Defines IGESSplineCurve, Type <112> Form <0>
in package IGESGeom
The parametric spline is a sequence of parametric
polynomial segments. The curve could be of the type
Linear, Quadratic, Cubic, Wilson-Fowler, Modified
Wilson-Fowler, B-Spline. The N polynomial segments
are delimited by the break points T(1), T(2), T(3),
..., T(N+1).
#include <IGESGeom_SplineCurve.hxx>
Public Member Functions |
| IGESGeom_SplineCurve () |
void | Init (const Standard_Integer aType, const Standard_Integer aDegree, const Standard_Integer nbDimensions, const Handle< TColStd_HArray1OfReal > &allBreakPoints, const Handle< TColStd_HArray2OfReal > &allXPolynomials, const Handle< TColStd_HArray2OfReal > &allYPolynomials, const Handle< TColStd_HArray2OfReal > &allZPolynomials, const Handle< TColStd_HArray1OfReal > &allXvalues, const Handle< TColStd_HArray1OfReal > &allYvalues, const Handle< TColStd_HArray1OfReal > &allZvalues) |
| This method is used to set the fields of the class
SplineCurve
|
Standard_Integer | SplineType () const |
| returns the type of Spline curve
|
Standard_Integer | Degree () const |
| returns the degree of the curve
|
Standard_Integer | NbDimensions () const |
| returns the number of dimensions
2 = Planar
3 = Non-planar
|
Standard_Integer | NbSegments () const |
| returns the number of segments
|
Standard_Real | BreakPoint (const Standard_Integer Index) const |
| returns breakpoint of piecewise polynomial
raises exception if Index <= 0 or Index > NbSegments() + 1
|
void | XCoordPolynomial (const Standard_Integer Index, Standard_Real &AX, Standard_Real &BX, Standard_Real &CX, Standard_Real &DX) const |
| returns X coordinate polynomial for segment referred to by Index
raises exception if Index <= 0 or Index > NbSegments()
|
void | YCoordPolynomial (const Standard_Integer Index, Standard_Real &AY, Standard_Real &BY, Standard_Real &CY, Standard_Real &DY) const |
| returns Y coordinate polynomial for segment referred to by Index
raises exception if Index <= 0 or Index > NbSegments()
|
void | ZCoordPolynomial (const Standard_Integer Index, Standard_Real &AZ, Standard_Real &BZ, Standard_Real &CZ, Standard_Real &DZ) const |
| returns Z coordinate polynomial for segment referred to by Index
raises exception if Index <= 0 or Index > NbSegments()
|
void | XValues (Standard_Real &TPX0, Standard_Real &TPX1, Standard_Real &TPX2, Standard_Real &TPX3) const |
| returns the value of X polynomial, the values of 1st, 2nd and
3rd derivatives of the X polynomial at the terminate point
|
void | YValues (Standard_Real &TPY0, Standard_Real &TPY1, Standard_Real &TPY2, Standard_Real &TPY3) const |
| returns the value of Y polynomial, the values of 1st, 2nd and
3rd derivatives of the Y polynomial at the termminate point
|
void | ZValues (Standard_Real &TPZ0, Standard_Real &TPZ1, Standard_Real &TPZ2, Standard_Real &TPZ3) const |
| returns the value of Z polynomial, the values of 1st, 2nd and
3rd derivatives of the Z polynomial at the termminate point
|
Constructor & Destructor Documentation
IGESGeom_SplineCurve::IGESGeom_SplineCurve |
( |
| ) |
|
Member Function Documentation
- aType : Spline Type
1 = Linear
2 = Quadratic
3 = Cubic
4 = Wilson-Fowler
5 = Modified Wilson-Fowler
6 = B Spline
- aDegree : Degree of continuity w.r.t. arc length
- nbDimensions : Number of dimensions
2 = Planar
3 = Non-planar
- allBreakPoints : Array of break points
- allXPolynomials : X coordinate polynomials of segments
- allYPolynomials : Y coordinate polynomials of segments
- allZPolynomials : Z coordinate polynomials of segments
- allXValues : Values of 1st, 2nd, 3rd derivatives of
X polynomials at the terminate point
and values of X at terminate point
- allYValues : Values of 1st, 2nd, 3rd derivatives of
Y polynomials at the terminate point
and values of Y at terminate point
- allZvalues : Values of 1st, 2nd, 3rd derivatives of
Z polynomials at the terminate point
and values of Z at terminate point
raises exception if allXPolynomials, allYPolynomials
& allZPolynomials are not of same size OR allXValues, allYValues
& allZValues are not of size 4
The documentation for this class was generated from the following file: