Open CASCADE Technology 6.6.0
|
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>
#include <Standard_Integer.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <Handle_TColStd_HArray2OfReal.hxx>
#include <Standard_Real.hxx>
#include <GeomAbs_IsoType.hxx>
#include <GeomAbs_Shape.hxx>
#include <AdvApp2Var_Context.hxx>
#include <AdvApp2Var_Network.hxx>
#include <AdvApp2Var_Framework.hxx>
#include <Standard_Boolean.hxx>
#include <Handle_TColGeom_HArray1OfSurface.hxx>
#include <AdvApp2Var_EvaluatorFunc2Var.hxx>
#include <Handle_Geom_BSplineSurface.hxx>
#include <Standard_OStream.hxx>
#include <AdvApp2Var_ApproxAFunc2Var.lxx>
Data Structures | |
class | AdvApp2Var_ApproxAFunc2Var |
Perform the approximation of <Func> F(U,V) Arguments are : Num1DSS, Num2DSS, Num3DSS :The numbers of 1,2,3 dimensional subspaces OneDTol, TwoDTol, ThreeDTol: The tolerance of approximation in each subspaces OneDTolFr, TwoDTolFr, ThreeDTolFr: The tolerance of approximation on the boundarys in each subspaces [FirstInU, LastInU]: The Bounds in U of the Approximation [FirstInV, LastInV]: The Bounds in V of the Approximation FavorIso : Give preference to extract u-iso or v-iso on F(U,V) This can be usefull to optimize the <Func> methode ContInU, ContInV : Continuity waiting in u and v PrecisCode : Precision on approximation's error mesurement 1 : Fast computation and average precision 2 : Average computation and good precision 3 : Slow computation and very good precision MaxDegInU : Maximum u-degree waiting in U MaxDegInV : Maximum u-degree waiting in V Warning: MaxDegInU (resp. MaxDegInV) must be >= 2*iu (resp. iv) + 1, where iu (resp. iv) = 0 if ContInU (resp. ContInV) = GeomAbs_C0, = 1 if = GeomAbs_C1, = 2 if = GeomAbs_C2. MaxPatch : Maximun number of Patch waiting number of Patch is number of u span * number of v span Func : The external method to evaluate F(U,V) Crit : To (re)defined condition of convergence UChoice, VChoice : To define the way in U (or V) Knot insertion Warning: for the moment, the result is a 3D Surface so Num1DSS and Num2DSS must be equals to 0 and Num3DSS must be equal to 1. Warning: the Function of type EvaluatorFunc2Var from Approx must be a subclass of AdvApp2Var_EvaluatorFunc2Var the result should be formatted in the following way : <--Num1DSS--> <--2 * Num2DSS--> <--3 * Num3DSS--> R[0,0] .... R[Num1DSS,0]..... R[Dimension-1,0] for the 1st parameter R[0,i] .... R[Num1DSS,i]..... R[Dimension-1,i] for the ith parameter R[0,N-1] .... R[Num1DSS,N-1].... R[Dimension-1,N-1] for the Nth parameter the order in which each Subspace appears should be consistent with the tolerances given in the create function and the results will be given in that order as well that is : Surface(n) will correspond to the nth entry described by Num3DSS More... |