
1

dhcperf
DHCP performance testing provides a means of predicting server behavior under load and verifying
server performance. The most important elements in a DHCP performance test tool are:

• Accuracy—The tool’s results should correlate strongly with the server’s “real-world” perfor-
mance.

• Reproducibility—Successive testing runs with the tool should produce strongly similar
results.

• Simplicity—Good results should not be dependent upon configuration options, and the
tool should be easy to use and understand.

Definitions

dhcperf uses the following definitions of latency, throughput, load and failure.

Latency and Throughput

Latency is the amount of time required to service a DHCP transaction.

Throughput is the number of transactions that may be serviced during a unit of time.

Throughput is a far more accurate measure of DHCP performance than is latency. Accurate DHCP
performance tools measure throughput.
Nominum dhcperf 1

2 Chapter 1: dhcperf
Load

Transaction load is defined as transactions per second.

For testing, transactions should be created with an event time distribution—that is, at a load of 10
transactions per second, a transaction should be created every 0.1 seconds.

For multi-step transactions like a four-way handshake, only the initial packet in the transaction
should be rate-limited—subsequent packets should be sent as soon as an appropriate server
response arrives.

Failure

Failure is defined as a server failing to respond to 0.1 percent or more of all messages it receives.

In the real world, DHCP clients resend messages to which no response is received, and a DHCP server
can fail to respond to some transactions without adversely affecting network operations. However, a
dropped transaction results in an impaired user experience, and an accurate DHCP performance test-
ing tool must take that into account.

dhcperf

dhcperf is a tool for testing DHCP server performance.

Command Synopsis

dhcperf [--client-creation-load transactions] [--clients clients]
[--discover] [-h | --help] [--one-discover] [-p | --port port]
[--progress] [-q | --quiet] [--remoteid-base remoteid]
[--remoteid-groupsize clients] [--remoteid-string string]
[--renew] [--retain-leases] [-s | --server server]
[--test-duration seconds] [--test-load transactions] [--usage]

Options

client-creation-load

--client-creation-load transactions/second

Specifies the load to use when creating clients for DHCPRENEW tests. By default
dhcperf uses an adaptive load detection algorithm when creating clients. Specifying
a constant load with --client-creation-load can speed up client creation.
Nominum dhcperf

dhcperf 3
If you are unsure whether or not you need to use this option, it’s best to leave it
unset.

clients

--clients clients

Specifies the number of clients to create when running the peak-renew test. This
parameter has no effect when running other tests.

The default is 20,000 clients.

discover

--discover

Selects the DHCPDISCOVER test mode. In this mode, dhcperf performs load testing
using four-way DHCP handshakes.

help

-h, --help

Prints detailed usage information.

one-discover

--one-discover

Selects the one-discover test mode. In this mode, dhcperf performs a single four-way
handshake.

port

-p, --port port

Sets the UDP port upon which dhcperf sends and receives DHCP messages.

The default is 67—dhcperf emulates a DHCP relay agent and uses the “DHCP server”
port.

progress

--progress

Prints test progress information every second.
Nominum dhcperf

4 Chapter 1: dhcperf
quiet

-q, --quiet

Instructs dhcperf to print minimal information while running.

remoteid-base

--remoteid-base remoteid

Specifies the agent-remote-id suboption value to be used for the first client. See
”Agent Options” on page 8.

remoteid-groupsize

--remoteid-groupsize clients

Specifies the agent-remote-id suboption to be sent, and the number of clients
to be associated with each remote ID. See ”Agent Options” on page 8.

remoteid-string

--remoteid-string clients

Specifies a static agent-remote-id suboption string to be sent for all clients. The
value should be a sequence of hexadecimal digits. See ”Agent Options” on page 8.

renew

--renew

Selects the DHCPRENEW test mode. In this mode, dhcperf performs load testing
using client DHCPRENEW requests.

retain-leases

--retain-leases

Prevents dhcperf, when running the one-discover and peak-discover tests, from issu-
ing a DHCPRELEASE for each acquired address.

server

--server server

Selects the server(s) to which synthetic broadcast traffic should be sent. This option
may be specified multiple times to select multiple servers.
Nominum dhcperf

Test methodology 5
Broadcast packets from synthetic clients are sent to all servers, while unicast packets
are sent only to one server.

ggtest-duration

--test-duration seconds

Specifies the number of seconds for which dhcperf is to run test probes.

Note that this is not the total duration of the dhcperf run (which will be substantially
higher), but the duration of the test run at each tested transaction load.

The default test duration is two minutes (120 seconds). The minimum test duration is
15 seconds. Longer tests will produce more accurate results.

When combined with --test-load, --test-duration sets the total length of
time for which dhcperf should maintain the given load.

test-load

--test-load transactions/second

Specifies a constant load to use for testing. By default, dhcperf attempts to deter-
mine the peak sustainable transaction load of the tested server(s).

When --test-load is given, dhcperf instead runs a single test at a fixed load for a
fixed furation (specified by --test-duration) and reports the percentage of suc-
cessful transactions.

usage

--usage

Instructs dhcperf to print a brief usage message.

Test methodology

dhcperf creates synthetic DHCP load by emulating clients operating through a DHCP relay agent.

The synthetic clients created by dhcperf include a parameter-request-list option (DHCP option
55) in their requests for the subnet-mask, router, domain-name-server, and domain-name
options (DHCP options 1, 3, 6, and 15).

dhcperf attempts to find the peak sustained load at which a DHCP server or servers can operate.
Nominum dhcperf

6 Chapter 1: dhcperf
“Load” is defined in transactions per second, where transactions are created in an even time distri-
bution. For example, at a load of 10 transactions per second, dhcperf will create a new transaction
every 100 milliseconds.

When testing multi-step transactions (e.g., four-way handshakes), only the initial packet in the trans-
action is rate-limited. Subsequent packets are sent as soon as the appropriate server response
arrives.

The “peak load” is defined as the maximum load at which no more than 0.1% transactions fail to
complete successfully. While a DHCP server may operate successfully even at far higher failure rates
(since DHCP clients will resend packets that receive no response), packet loss will result in an
impaired user experience. As such, dhcperf is relatively unforgiving of dropped transactions.

A transaction is considered to have failed when a packet sent by one of dhcperf's synthetic clients
goes for four seconds without a response. No attempt is made to resend the packet.

In order to test sustained load, dhcperf will run load tests for a configurable length of time, con-
trolled by the --test-duration option. Note that the performance of some DHCP servers is limited by
intermittent behavior, such as garbage collection or database synchronization. As such, care should
be taken to run tests for long enough to accurately measure sustained performance. The default of
two minutes is a reasonable minimum.

Peak performance is determined by performing a number of successive test runs at different loads,
increasing the load after each successful test and decreasing it after each failed test. The exact pro-
cedure is as follows:

1. Begin with a minimal load of one transaction/second. Rapidly increase load until failures
are detected. The failure point is defined as the initial “high water mark” for the test. The
high water mark is the lowest transaction load known to produce failures.

2. Define the initial “low water mark” to be 0 transactions/second. The low water mark is the
highest transaction load known to produce less than a 0.1% failure rate.

3. Repeatedly perform test runs of a fixed duration (set by the --test-duration option)
with a transaction load set to the middle of the range between the high and low water
marks.

Transactions are created with an even distribution. For example, if the transaction load is
1000 transactions per second, one transaction will be created every millisecond. If a test
run fails, the high water mark is adjusted to the run's transaction load. If a test run suc-
ceeds, the low water mark is adjusted.

4. When the low water mark is within 5% of the value of high water mark, complete testing.
The final low water mark is the peak performance (highest transaction load known to be
sustainable without errors) of the server.
Nominum dhcperf

Tests 7
Tests

Test Modes

dhcperf provides two main test modes:

• The peak-discover test analyzes performance of four-way handshakes, and
peak-renew that of address renewals.

• The one-discover mode performs a single four-way handshake, as a quick means of
testing server availability.

Select a test mode using the --discover, --renew, and --one-discover options.

NOTE All tests require that a server be specified with the --server option. Multiple servers
may be specified with multiple instances of the --server option, for testing failover
configurations.

peak-discover

The peak-discover test performs a peak performance test (as described above) for clients performing
initial four-way handshakes. (A four-way handshake consists of a DHCPDISCOVER message from the
client, a DHCPOFFER from the server, a DHCPREQUEST from the client, and a final DHCPACK from
the server.) After each successful four-way handshake, clients will issue a DHCPRELEASE for the
acquired address.

Issuing a DHCPRELEASE for each lease acquired requires the server to handle three requests per cli-
ent rather than two, and will consequently result in a lower reported peak performance. The
--retain-leases option will suppress the DHCPRELEASE. Using this option will require that the
DHCP server be configured with sufficient leases to serve all the clients created over the duration of
the test.

 # dhcperf --server host --discover

peak-renew

The peak-renew test performs a peak performance test (as described above) for clients renewing
addresses. This test begins by creating a number of clients (configurable with the --clients option)
and acquiring addresses for them. It then proceeds with the peak test, rotating renewal requests
among this pool of clients.
Nominum dhcperf

8 Chapter 1: dhcperf
The number of clients created must be large enough to provide one client for each simultaneous
transaction created during the test. The exact number will differ depending on the performance
characteristics of the server configuration being tested.

If the pool of clients is too small, the test will not be able to create a sufficient number of simulta-
neous transactions. In this case, the test will abort with an error message.

Some DHCP servers optimize handling of rapid renewals of the same lease. For these servers, the
peak-renew test will report unnaturally high performance values unless the number of clients is large
enough that no one client renews twice within the optimization threshold.

 # dhcperf --server host --renew

one-discover

The one-discover test creates a single synthetic client which attempts to perform a four-way
handshake. After acquiring an address, the client issues a DHCPRELEASE and dhcperf exits. This test
is useful for checking the health of a DHCP server.

If the --retain-leases option is given, the DHCPRELEASE will not be issued.

 # dhcperf --server host --one-discover

Agent Options

dhcperf can be configured to send a DHCP Relay Agent Information option (DHCP option 82), con-
taining a configurable Agent Remote ID suboption, in every DHCP packet.

NOTE dhcperf cannot send an Agent Circuit ID suboption.

Generating Remote IDs

When --remoteid-groupsize is specified, dhcperf automatically generates remote
IDs for clients, controlling the number of clients sharing the same remote ID. Gener-
ated remote IDs are four bytes long, formed from a monotonically increasing
counter.

To specify the value of the first generated remote ID, use the --remoteid-base
option.
Nominum dhcperf

Example Testing Scenarios 9
Setting a Fixed Remote ID Value

To set a fixed remote ID value, use the --remoteid-string option. Static remote
IDs are specified as a sequence of hex bytes—for example, to send a remote ID con-
taining the ASCII string “remote-id”, you’d use

--remoteid-string "72656d6f74656964"

Example Testing Scenarios

The following example testing scenarios assume a situation in which DCS is passing out addresses
from the fictitious address space of 10.0.0.0/16.

First, create the following objects in Nominum DCS, using the nom_tell Command Channel client in
interactive mode:

nom_tell dcs

dcs> ccdb method=create objtype=network name=realNetwork
netaddr=192.168.0.9/29

dcs> ccdb method=create objtype=network name=fakeNetwork
netaddr=10.0.0.0/16

dcs> ccdb method=create objtype=sharednet name=sharedNetwork

dcs> ccdb method=add_network objtype=sharednet name=sharedNetwork
network=realNetwork

dcs> ccdb method=add_network objtype=sharednet name=sharedNetwork
network=fakeNetwork

dcs> ccdb method=create objtype=pool name=pool1
ranges=((10.0.0.1, 10.0.255.254))

After creating these objects, run the tests as described.

one-discover

dhcperf -server 192.168.0.1 --one-discover

Acquired address:10.0.0.1

peak-discover

dhcperf --server 128.177.198.19 --discover --clients 253
--release-leases
Nominum dhcperf

10 Chapter 1: dhcperf
Beginning DHCPDISCOVER load test.
Initial probe complete: High-water mark is 209 clients/second.
Preparing for next test run.
Beginning test run: 104 clients/second for 120 seconds.
Succeeded: 0/12480 clients failed.
Preparing for next test run.
Beginning test run: 156 clients/second for 120 seconds.
Stopping run after 19 seconds; 19/2777 clients failed.
Preparing for next test run.
Beginning test run: 130 clients/second for 120 seconds.
Succeeded: 0/15600 clients failed.
Preparing for next test run.
Beginning test run: 143 clients/second for 120 seconds.
Stopping run after 19 seconds; 20/2594 clients failed.
Preparing for next test run.
Beginning test run: 136 clients/second for 120 seconds.
Succeeded: 0/16320 clients failed.
Preparing for next test run.
Beginning test run: 139 clients/second for 120 seconds.
Succeeded: 0/16680 clients failed.
139 clients/second.

peak-renew

dhcperf --server 128.177.198.19 --renew --clients 10000
--release-leases

Creating 10000 clients for renew test.
10000 clients available
Beginning DHCPRENEW load test.
Initial probe complete: High-water mark is 709 clients/second.
Preparing for next test run.
Beginning test run: 354 clients/second for 120 seconds.
Succeeded: 0/42480 clients failed.
Preparing for next test run.
Beginning test run: 531 clients/second for 120 seconds.
Stopping run after 6 seconds; 68/1844 clients failed.
Preparing for next test run.
Beginning test run: 442 clients/second for 120 seconds.
Stopping run after 14 seconds; 55/5884 clients failed.
Preparing for next test run.
Beginning test run: 398 clients/second for 120 seconds.
Stopping run after 34 seconds; 54/13213 clients failed.
Preparing for next test run.
Beginning test run: 376 clients/second for 120 seconds.
Succeeded: 0/45120 clients failed.
Preparing for next test run.
Beginning test run: 387 clients/second for 120 seconds.
Stopping run after 56 seconds; 51/21413 clients failed.
Nominum dhcperf

Example Testing Scenarios 11
376 clients/second.
Nominum dhcperf

12 Chapter 1: dhcperf
Nominum dhcperf

	dhcperf
	Definitions
	Latency and Throughput
	Load
	Failure

	dhcperf
	Command Synopsis
	Options
	client-creation-load
	clients
	discover
	help
	one-discover
	port
	progress
	quiet
	remoteid-base
	remoteid-groupsize
	remoteid-string
	renew
	retain-leases
	server
	ggtest-duration
	test-load
	usage

	Test methodology
	Tests
	Test Modes
	peak-discover
	peak-renew
	one-discover
	Agent Options
	Generating Remote IDs
	Setting a Fixed Remote ID Value

	Example Testing Scenarios
	one-discover
	peak-discover
	peak-renew

