Open CASCADE Technology 6.6.0
|
This algorithm converts a ellipse into a rational B-spline curve.
The ellipse is represented an Elips2d from package gp with
the parametrization :
P (U) =
Loc + (MajorRadius * Cos(U) * Xdir + MinorRadius * Sin(U) * Ydir)
where Loc is the center of the ellipse, Xdir and Ydir are the
normalized directions of the local cartesian coordinate system of
the ellipse. The parametrization range is U [0, 2PI].
KeyWords :
Convert, Ellipse, BSplineCurve, 2D .
#include <Convert_EllipseToBSplineCurve.hxx>
Public Member Functions | |
Convert_EllipseToBSplineCurve (const gp_Elips2d &E, const Convert_ParameterisationType Parameterisation=Convert_TgtThetaOver2) | |
The equivalent B-spline curve has the same orientation as the ellipse E. | |
Convert_EllipseToBSplineCurve (const gp_Elips2d &E, const Standard_Real U1, const Standard_Real U2, const Convert_ParameterisationType Parameterisation=Convert_TgtThetaOver2) | |
The ellipse E is limited between the parametric values U1, U2. The equivalent B-spline curve is oriented from U1 to U2 and has the same orientation as E. Raised if U1 = U2 or U1 = U2 + 2.0 * Pi |
Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve | ( | const gp_Elips2d & | E, |
const Convert_ParameterisationType | Parameterisation = Convert_TgtThetaOver2 |
||
) |
Convert_EllipseToBSplineCurve::Convert_EllipseToBSplineCurve | ( | const gp_Elips2d & | E, |
const Standard_Real | U1, | ||
const Standard_Real | U2, | ||
const Convert_ParameterisationType | Parameterisation = Convert_TgtThetaOver2 |
||
) |