Open CASCADE Technology 6.6.0
Public Member Functions
Convert_CompPolynomialToPoles Class Reference

To convert an function (curve) polynomial by span in a BSpline.

This class uses the following arguments :
NumCurves : the number of Polynomial Curves
Continuity: the requested continuity for the n-dimensional Spline
Dimension : the dimension of the Spline
MaxDegree : maximum allowed degree for each composite
polynomial segment.
NumCoeffPerCurve : the number of coefficient per segments = degree - 1
Coefficients : the coefficients organized in the following way
[1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension]
that is : index [n,d,i] is at slot
(n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i
PolynomialIntervals : nth polynomial represents a polynomial between
myPolynomialIntervals->Value(n,0) and
myPolynomialIntervals->Value(n,1)
TrueIntervals : the nth polynomial has to be mapped linearly to be
defined on the following interval :
myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1)
so that it represent adequatly the function with the
required continuity

#include <Convert_CompPolynomialToPoles.hxx>

Public Member Functions

 Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle< TColStd_HArray1OfInteger > &NumCoeffPerCurve, const Handle< TColStd_HArray1OfReal > &Coefficients, const Handle< TColStd_HArray2OfReal > &PolynomialIntervals, const Handle< TColStd_HArray1OfReal > &TrueIntervals)
 Warning!
Continuity can be at MOST the maximum degree of
the polynomial functions
TrueIntervals :
this is the true parameterisation for the composite curve
that is : the curve has myContinuity if the nth curve
is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1)

Coefficients have to be the implicit "c form":
Coefficients[Numcurves][MaxDegree+1][Dimension]

Warning!
The NumberOfCoefficient of an polynome is his degree + 1
Example: To convert the linear function f(x) = 2*x + 1 on the
domaine [2,5] to BSpline with the bound [-1,1]. Arguments are :
NumCurves = 1;
Continuity = 1;
Dimension = 1;
MaxDegree = 1;
NumCoeffPerCurve [1] = {2};
Coefficients[2] = {1, 2};
PolynomialIntervals[1,2] = {{2,5}}
TrueIntervals[2] = {-1, 1}

 Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger &Continuity, const TColStd_Array1OfInteger &NumCoeffPerCurve, const TColStd_Array1OfReal &Coefficients, const TColStd_Array2OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
 To Convert sevral span with different order of Continuity.
Warning: The Length of Continuity have to be NumCurves-1

 Convert_CompPolynomialToPoles (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal &Coefficients, const TColStd_Array1OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals)
 To Convert only one span.

Standard_Integer NbPoles () const
 number of poles of the n-dimensional BSpline


void Poles (Handle< TColStd_HArray2OfReal > &Poles) const
 returns the poles of the n-dimensional BSpline
in the following format :
[1..NumPoles][1..Dimension]


Standard_Integer Degree () const
Standard_Integer NbKnots () const
 Degree of the n-dimensional Bspline

void Knots (Handle< TColStd_HArray1OfReal > &K) const
 Knots of the n-dimensional Bspline

void Multiplicities (Handle< TColStd_HArray1OfInteger > &M) const
 Multiplicities of the knots in the BSpline

Standard_Boolean IsDone () const

Constructor & Destructor Documentation

Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  NumCurves,
const Standard_Integer  Continuity,
const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const Handle< TColStd_HArray1OfInteger > &  NumCoeffPerCurve,
const Handle< TColStd_HArray1OfReal > &  Coefficients,
const Handle< TColStd_HArray2OfReal > &  PolynomialIntervals,
const Handle< TColStd_HArray1OfReal > &  TrueIntervals 
)
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  NumCurves,
const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const TColStd_Array1OfInteger Continuity,
const TColStd_Array1OfInteger NumCoeffPerCurve,
const TColStd_Array1OfReal Coefficients,
const TColStd_Array2OfReal PolynomialIntervals,
const TColStd_Array1OfReal TrueIntervals 
)
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles ( const Standard_Integer  Dimension,
const Standard_Integer  MaxDegree,
const Standard_Integer  Degree,
const TColStd_Array1OfReal Coefficients,
const TColStd_Array1OfReal PolynomialIntervals,
const TColStd_Array1OfReal TrueIntervals 
)

Member Function Documentation

Standard_Integer Convert_CompPolynomialToPoles::Degree ( ) const
Standard_Boolean Convert_CompPolynomialToPoles::IsDone ( ) const
void Convert_CompPolynomialToPoles::Knots ( Handle< TColStd_HArray1OfReal > &  K) const
void Convert_CompPolynomialToPoles::Multiplicities ( Handle< TColStd_HArray1OfInteger > &  M) const
Standard_Integer Convert_CompPolynomialToPoles::NbKnots ( ) const
Standard_Integer Convert_CompPolynomialToPoles::NbPoles ( ) const
void Convert_CompPolynomialToPoles::Poles ( Handle< TColStd_HArray2OfReal > &  Poles) const

The documentation for this class was generated from the following file:
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines