Open CASCADE Technology 6.6.0
|
#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_PLib_HermitJacobi.hxx>
#include <math_Matrix.hxx>
#include <Handle_PLib_JacobiPolynomial.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <PLib_Base.hxx>
#include <Standard_Integer.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
#include <PLib_HermitJacobi.lxx>
Data Structures | |
class | PLib_HermitJacobi |
This class provides method to work with Jacobi Polynomials relativly to an order of constraint q = myWorkDegree-2*(myNivConstr+1) Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t) iorder is the integer value for the constraints: iorder = 0 <=> ConstraintOrder = GeomAbs_C0 iorder = 1 <=> ConstraintOrder = GeomAbs_C1 iorder = 2 <=> ConstraintOrder = GeomAbs_C2 P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2) the coefficients JacCoeff represents P(t) JacCoeff are stored as follow: c0(1) c0(2) .... c0(Dimension) c1(1) c1(2) .... c1(Dimension) cDegree(1) cDegree(2) .... cDegree(Dimension) The coefficients c0(1) c0(2) .... c0(Dimension) c2*ordre+1(1) ... c2*ordre+1(dimension) represents the part of the polynomial in the Hermit's base: H(t) H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+... The following coefficients represents the part of the polynomial in the Jacobi base ie Q(t) Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2 More... |