Open CASCADE Technology 6.6.0
|
Defines a non-persistent transformation in 3D space.
The following transformations are implemented :
. Translation, Rotation, Scale
. Symmetry with respect to a point, a line, a plane.
Complex transformations can be obtained by combining the
previous elementary transformations using the method
Multiply.
The transformations can be represented as follow :
V1 V2 V3 T XYZ XYZ
| a11 a12 a13 a14 | | x | | x'|
| a21 a22 a23 a24 | | y | | y'|
| a31 a32 a33 a34 | | z | = | z'|
| 0 0 0 1 | | 1 | | 1 |
where {V1, V2, V3} defines the vectorial part of the
transformation and T defines the translation part of the
transformation.
#include <gp_Trsf.hxx>
Public Member Functions | |
gp_Trsf () | |
Returns the identity transformation. | |
gp_Trsf (const gp_Trsf2d &T) | |
Creates a 3D transformation from the 2D transformation T. The resulting transformation has a homogeneous vectorial part, V3, and a translation part, T3, built from T: a11 a12 0 a13 V3 = a21 a22 0 T3 = a23 0 0 1. 0 It also has the same scale factor as T. This guarantees (by projection) that the transformation which would be performed by T in a plane (2D space) is performed by the resulting transformation in the xOy plane of the 3D space, (i.e. in the plane defined by the origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY (0., 1., 0.)). The scale factor is applied to the entire space. | |
void | SetMirror (const gp_Pnt &P) |
Makes the transformation into a symmetrical transformation. P is the center of the symmetry. | |
void | SetMirror (const gp_Ax1 &A1) |
Makes the transformation into a symmetrical transformation. A1 is the center of the axial symmetry. | |
void | SetMirror (const gp_Ax2 &A2) |
Makes the transformation into a symmetrical transformation. A2 is the center of the planar symmetry and defines the plane of symmetry by its origin, "X <br> Direction" and "Y Direction". | |
void | SetRotation (const gp_Ax1 &A1, const Standard_Real Ang) |
Changes the transformation into a rotation. A1 is the rotation axis and Ang is the angular value of the rotation in radians. | |
void | SetRotation (const gp_Quaternion &R) |
Changes the transformation into a rotation defined by quaternion. Note that rotation is performed around origin, i.e. no translation is involved. | |
void | SetScale (const gp_Pnt &P, const Standard_Real S) |
Changes the transformation into a scale. P is the center of the scale and S is the scaling value. Raises ConstructionError If <S> is null. | |
void | SetDisplacement (const gp_Ax3 &FromSystem1, const gp_Ax3 &ToSystem2) |
Modifies this transformation so that it transforms the coordinate system defined by FromSystem1 into the one defined by ToSystem2. After this modification, this transformation transforms: | |
void | SetTransformation (const gp_Ax3 &FromSystem1, const gp_Ax3 &ToSystem2) |
Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Trsf T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2); | |
void | SetTransformation (const gp_Ax3 &ToSystem) |
Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the default coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax3 ToSystem. Use in the same way as the previous method. FromSystem1 is defaulted to the absolute coordinate system. | |
void | SetTransformation (const gp_Quaternion &R, const gp_Vec &T) |
Sets transformation by directly specified rotation and translation. | |
void | SetTranslation (const gp_Vec &V) |
Changes the transformation into a translation. V is the vector of the translation. | |
void | SetTranslation (const gp_Pnt &P1, const gp_Pnt &P2) |
Makes the transformation into a translation where the translation vector is the vector (P1, P2) defined from point P1 to point P2. | |
void | SetTranslationPart (const gp_Vec &V) |
Replaces the translation vector with the vector V. | |
void | SetScaleFactor (const Standard_Real S) |
Modifies the scale factor. Raises ConstructionError If S is null. | |
void | SetValues (const Standard_Real a11, const Standard_Real a12, const Standard_Real a13, const Standard_Real a14, const Standard_Real a21, const Standard_Real a22, const Standard_Real a23, const Standard_Real a24, const Standard_Real a31, const Standard_Real a32, const Standard_Real a33, const Standard_Real a34, const Standard_Real Tolang, const Standard_Real TolDist) |
Sets the coefficients of the transformation. The transformation of the point x,y,z is the point x',y',z' with : x' = a11 x + a12 y + a13 z + a14 y' = a21 x + a22 y + a23 z + a24 z' = a31 x + a32 y + a43 z + a34 Tolang and TolDist are used to test for null angles and null distances to determine the form of the transformation (identity, translation, etc..). The method Value(i,j) will return aij. Raises ConstructionError if the determinant of the aij is null. Or if the matrix as not a uniform scale. | |
Standard_Boolean | IsNegative () const |
Returns true if the determinant of the vectorial part of this transformation is negative. | |
gp_TrsfForm | Form () const |
Returns the nature of the transformation. It can be: an identity transformation, a rotation, a translation, a mirror transformation (relative to a point, an axis or a plane), a scaling transformation, or a compound transformation. | |
Standard_Real | ScaleFactor () const |
Returns the scale factor. | |
const gp_XYZ & | TranslationPart () const |
Returns the translation part of the transformation's matrix | |
Standard_Boolean | GetRotation (gp_XYZ &theAxis, Standard_Real &theAngle) const |
Returns the boolean True if there is non-zero rotation. In the presence of rotation, the output parameters store the axis and the angle of rotation. The method always returns positive value "theAngle", i.e., 0. < theAngle <= PI. Note that this rotation is defined only by the vectorial part of the transformation; generally you would need to check also the translational part to obtain the axis (gp_Ax1) of rotation. | |
gp_Quaternion | GetRotation () const |
Returns quaternion representing rotational part of the transformation. | |
gp_Mat | VectorialPart () const |
Returns the vectorial part of the transformation. It is a 3*3 matrix which includes the scale factor. | |
const gp_Mat & | HVectorialPart () const |
Computes the homogeneous vectorial part of the transformation. It is a 3*3 matrix which doesn't include the scale factor. In other words, the vectorial part of this transformation is equal to its homogeneous vectorial part, multiplied by the scale factor. The coefficients of this matrix must be multiplied by the scale factor to obtain the coefficients of the transformation. | |
Standard_Real | Value (const Standard_Integer Row, const Standard_Integer Col) const |
Returns the coefficients of the transformation's matrix. It is a 3 rows * 4 columns matrix. This coefficient includes the scale factor. Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4 | |
void | Invert () |
gp_Trsf | Inverted () const |
Computes the reverse transformation Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp. Computes the transformation composed with T and <me>. In a C++ implementation you can also write Tcomposed = <me> * T. Example : Trsf T1, T2, Tcomp; ............... Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!! | |
gp_Trsf | Multiplied (const gp_Trsf &T) const |
gp_Trsf | operator* (const gp_Trsf &T) const |
void | Multiply (const gp_Trsf &T) |
Computes the transformation composed with T and <me>. In a C++ implementation you can also write Tcomposed = <me> * T. Example : Trsf T1, T2, Tcomp; ............... //composition : Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1) // transformation of a point Pnt P1(10.,3.,4.); Pnt P2 = P1.Transformed(Tcomp); //using Tcomp Pnt P3 = P1.Transformed(T1); //using T1 then T2 P3.Transform(T2); // P3 = P2 !!! Computes the transformation composed with <me> and T. <me> = T * <me> | |
void | operator*= (const gp_Trsf &T) |
void | PreMultiply (const gp_Trsf &T) |
Computes the transformation composed with <me> and T. <me> = T * <me> | |
void | Power (const Standard_Integer N) |
gp_Trsf | Powered (const Standard_Integer N) |
Computes the following composition of transformations <me> * <me> * .......* <me>, N time. if N = 0 <me> = Identity if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse(). Raises if N < 0 and if the matrix of the transformation not inversible. | |
void | Transforms (Standard_Real &X, Standard_Real &Y, Standard_Real &Z) const |
void | Transforms (gp_XYZ &Coord) const |
Transformation of a triplet XYZ with a Trsf | |
Standard_Real | _CSFDB_Getgp_Trsfscale () const |
void | _CSFDB_Setgp_Trsfscale (const Standard_Real p) |
gp_TrsfForm | _CSFDB_Getgp_Trsfshape () const |
void | _CSFDB_Setgp_Trsfshape (const gp_TrsfForm p) |
const gp_Mat & | _CSFDB_Getgp_Trsfmatrix () const |
const gp_XYZ & | _CSFDB_Getgp_Trsfloc () const |
gp_Trsf::gp_Trsf | ( | ) |
gp_Trsf::gp_Trsf | ( | const gp_Trsf2d & | T | ) |
const gp_XYZ& gp_Trsf::_CSFDB_Getgp_Trsfloc | ( | ) | const [inline] |
const gp_Mat& gp_Trsf::_CSFDB_Getgp_Trsfmatrix | ( | ) | const [inline] |
Standard_Real gp_Trsf::_CSFDB_Getgp_Trsfscale | ( | ) | const [inline] |
gp_TrsfForm gp_Trsf::_CSFDB_Getgp_Trsfshape | ( | ) | const [inline] |
void gp_Trsf::_CSFDB_Setgp_Trsfscale | ( | const Standard_Real | p | ) | [inline] |
void gp_Trsf::_CSFDB_Setgp_Trsfshape | ( | const gp_TrsfForm | p | ) | [inline] |
gp_TrsfForm gp_Trsf::Form | ( | ) | const |
Standard_Boolean gp_Trsf::GetRotation | ( | gp_XYZ & | theAxis, |
Standard_Real & | theAngle | ||
) | const |
gp_Quaternion gp_Trsf::GetRotation | ( | ) | const |
const gp_Mat& gp_Trsf::HVectorialPart | ( | ) | const |
void gp_Trsf::Invert | ( | ) |
gp_Trsf gp_Trsf::Inverted | ( | ) | const |
Standard_Boolean gp_Trsf::IsNegative | ( | ) | const |
void gp_Trsf::Multiply | ( | const gp_Trsf & | T | ) |
void gp_Trsf::operator*= | ( | const gp_Trsf & | T | ) | [inline] |
void gp_Trsf::Power | ( | const Standard_Integer | N | ) |
gp_Trsf gp_Trsf::Powered | ( | const Standard_Integer | N | ) |
void gp_Trsf::PreMultiply | ( | const gp_Trsf & | T | ) |
Standard_Real gp_Trsf::ScaleFactor | ( | ) | const |
void gp_Trsf::SetMirror | ( | const gp_Ax1 & | A1 | ) |
void gp_Trsf::SetMirror | ( | const gp_Pnt & | P | ) |
void gp_Trsf::SetMirror | ( | const gp_Ax2 & | A2 | ) |
void gp_Trsf::SetRotation | ( | const gp_Ax1 & | A1, |
const Standard_Real | Ang | ||
) |
void gp_Trsf::SetRotation | ( | const gp_Quaternion & | R | ) |
void gp_Trsf::SetScale | ( | const gp_Pnt & | P, |
const Standard_Real | S | ||
) |
void gp_Trsf::SetScaleFactor | ( | const Standard_Real | S | ) |
void gp_Trsf::SetTransformation | ( | const gp_Ax3 & | ToSystem | ) |
void gp_Trsf::SetTransformation | ( | const gp_Quaternion & | R, |
const gp_Vec & | T | ||
) |
void gp_Trsf::SetTranslation | ( | const gp_Vec & | V | ) |
void gp_Trsf::SetTranslationPart | ( | const gp_Vec & | V | ) |
void gp_Trsf::SetValues | ( | const Standard_Real | a11, |
const Standard_Real | a12, | ||
const Standard_Real | a13, | ||
const Standard_Real | a14, | ||
const Standard_Real | a21, | ||
const Standard_Real | a22, | ||
const Standard_Real | a23, | ||
const Standard_Real | a24, | ||
const Standard_Real | a31, | ||
const Standard_Real | a32, | ||
const Standard_Real | a33, | ||
const Standard_Real | a34, | ||
const Standard_Real | Tolang, | ||
const Standard_Real | TolDist | ||
) |
void gp_Trsf::Transforms | ( | Standard_Real & | X, |
Standard_Real & | Y, | ||
Standard_Real & | Z | ||
) | const |
void gp_Trsf::Transforms | ( | gp_XYZ & | Coord | ) | const |
const gp_XYZ& gp_Trsf::TranslationPart | ( | ) | const |
Standard_Real gp_Trsf::Value | ( | const Standard_Integer | Row, |
const Standard_Integer | Col | ||
) | const |
gp_Mat gp_Trsf::VectorialPart | ( | ) | const |