Open CASCADE Technology 6.6.0
|
Implements a function for the Newton algorithm to find the
solution of Integral(F) = L
#include <CPnts_MyRootFunction.hxx>
Public Member Functions | |
CPnts_MyRootFunction () | |
void | Init (const CPnts_RealFunction &F, const Standard_Address D, const Standard_Integer Order) |
F is a pointer on a function D is a client data Order is the order of integration to use | |
void | Init (const Standard_Real X0, const Standard_Real L) |
We want to solve Integral(X0,X,F(X,D)) = L | |
void | Init (const Standard_Real X0, const Standard_Real L, const Standard_Real Tol) |
We want to solve Integral(X0,X,F(X,D)) = L with given tolerance | |
Standard_Boolean | Value (const Standard_Real X, Standard_Real &F) |
This is Integral(X0,X,F(X,D)) - L | |
Standard_Boolean | Derivative (const Standard_Real X, Standard_Real &Df) |
This is F(X,D) | |
Standard_Boolean | Values (const Standard_Real X, Standard_Real &F, Standard_Real &Df) |
Computes the value <F> and the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise. |
CPnts_MyRootFunction::CPnts_MyRootFunction | ( | ) |
Standard_Boolean CPnts_MyRootFunction::Derivative | ( | const Standard_Real | X, |
Standard_Real & | Df | ||
) | [virtual] |
Implements math_FunctionWithDerivative.
void CPnts_MyRootFunction::Init | ( | const CPnts_RealFunction & | F, |
const Standard_Address | D, | ||
const Standard_Integer | Order | ||
) |
void CPnts_MyRootFunction::Init | ( | const Standard_Real | X0, |
const Standard_Real | L | ||
) |
void CPnts_MyRootFunction::Init | ( | const Standard_Real | X0, |
const Standard_Real | L, | ||
const Standard_Real | Tol | ||
) |
Standard_Boolean CPnts_MyRootFunction::Value | ( | const Standard_Real | X, |
Standard_Real & | F | ||
) | [virtual] |
Implements math_FunctionWithDerivative.
Standard_Boolean CPnts_MyRootFunction::Values | ( | const Standard_Real | X, |
Standard_Real & | F, | ||
Standard_Real & | D | ||
) | [virtual] |
Implements math_FunctionWithDerivative.