
© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 1 / 26

Open CASCADE Technology

Automated testing system

User's Guide

CONTENTS

1. INTRODUCTION ___ 3
1.1. Basic information __ 3
1.2. Intended use of automatic tests ___ 3
1.3. Quick start ___ 3

1.3.1. Setup __ 3
1.3.2. Running tests __ 4
1.3.3. Running single test ___ 5
1.3.4. Creating a new test ___ 5

2. ORGANIZATION OF THE TEST SCRIPTS __ 6
2.1. General layout __ 6
2.2. Test groups ___ 7

2.2.1. Group names __ 7
2.2.2. File “grids.list” __ 7
2.2.3. File “begin” __ 8
2.2.4. File “end” ___ 8
2.2.5. File “parse.rules” ___ 8
2.2.6. Directory “data” __ 9

2.3. Test grids __ 9
2.3.1. Grid names ___ 9
2.3.2. File “begin” __ 9
2.3.3. File “end” ___ 9
2.3.4. File “cases.list” ___ 9
2.3.5. Directory “data” __ 9

2.4. Test cases ___ 9
3. CREATION AND MODIFICATION OF TESTS _______________________________________ 10
3.1. Choosing group, grid, and test case name__ 10
3.2. Adding data files required for a test ___ 10
3.3. Adding new DRAW commands __ 11
3.4. Implementation of the script ___ 11
3.5. Interpretation of test results ___ 12
3.6. Marking BAD cases ___ 13
4. ADVANCED USE ___ 13
4.1. Running tests on older versions of OCCT __ 13
4.2. Adding custom tests ___ 14

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 2 / 26

4.3. Parallel execution of tests___ 14
4.4. Checking non-regression of performance, memory, and visualization ____________________ 14
5. APPENDIX ___ 16
5.1. List of existing test groups __ 16

5.1.1. Group "3rdparty" __ 16
5.1.2. Group "blend" ___ 16
5.1.3. Group "boolean" ___ 16
5.1.4. Group "bugs" ___ 17
5.1.5. Group "caf" ___ 17
5.1.6. Group "chamfer" __ 17
5.1.7. Group "de" ___ 18
5.1.8. Group "demo" __ 18
5.1.9. Group "draft" ___ 18
5.1.10. Group "feat" ___ 18
5.1.11. Group “geometry”___ 19
5.1.12. Group "heal" ___ 19
5.1.13. Group "mesh" __ 20
5.1.14. Group "mkface" __ 20
5.1.15. Group "nproject" __ 21
5.1.16. Group "offset" __ 21
5.1.17. Group "perf" ___ 21
5.1.18. Group "pipe" ___ 22
5.1.19. Group "prism" __ 22
5.1.20. Group "sewing" __ 22
5.1.21. Group "thrusection" ___ 22
5.1.22. Group "v3d" ___ 22
5.1.23. Group "xcaf" ___ 22
5.1.24. Group "xml" ___ 23

5.2. Mapping of OCCT functionality to grid names in group "bugs" __________________________ 23
5.3. Recommended approaches to checking test results __________________________________ 25

5.3.1. Shape validity ___ 25
5.3.2. Shape tolerance ___ 25
5.3.3. Shape volume, area, or length __ 25
5.3.4. Memory leaks ___ 25
5.3.5. Visualization __ 25

6. REFERENCES ___ 26

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 3 / 26

1. INTRODUCTION

This document provides OCCT developers and contributors with an overview and practical guidelines
for work with OCCT automatic testing system.

Reading this section “Introduction” should be sufficient for developers to use the test system to control
non-regression of the modifications they implement in OCCT. Other sections provide a more in-depth
description of the test system, required for modifying the tests and adding new test cases.

1.1. Basic information

OCCT automatic testing system is organized around DRAW Test Harness [1], a console application
based on Tcl (a scripting language) interpreter extended by OCCT-related commands.

Standard OCCT tests are included with OCCT sources and are located in subdirectory tests of the
OCCT root folder. Other test folders can be included to the test system, e.g. for testing applications
based on OCCT.

The tests are organized in three levels:

• Group: a group of related test grids, usually testing a particular subset of OCCT functionality (e.g.
blend).

• Grid: a set of test cases within a group, usually aimed at testing a particular aspect or mode of
execution of the relevant functionality (e.g. buildevol).

• Test case: a script implementing an individual test (e.g. K4).

See 5.1 for the current list of available test groups and grids.

Some tests involve data files (typically CAD models) which are located separately and are not
included with OCCT code. The archive with publicly available test data files should be downloaded
and installed independently (from dev.opencascade.org).

1.2. Intended use of automatic tests

Each modification made in OCCT code must be checked for non-regression by running the whole set
of tests. The developer who does the modification is responsible for running and ensuring non-
regression for the tests available to him.

Note that many tests are based on data files that are confidential and thus available only at OPEN
CASCADE. Thus official certification testing of the changes before integration to the master branch of
official OCCT Git repository (and finally to the official release) is performed by OPEN CASCADE in
any case.

Each new non-trivial modification (improvement, bug fix, new feature) in OCCT should be
accompanied by a relevant test case suitable for verifying that modification. This test case is to be
added by the developer who provides the modification.

If a modification affects the result of an existing test case, either the modification should be corrected
(if it causes regression) or the affected test cases should be updated to account for the modification.

The modifications made in the OCCT code and related test scripts should be included in the same
integration to the master branch.

1.3. Quick start

1.3.1. Setup
Before running tests, make sure to define environment variable CSF_TestDataPath pointing to the
directory containing test data files. (Publicly available data files can be downloaded from
http://dev.opencascade.org separately from OCCT code.)

http://dev.opencascade.org/

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 4 / 26

For this it is recommended to add a file DrawAppliInit in the directory which is current at the moment
of starting DRAWEXE (normally it is OCCT root directory, $CASROOT). This file is evaluated
automatically at the DRAW start.

Example (Windows):
set env(CSF_TestDataPath) $env(CSF_TestDataPath)\;d:/occt/test-data
return ;# this is to avoid an echo of the last command above in cout

Note that variable CSF_TestDataPath is set to default value at DRAW start, pointing to folder
$CASROOT/data.

In this example, subdirectory d:/occt/test-data is added to this path. Similar code could be
used on Linux and Mac OS X except that on non-Windows platforms colon ‘:’ should be used
as path separator instead of semicolon ‘;’.

All tests are run from DRAW command prompt (run draw.bat or draw.sh to start it).

1.3.2. Running tests
To run all tests, type command ‘testgrid’.

Example:

Draw[]> testgrid

For running only a group or a grid of tests, give additional arguments indicating the group and (if
needed) the grid name.

Example:

Draw[]> testgrid blend simple

As the tests progress, the result of each test case is reported. At the end of the log a summary of test
cases is output, including the list of detected regressions and improvements, if any.

Example:

Tests summary

CASE 3rdparty export A1: OK
...
CASE pipe standard B1: BAD (known problem)
CASE pipe standard C1: OK
No regressions
Total cases: 208 BAD, 31 SKIPPED, 3 IMPROVEMENT, 1791 OK
Elapsed time: 1 Hours 14 Minutes 33.7384512019 Seconds
Detailed logs are saved in D:/occt/results_master_2012-06-04T0919

The tests are considered as non-regressive if only OK, BAD (i.e. known problem), and SKIPPED (i.e.
not executed, typically because of lack of a data file) statuses are reported. See 3.5 for details.

The results and detailed logs of the tests are saved by default to a subdirectory of the current folder,
whose name is generated automatically using the current date and time, prefixed by word "results_"
and Git branch name (if Git is available and current sources are managed by Git).

If necessary, a non-default output directory can be specified using option –outdir followed by a path to
the directory. This directory should be new or empty; use option –overwrite to allow writing results in
existing non-empty directory.

Example:

Draw[]> testgrid –outdir d:/occt/last_results -overwrite

In the output directory, a cumulative HTML report summary.html provides links to reports on each
test case. An additional report in JUnit-style XML format can be output for use in Jenkins or other
continuous integration system.

Type 'help testgrid' in DRAW prompt to get help on options supported by testgrid command.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 5 / 26

Draw[1]> help testgrid
testgrid: Run all tests, or specified group, or one grid
 Use: testgrid [group [grid]] [options...]
 Allowed options are:
 -parallel N: run N parallel processes (default is number of CPUs, 0 to disable)
 -refresh N: save summary logs every N seconds (default 60, minimal 1, 0 to disable)
 -outdir dirname: set log directory (should be empty or non-existing)
 -overwrite: force writing logs in existing non-empty directory
 -xml filename: write XML report for Jenkins (in JUnit-like format)

1.3.3. Running single test
To run a single test, type command ‘test’ followed by the names of group, grid, and test case.

Example:

Draw[1]> test blend simple A1
CASE blend simple A1: OK
Draw[2]>

Note that normally an intermediate output of the script is not shown. The detailed log of the test can be
obtained after the test execution by running command "dlog get".

To see intermediate commands and their output during the test execution, add one more argument
"-echo" at the end of the command line. Note that with this option the log is not collected and summary
is not produced.

The tests are executed in the global scope, thus all artifacts produced by test case (shapes, Tcl
variables, etc.) remain in the DRAW session after the test is completed, and can be inspected
interactively. Some tests may be sensitive to presence of such artifacts, thus it is recommended to
start new DRAW session for executing a test case to ensure it runs as expected.

1.3.4. Creating a new test
See section 3 for detailed description of the rules for creation of the new tests. The following short
description covers the most typical situations:

1. Use prefix “bug” followed by Mantis issue ID and, if necessary, additional suffixes, for naming the
test script and DRAW commands specific for this test case.

2. If the test requires C++ code, add it as new DRAW command(s) in one of files in QABugs
package.

3. Add script(s) for the test case in grid (subfolder) corresponding to the relevant OCCT module of
the group bugs ($CASROOT/tests/bugs). See 5.2 for the correspondence map.

4. In the test script:

a. Load all necessary DRAW modules by command pload.

b. Use command locate_data_file to get a path to data files used by test script. (Make sure
to have this command not inside catch statement if it is used.)

c. Use DRAW commands to reproduce the situation being tested.

d. If test case is added to describe existing problem and the fix is not available, add TODO
message for each error to mark it as known problem. The TODO statements must be
specific so as to match the actually generated messages but not other similar errors.

e. Make sure that in case of failure the test produces message containing word “Error” or
other recognized by test system as error (see files parse.rules).

5. If the test case uses data file(s) not yet present in the test database, these can be put to subfolder
data of the test grid, and integrated to Git along with the test case.

6. Check that the test case runs as expected (test for fix: OK with the fix, FAILED without the fix; test
for existing problem: BAD), and integrate to Git branch created for the issue.

Example:

Added files:

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 6 / 26

> git status –short
A tests/bugs/heal/data/OCC210a.brep
A tests/bugs/heal/data/OCC210a.brep
A tests/bugs/heal/bug210_1
A tests/bugs/heal/bug210_2

Test script
puts "OCC210 (case 1): Improve FixShape for touching wires"

restore [locate_data_file OCC210a.brep] a

fixshape result a 0.01 0.01
checkshape result

2. ORGANIZATION OF THE TEST SCRIPTS

2.1. General layout

Standard OCCT tests are located in subdirectory tests of the OCCT root folder ($CASROOT).

Additional test folders can be added to the test system by defining environment variable
CSF_TestScriptsPath. This should be a list of paths separated by semicolons (“;”) on Windows or
colons (“:”) on Linux or Mac. Upon DRAW launch, the path to tests sub-folder of OCCT is added at the
end of this variable automatically.

Each test folder is expected to contain:

• Optional file parse.rules defining patterns for interpretation of test results, common for all groups
in this folder.

• One or several test group directories.

Each group directory contains:

• File grids.list that identifies this test group and defines the list of test grids in it.

• Test grids (sub-directories), each containing a set of scripts for test cases, and optional files
cases.list, parse.rules, begin, and end.

• Optional sub-directory data

• Optional file parse.rules

• Optional files begin and end

By convention, the names of test groups, grids, and cases should contain no spaces and be
lowercase. Names begin, end, data, parse.rules, grids.list, cases.list are reserved.

General layout of test scripts is shown on Figure 1.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 7 / 26

Figure 1. Layout of tests folder

2.2. Test groups

2.2.1. Group names
The names of directories of test groups containing systematic test grids correspond to the functionality
tested by each group.

Example:

caf
mesh
offset

A test group bugs is used to collect the tests coming from bug reports. Group demo collects tests of
the test system, DRAW, samples, etc.

2.2.2. File “grids.list”
The test group must contain a file “grids.list” which defines an ordered list of grids in this group in the
following format:

001 gridname1
002 gridname2
...
NNN gridnameN

Example:

001 basic

[cases.list]
begin
[cases (A1 …)]
end

Tests folder Group 1 Subgroup 1

Subgroup N

[data] Subfolder 1

grids.list
begin
end
parse.rules

Data files

cases (A1 …)

Subfolder N

Group N

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 8 / 26

002 advanced

2.2.3. File “begin”
The file begin is a Tcl script. It is executed before every test in the current group. Usually it loads
necessary Draw commands, sets common parameters and defines additional Tcl functions used in
test scripts.

Example:

pload TOPTEST ;# load topological commands
set cpulimit 300 ;# set maximum CPU time allowed for script execution

2.2.4. File “end”
The file end is a TCL script. It is executed after every test in the current group. Usually it checks the
results of script work, makes a snap-shot of the viewer and writes “TEST COMPLETED” to the output.

Note: “TEST COMPLETED” string should be present in the output in order to signal that the test is
finished without crash. See section 3 for more information.

Example:

if { [isdraw result] } {
 checkshape result
} else {
 puts "Error: The result shape can not be built"
}
puts "TEST COMPLETED"

2.2.5. File “parse.rules”
The test group may contain “parse.rules” file. This file defines patterns used for analysis of the test
execution log and deciding the status of the test run. Each line in the file should specify a status
(single word), followed by a regular expression delimited by slashes ("/") that will be matched against
lines in the test output log to check if it corresponds to this status.

The regular expressions are based on Tcl re_syntax with exception of '\b' escape symbol which is
interpreted as word boundary following Perl re syntax (replaced by '\y' for Tcl).

The rest of the line can contain a comment message which will be added to the test report when this
status is detected.

Example:

FAILED /\b[Ee]xception\b/ exception
FAILED /\bError\b/ error
SKIPPED /Cannot open file for reading/ data file is missing
SKIPPED /Could not read file .*, abandon/ data file is missing

Lines starting with a '#' character and blank lines are ignored to allow comments and spacing.

See 3.5 for details.

If a line matches several rules, the first one applies. Rules defined in the grid are checked first, then
rules in group, then rules in the test root directory. This allows defining some rules on the grid level
with status IGNORE to ignore messages that would otherwise be treated as errors due to the group
level rules.

Example:

FAILED /\bFaulty\b/ bad shape
IGNORE /^Error [23]d = [\d.-]+/ debug output of blend command
IGNORE /^Tcl Exception: tolerance ang : [\d.-]+/ blend failure

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 9 / 26

2.2.6. Directory “data”
The test group may contain subdirectory data where test scripts shared by different test grids can be
put (see 2.3.4).

2.3. Test grids

2.3.1. Grid names
A test group folder can have several sub-directories (Grid 1… Grid N) defining test grids. Each test
grid directory contains a set of related test cases. The name of the directory should correspond to its
contents.

Example:

caf
 basic
 bugs
 presentation

Where caf is the the name of test group and basic, bugs, presentation, etc are the names of grids.

2.3.2. File “begin”
The file “begin” is a TCL script. It is executed before every test in the current grid. Usually it sets
variables specific for the current grid.

Example:

set command bopfuse ;# command tested in this grid

2.3.3. File “end”
The file “end” is a TCL script. It is executed after every test in the current grid. Usually it executes a
specific sequence of commands common for all tests in the grid.

Example:

vdump $imagedir/${casename}.gif ;# makes a snap-shot of AIS viewer

2.3.4. File “cases.list”
The grid directory can contain an optional file cases.list defining an alternative location of the test
cases. This file should contain a single line defining the relative path to the collection of test cases.

Example:

../data/simple

This option is used for creation of several grids of tests with the same data files and operations but
performed with differing parameters. The common scripts are usually located in common subdirectory
of the test group (data/simple as in example).

If cases.list file exists then the grid directory should not contain any test cases. The specific
parameters and pre- and post-processing commands for the tests execution in this grid should be
defined in the files begin and end.

2.3.5. Directory “data”
The test grid may contain subdirectory data where data files used in tests (BREP, IGES, STEP, etc.)
of this grid can be put.

2.4. Test cases

The test case is a TCL script which performs some operations using DRAW commands and produces
meaningful messages that can be used to check the validity of the result.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 10 / 26

Example:

pcylinder c1 10 20 ;# create first cylinder
pcylinder c2 5 20 ;# create second cylinder
ttranslate c2 5 0 10 ;# translate second cylinder to x,y,z
bsection result c1 c2 ;# create a section of two cylinders
checksection result ;# will output error message if result is bad

The test case can have any name (except for the reserved names begin, end, data, cases.list,
parse.rules). For test cases corresponding to issues in Mantis bug tracker, the name starts with 'bug'
followed by issue ID. For systematic grids it is usually a capital English letter followed by a number.

Example:

A1
A2
B1
B2

Such naming facilitates compact representation of the test execution results in tabular format within
HTML reports.

3. CREATION AND MODIFICATION OF TESTS

This section describes how to add new tests and update existing ones.

3.1. Choosing group, grid, and test case name

The new tests are usually added in the frames of processing issues in OCCT Mantis tracker. Such
tests in general should be added to group bugs, in the grid corresponding to the affected OCCT
functionality (see 5.2). New grids can be added as necessary to contain tests of functionality not yet
covered by existing test grids.

The test case name in the bugs group should start with "bug" followed by the ID of the corresponding
issue in Mantis (without leading zeroes). It is recommended to add a suffix providing a hint on the
tested situation. If more than one test is added for a bug, they should be distinguished by suffixes;
either meaningful or just ordinal numbers.

Example:

bug12345_coaxial
bug12345_orthogonal_1
bug12345_orthogonal_2

If the new test corresponds to a functionality already covered by the existing systematic test grid (e.g.
group mesh for BRepMesh issues), this test can be added (or moved later by OCC team) to that grid.

3.2. Adding data files required for a test

It is advisable to make self-contained test scripts whenever possible, so as they could be used in
environments where data files are not available. For that simple geometric objects and shapes can be
created using DRAW commands in the test script itself.

If the test requires a data file, it should be put to subdirectory data of the test grid. It is recommended
to prefix the data file with the corresponding issue id prefixed by "bug", e.g. "bug12345_face1.brep",
to avoid possible conflicts with names of existing data files.

Note that when the test is integrated to the master branch, OCC team will move the data file to data
files repository, so as to keep OCCT sources repository clean from data files.

When preparing a test script, try to minimize the size of involved data model. For instance, if the
problem detected on a big shape can be reproduced on a single face extracted from that shape, use
only that face in the test.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 11 / 26

3.3. Adding new DRAW commands

If the test cannot be implemented using available DRAW commands, consider the following
possibilities:

• If existing DRAW command can be extended to enable possibility required for a test in a natural
way (e.g. by adding an option to activate a specific mode of the algorithm), this way is
recommended. This change should be appropriately documented in a relevant Mantis issue.

• If the new command is needed to access OCCT functionality not exposed to DRAW previously,
and this command can be potentially reused (for other tests), it should be added to the package
where similar commands are implemented (use "getsource" DRAW command to get the package
name). The name and arguments of the new command should be chosen to keep similarity with
the existing commands. This change should be documented in a relevant Mantis issue.

• Otherwise the new command implementing the actions needed for this particular test should be
added in QABugs package. The command name should be formed by the Mantis issue ID
prefixed by "bug", e.g. "bug12345".

Note that a DRAW command is expected to return 0 in case of a normal completion, and 1 (Tcl
exception) if it is incorrectly used (e.g. a wrong number of input arguments). Thus if the new command
needs to report a test error, this should be done by outputting an appropriate error message rather
than by returning a non-zero value.

3.4. Implementation of the script

The test should run commands necessary to perform the tested operations, in general assuming a
clean DRAW session. The required DRAW modules should be loaded by “pload” command, if it is not
done by “begin” script. The messages produced by commands in a standard output should include
identifiable messages on the discovered problems if any.

Usually the script represents a set of commands that a person would run interactively to perform the
operation and see its results, with additional comments to explain what happens.

Example:

Simple test of fusing box and sphere
box b 10 10 10
sphere s 5
bfuse result b s
checkshape result

Make sure that file parse.rules in the grid or group directory contains a regular expression to catch
possible messages indicating the failure of the test.

For instance, for catching errors reported by “checkshape” command relevant grids define a rule to
recognize its report by the word “Faulty”:

FAILED /\bFaulty\b/ bad shape

For the messages generated in the script it is recommended to use the word 'Error' in the error
message.

Example:

set expected_length 11
if { [expr $actual_length - $expected_length] > 0.001 } {
 puts "Error: The length of the edge should be $expected_length"
}

At the end, the test script should output "TEST COMPLETED" string to mark a successful completion
of the script. This is often done by the end script in the grid.

When the test script requires a data file, use Tcl procedure 'locate_data_file' to get a path to it,
instead of putting the path explicitly. This will allow easy move of the data file from OCCT sources
repository to the data files repository without the need to update the test script.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 12 / 26

Example:

stepread [locate_data_file CAROSKI_COUPELLE.step] a *

When the test needs to produce some snapshots or other artifacts, use Tcl variable imagedir as the
location where such files should be put. Command 'testgrid' sets this variable to the subdirectory of the
results folder corresponding to the grid. Command 'test' sets it (unless it is already defined) to system-
specific temporary directory.

Use Tcl variable casename to prefix all files produced by the test. This variable is set to the name of
the test case.

Example:

xwd $imagedir/${casename}.png
vdisplay result; vfit
vdump $imagedir/${casename}-axo.png
vfront; vfit
vdump $imagedir/${casename}-front.png

would produce:

A1.png
A1-axo.png
A1-front.png

Note that OCCT must be built with FreeImage support to be able to produce usable images.

In order to ensure that the test works as expected in different environments, observe the following
additional rules:

• Avoid using external commands such as ‘grep’, ‘rm’, etc., as these commands may be absent on
another system (e.g. on Windows); use facilities provided by Tcl instead.

• Do not put call to locate_data_file in catch statement – this can prevent correct interpretation of
the missing data file by the test system.

3.5. Interpretation of test results

The result of the test is evaluated by checking its output against patterns defined in the files
parse.rules of the grid and group.

The OCCT test system recognizes five statuses of the test execution:

• SKIPPED: reported if a line matching SKIPPED pattern is found (prior to any FAILED pattern).
This indicates that the test cannot be run in the current environment; the most typical case is the
absence of the required data file.

• FAILED: reported if a line matching pattern with status FAILED is found (unless it is masked by
the preceding IGNORE pattern or a TODO statement, see below), or if message TEST
COMPLETED is not found at the end. This indicates that the test has produced a bad or
unexpected result, and usually means a regression.

• BAD: reported if the test script output contains one or several TODO statements and the
corresponding number of matching lines in the log. This indicates a known problem (see 3.6). The
lines matching TODO statements are not checked against other patterns and thus will not cause a
FAILED status.

• IMPROVEMENT: reported if the test script output contains a TODO statement for which no
corresponding line is found. This is a possible indication of improvement (known problem
disappeared).

• OK: reported if none of the above statuses have been assigned. This means that the test has
passed without problems.

Other statuses can be specified in parse.rules files, these will be classified as FAILED.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 13 / 26

For integration of the change to OCCT repository, all tests should return either OK or BAD status.

The new test created for an unsolved problem should return BAD. The new test created for a fixed
problem should return FAILED without the fix, and OK with the fix.

3.6. Marking BAD cases

If the test produces an invalid result at a certain moment then corresponding bug should be created in
the OCCT issue tracker [2], and the problem should be marked as TODO in the test script.

The following statement should be added to such a test script:

puts "TODO BugNumber ListOfPlatforms: RegularExpression"

Here:

• BugNumber is the bug ID in the tracker. For example: #12345

• ListOfPlatform is a list of platforms at which the bug is reproduced (e.g. Mandriva2008, Windows
or All).

Note: the platform name is custom for the OCCT test system; it can be consulted as the value of
environment variable os_type defined in DRAW.

Example:

Draw[]> puts $env(os_type)
windows

• RegularExpression is a regular expression which should be matched against the line indicating
the problem in the script output.

Example:

puts "TODO #22622 Mandriva2008: Abort .* an exception was raised"

The parser checks the test output and if an output line matches the RegularExpression then it will be
assigned a BAD status instead of FAILED.

A separate TODO line must be added for each output line matching an error expression to mark the
test as BAD. If not all TODO messages are found in the test log, the test will be considered as
possible improvement.

To mark the test as BAD for an incomplete case (when the final “TEST COMPLETE” message is
missing) the expression “TEST INCOMPLETE” should be used instead of the regular expression.

Example:

puts "TODO OCC22817 All: exception.+There are no suitable edges"
puts "TODO OCC22817 All: ** Exception **"
puts "TODO OCC22817 All: TEST INCOMPLETE"

4. ADVANCED USE

4.1. Running tests on older versions of OCCT

Sometimes it might be necessary to run tests on older versions of OCCT (prior to 6.5.4) that do not
include this test system. This can be done by adding DRAW configuration file DrawAppliInit in the
directory which is current by the moment of DRAW startup, to load test commands and to define
necessary environment.

Note: in OCCT 6.5.3, file DrawAppliInit already exists in $CASROOT/src/DrawResources, new
commands should be added to this file instead of a new one in the current directory.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 14 / 26

Example (assume that d:/occt contains an up-to-date version of OCCT sources with tests, and the test
data archive is unpacked to d:/test-data):

set env(CASROOT) d:/occt
set env(CSF_TestScriptsPath) $env(CASROOT)/tests
source $env(CASROOT)/src/DrawResources/TestCommands.tcl
set env(CSF_TestDataPath) $env(CASROOT)/data;d:/test-data
return

Note that on older versions of OCCT the tests are run in compatibility mode and not all output of the
test command can be captured; this can lead to absence of some error messages (can be reported as
either a failure or an improvement).

4.2. Adding custom tests

You can extend the test system by adding your own tests. For that it is necessary to add paths to the
directory where these tests are located, and one or more additional data directories, to the
environment variables CSF_TestScriptsPath and CSF_TestDataPath. The recommended way for
doing this is using DRAW configuration file DrawAppliInit located in the directory which is current by
the moment of DRAW startup.

Use Tcl command "_path_separator" to insert platform-dependent separator to the path list.

Example:

set env(CSF_TestScriptsPath) \
 $env(TestScriptsPath)[_path_separator]d:/MyOCCTProject/tests
set env(CSF_TestDataPath) \
 d:/occt/test-data[_path_separator]d:/MyOCCTProject/data
return ;# this is to avoid an echo of the last command above in cout

4.3. Parallel execution of tests

For better efficiency, on computers with multiple CPUs the tests can be run in parallel mode. This is
default behavior for command testgrid: the tests are executed in parallel processes (their number is
equal to the number of CPUs available on the system). In order to change this behavior, use option
-parallel followed by the number of processes to be used (1 or 0 to run sequentially).

Note that the parallel execution is only possible if Tcl extension package Thread is installed. It is
included in ActiveTcl package, but can be absent in some Linux distributions. If this package is not
available, testgrid command will output a warning message.

4.4. Checking non-regression of performance, memory, and visualization

Some test results are very dependent on the characteristics of the workstation where tests are
performed, and thus cannot be checked by comparison with some predefined values. These results
can be checked for non-regression (after a change in OCCT code) by comparing them with the results
produced by the version without this change. The most typical case is comparing the result obtained in
a branch created for integration of a fix (CR***) with the results obtained on the master branch before
that change is made.

OCCT test system provides a dedicated command "testdiff" for comparing CPU time of execution,
memory usage, and images produced by the tests.

Synopsys:

testdiff :
 Compare results of two executions of tests (CPU times, ...)
 Use: testdiff dir1 dir2 [groupname [gridname]] [options...]
 Where dir1 and dir2 are directories containing logs of two test runs.
 Allowed options are:
 -save filename: save resulting log in specified file (default name is
 $dir1/diff-$dir2.log); HTML log is saved with same name
 and extension .html
 -status {same|ok|all}: filter cases for comparing by their status:

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 15 / 26

 same - only cases with same status are compared (default)
 ok - only cases with OK status in both logs are compared
 all - results are compared regardless of status
 -verbose level:
 1 - output only differences
 2 - output also list of logs and directories present in one of dirs only
 3 - (default) output also progress messages

Example:

Draw[]> testdiff results-CR12345-2012-10-10T08:00 results-master-2012-10-09T21:20

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 16 / 26

5. APPENDIX

5.1. List of existing test groups

5.1.1. Group "3rdparty"
This group allows testing the interaction of OCCT and 3rdparty products.

DRAW module: VISUALIZATION.

Grid Commands Functionality

export vexport export of images to different formats

fonts vtrihedron
vcolorscale
vdrawtext

display of fonts

5.1.2. Group "blend"
This group allows testing blends (fillets) and related operations.

DRAW module: MODELING.

Grid Commands Functionality

simple blend fillets on simple shapes

complex blend fillets on complex shapes, non-trivial geometry

tolblend_simple tolblend
blend

buildevol buildevol

tolblend_buildvol tolblend
buildevol

use of additional command tolblend

bfuseblend bfuseblend

encoderegularity encoderegularity

5.1.3. Group "boolean"
This group allows testing Boolean operations.

DRAW module: MODELING (packages BOPTest, BRepTest).

Grids names are based on name of the command used, with suffixes:

_2d – for tests operating with 2d objects (wires, wires and 3d objects and ect.),

_simple – for tests operating on simple shapes (boxes, cylinders, toruses, ect.)

_complex – for tests dealing with complex shapes

Grid Commands Functionality

bcommon_2d bcommon Common operation (old algorithm), 2d

bcommon_complex bcommon Common operation (old algorithm), complex shapes

bcommon_simple bcommon Common operation (old algorithm), simple shapes

bcut_2d bcut Cut operation (old algorithm), 2d

bcut_complex bcut Cut operation (old algorithm), complex shapes

bcut_simple bcut Cut operation (old algorithm), simple shapes

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 17 / 26

Grid Commands Functionality

bcutblend bcutblend

bfuse_2d bfuse Fuse operation (old algorithm), 2d

bfuse_complex bfuse Fuse operation (old algorithm), complex shapes

bfuse_simple bfuse Fuse operation (old algorithm), simple shapes

bopcommon_2d bopcommon Common operation, 2d

bopcommon_complex bopcommon Common operation, complex shapes

bopcommon_simple bopcommon Common operation, simple shapes

bopcut_2d bopcut Cut operation, 2d

bopcut_complex bopcut Cut operation, complex shapes

bopcut_simple bopcut Cut operation, simple shapes

bopfuse_2d bopfuse Fuse operation, 2d

bopfuse_complex bopfuse Fuse operation, complex shapes

bopfuse_simple bopfuse Fuse operation, simple shapes

bopsection bopsection Section

boptuc_2d boptuc

boptuc_complex boptuc

boptuc_simple boptuc

bsection bsection Section (old algorithm)

5.1.4. Group "bugs"
This group allows testing cases coming from Mantis issues.

The grids are organized following OCCT module and category set for the issue in the Mantis tracker.
See 5.2 for details.

5.1.5. Group "caf"
This group allows testing OCAF functionality.

DRAW module: OCAFKERNEL.

Grid Commands Functionality

basic Basic attributes

bugs Saving and restoring of document

driver OCAF drivers

named_shape TNaming_NamedShape attribute

presentation AISPresentation attributes

tree Tree construction attributes

xlink XLink attributes

5.1.6. Group "chamfer"
This group allows testing chamfer operations.

DRAW module: MODELING.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 18 / 26

The test grid name is constructed depending on the type of the tested chamfers. Additional suffix
“_complex” is used for test cases involving complex geometry (e.g. intersections of edges forming a
chamfer); suffix "_sequence” is used for grids where chamfers are computed sequentially.

Grid Commands Functionality

equal_dist Equal distances from edge

equal_dist_complex Equal distances from edge, complex shapes

equal_dist_sequence Equal distances from edge, sequential operations

dist_dist Two distances from edge

dist_dist_complex Two distances from edge, complex shapes

dist_dist_sequence Two distances from edge, sequential operations

dist_angle Distance from edge and given angle

dist_angle_complex Distance from edge and given angle

dist_angle_sequence Distance from edge and given angle

5.1.7. Group "de"
This group allows testing Data Exchange components of OCCT (IGES and STEP translators).

Grid Commands Functionality

iges ReadIges, WriteIges IGES import / export

step ReadStep, WriteStep STEP import / export

5.1.8. Group "demo"
This group allows demonstrating how testing cases are created, and testing DRAW commands and
the test system as a whole.

Grid Commands Functionality

draw getsource
restore

Basic DRAW commands

testsystem - Testing system

samples - OCCT samples

5.1.9. Group "draft"
This group allows testing draft operations.

DRAW module: MODELING.

Grid Commands Functionality

Angle depouille Drafts with angle (inclined walls)

5.1.10. Group "feat"
This group allows testing creation of features on a shape.

DRAW module: MODELING (package BRepTest).

Grid Commands Functionality

featdprism

featlf

featprism

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 19 / 26

Grid Commands Functionality

featrevol

featrf

5.1.11. Group “geometry”
This group is for testing creation simple geometry objects and its modifications..

DRAW module: MODELING (packages GeometryTest, GeomliteTest)

Grid Commands Functionality

2dbeziecurve 2dbeziecurve Creation 2dbeziecurve with following geometrical
modifications

2dbsplinecurve 2dbsplinecurve Creation 2dbsplinecurve with following geometrical
modifications

beziecurve beziecurve Creation beziecurve with following geometrical
modifications

bsplinecurve bsplinecurve Creation bsplinecurve with following geometrical
modifications

circle circle Creation circle with following geometrical
modifications

ellipse ellipse Creation ellipse with following geometrical
modifications

hyperbola hyperbola Creation hyperbola with following geometrical
modifications

iso uiso
viso

Creation isolines with following geometrical
modifications

law law Creation law with following geometrical
modifications

line line Creation line with following geometrical
modifications

parabola parabola Creation parabola with following geometrical
modifications

project project Creation projection with following geometrical
modifications

revsurf revsurf Creation surface of revolution with following
geometrical modifications

5.1.12. Group "heal"
This group allows testing the functionality provided by ShapeHealing toolkit.

DRAW module: XSDRAW

Grid Commands Functionality

fix_shape fixshape Shape healing

fix_gaps fixwgaps Fixing gaps between edges on a wire

same_parameter sameparameter Fixing non-sameparameter edges

fix_face_size DT_ApplySeq Removal of small faces

elementary_to_revolution DT_ApplySeq Conversion of elementary surfaces to
revolution

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 20 / 26

Grid Commands Functionality

direct_faces directfaces Correction of axis of elementary
surfaces

drop_small_edges fixsmall Removal of small edges

split_angle DT_SplitAngle Splitting periodic surfaces by angle

split_angle_advanced DT_SplitAngle Splitting periodic surfaces by angle

split_angle_standard DT_SplitAngle Splitting periodic surfaces by angle

split_closed_faces DT_ClosedSplit Splitting of closed faces

surface_to_bspline DT_ToBspl Conversion of surfaces to b-splines

surface_to_bezier DT_ShapeConvert Conversion of surfaces to bezier

split_continuity DT_ShapeDivide Split surfaces by continuity criterion

split_continuity_advanced DT_ShapeDivide Split surfaces by continuity criterion

split_continuity_standard DT_ShapeDivide Split surfaces by continuity criterion

surface_to_revolution_advanced DT_ShapeConvertRev Convert elementary surfaces to
revolutions, complex cases

surface_to_revolution_standard DT_ShapeConvertRev Convert elementary surfaces to
revolutions, simple cases

5.1.13. Group "mesh"
This group allows testing shape tessellation (BRepMesh) and shading.

DRAW modules: MODELING (package MeshTest), VISUALIZATION (package ViewerTest)

Grid Commands Functionality

advanced_shading vdisplay Shading, complex shapes

standard_shading vdisplay Shading, simple shapes

advanced_mesh mesh Meshing of complex shapes

standard_mesh mesh Meshing of simple shapes

advanced_incmesh incmesh Meshing of complex shapes

standard_incmesh incmesh Meshing of simple shapes

advanced_incmesh_parallel incmesh Meshing of complex shapes, parallel mode

standard_incmesh_parallel incmesh Meshing of simple shapes, parallel mode

5.1.14. Group "mkface"
This group allows testing creation of simple surfaces.

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

after_trim mkface

after_offset mkface

after_extsurf_and_offset mkface

after_extsurf_and_trim mkface

after_revsurf_and_offset mkface

mkplane mkplane

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 21 / 26

5.1.15. Group "nproject"
This group allows testing normal projection of edges and wires onto a face.

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

Base nproject

5.1.16. Group "offset"
This group allows testing offset functionality for curves and surfaces.

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

compshape offsetcompshape Offset of shapes with removal of some faces

faces_type_a
offsetparameter
offsetload
offsetperform

Offset on a subset of faces with a fillet

faces_type_i Offset on a subset of faces with a sharp edge

shape_type_a Offset on a whole shape with a fillet

shape_type_i Offset on a whole shape with a fillet

shape offsetshape

wire_closed_outside_0_005

mkoffset
2d offset of closed and unclosed planar wires
with different offset step and directions of
offset (inside / outside)

wire_closed_outside_0_025

wire_closed_outside_0_075

wire_closed_inside_0_005

wire_closed_inside_0_025

wire_closed_inside_0_075

wire_unclosed_outside_0_005

wire_unclosed_outside_0_025

wire_unclosed_outside_0_075

5.1.17. Group "perf"
This group allows testing of performance of OCCT visualization components.

DRAW module: VISUALIZATION

Grid Commands Functionality

multi_mesh_selection vdisplay

verase

vrotate

vpan

vmove

vselect

etc.

Operations with multiple mesh presentations
multi_mesh_shading
multi_mesh_shrink
multi_mesh_wireframe
multi_object_hlr Operations with multiple objects
multi_object_selection
multi_object_shading
multi_object_wireframe
single_mesh_selection Operations with single mesh
single_mesh_shading
single_mesh_shrink
single_mesh_wireframe
single_object_hlr Operations with single object
single_object_selection
single_object_shading

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 22 / 26

Grid Commands Functionality

single_object_wireframe

5.1.18. Group "pipe"
This group allows testing construction of pipes (sweeping of a contour along profile).

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

Standard pipe

5.1.19. Group "prism"
This group allows testing construction of prisms.

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

seminf prism

5.1.20. Group "sewing"
This group allows testing sewing of faces by connecting edges.

DRAW module: MODELING (package BRepTest)

Grid Commands Functionality

tol_0_01 sewing Sewing faces with tolerance 0.01

tol_1 sewing Sewing faces with tolerance 1

tol_100 sewing Sewing faces with tolerance 100

5.1.21. Group "thrusection"
This group allows testing construction of shell or a solid passing through a set of sections in a given
sequence (loft).

Grid Commands Functionality

solids thrusection Lofting with results solid

not_solids thrusection Lofting with results shell or face

5.1.22. Group "v3d"
This group allows testing visualization of shapes in 3d viewer.

Grid Commands Functionality

edge vdisplay

verase

vrotate

vpan

vmove

vselect

etc.

Display and manipulations of presentation of
different shapes in 3d view edge_face

edge_solid
face
vertex
vertex_edge
vertex_face
vertex_solid
vertex_wire
wire
wire_solid

5.1.23. Group "xcaf"
This group allows testing extended data exchange packages.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 23 / 26

Grid Commands Functionality

dxc Subgroups are divided by format of source file,
by format of result file and by type of
modification of the document (For example:
word combination brep_to_igs means that the
source shape (format brep) was added to the
document, after that, the document was saved
into igs format. Additional words add_CL
mean initialization of colors and layers in the
document before saving, and additional words
add_ACL mean creation of an assembly and
initialization of colors and layers in a document
before saving)

dxc_add_ACL

dxc_add_CL

igs_to_dxc

igs_add_ACL

brep_to_igs_add_CL

stp_to_dxc

stp_add_ACL

brep_to_stp_add_CL

brep_to_dxc

add_ACL_brep

brep_add_CL

5.1.24. Group "xml"
This group allows testing standard and XML persistence of OCAF component.

Grid Commands Functionality

ocaf_std Save

Open

Save and restore of OCAF and XDE
documents to standard and XML format ocaf_xml

xcaf_std
xcaf_sml

5.2. Mapping of OCCT functionality to grid names in group "bugs"

OCCT Module /
Mantis category Toolkits Test grid in group bugs

Application
Framework

PTKernel
TKPShape
TKCDF
TKLCAF
TKCAF
TKBinL
TKXmlL
TKShapeSchema
TKPLCAF
TKBin
TKXml
TKPCAF
FWOSPlugin
TKStdLSchema
TKStdSchema
TKTObj
TKBinTObj
TKXmlTObj

caf

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 24 / 26

OCCT Module /
Mantis category Toolkits Test grid in group bugs

Draw

TKDraw
TKTopTest
TKViewerTest
TKXSDRAW
TKDCAF
TKXDEDRAW
TKTObjDRAW
TKQADraw
DRAWEXE
Problems of
testing system

demo

Foundation Classes
TKernel
TKMath
TKAdvTools

fclasses

Shape Healing TKShHealing heal

Mesh TKMesh
TKXMesh mesh

Data Exchange

TKIGES iges
TKSTEPBase
TKSTEPAttr
TKSTEP209
TKSTEP

step

TKXSBase
TKXCAF
TKXCAFSchema
TKXDEIGES
TKXDESTEP
TKXmlXCAF
TKBinXCAF

xde

Modeling_algorithms

TKGeomAlgo
TKTopAlgo
TKPrim
TKBO
TKBool
TKHLR
TKFillet
TKOffset
TKFeat
TKXMesh

modalg*

Modeling Data
TKG2d
TKG3d
TKGeomBase
TKBRep

moddata*

Visualization

TKService
TKV2d
TKV3d
TKOpenGl
TKMeshVS
TKNIS
TKVoxel

vis

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 25 / 26

5.3. Recommended approaches to checking test results

5.3.1. Shape validity
Run command "checkshape" on the result shape of the test (final or intermediate) and make sure that
parse.rules of the test grid or group will report bad shapes (usually recognized by word "Faulty") as
error.

Example

checkshape result

5.3.2. Shape tolerance
The maximal tolerance of sub-shapes of each kind of the resulting shape can be extracted from output
of tolerance command as follows:

set tolerance [tolerance result]
regexp { *FACE +: +MAX=([-0-9.+eE]+)} $tolerance dummy max_face
regexp { *EDGE +: +MAX=([-0-9.+eE]+)} $tolerance dummy max_edgee
regexp { *VERTEX +: +MAX=([-0-9.+eE]+)} $tolerance dummy max_vertex

5.3.3. Shape volume, area, or length
Use command vprops, sprops, or lprops to measure volume, area, or length of the shape produced
by the test. The value can be extracted from the result of the command by regexp.

Example:

check area of shape result with 1% tolerance
regexp {Mass +: +([-0-9.+eE]+)} [sprops result] dummy area
if { abs($area - $expected) > 0.1 + 0.01 * abs ($area) } {
 puts "Error: The area of result shape is $area, while expected $expected"
}

5.3.4. Memory leaks
The test system measures the amount of memory used by each test case, and considerable
deviations (as well as overall difference) comparing with reference results will be reported by testdiff
command.

For checking memory leak on a particular operation, typical approach is to run this operation in cycle
measuring memory consumption at each step and comparing it with some threshold value.

The file begin in group bugs defines command checktrend that can be used to analyze sequence of
memory measurements to get statistically based evaluation of the leak presence.

Example:

set listmem {}
for {set i 1} {$i < 100} {incr i} {
 # run suspect operation
 …
 # check memory usage (with tolerance equal to half page size)
 lappend listmem [meminfo h]
 if { [checktrend $listmem 0 256 "Memory leak detected"] } {
 puts "No memory leak, $i iterations"
 break
 }
}

5.3.5. Visualization
Take a snapshot of the viewer, give it the name of the test case, and save in the directory indicated by
Tcl variable imagedir. Note that this variable is pointing to the log directory if command testgrid is
running, or to temporary directory of the current folder if the test is run interactively.

© , 2013 OCCT AUTOMATED TESTING SYSTEM
DOC REF: 23087 PROJECT: OCCT DEVELOPMENT

 2013-04-19 Page 26 / 26

vinit
vclear
vdisplay result
vsetdispmode 1
vfit
vzfit
vdump $imagedir/${casename}_shading.png

This image will be included in the HTML log produced by testgrid command and will be checked for
non-regression through comparison of images by command testdiff.

6. REFERENCES

[1] DRAW Test Harness User’s Guide

[2] OCCT MantisBT issue tracker, http://tracker.dev.opencascade.org

http://tracker.dev.opencascade.org/

	1. Introduction
	1.1. Basic information
	1.2. Intended use of automatic tests
	1.3. Quick start
	1.3.1. Setup
	1.3.2. Running tests
	1.3.3. Running single test
	1.3.4. Creating a new test

	2. Organization of the test scripts
	2.1. General layout
	2.2. Test groups
	2.2.1. Group names
	2.2.2. File “grids.list”
	2.2.3. File “begin”
	2.2.4. File “end”
	2.2.5. File “parse.rules”
	2.2.6. Directory “data”

	2.3. Test grids
	2.3.1. Grid names
	2.3.2. File “begin”
	2.3.3. File “end”
	2.3.4. File “cases.list”
	2.3.5. Directory “data”

	2.4. Test cases

	3. Creation and modification of tests
	3.1. Choosing group, grid, and test case name
	3.2. Adding data files required for a test
	3.3. Adding new DRAW commands
	3.4. Implementation of the script
	3.5. Interpretation of test results
	3.6. Marking BAD cases

	4. Advanced use
	4.1. Running tests on older versions of OCCT
	4.2. Adding custom tests
	4.3. Parallel execution of tests
	4.4. Checking non-regression of performance, memory, and visualization

	5. Appendix
	5.1. List of existing test groups
	5.1.1. Group "3rdparty"
	5.1.2. Group "blend"
	5.1.3. Group "boolean"
	5.1.4. Group "bugs"
	5.1.5. Group "caf"
	5.1.6. Group "chamfer"
	5.1.7. Group "de"
	5.1.8. Group "demo"
	5.1.9. Group "draft"
	5.1.10. Group "feat"
	5.1.11. Group “geometry”
	5.1.12. Group "heal"
	5.1.13. Group "mesh"
	5.1.14. Group "mkface"
	5.1.15. Group "nproject"
	5.1.16. Group "offset"
	5.1.17. Group "perf"
	5.1.18. Group "pipe"
	5.1.19. Group "prism"
	5.1.20. Group "sewing"
	5.1.21. Group "thrusection"
	5.1.22. Group "v3d"
	5.1.23. Group "xcaf"
	5.1.24. Group "xml"

	5.2. Mapping of OCCT functionality to grid names in group "bugs"
	5.3. Recommended approaches to checking test results
	5.3.1. Shape validity
	5.3.2. Shape tolerance
	5.3.3. Shape volume, area, or length
	5.3.4. Memory leaks
	5.3.5. Visualization

	6. References

