the compile flagsatdhie build will work fine if
the architecture is 64-bit (work still in progress), and & the adequate level of optimization
according to the platform parameters identified so far.

Here comes the probably most critical step of the configomatMPI support. If everything
could be set during the MPI startup stage, no further testiopmed, and the parallel code is

15

16 Chapter 2. Theonfigurescript

marked for building. If not, the build system will try to detevhether the compilers are able
to build MPI source code and set the MPI options accordingly.

Once all this is done, the build system can set the paranfetaitse linear algebra and FFT
libraries (work still in progress), before turning to theiglins.

One last configuration step is dedicated to the nightly bsilpport, which is now working
but still at an early stage of development.

The very last step is to output the configuration to the nuoneroakefiles, as well as to a

few other important files. At the end, a warning is issuedeffortran compiler in use is known
to cause trouble.

16

Part |l

Developers

17

Chapter 3

Preprocessing macros

3.1 Propagating information to the source code

While many arguments of the configure script control the wayMBlis built, some of them
--- in addition to the results of the tests performed at caméetime --- greatly influence what
will be built. In the latter case, the information has to begagated up to the source code,
which is done by means of preprocessing macros. They argedrbg theAC_DEFI NE macro

of Autoconf, or specified by the user on the command line.

Macros are(name,value)airs allowing the mapping of a sequence to another. Names
are usually single words, while values usually range frompé& numbers to very complex
sequences of instructions. During compilatiorameis replaced byvalue every time it is
encountered, this process being calledcro expansion Special lines, starting with the '#
character in C, allow for more operations on macros, likarggtunsetting or tests. Last but
not least, the concept of macro is not limited to any programgntanguage, and macros are
indeed ubiquitous in the programming world.

The build of ABINIT leads to the creation of many preprocegsimmacros (73 in ABINIT
5.5), which are stored igonfig.h Besides command-line options, this file is the only link
between the build system and the source code of ABINIT, arsdglihe reason why all of them
must include it at their very beginning.

3.2 Naming conventions

As far as preprocessing directive names are concerned, ABdNides strictly by the GNU
Coding Standards. This means in particular that:

o all user-defined compiler directives must be upper case,;
e all names must start with a letter;

e names may contain capital letters, digits and underscanigs o

19

20 Chapter 3. Preprocessing macros

Directives related to features that may or may not be preslmpending on the
configuration must begin by the keywoHRAVE *, e.g. HAVE. CONFIG H, HAVENETCDHR
HAVE ETSEXC, etc.

3.3 If statements

If statements should all begin witl#i'f . We kindly ask you not to use#i f def’, but
'#i f defi ned’ instead. A line ending aif statement must contain th#endi f’ keyword
only. The same holds fo#el se’.

Here is a typical example:

#i f defined HAVE_CONFI G H
#i ncl ude "config. h"
#endi f

We thank you in advance for following these simple rules,tasill greatly simplify the
automatic checks and fixes of the source code.

3.4 Preprocessing macros of ABINIT 5

3.4.1 Generic macros

ABINITGW Light version of ABINIT, for GW calculations
CONTRACT Design-by-contract code
HAVE _CONFIG.H Mandatory: use config.h if present

3.4.2 Architecture-related macros

OSIRIX IRIX operating system
OS.LINUX Linux operating system
OSMACOSX Mac OS X operating system
OSWINDOWS DOS/Windows operating system
VMS VAX/VMS architecture

20

3.4. Preprocessing macros of ABINIT 5 21

3.4.3 Optional library macros
HAVE _COMPAQFFT HP/Compaq/DEC FFT library

HAVE _FFTW FFTW library

HAVE FFTWTHREADS FFTW library (threaded version)
HAVE _HP_MLIB HP mathematical library

HAVE _SCALAPACK SCALAPACK linear algebra library
HAVE _SGIL.MATH SGI mathematical library

HAVE IBM _ESSL IBM mathematical library

HAVE _IBM_ESSLOLD IBM mathematical library (old version)
HAVE _NEC ASL NEC mathematical library

HAVE _NETCDF NetCDF file 1/O library

HAVE BIGDFT BigDFT wavelet library

HAVE ETSFEIO ETSF file I/O library

HAVE _ETSEXC ETSF exchange-correlation library
HAVE _XMLF90 XML Fortran 1/O library

3.4.4 MPI macros

MPI macros may not be included in thenfig.hfile, as it would preclude the build of sequential
code. They should be specified within the compiler commamel IiThe following table gives
the full list of permitted MPI macros and the way they are nggath Manual handling is done
through the--with-mpi-cppflag®ption of configure.

Option Description Management
MPI MPI statements follow Build system
MPI1 MPI version 1 Manual
MPI2 MPI version 2 Manual
MPI3 MPI version 3 Manual
MPI_EXT MPI HTOR routines (?) Manual
MPI_FFT Parallel FFT Build system
MPI_1O Parallel 1/0 Build system
MPI_TRACE | Timing within parallel routines Build system

21

22

Chapter 3. Preprocessing macros

3.4.5 Compiler macros

FC_ABSOFT
FC_.COMPAQ
FC_FUJITSU
FC.GNU
FC.G95
FC_HITACHI
FC.HP
FC.IBM
FC.INTEL
FC_.MIPSPRO
FC_.NAG
FC.NEC
FC_PGI
FC_SUN

ABSoft Fortran compiler
HP/Compaq/DEC Fortran compiler
Fujitsu Fortran compiler

GNU Fortran compiler (gfortran)
G95 Fortran compiler (g95)
Hitachi Fortran compiler

HP Fortran compiler
IBM XL Fortran compiler

Intel Fortran compiler

SGI MipsPro Fortran compiler
NAGWare Fortran compiler
NEC Fortran compiler

PGI Fortran compiler

Sun Fortran compiler

The same holds for C and C++ compilers.

3.4.6 Fortran-specific macros
HAVE _FORTRANEXIT The Fortran compiler accepts exit()

USE CCLOCK

Use C clock for timings

22

3.4. Preprocessing macros of ABINIT 5

3.4.7 Renamed macros

Option Replaced by Version
_IFC FC.INTEL 5.1
ibm FC.IBM 5.1
NAGf95 FC.NAG 5.1
mpi MPI 5.1
MPIEXT MPI_EXT 5.1
TRACE MPI_TRACE 5.1
FFTW HAVE _FFTW 5.1
FFTWTHREADS | HAVE _FFTWTHREADS 5.1
bim HAVE IBM _ESSL 5.1
bmi HAVE IBM _ESSL 5.1
cen HAVE _NEC_ASL, FC.NEC 5.1
decalpha FC_.COMPAQ 51
hp HAVE _HP_MLIB, FC_HP 5.1
hpux HAVE _HP_MLIB 5.1
nec HAVE _NEC_ASL, FC.NEC 5.1
nolib HAVE _COMPAQFFT 5.1
sqi HAVE _SGILMATH, FC_MIPSPRO| 5.1
sr8k FC_HITACHI 5.1
vpp FC_FUJITSU 5.1
__VMS VMS 5.1
P6 i386 5.1
macosx OS MACOSX 5.1
CHGSTDIO READ_FROM _FILE 5.1

3.4.8 Unmaintained macros

OPENMP OpenMP parallelism
T3E Cray T3E architecture
TESTAIM Optional checks for AIM

3.4.9 Removed macros

The following preprocessing macros have been removed fneABINIT source code.

23

24

Chapter 3. Preprocessing macros

d

Option Last version | Comments

OLD_INIT | 4.6 Was used insrc/04wfs/wfconv.F9Qo initialize the
wavefunctions, and has been replaced for a long time
by a more efficient method.

PGIWin 4.6 The PGI Fortran compiler is no longer used to bui
Abinit under Windows, since it is too buggy.

ultrix 4.6 Ultrix was an operating system based on a 4.2BSD

Unix with some features from System V. It was
first released in 1984. Its purpose was to provide a
DEC-supported native Unix for VAX. The last major
release of Ultrix was version 4.5 in 1995, which
supported DECstations and VAXen. There were some
subsequent Y2K patches. There has been no ABINIT
user on Ultrix quite some time.

24

Chapter 4

Adding external libraries / plug-ins

4.1 Overall procedure

For all the tasks to perform, just use the existing libraaesexamples and tutorials as soon
as you have a doubt. All paths are given from the top souraeuiry. Please note that this
procedure has been elaborated and complexified progrisaive is now being reworked in
order to greatly simplify it.

1. Create a new directory lib/, with a short and explicit name.

2. Copy the tarball to the new directory and go there. Its narheuld be:
<packagename>.tar.gz The package name may of course include a version number.

3. Create a RoboDOC header briefly describing the library. Taeslfiould have the same
name as the directory, plus leading and trailing underscoseiggestion: copy the one
from lib/netcdf/ and start from it.

4. Create a makefile with the same name as the directory, pluskd &xtension. It will
tell the build system how to perform the various steps of ity build: uncompress,
configure, build, install. Suggestion: copy the one fidinetcdf/and use it as a starting
point.

5. Create aabinit.amf file containing a list of additional files to clean. It will baally
consists in the libraries, binaries, headers and Fortradufese used by ABINIT.
Suggestion: uskb/netcdf/abinit.amfto see which is the format to follow.

6. Editconfig/specs/extlibs.ctdd one line for your library following the specified format
Put the most important module only in the second column ifryldarary has several
C/C++ headers or Fortran modules. The name of the library dhmaithe same as for the
directory.

7. Editconfig/specs/libraries.cf

a. inabinit _|libs, add the libraryafter the others it could depend on abdfore
the libraries depending on it;

25

26 Chapter 4. Adding external libraries / plug-ins

b. inabili bs_specs, copy the "netcdf’ line, changing only its name and removing
| ABI _LI B_I NCif your library has no C/C++ header and no Fortran module; here
the order is external/internal, then alphabetical, so yleoukl add your library
before the "defs” line;

c. describe the dependenciesini | i bs_deps.
The name of the library should be the same as for the directory

8. Edit config/specs/binaries.cfadd the library to the dependencies of every binary that
may use it; the line should be plofore the libraries it depends on aadter the libraries
that depend on it. The name of the library should be the sarfar #se directory.

9. Edit config/specs/options.cfadd the- - enabl e- * and--w t h- = options for your
library, with short and precise info strings. Usetcdfas a typical example.

10. Edit config.mk.in add the build flags of the library at the end of the file. You may
copy/paste from another external library, yet be carefehmangeALL the references.

11. Editconfig/m4/tricks.m4add a "tricky” macro at the end of the file. You may leave it
empty, just as many of them already are.

12. Editconfigure.ac

a. atthe beginning, where external packages are declared;
b. atthe end, where the external library macros are called.

Add the relevant information using what is there as examples
13. Runconfig/scripts/makemakand watch carefully any possible error message.
14. Runconfigure and watch carefully any possible error message.

15. Runmake and watch carefully any possible error message.

4.2 The library makefile

The build system expects a few things from the makefllb_name>.mkmanaging the package
stored in<packagename>.tar.gz

e it should includeconfig.mkin order to transmit the build parameters to the package’s o
build system;

e it should uncompress inib/<lib_name-/<packagename-, and thus move the
uncompressed directory afterwards if it not the casel(dex/fox.mkfor an example);

e it should install inlib/ <lib _name>/tmp, so that the build system of ABINIT may import
all required data by itself if the package is managed by thtols.

Please read all the library makefiles contained within ABINM&fore writing yours, this
might help you a lot.

26

4.3. Fine-tuningabinit.amf 27

4.3 Fine-tuningabinit.amf

Once you manage to build your library properly, rumake clearfrom within and add all
remaining files that should have been swept off to the listaioed inabinit.amf

27

Part Il

Maintainers

29

Chapter 5

Extending the build system

5.1

Prerequisites

In order to efficiently tweak the build system, you will neediiave a good experience of some
basic Unix utilities:cat, grep, sed awk, cut, tr, teg wc. A long familiarity with ABINIT and an
active participation to the developments occuring withia fkast six months, though mandatory,
will not suffice. You should already be fluent in the followiaggas as well:

Bourne-type shell scripting
(http://en.w ki pedi a. org/ w ki / Bour ne_shel |);

Perl scripting
(http://en.w ki pedi a. org/ w ki / Perl);

Python scripting
(http://en.w ki pedi a. or g/ wi ki / Pyt hon_9%28pr ogr amr ng_| anguage%29);

M4 scripting
(http://en.w ki pedi a. org/ wi ki / Md_9%28conput er _| anguage%29);

Makefile writing
(http://en.w ki pedi a. org/ w ki / Makefil e);

Link editing
(http://en.w ki pedi a. org/ wi ki /Li nker);

Regular expression designing
(http://en.w ki pedi a. or g/ w ki / Regul ar _expr essi on).

Just as when developing for ABINIT, you will need a fully wangiinstallation of the GNU
Autotools. And here is what distinguishes the maintainemfthe developer: you will need to
know how they work and understand their principles. Thespeztive documentations may be
found at the following addresses:

e Autoconf— htt p: // www. gnu. or g/ sof t war e/ aut oconf / manual /

31

32 Chapter 5. Extending the build system

e Automake— htt p://sources. redhat. com aut omake/ aut omake. ht ni
e Libtool — htt p: // www. gnu. or g/ sof twar e/ | i bt ool / manual . ht m

We strongly urge you to read them if you want to know what yaudoing.

Last but not least, you will need to have Bazdd#rt(p: / / bazaar - vcs. or g/) installed
on your development machine, since the delicate charatywu contributions will require
real-time interactions with other maintainers and/or ttgyers, be it for bug fixing or testing.

5.2 Adding scripts

If your extension influences exclusively the pre-build staf ABINIT, i.e. it prepares the way
for the Autotools, you may add it in the form of a scriptéhinit/config/scripts/ Please follow
the conventions already adopted for the other scripts. Wioee,ddo not forget to add a call
to your script inabinit/config/scripts/makemakand remember thahakemakexpects to be
called from the top-level directory of the source tree.

If your script is producing M4 macros, the names of the filestaming them must be
prefixed by 'do- not - edi t - .

5.3 Adding M4 macros

When you want to propagate information up to the Makefiles of MIB] the recommended
way to extend the build system is by writing M4 macros. The peactice is to create a new
file in &binit/config/m4/following the conventions adopted for the other files. ladater time
your contribution is approved, it may be redispatched int@ofiles.

5.4 Editing configure.ac

The configure.adile is the spine of the build system. Every single charactéhis file plays a
well-defined role, and is present for a carefully-thouglgidal reason. In particular, the order
of the lines is of critical importance to the proper functimnof the whole build system. That
is why this file should only be edited wigxtreme careby persons having a good knowledge
of shell-scripts, M4, Autoconf, Automake, LibTool and th&NIT build system. Messing-up
with the instructions present there without a sufficientezignce in these matters witlr sure
lead to catastrophic consequences, and may even resulssivadoss of data. To summarise,
YOU EDIT THIS FILE AT YOUR OWN RISKS . Believing you are more clever than the
designers of the ABINIT build system will not save you.

Theconfigurescript is generated fromonfigure.ady Autoconf As suchconfigureshould
NEVER EVER been edited

32

