Open CASCADE Technology 6.6.0
|
This class describes a cartesian coordinate entity in
3D space {X,Y,Z}. This entity is used for algebraic
calculation. This entity can be transformed
with a "Trsf" or a "GTrsf" from package "gp".
It is used in vectorial computations or for holding this type
of information in data structures.
#include <gp_XYZ.hxx>
Public Member Functions | |
gp_XYZ () | |
Creates an XYZ object with zero co-ordinates (0,0,0) | |
gp_XYZ (const Standard_Real X, const Standard_Real Y, const Standard_Real Z) | |
creates an XYZ with given coordinates | |
void | SetCoord (const Standard_Real X, const Standard_Real Y, const Standard_Real Z) |
For this XYZ object, assigns the values X, Y and Z to its three coordinates | |
void | SetCoord (const Standard_Integer Index, const Standard_Real Xi) |
modifies the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Index = 3 => Z is modified Raises OutOfRange if Index != {1, 2, 3}. | |
void | SetX (const Standard_Real X) |
Assigns the given value to the X coordinate | |
void | SetY (const Standard_Real Y) |
Assigns the given value to the Y coordinate | |
void | SetZ (const Standard_Real Z) |
Assigns the given value to the Z coordinate | |
Standard_Real | Coord (const Standard_Integer Index) const |
returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Raises OutOfRange if Index != {1, 2, 3}. | |
void | Coord (Standard_Real &X, Standard_Real &Y, Standard_Real &Z) const |
Standard_Real | X () const |
Returns the X coordinate | |
Standard_Real | Y () const |
Returns the Y coordinate | |
Standard_Real | Z () const |
Returns the Z coordinate | |
Standard_Real | Modulus () const |
computes Sqrt (X*X + Y*Y + Z*Z) where X, Y and Z are the three coordinates of this XYZ object. | |
Standard_Real | SquareModulus () const |
Computes X*X + Y*Y + Z*Z where X, Y and Z are the three coordinates of this XYZ object. | |
Standard_Boolean | IsEqual (const gp_XYZ &Other, const Standard_Real Tolerance) const |
Returns True if he coordinates of this XYZ object are equal to the respective coordinates Other, within the specified tolerance Tolerance. I.e.: abs(<me>.X() - Other.X()) <= Tolerance and abs(<me>.Y() - Other.Y()) <= Tolerance and abs(<me>.Z() - Other.Z()) <= Tolerance. | |
void | Add (const gp_XYZ &Other) |
<me>.X() = <me>.X() + Other.X() <me>.Y() = <me>.Y() + Other.Y() <me>.Z() = <me>.Z() + Other.Z() | |
void | operator+= (const gp_XYZ &Other) |
gp_XYZ | Added (const gp_XYZ &Other) const |
new.X() = <me>.X() + Other.X() new.Y() = <me>.Y() + Other.Y() new.Z() = <me>.Z() + Other.Z() | |
gp_XYZ | operator+ (const gp_XYZ &Other) const |
void | Cross (const gp_XYZ &Right) |
<me>.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y() <me>.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z() <me>.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X() | |
void | operator^= (const gp_XYZ &Right) |
gp_XYZ | Crossed (const gp_XYZ &Right) const |
new.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y() new.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z() new.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X() | |
gp_XYZ | operator^ (const gp_XYZ &Right) const |
Standard_Real | CrossMagnitude (const gp_XYZ &Right) const |
Computes the magnitude of the cross product between <me> and Right. Returns || <me> ^ Right || | |
Standard_Real | CrossSquareMagnitude (const gp_XYZ &Right) const |
Computes the square magnitude of the cross product between <me> and Right. Returns || <me> ^ Right ||**2 | |
void | CrossCross (const gp_XYZ &Coord1, const gp_XYZ &Coord2) |
Triple vector product Computes <me> = <me>.Cross(Coord1.Cross(Coord2)) | |
gp_XYZ | CrossCrossed (const gp_XYZ &Coord1, const gp_XYZ &Coord2) const |
Triple vector product computes New = <me>.Cross(Coord1.Cross(Coord2)) | |
void | Divide (const Standard_Real Scalar) |
divides <me> by a real. | |
void | operator/= (const Standard_Real Scalar) |
gp_XYZ | Divided (const Standard_Real Scalar) const |
divides <me> by a real. | |
gp_XYZ | operator/ (const Standard_Real Scalar) const |
Standard_Real | Dot (const gp_XYZ &Other) const |
computes the scalar product between <me> and Other | |
Standard_Real | operator* (const gp_XYZ &Other) const |
Standard_Real | DotCross (const gp_XYZ &Coord1, const gp_XYZ &Coord2) const |
computes the triple scalar product | |
void | Multiply (const Standard_Real Scalar) |
<me>.X() = <me>.X() * Scalar; <me>.Y() = <me>.Y() * Scalar; <me>.Z() = <me>.Z() * Scalar; | |
void | operator*= (const Standard_Real Scalar) |
void | Multiply (const gp_XYZ &Other) |
<me>.X() = <me>.X() * Other.X(); <me>.Y() = <me>.Y() * Other.Y(); <me>.Z() = <me>.Z() * Other.Z(); | |
void | operator*= (const gp_XYZ &Other) |
void | Multiply (const gp_Mat &Matrix) |
<me> = Matrix * <me> | |
void | operator*= (const gp_Mat &Matrix) |
gp_XYZ | Multiplied (const Standard_Real Scalar) const |
New.X() = <me>.X() * Scalar; New.Y() = <me>.Y() * Scalar; New.Z() = <me>.Z() * Scalar; | |
gp_XYZ | operator* (const Standard_Real Scalar) const |
gp_XYZ | Multiplied (const gp_XYZ &Other) const |
new.X() = <me>.X() * Other.X(); new.Y() = <me>.Y() * Other.Y(); new.Z() = <me>.Z() * Other.Z(); | |
gp_XYZ | Multiplied (const gp_Mat &Matrix) const |
New = Matrix * <me> | |
gp_XYZ | operator* (const gp_Mat &Matrix) const |
void | Normalize () |
<me>.X() = <me>.X()/ <me>.Modulus() <me>.Y() = <me>.Y()/ <me>.Modulus() <me>.Z() = <me>.Z()/ <me>.Modulus() //! Raised if <me>.Modulus() <= Resolution from gp | |
gp_XYZ | Normalized () const |
New.X() = <me>.X()/ <me>.Modulus() New.Y() = <me>.Y()/ <me>.Modulus() New.Z() = <me>.Z()/ <me>.Modulus() //! Raised if <me>.Modulus() <= Resolution from gp | |
void | Reverse () |
<me>.X() = -<me>.X() <me>.Y() = -<me>.Y() <me>.Z() = -<me>.Z() | |
gp_XYZ | Reversed () const |
New.X() = -<me>.X() New.Y() = -<me>.Y() New.Z() = -<me>.Z() | |
void | Subtract (const gp_XYZ &Right) |
<me>.X() = <me>.X() - Other.X() <me>.Y() = <me>.Y() - Other.Y() <me>.Z() = <me>.Z() - Other.Z() | |
void | operator-= (const gp_XYZ &Right) |
gp_XYZ | Subtracted (const gp_XYZ &Right) const |
new.X() = <me>.X() - Other.X() new.Y() = <me>.Y() - Other.Y() new.Z() = <me>.Z() - Other.Z() | |
gp_XYZ | operator- (const gp_XYZ &Right) const |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const Standard_Real A3, const gp_XYZ &XYZ3, const gp_XYZ &XYZ4) |
<me> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 + XYZ4 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const Standard_Real A3, const gp_XYZ &XYZ3) |
<me> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const gp_XYZ &XYZ3) |
<me> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 + XYZ3 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2) |
<me> is set to the following linear form : A1 * XYZ1 + A2 * XYZ2 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const gp_XYZ &XYZ2) |
<me> is set to the following linear form : A1 * XYZ1 + XYZ2 | |
void | SetLinearForm (const gp_XYZ &XYZ1, const gp_XYZ &XYZ2) |
<me> is set to the following linear form : XYZ1 + XYZ2 | |
Standard_Real | _CSFDB_Getgp_XYZx () const |
void | _CSFDB_Setgp_XYZx (const Standard_Real p) |
Standard_Real | _CSFDB_Getgp_XYZy () const |
void | _CSFDB_Setgp_XYZy (const Standard_Real p) |
Standard_Real | _CSFDB_Getgp_XYZz () const |
void | _CSFDB_Setgp_XYZz (const Standard_Real p) |
gp_XYZ::gp_XYZ | ( | ) |
gp_XYZ::gp_XYZ | ( | const Standard_Real | X, |
const Standard_Real | Y, | ||
const Standard_Real | Z | ||
) |
Standard_Real gp_XYZ::_CSFDB_Getgp_XYZx | ( | ) | const [inline] |
Standard_Real gp_XYZ::_CSFDB_Getgp_XYZy | ( | ) | const [inline] |
Standard_Real gp_XYZ::_CSFDB_Getgp_XYZz | ( | ) | const [inline] |
void gp_XYZ::_CSFDB_Setgp_XYZx | ( | const Standard_Real | p | ) | [inline] |
void gp_XYZ::_CSFDB_Setgp_XYZy | ( | const Standard_Real | p | ) | [inline] |
void gp_XYZ::_CSFDB_Setgp_XYZz | ( | const Standard_Real | p | ) | [inline] |
void gp_XYZ::Add | ( | const gp_XYZ & | Other | ) |
Standard_Real gp_XYZ::Coord | ( | const Standard_Integer | Index | ) | const |
void gp_XYZ::Coord | ( | Standard_Real & | X, |
Standard_Real & | Y, | ||
Standard_Real & | Z | ||
) | const |
void gp_XYZ::Cross | ( | const gp_XYZ & | Right | ) |
Standard_Real gp_XYZ::CrossMagnitude | ( | const gp_XYZ & | Right | ) | const |
Standard_Real gp_XYZ::CrossSquareMagnitude | ( | const gp_XYZ & | Right | ) | const |
void gp_XYZ::Divide | ( | const Standard_Real | Scalar | ) |
gp_XYZ gp_XYZ::Divided | ( | const Standard_Real | Scalar | ) | const |
Standard_Real gp_XYZ::Dot | ( | const gp_XYZ & | Other | ) | const |
Standard_Real gp_XYZ::DotCross | ( | const gp_XYZ & | Coord1, |
const gp_XYZ & | Coord2 | ||
) | const |
Standard_Boolean gp_XYZ::IsEqual | ( | const gp_XYZ & | Other, |
const Standard_Real | Tolerance | ||
) | const |
Standard_Real gp_XYZ::Modulus | ( | ) | const |
gp_XYZ gp_XYZ::Multiplied | ( | const Standard_Real | Scalar | ) | const |
void gp_XYZ::Multiply | ( | const Standard_Real | Scalar | ) |
void gp_XYZ::Multiply | ( | const gp_XYZ & | Other | ) |
void gp_XYZ::Multiply | ( | const gp_Mat & | Matrix | ) |
void gp_XYZ::Normalize | ( | ) |
gp_XYZ gp_XYZ::Normalized | ( | ) | const |
gp_XYZ gp_XYZ::operator* | ( | const Standard_Real | Scalar | ) | const [inline] |
Standard_Real gp_XYZ::operator* | ( | const gp_XYZ & | Other | ) | const [inline] |
void gp_XYZ::operator*= | ( | const Standard_Real | Scalar | ) | [inline] |
void gp_XYZ::operator*= | ( | const gp_XYZ & | Other | ) | [inline] |
void gp_XYZ::operator*= | ( | const gp_Mat & | Matrix | ) | [inline] |
void gp_XYZ::operator+= | ( | const gp_XYZ & | Other | ) | [inline] |
void gp_XYZ::operator-= | ( | const gp_XYZ & | Right | ) | [inline] |
gp_XYZ gp_XYZ::operator/ | ( | const Standard_Real | Scalar | ) | const [inline] |
void gp_XYZ::operator/= | ( | const Standard_Real | Scalar | ) | [inline] |
void gp_XYZ::operator^= | ( | const gp_XYZ & | Right | ) | [inline] |
void gp_XYZ::Reverse | ( | ) |
gp_XYZ gp_XYZ::Reversed | ( | ) | const |
void gp_XYZ::SetCoord | ( | const Standard_Integer | Index, |
const Standard_Real | Xi | ||
) |
void gp_XYZ::SetCoord | ( | const Standard_Real | X, |
const Standard_Real | Y, | ||
const Standard_Real | Z | ||
) |
void gp_XYZ::SetLinearForm | ( | const Standard_Real | A1, |
const gp_XYZ & | XYZ1, | ||
const gp_XYZ & | XYZ2 | ||
) |
void gp_XYZ::SetLinearForm | ( | const Standard_Real | A1, |
const gp_XYZ & | XYZ1, | ||
const Standard_Real | A2, | ||
const gp_XYZ & | XYZ2, | ||
const gp_XYZ & | XYZ3 | ||
) |
void gp_XYZ::SetLinearForm | ( | const Standard_Real | A1, |
const gp_XYZ & | XYZ1, | ||
const Standard_Real | A2, | ||
const gp_XYZ & | XYZ2, | ||
const Standard_Real | A3, | ||
const gp_XYZ & | XYZ3 | ||
) |
void gp_XYZ::SetLinearForm | ( | const Standard_Real | A1, |
const gp_XYZ & | XYZ1, | ||
const Standard_Real | A2, | ||
const gp_XYZ & | XYZ2, | ||
const Standard_Real | A3, | ||
const gp_XYZ & | XYZ3, | ||
const gp_XYZ & | XYZ4 | ||
) |
void gp_XYZ::SetLinearForm | ( | const Standard_Real | A1, |
const gp_XYZ & | XYZ1, | ||
const Standard_Real | A2, | ||
const gp_XYZ & | XYZ2 | ||
) |
void gp_XYZ::SetX | ( | const Standard_Real | X | ) |
void gp_XYZ::SetY | ( | const Standard_Real | Y | ) |
void gp_XYZ::SetZ | ( | const Standard_Real | Z | ) |
Standard_Real gp_XYZ::SquareModulus | ( | ) | const |
void gp_XYZ::Subtract | ( | const gp_XYZ & | Right | ) |
Standard_Real gp_XYZ::X | ( | ) | const |
Standard_Real gp_XYZ::Y | ( | ) | const |
Standard_Real gp_XYZ::Z | ( | ) | const |