JCC Features

Table of contents

LINSLAIING JCC.....eiee et bbbt bt e et e bbb e e eae s 2
2 Generating C++ and Python wrappers with JCC..........ccoooiiieiiiir e 2
3 Classpath CONSIAEIALIONS..........cecivieiiiiiieiie e e e re e sre e e reesneeereens 4
4 UsiNg diStutilS VS SELUPLOOIS........ccveeeeceieciecie ettt nne s 5
SR B IES (gl o0 1L o =g 1o o PSS 5
6 JCC'sruntime API fUNCLIONS.........ooiiirrieieie et nns 5
7 Type casting and INSEANCE CHECKS.........ouiiiiirieri e 7
S = 0o [ gTo = = AP 7
Sl (ol o1 o g L= oo (] oo OSSP 9
10 Writing Java class extensions in Python............cccooeviiie e 10

110 Tl o0 (oo K 12




JCC Features

Before calling any PyLucene API that requiresthe JavaVM, start it by callingi ni t VM cl asspat h, ...).Moreabout
thisfunction in here.

1. Installing JCC

JCC is aPython extension written in Python and C++. It requires a Java Runtime
Environment (JRE) to operate as it uses Javas reflection APIsto do itswork. It is built and
installed viadi stuti | s orset upt ool s.

See ingtallation for more information and operating system specific notes.

2. Generating C++ and Python wrapperswith JCC

JCC started as a C++ code generator for hiding the gory details of accessing methods and
fields on Java classes via Java's Native Invocation Interface. These C++ wrappers make it
possible to access a Java object asif it was aregular C++ object very much like GCJs CNI
interface.

It then became apparent that JCC could also generate the C++ wrappers for making these
classes available to Python. Every class that gets thus wrapped becomes a CPython type.

JCC generates wrappers for all public classes that are requested by name on the command
lineor viathe- - j ar command line argument. It generates wrapper methods for all public
methods and fields on these classes whose return type and parameter types are found in one
of the following ways:

» thetypeisone of the requested classes

» thetypeisone of the requested classes superclass or implemented interfaces

« thetypeisavailable from one of the packageslisted viathe - - package command line
argument

Overloaded methods are supported and are selected at runtime on the basis of the type and
number of arguments passed in.

JCC does not generate wrappers for methods or fields which don't satisfy these requirements.
Thus, JCC can avoid generating code for runaway transitive closures of type dependencies.

JCC generates property accessors for aproperty called f i el d when it finds Java methods
named set Fi el d(val ue) ,get Fi el d() ori sField().

The C++ wrappers are declared in a C++ namespace structure that mirrors the Java classes
Java packages. The Python types are declared in a flat namespace at the top level of the

Page 2


../../jcc/documentation/install.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/invocation.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://docs.python.org/ext/defining-new-types.html

JCC Features

resulting Python extension module.

JCC's command-line arguments are best illustrated via the PyL ucene example:

Page 3



JCC Features

There are limits to both how many files can fit on the command line and how large a C++ file
the C++ compiler can handle. By default, JCC generates one large C++ file containing the
source code for all wrapper classes.

Using the- - f i | es command line argument, this behaviour can be tuned to workaround
various limits:

for example:

» tobreak up the large wrapper classfileinto about 2 files:
--files 2

« tobreak up the large wrapper classfileinto about 10 files:
--files 10

« togenerate one C++ file per Java class wrapped:
--files separate

The- - prefix and--root arguments are passed throughtodi st uti | s'set up().

3. Classpath considerations

Page 4



JCC Features

When generating wrappers for Python, the JAR files passed to JCC via- - | ar are copied
into the resulting Python extension as resources and added to the extension's CLASSPATH
variable. Classes or JAR files that are required by the classes contained in the argument JAR
files need to be made findable via JCC's - - ¢l asspat h command line argument. At
runtime, these need to be appended to the extension's CLASSPATH variable before starting
the VM withi ni t VM CLASSPATH) .

To have more jar files automatically copied into resulting python extension and added to the
classpath at build and runtime, usethe - - i ncl ude option. This option works like the

- - ] ar option except that no wrappers are generated for the public classes contained in them
unless they're explicitely named on the command line.

4. Using distutils vs setuptools

By default, when building a Python extension, if set upt ool s isfound to beinstalled, itis
used over di stuti | s. If youwant to forcetheuseof di st uti | s over set upt ool s,
usethe- - use-di st util s command line argument.

5. Distributing an egg

The- - bdi st option can be used to ask JCC to invoke di st uti | s with bdi st or

set upt ool s withbdi st _egg. If set upt ool s isused, the resulting egg hasto be
installed withtheeasy_i nst al | instaler which is normally part of a Python installation
that includes set upt ool s.

6. JCC'sruntime API functions

JCC includes a small runtime component that is compiled into any Python extension it
produces.

This runtime component makes it possible to manage the Java VM from Python. Because a
JavaVM can be configured with amyriad of options, it is not automatically started when the
resulting Python extension module is loaded into the Python interpreter.

Instead, thei ni t VM) function must be called from the main thread before using any of the
wrapped classes. It takes the following keyword arguments:

« classpath
A string containing one or more directories or jar files for the Java VM to search for
classes. Every Python extension produced by JCC exports a CLASSPATH variable that is
hardcoded to the jar filesthat it was produced from. A copy of each jar fileisinstalled as
aresources files along with the extension when JCC isinvoked with the- - i nst al |

Page 5


http://peak.telecommunity.com/DevCenter/EasyInstall

JCC Features

command line argument. For example:

>>> j nmport | ucene
>>> | ucene. i nit VM cl asspat h=l ucene. CLASSPATH)

i nitial heap
The initial amount of Java heap to start the Java VM with. This argument is a string that
follows the same syntax as the similar - Xns java command line argument. For example:

>>> jnport | ucene

>>> | ucene.init VM| ucene. CLASSPATH, initial heap='32m)
>>> | ucene. Runti nme. get Runti ne().total Menory()
33357824L

maxheap

The maximum amount of Java heap that could become available to the Java VM. This
argument is a string that follows the same syntax as the similar - Xnmx java command line
argument.

maxst ack

The maximum amount of stack space that available to the Java VM. Thisargument isa
string that follows the same syntax as the similar - Xss java command line argument.
vimar gs

A string of comma separated additional options to pass to the VM startup rountine. These
are passed through as-is. For example:

>>> jnport |ucene
>>> | ucene.initVM I ucene. CLASSPATH
vmar gs=' - Xcheck: j ni , -verbose: j ni , -verbose: gc')

Thei ni t VM) and get VMEnv() functionsreturn a JCCEnv object that has afew utility
methods on it:

attachCurrent Thread( nanme, asDaenon)

Before athread created in Python or elsewhere but not in the Java VM can be used with
the Java VM, this method needs to be invoked. The two arguments it takes are optional
and self-explanatory.

det achCurrent Thread() Theopposite of at t achCur r ent Thr ead() . This
method should be used with extreme caution as Python's and java VM's garbage
collectors may use athread detached too early causing a system crash. The utility of this
method seems dubious at the moment.

There are several differences between INI'sfi ndCl ass() and Javas
Cl ass. forNanme():

classNameisa'l' separated string of names

Page 6



JCC Features

» theclassloadersaredifferent, f i ndCl ass() may find classes that
Cl ass. f or Nane() won't.

For example:

>>> from | ucene inport *
>>> i ni t VM CLASSPATH)
>>> findC ass(' org/ apache/| ucene/ docunment / Docunent ')
<C ass: cl ass org. apache. | ucene. docunent . Docunent >
>>> (l ass. f or Nane(' or g. apache. | ucene. docunent . Docunent ')
Traceback (nmost recent call last):

File "<stdin>", line 1, in <nodul e>
| ucene. JavaError: java.l ang. d assNot FoundExcepti on

or g/ apache/ | ucene/ docunent / Docunent

>>> (l ass. for Nane('java. |l ang. bj ect')
<C ass: cl ass java.l ang. Obj ect >

7. Type casting and instance checks

Many Java APIs are declared to return types that are less specific than the types actually
returned. In Java 1.5, thisis worked around with annotations. JCC does not heed annotations
at the moment. A Java API declared to return Gbj ect will wrap objects as such.

In C++, casting the object into its actual type is supported viathe regular C casting operator.

In Python each wrapped class has a class method called cast _ that implements the same
functionality.

Similarly, each wrapped class has a class method called i nst ance__ that tests whether the
wrapped java instance is of the given type. For example:

i f Bool eanQuery.instance_(query):
bool eanQuery = Bool eanQuery. cast _( query)

print bool eanQuery. get d auses()

8. Handling arrays

Java arrays are wrapped with a C++ JArray template. The[ ] isavailable for read access.
Thistemplate, JAr r ay<T>, accomodates all java primitivetypes, j st ri ng, j obj ect
and wrapper class arrays.

Java arrays are returned to Pythonina JAr r ay wrapper instance that implements the Python
sequence protocol. It is possible to change an array's elements but not to change an array's
Size.

Page 7



JCC Features

To convert achar array to aPython stringusea' ' . j oi n(array) construct.

Any Java method expecting an array can be called with the corresponding sequence object
from python.

To instantiate a Java array from Python, use one of the following forms:

Instead of ' i nt' , youmay alsouseoneof ' obj ect',' string',' bool',' byte',
"char',"double'," float'," long' and' short' tocreatean array of the
corresponding type.

Because there is only one wrapper class for object arrays, the JArray (' obj ect ') type's
constructor takes a second argument denoting the class of the object elements. This argument
isoptional and defaultsto Obj ect .

Aswith the Obj ect types, the JAr r ay typesalsoincludeacast _ method. This method
becomes useful when the array returned to Python iswrapped as aplain Cbj ect . Thisisthe
case, for example, with nested arrays since there is no distinct Python type for every different
javaobject array class - al javaobject arrays are wrapped by JArray (' obj ect ') . For
example:

In both cases, the javatype of obj must be compatible with the array typeit is being cast to.




JCC Features

To verify that a Java object is of agiven array type, usethei nst ance_() method
available on the array type. Thisis not the same as verifying that it is assignable with
elements of a given type. For example, using the arrays created above:

9. Exception reporting

Exceptions that occur in the Java VM and that escape to C++ arereported asaj avakEr r or
C++ exception. When using Python wrappers, the C++ exceptions are handled and reported
with Python exceptions. When using C++ only, failure to handle the exception in your C++
code will cause the process to crash.

Exceptions that occur in the JavaVM and that escape to the Python VM are reported with a
JavakEr r or python exception object. Theget JavaExcepti on() method can be called
onJavakEr r or objectsto obtain the original java exception object wrapped as any other

Page 9



JCC Features

Java object. This Java object can be used to obtain a Java stack trace for the error, for
example.

Exceptions that occur in the Python VM and that escape to the Java VM, as for example can
happen in Python extensions (see topic below) are reported to the Java VM as a

Runt i meExcepti on or asaPyt honExcept i on when using shared mode. See
installation instructions for more information about shared mode.

10. Writing Java class extensionsin Python

JCC makesit relatively easy to extend a Java class from Python. Thisis done viaan
intermediary class written in Java that implements a special method called

pyt honExt ensi on() and that declares a number of native methods that are to be
implemented by the actual Python extension.

When JCC sees these special extension java classes it generates the C++ code implementing
the native methods they declare. These native methods call the corresponding Python method
implementations passing in parameters and returning the result to the Java VM caller.

For example, to implement a Lucene analyzer in Python, one would implement first such an
extension class in Java

Page 10


../../jcc/documentation/install.html

JCC Features

The pyt honExt ensi on() methodsiswhat makes this class recognized as an extension
class by JCC. They should be included verbatim as above along with the declaration of the
pyt honCbj ect instance variable.

The implementation of the native pyt honDecRef () method is generated by JCC and is
necessary because it seemsthat f i nal i ze() cannot itself be native. Since an extension
class wraps the Python instance object it's going to be calling methods on, its ref count needs
to be decremented when this Java wrapper class disappears. A declaration for

pyt honDecRef () andafi nal i ze() implementation should always be included
verbatim as above.

Really, the only non boilerplate user input is the constructor of the class and the other native
methods, t okenSt r ean{ ) inthe example above.

The corresponding Python class(es) are implemented as follows:

Whenan __init__ () isdeclared, super () must be called or else the Java wrapper class
will not know about the Python instance it needs to invoke.

When ajava extension class declares native methods for which there are public or protected

Page 11



JCC Features

equivalents available on the parent class, JCC generates code that makes it possible to call
super () onthese methods from Python as well.

There are anumber of extension examples available in PyLucene's test suite and samples.

11. Pythonic protocols

When generating wrappers for Python, JCC attempts to detect which classes can be made
iterable:

» When aclass declares to implement java.util.lterator or something compatible with it,
JCC makesit iterable from Python.

 When aJavaclass declaresamethod calledi t er at or () with no arguments returning a
type compatiblewithj ava. uti | . | terat or, thisclassis made iterable from Python.

* When a Java class declares amethod called next () with no arguments returning an
object type, this classis made iterable. Itsnext () method is assumed to terminate
iteration by returning nul | .

JCC generates a Python mapping get method for a class when requested to do so viathe

- - mappi ng command line option which takes two arguments, the class to generate the
mapping get for and the Java method to use. The method is specified with its name followed
by ":' and its Java signature.

For example, Syst em get Properties()['java. cl ass. pat h'] ismade possible
by:

--mappi ng java.util.Properties
‘get Property: (Ljaval/l ang/ String;)Ljaval/lang/String;"
# asking for a Python mappi ng protoco
wr apper
# for get access on the Properties class by
# calling its getProperty nethod

JCC generates Python sequence length and get methods for a class when requested to do so
viathe - - sequence command line option which takes three arguments, the classto
generate the sequence length and get for and the two java methods to use. The methods are
specified with their name followed by "' and their Java signature. For example:

for i in xrange(len(hits)):
doc = hits[i]

is made possible by:

Page 12


http://svn.apache.org/viewcvs.cgi/lucene/pylucene/trunk/test
../../documentation/readme.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432

JCC Features

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.



	1 Installing JCC
	2 Generating C++ and Python wrappers with JCC
	3 Classpath considerations
	4 Using distutils vs setuptools
	5 Distributing an egg
	6 JCC's runtime API functions
	7 Type casting and instance checks
	8 Handling arrays
	9 Exception reporting
	10 Writing Java class extensions in Python
	11 Pythonic protocols

