
Introduction to Defaults

Jeffrey A. Ryan
jeff.a.ryan@gmail.com

August 18, 2007

Contents

1 Introduction 1

2 The End User: setDefaults 2

3 The Developer: using importDefaults 3

4 How it works internally 4
4.1 Where defaults are stored . 4
4.2 How functions gain access . 5

5 Conclusion 5

1 Introduction

A common problem when writing functions for use by others is deciding upon
sensible argument defaults that will appeal to most of your target user’s daily
needs.

As an end user, often these defaults may not fit the problem at hand, and will
require some fine-tuning to make the function perform as desired. Additionally,
while all values may be changed within an actual function call, it may not always
be desirable to have to remember the new defaults, or to re-enter them with each
function call.

The Defaults [4] package allows the end user to pre-specify a default value for
any formal argument in a given function, and to force the function to use these
defaults. For the function authors it is no longer necessary to hand-code checks
to R’s internal options, as the addition of one function call at the beginning of
any function needing access to user specified defaults will manage the process
for them.

1

This document will cover the Defaults package from the perspectives of the user
and the developer, as well as give some detail as to its implementation. We
begin with how the R end user can benefit from using Defaults.

2 The End User: setDefaults

Every person using R, whether for analysis or as a developer, is an end user.
Countless functions are used within a typical session, often with multiple op-
tional argument settings for each. One of the most common is ls. If one would
like to have ls always display even hidden objects in a given environment it is
necessary to add the argument all.names=TRUE to the call. By using the De-
faults package, one can specify outside the function call this new default value,
so that subsequent calls will now display all names.

> hello <- "visible"

> .goodbye <- "hidden"

> ls()

[1] "hello"

> library(Defaults)

> setDefaults("ls", all.names = TRUE)

> ls()

[1] ".goodbye" "hello"

> ls(all.names = FALSE)

[1] "hello"

> unDefaults(ls)

> ls()

[1] "hello"

After loading the Defaults library, a call to setDefaults(’ls’,all.names=TRUE)
is made. This creates an entry in the standard options list, with the name
ls.Default, attaching the value all.names=TRUE to this entry.

At this point the original function ls is unable to process this new user specified
default. setDefaults then calls useDefaults(ls) internally, and a change is
then made to ls internally, with the important difference being that now this
new version can process the new defaults. The original function is modified in
its original environment to allow the Defaults functionality to be used.

Internally, the function first looks to see if any arguments have been specified
in the actual function call, as these take precedence over any default - formal or
set via setDefaults. If no value is given in the call, the global defaults, if any,

2

are checked. If nothing is still set, the process falls back to the original formal
defaults, if any, and continues executing. A more detailed account of the exact
changes made and how everything works is describe later in this document.

At present it is NOT possible to set an argument’s value to NULL using set-
Defaults. Values that cannot be set via setDefaults may of course still be
specified in the function call.

To remove a specific default argument, simply set it to NULL within a call to
setDefaults.

The set defaults can be viewed with getDefaults, and unset with a call to
unsetDefaults. The former, when called with no arguments, will return a
character vector of all functions currently having defaults set for use with De-
faults, though these will not necessarily be currently set to use Defaults (i.e. a
call would still need to be made to useDefaults to enable Defaults functionality
in situations where a user call to unDefaults had removed it). unsetDefaults
also removes Defaults functionality, by calling unDefaults internally.

> getDefaults(ls)

$all.names
[1] TRUE

> getDefaults()

[1] "ls"

> unsetDefaults(ls, confirm = FALSE)

Since using Defaults as an end user is so easy, it only makes sense that making
use of them as a developer would be just as straighforward. It’s even easier.

3 The Developer: using importDefaults

Without the Defaults package, if one is to use a mechanism to access globally
specified defaults, designed specifically for a new function, it would require a
complete lookup facility, as well as a series of if-else blocks. With Defaults all
that is required is one function placed at the beginning of your function. Or for
the truly lazy developer, no change at all – as the end user can always add this
functionality (see The End User).

> fun <- function(x = 5, y = 5) {

+ importDefaults("fun")

+ x * y

+ }

> fun()

3

[1] 25

> fun(x = 1:5)

[1] 5 10 15 20 25

importDefaults("fun") places all non-NULL default arguments specified by
an earlier call to setDefaults into the current function’s environment. The
only exception would be if the argument had been specified in the function call
itself, at which point the value or values in question would NOT be loaded into
the current scope. In other words, if you explicitly specify an argument value
in the function call, that is the value that will be used by the function.

> setDefaults(fun, x = 8, y = 2)

> fun()

[1] 16

> fun(9)

[1] 18

> fun(y = 0.5)

[1] 4

> unsetDefaults(fun, confirm = FALSE)

> fun()

[1] 25

4 How it works internally

A little background on just how this all works, for those who care to know the
details.

4.1 Where defaults are stored

All options set via setDefaults are store in the standard R options list, using
a special naming convention of appending .Default to the function in ques-
tion. This also means that values are lost from one session to another, which is
designed to prevent unintentional overrides in subsequent sessions.

4

4.2 How functions gain access

Calling setDefaults (which calls useDefaults internally) on a function magi-
cally changes the function to handle your previously specified defaults. Actually,
there isn’t much magic. useDefaults modifies the function in question (actually
the first instance of said function in its search path), by inserting at the start
of the function a call to importDefaults. The function is modified in-place
to allow for namespaces to resolve correctly, as well as to prevent workspace
clutter and assure reversion to its original state in subsequent R sessions. The
gory details of this process can be viewed in the source, and have been greatly
influenced by comments from John Chambers [2] and the source code of trace
[3] and Mark Bravington’s mtrace from his debug [1] package.

5 Conclusion

Using Defaults, whether as an end user or package developer, greatly simpli-
fies the process of utilizing externally set global defaults. With a small set of
functions, users can create and use default arguments in place of formal ones,
as well as create defaults where none normally exist, all without relying on the
underlying function’s own methods for handling defaults. Future development
may include the ability to use NULL as a legal default for the rare occasion that
it is desired, as well as a better method of handling subsequent function calls
within the visible parent function, as is the case with S3-style method dispatch
on non-visible methods.

References

[1] Mark V. Bravington: debug: MVB’s debugger for R, R package version
1.1.0, 2005

[2] John M. Chambers: Personal Communication, useR! 2007, 9 August, 2007

[3] R Development Core Team: R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org

[4] Jeffrey A. Ryan: Defaults: Create Global Function Defaults, R package
version 1.1-0, 2007

5

	Introduction
	The End User: setDefaults
	The Developer: using importDefaults
	How it works internally
	Where defaults are stored
	How functions gain access

	Conclusion

