BBCP

14.09.02.00.0

1 BBCP SYNAX ittt 3
1.1 Checksum Considerations (-e and —E)ccccoeiriniiiniinniiicincceeeeeeeeeeeeenenes 16
1.2 Tuning Considerations...........ccocvviiiiiiiiiiiiii e 18
1.2.1 WINAOW SIZE (mWW) trtrtinieiirieieierteteest ettt ettt ettt ettt bt et b et ettt et b saenteben 18
1.2.2 SEFEAIMS (=) +everuerurereienientieiertet et eteste sttt eae et et et e b e st e bt eat et et e s esaesbe s bt sat et et enesaeebeeneeneennens 19
1.2.3 I/O BULLEr SIZE (-B) .evieeuiriiieieiiertete ettt sttt sttt 20
1.2.4 Output Ordering (-0 and —b +) ...c.cciuiiiiiiiiici s 20
1.2.5 Input Blocking (-b) ..o 21
1.2.6 COMPTESSION (-C) .uviviuiriiiiiiiiiiciiiiieie bbb s 21
1.2.7 Un-buffered I/O (FL) cocoeueeireieinieieneeeteestet ettt ettt en 22
1.2.8 ROULNEG (-Z) oviviiiiiiiiiiiiiiiiini e 22
1.3 Resuming Failed Copies (—a and —k or —K).........cccceeviiiinnniniiiiiines 23
1.4 Multi-Directory Copying (=d) ..o 24
1.5 USING PiPes (-IN) coveeiietcece s 25
1.5.1 Named Pipe Considerationscccoceviviriiiiiiiiiiiiiiiiis 25
1.5.2 Program Pipe Considerationscccooviviiiiiiiiiiiiiiiiiiiiiccceeecs 26
1.5.3 Using Program Pipes to Recursively Copy Small Files ... 26
1.5.4 Restricting Program PiPes ... 27
1.6 Real-Time Copying (-R) .c.coiriiiiiciciiinrrrceeee e 28
1.6.1 Real-Time Copy Protocol.........ccccceuiuiiiiniriniriiicicicciccirneeeeeece e 29
1.6.2 Using an Alternate LOCk File........ccccooiiiiiiiiiiiiiiiicccce s 30
1.7 Modifying ssh Startup (-S and —T)......cccccoceoiirnrnreeccc e 32
1.8 Dealing With Firewalls (-Z and =Z)cccccocoiiinrnrniecciiirereeeeceeeeee s 33
1.9 Configuring New Defaults (-C).......ccoriiiiiiiirrreeeeeeecc e eenes 34
1.10 Recursive Copy Compatibility With ¢p & SCP ..c.cueuemiuieiiiiriccccccc s 34
11T NeW FatUIES ..ottt 35
112 Backward Compatibilityccccooeeiviiiiiiiiiiiiiii 37
1.13 Problem Reports & Enhancement REQUESESc.ccccuiiiriririniiieicicciiirrneeeeeecceeaes 38
1.14 DOWNIOAAINE ..ottt eaes 38

115 Legal NOICE ..ottt 39

Download the pdf version of this document.
Updated 9/2/2014

http://www.slac.stanford.edu/~abh/bbcp/bbcp.pdf

1 BBCP Syntax

bbep [options] [srcspec [. . .] 1 snkspec
srcspec: [[sid@] shost:]source [srcspec]
snkspec: [tid@] thost:] target

options:

{--compress | -c} [1lvl] {--config | -C} fname
{--force | -f} {--infiles | -I} fname
{--help | -h} {--keep | -k}
{--license | -§} {--1logfile | -1} logfn
{--mkdir | -A} {--mode | -m} mode
{--omit | -0} {--preserve | -p}
{--progress | -P} sec {--ptime | -~}
{--recursive | -r} {--symlinks | -@} slarg
{--verbose | -v} {--version | -#}
{--windowsz | -w} [=]wsz

[advanced] -

mode: dmode/ | fmode | dmode/fmode

slarg: follow | keep | ignore

shost: hostname | [ipvéaddr] | ipv4addr

thost: hostname | [ipvéaddr] | ipv4addr

advanced:

{--append | -a} [dir]

{--buffsz | -B} bfsz
{--dirbase | -d} path
{-F | --nofschk}
{--idfile | =i} fname
-K

{--nodns | -n}
{--pipe | -N} nio

{--gqos | -gq} gos

{--streams | -s} strms
-S srccmd

{--timelimit | -t} tlim
-U wsz

{--xfrrate | -x} rate
csarg: [$]{a32 | e32 |

{--buffers | -b} [+]blkf
{--debug | -D}

-e | {-E | --checksum} csarg
{--gross | -g}

{--ipv4 | -4} [who]

-L lopts[@lurl]

{--order | -o}

{--port | -Z} pl[:p2]

{--realtime | -R} [rtargs]
{-=-sync | -y} d[d]
-T trgcmd
{=—unbuffered | -u} loc
{--vverbose | -V}
{-z | --reverse}
md5} [=[csvallcsfile]]
r | w | x| [lopts]

file://path/filename | x-netlog://host:port

lurl:

x-syslog://localhost
loc: s | £t [loc]
nio: i | o[nio]

who: c | s | t [who

Function

Securely and quickly copy data from source to target. Please refer to
known problems for a list of current defects and limitations.

Parameters

sid

shost

source

tid

thost

target

specifies the ssh loginid for the source host. The default is to use your
current loginid.

specifies the name of the host that holds the source file. By default, the
local host is assumed. The shost may be expressed as:

hostname a DNS registered hostname

[ipv6addrs] a complete REC2732 IPv6 address enclosed in brackets
Ipvdaddr an ipv4 address in familiar dot notation

specifies the name of the file to be copied. Any number of source files from

any number of hosts may be specified on the command line. If the -I option
is specified, no source files need to be specified on the command line.
When -N is specified, source must be a named pipe or a program.

specifies the ssh loginid for the target host. The default is to use your
current loginid.

specifies the name of the host to which the file is to be copied. By default,
the local host is assumed. The thost may be expressed as:

hostname a DNS registered hostname
[ipv6addrs] a complete REC2732 ipv6 address enclosed in brackets
Ipv4addr an ipv4 address in familiar dot notation

specifies the name the target location of the file to be copied. If a single
source file is specified, target may be a filename or a directory. If more
than one source file is specified, target must be the name of a directory.
When -N is specified, target must be a named pipe or a program.

http://www.slac.stanford.edu/~abh/bbcp/bbcp_bugs.html
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt

Options

--compress [[v]] | -c [[v]]
compresses the data prior to sending it across the network using zlib
written by Jean-loup Gailly and Mark Adler. Specify an integer value from
1 through 9 for [vl. A value of 1 gives the best speed while a value of 9
gives the best compression. The default value is 1. If [v] is omitted, -c may
not be the last option on the command line. See the section on
“Compression” for a discussion of this option.

--config fname | -C fname
specifies the name of the configuration file. The configuration file is
processed when it is encountered on the command line. See the section
“Configuring New Defaults” for information about configuration files.

--force | -f
forces the copy by erasing the target prior to copying the source file. By
default, if the target already exists for the source file, the copy fails. See
also the —K option modifier.

--infiles fname | -1 fname
includes a list of source file specifications from the file identified by fname.
Each new-line terminated record in fname must contain a single source file
specification. If -I is specified, you need not specify any source files on the
command line.

--help | -h
prints usage and version information and immediately exits..

--keep | -k
keeps any partially created target files and allows full recovery after a
copy failure. Refer to “"Resuming Failed Copies” for details. The -0

becomes the default. Normally, partial files are removed after a copy fails.

--license | -$
prints the license agreement and immediately exits.

--logfile | -1 logfn
logs standard error to the indicated file, logfn, By default, standard error
output is written to the terminal.

--mkdir | -A
creates the destination directory, as specified by target specification, if it
does not exist.

--mode mode | -m mode
sets the final mode for the target file. Specify a 3- or 4-digit mode in octal
for dmode or fmode (see the syntax diagram). The dmode specified the access
mode to be assigned to directories and the fmode to the file itself. The
default dmode is 0755 while fmode is 0644.

--omit | -O
omits copying files from the source if an identically named file exists at
the target. This is particularly useful with —r (recursive copy).

--preserve | -p
preserves the source file’s mode, group name, access time, and
modification time. That is, the target file’s mode, group, access and
modification times are set to match that of the corresponding source file.

--progress sec | -P sec
produces progress messages every sec seconds. Specify a sec value no less
than 1 second.

--ptime | -~
only preserves the source file’s access time, and modification time. That is,
the target file’s access and modification times are set to match that of the
corresponding source file but the target file’s mode and group are
unchanged (i.e. determined by the destination defaults).

--recursive | -r
performs a recursive copy by copying all files starting at the source
directory unless the directory ends with slash, in which case the contents
and all descendants are copied. Empty directories and symbolic links are
ignored. The —r option is mutually exclusive with the —E option that
specifies a known checksum value.

--symlinks slarg | -@ slarg

specifies how symbolic links are to be handled during a recursive copy
(--links is a synonym). Valid values for slarg are:

follow - follow each symbolic link and copy its target.

keep - recreate the symbolic link at the destination.

ignore - ignore all symbolic links (the default).

--verbose | -v

produces additional output during execution.

--version | -#

prints the version number and immediately exits.

--windowsz wsz | -w wsz

sets the preferred size of the TCP window. Specify for wsz a value no less
that 8192 (i.e., 8k). Numbers suffixed by k, m, or g are multiplied by 21°,
220, or 2%, respectively. Prefixing wsz with an equals sign disables any
auto-tuning and attempts to use the specified window size. See the section
”"Window Size” to choose an appropriate non-default value. The default is
to use auto-tuning when available, otherwise a fixed size of 128K.

is a null option. Use — when an option with an optional argument would
be the last option on the command line.

Advanced Options

--append [dir | | -a [dir]
appends data to the end of the target file if the target is found to be
incomplete due to a previously failed copy. The optional dir specifies the
directory on the target host where checkpoint information is to be written
(the default is home/.bbcp). The —a option is mutually exclusive with the —E
option. See the section “Resuming Failed Copies” for more details. If dir is
omitted and -a is the last option on the command line it must be followed
by the -- option (double dash).

--buffers blkf | -b blkf
specifies the read blocking buffer factor. That is, blkf data blocks are
always read from disk and then queued for sending across the network.
The maximum is determined by the maximum number of scatter/gather
buffers allowed in a readv() system call. See the section “Input Blocking”
for cases where it might help. The default is 1 and set to 1 if —u tis

specified.

--buffers +blkf | -b +blkf
adds blkf additional output buffers. This option is meant to be used when
ordered output is in effect (see —0). See the section “Output Ordering” for
cases where it might help. The default is 0.

--buffsz bfsz | -B bfsz
specifies the disk I/O buffer size and becomes the effective I/O transfer
unit. Specify for bfsz a value no less that 1024 (i.e., 1k). Numbers suffixed
by k, m, or g are multiplied by 219, 2%, or 2%, respectively. The bfsz is
always made a multiple of the page size, the minimum value possible. The
default is wsz*1.25 or 512K, whichever is smaller. See the section “I/O
Buffer Size” for cases where changing the default may help.

--debug | -D
turns on debugging.

--dirbase path | -d path
specifies source relative addressing. Each relative srcspec is prefixed by
path. When the file is copied to the target, then the destination path will
be snkspec/srcspec. That is, the relative path in srcspec will be created on the
target host relative to snkspec and then the file will be copied. See the
section “Multi-Target Copying” for more information.

-e calculates a checksum for each block of data sent using the algorithm
specified by the —E option and is equivalent to “~E md5” (see below).

-E [%]cstype[=[csval | csfile]] | --checksum [%]cstype[=[csval | csfile]]

calculates a checksum either for the whole file and on a block level if —e is

specified. It also optionally checks the checksum against a known value

(see csval) or be reports it (see csfile and the —v option). —E usually implies

-0 and disallows —a as well as —r if a value is specified. See the section

“Checksum Considerations” for details. The arguments are:

% computes the checksum on the source node. By default, the
checksum is computed on the target node.

cstype specifies the checksum algorithm to be used. Supported types are:
a32 Adler 32-bit checksum.
c¢32 Cyclic Redundancy Check (CRC) 32 bit checksum.
md5 Message Digest 128-bit checksum.

csval is the known checksum value specified as a hexadecimal ASCII
string with the correct number of digits relative to cstype. When
csval is specified, the calculated checksum is compared to this value
and the copy fails if they do not agree. If csval is not specified, the
computed checksum is written either to standard error or csfile.

csfile is the name of the file where the checksum information is to be
appended. The filename must not start with a hexadecimal digit. If
csfile is not specified, the value is written to standard error. The

output format is:

Checksum: cstype csval host:destfile
cstype checksum type (i.e., a32, c32, or md5).
csval computed checksum value.
host target host name.
destfilename of the file created at host.

-F | --nofschk

forces the copy by not checking if there is enough free space on the target
host. This option is especially useful for esoteric devices that do not report
the correct amount of free space.

--gross | -g

recreates the source directory structure even if it is empty (i.e. no files or
symbolic links). This is only meaningful for recursive copies.

--idfile fname | -i fname

specifies the name of the ssh identity file if one has been specifically
created for bbcp. The identity filename, prefixed by —i, is included in the
ssh command line when starting the source and target nodes.

--ipv4 [who] | -4 [who)]

uses the IPv4 TCP stack for command processing and source-target
connections. This option is incompatible with IPv6 addresses. The
optional who argument restricts IPv4 mode to the command if c is specified,
the source if s is specified or the target if t is specified. The default is cst (i.e.
everywhere). If who is omitted and —ipv4 is the last option on the
command line it must be followed by the -- option (double dash).

similar to -k but removes the ordering restriction unless another option
requires it. With —f the target file is truncated, not removed, prior to
copying. This option is only useful when the destination is a symbolic link
to a pre-created file place-holder. The —-K option is mutually exclusive
with -k.

-L lopts[@lurl]

enables detailed logging of actions via the NetLogger interface. The lopts
specify what is to be logged while lurl determines how it is logged. For
lopts specify one or more of the following;:

a —append to data file o —log network writes
b - buffer information in memory r -log disk reads
¢ —log data compression w —log disk writes

i —log network reads x —log data expansion

http://netlogger.lbl.gov/home

If lurl is not specified, the logging interface uses the value of
environmental variable “NETLOGGER_DEST”. Specify one of three
destinations protocols:

file - data is written to the file identified by path/filename
x-netlog - data is sent to host listening on port

x-syslog - data is sent to the system log on the local host

--nodns | -n
does not use DNS to resolve IP addresses to host names. This option is
especially useful when the source or target machine is neither registered
in DNS nor has a valid entry in the /etc/hosts file.

--order | -0
serializes the output stream to force ordered (i.e., sequential) output. The
default is to write blocks in the order that they arrive from the network,
which is usually somewhat random order. See the section “Output
Ordering” for more information. The —o becomes the default when -a, -k,
-E +st, —E +t, -N o, or —u t is specified.

--pipe nio | -N nio
allows copying using pipes. When nio contains an ‘i’, the data source must
be a named pipe or a program. When nio contains an ‘0’, the data target
must be a named pipe or a program. Both source and target may be named
pipes or programs. The —N option is mutually exclusive —a, -d, -K, -r, -R,
-u, and -@. Also, ‘-N o’ is mutually exclusive with —f, -m, and —p; and —o
becomes the default. Only a single source may be specified with “ =N i’. See
the section “Using Pipes” for more information and restrictions .

--port p1[:p2] | -Z p1[:p2]
specifies the port or port range to be used in accepting data connections.
Normally, the first available port is used. This option restricts the choice to
the specified value or range. Specity a value between 1 and 65535,
inclusive for p1 and, optionally, p2. If p2 is specified, it must be greater
than or equal to p1. See the section “Dealing with Firewalls” for more

information.

--qos gos | -q qos
specifies the quality of service to be used. This is router-implementation
dependent and may ignored. Specify a value between 0 and 255, inclusive.

--realtime [rtargs] | -R [rtargs]
enables real-time copy mode. See the section “Real-Time Copying” for a
full description of this mode and rtargs. If rtargs is omitted and the option
is the last option on the command line it must be followed by the -- option
(double dash).

--streams strms | -s strms
sets the number of parallel network streams to be used for the transfer.
The default is 4. See the section “Streams” for other possible values.

--sync d[d] | -y d[d]
synchronizes memory-based file pages with disk pages before closing the
output file. A single d synchronizes data pages, while dd synchronizes
data pages as well as inode pages (i.e. meta-data). Review the notes on
various admonitions about using this.

-S srcemd
is the command to be used to start bbcp on the source host. The default is
“ssh —x —a —oFallBackToRsh=no %4 %I -1 %U %H bbcp”. See the usage

notes for more information.

-T srcemd
is the command to be used to start bbcp on the target host. The default is
“ssh —x —a —oFallBackToRsh=no %4 %I -1 %U %H bbcp”. See the usage
notes for more information.

--timelimit tlim | -t tlim
is the maximum amount of time that the copy may take before it is
aborted. The time limit applies to each source host regardless of the
number of files that host supplies. Specify a number greater than zero and
optionally suffixed by s (the default), m, or h for seconds, minutes, and
hours, respectively. By default, no time limit applies.

--unbuffered loc | -u loc
requests un-buffered (i.e., direct) I/O at the locations specified by loc. This
option may actually reduce performance. See the section “Un-buffered
I/O” for more information. The —u option forces —b 1 and the I/O buffer
size is set to a multiple of 8K. The —u t option forces —o. Specify one or
more of the following letters for loc:
s - source-side t - target-side

-U wsz
sets the size of all I/O buffers, including the TCP/IP socket buffer. This
option is identical to the —w option except that host limits are not checked
and buffers are set to the specified size whether or not the operating
system considers them valid. Improper use of this option may cause the
copy to fail. This option is only useful when dealing with experimental
TCP/IP stacks. Most users should use the —w option.

--vverbose | -V
produces even more output than —v allows, including detailed transfer
speed statistics.

--xfrrate rate | -x rate
sets the maximum transfer rate. Specify for rate a value no less that 1024
(i.e., 1k). Numbers suffixed by k, m, or g are multiplied by 2'°, 22, or 2%,
respectively. Data is clocked out from the source at the specified rate per
second.

-z | --reverse
uses reverse connection protocol. See the section “Dealing with Firewalls”
for more information.

Success
The program exists with a status code of 0.

Failure
The program exits with a non-zero status code.

Notes

1) A list of known problems is detailed on the following web page:
http://www.slac.stanford.edu/~abh/bbcp/bbcp bugs.html

2) Files are copied in the order specified. To minimize start-up and
shutdown time, adjacent files are grouped by source host and treated as a
copy set (i.e., a related group of files). Avoid inter-mixing different source
locations. That is, always specify all the required files from one source
location before specifying files from another location.

3) The destination file system must have sufficient space to comfortably hold
all of the source files. If sufficient space does not exist at the start of a copy
set, the copy is terminated. Use the —F option to avoid this requirement.

http://www.slac.stanford.edu/~abh/bbcp/bbcp_bugs.html

4) While the copy is in progress, the target file has 0200 as its mode (i.e.,
owner write-only). The mode is changed only after the copy succeeds.

5) The sync option makes sure that all pages have been written to disk before
the copy is considered complete. A single d argument only makes sure
that data pages are synchronized and is supported by all POSIX compliant
file systems. A double d (i.e. dd) argument synchronizes data as well as
directory pages (i.e. inodes) and is not uniformly supported by all file
systems. If ‘sync dd’ is specified and the underlying file system does not
support inode synchronization, an error may result. You should check for
support before you use this option in production wrokflows.

6) Using the sync option may significantly impact the overall speed of the
copy as bbcp has to wait until all data is actually written to disk.

7) By default, bbcp uses ssh for authentication on every host that was
specified in the source and target specifications. The rules attending to
normal ssh use always apply to bbcp. When in doubt, simply ssh to the
host in question to validate your ability to copy files to or from that host.

8) Because bbcp invokes ssh and itself without an absolute path, you must
make sure that bbcp and ssh can be found in one of the directories listed
in your PATH environmental variable. Otherwise, you must specify
where bbcp and ssh can be found (see the next note).

9) The -S and -T options allows you to specify different commands to start
bbcp on the source and sink nodes. Refer to the section “Modifying ssh
Startup” for details on how to change the default location of bbcp and ssh.

10) bbcp allows the source to be /dev/zero and the destination to be /dev/null.
This is very useful in measuring actual network bandwidth.

11) Refer to http:/ /netlogger.lbl.gov/home for complete information on
NetLogger.

12) You can easily GRID enable bbcp from the security standpoint by
specifying GSI-OpenSSH as the authentication and launch vehicle using
the -S and -T options.

13) The —ipv4 option is meant to be used in cases where either the source or
target node has either been improperly configured for IPv6 or has a non-
working IPv6 implementation. By default, both parties are forced to
operate in IPv4 mode. Consequently, parties must have an IPv4 address.
In mixed mode environments use the who argument.

14) Specifying —ipv4 c substitutes -4 for %4 in the ssh command line. If you
over-ride the default, you must include %4 n the command line to have
the -4 option added if it is needed.

http://netlogger.lbl.gov/home
http://www.ncsa.uiuc.edu/Divisions/ACES/GSI/openssh/

1.1 Checksum Considerations (-e and -E)

The —e and -E options allow you to verify the integrity of the copy but they
incur CPU costs. Certain option combinations require that two checksums be
calculated at the source node, further increasing the CPU cost but allowing for
more flexibility. When you specify a known value for the checksum, bbcp can
verify that no bit errors are introduced since the file was created. The —e and -E
options interact. Below is a table that describes checksum processing based on
various options an arguments and indicates whether or not ordered output (-o)
is enforced.

Specification -0 Checksum Processing
-E cstype N | Calculates block level checksums at the source and
—E Y%cstype target to detect block transmission errors.
-e -E cstype N | Equivalent to the above.

—e —E %cstype

—-E cstype=|[csfile] Calculates and prints a file checksum at the target.

—E %cstype=[csfile] Calculates and prints a file checksum at the source.

= |Z|=

—-e —E cstype=|[csfile] Calculates and prints a file checksum at the source

and farget nodes and verifies that they are the same.

—e —E %cstype=[csfile] | N | Calculates and prints a file checksum at the source.
Additionally, block level checksums are calculated at
the source and target to detect transmission errors.

-E cstype=csval Y | Calculates the file checksum at the target and
compares it to csval.

—E %cstype=csval | N | Calculates the file checksum at the source and
compares it to csval.

—-e -E cstype=csval Y | Calculates the file checksum at the source and target
nodes, verifies that they are the same, and compares it
to csval.

—e —E %cstype=csval N | Calculates the file checksum at the source and
compares it to csval. Additionally, block level
checksums are calculated at the source and target to

detect transmission errors.

File checksums computed at the target always require ordered output while
independent block checksums and source-only checksums do not.

Ordered output is difficult to achieve on links with highly variable latency; and
may cause copy operations to stall. Even so, it is possible to validate or compute
a file checksum without ordering the output by prefixing the cstype by a percent
sign (%) and specifying —e. This combination requests transitive source
checksum mode. Here, the file checksum is computed and optionally validated at
the source; then independent checksums are computed for each block and sent to
the target where they are validated. A file checksum can be reported because if
the source checksum is correct and each block sent to the target suffered no
errors, then the same checksum should also exist at the target. Because two
checksums must be computed at the source node, the source may become
compute-heavy. While not a true end-to-end checksum, it may provide sufficient
integrity protection while avoiding output ordering.

If you do specify output ordering (-o0) or if output ordering is forced by some
other option, along with source-only checksumming; bbcp automatically reverts
to source-target checksums to avoid computing two checksums on the source
node. Therefore, “—o0 —e —E %cstype="is equivalent to specifying “—e —E cstype=".

If full end-to-end checksums are not needed, you can save substantial amount of
CPU time by not specifying the percent sign and —e. This combination requests
direct target checksum mode. Here, the file checksum is only computed at the
target node. If a csval is specified, it is only verified at the target. If incorrect, it is
impossible to know where the error was introduced. Merely printing a target
checksum, of course, is no guarantee that it is correct. Target verification mode
still requires ordered output but no additional source CPU resources.

1.2 Tuning Considerations

bbcp has many options for tuning a file transfer to achieve maximum possible
performance. Which to use and the appropriate values are completely
determined by the type of devices and file systems being used at the source and
target node as well as the network that joins them. This section describes what
the tuning options actually do and how you might use them.

1.21 Window Size (-w)

The first and most important option is —w. This determines the TCP window size
as well as the default I/O size. The default of 128Kis usually good enough for
LAN and larger values are likely to hurt performance.

For wide area networks, you must compute the bandwidth delay product. This is
the product of the network bandwidth and round trip time (RTT) between the
source and target nodes. The basic formula is:

window = netspeed/8*RTT

Where netspeed is network bandwidth in bits per second and RTT is the round-
trip time between the source and target; which can be determined using the ping
or traceroute commands. The result is the optimal window size in bytes.

For example, assume you have a 1Gb link and want to send a file from San
Francisco (SFO) to Geneva, Switzerland (GVA). The RTT is typically 175m:s.
Using the formula above, the ideal window would be 20.85MB, much larger than
most operating systems allow. So, you will likely choose the largest value
allowed that also does not overwhelm the memory resources of the machines
being used.

Refer to http://www.speedguide.net/bdp.php for easily calculating the optimal
window size.

However, you may not need to calculate a window size at all if the receiving host
supports window auto-tuning. This relatively new addition to the TCP/IP stack
is fully available in Linux 2.6.17 and above. Auto-tuning is used by default when
it is available. While this mode does not require that you manually calculate the
window it also assumes that the system administrator has properly configured
the auto-tuning parameters and they are appropriate for your particular transfer.

http://www.speedguide.net/bdp.php

That may not be the case and, if the —v option has been specified, bbcp will issue
a warning if it detects settings that would likely compromise performance. Use
the -V option display the window settings for an actual transfer.

When auto-tuning is inappropriate or just wrong, you can disable its use by
prefixing the window size with an equals sign (e.g., -w =128k). This does not
mean the window will equal the specified value; as bbcp always negotiates the
actual window between the sending and receiving hosts.

Refer to http://www.psc.edu/networking/projects/tcptune/ for a good tutorial on
tuning TCP stacks for maximum data transfer performance.

1.2.2 Streams (-s)

The —s options is the second most important tuning parameter. This specifies the
number of parallel TCP streams. A naive explanation would say that streams can
make up for not having a large enough window. The idea is that if you can’t get
enough packets moving in a single window, then create multiple windows and
run them simultaneously. This is only partially true. While multiple streams do
provide multiple windows, multiple windows also parallelize traffic with
independent time-outs, re-transmissions, and greatly improved I/O overlapping.
This is a cumulative effect that dramatically increases the overall bandwidth
utilization. But, too much of a good thing can also be bad, as you will see below.

The optimal number of streams can be calculated as:
Streams = window/actual

Where window is the calculated optimal window size and actual is the window
size that is actually being used. It follows that the smaller the actual window the
larger number of streams will be needed. Using the SFO-GV A example with a
window size of 512K would imply that about 42 streams would be optimal. In
practice, this is not a practical number and would likely reduce bandwidth
utilization. The reason is that each additional stream requires more CPU and
memory resources and the scaling is not linear. You can see this for yourself by
copying a file and successively increasing the number of streams. As the number
is increased the percentage improvement will gradually become successively
smaller and will eventually become negative.

http://www.psc.edu/networking/projects/tcptune/

As a rule of thumb, start with the optimal calculation divided by two. Then take
measurements 25% above and below that number and use whichever provides
the best performance. In the local area network the default of 4 streams is usually
sufficiently good for 1Gb LAN transfers; while 8 to 12 streams is good for WAN
transfers.

1.2.3 I/O Buffer Size (-B)

The third most important tuning parameter is the I/O buffer size. This is the
amount of data that will be read from disk, sent over the network in one request,
and then written to the target device. By default, the buffer size is set to be the
same as the window size. This is ideal to maximize parallelism but might not
always be the best value. The ideal buffer size is mostly determined by the file
systems being used and its underlying devices. To add more complications, file
systems can be tuned for various performance targets and they are rarely tuned
to provide the best network performance. Hence, defaulting for maximum
parallelism is a good default.

If you know the performance characteristics of source and destination file
systems then playing with the buffer size may improve overall network
bandwidth utilization. Typically, a larger buffer will make up for device seek-
time delays at the expense of reduced parallelism. However, this may still be a
win. Generally, faster inter-connects (e.g., 10Gb) fair much better with larger 1I/O
buffers than slower inter-connects; especially in the local area network. In the
wide area network try using a buffer size twice the window size to see if any
improvement can be realized.

1.2.4 Output Ordering (-o and -b +)

I/O ordering allows you to guarantee that the output stream is sequential in
nature. Disk devices work best doing sequential I/O. So, you may wonder why
ordering is not the default. The reason is that file systems tend to smooth out
unordered output via their memory cache and bbcp’s unordered output is
largely bounded (i.e., output tends to be more ordered than not). Furthermore,
guaranteeing ordered output is memory intensive since an out-of order block
must be buffered until its predecessor is received. Depending on how the parallel
streams are routed and network latency variability, ordered output may lead to
large demands for memory to the point that the copy stalls. The —b + option
exists solely to inform bbcp how much more memory it should use to try to

prevent stalls. There is no formula because the value depends on the network
being used and its performance at the time it is being used. If ordered output is
desired and copies stall, start with a value twice the number of streams being
used to see if that solves the problem.

You may need to worry about order tuning depending on which other options
are chosen. The —a (append mode), -c (compression), -k (keep), -E (checksum),
and —u t (un-buffered target) are sequential in nature and enforce an ordered
output stream. Some file systems (e.g., HDFS) also require an ordered output
stream. So, keep in mind these options and their side-effects.

1.2.,5 Input Blocking (-b)

The I/O blocking option can provide some improvement in transfer rate by
reading several blocks from the input device before queuing the blocks for
transmission. Parallel queuing tends to smooth out variability when the TCP
streams differ greatly in latency. The cost is a higher initial latency since no
stream can start until the requested blocks are read from disk. Eventually, this
latency tends to disappear but only if the input device is much faster than the
network link. Additionally, there is somewhat less CPU utilization as there are
fewer kernel calls to transfer the data. That said, the default is 1 and normally
provides the best overall performance.

Consider increasing the blocking factor if the input device is much faster than the
network link and window sized transmission units (i.e., -B is not specified)
provide the best amount of parallelism.

1.2.6 Compression (-c)

One achieves the highest bandwidth utilization by not using any bandwidth at
all and still accomplishing the task. This is what compression tries to provide by
reducing the number of bytes sent over the network. Compression is hardly free
since it requires a significant amount of CPU resources at the source and target
nodes. Indeed, if there is insufficient CPU resources on either end, compression
will provide much worse performance. Performance will further degrade if the
data does not compress well.

You should considered compression if the data to be sent has a compression ratio
of 1.5 or better and the achievable network bandwidth utilization is less than 66%
of the stated bandwidth. Be aware of the usable CPU power of the source and
target nodes will ultimately determine if compression is a viable option.

1.2.7 Un-buffered I/O (-u)

The —u option provides a mechanism to bypass the normal file system memory
cache. It can be selectively employed at the source and target nodes. Bypassing
the file system cache limits the transfer to the raw speed of the underlying device
which, in practice, is usually slower than the network. Consequently, this option
should be used as the last resort in improving the transfer rate. There are,
however, some cases where un-buffered I/O makes sense either on the source or
target. For instance, when transferring a large file (i.e., several gigabytes) using
the file system cache may overwhelm the operating system and lead to a general
slow-down that is far worse than transferring the data directly from the slow
device. Un-buffered I/O also makes sense if the source device is much faster (e.g.,
1.5 times) than the network link. You should also consider using the —B option to
specify an appropriately large I/O transfer size for the device.

Un-buffered I/O places far more constraints on the copy than using a standard
file system interface, since bbcp must be cognizant of device sectors. When —u is
specified, all I/O buffers are automatically constrained to be multiples of 8K, the
common restriction in many operating systems and device drivers. When —u t is
specified, ordered output is enforced since many device drivers require it for
new files. Even with these constraints, un-buffered I/O may still fail because
either the source file is sparse (i.e., has holes) or the operating system does not
adequately support “direct I/O”.

Consequently, this option is very sensitive to the particular system configuration
being used and the nature of the source file. Un-buffered I/O may, in fact, greatly
decrease the data transfer rate. It should be treated with care.

1.2.8 Routing (-z)

Ostensibly, the —z option is used to reverse connection initiation. It is meant to
get around firewall issues (see “Dealing With Firewalls”). However, the option
may also cause the path between the source and target to use a different routing.
That alone may cause a large variation in transfer speed. If you see an

unexpectedly low transfer rate, and firewalls are not an issue, try the same copy
with —z to see if you are experiencing routing issues.

1.3 Resuming Failed Copies (-a and -k or -K)

You can resume failed copies in most cases by consistently using the —a option.
When -a is specified, the following occurs:

1) If the target file does not already exist, a new copy is initiated by
a. creating a checkpoint record to pair the source and target files
together,
b. transmitting all source bytes to the target location, and
c. upon successful transmission of the source file, erasing the
checkpoint file.

2) If the target file exists and is identical in size to the source file and a copy
checkpoint record is not found for the file, the copy is assumed to have
completed normally and the file is skipped.

3) If the target file is larger than the source file, is smaller in size and a
checkpoint record cannot be found, or if the checkpoint record does not
pair the source and target files together, bbcp terminates with an error
unless —f has been specified. In this case, the file is removed, or truncated
if =K has been specified, and the copy is continued as in step 1 above.

4) Otherwise, the copy is resumed by appending all un-transmitted source
tile bytes to the target file.

The -k option maximizes bbcp’s ability to resume failed copies. If -k is not
specified and an error occurs, bbcp removes the partially transmitted file. The —a
option is still useful without -k, however, bbcp will merely skip over fully
copied files. Rarely will bbcp be able to resume copying where it left off. The —k
option forces partially completed files to remain on disk so that a partial copy
can be resumed after the fault condition that terminated the copy is corrected.

Proper resumption of partially transmitted files relies on a checkpoint record. By
default, this record is written in the command owner’s (i.e., the user running
bbcp) home directory in the “.bbcp” subdirectory. This subdirectory is
automatically created if it does not already exist. The file names in this
subdirectory have the format

bbcp.srchost.trgid.trgfn

Where srchost is the DNS name of the host that holds the source file, trgid is the
unique identification of the target location, and trgfn is the name of the target file.

The contents of the file uniquely identify the source file at srchost. Proper pairing
requires that the conditions that created the checkpoint file are still true at the
time the copy is resumed. This essentially means that the copy cannot be
resumed if any changes have occurred to the source file or if the source or target
files have changed location since the copy was terminated.

Users with home directories in AFS may wish to change the default location for
checkpoint files, especially should they run in batch-mode without an AFS
token. Refer to the section “Configuring New Defaults” on how to set a new
default location.

1.4 Multi-Directory Copying (-d)

You may use bbcp to copy source files to multiple directories. The —d option
enables source relative addressing that, in turn, allows multi-directory copying.
The following steps are taken when you specify —d path:

1) Each relative source file specification (i.e., one that does not start with a
slash) is prefixed by path. The source file must be found at the resulting
location.

2) The file is transferred to the sink (i.e., target) host along with its associated
relative path.

3) The sink host creates the source relative path, if it does not exist, prefixed
with the path in the sink specification.

4) The file is then created with a file name identical to the source file name.

For example,

bbcp -d /usr/abh/data dirl/datal dir2/data2 batch:/usr/temp

would copy
/usr/abh/data/dirl/datal to /usr/temp/dirl/datal
/usr/abh/data/dir2/data2 to /usr/temp/dir2/data?

The directories dirl and dir2 are automatically created starting at path
/usr/temp on host batch should they not exist.

You may mix relative paths with absolute paths. Absolute source paths are not
prefixed by the —d path and are copied to the directory identified by the sink
specification.

1.5 Using Pipes (-N)

The —N option enables copying via a combination of named pipes or programs.
The arguments to —N indicate whether the source (i) is a named pipe or program
or the target (0) is a named pipe or program. When the source is a named pipe or
program, only one source may be specified. Determination of whether the data
source or target is a pipe or program is done at copy-time on each node. If a pipe
is detected, it is treated as a regular file with no specified size.

If the source (or target) is not a named pipe, the file name specification is treated
as an executable program. For a source, the program’s standard out is used as the
data source. For a target, the program’s standard in is used as the data target. In
short, bbcp starts the program(s) and uses its network infrastructure to convey
the data from one node to another.

When the target is a named pipe or a program, output ordering (-o0) is enforced.
This comes with its own set of tuning options as described earlier in this
document. Other considerations specific to named pipes or programs also apply.

1.5.1 Named Pipe Considerations

When a source or target is a named pipe, the following considerations should be
kept in mind.

e Asnamed pipes do not provide any size information, the check for
sufficient space on the target node is not done.

e When a source named pipe indicates end-of-file (eof), it is not possible to
determine whether eof was due to a failure in pipe writer. Hence, copies
may appear to succeed even though the pipe writer failed.

e Named pipes are never automatically created; they must exist prior to
starting the copy.

e To avoid ambiguity between named pipe names and programs, named
pipe file names may not contain space characters.

e The bbcp process waits until a writer opens a source pipe, if used, and a
reader opens a target pipe, if used.

1.5.2

1.5.3

Program Pipe Considerations

As program pipes do not provide any size information, the check for
sufficient space on the target node is not done.

When a source program pipe indicates end-of-file (eof), the condition is
deemed to be error-free if the program terminates with a 0 status code.
Otherwise, the copy fails.

When a copy ends using a target program pipe, the program must
terminate with a 0 status code in order for the copy to be considered error-
free. Otherwise, the copy fails.

Because bbcp waits for a program pipe to finish executing with a status
code of zero before declaring success; the copy does not end until the
program pipe ends. This may cause time-out errors when -t is specified
should the program continue execution without producing (source) or
needing (target) additional data.

A program pipe specification may contain arguments to the program (i.e.
options, etc). Such a specification must be surrounded by quotes or spaces
be escaped to be successfully transmitted to bbcp. The specification is
tokenized and the program is started using execvp(). A maximum of 127
tokens are allowed and tokenization ignores quoted sub-arguments. If you
need to pass more tokens or use quoted arguments, you must wrap the
program with a shell script.

The execvp() system call uses the setting of $PATH to find the program is
an absolute path to the program is not specified. Each operating system
has its own peculiarities on how $PATH is handled in such cases. Consult
the execvp man page for more information.

Using Program Pipes to Recursively Copy Small Files

The —r option provides a way to recursively copy one or more directories. This
tends to be very inefficient when the files are relatively small. You can use tar or
gtar to dramatically speed up recursive copying because all of the source files are
combined into a single stream and sent to the destination where the directory
structure and files are recreated. For instance,

bbcp -N io 'gtar -c -O -C /tmp mydir ' 'host:gtar -x -C /tmp/foo’

recursively copies the directory mydir in /tmp to host at /tmp/foo. Unlike -,
symlinks are preserved and it is possible to copy extended attributes as well.
Consult the gtar man page for available options.

1.5.4 Restricting Program Pipes

Program pipes in essence allow a user to execute arbitrary programs on the
source or target hosts. This is immaterial if the user has full login access to the
hosts but does present a security issue when the source or target host is restricted
via the ssh key file to a certain set of commands, including bbcp (i.e. the user
does not have general login access).

Prior to launching a program pipe on the source or target, bbcp checks for the
existence of the environmental variable BBCP_ALLOWPP. If it has not been
defined, the program pipe is launched. Otherwise, bbcp performs the following
actions:

1. If the value of the variable is ‘0", all program pipes are disallowed and the
copy fails.

2. Otherwise, the variable is assumed to consist of a space separated list of
allowed programs names. Each item in the list is compared with the name
of the program about to be launched. If a match is found, the program is
launched.

3. Otherwise, the user specified program pipe is disallowed and the copy
fails.

To successfully use this scheme, the following must be true.

1. General login access must be prohibited to the user’s account. Typically
you would restrict ssh usage of the account to the “bbcp SRC’ or “bbcp
TRG’ commands and perhaps some other select commands.

2. The BBCP_ALLOWPP environmental variable should be set in the user’s
profile (i.e. .cshrc or other login script).

3. If a program list is specified, the name should include variants that the
user might use (e.g. gtar, /bin/gtar, etc).

1.6 Real-Time Copying (-R)

The -R option enables real-time copying mode. In this mode you can start
copying a source file while it is still being created by another program. This
allows you to implement a streaming copy model as opposed to the more
traditional store-and-forward copy model. Since bbcp needs to know when the
source file is complete, you must use a special file-creation protocol using file
locks. Below are the arguments that you can supply to the —R option to control
how real-time copying is performed. Subsequent sections provide examples.

-R [rtargs]

rtargs: {c=csec | b | h | i=sec | v | 1fn}|[,rtargs]

Where:

c=csec specifies the minimum interval between checks to see if the input file has
grown to sufficient size to continue the copy. File size checks are normally
minimized and few occur if the source file is created at least as fast as it
can be sent to the target node. The default is 3 seconds.

b blocks copy until there is sufficient data in the source file to utilize all
streams. By default, data is sent whenever there are sufficient bytes to
send on a single stream. This option may be useful for WAN links or
when the file grows relatively slowly in size.

h hides the file at the target node by making it inaccessible (i.e., making it
write-only) until the copy completes. By default, the file is accessible on
the target node while it is being created there and the s-mode bit is set
while the copy is in progress to indicate the file is not yet complete.

i=isec specifies the maximum number of seconds the source file may remain idle
(i.e., not grow in size) before the copy is aborted. The default does not
impose any limit.

\4 when used in conjunction with Ifn, verifies the successful completion of
the source file by checking that Ifn is non-zero size after the lock on Ifn is
obtained. The default assumes the source file has been successfully
created the moment a shared lock on Ifn is obtained.

Ifn specifies the path to an external file to be used for locking. It must start
with dot or slash. This file co-ordinates the real-time copy. The default
uses the source file as the target for locking and co-ordination. See the
section “Using an Alternate Lock File” for more information.

1.6.1 Real-Time Copy Protocol

The following steps need to be followed to successfully use real-time copy mode:

1. An application opens the future source file in write mode and obtains an
exclusive lock on the file using the fentl() system call.

2. The bbcp program is launched to copy the source file with the -R option.
With the -R option, bbcp opens the source file in read mode and starts the
copy while simultaneously trying to obtain a shared lock on the file.

3. When the application is done creating the source file it must close the file.
This removes the exclusive lock on the file which allows bbcp to obtain
the shared lock on the file. At this point, bbcp assumes that the source file
is complete and the copy continues by sending all outstanding bytes, at
the time the shared lock was obtained, to the target node.

Below is a sample snippet of C code that illustrates what the creating application
must do.

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

struct flock flk;

int rc, srcfd;

flk.1l type = F WRLCK; flk.l whence = SEEK SET;
flk.1l start 0; flk.1l len = O;

srcfd = open(srcfn, O WRONLY|O CREAT|O TRUNC,0600);
if (srcfd < 0) {/* Handle open error */}
do {rc = fcntl(srcfd, F SETLKW, &flk);}
while(rc < 0 && errno == EINTR);
if (rc < 0) {/* Handle fcntl error */}

/* bbcp can be started and the source file written */

Sample Application Code Using Source File Locking

1.6.2

Using an Alternate Lock File

The ability to specify a lock file that differs from the source file allows you to
enable real-time copy mode using unmodified application as well as positively
confirm that the source file was successfully created. An alternate lock name is
specified as an argument to the —-R option. Other than using another file for
locking the real-time copy protocol steps are identical to those described in the
previous section.

However, with an alternate lock file you can also specify the v argument with -R
to indicate that bbcp must get a positive indication that the file was successfully

created in order for the copy to complete. The following steps need to be
followed to successfully use real-time copy mode with an alternate lock file and
the v argument:

1.

A wrapper script opens the alternate lock file in write mode, truncating to
zero length, and obtains an exclusive lock on the file using the fentl()
system call.

The script launches the application that is to create the source file. The
script must wait until the source file appears in the file system or the
creating application fails, whichever comes first.

When the source file appears in the file system, the script launches bbcp to
copy the source file with the —-R option, specifying the alternate lock file
name and the v argument. When launched, bbcp opens the source and
lock files in read mode and starts the copy while simultaneously trying to
obtain a shared lock on the alternate lock file.

The script then waits for the creating application to complete. Should the
creating application end with an error, the script can exit as well. In this
case, bbcp aborts the copy.

Otherwise, the script must write at least one byte into the lock file. It may
then exit, implicitly closing the lock file, and let bbcp continue.

Closing the alternate lock file removes the script’s exclusive lock on the
tile and allows bbcp to obtain the shared lock on the file.

Then, bbcp checks the size of the lock file. If it’s zero, the copy is aborted.
Otherwise, the copy continues by sending all outstanding bytes, at the
time the shared lock was obtained, to the target node.

What follows is a sample snippet of perl code that illustrates what the wrapper
script must do.

#!/bin/perl
Use Fcntl;

SLKfn = ‘/tmp/myLock’;
$LKop = pack('sslllll', F WRLCK, O, O, 0, O, 0, 0);

Open lock file, truncating it to zero, and obtain lock
#
die "Unable to open $LKfn; $!\n"
if l!open (LKFD, "+>SLKfn");
die "Unable to lock $LKfn; $!\n"
if !fcntl (LKFD, F SETLKW, SLKop):;

Launch application and wait for it to open source file

#

$appPID = &Launch App Wait For File();

exit(l) if !'SappPID;# Exit if application failed to launch!

Now launch bbcp

#

system(‘bbcp’, ‘-R’, “v,SLKfn”, srcfn, trgfn);
exit (1) if !$?;# Exit if bbcp failed to launch!

Wait for application to end

#
exit(8) if waitpid($appPID,0) <= 0;

Check for success (allow copy) or failure (abort copy)

#
print LKFD “OK” if $? == 0; # Copy will complete!

Sample Script Using Alternate Lock File With v Argument

1.7 Modifying ssh Startup (-S and -T)

By default, bbcp uses ssh, as determined by your PATH environmental variable,
for authentication on every host that was specified in the source and target
specifications. In order to speed ssh start-up, bbcp disables ssh X11 forwarding
(-x), disables the forwarding of the authentication agent connection (-a), and
disables the use of rsh when ssh authentication fails (-0).

bbcp executes a copy of itself on the source node as “bbcp SRC” and a mirror
copy on the target node as “bbcp SNK”. Because the commands are well known,
you may restrict ssh usage to exactly these commands when a password-less
key-file is used to gain access to a host. The —I option provides a mechanism to
specify the location of the identity file should it not reside at the default location.

At times, you may need to specify different commands to start bbcp on the
source node, as well as the sink node. The =S and -T options allow you to do
this. You may also specify the default —S and -T options using a configuration

tile. See “Configuring New Defaults” for more information.

Because certain information needs to be substituted in the command line, bbcp
defines certain character sequences to indicate the location of a substitution.
These are:

%4 - substituted by -4 if -ipv4 c is in effect,

$I - substituted by the —i fname (i.e., ssh identity file option) should one exist,
$H - the source or target host name, and

U - the source or target user name.

For instance, the command

bbcp -S ‘/bin/ssh $I -1 %U $H /bin/bbcp’ /tmp/fn abh@host:/tmp

would start bbcp on the source node using the command

/bin/ssh -1 abh host /usr/bin/bbcp SRC

Since the ssh identity file was not specified, the %I was deleted. If the identity
tile were specified as

bbcp -S ‘/bin/ssh %I -1 %U %H /bin/bbcp’ -i foo /tmp/fn abhfhost:/tmp

then the command used to start bbcp on the source node would be

mailto:abh@host:/tmp
mailto:abh@host:/tmp

/bin/ssh —-i foo -1 abh host /usr/bin/bbcp SRC
Identical rules apply to the —T option which specifies the command to start bbcp
on the sink (i.e., target) node.

You should also add the “-a -x -oFallBackTo Rsh=no" options to your ssh
command to reduce start-up time; as well as %4 if you wish to control TCP/IP
protocol usage using the —ipv4 option.

1.8 Dealing With Firewalls (-z and -Z)

bbcp is a peer-to-peer application. Mainly, this means that copies of bbcp on the
source and sink nodes appear to be both client as well as server applications .
This may not be possible at some sites because of firewall restrictions.
Specifically, some installation may prohibit incoming TCP/IP connections at
arbitrary ports.

Normally, bbcp source nodes will connect to their counterpart running on the
target node. If the target host prohibits incoming connections, the copy will fail.
However, should the source host allow arbitrary connections, you can specify the
-z option. This option reverses the connection protocol so that the bbcp sink
node will always try to connect to its counterpart running on the source host.

When the source and target nodes prohibit arbitrary connections, you will need
assistance of an administrator at either node. If the --port option (-Z) is not
specified, bbcp checks the /etc/services file for the existence of two services:
bbcpfirst and bbcplast. The bbcpfirst service identifies the starting port number
and bbcplast identifies the ending port number that can be used for incoming
connections. When --port option (-Z) is not specified and neither service name
can be found, bbcp resorts to using an arbitrary port number. If the services are
found, bbcp restricts its port usage to one of the ports in the indicated range.

Ask the administrator at the source or target nodes to allow a range of well-
known port numbers to be used for incoming connections (i.e., allowed to pass
through the firewall). This will require that the administrator register these port
numbers in the /etc/services file using the names bbcpfirst and bbcplast (the
default names can be changed). Make sure that at least 8 port numbers exist in
the range (more if possible). If restricted port access is only allowed in the source
site, you must specify the —z option when invoking bbcp.

1.9 Configuring New Defaults (-C)

When starting, bbcp checks the environmental variable bbcp_ CONFIGFN.
When this variable is set, the contents are used as the location of the
configuration file. Otherwise, bbcp looks to see if the file .bbcp.cf exists in the
home directory. If it does, then this file is used as the initial configuration file. A
configuration file may also be specified on the command line using the —-C
option. Command line configuration files are processed when they are
encountered. Thus, any option specified prior to -C may be overridden by the
configuration file and the file’s values may be overridden by subsequent options.
The —C option, when specified, should be the first option on the command line.

Each line in the configuration file may contain an option-value pair. The option
name is identical to that specified on the command line (e.g., -a,-b, -c, etc.). The
value is the value, if any, that would be specified along with the corresponding
option. The only difference between options specified on the command line and
those specified in the configuration file is that each option must be on a separate
line and option values must not be quoted.

It is critical to remember that bbcp is a peer-to-peer application. Therefore, it can
have up to three different execution locations at the same time: the host that
initiated the bbcp command (i.e., agent), the host that holds the source data (i.e.,
source), and the host that is to receive the source data (i.e., target). In order to
simplify the management of this environment, the configuration file is only read
on the agent’s host (i.e., the host that initiated the copy) and the values are
transmitted to the source and target hosts.

1.10 Recursive Copy Compatibility With cp & scp

By default, bbcp does not produce the exactly same results as cp or scp for
recursive copies unless you specify the --gross, --mkdir and --symlinks follow
options. Even then, differences do occur under certain conditions. For instance, if
the source is a regular file and --mkdir and --recursive are in effect, a directory is
created and the file is copied into that directory should the directory does not
exist. Otherwise, handling is the same.

1.11 New Features

Version 14.09.02.00.0 of documented here has the following new feature:
e The new —ptime option forces bbcp to preserve only source file’s access
and modification time at the destination; leaving the group and mode
unchanged.

Version 14.07.01.00.0 of documented here has the following new features:
e The new —gross option forces bbcp to copy empty directory structures in
recursive mode.
e The new —-mkdir option creates the destination directory for a recursive
copy should it not exist.
e The new —-symlinks option specifies how symbolic links are to be handled
during a recursive copy.

Version 14.04.14.00.0 of documented here has the following new features:

e Dual stack IPv6 mode is fully functional and is the default mode of
operation. The new —ipv4 option forces bbcp to use the IPv4 TCP stack.

e The new -license option prints the license under which bbcp is
distributed.

e The new —version option displays bbcp’s version number installed on the
current host.

e The BBCP_ALLOWPP environmental variable may be used to restrict
program pipes to a specified set of programs or disable the feature
altogether.

Version 12.08.17.00.0 of bbcp documented here has the following new feature:
e The new -Z option allows you to specify the port range to be used for
incoming connections on the command line instead of relying on
/etc/services to contain those values.

Version 12.01.30.00.0 of bbcp documented here has the following new feature:

e The new -N option allows you to specify that the source or destination (or
both) is a named or program pipe.

e The new —y option allows you to make sure that data and, optionally,
inodes are fully written to disk before the output file is closed.

e This version of bbcp follows the documented behavior of —-r where
symlinks are ignored.

e Most options now accept a long form that is more descriptive.

Version 10.08.13.01.0 of bbcp documented here has the following new feature:

The new —O option allows one to omit files that already exist on the target
node. This is particularly useful with -r.
The new -R option enables real-time copy mode.

Version 10.08.04.00.0 of bbcp documented here has the following new features:

The —a option is no longer mutually exclusive with —f or -K. Instead,
when -a is specified together with —f or -K, the latter option is applies if
the file cannot be appended to. This allows a file copy to restart from
scratch if an append copy cannot be executed.

The —-m option has been extended to allow the specification of a directory
mode to be used when directories are created.

Version 10.07.26.00.0 of bbcp introduced the following new features:

Window auto-tuning is now supported as the default. The -w option
supports a mechanism to defeat auto-tuning when so desired.

-B option now defines the overall I/O size and is not tied to the —c option.
-b + option allows adding more output buffers to prevent stalls when —o
has been specified or forced.

-E option that allows extensive checksum checking and reporting.

-K option that removes some restrictions of the —k option in order to
handle pre-created symbolic links.

—u option to specify un-buffered (i.e., direct) I/O at the source or target.
The default window size has been increased to 128K for improved
performance on most current operating systems.

Recursive name space indexing now happens in the background. This
allows large name spaces to be traversed without timing out the copy.

1.12 Backward Compatibility

Version 14.09.02.00.0 of bbcp documented here is backward compatible with the
following caveat:
e Older version will fail if any of the new option: —ptime is specified.

Version 14.07.01.00.0 of bbcp documented here is backward compatible with the
following caveat:
e Older version will fail if any of the new options: —gross, --mkdir, or
--symlinks is specified.

Version 14.04.11.00.0 of bbcp documented here is backward compatible with the
following caveat:

e Older version will fail if the new —ipv4 option is specified. Older versions

always use the IPv4 TCP stack, making the option generally unnecessary.

Version 12.08.17.00.0 of bbcp documented here is backward compatible with the
following caveat:
e Older versions will fail if the new —Z option is specified.

Version 12.01.30.00.0 of bbcp documented here is backward compatible with the
following caveat:
e Older versions will fail if the new —N or —y options are specified.
e This version is incompatible because in that it follows documented
behavior and ignores symlinks when doing a recursive copy. Previous
versions copy the symlink target as a data file.

Version 10.08.13.01.0 of bbcp documented here is backward compatible with the
following caveat:
e Older versions will fail if the new —O or —R options are specified.

Version 10.08.04.00.0 of bbcp documented here is backward compatible with the
following caveats:

e OQOlder version will fail if —a is combined with, —f or -K.

e Older version will fail if a directory mode is specified with the -m option.

Version 10.07.26.00.0 of bbcp is backward compatible with the following caveats:

e Older version will fail if -E, -K, —u, or ‘-w = is specified. These are new
options.

e The -b + option is converted to —b by older versions. While the conversion
is compatible, performance characteristics are not comparable.

e The default window size has been increased to 128K. This generally
increases performance on today’s systems. However, this is incompatible
with defective routers and packet firewalls that rewrite the window
scaling factor during transmission. When this happens, poor and erratic
bandwidth utilization will result. Should you see this, revert to using the
old default of 64K.

e The -W option is deprecated but still accepted. However, it has now the
same meaning as —w.

e The format and information provided by the —v option (verbose) has
changed.

1.13 Problem Reports & Enhancement Requests

Please direct all problem reports, modifications, and requests for enhancements
to:

Andrew Hanushevsky abh@stanford.edu

1.14 Downloading

First, please read the legal notice (see below). Use of this software implies that you
have read and agreed to all of the terms and conditions for use.

You can download one or more of the following bbcp binary executables at
http://www.slac.stanford.edu/~abh/bbcp/bin/

Once in the bin directory, you will find platform-specific directories that contain
the bbcp binary. The program may or may not work in other versions of the
same operating system. Should you run into trouble or wish to extend the range
of operating systems available, feel free to clone the git archive:

git clone http://www.slac.stanford.edu/~abh/bbcp/bbcp.git

and send back any required modification as git patches.

mailto:abh@stanford.edu
http://www.slac.stanford.edu/~abh/bbcp/Legal_Notice.htm
http://www.slac.stanford.edu/~abh/bbcp/bin/

1.15 Legal Notice

Copyright © 2002-2014, Board of Trustees of the Leland Stanford, Jr. University.
Produced under contract DE-ACO02-76-SF00515 with the US Department of Energy.
All rights reserved.

bbcp is free software: you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

bbcp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with bbcp in a file called COPYING.LESSER (LGPL license) and file
COPYING (GPL license). If not, see <http://www.gnu.org/licenses>.

Copies of bbcp that are not IPv6 enabled (i.e. versions prior to 14.04.14.00.0) were
distributed under a modified BSD license. All IPv6 enabled version of bbcp (i.e.
version 14.04.11.00.0 and any subsequent version) are distributed under an LGL
license.

http://www.gnu.org/licenses

