

Object Libraries

Visualization
User's Guide

Version 6.6.0 / April 2013

 1

Copyright © 2013, by OPEN CASCADE S.A.S.

PROPRIETARY RIGHTS NOTICE: All rights reserved. Verbatim copying and distribution of this
entire document are permitted worldwide, without royalty, in any medium, provided the copyright
notice and this permission notice are preserved.

The information in this document is subject to change without notice and should not be construed
as a commitment by OPEN CASCADE S.A.S.

OPEN CASCADE S.A.S. assures no responsibility for any errors that may appear in this
document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such a license.

CAS.CADE, Open CASCADE and Open CASCADE Technology are registered trademarks of
OPEN CASCADE S.A.S. Other brand or product names are trademarks or registered trademarks
of their respective holders.

NOTICE FOR USERS:
This User Guide is a general instruction for Open CASCADE Technology study. It may be
incomplete and even contain occasional mistakes, particularly in examples, samples, etc.
OPEN CASCADE S.A.S. bears no responsibility for such mistakes. If you find any mistakes or
imperfections in this document, or if you have suggestions for improving this document, please,
contact us and contribute your share to the development of Open CASCADE Technology:
bugmaster@opencascade.com

http://www.opencascade.com/contact/

mailto:bugmaster@opencascade.com
http://www.opencascade.com/contact/

 2

TABLE OF CONTENTS
1. INTRODUCTION .. 5

1.1. OPEN CASCADE TECHNOLOGY VISUALIZATION AND THE ORGANIZATION OF THIS GUIDE 5
2. FUNDAMENTAL CONCEPTS ... 7

2. 1 PRESENTATION .. 7
2. 1. 1 Key difference in implementation of 2D and 3D visualization 7
2. 1. 2 Structure of the Presentation .. 7
2. 1. 3 A Basic Example: How to display a 3D object .. 9

2. 2 SELECTION .. 11
2. 2. 1 The Selection Principle.. 11
2. 2. 2 The Sensitive Primitive .. 13
2. 2. 3 The Principles of Dynamic Selection ... 14
2. 2. 4 Methodology .. 16
2. 2. 5 Example of Use ... 17

3. AIS: APPLICATION INTERACTIVE SERVICES ... 21

3. 1 OVERVIEW .. 21
3. 1. 1 Interactive Context/Local Context ... 21
3. 1. 2 The Interactive Object ... 21
3. 1. 3 Graphic Attributes Manager or “Drawer” ... 21
3. 1. 4 Selection Filters ... 22

3. 2 RULES AND CONVENTIONS GOVERNING INTERACTIVE OBJECTS ... 23
3. 2. 1 Presentations: ... 23
3. 2. 2 Important Specifics of AIS: .. 25

3. 3 SELECTIONS .. 27
3. 3. 1 Conventions .. 27
3. 3. 2 Virtual functions ... 27
3. 3. 3 Other Services ... 28

3. 4 GRAPHIC ATTRIBUTES OF AN INTERACTIVE OBJECT .. 29
3. 4. 1 Manipulation of Attributes .. 30

3. 5 COMPLEMENTARY SERVICES - PRECAUTIONS.. 30
3. 5. 1 Changing an interactive object’s location .. 30
3. 5. 2 Connecting an interactive object to an applicative entity .. 31
3. 5. 3 Resolving coincident topology ... 31

3. 6 THE INTERACTIVE CONTEXT ... 33
3. 6. 1 Preliminary Rules .. 33
3. 6. 2 Groups of functions ... 33
3. 6. 3 Management proper to the Interactive Context ... 34

3. 7 MANAGEMENT OF LOCAL CONTEXT... 35
3. 7. 1 Rules and Conventions ... 35
3. 7. 2 Important functionality ... 35
3. 7. 3 Use .. 35

 3

3. 7. 4 Management of Presentations and Selections ... 36
3. 7. 5 Presentation in Neutral Point .. 37
3. 7. 6 Important Remarks: ... 37
3. 7. 7 Presentation in Local Context ... 38
3. 7. 8 Use of Filters ... 39
3. 7. 9 Selection Strictly Speaking. ... 41
3. 7. 10 Remarks: ... 44
3. 7. 11 Advice on Using Local Contexts ... 46

ANNEX I: STANDARD INTERACTIVE OBJECT CLASSES IN AIS DATUMS: .. 50
OBJECTS ... 50
RELATIONS ... 51
DIMENSIONS ... 52
MeshVS_Mesh ... 52

ANNEX II : PRINCIPLES OF DYNAMIC SELECTION .. 55
How to go from the objects to 2D boxes .. 55
Implementation in an interactive/selectable object... 55
How It Works Concretely .. 57

4. 3D PRESENTATIONS ... 60

4. 1 GLOSSARY OF 3D TERMS ... 60
4. 1. 1 From Graphic3d .. 60
4. 1. 2 From V3d ... 60

4. 2 CREATING A 3D SCENE .. 61
4. 2. 1 Create attributes .. 61
4. 2. 2 Create a 3D Viewer (a Windows example) ... 63
4. 2. 3 Create a 3D view (a Windows example) ... 63
4. 2. 4 Create an interactive context .. 64
4. 2. 5 Create your own interactive object .. 64
4. 2. 6 Create primitives in the interactive object ... 65

5. 3D RESOURCES ... 68

5. 1 GRAPHIC3D .. 68
5. 1. 1 Overview ... 68
5. 1. 2 Provided services .. 68
5. 1. 3 About the primitives ... 68
5. 1. 4 Primitive arrays .. 69
5. 1. 5 About materials ... 74
5. 1. 6 About textures ... 74
5. 1. 7 Graphic3d text ... 75
5. 1. 8 Display priorities .. 76
5. 1. 9 About structure hierarchies ... 76

5. 2 V3D .. 77
5. 2. 1 Overview ... 77
5. 2. 2 Provided services .. 77
5. 2. 3 A programming example ... 77

 4

5. 2. 4 Glossary of view transformations .. 79
5. 2. 5 Management of perspective projection ... 80
5. 2. 6 Underlay and overlay layers management ... 82
5. 2. 7 View background styles... 85
5. 2. 8 User-defined clipping planes ... 86
5. 2. 9 Dumping a 3D scene into an image file .. 88
5. 2. 10 Printing a 3D scene ... 91
5. 2. 11 Vector image export .. 91

7. GRAPHIC ATTRIBUTES ... 93

7. 1 ASPECT ... 93
7. 1. 1 Overview ... 93
7. 1. 2 The services provided ... 93

 1. Introduction 5

11.. IInnttrroodduuccttiioonn

This manual explains how to use Open CASCADE Technology Visualization. It
provides basic documentation on setting up and using Visualization. For advanced
information on Visualization and its applications, see our offerings on our web site
(Training and E-Learning) at http://www.opencascade.org/support/training/

Visualization in Open CASCADE Technology is based on the separation of:

• on the one hand - the data which stores the geometry and topology of the
entities you want to display and select, and

• on the other hand - its presentation (what you see when an object is
displayed in a scene) and selection (possibility to choose the whole object
or its sub-parts interactively in order to apply some application-defined
operations to the selected entities).

1.1. Open CASCADE Technology Visualization
and the Organization of this guide

Presentations are managed through the Presentation component, and selection
through the Selection component.

To make management of these functionalities in 3D more intuitive and consequently,
more transparent, Application Interactive Services have been created. AIS use
the notion of the interactive object, a displayable and selectable entity, which
represents an element from the application data. As a result, in 3D, you, the user,
have no need to be familiar with any functions underlying AIS unless you want to
create your own interactive objects or selection filters.

If, however, you require types of interactive objects and filters other than those
provided, you will need to know the mechanics of presentable and selectable
objects, specifically how to implement their virtual functions. To do this requires
familiarity with such fundamental concepts as the sensitive primitive and the
presentable object.

The packages used to display 3D objects are the following:

• AIS

• StdPrs

• Prs3d
• PrsMgr

• V3d

• Graphic3d

http://www.opencascade.org/support/training/

 1. Introduction 6

If you are concerned with 2D visualization, you must familiarize yourself with
the fundamental concepts of presentation as outlined in the section on this
subject in chapter 1, Fundamental Concepts. In brief, the packages used to
display 3D objects are applicable for visualization of 2D objects too.

Figure 1 below presents a schematic overview of the relations between the key
concepts and packages in visualization. Naturally, “Geometry & Topology” is just an
example of application data that can be handled by AIS, and application-specific
interactive objects can deal with any kind of data.

Figure 1. Key concepts and packages in visualization

To answer different needs of CASCADE users, this user’s guide offers the following
three paths in reading it.

• If the 3D services proposed in AIS meet your requirements, you need only
read chapter 3, AIS: Application Interactive Services.

• If the services provided do not satisfy your requirements - if for example,

you need a selection filter on another type of entity - you should read
chapter 2 Fundamental Concepts, chapter 3 AIS: Application Interactive
Services, and possibly chapters 4 and 5 3D Presentations and 3D
Resources. You may want to begin with the chapter presenting AIS.

• If your display will be in 2D, you should read chapter 1 Fundamental

Concepts, chapter 6 2D Presentations and chapter 7 2D Resources.

 2. Fundamental Concepts 7

 22.. FFuunnddaammeennttaall CCoonncceeppttss

2. 1 Presentation

In Open CASCADE Technology, presentation services are separated from the data,
which they represent, which is generated by applicative algorithms. This division
allows you to modify a geometric or topological algorithm and its resulting objects
without modifying the visualization services.

2. 1. 1 Key difference in implementation of 2D and 3D
visualization

Current implementation of 3D visualization services is based on OpenGL.
2D visualization packages use native window system API (Win32 GDI API on
Windows, Xlib API on Unix and Linux).

2. 1. 2 Structure of the Presentation

Displaying an object on the screen involves three kinds of entity:

• a presentable object, the AIS_InteractiveObject
• a viewer
• an interactive context, the AIS_InteractiveContext.

The presentable object
The purpose of a presentable object is to provide the graphical representation of an
object in the form of Graphic3d structure. On the first display request, it creates this
structure by calling the appropriate algorithm and retaining this framework for further
display.
Standard presentation algorithms are provided in the StdPrs and Prs3d packages.
You can, however, write specific presentation algorithms of your own, provided that
they create presentations made of structures from the Graphic3d packages. You can
also create several presentations of a single presentable object: one for each
visualization mode supported by your application.
Each object to be presented individually must be presentable or associated with a
presentable object.

The viewer
The viewer allows you to interactively manipulate views of the object. When you
zoom, translate or rotate a view, the viewer operates on the graphic structure
created by the presentable object and not on the data model of the application.
Creating Graphic3d structures in your presentation algorithms allows you to use the
3D viewers provided in Open CASCADE Technology for 2D and 3D visualisation.

 2. Fundamental Concepts 8

The Interactive Context
(see chapter 2, AIS: Application Interactive Services) The interactive context
controls the entire presentation process from a common high-level API. When the
application requests the display of an object, the interactive context requests the
graphic structure from the presentable object and sends it to the viewer for
displaying.

Presentation packages
Presentation involves at least the AIS, PrsMgr, StdPrs and V3d packages. Additional
packages such as Prs3d and Graphic3d may be used if you need to implement your
own presentation algorithms.

AIS
See chapter 2, AIS: Application Interactive Services The AIS package provides
all classes to implement interactive objects (presentable and selectable 2D or 3D
entities).

PrsMgr
The PrsMgr package provides all the classes needed to implement the presentation
process: the Presentation and PresentableObject abstract classes and the
PresentationManager2d and PresentationManager3d concrete classes.

StdPrs
The StdPrs package provides ready-to-use standard presentation algorithms of
points, curves and shapes of the geometry and topology toolkits.

V3d
The V3d package provides the services supported by the 3D viewer.

Prs3d
The Prs3d package provides some generic presentation algorithms such as
wireframe, shading and hidden line removal associated with a Drawer class which
controls the attributes of the presentation to be created in terms of color, line type,
thickness, and so on.

Graphic3d
The Graphic3d package provides resources to create 2D and 3D graphic structures
(please refer to chapters on 3D Resources and 2D Resources for more
information).

 2. Fundamental Concepts 9

2. 1. 3 A Basic Example: How to display a 3D object

Example

Void Standard_Real dx = ...; //Parameters
Void Standard_Real dy = ...; //to build a wedge
Void Standard_Real dz = ...;
Void Standard_Real ltx = ...;

Handle(V3d_Viewer)aViewer = ...;
Handle(AIS_InteractiveContext)aContext;
aContext = new AIS_InteractiveContext(aViewer);

BRepPrimAPI_MakeWedge w(dx, dy, dz, ltx);
TopoDS_Solid & = w.Solid();
Handle(AIS_Shape) anAis = new AIS_Shape(S);
//creation of the presentable object
aContext -> Display(anAis);
//Display the presentable object in the 3d viewer.

The shape is created using the BRepPrimAPI_MakeWedge command. An
AIS_Shape is then created from the shape. When calling the Display command, the
interactive context calls the Compute method of the presentable object to calculate
the presentation data and transfer it to the viewer. See Figure 2 below.

 2. Fundamental Concepts 10

inherits

calls
Compute()

deals with

uses

Figure 2. Processes involved in displaying a presentable shape

 2. Fundamental Concepts 11

2. 2 Selection
This chapter deals with the process used for selecting entities, which are displayed
in the 2D space of the selection view.

2. 2. 1 The Selection Principle
Objects that may be selected graphically, are displayed as sets of sensitive
primitives, which provide sensitive zones in 2D graphic space. These zones are
sorted according to their position on the screen when starting the selection process.
The position of the mouse is also associated with a sensitive zone. When moving
within the window where objects are displayed, the areas touched by the zone of the
mouse are analyzed. The owners of these areas are then highlighted or signaled by
other means such as the name of the object highlighted in a list. That way, you are
informed of the identity of the element detected.

Figure 3. A model

Figure 4. Modeling faces with sensitive primitives

 2. Fundamental Concepts 12

Figure 5. In a dynamic selection, each sensitive polygon is represented by its bounding rectangle

Figure 6. Reference to the sensitive primitive, then to the owner

 2. Fundamental Concepts 13

2. 2. 2 The Sensitive Primitive

The sensitive primitive - along with the entity owner - allow you to define what can
be made selectable, and in so doing, provide the link between the applicative object
and the sensitive zones defined by the 2D bounding boxes. For an object to be
dynamically selectable, it has to be represented either as a sensitive primitive or a
set of them. These give 2D boxes that will be included in a sorting algorithm.
The use of 2D boxes allows a pre-selection of the detected entities. After pre-
selection, the algorithm checks which sensitive primitives are actually detected.
When detected, the primitives provide their owners’ identity.

Example

The sensitive line segment below proposes a bounding box to the selector. During
selection, positions 1 and 2 of the mouse detect the box but after sorting, only
position 2 retains the line segment as selected by the algorithm.

Figure 7. Example of sensitive primitives

When the 2D box associated with the position of the mouse intersects the 2D box of
a sensitive primitive, the owner of the sensitive primitive is called and its
presentation is highlighted.

The notion of sensitive primitive is important for the developer when defining his own
classes of sensitive primitives for the chosen selection modes. The classes must

 2. Fundamental Concepts 14

contain Areas and Matches functions. The former provides the list of 2D sensitive
boxes representing the sensitive primitive at pre-selection and the latter determines
if the detection of the primitive by the 2D boxes is valid.

2. 2. 3 The Principles of Dynamic Selection

Dynamic selection causes objects in a view to be automatically highlighted as the
mouse cursor moves over them. This allows the user to be certain that the picked
object is the correct one. Dynamic Selection is based on the following two concepts:

• a Selectable Object (see AIS_InteractiveObject)

• an Interactive Context

Selectable Object
A selectable object presents a given number of selection modes which can be
redefined, and which will be activated or deactivated in the selection manager’s
selectors.

NOTE

The term, selection mode of a selectable object, can refer to the
selection mode of the object itself or to that of one of its parts.

For each selection mode, a SelectMgr_Selection object class is included in the
selectable object. (Each selection mode establishes a priority of selection for each
class of selectable object defined.)

The notion of SELECTION is comparable to the notion of DISPLAY. Just as a
display contains a set of graphic primitives that allow display of the entity in a
specific display mode, a SELECTION contains a set of sensitive primitives, which
allow detection of the entities they are associated with.

Interactive Context
See chapter 2, AIS: Application Interactive Services, Section 2.4

The interactive context is used to manage both selectable objects and selection
processes.

Selection modes may be activated or de-activated for given selectable objects.
Information is then provided about the status of activated/de-activated selection
modes for a given object in a given selector.

 2. Fundamental Concepts 15

Example

Let’s consider the 3D selectable shape object, which corresponds to a topological
shape.

For this class, seven selection modes can be defined:

mode 0 - selection of the shape itself

mode 1 - selection of vertices

mode 2 - selection of edges

mode 3 - selection of wires

mode 4 - selection of faces

mode 5 - selection of shells

mode 6 - selection of solids

mode 7 - selection of compsolids

mode 8 - selection of compounds

Selection 2 includes the sensitive primitives that model all the edges of the shape.
Each of these primitives contains a reference to the edge it represents.

The selections may be calculated before any activation and are graph independent
as long as they are not activated in a given selector. Activation of selection mode 3
in a selector associated with a view V leads to the projection of the 3D sensitive
primitives contained in the selection; then the 2D areas which represent the 2D
bounding boxes of these primitives are provided to the sorting process of the
selector containing all the detectable areas.

To deactivate selection mode 3 remove all those 2D areas.

Selection Packages
The selection packages are the following: SelectBasics, SelectMgr, Select3D,
StdSelect.

SelectBasics
The SelectBasics package contains the basic classes of the selection:

• the main definition of a sensitive primitive: SensitiveEntity

• the definition of a sensitive primitive owner: EntityOwner

• the algorithm used for sorting sensitive boxes: SortAlgo

 2. Fundamental Concepts 16

EntityOwner is used to establish a link from SensitiveEntity to application-level
objects. For example, SelectMgr_EntityOwner (see below) class holds a pointer to
corresponding SelectableObject.

SelectMgr
The SelectMgr package is used to manage the whole dynamic selection process. It
contains the SelectableObject, Entity Owner containing a link to its
SelectableObject, Selection, SelectionManager, and ViewSelector classes.
There are also implementations of ViewerSelector interface for 3D selection in
StdSelect package: ViewerSelector3d,.

Select3D
The Select3D package contains all 3D standard sensitive primitives such as point,
curve and face. All these classes inherit from 3D SensitiveEntry from SelectBasics
with an additional method, which allows recovery of the bounding boxes in the 2D
graphic selection space, if required. This package also includes the 3D-2D projector.

StdSelect
The StdSelect package provides standard uses of the classes described above and
main tools used to prevent the developer from redefining the selection objects. In
particular, StdSelect includes standard means for selection of topological objects
(shapes).

2. 2. 4 Methodology

Several operations must be performed prior to using dynamic selection:

1. Implement specific sensitive primitives if those defined in Select3D are
not sufficient. These primitives must inherit from SensitiveEntity from
SelectBasics or from a suitable Select3D sensitive entity class when a
projection from 3D to 2D is necessary.

2. Define all the owner types, which will be used, and the classes of
selectable objects, i.e. the number of possible selection modes for these
objects and the calculation of the decomposition of the object into
sensitive primitives of all the primitives describing this mode. It is
possible to define only one default selection mode for a selectable object
if this object is to be selectable in a unique way.

3. Install the process, which provides the user with the identity of the owner
of the detected entities in the selection loop.

When all these steps have been carried out, follow the procedure below:

1. Create an interactive context.

2. Create the selectable objects and calculate their various possible
selections.

3. Load these selectable objects in the interactive context. The objects may
be common to all the selectors, i.e. they will be seen by all the selectors
in the selection manager, or local to one selector or more.

 2. Fundamental Concepts 17

4. Activate or deactivate the objects’ selection modes in the selector(s). When
activating a selection mode in a selector for a given object, the manager
sends the order to make the sensitive primitives in this selector selectable. If
the primitives are to projected from 3D to 2D, the selector calls the specific
method used to carry out this projection.

At this stage, the selection of selectable entities in the selectors is available.
The selection loop informs constantly the selectors with the position of the mouse
and questions them about the detected entities.

2. 2. 5 Example of Use

Let’s suppose you are creating an application that displays houses in a viewer of the
V3d package and you want to select houses or parts of these houses (windows,
doors, etc.) in the graphic window.
You define a selectable object called House and propose four possible selection
modes for this object:

1 - selection of the house itself

2 - selection of the rooms

3 - selection of the walls

4 - selection of the doors.

You have to write the method, which calculates the four selections above, i.e. the
sensitive primitives which are activated when the mode is.
You must define the class Owner specific to your application. This class will contain
the reference to the house element it represents: wall, door or room. It inherits from
EntityOwner from SelectMgr.
For example, let’s consider a house with the following representation:

Figure 8. Selection of the rooms of a house

 2. Fundamental Concepts 18

To build the selection, which corresponds to the mode “selection of the rooms”
(selection 2 in the list of selection modes) use the following procedure:

Example

Void House::ComputeSelection

(Const Handle(SelectMgr_Selection)& Sel,

 const Standard_Integer mode {

 switch(mode){
 case 0: //Selection of the rooms
 {
 for(Standard_Integer i = 1; i <= myNbRooms;
i++)
 { //for every room, create an instance of the
owner

 //along with the given room and its name.
Handle(RoomOwner) aRoomOwner = new RoomOwner
(Room(i), NameRoom(i)); //Room() returns a room
and NameRoom() returns its name.

Handle(Select3d_SensitiveBox) aSensitiveBox;

aSensitiveBox = new Select3d_SensitiveBox

(aRoomOwner, Xmin, Ymin, Zmin, Xmax, Ymax, Zmax);

 Sel -> Add(aSensitiveBox);
 }
 break;
 Case 1: ... //Selection of the doors
 } //Switch

) // ComputeSelection

 2. Fundamental Concepts 19

Figure 9. Activated sensitive boxes corresponding to selection mode 0 (selection
of the rooms)

 (

Figure 11. Activated sensitive polygons corresponding to selection mode 1.
 (selection of the doors)

 2. Fundamental Concepts 20

Figure 12. Sensitive rectangles in the selector during dynamic selection in view 2

 3. AIS: Application Interactive Services 21

 33.. AAIISS:: AApppplliiccaattiioonn IInntteerraaccttiivvee SSeerrvviicceess
Application Interactive Services (AIS) offers a set of general services beyond those
offered by basic Selection and Presentation packages such as PrsMgr, SelectMgr
and StdSelect. These allow you to manage presentations and dynamic selection in
a viewer simply and transparently. To use these services optimally, you should know
various rules and conventions. Section I provides an overview of the important
classes which you need to manipulate AIS well. Sections 2 and 3 explain in detail
how to use them and how to implement them, as well as the rules and conventions
to respect. The annexes offer various standard Interactive Objects in AIS, an
example of an implementation of AIS and a reminder of how to manage presentation
and selection.

3. 1 Overview

3. 1. 1 Interactive Context/Local Context

AIS_InteractiveContext
The central entity, which pilots visualizations and selections, is the Interactive
Context. It is linked to a main viewer (and if need be, a trash bin viewer.) It has two
operating modes: the Neutral Point and the local visualization and selection context.
The neutral point, which is the default mode, allows you to easily visualize and
select interactive objects, which have been loaded into the context. Opening Local
Contexts allows you to prepare and use a temporary selection environment without
disturbing the neutral point. A set of functions allows you to choose the interactive
objects, which you want to act on, the selection modes, which you want to activate,
and the temporary visualizations, which you will execute. When the operation is
finished, you close the current local context and return to the state in which you were
before opening it (neutral point or previous local context).

3. 1. 2 The Interactive Object

AIS_InteractiveObject
Entities, which are visualized and selected, are Interactive Objects. You can use
classes of standard interactive objects for which all necessary functions have
already been programmed, or you can implement your own classes of interactive
objects, by respecting a certain number of rules and conventions described below.

3. 1. 3 Graphic Attributes Manager or “Drawer”

An Interactive Object can have a certain number of graphic attributes specific to it
(such as visualization mode, color and material) By the same token, the Interactive
Context has a drawer which is valid by default for the objects it controls. When an
interactive object is visualized, the required graphic attributes are first taken from its

 3. AIS: Application Interactive Services 22

own Drawer if it has the ones required, or from the context drawer if it does not have
them.

3. 1. 4 Selection Filters

An important need in selection is the filtering of entities, which you want to select.
Consequently there are FILTER entities, which allow you to refine the dynamic
detection context, which you want to put into effect. Some of these filters can be
used at the Neutral Point, others only in an open local context. A user will be able to
program his own filters and load them into the interactive context.

 3. AIS: Application Interactive Services 23

3. 2 Rules and Conventions Governing Interactive
Objects

 An interactive object is a “virtual” entity, which can be presented and selected. It
can also have its own visualization aspects such as color, material, and mode of
visualization. In order to create and manipulate the interactive objects with ease, you
must know the rules and conventions, which have been established. Several “virtual”
functions must be implemented for these objects to have the behavior expected of
them. A certain number of standard interactive objects, which respect the rules and
conventions described below, have been implemented in AIS. The current list of
them can be found in ANNEX I. The services that concern manipulation of
presentations, selection and graphic attributes will be treated separately.

3. 2. 1 Presentations:

Conventions
• Either in 2D or in 3D, an interactive object can have as many presentations

as its creator wants to give it.
• 3D presentations are managed by PresentationManager3D. As this is

transparent in AIS, the user does not have to worry about it.
• A presentation is identified by an index and by the reference to the

Presentation Manager which it depends on.
• By convention, the default mode of representation for the Interactive Object

has index 0.

Virtual functions

Calculation of different presentations of an interactive object is done in the Compute
functions inheriting from PrsMgr_ PresentableObject::Compute functions. They are
automatically called by PresentationManager at a visualization or an update request.

 3. AIS: Application Interactive Services 24

If you are creating your own type of interactive object, you must implement the
Compute function in one of the following ways:

• For 3D:

Example

void PackageName_ClassName::Compute

(const Handle(PrsMgr_PresentationManager3d)&

aPresentationManager,

 const Handle(Prs3d_Presentation)& aPresentation,

 const Standard_Integer aMode = 0);

• For hidden line removal (HLR) mode in 3D (*):

Example

void PackageName_ClassName::Compute

(const Handle(Prs3d_Projector)& aProjector,

 const Handle(Prs3d_Presentation)& aPresentation);

WARNING (*)
As its call is automatically ordered by a view, this function requires explanation; the
view has two states: normal mode and computed mode (Hidden Line Removal, or
HLR mode). When the latter is active, the view looks for all presentations displayed
in normal mode, which have been signaled as accepting HLR mode. An internal
mechanism allows us to call the interactive object’s own Compute, that is, projector,
function. How do you declare that such and such a presentation will accept an
“equivalent” in HLR mode? By convention, it is the Interactive Object, which accepts
or rejects the representation of HLR mode. You can make this declaration in one of
two ways, either initially by using one of the values of the enumeration
PrsMgr_TypeOfPresentation:

• PrsMgr_TOP_AllView,
• PrsMgr_TOP_ProjectorDependant

or later on, by using the function:

• • PrsMgr_PresentableObject::SetTypeOfPresentation

AIS_Shape class is an example of an interactive object that supports HLR
representation. It supports two types of the HLR algorithm:
1) the polygonal algorithm based on the shape’s triangulation;
2) the exact algorithm that works with the shape’s real geometry.

 3. AIS: Application Interactive Services 25

The type of the HLR algorithm is stored in AIS_Drawer of the shape. It is a value of
the Prs3d_TypeOfHLR enumeration and can be set to:
1) Prs3d_TOH_PolyAlgo for polygonal algorithm
2) Prs3d_TOH_Algo for exact algoritm
3) Prs3d_TOH_NotSet if the type of algorithm is not set for the given interactive

object instance (see the explanation below).

The type of the HLR algorithm used for AIS_Shape can be changed by calling the
AIS_Shape::SetTypeOfHLR () method. To get the current HLR algorithm type
AIS_Shape::TypeOfHLR () is to be used. These methods get the value from the
drawer of AIS_Shape. If the HLR algorithm type in the AIS_Drawer is set to
Prs3d_TOH_NotSet, the AIS_Drawer gets the value from the default drawer of
AIS_InteractiveContext. In this manner it is possible to change the default HLR
algorithm to be used by all newly dsplayed interactive objects. The value of the HLR
algorithm type stored in the context drawer can be Prs3d_TOH_Algo or
Prs3d_TOH_PolyAlgo. The polygonal algorithm is the default one.

3. 2. 2 Important Specifics of AIS:

There are four types of interactive object in AIS:

• the “construction element” or Datum,
• the Relation (dimensions and constraints)
• the Object
• the None type (when the object is of an unknown type).

Inside these categories, additional characterization is available by means of a
signature (an index.) By default, the interactive object has a NONE type and a
signature of 0 (equivalent to NONE.) If you want to give a particular type and
signature to your interactive object, you must redefine two virtual functions:

• AIS_InteractiveObject::Type

• AIS_InteractiveObject::Signature.

WARNING
Some signatures have already been used by “standard” objects delivered in AIS.
(see the list of standard objects, Annex I.)

As will be seen below, the interactive context can have a default mode of
representation for the set of interactive objects. This mode may not be accepted by
a given class of objects. Consequently, a virtual function allowing you to get
information about this class must be implemented:

• AIS_InteractiveObject::AcceptDisplayMode.

Services You Should Know
Display Mode: An object can have its own display mode, which is different from that
proposed by the interactive context. The functions to use are:

 3. AIS: Application Interactive Services 26

• AIS_InteractiveContext::SetDisplayMode

• AIS_InteractiveContext::UnsetDisplayMode.

Hilight Mode: At dynamic detection, the presentation echoed by the Interactive
Context, is by default the presentation already on the screen. You can always
specify the display mode used for highlighting purposes (so called highlight mode),
which is valid no matter what the active representation of the object. It makes no
difference whether this choice is temporary or definitive. To do this, you use the
following functions:

• AIS_InteractiveObject::SetHilightMode

• AIS_InteractiveObject::UnSetHilightMode

Note that the same presentation (and consequently the same highlight mode) is
used for highlighting detected objects and for highlighting selected objects, the latter
being drawn with a special selection color (refer to the section related to Interactive
Context services).

An example: For a shape - whether it is visualized in wireframe presentation or with
shading - you want to systematically highlight the wireframe presentation.
Consequently, you set the highlight mode to 0 in the constructor of the interactive
object. You mustn’t forget to effect the implementation of this representation mode in
the Compute functions.

Infinite Status: If you don’t want an object to be affected by a FitAll view, you must
declare it infinite; you can cancel its “infinite” status in the same way.

• AIS_InteractiveObject::SetInfiniteState

• AIS_InteractiveObject::IsInfinite

Example

Let’s take the case of a class called IShape, representing an interactive object

myPk_IShape::myPK_IShape

(const TopoDS_Shape& SH, PrsMgr_TypeOfPresentation
aType):

AIS_InteractiveObject(aType),
 myShape(SH),
 myDrwr(new AIS_Drawer())
{

SetHilightMode(0);

}

void myPk_IShape::Compute

(const Handle(PrsMgr_PresentationManager3d) & PM,
 const Handle(Prs3d_Presentation)& P,
 const Standard_Integer TheMode)

{

switch (TheMode){

 3. AIS: Application Interactive Services 27

case 0:

StdPrs_WFDeflectionShape::Add
(P,myShape,myDrwr);

//algo for calculation of wireframe
presentation break;

case 1:

StdPrs_ShadedShape::Add (P,myShape,myDrwr);
//algo for calculation of shading presentation.
break;

}

}

void myPk_IsShape::Compute

(const Handle(Prs3d_Projector)& Prj,

const Handle(Prs3d_Presentation) P)

{

StdPrs_HLRPolyShape::Add(P,myShape,myDrwr);

//Cas-cade hidden line mode calculation algorithm

}

3. 3 Selections
3. 3. 1 Conventions

An interactive object can have an indefinite number of modes of selection, each
representing a “decomposition” into sensitive primitives; each primitive has an
Owner (SelectMgr_EntityOwner) which allows us to identify the exact entity which
has been detected (see ANNEX II).

The set of sensitive primitives, which correspond to a given mode, is stocked in a
SELECTION (SelectMgr_Selection).

Each Selection mode is identified by an index. By Convention, the default selection
mode that allows us to grasp the Interactive object in its entirety is mode 0.

3. 3. 2 Virtual functions

The calculation of Selection primitives (or sensitive primitives) is done by the
intermediary of a virtual function, ComputeSelection. This should be implemented for
each type of interactive object on which you want to make different type selections
using the following function:

• AIS_ConnectedInteractive::ComputeSelection

 3. AIS: Application Interactive Services 28

A detailed explanation of the mechanism and the manner of implementing this
function has been given in ANNEX II.

Moreover, just as the most frequently manipulated entity is TopoDS_Shape, the
most used Interactive Object is AIS_Shape. You will see below that activation
functions for standard selection modes are proposed in the Interactive context
(selection by vertex, by edges etc.). To create new classes of interactive object with
the same behavior as AIS_Shape - such as vertices and edges - you must redefine
the virtual function:

• AIS_ConnectedInteractive::AcceptShapeDecomposition.

3. 3. 3 Other Services
You can change the default selection mode index of an Interactive Object. For
instance, you can:

• check to see if there is a selection mode
• check the current selection mode
• set a selection mode
• unset a selection mode.

The following functions are concerned:

• AIS_InteractiveObject::HasSelectionMode

• AIS_InteractiveObject::SelectionMode

• AIS_InteractiveContext::SetSelectionMode

• AIS_InteractiveContext::UnsetSelectionMode

These functions are only of interest if you decide that the 0 mode adopted by
convention will not do. In the same way, you can temporarily change the priority of
certain interactive objects for selection of 0 mode. You could do this to make it
easier to detect them graphically. You can:

• check to see if there is a selection priority setting for the owner
• check the current priority
• set a priority
• unset the priority.

To do this, you use the following functions:

• AIS_InteractiveObject::HasSelectionPriority

• AIS_InteractiveObject::SelectionPriority

• AIS_InteractiveObject::SetSelectionPriority

• AIS_InteractiveObject::UnsetSelectionPriority

 3. AIS: Application Interactive Services 29

3. 4 Graphic attributes of an interactive object

Keep in mind the following points concerning graphic attributes:
• Each interactive object can have its own visualization attributes.
• The set of graphic attributes of an interactive object is stocked in an

AIS_Drawer, which is only a Prs3d_Drawer with the possibility of a link to
another drawer

• By default, the interactive object takes the graphic attributes of the context in
which it is visualized (visualization mode, deflection values for the calculation of
presentations, number of isoparameters, color, type of line, material, etc.)

• In the AIS_InteractiveObject abstract class, several standard attributes have
been privileged. These include: color, thickness of line, material, and
transparency. Consequently, a certain number of virtual functions, which allow
us to act on these attributes, have been proposed. Each new class of
interactive object can redefine these functions in order to bring about the
changes it should produce in the behavior of the class.

Figure 13. Redefinition of virtual functions for changes in AIS_Point

Figure 14. Redefinition of virtual functions for changes in AIS_Shape.

The virtual functions concerned here allow you to provide settings for:
• color
• width
• material

 3. AIS: Application Interactive Services 30

• transparency

The functions concerned are the following:

• AIS_InteractiveObject::UnsetColor

• AIS_InteractiveObject::SetWidth

• AIS_InteractiveObject::UnsetWidth

• AIS_InteractiveObject::SetMaterial
(const Graphic3d_NameOfPhysicalMaterial & aName)

• AIS_InteractiveObject::SetMaterial
 (const Graphic3d_MaterialAspect & aMat)

• AIS_InteractiveObject::UnsetMaterial

• AIS_InteractiveObject::SetTransparency

• AIS_InteractiveObject::UnsetTransparency

For other types of attribute, it is appropriate to change the Drawer of the object directly using:

• AIS_InteractiveObject::SetAttributes

• AIS_InteractiveObject::UnsetAttributes

3. 4. 1 Manipulation of Attributes

Some of these functions may imply the recalculation of presentations of the object. It
is important to know which ones. If an interactive object’s presentation mode is to be
updated, a flag from PrsMgr_PresentableObject indicates this. The mode should be
updated using the functions Display and Redisplay in AIS_InteractiveContext.

3. 5 Complementary Services - Precautions

3. 5. 1 Changing an interactive object’s location

When using complementary services for interactive objects, pay special attention to
the following cases:

Functions allowing us to temporarily “move” the representation and selection
of Interactive Objects in a view without recalculation.

• AIS_InteractiveContext::SetLocation

• AIS_InteractiveContext::ResetLocation

• AIS_InteractiveContext::HasLocation

• AIS_InteractiveContext::Location

How you link applicative entities to interactive objects.

 3. AIS: Application Interactive Services 31

3. 5. 2 Connecting an interactive object to an applicative
entity

Each Interactive Object has functions that allow us to attribute it an Owner in the
form of a Transient.

• AIS_InteractiveObject::SetOwner

• AIS_InteractiveObject::HasOwner

• AIS_InteractiveObject::Owner

An interactive object can therefore be associated with an applicative entity or not,
without this affecting its behavior.

3. 5. 3 Resolving coincident topology

Due to the fact that the accuracy of three-dimensional graphics coordinates has a
finite resolution the elements of topological objects can coincide producing the effect
of “popping” some elements one over another.

To avoid such kind of a problem when the elements of two or more
InteractiveObjects are coincident you can apply the polygon offset. It is a sort of
graphics computational offset, or depth buffer offset, that allows you to arrange
elements (by modifying their depth value) without changing their coordinates. The
graphical elements that accept this kind of offsets are solid polygons or displayed as
boundary lines and points. The polygons could be displayed as lines or points by
setting the appropriate interior style.

The following method allows you to set up the polygon offsets:

• void AIS_InteractiveObject::SetPolygonOffsets

(const Standard_Integer aMode,

 const Standard_Real aFactor,

 const Standard_Real aUnits)

The parameter aMode can contain various combinations of
Aspect_PolygonOffsetMode enumeration elements. The enumeration has
the following elements:

• Aspect_POM_None

• Aspect_POM_Off

• Aspect_POM_Fill

• Aspect_POM_Line

• Aspect_POM_Point

• Aspect_POM_All

 3. AIS: Application Interactive Services 32

The combination of these elements defines the polygon display modes that will
use the given offsets. You can switch off the polygon offsets by passing the
Aspect_POM_Off. Passing Aspect_POM_None allows you to change the
aFactor and aUnits values without changing the mode. If aMode is different from
Aspect_POM_Off, the aFactor and aUnits arguments are used by the graphics
renderer to calculate the depth offset value:

 offset = aFactor * m + aUnits * r,

 where m – maximum depth slope for the polygons currently being
displayed, r – minimum depth resolution (implementation-specific)

Negative offset values move polygons closer to the viewer while positive values
shift polygons away.

WARNING

This method has a side effect – it creates its own shading aspect if not yet
created, so it is better to set up the object shading aspect first.

You can use the following functions to obtain the current settings for polygon offsets:

• void AIS_InteractiveObject::PolygonOffsets

(Standard_Integer &aMode,

 Standard_Real &aFactor,

 Standard_Real &aUnits)

• Standard_Boolean

AIS_InteractiveObject::HasPolygonOffsets()

The same operation could be performed for the interactive object known by the
AIS_InteractiveContext with the following methods:

• void AIS_InteractiveContext::SetPolygonOffsets

(const Handle(AIS_InteractiveObject) &anObj,

 const Standard_Integer aMode,

 const Standard_Real aFactor,

 const Standard_Real aUnits)

• void AIS_InteractiveContext::PolygonOffsets

(const Handle(AIS_InteractiveObject) &anObj,

 Standard_Integer &aMode,

 Standard_Real &aFactor,

 Standard_Real &aUnits)

• Standard_Boolean

AIS_InteractiveContext::HasPolygonOffsets

(const Handle(AIS_InteractiveObject) &anObj)

 3. AIS: Application Interactive Services 33

3. 6 The Interactive Context

3. 6. 1 Preliminary Rules

The Interactive Context allows us to manage in a transparent way, the graphic and
“selectable” behavior of interactive objects in one or more viewers. Most functions
which allow us to modify the attributes of interactive objects, and which were
presented in the preceding chapter, will be looked at again here.

There is one essential rule to follow: the modification of an interactive object, which
is already known by the Context, must be done using Context functions. You can
only directly call the functions available for an interactive object if it has not been
loaded into an Interactive Context.

Example

Handle (AIS_Shape) TheAISShape = new AIS_Shape (ashape);
myIntContext->Display(TheAISShape);

myIntContext->SetDisplayMode(TheAISShape ,1);

myIntContext->SetColor(TheAISShape,Quantity_NOC_RED);

//but you can write

Handle (AIS_Shape) TheAISShape = new AIS_Shape (ashape);
TheAISShape->SetColor(Quantity_NOC_RED);

TheAISShape->SetDisplayMode(1);

myIntContext->Display(TheAISShape);

3. 6. 2 Groups of functions

You must distinguish two states in the Interactive Context:

 No Open Local Context; which will be referred to as Neutral Point.

 One or several open local contexts, each representing a temporary state
of selection and presentation.

Some functions can only be used in open Local Context; others in closed local
context; others do not have the same behavior in one state as in the other.

The Interactive Context is composed of a great many functions, which can be
conveniently grouped according to theme:

• management proper to the context

• management in the local context

 3. AIS: Application Interactive Services 34

• presentations and selection in open/closed context

• selection strictly speaking

3. 6. 3 Management proper to the Interactive Context

The Interactive Context is made up of a Principal Viewer and, optionally, a trash bin
or “Collector” Viewer. It also has a group of adjustable settings allowing you to
personalize the behavior of presentations and selections:

• Default Drawer, containing all the color and line attributes which can be
used by interactive objects, which do not have their own attributes.

• Default Visualization Mode for interactive objects
Default: mode 0

• Highlight color of entities detected by mouse movement
Default: Quantity_NOC_CYAN1

• Preselection color
Default: Quantity_NOC_GREEN

• Selection color (when you click on a detected object)
Default: Quantity_NOC_GRAY80

• Sub-Intensity color
Default: Quantity_NOC_GRAY40

All of these settings can be modified by functions proper to the Context.

When you change a graphic attribute pertaining to the Context (visualization mode,
for example), all interactive objects, which do not have the corresponding
appropriate attribute, are updated.

Example

//obj1, obj2: 2 interactive objects.

TheCtx->Display(obj1,Standard_False); // False = no update

of viewer.

TheCtx->Display(obj2,Standard_True); // True = Update of

Viewer

TheCtx->SetDisplayMode(obj1,3,Standard_False);

TheCtx->SetDisplayMode(2);

// obj2 is visualised in mode 2 (if it accepts this mode)

// obj1 stays visualised in its mode 3.

To the main Viewer, are associated a PresentationManager3D and a Selector3D
which manage the presentation and selection of present interactive objects. The

 3. AIS: Application Interactive Services 35

same is true of the optional Collector. As we shall see, this management is
completely transparent for the user.

3. 7 Management of Local Context

3. 7. 1 Rules and Conventions

• Opening a local context allows you to prepare an environment for temporary
presentations and selections, which will disappear once the local context is
closed.

• It is possible to open several local contexts, but only the last one will be
active.

• When you close a local context, the one before, which is still on the stack,
reactivates. If none is left, you return to Neutral Point.

• Each local context has an index created when the context opens. You
should close the local context, which you have opened.

3. 7. 2 Important functionality

The interactive object, which is used the most by applications, is AIS_Shape.
Consequently, standard functions are available which allow you to easily prepare
selection operations on the constituent elements of shapes (selection of vertices,
edges, faces etc) in an open local context. The selection modes specific to “Shape”
type objects are called Standard Activation Mode. These modes are only taken
into account in open local context and only act on interactive objects which have
redefined the virtual function AcceptShapeDecomposition() so that it returns TRUE.

• Objects, which are temporarily in a local context, are not recognized by
other local contexts a priori. Only objects visualized in Neutral Point are
recognized by all local contexts.

• The state of a temporary interactive object in a local context can only be
modified while another local context is open (except for one special case -
see III.4.2)

WARNING
The specific modes of selection only concern the interactive objects, which are
present in the Main Viewer. In the Collector, you can only locate interactive objects,
which answer positively to the positioned filters when a local context is open. Under
no circumstances are they decomposed in standard mode etc.

3. 7. 3 Use
Opening and closing a local context are easy to put into operation:

• AIS_InteractiveContext::OpenLocalContext

The options available allow you to control what you want to do:

 3. AIS: Application Interactive Services 36

• UseDisplayedObjects: allows you to load or not load the interactive objects
visualized at Neutral Point in the local context, which you open. If FALSE,
the local context is empty after being opened. If TRUE, the objects at
Neutral Point are modified by their default selection mode.

• AllowShapeDecomposition: AIS_Shape allows or prevents decomposition in
standard shape location mode of objects at Neutral Point, which are type-
”privileged” (see selection chapter). This Flag is only taken into account
when UseDisplayedObjects is TRUE.

• AcceptEraseOfObjects: authorises other local contexts to erase the interactive
objects present in this context. This option is rarely used. The last option has no
current use.

This function returns the index of the created local context. It should be kept and
used when the context is closed.

To load objects visualized at Neutral Point into a local context or remove them from
one:

• AIS_InteractiveContext::UseDisplayedObjects

• AIS_InteractiveContext::NotUseDisplayedObjects

Closing Local Contexts is done by:

• AIS_InteractiveContext::CloseLocalContext

• AIS_InteractiveContext::CloseAllContexts

WARNING

When the index isn’t specified in the first function, the current Context is closed. This
option can be dangerous, as other Interactive Functions can open local contexts
without necessarily warning the user. For greater security, you have to close the
context with the index given on opening.

To get the index of the current context, use the following function:

• AIS_InteractiveContext::IndexOfCurrentLocal

The second function allows you to close all open local contexts at one go. In this
case, you find yourself directly at Neutral Point.

When you close a local context, all temporary interactive objects are erased
(deleted), all selection modes concerning the context are cancelled, and all content
filters are emptied.

3. 7. 4 Management of Presentations and Selections

You must distinguish between the Neutral Point and the Open Local Context states.
Although the majority of visualization functions can be used in both situations, their behavior
is different:

 3. AIS: Application Interactive Services 37

3. 7. 5 Presentation in Neutral Point

Neutral Point should be used to visualize the interactive objects, which represent
and select an applicative entity. Visualization and Erasing orders are straightforward:

• AIS_InteractiveContext::Display

(const Handle(AIS_InteractiveObject)& anIobj,

 const Standard_Boolean
updateviewer=Standard_True);

• AIS_InteractiveContext::Display

(const Handle(AIS_InteractiveObject)& anIobj,

 const Standard_Integer amode,

 const Standard_Integer aSelectionMode,

 const Standard_Boolean

updateviewer = Standard_True,

 const Standard_Boolean

allowdecomposition = Standard_True);

• AIS_InteractiveContext::Erase

• AIS_InteractiveContext::EraseMode

• AIS_InteractiveContext::ClearPrs

• AIS_InteractiveContext::Redisplay

• AIS_InteractiveContext::Remove

• AIS_InteractiveContext::EraseAll

• AIS_InteractiveContext::Hilight

• AIS_InteractiveContext::HilightWithColor

3. 7. 6 Important Remarks:

Bear in mind the following points:
• It is recommended to display and erase interactive objects when no local

context is opened, and open a local context for local selection only.
• The first Display function among the two ones available in

InteractiveContext visualizes the object in its default mode (set with help of
SetDisplayMode() method of InteractiveObject prior to Display() call), or in
the default context mode, if applicable. If it has neither, the function displays
it in 0 presentation mode. The object’s default selection mode is
automatically activated (0 mode by convention).

• Activating the displayed object by default can be turned off with help of
SetAutoActivateSelection() method. This might be efficient if you are not
interested in selection immediately after displaying an object.

• The second Display function should only be used in Neutral Point to
visualize a supplementary mode for the object, which you can erase by
EraseMode (...). You activate the selection mode. This is passed as an
argument. By convention, if you do not want to activate a selection mode,

 3. AIS: Application Interactive Services 38

you must set the SelectionMode argument to the value of -1. This function is
especially interesting in open local context, as we will see below.

• In Neutral Point, it is unadvisable to activate other selection modes than the
default selection one. It is preferable to open a local context in order to
activate particular selection modes.

• When you call Erase (Interactive object) function, the PutIncollector
argument, which is FALSE by default, allows you to visualize the object
directly in the Collector and makes it selectable (by activation of 0 mode).
You can nonetheless block its passage through the Collector by changing
the value of this option. In this case, the object is present in the Interactive
Context, but is not seen anywhere.

• Erase() with putInCollector = Standard_True might be slow as it re-
computes the objects presentation in the Collector. Set putInCollector to
Standard_False if you simply want to hide the object’s presentation
temporarily.

• Modifications of visualization attributes and graphic behavior is effected
through a set of functions similar to those which are available for the
interactive object (color, thickness of line, material, transparency, locations
etc.) The context then manages immediate and deferred updates.

• Call Remove() method of InteractiveContext as soon as the interactive
object is no longer needed and you want to destroy it.. Otherwise,
references to InteractiveObject are kept by InteractiveContext, and the
Object is not destroyed that results in memory leaks. In general, if some
interactive object’s presentation can be computed quickly, it is
recommended to Remove() it instead of Erase()-ing.

3. 7. 7 Presentation in Local Context

In open local context, the Display functions presented above apply as well.

WARNING
The function, AIS_InteractiveObject::Display, automatically activates the object’s
default selection mode. When you only want to visualize an Interactive Object in
open Context, you must call the second function:

AIS_InteractiveContext::Display.

You can activate or deactivate specific selection modes in local open context in
several different ways:

Use the Display functions with the appropriate modes

Activate standard mode:

• AIS_InteractiveContext::ActivateStandardMode

only if a local Context is opened

• AIS_InteractiveContext::DeactivateStandardMode

• AIS_InteractiveContext::ActivatedStandardModes

 3. AIS: Application Interactive Services 39

• AIS_InteractiveContext::SetShapeDecomposition

This has the effect of activating the corresponding selection mode for all objects in
Local Context, which accept decomposition into sub-shapes. Every new Object
which has been loaded into the interactive context and which answers these
decomposition criteria is automatically activated according to these modes.

WARNING
If you have opened a local context by loading an object with the default options
(AllowShapeDecomposition = Standard_True), all objects of the “Shape” type are
also activated with the same modes. You can act on the state of these “Standard”
objects by using SetShapeDecomposition(Status).

Load an interactive object by the following function:

• AIS_InteractiveContext::Load.

This function allows you to load an Interactive Object whether it is visualized or not
with a given selection mode, and/or with the desired decomposition option. If
AllowDecomp=TRUE and obviously, if the interactive object is of the “Shape” type,
these “standard” selection modes will be automatically activated as a function of the
modes present in the Local Context.

Directly activate/deactivate selection modes on an object:

• AIS_InteractiveContext::Activate

• AIS_InteractiveContext::Deactivate.

3. 7. 8 Use of Filters

When Interactive objects have been “prepared” in local context, you can add
rejection filters. The root class of objects is SelectMgr_Filter. The principle behind it
is straightforward: a filter tests to see whether the owners (SelectMgr_EntityOwner)
detected in mouse position by the Local context selector answer OK. If so, it is kept;
if not, it is rejected.

You can therefore create your own class of filter objects by implementing the
deferred function IsOk():

Example

class MyFilter : public SelectMgr_Filter {

};

 3. AIS: Application Interactive Services 40

virtual Standard_Boolean MyFilter::IsOk

(const Handle(SelectMgr_EntityOwner)& anObj) const =
0;

In SelectMgr, there are also Composition filters (AND Filters, OR Filters), which
allow you to combine several filters. In InteractiveContext , all filters that you add are
stocked in an OR filter (which answers OK if at least one filter answers OK).

There are Standard filters, which have already been implemented in several
packages:

• StdSelect_EdgeFilter

Filters acting on edges such as lines and circles
• StdSelect_FaceFilter

Filters acting on faces such as planes, cylinders and spheres
• StdSelect_ShapeTypeFilter

Filters shape types such as compounds, solids, shells and wires
• AIS_TypeFilter

Acts on types of interactive objects
• AIS_SignatureFilter

Acts on types and signatures of interactive objects
• AIS_AttributeFilter

Acts on attributes of Interactive Objects such as color and width

Because there are specific behaviors on shapes, each new Filter class must, if
necessary, redefine a function, which allows a Local Context to know if it acts on
specific types of sub-shapes:

• AIS_LocalContext::ActsOn.

By default, this function answers FALSE.

WARNING
Only type filters are activated in Neutral Point. This is to make it possible to identify a
specific type of visualized object. For filters to come into play, one or more object
selection modes must be activated.

There are several functions to manipulate filters:

• AIS_InteractiveContext::AddFilter

to add a filter passed as an argument.

• AIS_InteractiveContext::RemoveFilter

 3. AIS: Application Interactive Services 41

to remove a filter passed as an argument.

• AIS_InteractiveContext::RemoveFilters

to remove all filters present.

• AIS_InteractiveContext::Filters

to get the list of filters active in a local context.

Example

myContext->OpenLocalContext(Standard_False);

// no object in neutral point is loaded

myContext->ActivateStandardMode(TopAbs_Face);

//activates decomposition of shapes into faces.
Handle (AIS_Shape) myAIShape = new AIS_Shape (ATopoShape);

myContext->Display(myAIShape,1,-
1,Standard_True,Standard_True); //shading visualization mode, no
specific mode, authorization for //decomposition into sub-shapes. At this Stage,
myAIShape is decomposed into faces...

Handle(StdSelect_FaceFilter) Fil1= new

StdSelect_FaceFilter(StdSelect_Revol);

Handle(StdSelect_FaceFilter) Fil2= new

 StdSelect_FaceFilter(StdSelect_Plane);

myContext->AddFilter(Fil1);
myContext->AddFilter(Fil2);
//only faces of revolution or planar faces will be selected

myContext->MoveTo(xpix,ypix,Vue);

// detects of mouse position

3. 7. 9 Selection Strictly Speaking.
Dynamic detection and selection are put into effect in a straightforward way. There
are only a few conventions and functions to be familiar with. The functions are the
same in neutral point and in open local context:

• AIS_InteractiveContext::MoveTo

passes mouse position to Interactive Context selectors

 3. AIS: Application Interactive Services 42

• AIS_InteractiveContext::Select

stocks what has been detected on the last MoveTo. Replaces the previously
selected object. Empties the stack if nothing has been detected at the last
move

• AIS_InteractiveContext::ShiftSelect

if the object detected at the last move was not already selected , it is added
to the list of those selected. If not, it is withdrawn. Nothing happens if you
click on an empty area.

• AIS_InteractiveContext::Select

selects everything found in the surrounding area

• AIS_InteractiveContext::ShiftSelect

selects what was not previously in the list of selected, deselects those
already present.

Highlighting of detected and selected entities is automatically managed by the
Interactive Context, whether you are in neutral point or Local Context. The Highlight
colors are those dealt with above. You can nonetheless disconnect this automatic
mode if you want to manage this part yourself:

• AIS_InteractiveContext::SetAutomaticHilight

• AIS_InteractiveContext::AutomaticHilight

If there is no open local context, the objects selected are called CURRENT
OBJECTS; SELECTED OBJECTS if there is one. Iterators allow entities to be
recovered in either case. A set of functions allows you to manipulate the objects,
which have been placed in these different lists.

WARNING
When a Local Context is open, you can select entities other than interactive objects
(vertices, edges etc.) from decompositions in standard modes, or from activation in
specific modes on specific interactive objects. Only interactive objects are stocked in
the list of selected objects. You can question the Interactive context by moving the
mouse. The following functions will allow you to:

• tell whether something has been detected
• tell whether it is a shape
• get the shape if the detected entity is one
• get the interactive object if the detected entity is one.

The following functions are concerned:
• AIS_InteractiveContext::HasDetected

• AIS_InteractiveContext::HasDetectedShape

• AIS_InteractiveContext::DetectedShape

• AIS_InteractiveContext::DetectedInteractive

After using the Select and ShiftSelect functions in Neutral Point, you can explore the
list of selections, referred to as current objects in this context. You can:

 3. AIS: Application Interactive Services 43

• initiate a scan of this list
• extend the scan
• resume the scan
• get the name of the current object detected in the scan.

The following functions are concerned:

• AIS_InteractiveContext::InitCurrent

• AIS_InteractiveContext::MoreCurrent

• AIS_InteractiveContext::NextCurrent

• AIS_InteractiveContext::Current

You can:
• get the first current interactive object
• highlight current objects
• remove highlight from current objects
• empty the list of current objects in order to update it
• find the current object.

The following functions are concerned:

• AIS_InteractiveContext::FirstCurrentObject

• AIS_InteractiveContext::HilightCurrents

• AIS_InteractiveContext::UnhilightCurrents

• AIS_InteractiveContext::ClearCurrents

• AIS_InteractiveContext::IsCurrent.

In Local Context, you can explore the list of selected objects available. You can:
• initiate,
• extend,
• resume a scan, and then
• get the name of the selected object.

The following functions are concerned:

• AIS_InteractiveContext::InitSelected

• AIS_InteractiveContext::MoreSelected

• AIS_InteractiveContext::NextSelected

• AIS_InteractiveContext::SelectedShape.

You can:
• check to see if you have a selected shape, and if not,
• get the picked interactive object,
• check to see if the applicative object has an owner from Interactive

attributed to it
• get the owner of the detected applicative entity
• get the name of the selected object.

 3. AIS: Application Interactive Services 44

The following functions are concerned:

• AIS_InteractiveContext::HasSelectedShape

• AIS_InteractiveContext::Interactive

• AIS_InteractiveContext::HasApplicative

• AIS_InteractiveContext::Applicative

• AIS_InteractiveContext::IsSelected.

Example

myAISCtx->InitSelected();

while (myAISCtx->MoreSelected())

{

if (myAISCtx->HasSelectedShape)

{

TopoDS_Shape ashape = myAISCtx-
>SelectedShape();

// to be able to use the picked shape
 }

else

{

Handle_AIS_InteractiveObject aniobj = myAISCtx-
>Interactive();

// to be able to use the picked interactive object
}

myAISCtx->NextSelected();
}

3. 7. 10 Remarks:

In Local Context and in the iteration loop, which allows you to recover selected
entities, you have to ask whether you have selected a shape or an interactive object
before you can recover the entity. If you have selected a Shape from TopoDS on
decomposition in standard mode, the Interactive () function returns the interactive
object, which provided the selected shape. Other functions allow you to manipulate
the content of Selected or Current Objects:

• erase selected objects
• display them,
• put them in the list of selections

The following functions are concerned:

 3. AIS: Application Interactive Services 45

• AIS_InteractiveContext::EraseSelected

• AIS_InteractiveContext::DisplaySelected

• AIS_InteractiveContext::SetSelected

You can also:

• take the list of selected objects from a local context and put it into the list of

current objects in Neutral Point,
• add or remove an object from the list of selected entities,
• highlight and
• remove highlighting from a selected object
• empty the list of selected objects.

The following functions are concerned:

• AIS_InteractiveContext::SetSelectedCurrent

• AIS_InteractiveContext::AddOrRemoveSelected

• AIS_InteractiveContext::HilightSelected

• AIS_InteractiveContext::UnhilightSelected

• AIS_InteractiveContext::ClearSelected

You can highlight and remove highlighting from a current object, and empty the list
of current objects.

• AIS_InteractiveContext::HilightCurrents

• AIS_InteractiveContext::UnhilightCurrents

• AIS_InteractiveContext::ClearCurrents

When you are in open Local Context, you may be lead to keep “temporary”
interactive objects. This is possible using the following functions:

• AIS_InteractiveContext::KeepTemporary

• AIS_InteractiveContext::SetSelectedCurrent

The first function transfers the characteristics of the interactive object seen in its
local context (visualization mode etc.) to the neutral point. When the local context is
closed, the object does not disappear. The second allows the selected object to
become the current object when you close the local context.
You can also want to modify in a general way the state of the local context before
continuing a selection (emptying objects, removing filters, standard activation
modes). To do that, you must use the following function:

• AIS_InteractiveContext::ClearLocalContext

 3. AIS: Application Interactive Services 46

3. 7. 11 Advice on Using Local Contexts

The possiblities of use for local contexts are numerous depending on the type of
operation that you want to perform:

• working on all visualized interactive objects,
• working on only a few objects,
• working on a single object.

1. When you want to work on one type of entity, you should open a local context with
the option UseDisplayedObjects set to FALSE. Some functions which allow you to
recover the visualized interactive objects, which have a given Type, and Signature
from the “Neutral Point” are:

AIS_InteractiveContext::DisplayedObjects

(AIS_ListOfInteractive& aListOfIO) const;

AIS_InteractiveContext::DisplayedObjects

(const AIS_KindOfInteractive WhichKind,

 const Standard_Integer WhichSignature,

AIS_ListOfInteractive& aListOfIO) const;

At this stage, you only have to load the functions Load, Activate, and so on.

2. When you open a Local Context with default options, you must keep the following
points in mind:

The Interactive Objects visualized at Neutral Point are activated with their default
selection mode. You must deactivate those, which you do not want to use.

The Shape Type Interactive Objects are automatically decomposed into sub-shapes
when standard activation modes are launched.

The “temporary” Interactive Objects present in the Local Contexts are not automatically
taken into account. You have to load them manually if you want to use them.

The stages could be the following:
1. Open a Local Context with the right options;
2. Load/Visualize the required complementary objects with the desired

activation modes.
3. Activate Standard modes if necessary
4. Create its filters and add them to the Local Context
5. Detect/Select/recover the desired entities
6. Close the Local Context with the adequate index.

It is useful to create an INTERACTIVE EDITOR, to which you pass the Interactive
Context. This will take care of setting up the different contexts of
selection/presentation according to the operation, which you want to perform.

 3. AIS: Application Interactive Services 47

Example

You have visualized several types of interactive objects: AIS_Points, AIS_Axes,
AIS_Trihedrons, and AIS_Shapes.

For your applicative function, you need an axis to create a revolved object. You
could obtain this axis by identifying:

• an axis which is already visualized,

• 2 points,

• a rectilinear edge on the shapes which are present,

• a cylindrical face on the shapes (You will take the axis of this face)

myIHMEditor::myIHMEditor

(const Handle(AIS_InteractiveContext)& Ctx,

) :

 myCtx(Ctx),

...

{

}

myIHMEditor::PrepareContext()

{

myIndex =myCtx->OpenLocalContext();

//the filters

Handle(AIS_SignatureFilter) F1 = new

 AIS_SignatureFilter(AIS_KOI_Datum,AIS_SD_Point);

//filter on the points

Handle(AIS_SignatureFilter) F2 = new

AIS_SignatureFilter(AIS_KOI_Datum,AIS_SD_Axis);

//filters on the axes.

Handle(StdSelect_FaceFilter) F3 = new

 StdSelect_FaceFilter(AIS_Cylinder);

//cylindrical face filters

//...

// activation of standard modes on the shapes..
myCtx->ActivateStandardMode(TopAbs_FACE);
myCtx->ActivateStandardMode(TopAbs_VERTEX);

 3. AIS: Application Interactive Services 48

myCTX->Add(F1);
myCTX->Add(F2);
myCTX->Add(F3);

// at this point, you can call the selection/detection function
}

void myIHMEditor::MoveTo(xpix,ypix,Vue)

{
myCTX->MoveTo(xpix,ypix,vue);
// the highlight of what is detected is automatic.
}

Standard_Boolean myIHMEditor::Select()
{
// returns true if you should continue the selection

myCTX->Select();
myCTX->InitSelected();
if(myCTX->MoreSelected())

 {
 if(myCTX->HasSelectedShape())

{ const TopoDS_Shape& sh = myCTX-
>SelectedShape();

if(vertex){

if(myFirstV...)

{

//if it’s the first vertex, you stock it, then you deactivate
the faces and only keep the filter on the points:

mypoint1 =;

myCtx->RemoveFilters();

myCTX-
>DeactivateStandardMode(TopAbs_FACE);

myCtx->Add(F1);

// the filter on the AIS_Points
myFirstV = Standard_False;

return Standard_True;

 }
else
 {

 mypoint2 =...;

// construction of the axis return Standard_False;
}

 }

 else

 {

//it is a cylindrical face : you recover the axis; visualize it; and
stock it.

return Standard_False;

 3. AIS: Application Interactive Services 49

}

 }

// it is not a shape but is no doubt a point.
else

{

Handle(AIS_InteractiveObject)

SelObj = myCTX->SelectedInteractive();

if(SelObj->Type()==AIS_KOI_Datum)

{

if(SelObj->Signature()==1)

{

if (firstPoint)

{

mypoint1 =...

return Standard_True;

}

else

{

mypoint2 = ...;

//construction of the axis, visualization, stocking
return Standard_False;

}

}

else

{

// you have selected an axis; stock the axis
return Standard_False;

}

}

}

}

}

void myIHMEditor::Terminate()
{
myCtx->CloseLocalContext(myIndex);
...
}

 3. AIS: Application Interactive Services 50

ANNEX I: Standard Interactive Object Classes in
AIS DATUMS:

AIS_Point
AIS_Axis
AIS_Line
AIS_Circle
AIS_Plane
AIS_Trihedron : 4 selection modes

• mode 0 : selection of a trihedron
• mode 1 : selection of the origin of the trihedron
• mode 2 : selection of the axes
• mode 3 : selection of the planes XOY, YOZ, XOZ

when you activate one of modes 1 2 3 4 , you pick AIS objects of type:

• AIS_Point
• AIS_Axis (and information on the type of axis)
• AIS_Plane (and information on the type of plane).

AIS_PlaneTrihedron offers 3 selection modes:

• mode 0 : selection of the whole trihedron
• mode 1 : selection of the origin of the trihedron
• mode 2 : selection of the axes - same remarks as for the Trihedron.

Warning
For the presentation of planes and trihedra, the default unit of length is millimeter,
and the default value for the representation of axes is 100. If you modify these
dimensions, you must temporarily recover the object DRAWER. From inside it, take
the Aspects in which the values for length are stocked (PlaneAspect for the plane,
FirstAxisAspect for trihedra), and change these values inside these Aspects. Finally,
recalculate the presentation.

OBJECTS
AIS_Shape : 3 visualization modes :

• mode 0 : Line (default mode)
• mode 1 : Shading (depending on the type of shape)
• mode 2 : Bounding Box

7 maximum selection modes, depending on the complexity of the shape :

• mode 0 : selection of the AIS_Shape
• mode 1 : selection of the vertices
• mode 2 : selection of the edges
• mode 3 : selection of the wires
• mode 4 : selection of the faces

 3. AIS: Application Interactive Services 51

• mode 5 : selection of the shells
• mode 6 : selection of the constituent solids.

AIS_Triangulation: Simple interactive object for displaying triangular mesh contained
in Poly_Triangulation container.

AIS_ConnectedInteractive: Interactive Object connecting to another interactive
object reference, and located elsewhere in the viewer makes it possible not to
calculate presentation and selection, but to deduce them from your object reference.

AIS_ConnectedShape: Object connected to interactive objects having a shape; this
class has the same decompositions as AIS_Shape. What’s more, it allows a
presentation of hidden parts, which are calculated automatically from the shape of
its reference.

AIS_MultipleConnectedInteractive: Object connected to a list of interactive objects
(which can also be Connected objects. It does not require memory hungry
calculations of presentation)

AIS_MultipleConnectedShape: Interactive Object connected to a list of interactive
objects having a Shape (AIS_Shape, AIS_ConnectedShape,
AIS_MultipleConnectedShape). The presentation of hidden parts is calculated
automatically.

AIS_TexturedShape: Interactive Object that supports texture mapping. It is
constructed as a usual AIS_Shape, but has additional methods that allow to map a
texture on it.

MeshVS_Mesh: Interactive Object that represents meshes, it has a data source that
provides geometrical information (nodes, elements) and can be built up from the
source data with a custom presentation builder.

RELATIONS
The list is not exhaustive.

AIS_ConcentricRelation

AIS_FixRelation

AIS_IdenticRelation

AIS_ParallelRelation

AIS_PerpendicularRelation

AIS_Relation

AIS_SymmetricRelation

AIS_TangentRelation

 3. AIS: Application Interactive Services 52

DIMENSIONS
AIS_AngleDimension

AIS_Chamf2dDimension

AIS_Chamf3dDimension

AIS_DiameterDimension

AIS_DimensionOwner

AIS_LengthDimension

AIS_OffsetDimension

AIS_RadiusDimension

MeshVS_Mesh
MeshVS_Mesh is an Interactive Object that represents meshes.
This object differs from the AIS_Shape as its geometrical data is supported by the
data source (MeshVS_DataSource) that describes nodes and elements of the
object. As a result, you can provide your own data source.
However, the DataSource does not provide any information on attributes, for
example nodal colors, but you can apply them in a special way – by choosing the
appropriate presentation builder.
The presentations of MeshVS_Mesh are built with the presentation builders
(MeshVS_PrsBuilder). You can choose between the builders to represent the object
in a different way. Moreover, you can redefine the base builder class and provide
your own presentation builder.
You can add/remove builders using the following methods:

• MeshVS_Mesh::AddBuilder

 (const Handle (MeshVS_PrsBuilder) &Builder,

 Standard_Boolean TreatAsHilighter)

• MeshVS_Mesh::RemoveBuilder (const Standard_Integer Index)

• MeshVS_Mesh::RemoveBuilderById

 (const Standard_Integer Id)

There is a set of reserved display and highlighting mode flags for MeshVS_Mesh.
Mode value is a number of bits that allows you to select additional display
parameters and combine the following mode flags:

• MeshVS_DMF_WireFrame

• MeshVS_DMF_Shading

• MeshVS_DMF_Shrink

base modes: display mesh in wireframe, shading, shrink modes.

• MeshVS_DMF_VectorDataPrs

• MeshVS_DMF_NodalColorDataPrs

• MeshVS_DMF_ElementalColorDataPrs

• MeshVS_DMF_TextDataPrs

• MeshVS_DMF_EntitiesWithData

represent different kinds of data

 3. AIS: Application Interactive Services 53

• MeshVS_DMF_DeformedPrsWireFrame

• MeshVS_DMF_DeformedPrsShading

• MeshVS_DMF_DeformedPrsShrink

display deformed mesh in wireframe, shading or shrink modes

• MeshVS_DMF_SelectionPrs

• MeshVS_DMF_HilightPrs

selection and hilighting

• MeshVS_DMF_User

user-defined mode

These values will be used by the presentation builder.
There is also a set of selection modes flags that can be grouped in a combination of
bits:

• MeshVS_SMF_0D

• MeshVS_SMF_Link

• MeshVS_SMF_Face

• MeshVS_SMF_Volume

• MeshVS_SMF_Element

Element: 0D, Link, Face and Volume grouped as a bit mask

• MeshVS_SMF_Node

• MeshVS_SMF_All

All: Element and Node grouped as a bit mask

• MeshVS_SMF_Mesh

• MeshVS_SMF_Group

Such an object, for example, can be used for displaying the object, stored in the STL
file format:

Example

// read the data and create a data source
Handle (StlMesh_Mesh) aSTLMesh = RWStl::ReadFile (aFileName);

Handle (XSDRAWSTLVRML_DataSource) aDataSource =

 new XSDRAWSTLVRML_DataSource (aSTLMesh);

// create mesh
Handle (MeshVS_Mesh) aMesh = new MeshVS();

aMesh->SetDataSource (aDataSource);

 3. AIS: Application Interactive Services 54

// use default presentation builder
Handle (MeshVS_MeshPrsBuilder) aBuilder =

 new MeshVS_MeshPrsBuilder (aMesh);

aMesh->AddBuilder (aBuilder, Standard_True);

MeshVS_NodalColorPrsBuilder allows you to represent a mesh with a color scaled
texture mapped on it. To do this you should define a color map for the color scale,
pass this map to the presentation builder, and define an appropriate value in the
range of 0.0 – 1.0 for every node.
The following example demonstrates how you can do this (please check, if the view
has been set up to display textures):

Example

// assign nodal builder to the mesh
Handle (MeshVS_NodalColorPrsBuilder) aBuilder =

 new MeshVS_NodalColorPrsBuilder

 (aMesh,MeshVS_DMF_NodalColorDataPrs | MeshVS_DMF_OCCMask);

aBuilder->UseTexture (Standard_True);

// prepare color map
Aspect_SequenceOfColor aColorMap;

aColorMap.Append ((Quantity_NameOfColor) Quantity_NOC_RED);

aColorMap.Append ((Quantity_NameOfColor) Quantity_NOC_BLUE1);

// assign color scale map values (0..1) to nodes
TColStd_DataMapOfIntegerReal aScaleMap;

…
 // iterate through the nodes and add an node id and an appropriate
 // value to the map
 aScaleMap.Bind (anId, aValue);

// pass color map and color scale values to the builder
aBuilder->SetColorMap (aColorMap);

aBuilder->SetInvalidColor (Quantity_NOC_BLACK);

aBuilder->SetTextureCoords (aScaleMap);

aMesh->AddBuilder (aBuilder, Standard_True);

 3. AIS: Application Interactive Services 55

ANNEX II : Principles of Dynamic Selection

The idea of dynamic selection is to represent the entities, which you want to select
by a bounding box in the actual 2D space of the selection view. The set of these
zones is ordered by a powerful sorting algorithm. To then find the applicative entities
actually detected at this position, all you have to do is read which rectangles are
touched at mouse position (X,Y) of the view, and judiciously reject some of the
entities which have provided these rectangles.

How to go from the objects to 2D boxes

An intermediary stage consists in representing what you can make selectable by
means of sensitive primitives and owners, entities of a high enough level to be
known by the selector mechanisms.

The sensitive primitive is capable of:

• giving a 2D bounding box to the selector.

• answering the rejection criteria positively or negatively by a
“Matches” function.

• being projected from 3D in the 2D space of the view if need be.

• returning the owner which it will represent in terms of selection.

A set of standard sensitive primitives exists in Select3D packages for 3D primitives.

The owner is the entity, which makes it possible to link the sensitive primitives and
the objects that you really wanted to detect. It stocks the diverse information, which
makes it possible to find objects. An owner has a priority (5 by default), which you
can modulate, so as to make one entity more selectable than another.

Implementation in an interactive/selectable object

1. Define the number of selection modes possible, i.e. what you want to identify by
activating each of the selection modes. Example: for an interactive object
representing a topological shape,

mode 0: selection of the interactive object itself

 3. AIS: Application Interactive Services 56

mode 1: selection of the vertices

mode 2: selection of the edges

mode 3: selection of the wires

mode 4: selection of the faces detectable

2. For each selection mode of an interactive object, “model” the set of entities, which
you want to locate by these primitives and these owners.

3. There exists an “owner” root class, SelectMgr_EntityOwner, containing a
reference to a selectable object, which has created it. If you want to stock its
information, you have to create classes derived from this root class. Example: for
shapes, there is the StdSelect_BRepOwner class, which can save a TopoDS shape
as a field as well as the Interactive Object.

4. The set of sensitive primitives which has been calculated for a given mode is
stocked in SelectMgr_Selection.

5. For an Interactive object, the modeling is done in the ComputeSelection virtual
function.

Example

Let an interactive object represent a box.
We are interested in having 2 location modes:

• mode 0: location of the whole box.

• mode 1: location of the edges on the box.

 For the first mode, all sensitive primitives will have the same owner, which will represent
the interactive object. In the second case, we have to create an owner for each edge,
and this owner will have to contain the index for the edge, which it represents. You will
create a class of owner, which derives from SelectMgr_EntityOwner.

The ComputeSelection function for the interactive box can have the following form:

void InteractiveBox::ComputeSelection

(const Handle(SelectMgr_Selection)& Sel,

 const Standard_Integer Mode)

{

switch(Mode)

{
case 0:
//locating the whole box by making its faces sensitive...
{

Handle(SelectMgr_EntityOwner) Ownr = new

 SelectMgr_EntityOwner(this,5);

for(Standard_Integer I=1;I<=Nbfaces;I++)

 3. AIS: Application Interactive Services 57

{

//Array is a TColgp_Array1OfPnt: which represents the array of vertices.
Sensitivity is

Select3D_TypeOfSensitivity value

Sel->Add(new

Select3D_SensitiveFace(Ownr,Array,Sensitivity));

}

break;

 }

 case 1:

// locates the edges
{
 for(Standard_Integer i=1;i<=12;i++)

{

// 1 owner per edge...
Handle(mypk_EdgeOwner) Ownr =

new mypk_EdgeOwner(this,i,6);

//6->priority

Sel->Add(new Select3D_SensitiveSegment

 (Ownr,firstpt(i),lastpt(i)));

}

break;

}

}

}

How It Works Concretely

Selectable objects are loaded in the selection manager, which has one or more
selectors; in general, we suggest assigning one selector per viewer. All you have to
do afterwards is to activate or deactivate the different selection modes for selectable
objects. The SelectionManager looks after the call to the ComputeSelection
functions for different objects. NOTE: This procedure is completely hidden if you use
the interactive contexts of AIS (see section 3.3, Contexts)

Example

//We have several “ interactive boxes “ box1, box2, box3;

Handle(SelectMgr_SelectionManager) SM = new
SelectMgr_SelectionManager();

Handle(StdSelect_ViewerSelector3d) VS = new
StdSelect_ViewerSelector3d();

SM->Add(VS);

SM->Load(box1);SM->Load(box2);SM->Load(box3);

 3. AIS: Application Interactive Services 58

// box load.
SM->Activate(box1,0,VS);

// activates mode 0 of box 1 in the selector VS
SM->Activate(box1,1,VS);

M->Activate(box3,1,VS);

VS->Pick(xpix,ypix,vue3d)

// detection of primitives by mouse position.

Handle(EntityOwner) POwnr = VS->OnePicked();

// picking of the “best” owner detected

for(VS->Init();VS->More();VS->Next())

{

VS->Picked();

// picking of all owners detected
 }

SM->Deactivate(box1);

// deactivate all active modes of box1

 3. AIS: Application Interactive Services 59

Sensitive primitive segments
Projections of sensitive primitives

+ sorting of boxes in view

1st activation of the box’s mode 1: calculation of sensitive primitives + 3D/2D
projection + sorting

deactivation of mode: only updated by sorting

rotation of the view: only projection + sorting of active primitives

modification of the box -> Recalculation of the active selection, recalculation flag on
the inactive ones + 3D/2D projection + sorting

 4. 3D Presentations 60

 44.. 33DD PPrreesseennttaattiioonnss

4. 1 Glossary of 3D terms

4. 1. 1 From Graphic3d

Primitive

A primitive is a drawable element. It has a definition in 3D
space. Primitives can either be lines, faces, text, or markers.
Once displayed markers and text remain the same size. Lines
and faces can be modified e.g. zoomed. Primitives must be
stored in a group.

Group A set of primitives and attributes on those primitives.
Primitives and attributes may be added to a group but cannot
be removed from a group, except by erasing them globally. A
group can have a pick identity.

Structure Manages a set of groups. The groups are mutually exclusive.
A structure can be edited, adding or removing groups. A
structure can reference other structures to form a hierarchy. It
has a default (identity) transformation and other
transformations may be applied to it (rotation, translation,
scale, etc). It has no default attributes for the primitive lines,
faces, markers, and text. Attributes may be set in a structure
but they are overridden by the attributes in each group. Each
structure has a display priority associated with it, which rules
the order in which it is redrawn in a 3D viewer. If the
visualization mode is incompatible with the view it is not
displayed in that view, e.g. a shading-only object is not
visualized in a wireframe view.

4. 1. 2 From V3d

View A view is defined by a view orientation, a view mapping, and a
context view.

Viewer Manages a set of views.

View
orientation

Defines the manner in which the observer looks at the
scene in terms of View Reference Coordinates.

View
mapping

Defines the transformation from View Reference
Coordinates to the Normalized Projection Coordinates.
This follows the Phigs scheme.

 4. 3D Presentations 61

Light There are five kinds of light source - ambient, headlight,
directional, positional and spot. The light is only activated
in a shading context in a view.

Depth-
cueing

Reduces the color intensity for the portion of an object
further away from the eye to give the impression of depth.
This is used for wireframe objects. Shaded objects do not
require this.

Z-Buffering This is a form of hidden surface removal in shading mode
only. This is always active for a view in the shading mode.
It cannot be suppressed.

Anti-aliasing This mode attempts to improve the screen resolution by
drawing lines and curves in a mixture of colors so that to
the human eye the line or curve is smooth. The quality of
the result is linked to the quality of the algorithm used by
the workstation hardware.

4. 2 Creating a 3D scene

To create 3D graphic objects and display them on the screen, follow the procedure
below:

1. Create attributes.

2. Create a 3D viewer..

3. Create a view.

4. Create an interactive context.

5. Create interactive objects.

6. Create primitives in the interactive object

7. Display the interactive object.

4. 2. 1 Create attributes

Create colors.

Example

Quantity_Color Black (Quantity_NOC_BLACK);

Quantity_Color Blue (Quantity_NOC_MATRABLUE);

Quantity_Color Brown (Quantity_NOC_BROWN4);

Quantity_Color Firebrick (Quantity_NOC_FIREBRICK);

Quantity_Color Forest (Quantity_NOC_FORESTGREEN);

Quantity_Color Gray (Quantity_NOC_GRAY70);

Quantity_Color

 4. 3D Presentations 62

MyColor (0.99, 0.65, 0.31, Quantity_TOC_RGB);

Quantity_Color Beet (Quantity_NOC_BEET);

Quantity_Color White (Quantity_NOC_WHITE);

Create line attributes.

Example

Handle(Graphic3d_AspectLine3d) CTXLBROWN =

new Graphic3d_AspectLine3d ();

Handle(Graphic3d_AspectLine3d) CTXLBLUE =

new Graphic3d_AspectLine3d ();

Handle(Graphic3d_AspectLine3d) CTXLWHITE =

new Graphic3d_AspectLine3d();

CTXLBROWN->SetColor (Brown);

CTXLBLUE->SetColor (Blue);

CTXLWHITE->SetColor (White);

Create marker attributes.

Example

Handle(Graphic3d_AspectMarker3d) CTXMFIREBRICK =

new Graphic3d_AspectMarker3d();

CTXMFIREBRICK->SetColor (Firebrick);

CTXMFIREBRICK->SetScale (1.0);

CTXMFIREBRICK->SetType (Aspect_TOM_BALL);

Create facet attributes.

Example

Handle(Graphic3d_AspectFillArea3d) CTXF =

new Graphic3d_AspectFillArea3d ();

Graphic3d_MaterialAspect BrassMaterial

(Graphic3d_NOM_BRASS);

Graphic3d_MaterialAspect GoldMaterial

(Graphic3d_NOM_GOLD);

CTXF->SetInteriorStyle (Aspect_IS_SOLID);

 4. 3D Presentations 63

CTXF->SetInteriorColor (MyColor);

CTXF->SetDistinguishOn ();

CTXF->SetFrontMaterial (GoldMaterial);

CTXF->SetBackMaterial (BrassMaterial);

CTXF->SetEdgeOn ();

Create text attributes.

Example

Handle(Graphic3d_AspectText3d) CTXT =

new Graphic3d_AspectText3d

(Forest, Graphic3d_NOF_ASCII_MONO, 1., 0.);

4. 2. 2 Create a 3D Viewer (a Windows example)

Example

Handle(Aspect_DisplayConnection) aDisplayConnection;

Handle(Graphic3d_GraphicDriver) aGraphicDriver =

 Graphic3d::InitGraphicDriver (aDisplayConnection);

TCollection_ExtendedString aName(“3DV”);

myViewer =

new V3d_Viewer (aGraphicDriver,aName.ToExtString (),
“”);

myViewer -> SetDefaultLights ();

myViewer -> SetLightOn ();

4. 2. 3 Create a 3D view (a Windows example)

It is assumed that a valid Windows window may already be accessed via the method
GetSafeHwnd().

Example

Handle (WNT_Window) aWNTWindow;
aWNTWindow = new WNT_Window (GetSafeHwnd());
myView = myViewer -> CreateView();
myView -> SetWindow (a WNTWindow);

 4. 3D Presentations 64

4. 2. 4 Create an interactive context

Example

myAISContext = new AIS_InteractiveContext (myViewer);

You are now able to display interactive objects such as an AIS_Shape.

Example

TopoDS_Shape aShape = BRepAPI_MakeBox(10,20,30)_Solid();

Handle (AIS_Shape) aAISShape = new AIS_Shape(aShape);

myAISContext -> Display (aAISShape);

4. 2. 5 Create your own interactive object

Follow the procedure below to compute the presentable object:

1. Build a presentable object inheriting from AIS_InteractiveObject (refer to the

Chapter on Presentable Objects).

2. Reuse the Prs3d_Presentation provided as an argument of the compute

methods.

NOTE

There are two compute methods: one for a ‘standard representation, and the
other for a ‘degenerated representation, i.e. in hidden line removal and
wireframe modes.

Example of the compute methods

Void

myPresentableObject::Compute

(const Handle(PrsMgr_PresentationManager3d)&

aPresentationManager,

const Handle(Prs3d_Presentation)& aPrs,

const Standard_Integer aMode)

 4. 3D Presentations 65

(

//...

)

void

myPresentableObject::Compute

(const Handle(Prs3d_Projector)&,

const Handle(Prs3d_Presentation)& aPrs)

(

//...

)

4. 2. 6 Create primitives in the interactive object

Get the group used in Prs3d_Presentation.

Example

Handle(Graphic3d_Group) TheGroup =
Prs3d_Root::CurrentGroup(aPrs);

Update the group attributes.

Example

TheGroup -> SetPrimitivesAspect(CTXLBLUE);

Create two triangles in group TheGroup.

Example

Standard_Integer aNbTria = 2;

Handle(Graphic3d_ArrayOfTriangles) aTriangles = new
Graphic3d_ArrayOfTriangles(3 * aNbTria, 0, Standard_True);

Standard_Integer anIndex;

 4. 3D Presentations 66

for (anIndex = 1; anIndex <= aNbTria; nt++)

{

 aTriangles->AddVertex(anIndex * 5., 0., 0., 1., 1., 1.);

 aTriangles->AddVertex(anIndex * 5 + 5, 0., 0., 1., 1.,
1.);

 aTriangles->AddVertex(anIndex * 5 + 2.5, 5., 0., 1., 1.,
1.);

}

TheGroup->BeginPrimitives ();

mygroup->AddPrimitiveArray(aTriangles);

TheGroup->EndPrimitives ();

The BeginPrimitives () and EndPrimitives () methods are used when creating a set
of various primitives in the same group.
Use the polyline function to create a boundary box for the Struct structure in group
TheGroup.

Example

Standard_Real Xm, Ym, Zm, XM, YM, ZM;

Struct->MinMaxValues (Xm, Ym, Zm, XM, YM, ZM);

Handle(Graphic3d_ArrayOfPolylines) aPolylines = new
Graphic3d_ArrayOfPolylines(16, 4);

aPolylines->AddBound (4);

aPolylines->AddVertex (Xm, Ym, Zm);

aPolylines->AddVertex (Xm, Ym, ZM);

aPolylines->AddVertex (Xm, YM, ZM);

aPolylines->AddVertex (Xm, YM, Zm);

aPolylines->AddBound (4);

aPolylines->AddVertex (Xm, Ym, Zm);

aPolylines->AddVertex (XM, Ym, Zm);

aPolylines->AddVertex (XM, Ym, ZM);

aPolylines->AddVertex (XM, YM, ZM);

aPolylines->AddBound (4);

aPolylines->AddVertex (XM, YM, Zm);

aPolylines->AddVertex (XM, Ym, Zm);

aPolylines->AddVertex (XM, YM, Zm);

aPolylines->AddVertex (Xm, YM, Zm);

aPolylines->AddBound (4);

aPolylines->AddVertex (Xm, YM, ZM);

aPolylines->AddVertex (XM, YM, ZM);

aPolylines->AddVertex (XM, Ym, ZM);

aPolylines->AddVertex (Xm, Ym, ZM);

TheGroup->BeginPrimitives ();

 4. 3D Presentations 67

TheGroup->AddPrimitiveArray(aPolylines);

TheGroup->EndPrimitives ();

Create text and markers in group TheGroup.

Example

static char *texte[3] = { ”Application title”,

”My company”,

”My company address.” };

Graphic3d_Array1OfVertex Tpts8 (0, 1);

Tpts8(0).SetCoord (-40.0, -40.0, -40.0);

Tpts8(1).SetCoord (40.0, 40.0, 40.0);

TheGroup->MarkerSet (Tpts8);

Graphic3d_Vertex Marker (0.0, 0.0, 0.0);

for (i=0; i<=2; i++) {

 Marker.SetCoord (-(Standard_Real)i*4 + 30,

 (Standard_Real)i*4,

 -(Standard_Real)i*4);

 TheGroup->Text (texte[i], Marker, 20.);

}

 5. 3D Resources 68

55.. 33DD RReessoouurrcceess

The 3D resources include the Graphic3d and V3d packages.

5. 1 Graphic3D

5. 1. 1 Overview

The Graphic3d package is used to create 3D graphic objects in a 3D viewer. These
objects called structures are made up of groups of primitives and attributes. A
group is the smallest editable element of a structure. A transformation can be
applied to a structure. Structures can be connected to form a tree of structures,
composed by transformations. Structures are globally manipulated by the viewer.

5. 1. 2 Provided services

Graphic structures can be:
• Displayed,
• Highlighted,
• Erased,
• Transformed,
• Connected to form a tree.

There are classes for:

• Visual attributes for lines, faces, markers, text, materials,
• Vectors and vertices,
• Graphic objects, groups, and structures.

5. 1. 3 About the primitives

 Markers

• Have one or more vertices,
• Have a type, a scale factor, and a color,
• Have a size, shape, and orientation independent of transformations.

Polygons
• Have one closed boundary,
• Have at least three vertices,
• Are planar and have a normal,
• Have interior attributes - style, color, front and back material, texture and

reflection ratio,
• Have a boundary with the following attributes - type, width scale factor,

color. The boundary is only drawn when the interior style is hollow.

 5. 3D Resources 69

Polygons with holes

• Have multiple closed boundaries, each one with at least three vertices,
• Are planar and have a normal,
• Have interior attributes - style, color, front and back material,
• Have a boundary with the following attributes - type, width scale factor,

color. The boundary is only drawn when the interior style is hollow.

Polylines
• Have two or more vertices,
• Have the following attributes - type, width scale factor, color.

Text

• Has geometric and non-geometric attributes,
• Geometric attributes - character height, character up vector, text path,

horizontal and vertical alignment, orientation, three-dimensional position,
zoomable flag

• Non-geometric attributes - text font, character spacing, character expansion
factor, color.

5. 1. 4 Primitive arrays

Primitive arrays are a more efficient approach to describe and display the primitives
from the aspects of memory usage and graphical performance. The key feature of
the primitive arrays is that the primitive data is not duplicated. For example, two
polygons could share the same vertices, so it is more efficient to keep the vertices in
a single array and specify the polygon vertices with indices of this array. In addition
to such kind of memory savings, the OpenGl graphics driver provides the Vertex
Buffer Objects (VBO). VBO is a sort of video memory storage that can be allocated
to hold the primitive arrays, thus making the display operations more efficient and
releasing the RAM memory.

The Vertex Buffer Objects are enabled by default, but VBOs availability depends on
the implementation of OpenGl. If the VBOs are unavailable or there is not enough
video memory to store the primitive arrays, the RAM memory will be used to store
the arrays.

The Vertex Buffer Objects can be disabled at the application level. You can use the
following method to enable/disable VBOs:

• void Graphic3d_GraphicDriver::EnableVBO

 (const Standard_Boolean status)

The following example shows how to disable the VBO support:

 5. 3D Resources 70

Example

// get the graphic driver
Handle (Graphic3d_GraphicDriver) aDriver =

 myAISContext->CurrentViewer()->Driver();

// disable VBO support
aDriver->EnableVBO (Standard_False);

Please note that the use of Vertex Buffer Objects requires the application level
primitive data provided by the Graphic3d_ArrayOfPrimitives to be transferred to the
video memory. TKOpenGl transfers the data and releases the
Graphic3d_ArrayOfPrimitives internal pointers to the primitive data. Thus it might be
necessary to pay attention to such kind of behaviour, as the pointers could be
modified (nullified) by the TKOpenGl.

The different types of primitives could be presented with the following primitive
arrays:

• Graphic3d_ArrayOfPoints,

• Graphic3d_ArrayOfPolygons,

• Graphic3d_ArrayOfPolylines,

• Graphic3d_ArrayOfQuadrangles,

• Graphic3d_ArrayOfQuadrangleStrips,

• Graphic3d_ArrayOfSegments,

• Graphic3d_ArrayOfTriangleFans,

• Graphic3d_ArrayOfTriangles,

• Graphic3d_ArrayOfTriangleStrips.

The Graphic3d_ArrayOfPrimitives is a base class for these primitive arrays.

There is a set of similar methods to add vertices to the primitive array:

• Standard_Integer Graphic3d_ArrayOfPrimitives::AddVertex

These methods take vertex coordinates as an argument and allow you to define the
color, the normal and the texture coordinates assigned to the vertex. The return
value is the actual number of vertices in the array.

You can also modify the values assigned to the vertex or query these values by the
vertex index:

• void Graphic3d_ArrayOfPrimitives::SetVertice

• void Graphic3d_ArrayOfPrimitives::SetVertexColor

• void Graphic3d_ArrayOfPrimitives::SetVertexNormal

• void Graphic3d_ArrayOfPrimitives::SetVertexTexel

 5. 3D Resources 71

• gp_Pnt Graphic3d_ArrayOfPrimitives::Verticie

• gp_Dir Graphic3d_ArrayOfPrimitives::VertexNormal

• gp_Pnt2d Graphic3d_ArrayOfPrimitives::VertexTexel

• Quantity_Color Graphic3d_ArrayOfPrimitives::VertexColor

• void Graphic3d_ArrayOfPrimitives::Verticie

• void Graphic3d_ArrayOfPrimitives::VertexNormal

• void Graphic3d_ArrayOfPrimitives::VertexTexel

• void Graphic3d_ArrayOfPrimitives::VertexColor

The following example shows how to define an array of points:

Example

// create an array
Handle (Graphic3d_ArrayOfPoints) anArray =

 new Graphic3d_ArrayOfPoints (aVerticiesMaxCount);

// add vertices to the array
anArray->AddVertex (10.0, 10.0, 10.0);

anArray->AddVertex (0.0, 10.0, 10.0);

// add the array to the structure
Handle (Graphic3d_Group) aGroup =

 Prs3d_Root::CurrentGroup (aPrs);

aGroup->BeginPrimitives ();

aGroup->AddPrimitiveArray (anArray);

aGroup->EndPrimitives ();

If the primitives share the same vertices (polygons, triangles, etc) then you can
define them as indices of the vertices array. The following method allows you to
define the primitives by the indices:

• Standard_Integer Graphic3d_ArrayOfPrimitives::AddEdge

This method adds an “edge” in the range [1, VertexNumber()] in the array.
It is also possible to query the vertex defined by an edge:

• Standard_Integer Graphic3d_ArrayOfPrimitives::Edge

The following example shows how to define an array of triangles:

Example

// create an array
Standard_Boolean IsNormals = Standard_False;

Standard_Boolean IsColors = Standard_False;

 5. 3D Resources 72

Standard_Boolean IsTextureCrds = Standard_False;

Handle (Graphic3d_ArrayOfTriangles) anArray =

 new Graphic3d_ArrayOfTriangles (aVerticesMaxCount,

 aEdgesMaxCount,

 IsNormals,

 IsColors,

 IsTextureCrds);

// add vertices to the array
anArray->AddVertex (-1.0, 0.0, 0.0); // vertex 1
anArray->AddVertex (1.0, 0.0, 0.0); // vertex 2
anArray->AddVertex (0.0, 1.0, 0.0); // vertex 3
anArray->AddVertex (0.0,-1.0, 0.0); // vertex 4

// add edges to the array
anArray->AddEdge (1); // first triangle
anArray->AddEdge (2);

anArray->AddEdge (3);

anArray->AddEdge (1); // second triangle
anArray->AddEdge (2);

anArray->AddEdge (4);

// add the array to the structure
Handle (Graphic3d_Group) aGroup =

 Prs3d_Root::CurrentGroup (aPrs);

aGroup->BeginPrimitives ();

aGroup->AddPrimitiveArray (anArray);

aGroup->EndPrimitives ();

If the primitive array presents primitives built from sequential sets of vertices, for
example polygons, then you can specify the bounds, or the number of vertices for
each primitive. You can use the following method to define the bounds and the color
for each bound:

• Standard_Integer Graphic3d_ArrayOfPrimitives::AddBound

This method returns the actual number of bounds.
It is also possible to set the color and query the number of edges in the bound and
bound color:

• Standard_Integer Graphic3d_ArrayOfPrimitives::Bound

• Quantity_Color Graphic3d_ArrayOfPrimitives::BoundColor

• void Graphic3d_ArrayOfPrimitives::BoundColor

The following example shows how to define an array of polygons:

 5. 3D Resources 73

Example

// create an array
Standard_Boolean IsNormals = Standard_False;

Standard_Boolean IsVertexColors = Standard_False;

Standard_Boolean IsFaceColors = Standard_False;

Standard_Boolean IsTextureCrds = Standard_False;

Handle (Graphic3d_ArrayOfPolygons) anArray =

 new Graphic3d_ArrayOfPolygons (aVerticesMaxCount,

 aBoundsMaxCount,

 aEdgesMaxCount,

 IsNormals,

 IsVertexColors,

 IsFaceColors,

 IsTextureCrds);

// add bounds to the array, first polygon
anArray->AddBound (3);

anArray->AddVertex (-1.0, 0.0, 0.0);

anArray->AddVertex (1.0, 0.0, 0.0);

anArray->AddVertex (0.0, 1.0, 0.0);

// add bounds to the array, second polygon
anArray->AddBound (4);
anArray->AddVertex (-1.0, 0.0, 0.0);

anArray->AddVertex (1.0, 0.0, 0.0);

anArray->AddVertex (1.0,-1.0, 0.0);

anArray->AddVertex (-1.0,-1.0, 0.0);

// add the array to the structure
Handle (Graphic3d_Group) aGroup =

 Prs3d_Root::CurrentGroup (aPrs);

aGroup->BeginPrimitives ();

aGroup->AddPrimitiveArray (anArray);

aGroup->EndPrimitives ();

There are also several helper methods. You can get the type of the primitive array:

• Graphic3d_TypeOfPrimitiveArray
 Graphic3d_ArrayOfPrimitives::Type

• Standard_CString Graphic3d_ArrayOfPrimitives::StringType

and check if the primitive array provides normals, vertex colors, vertex texels
(texture coordinates):

• Standard_Boolean
 Graphic3d_ArrayOfPrimitives::HasVertexNormals

 5. 3D Resources 74

• Standard_Boolean
 Graphic3d_ArrayOfPrimitives::HasVertexColors

• Standard_Boolean
 Graphic3d_ArrayOfPrimitives::HasVertexTexels

or get the number of vertices, edges and bounds:

• Standard_Integer
 Graphic3d_ArrayOfPrimitives::VertexNumber

• Standard_Integer
 Graphic3d_ArrayOfPrimitives::EdgeNumber

• Standard_Integer
 Graphic3d_ArrayOfPrimitives::BoundNumber

5. 1. 5 About materials

A material is defined by coefficients of:
• Transparency,
• Diffuse reflection,
• Ambient reflection,
• Specular reflection.

Two properties define a given material:

• Transparency
• Reflection properties - its absorption and reflection of light.

Diffuse reflection is seen as a component of the color of the object.

Specular reflection is seen as a component of the color of the light source.

The following items are required to determine the three colors of reflection:

• Color,
• Coefficient of diffuse reflection,
• Coefficient of ambient reflection,
• Coefficient of specular reflection.

5. 1. 6 About textures

A texture is defined by a name.
Three types of texture are available:

• 1D,
• 2D,
• Environment mapping.

 5. 3D Resources 75

5. 1. 7 Graphic3d text

The OpenGl graphics driver uses advanced text rendering powered by FTGL library.
This library provides vector text rendering, as a result the text can be rotated and
zoomed without quality loss.
Graphic3d text primitives have the following features:

• fixed size (non-zoomable) or zoomable,
• can be rotated to any angle in the view plane,
• support unicode charset.

The text attributes for the group could be defined with the Graphic3d_AspectText3d
attributes group.
To add any text to the graphic structure you can use the following methods:

• void Graphic3d_Group::Text

(const Standard_CString AText,

 const Graphic3d_Vertex& APoint,

 const Standard_Real AHeight,

 const Quantity_PlaneAngle AAngle,

 const Graphic3d_TextPath ATp,

 const Graphic3d_HorizontalTextAlignment AHta,

 const Graphic3d_VerticalTextAlignment AVta,

 const Standard_Boolean EvalMinMax),

AText parameter is the text string, APoint is the three-dimensional position of
the text, AHeight is the text height, AAngle is the orientation of the text (at
the moment, this parameter has no effect, but you can specify the text
orientation through the Graphic3d_AspectText3d attributes).

ATp parameter defines the text path, AHta is the horizontal alignment of the
text, AVta is the vertical alignment of the text.

You can pass Standard_False as EvalMinMax if you don’t want the
graphic3d structure boundaries to be affected by the text position.

Please note that the text orientation angle can be defined by
Graphic3d_AspectText3d attributes.

• void Graphic3d_Group::Text

(const Standard_CString AText,

 const Graphic3d_Vertex& APoint,

 const Standard_Real AHeight,

 const Standard_Boolean EvalMinMax)

• void Graphic3d_Group::Text

(const TCcollection_ExtendedString &AText,

const Graphic3d_Vertex& APoint,

 5. 3D Resources 76

 const Standard_Real AHeight,

 const Quantity_PlaneAngle AAngle,

 const Graphic3d_TextPath ATp,

 const Graphic3d_HorizontalTextAlignment AHta,

 const Graphic3d_VerticalTextAlignment AVta,

 const Standard_Boolean EvalMinMax)

• void Graphic3d_Group::Text

(const TCcollection_ExtendedString &AText,

 const Graphic3d_Vertex& APoint,

 const Standard_Real AHeight,

 const Standard_Boolean EvalMinMax)

Example

// get the group
Handle (Graphic3d_Group) aGroup =

 Prs3d_Root::CurrentGroup (aPrs);

// change the text aspect
Handle(Graphic3d_AspectText3d) aTextAspect =

 new Graphic3d_AspectText3d ();

aTextAspect->SetTextZoomable (Standard_True);

aTextAspect->SetTextAngle (45.0);

aGroup->SetPrimitivesAspect (aTextAspect);

// add a text primitive to the structure
Graphic3d_Vertex aPoint (1, 1, 1);

aGroup->Text (Standard_CString (“Text”), aPoint, 16.0);

5. 1. 8 Display priorities

Structure display priorities control the order in which structures are drawn. When you
display a structure you specify its priority. The lower the value, the lower the display
priority. When the display is regenerated the structures with the lowest priority are
drawn first. For structures with the same display priority the order in which they were
displayed determines the drawing order. CAS.CADE supports eleven structure
display priorities.

5. 1. 9 About structure hierarchies

 5. 3D Resources 77

The root is the top of a structure hierarchy or structure network. The attributes of a
parent structure are passed to its descendants. The attributes of the descendant
structures do not affect the parent. Recursive structure networks are not supported.

5. 2 V3d
5. 2. 1 Overview

The V3d package provides the resources to define a 3D viewer and the views
attached to this viewer (orthographic, perspective). This package provides the
commands to manipulate the graphic scene of any 3D object visualized in a view on
screen.
A set of high-level commands allows the separate manipulation of parameters and
the result of a projection (Rotations, Zoom, Panning, etc.) as well as the visualization
attributes (Mode, Lighting, Clipping, Depth-cueing, etc) in any particular view.

5. 2. 2 Provided services
The V3d package is basically a set of tools directed by commands from the viewer
front-end. This tool set contains methods for creating and editing classes of the
viewer such as:

• Default parameters of the viewer,
• Views (orthographic, perspective),
• Lighting (positional, directional, ambient, spot, headlight),
• Clipping planes (note that only Z-clipping planes can work with the Phigs

interface),
• Instantiated sequences of views, planes, light sources, graphic structures,

and picks,
• Various package methods.

5. 2. 3 A programming example

Example

This sample TEST program for the V3d Package uses primary packages Xw and
Graphic3d and secondary packages Visual3d, Aspect, Quantity, Phigs, math.

//Create a default display connection
Handle(Aspect_DisplayConnection) aDisplayConnection =

 new Aspect_DisplayConnection();

//Create a Graphic Driver from the default Aspect_DisplayConnection

Handle(Graphic3d_GraphicDriver) GD =

Graphic3d::InitGraphicDriver (aDisplayConnection);

// Create a Viewer to this Driver
Handle(V3d_Viewer) VM = new V3d_Viewer(GD, 400.,

 5. 3D Resources 78

// Space size
V3d_Xpos,// Default projection Quantity_NOC_DARKVIOLET,

// Default background
V3d_ZBUFFER,

// Type of visualization
V3d_GOURAUD,

// Shading model
V3d_WAIT);

// Update mode
// Create a structure in this Viewer
Handle(Graphic3d_Structure) S =

new Graphic3d_Structure(VM->Viewer()) ;

// Type of structure
S->SetVisual (Graphic3d_TOS_SHADING);

// Create a group of primitives in this structure
Handle(Graphic3d_Group) G = new Graphic3d_Group(S) ;

// Fill this group with one polygon of size 100
Graphic3d_Array1OfVertex Points(0,3) ;

Points(0).SetCoord(-100./2.,-100./2.,-100./2.) ;

Points(1).SetCoord(-100./2., 100./2.,-100./2.) ;

Points(2).SetCoord(100./2., 100./2.,-100./2.) ;

Points(3).SetCoord(100./2.,-100./2.,-100./2.) ;
Normal.SetCoord(0.,0.,1.) ;

G->Polygon(Points,Normal) ;

// Create Ambient and Infinite Lights in this Viewer
Handle(V3d_AmbientLight) L1 = new V3d_AmbientLight

(VM,Quantity_NOC_GRAY50) ;

Handle(V3d_DirectionalLight) L2 = new V3d_DirectionalLight

(VM,V3d_XnegYnegZneg,Quantity_NOC_WHITE) ;

// Create a 3D quality Window with the same DisplayConnection
Handle(Xw_Window) W =

new Xw_Window(aDisplayConnection,”Test
V3d”,0.5,0.5,0.5,0.5) ;

// Map this Window to this screen
 W->Map() ;

// Create a Perspective View in this Viewer
Handle(V3d_PerspectiveView) V =

new V3d_PerspectiveView(VM);

// Set the Eye position
V->SetEye(100.,100.,100.) ;

 5. 3D Resources 79

// Associate this View with the Window
V->SetWindow(W) ;

// Activate ALL defined Lights in this View
V->SetLightOn() ;

// Display ALL structures in this View
(VM->Viewer())->Display() ;

// Finally update the Visualization in this View
V->Update() ;

5. 2. 4 Glossary of view transformations

The following terms are used to define view orientation, i.e. transformation from
World Coordinates (WC) to the View Reference Coordinates system (VRC)
View Reference
Point (VRP)

Defines the origin of View Reference Coordinates.

View Reference
Plane Normal
(VPN)

Defines the normal of projection plane of the view.

View Reference
Up Vector (VUP)

Defines the vertical of observer of the view.

The following terms are used to define view mapping, i.e. transformation from View
Reference Coordinates (VRC) to the Normalized Projection Coordinates (NPC)
Projection type Orthographic or perspective.

Projection
Reference Point
(PRP)

Defines the observer position.

Front Plane
Distance (FPD)

Defines the position of the front clipping plane in
View Reference Coordinates system.

Back Plane
Distance (BPD)

Defines the position of the back clipping plane in
View Reference Coordinates system.

View Plane
Distance (VPD)

Defines the position of the view projection plane in
View Reference Coordinates system. View plane
must be located between front and back clipping
planes.

Window Limits Defines the visible part of the view projection plane
(left, right, top and bottom boundaries: Umin, Umax,
Vmax and Vmin respectively) in View Reference
Coordinates.

The V3d_View API uses the following terms to define view orientation and mapping
At Position of View Reference Point (VRP) in World

 5. 3D Resources 80

Coordinates

Eye Position of the observer (projection reference point)
in World Coordinates. Influences to the view
projection vector and depth value.

Proj View projection vector (VPN)

Up Position of the high point / view up vector (VUP)

Depth Distance between Eye and At point

ZSize Distance between front and back clipping planes

Size Window size in View Reference Coordinates

Focal Reference
point

Position of Projection Reference Point (PRP) in
World Coordinates

Focale Distance between Projection Reference Point (PRP)
and View projection plane

5. 2. 5 Management of perspective projection
The perspective projection allows definition of viewing volume as a truncated
pyramid (frustum) with apex at the Projection Reference Point. In the View
Reference Coordinate system it can be presented by the following picture:

Figure 1 View Reference Coordinate System, perspective viewing volume and

view mapping parameters

During panning, window limits are changed, as if a sort of “frame” through which the
user sees a portion of the view plane was moved over the view. The perspective
frustum itself remains unchanged.

ZSize

Z axis

U,V axis

View Reference
Point

Projection Reference
Point

Back
plane

Front
plane

Depth FPD

VPD BPD View
plane

 5. 3D Resources 81

The perspective projection is defined by two parameters:

• Depth value defines distance between Projection Reference Point and the
nearest (front) clipping plane.

• ZSize defines distance between Front and Back clipping planes. The
influence of this parameter is caused by the OCCT specific to center viewing
volume around View Reference Point so the front and back plane distances
were the same: FPD = BPD = ZSize / 2.

Note that the closer the displayed object to the Projection Reference Point the more
visible its perspective distortion. Thus, in order to get a good perspective it is
recommended to set ZSize value comparable with the expected model size and
small Depth value.

However, very small Depth values might lead to inaccuracy of “fit all” operation and
to non-realistic perspective distortion.

Example

// Create a Perspective View in Viewer VM
Handle(V3d_PerspectiveView) V =

new V3d_PerspectiveView(VM);

// Set the ZSize
V->SetZSize(2000.) ;

// Set the Depth value
V->SetDepth(20.) ;

// Set the current mapping as default
// to be used by Reset() operation
V->SetViewMappingDefault() ;

As an alternative to manual setting of perspective parameters the
V3d_View::DepthFitAll function can be used.

Example

// Display shape in Viewer VM
Handle(AIS_InteractiveContext) aContext =

new AIS_InteractiveContext(VM);

aContext->Display(shape);

// Create a Perspective View in Viewer VM
Handle(V3d_PerspectiveView) V =

new V3d_PerspectiveView(VM);

 5. 3D Resources 82

// Set automatically the perspective parameters
V->DepthFitAll() ;

// Fit view to object size
V->FitAll();

// Set the current mapping as default
// to be used by Reset() operation
V->SetViewMappingDefault() ;

It is necessary to take into account that during rotation Z size of the view might be
modified automatically to fit the model into the viewing volume.
Make sure the Eye point never gets between the Front and Back clipping planes.
In perspective view, changing Z size results in changed perspective effect. To avoid
this, an application should specify the maximum expected Z size using
V3d_View::SetZSize() method in advance.
V3d_View::FitAll() with FitZ = Standard_True and V3d_View::ZFitAll() also change
the perspective effect and should therefore be used with precautions similar to those
for rotation.

5. 2. 6 Underlay and overlay layers management
In addition to interactive 3d graphics displayed in the view you can display an
underlying and overlying graphics: text, color scales, drawings.

All of the v3d view’s graphical objects in the overlay are managed by the default
layer manager (V3d_LayerMgr). The v3d view has a basic layer manager capable of
displaying the color scale, but you can redefine this class to provide your own
overlay and underlay graphics.

You can assign your own layer manager to the v3d view using the following method:

• void V3d_View::SetLayerMgr

(const Handle (V3d_LayerMgr)& aMgr)

There are three virtual methods to prepare graphics in the manager for further
drawing (set up layer dimensions, draw static graphics). These methods could be
redefined:

• void V3d_LayerMgr::Begin ()

• void V3d_LayerMgr::Redraw ()

• void V3d_LayerMgr::End ()

The layer manager controls layers (Visual3d_Layer) and layer items
(Visual3d_LayerItem). Both the overlay and underlay layers can be created by the
layer manager.

 5. 3D Resources 83

The layer entity is presented by the Visual3d_Layer class. This entity provides
drawing services in the layer, for example:

• void Visual3d_Layer::DrawText

• void Visual3d_Layer::DrawRectangle

• void Visual3d_Layer::SetColor

• void Visual3d_Layer::SetViewport

The following example demonstrates how to draw overlay graphics by the
V3d_LayerMgr:

Example

// redefined method of V3d_LayerMgr
void MyLayerMgr::Redraw ()

{

 Quantity_Color aRed (Quantity_NOC_RED);

 myOverlayLayer->SetColor (aRed);

 myOverlayLayer->DrawRectangle (0, 0, 100, 100);

}

The layer contains layer items that will be displayed on view redraw. Such items are
the Visual3d_LayerItem entities. To manipulate Visual3d_LayerItem entities
assigned to the layer’s internal list you can use the following methods:

• void Visual3d_Layer::AddLayerItem

(const Handle (Visual3d_LayerItem)& Item)

• void Visual3d_Layer::RemoveLayerItem

(const Handle (Visual3d_LayerItem)& Item)

• void Visual3d_Layer::RemoveAllLayerItems ()

• const Visual3d_NListOfLayerItem&

Visual3d_Layer::GetLayerItemList ()

The layer’s items are rendered when the following method is called by the graphical
driver:

• void Visual3d_Layer::RenderLayerItems ()

The Visual3d_LayerItem has virtual methods that are used to render the item:

• void Visual3d_LayerItem::RedrawLayerPrs ()

• void Visual3d_LayerItem::ComputeLayerPrs ()

 5. 3D Resources 84

The item’s presentation can be computed before drawing by the ComputeLayerPrs
method to save time on redraw. It also has an additional flag that is used to tell that
the presentation should be recomputed:

• void Visual3d_LayerItem::SetNeedToRecompute

(const Standard_Boolean NeedToRecompute)

• Standard_Boolean Visual3d_LayerItem::IsNeedToRecompute

An example of Visual3d_LayerItem is V3d_ColorScaleLayerItem that represents the
color scale entity as the layer’s item.
The V3d_ColorScaleLayerItem sends render requests to the color scale entity
represented by it. As this entity (V3d_ColorScale) is assigned to the V3d_LayerMgr
it uses its overlay layer’s services for drawing:

Example

// tell V3d_ColorScale to draw itself
void V3d_ColorScaleLayerItem::RedrawLayerPrs ()

{

 Visual3d_LayerItem::RedrawLayerPrs ()

 if (!MyColorScale.IsNull ())

 MyColorScale->DrawScale ();

}

// V3d_ColorScale has a reference to a LayerMgr
void V3d_ColorScale::DrawScale ()

{

 // calls V3d_ColorScale::PaintRect, V3d_ColorScale::PaintText, etc …
}

// PaintRect method uses overlay layer of LayerMgr to draw a rectangle
void V3d_ColorScale::PaintRect

 (const Standard_Integer X, const Standard_Integer Y,

 const Standard_Integer W, const Standard_Integer H,

 const Quantity_Color aColor,

 const Standard_Boolean aFilled)

{

 const Handle (Visual3d_Layer)& theLayer =

 myLayerMgr->Overlay ();

 …

 theLayer->SetColor (aColor);

 theLayer->DrawRectangle (X, Y, W, H);

 …
}

 5. 3D Resources 85

5. 2. 7 View background styles
There are three types of background styles available for V3d_view: solid color,
gradient color and image.

To set solid color for the background you can use the following methods:

• void V3d_View::SetBackgroundColor

(const Quantity_TypeOfColor Type,

 const Quantity_Parameter V1,

 const Quantity_Parameter V2,

 const Quantity_Parameter V3)

This method allows you to specify the background color in RGB (red, green,
blue) or HLS (hue, lightness, saturation) color spaces, so the appropriate
values of the Type parameter are Quantity_TOC_RGB and
Quantity_TOC_HLS. Note that the color value parameters V1,V2,V3 should
be in the range between 0.0-1.0.

• void V3d_View::SetBackgroundColor

(const Quantity_Color &Color)

• void V3d_View::SetBackgroundColor

(const Quantity_NameOfColor Name)

The gradient background style could be set up with the following methods:

• void V3d_View::SetBgGradientColors

(const Quantity_Color& Color1,

 const Quantity_Color& Color2,

 const Aspect_GradientFillMethod FillStyle,

 const Standard_Boolean update)

• void V3d_View::SetBgGradientColors

(const Quantity_NameOfColor Color1,

 const Quantity_NameOfColor Color2,

 const Aspect_GradientFillMethod FillStyle,

 const Standard_Boolean update)

The Color1 and Color2 parameters define the boundary colors of
interpolation, the FillStyle parameter defines the direction of interpolation.
You can pass Standard_True as the last parameter to update the view.

The fill style can be also set with the following method:

• void V3d_View::SetBgGradientStyle

(const Aspect_GradientFillMethod AMethod,

const Standard_Boolean update)

 5. 3D Resources 86

To get the current background color you can use the following methods:

• void V3d_View::BackgroundColor

(const Quantity_TypeOfColor Type,

 Quantity_Parameter &V1,

 Quantity_Parameter &V2,

 Quantity_Parameter &V3)

• Quantity_Color V3d_View::BackgroundColor()

• void V3d_View::GradientBackgroundColors

(Quantity_Color& Color1,

 Quantity_Color& Color2)

• Aspect_GradientBackground GradientBackground()

To set the image as a background and change the background image style you can
use the following methods:

• void V3d_View::SetBackgroundImage

(const Standard_CString FileName,

 const Aspect_FillMethod FillStyle,

 const Standard_Boolean update)

• void V3d_View::SetBgImageStyle

(const Aspect_FillMethod FillStyle,

 const Standard_Boolean update)

The FileName parameter defines the image file name and the path to it, the FillStyle
parameter defines the method of filling the background with the image. The methods
are:

• Aspect_FM_NONE: draw the image in the default position

• Aspect_FM_CENTERED: draw the image at the center of the view

• Aspect_FM_TILED: tile the view with the image

• Aspect_FM_STRETCH: stretch the image over the view

5. 2. 8 User-defined clipping planes
The ability to define custom clipping planes could be very useful for some tasks. The
v3d view provides such an opportunity.

The V3d_Plane class provides the services of clipping planes: it holds the plane
equation coefficients and provides its graphical representation. To set and get plane
equation coefficients you can use the following methods:

• void V3d_Plane::SetPlane

(const Quantity_Parameter A,

 const Quantity_Parameter B,

 5. 3D Resources 87

 const Quantity_Parameter C,

 const Quantity_Parameter D)

• void V3d_Plane::Plane

(Quantity_Parameter& A,

 Quantity_Parameter& B,

 Quantity_Parameter& C,

 Quantity_Parameter& D)

 V3d_Plane also provides display services:

• void V3d_Plane::Display

(const Handle(V3d_View)& aView,

 const Quantity_Color& aColor)

• void V3d_Plane::Erase ()

• Standard_Boolean V3d_Plane::IsDisplayed ()

The Display method could be redefined to provide custom representation of
the clipping plane.

The clipping planes could be activated with the following methods:

• void V3d_View::SetPlaneOn

(const Handle(V3d_Plane)& MyPlane)

• void V3d_View::SetPlaneOn ()

The first method appends the given V3d_Plane to the internal list of user-
defined clipping planes of a view and activates it. If the plane is already in
the list, it becomes activated. The second method activates all of the planes
defined for the view.

The clipping planes could be deactivated with the similar methods:

• void V3d_View::SetPlaneOff

(const Handle(V3d_Plane)& MyPlane)

• void V3d_View::SetPlaneOff ()

The only difference is that these methods remove the user-defined clipping planes
from the internal list. Thus, the view retains only active clipping planes.

You can iterate through the active planes using the following methods:

• void V3d_View::InitActivePlanes ()

sets the iterator to the beginning of the internal list of clipping planes

• Standard_Boolean V3d_View::MoreActivePlanes ()

returns Standard_True if there are more active planes to return

• void V3d_View::NextActivePlanes ()

sets the iterator to the next active plane in the list

 5. 3D Resources 88

• Handle(V3d_Plane) V3d_View::ActivePlane ()

returns the active plane

or check if a certain clipping plane has been activated:

• Standard_Boolean V3d_View::IsActivePlane

(const Handle (V3d_Plane)& aPlane)The number of clipping
planes is limited. The following method allows you to check if it is possible to
activate at least one more plane in the view or the limit has been reached:

• Standard_Boolean V3d_View::IfMorePlanes ()

Example

// try to use an existing clipping plane or create a new one
Handle(V3d_Plane) aCustomPlane;

myView->InitActivePlanes ();

if (myView->MoreActivePlanes ())

 aCustomPlane = myView->ActivePlane ();

else

 aCustomPlane = new V3d_Plane ();

// calculate new coefficients
Standard_Real a, b, c, d;

Standard_Real x = 0.0, y = 0.0, z = 10.0;

Standard_Real dx = 0.0, dy = 0.0, dz = 1.0;

gp_Pln aPln (gp_Pnt (x, y, z), gp_Dir (dx, dy, dz));

aPln.Coefficients (a, b, c, d);

// update plane
aCustomPlane->SetPlane (a, b, c, d);

myView->SetPlaneOn (aCustomPlane);

5. 2. 9 Dumping a 3D scene into an image file

The 3D scene displayed in the view could be dumped in high resolution into an
image file. The high resolution (8192x8192 on some implementations) is achieved
using the Frame Buffer Objects (FBO) provided by the graphic driver. Frame Buffer
Objects enable off-screen rendering into a virtual view to produce images in the
background mode (without displaying any graphics on the screen).

The V3d_View has the following methods for dumping the 3D scene:

• Standard_Boolean V3d_View::Dump

(const Standard_CString theFile,

 5. 3D Resources 89

 const Image_TypeOfImage theBufferType)

• Standard_Boolean V3d_View::Dump

(const Standard_CString theFile,

 const Aspect_FormatOfSheetPaper theFormat,

 const Image_TypeOfImage theBufferType)

These methods dump the 3D scene into an image file passed by its name
and path as theFile.

The raster image data handling algorithm is based on the Image_PixMap
class. The supported extensions are “.png”, “.bmp”, “.jpg”, “.gif”.

The first method dumps the scene into an image file with the view
dimensions. The second method allows you to make the dimensions of the
output image compatible to a certain format of printing paper passed by
theFormat argument.

The value passed as theBufferType argument defines the type of the buffer
for an output image (RGB, RGBA, floating-point, RGBF, RGBAF). Both
methods return Standard_True if the scene has been successfully dumped.

Please note that dumping the image for a paper format with large
dimensions is a memory consuming operation, it might be necessary to take
care of preparing enough free memory to perform this operation.

• Handle_Image_PixMap V3d_View::ToPixMap

(const Standard_Integer theWidth,

 const Standard_Integer theHeight,

 const Image_TypeOfImage theBufferType,

 const Standard_Boolean theForceCentered)

This method allows you to dump the displayed 3d scene into a pixmap with a
width and height passed as theWidth and theHeight arguments.

The value passed as theBufferType argument defines the type of the buffer
for a pixmap (RGB, RGBA, floating-point, RGBF, RGBAF).

The last parameter allows you to center the 3D scene on dumping.

All these methods assume that you have created a view and displayed a 3d scene in
it. However, the window used for such a view could be virtual, so you can dump the
3d scene in the background mode without displaying it on the screen. To use such
an opportunity you can perform the following steps:

1) Create display connection;

2) Initialize graphic driver;

3) Create a window;

4) Set up the window as virtual, Aspect_Window::SetVirtual ();

5) Create a view and an interactive context;

6) Assign the virtual window to the view;

7) Display a 3D scene;

 5. 3D Resources 90

8) Use one of the functions described above to dump the 3D scene.

The following example demonstrates this procedure for the WNT_Window:

Example

// create a dummy display connection
Handle(Aspect_DisplayConnection) aDisplayConnection;

// create a graphic driver
Handle (Graphic3d_GraphicDriver) aDriver =

 Graphic3d::InitGraphicDriver (aDisplayConnection);

// create a window
Standard_Integer aDefWidth = 800;

Standard_Integer aDefHeight = 600;

Handle (WNT_WClass) aWClass =

 new WNT_WClass (“Virtual Class”,DefWindowProc,

 CS_VREDRAW | CS_HREDRAW, 0, 0,

 ::LoadCursor (NULL, IDC_ARROW));

Handle (WNT_Window) aWindow =

 new WNT_Window (“VirtualWnd”, aWClass,

 WS_OVERLAPPEDWINDOW, 0, 0,

 aDefWidth, aDefHeight);

// set up the window as virtual
aWindow->SetVirtual (Standard_True);

// create a view and an interactive context
Handle (V3d_Viewer) aViewer =

 new V3d_Viewer (aDriver,

 Standard_ExtString (“Virtual”));

Handle (AIS_InteractiveContext) aContext =

 new AIS_InteractiveContext (aViewer);

Handle (V3d_View) aView = aViewer->CreateView ();

// assign the virtual window to the view
aView->SetWindow (aWindow);

// display a 3D scene
Handle (AIS_Shape) aBox =

 new AIS_Shape (BRepPrimAPI_MakeBox (5, 5, 5));

aContext->Display (aBox);

aView->FitAll();

// dump the 3D scene into an image file

 5. 3D Resources 91

aView->Dump (“3dscene.png”);

5. 2. 10 Printing a 3D scene
The contents of a view can be printed out. Moreover, the OpenGl graphic driver
used by the v3d view supports printing in high resolution. The print method uses the
OpenGl frame buffer (Frame Buffer Object) for rendering the view contents and
advanced print algorithms that allow printing in, theoretically, any resolution.

The following method prints the view contents:

• void V3d_View::Print

(const Aspect_Handle hPrnDC,

 const Standard_Boolean showDialog,

 const Standard_Boolean showBackground,

 const Standard_CString filename,

 const Aspect_PrintAlgo printAlgorithm)

The hPrnDC is the printer device handle. You can pass your own printer
handle or “NULL” to select the printer by the default dialog. In that case you
can use the default dialog or pass “Standard_False” as the showDialog
argument to select the default printer automatically.
You can define the filename for the printer driver if you want to print out the
result into a file.
If you do not want to print the background, you can pass “Standard_False”
as the showBackground argument.
The printAlgorithm argument allows you to choose between two print
algorithms that define how the 3d scene is mapped to the print area when
the maximum dimensions of the frame buffer are smaller than the
dimensions of the print area. You can pass the following values as the
printAlgorithm argument:

• Aspect_PA_STRETCH,

• Aspect_PA_TILE

The first value defines the stretch algorithm: the scene is drawn with the
maximum possible frame buffer dimensions and then is stretched to the
whole printing area. The second value defines TileSplit algorithm: covering
the whole printing area by rendering multiple parts of the viewer.

Please note that at the moment printing is implemented only for Windows.

5. 2. 11 Vector image export
The 3D content of a view can be exported to the vector image file format. The vector
image export is powered by the GL2PS library. You can export your 3D scenes into
a file format supported by the GL2PS library: PostScript (PS), Encapsulated
PostScript (EPS), Portable Document Format (PDF), Scalable Vector Graphics
(SVG), LaTeX file format and Portable LaTeX Graphics (PGF).

 5. 3D Resources 92

The following method of Visual3d_View class allows you to export your 3D scene:

• void Visual3d_View::Export

(const Standard_CString FileName,

 const Graphic3d_ExportFormat Format,

 const Graphic3d_SortType aSortType,

 const Standard_Real Precision,

 const Standard_Address ProgressBarFunc,

 const Standard_Address ProgressObject)

The FileName defines the output image file name and the Format argument
defines the output file format:

• Graphic3d_EF_PostScript (PS),

• Graphic3d_EF_EhnPostScript (EPS),

• Graphic3d_EF_TEX (TEX),

• Graphic3d_EF_PDF (PDF),

• Graphic3d_EF_SVG (SVG),

• Graphic3d_EF_PGF (PGF)

The aSortType parameter defines the GL2PS sorting algorithm for the
primitives. The Precision, ProgressBarFunc and ProgressObject parameters
are implemented for future uses and at the moment have no effect.

The Export method supports only basic 3d graphics and has several limitations:

• Rendering large scenes could be slow and can lead to large output files;

• Transparency is only supported for PDF and SVG output;

• Textures and some effects are not supported by the GL2PS library.

 7. Graphic Attributes 93

77.. GGrraapphhiicc AAttttrriibbuutteess

7. 1 Aspect

7. 1. 1 Overview

The Aspect package provides classes for the graphic elements, which are common
to all 2D and 3D viewers - screen background, windows, edges, groups of graphic
attributes that can be used in describing 2D and 3D objects.

7. 1. 2 The services provided

The Aspect package provides classes to implement:

• Color maps,

• Pixels,

• Groups of graphic attributes,

• Edges, lines, background,

• Font classes,

• Width map classes,

• Marker map classes,

• Type of Line map classes,

• Window,

• Driver, PlotterDriver (inherited by PS_Driver), WindowDriver,

• Enumerations for many of the above,

• Array instantiations for edges,

• Array instantiations for map entries for color, type, font, width, and
marker.

	Version 6.6.0 / April 2013
	1. Introduction
	1.1. Open CASCADE Technology Visualization and the Organization of this guide

	2. Fundamental Concepts
	2. 1 Presentation
	2. 1. 1 Key difference in implementation of 2D and 3D visualization
	2. 1. 2 Structure of the Presentation
	The presentable object
	The viewer
	The Interactive Context
	Presentation packages
	AIS
	PrsMgr
	StdPrs
	V3d
	Prs3d
	Graphic3d

	2. 1. 3 A Basic Example: How to display a 3D object
	Example

	2. 2 Selection
	2. 2. 1 The Selection Principle
	2. 2. 2 The Sensitive Primitive
	Example

	2. 2. 3 The Principles of Dynamic Selection
	Selectable Object
	NOTE

	Interactive Context
	Example

	2. 2. 4 Methodology
	2. 2. 5 Example of Use
	Example

	3. AIS: Application Interactive Services
	3. 1 Overview
	3. 1. 1 Interactive Context/Local Context
	AIS_InteractiveContext

	3. 1. 2 The Interactive Object
	AIS_InteractiveObject

	3. 1. 3 Graphic Attributes Manager or “Drawer”
	3. 1. 4 Selection Filters

	3. 2 Rules and Conventions Governing Interactive Objects
	3. 2. 1 Presentations:
	Example
	Example

	3. 2. 2 Important Specifics of AIS:
	WARNING
	Services You Should Know

	Example

	3. 3 Selections
	3. 3. 1 Conventions
	3. 3. 2 Virtual functions
	3. 3. 3 Other Services

	3. 4 Graphic attributes of an interactive object
	3. 4. 1 Manipulation of Attributes

	3. 5 Complementary Services - Precautions
	3. 5. 1 Changing an interactive object’s location
	3. 5. 2 Connecting an interactive object to an applicative entity
	3. 5. 3 Resolving coincident topology

	3. 6 The Interactive Context
	3. 6. 1 Preliminary Rules
	Example

	3. 6. 2 Groups of functions
	3. 6. 3 Management proper to the Interactive Context
	Example

	3. 7 Management of Local Context
	3. 7. 1 Rules and Conventions
	3. 7. 2 Important functionality
	WARNING

	3. 7. 3 Use
	3. 7. 4 Management of Presentations and Selections
	3. 7. 5 Presentation in Neutral Point
	3. 7. 6 Important Remarks:
	3. 7. 7 Presentation in Local Context
	WARNING
	WARNING

	3. 7. 8 Use of Filters
	Example
	Example

	3. 7. 9 Selection Strictly Speaking.
	Example

	3. 7. 10 Remarks:
	3. 7. 11 Advice on Using Local Contexts
	Example

	ANNEX I: Standard Interactive Object Classes in AIS DATUMS:
	Warning
	OBJECTS
	RELATIONS
	DIMENSIONS
	MeshVS_Mesh
	Example
	Example

	ANNEX II : Principles of Dynamic Selection
	How to go from the objects to 2D boxes
	Implementation in an interactive/selectable object
	Example

	How It Works Concretely
	Example

	4. 3D Presentations
	4. 1 Glossary of 3D terms
	4. 1. 1 From Graphic3d
	4. 1. 2 From V3d

	4. 2 Creating a 3D scene
	4. 2. 1 Create attributes
	Example
	Example
	Example
	Example
	Example

	4. 2. 2 Create a 3D Viewer (a Windows example)
	Example

	4. 2. 3 Create a 3D view (a Windows example)
	Example

	4. 2. 4 Create an interactive context
	Example
	Example

	4. 2. 5 Create your own interactive object
	Example of the compute methods

	4. 2. 6 Create primitives in the interactive object
	Example
	Example
	Example
	Example
	Example

	Structure
	5. 3D Resources
	5. 1 Graphic3D
	5. 1. 1 Overview
	5. 1. 2 Provided services
	5. 1. 3 About the primitives
	5. 1. 4 Primitive arrays
	Example
	Example
	Example
	Example

	5. 1. 5 About materials
	5. 1. 6 About textures
	5. 1. 7 Graphic3d text
	Example

	5. 1. 8 Display priorities
	5. 1. 9 About structure hierarchies

	5. 2 V3d
	5. 2. 1 Overview
	5. 2. 2 Provided services
	5. 2. 3 A programming example
	Example

	5. 2. 4 Glossary of view transformations
	5. 2. 5 Management of perspective projection
	Example
	Example

	5. 2. 6 Underlay and overlay layers management
	Example
	Example

	5. 2. 7 View background styles
	5. 2. 8 User-defined clipping planes
	Example

	5. 2. 9 Dumping a 3D scene into an image file
	Example

	5. 2. 10 Printing a 3D scene
	5. 2. 11 Vector image export

	7. Graphic Attributes
	7. 1 Aspect
	7. 1. 1 Overview
	7. 1. 2 The services provided

