Open CASCADE Technology 6.6.0
Public Member Functions
Convert_EllipseToBSplineCurve Class Reference

This algorithm converts a ellipse into a rational B-spline curve.
The ellipse is represented an Elips2d from package gp with
the parametrization :
P (U) =
Loc + (MajorRadius * Cos(U) * Xdir + MinorRadius * Sin(U) * Ydir)
where Loc is the center of the ellipse, Xdir and Ydir are the
normalized directions of the local cartesian coordinate system of
the ellipse. The parametrization range is U [0, 2PI].
KeyWords :
Convert, Ellipse, BSplineCurve, 2D .

#include <Convert_EllipseToBSplineCurve.hxx>

Inheritance diagram for Convert_EllipseToBSplineCurve:
Inheritance graph
[legend]

Public Member Functions

 Convert_EllipseToBSplineCurve (const gp_Elips2d &E, const Convert_ParameterisationType Parameterisation=Convert_TgtThetaOver2)
 The equivalent B-spline curve has the same orientation
as the ellipse E.

 Convert_EllipseToBSplineCurve (const gp_Elips2d &E, const Standard_Real U1, const Standard_Real U2, const Convert_ParameterisationType Parameterisation=Convert_TgtThetaOver2)
 The ellipse E is limited between the parametric values U1, U2.
The equivalent B-spline curve is oriented from U1 to U2 and has
the same orientation as E.
Raised if U1 = U2 or U1 = U2 + 2.0 * Pi


Constructor & Destructor Documentation

Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve ( const gp_Elips2d E,
const Convert_ParameterisationType  Parameterisation = Convert_TgtThetaOver2 
)
Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve ( const gp_Elips2d E,
const Standard_Real  U1,
const Standard_Real  U2,
const Convert_ParameterisationType  Parameterisation = Convert_TgtThetaOver2 
)

The documentation for this class was generated from the following file:
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines