NAME
csv — CSV parser and writer library

SYNOPSIS
#include <libcsv/csv.h>

int csv_init(struct csv_parser **p, unsigned charoptions);
size_t csv_parse(struct csv_parserp:
const char *s,
size_tlen,
void (*cbl)(char *, size_t, void *),
void (* cb2)(char, void *),
void *data);
int csv_fini(struct csv_parser ¥,
void (*cbl)(char *, size_t, void *),
void (* cb2)(char, void *),
void *data);
void csv_free(struct csv_parser p);

char csv_get_delim(struct csv_parserp);
char csv_get_quote(struct csv_parserp);
void csv_set_space_func(struct csv_parsepyint (*f)(char));
void csv_set_term_func(struct csv_parserp, int (*f)(char));

int csv_opts(struct csv_parser p, unsigned charoptions);
int csv_error(struct csv_parser *);
char * csv_strerror(int error);

size_t csv_write(char tlest, Sze_tdest_size, const char *src,
size tsrc_size);
int csv_fwrite(FILE * fp, const char *src, Sze_tsrc_size);

size_t csv_write2(char tlest, size_tdest_size, const char *src,
size_tsrc_size, char quote);
int csv_fwrite2(FILE * fp, const char *src, Sze_tsrc_size, char quote);

DESCRIPTION
The CSV library provides a flexible, intwié interface for parsing and writing csv data.

OVERVIEW
The idea behind parsing wittbcsv is straight-forward: you initialize a parser object witkv_init() and
feed data to the parsevas one or more calls tosv_parse()providing callback functions that handle end-
of-field and end-of-rn events. csv_parse()parses the data provided calling rhe wdefined callback
functions as it reads fields andw® Whencomplete,csv_fini() is called to finish processing the current
field and mak a fnal call to the callback functions if neccessaryv_free()is then called to free the parser
object. csv_error() and csv_strerror() provide information about errors encountered by the functions.
csv_write() andcsv_fwrite() provide a simple interface for coeerting raw data into CSV data and storing
the result into a buffer or file respedly.

CSV is a binary format allowing the storage of arbitrary binary data, files opened for reading or writing
CSV data should be opened in binary mode.

libcsv provides a default mode in which the parser will happily procegslata as CSV without complaint,

this is useful for parsing files which domdhere to all the traditional rules. A strict mode is also supported
which will cause apviolation of the imposed rules to cause a parsing failure.

01 June 2007 1

ROUTINES
csv_init() initializes a pointer to asv_parserstructure. Thisstructure contains housekeeping information
such as the current state of the partfer huffer, current size and position, etdhe csv_init() function
returns O on success and a non-zero value ugibird. csv_init() will fail if the pointer passed to it is a
null pointer or if there is institient memory to allocate the structure or its entffdr. The options argu-
ment specifies the parser options, these may be changed later witsvthepts() function. The
CSV_STRICT option enables strict mod€SV_REPALL_NL causes each instance of a carriage return
or linefeed outside of a record to be reportéithe CSV_STRICT_FINI option causes unterminated
guoted fields encountered dsv_fini() to cause a parsing error (see Bélo Multiple options can be speci-
fied by OR-ing them together.

csv_parse()is the function that does the actual parsing, it takeg@naentsp is a pointer to an initialized

struct csv_parser sis a pointer to the data to read in, such as a dynamically allocagied & memory
containing data read in from a callftead(). len is the number of bytes of data to proce$d, is a pointer

to the callback function that will be called frarav_parse(Jafter an entire field has been reeol will be

called with a pointer to the parsed data (which isSTMDI-terminated), the number of bytes in the data, and
the pointer that &s passed tosv_parse() ch2 is a pointer to the callback function that will be called
when the end of a record is encountered, it will be called with the character that caused the record to end
and the pointer that was passeddw_init(). datais a pointer to user-defined data that will be passed to the
callback functions when woked. cbl and/orch2 may beNULL in which case no function will be called

for the associated actionglata may also beNULL but the callback functions must be prepared to handle
receving a null pointer By defaultcb2 is not called when rows that do not contaiy &rlds are encoun-
tered. Thisbehaior is meant to accomodate files using only either a linefeed or a carriage return as a
record seperator to be parsed properly while at the same time being able to parse filegswghmmated

by multiple characters from resulting in blank rows after each actwabfdata (for example, processing a

text CSV file created that was created on and@ws machine on a Unix machine)The
CSV_REPALL_NL option will causech2 to be called once forvery carraige return or linefeed encoun-
tered outside of a fieldcb2 is called with the character that prompted the call to the function, either
CSV_CR for carriage returnCSV_LF for linefeed, orO for record termination from a call tosv_fini()

(see belw). A carriage return or linefeed within a non-quoted fieldlagts marks both the end of the field

and the rov.

Note: the first parameter of thebl function ischar *, not const char *, the pointer passed to the callback
function is actually a pointer to the entyfter inside thecsv_parser struct this data may safely be modi-

fied from the callback function (or miiunction that the callback function calls) but you must not attempt to
access more than bytes and you should not access the data after the callback function returns as the
buffer is dynamically allocated and its location and size may change during aalls frarse()

Note: Different callback functions may safely be specified during each aalitparse(Yout keep in mind
that the callback functions may be called sndmes during a single call tcsv_parse()depending on the
amount of data being processed in\agicall.

csv_parse(returns the number of bytes processed, on a successful call this Ve, ifet is ess then an
error has occured. An error can occiar example, if there is insufficient memory to store the contents of
the current field in the entryulfer. An error can also occur if malformed data is encountered while running
in strict mode.

Thecsv_error() function can be used to determine what the error is ancsthestrerror() function can be
used to preide a textual description of the errosv_error() takes a single argument, a pointer tetauct
csv_parser and returns one of the following values definedsn.h

CSV_EPARSE A parse error has occured while in strict mode

CSV_ENOMEM There vas not enough memory while attempting to increase the eoffgrb
for the current field

CSV_ETOOBIG Continuing to process the current field would requireuieb of more than
SIZE_MAX bytes

01 June 2007 2

The value passed tsv_strerror() should be one returned froosv_error(). The return value ofsv_str-
error() is a pointer to a static string. The pointer may be used for the entire lifetime of the program and the
contents will not change duringesution but you must not attempt to modify the string it points to.

When you hee finished submitting data tsv_parse() you need to call thesv_fini() function. Thisfunc-

tion will call thecbl function with ary remaining data in the entryffer (if there is any) and call theb2
function unless we are already at the end ofva (tbe last byte processed was avlige character for
example). Itis neccessary to call this function because the file being processed might not end with a car
riage return or newlineut the data that has been read in to this point still needs to be submitted to the call-
back routines.If ch2 is called from withincsv_fini() it will be because the vowas not terminated with a
newline sequence, in this cad® will be called with an argument of 0.

Note: A call to csv_finiimplicitly ends the field current field andwo If the last field processed is a quoted
field that ends before a closing quote is encountered, no error will be reported by defulif e
CSV_STRICT is specified. To cause csv_fini() to report an error in such a case, set the
CSV_STRICT_FINI option (n& in version 1.0.1) in addition to the CSV_STRICT option.

csv_fini() also reinitializes the parser state so that it is ready to be used on the next file or set of data.
csv_fini() does not alter the currentiffer size. If the last set of data that was being parsed contairesg a v
large field that increased the size of thdfér, and you need to free that memory before continuing, you
must callcsv_free()and thercsv_init(). Like csv_parse, the callback functions provideass_fini() may

be NULL. csv_fini() returns 0 on success and a non-zero value if you pass it a null pointer.

After calling csv_fini() you may continue to use the same struct csv_parser pointer without reinitializing it
(in fact you must not caltsv_init() with an initialized csv_parser object or the memory allocated for the
original structure will be lost).

When you are finished using the csv_parser object you can free it along witlyreamically allocated
memory associated with it by callimgv_free() You may callcsv_free()at ary time, it need not be pre-
ceded by a call tasv_fini(). You must only caltsv_free()with a value assigned fofrom a successful
call tocsv_init().

libcsv provides two functions to transform va data into CSV formatted data: tlesv_write() function
which writes the result to a providedffer, and thecsv_fwrite() function which writes the result to a file.
The functionality of both functions is straight-forward, ytherite out a single field including the opening
and closing quotes and escape each encountered quote with another quote.

The csv_write() function takes a pointer to a souragfbr (src) and processes at most_size characters

from src. csv_write() will write at mostdest_size characters talest and returns the number of characters

that would hge keen written ifdest was large enough. This can be used to determine if all the characters
were written and, if not, va largedest needs to be to write out all of the datzsv_write() may be called

with a null pointer for thelest argument in which case no data is writtart the size required to write out

the data will be returnedThe space needed to write out the data is the size of the data + number of quotes
appearing in data (each one will be escaped) + 2 (the leading and terminating ccsvtes)ite() and
csv_fwrite() always surround the output data with quotd§.src _size is very large (SIZE_MAX/2 or
greater) it is possible that the number of bytes needed to represent the data, after inserting escaping quotes,
will be greater than SIZE_MAXIn such a case, csv_write will return SIZE_MAX which should be inter
preted as meaning the data is too large to write to a single Tiaklcsv_fwrite() function is not similiarly

limited.

csv_fwrite() takes a FILE pointer (which shouldvVeleen opened in binary mode) andwats and writes

the data pointed to bgrc of sizesrc_size. It returnsO on success andOF if there was an error writing to
the file. csv_fwrite() doesnt provide the number of characters processed or written. If this functionality is
required, use thesv_write() function combined wittiwrite() .

01 June 2007 3

csv_write2()andcsv_fwrite2() work similiarly but tale an aditional argument, the quote character to use
when composing the field.

The csv_set_delim()and csv_set_quote()unctions provide a means to change the characters that the
parser will consider the delimiter and quote characters resjyeticsv_get_delim() andcsv_get_delim()

return the current delimiter and quote characters resphctiwhencsv_init() is called the delimiter is set

to CSV_COMMA and the quote t€SV_QUOTE. Note that the rest of the CSV a@ntions still apply

when these functions are used to change the delimiter and/or quote characters, fields containimg the ne
guote character or delimiter must be quoted and quote characters must be escaped with an immediately pre-
ceeding instance of the same charactedditionally, the csv_set_space_func@ndcsv_set_term_func()

allow a userdefined function to be pvaded which will be used determine what constitutes a space charac-
ter and what constitutes a record terminator charadtee space characters determine which characters are
removed from the beginning and end of non-quoted fields and the terminator charactems When a

record ends.Whencsv_init() is called, the effect is as if these functions were each called with a NULL
argument in which case no function is called and CSYWGHand CSV_TAB are used for space charac-
ters, and CSV_CR and CSV_LF are used for terminator characters.

THE CSV FORMAT

Although quite preelant there is no standard for the CSV form#@here are hoever, a £t of traditional
corventions used by manapplications. libcsv follows the cowentions described at http://wweve-
ativyst.com/Doc/Articles/CSV/CSV01.htm which seem to reflect the most common usage of the format,
namely:

Fields are seperated with commas.

Rows are delimited by newline sequences (see below).

Fields may be surrounded with quotes.

Fields that contains a comma, quote, and newline characters MUST be quoted.

Each instance of a quote character must be escaped with an immediately preceding quote charac-
ter.

Leading and trailing spaces and tabs are xethérom non-quoted fields.
The final line need not contain a newline sequence.
In strict mode, apdetectable violation of these rules results in an error.

RFC 4180 is an informational memo which attempts to document the CSV format, especiallgaith re
to its use as a MIME type. There are aesal parts of the description documented in this memo which
either do not accurately reflect widely usedwamtions or artificially limit the usefulness of the format.
The differences between the RFC &ibdsv are:

"Each line should contain the same number of fields throughout the file"
libcsv doesnt care if every record contains a different number of fields, such a restriction
could easily be enforced by the application itself if desired.

"Spaces are considered part of a field and should not be ignored"
Leading and trailing spaces that are part of non-quoted fields are ignored as thigris by f
the most common behavior and expected byynapplications.
abc, def

is considered equélent to:

"abC", "def"

01 June 2007 4

"The last field in the record must not be followed by a comma"
The meaning of this statement is not cleatribthe last character of a record is a comma,
libcsv will interpret that as a final empty field, i.e.:

IlabCII, Ildefll,
will be interpreted as 3 fields, egglient to:

"abC", "def", "

RFC 4180 limits the allwable characters in a CSV fiellipcsv allows ary character to be present
in a field provided it adheres to the gentions mentioned alve. This makes it possible to store
binary data in CSV format, an attribute that mapplication rely on.

RFC 4180 states that a Carriage Return plus Linefeed combination is used to delimit records,
libcsv allows ary combination of Carriage Returns and Linefeeds to signify the end of a record.
This is to increase portability among systems that use different combinations to denetmea ne
sequence.

PARSING MALFORMED D ATA
libcsv should correctly parse grCSV data that conforms to the rules discussed/@bBy default, hav-
eva, libcsv will also attempt to parse malformed CSV data such as data containing unescaped quotes or
guotes within non-quoted field§.or example:

a“c, "d"f

would be parsed equdlently to the correct form:

"a"™c", "d"f"

This is often desirable as there are some applications that do not adhere to the specifications previously dis-

cussed. Hwever, there are instances where malformed CSV data is ambigious, namely when a comma or
newline is the next non-space character following a quote such as:

"Sally said "Hello", Wally said "Goodbye™"

This could either be parsed as a single field containing the data:
Sally said "Hello", Wally said "Goodbye"
or as 2 seperate fields:

Sally said "Hello andWally said "Goodbye™"

Since the data is malformed, there is no way tokifiohe quote before the comma is meant to be a literal
quote or if it signifies the end of the field. This is of course not an issue for properly formed data as all
guotes are be escapdibcsv will parse this example as 2 seperate fields.

libcsv provides a strict mode that will return with a parse error if a quote is seen inside a non-quoted field
or if a non-escaped quote is seen whose next non-space charatteaiamha or newline sequence.

PARSER DETAILS
Afield is considered quoted if the first non-space character fav field is a quote.

If a quote is encountered in a quoted field and thkeman-space character is a comma, the field ends at the

01 June 2007 5

closed quote and the field data is submitted when the comma is encountered. Af tienrspace charac-

ter after a quote is a newline charactiee rav has ended and the field data is submitted and the endof ro

is signalled (via the appropriate callback functiot)two quotes are immediately adjacent, the first one is
interpreted as escaping the second one and one quote is written to theffezldibthe next non-space
character following a quote is anything else, the quote is interpreted as a non-escaped literal quote and it
and what follows are written to the field bufféris would cause a parse error in strict mode.

Example 1

Ilabcllllll

Pases asabc"

The first quote marks the field as quoted, the second quote escapes the following quote and the last quote
ends the field. This is valid in both strict and non-strict modes.

Example 2

"ab"c

Pases asab'c

The first qute marks the field as quoted, the second quote is taken as a literal quote since the next non-space
character is not a comma, omwlme and the quote is not escaped. The last quote ends the field (assuming
there is a newline character follilng). A parse error would result upon seeing the character c in strict
mode.

Example 3

"abc" "

Pases asabc"

In this case, since the next non-space charactemialipthe second quote is not a comma or newline-char
acter a literal quote is written, the space character after is part of the field, and the last quote terminated the
field. Thisdemonstrates thea€t that a quote must immediately precede another quote to escapésit.

would be a strict-mode violation as all quotes are required to be escaped.

If the field is not quoted, gmuote character is taken as part of the field datp,camma terminated the
field, and ay newline character terminated the field and the record.

Example 4

abllllC

Pases asab™'c

Quotes are not considered special in non-quoted fields. This would be a strict mode violation since quotes
may not exist in non-quoted fields in strict mode.

EXAMPLES
The following example prints the number of fields and rows in a file. This is a simplified version of the
csvinfo program provided in thexamples directory Error checking not related tdcsv has been renved
for clarity, the csvinfo program also provides an option for enabling strict mode and handles multiple files.

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include "libcsv/csv.h"

struct counts {

long unsigned fields;
long unsigned rows;

g

void cbl (char *s, size_t len, void *data) {

01 June 2007 6

((struct counts *)data)->fields++; }
void cb2 (char c, void *data) {
((struct counts *)data)->rows++; }

int main (int argc, char *argv[]) {
FILE *fp;
struct csv_parser *p;
char buf[1024];
size_t bytes read;
struct counts ¢ = {0, 0};

if (csv_init(&p, 0) != 0) exit(EXIT_FAILURE);
fp = fopen(argv[1], "rb");
if ('fp) exit(EXIT_FAILURE);

while ((bytes_read=fread(buf, 1, 1024, fp)) > 0)
if (csv_parse(p, buf, bytes_read, cbl, chb2, &c) != bytes read) {
fprintf(stderr, "Error while parsing file: %s\n",
csv_strerror(csv_error(p)));
exit(EXIT_FAILURE);

}
csv_fini(p, cbl, cb2, &c);

fclose(fp);
printf("%lu fields, %lu rows\n", c.fields, c.rows);

csv_free(p);
exit(EXIT_SUCCESS);

}

See the examples directory foveeal complete example programs.

AUTHOR
Written by Robert Gamble.

BUGS

Please send questions, comments, bugs, etc. to:
rganble@sourceforge.net

01 June 2007

