Open CASCADE Technology 6.6.0
|
To convert an function (curve) polynomial by span in a BSpline.
This class uses the following arguments :
NumCurves : the number of Polynomial Curves
Continuity: the requested continuity for the n-dimensional Spline
Dimension : the dimension of the Spline
MaxDegree : maximum allowed degree for each composite
polynomial segment.
NumCoeffPerCurve : the number of coefficient per segments = degree - 1
Coefficients : the coefficients organized in the following way
[1..<myNumPolynomials>][1..myMaxDegree +1][1..myDimension]
that is : index [n,d,i] is at slot
(n-1) * (myMaxDegree + 1) * myDimension + (d-1) * myDimension + i
PolynomialIntervals : nth polynomial represents a polynomial between
myPolynomialIntervals->Value(n,0) and
myPolynomialIntervals->Value(n,1)
TrueIntervals : the nth polynomial has to be mapped linearly to be
defined on the following interval :
myTrueIntervals->Value(n) and myTrueIntervals->Value(n+1)
so that it represent adequatly the function with the
required continuity
#include <Convert_CompPolynomialToPoles.hxx>
Public Member Functions | |
Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Continuity, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Handle< TColStd_HArray1OfInteger > &NumCoeffPerCurve, const Handle< TColStd_HArray1OfReal > &Coefficients, const Handle< TColStd_HArray2OfReal > &PolynomialIntervals, const Handle< TColStd_HArray1OfReal > &TrueIntervals) | |
Warning! Continuity can be at MOST the maximum degree of the polynomial functions TrueIntervals : this is the true parameterisation for the composite curve that is : the curve has myContinuity if the nth curve is parameterized between myTrueIntervals(n) and myTrueIntervals(n+1) Coefficients have to be the implicit "c form": Coefficients[Numcurves][MaxDegree+1][Dimension] Warning! The NumberOfCoefficient of an polynome is his degree + 1 Example: To convert the linear function f(x) = 2*x + 1 on the domaine [2,5] to BSpline with the bound [-1,1]. Arguments are : NumCurves = 1; Continuity = 1; Dimension = 1; MaxDegree = 1; NumCoeffPerCurve [1] = {2}; Coefficients[2] = {1, 2}; PolynomialIntervals[1,2] = {{2,5}} TrueIntervals[2] = {-1, 1} | |
Convert_CompPolynomialToPoles (const Standard_Integer NumCurves, const Standard_Integer Dimension, const Standard_Integer MaxDegree, const TColStd_Array1OfInteger &Continuity, const TColStd_Array1OfInteger &NumCoeffPerCurve, const TColStd_Array1OfReal &Coefficients, const TColStd_Array2OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals) | |
To Convert sevral span with different order of Continuity. Warning: The Length of Continuity have to be NumCurves-1 | |
Convert_CompPolynomialToPoles (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Integer Degree, const TColStd_Array1OfReal &Coefficients, const TColStd_Array1OfReal &PolynomialIntervals, const TColStd_Array1OfReal &TrueIntervals) | |
To Convert only one span. | |
Standard_Integer | NbPoles () const |
number of poles of the n-dimensional BSpline | |
void | Poles (Handle< TColStd_HArray2OfReal > &Poles) const |
returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension] | |
Standard_Integer | Degree () const |
Standard_Integer | NbKnots () const |
Degree of the n-dimensional Bspline | |
void | Knots (Handle< TColStd_HArray1OfReal > &K) const |
Knots of the n-dimensional Bspline | |
void | Multiplicities (Handle< TColStd_HArray1OfInteger > &M) const |
Multiplicities of the knots in the BSpline | |
Standard_Boolean | IsDone () const |
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | NumCurves, |
const Standard_Integer | Continuity, | ||
const Standard_Integer | Dimension, | ||
const Standard_Integer | MaxDegree, | ||
const Handle< TColStd_HArray1OfInteger > & | NumCoeffPerCurve, | ||
const Handle< TColStd_HArray1OfReal > & | Coefficients, | ||
const Handle< TColStd_HArray2OfReal > & | PolynomialIntervals, | ||
const Handle< TColStd_HArray1OfReal > & | TrueIntervals | ||
) |
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | NumCurves, |
const Standard_Integer | Dimension, | ||
const Standard_Integer | MaxDegree, | ||
const TColStd_Array1OfInteger & | Continuity, | ||
const TColStd_Array1OfInteger & | NumCoeffPerCurve, | ||
const TColStd_Array1OfReal & | Coefficients, | ||
const TColStd_Array2OfReal & | PolynomialIntervals, | ||
const TColStd_Array1OfReal & | TrueIntervals | ||
) |
Convert_CompPolynomialToPoles::Convert_CompPolynomialToPoles | ( | const Standard_Integer | Dimension, |
const Standard_Integer | MaxDegree, | ||
const Standard_Integer | Degree, | ||
const TColStd_Array1OfReal & | Coefficients, | ||
const TColStd_Array1OfReal & | PolynomialIntervals, | ||
const TColStd_Array1OfReal & | TrueIntervals | ||
) |
Standard_Integer Convert_CompPolynomialToPoles::Degree | ( | ) | const |
Standard_Boolean Convert_CompPolynomialToPoles::IsDone | ( | ) | const |
void Convert_CompPolynomialToPoles::Knots | ( | Handle< TColStd_HArray1OfReal > & | K | ) | const |
void Convert_CompPolynomialToPoles::Multiplicities | ( | Handle< TColStd_HArray1OfInteger > & | M | ) | const |
Standard_Integer Convert_CompPolynomialToPoles::NbKnots | ( | ) | const |
Standard_Integer Convert_CompPolynomialToPoles::NbPoles | ( | ) | const |
void Convert_CompPolynomialToPoles::Poles | ( | Handle< TColStd_HArray2OfReal > & | Poles | ) | const |