
NetworkX Quick Reference

(last modified: 31 March 2005)
More detailed documentation and listing of options and defaults can be found in the html documen-

tation or by using pydoc (or interactive help) on a function, method or class. For example, for methods
of the graph class such as add node, use

pydoc NX.Graph.add node

or

pydoc NX.Graph

to report all Graph methods.
For multi-class functions such as subgraph or watts strogatz graph,

use pydoc NX.subgraph

or

pydoc NX.watts strogatz graph

Terminology

Graph or network structure is encoded in the edges (connections, links, ties, arcs, bonds) between
nodes (vertices, sites, actors).

nlist - a list of nodes.
nbunch - a bunch of nodes:

any iterable container of nodes.
e=(u,v) - an edge as a python tuple (also written u-v or u->v).
elist - a list of edges [(v1,w1),(v2,w2),..,(vk,wk)]
ebunch - a bunch of edges (as 2-tuples):

any iterable container of edge-tuples (v1,w1),(v2,w2),...

Creation

G=Graph() - create empty simple graph G.
G=DiGraph() - create empty simple digraph G.
G=empty graph(n) - create empty graph with n nodes.
G=empty graph(n,create using=DiGraph()) - create empty digraph with n nodes.
G=create empty copy(H) - create new, empty graph of same class as H.

1

file:Reference/index.html
file:Reference/index.html

Manipulation

Methods associated with a graph-like object G:

G.add node(n) - add single node to G.
G.add nodes from(nbunch) - add each node in nbunch to G.
G.delete node(n) - delete node n from G.
G.delete nodes from(nbunch) - delete each node n in nbunch.
G.add edge(u,v) - add edge (u,v) to G.

if G is a digraph, add directed edge u->v.
G.add edge(e) - add edge e=(u,v) *(equivalent to above)*
G.add edges from(ebunch) - add each edge e in ebunch to G.
G.delete edge(u,v) - delete edge (u,v)
G.delete edge(e) - delete edge e=(u,v)
G.delete edges from(ebunch) - delete each edge in ebunch from G.

G.add path(nlist) - add nodes and edges to make ordered path.
G.add cycle(nlist) - same as add path, but end nodes are

connected.
G.clear() - delete all nodes and edges.
G.copy() - return "shallow" copy of the graph

(like dict.copy())
G.subgraph(nbunch) - return subgraph induced by nodes in nbunch.

New graphs from old

subgraph(G, nbunch) - subgraph induced by nodes in nbunch.
union(G1,G2) - graph union.
disjoint union(G1,G2) - graph union, assuming all nodes are different.
cartesian product(G1,G2) - Cartesian product graph.
compose(G1,G2) - combine graphs, identifying nodes with same names.
complement(G) - return graph complement.
create empty copy(G) - empty copy of the same graph class.
convert to undirected(G) - return an undirected copy of G.
convert to directed(G) - return a directed copy of G.
convert node labels to integers(G) - return copy with nodes relabed as integers.

Graph Properties

Methods:

G.order() - number of nodes in G.
G.size() - number of edges in G.

G.nodes() - return copy of all nodes of G in a list.
G.nodes iter() - return iterator over all nodes in G.
G.has node(n) - True if n is a node in G.
n in G - equivalent to G.has node(n)
G.edges() - return list of all edges in G.
G.edges(nbunch) - return list of edges adjacent to some node in nbunch.
G.edges iter() - return iterator over all edges in G.

2

G.edges iter(nbunch) - return iterator that iterate once over
each edge adjacent to some node in nbunch.

G.has edge(u,v) - True if (u,v) is an edge in G.

G.neighbors(n) - return list of nodes connected to node n.
G[n] - equivalent to G.neighbors(n)
G.neighbors iter(n) - return iterator over the neighbors of node n.
G.has neighbor(v,u) - check if u is a neighbor of v (returns True or False).

G.degree(n) - return degree of node n
G.degree() - return list of degrees of all nodes in G.
G.degree(with labels=True) - return dict mapping each node in G to

its degree.
G.degree(nbunch) - return list of degrees of all nodes in nbunch.
G.degree(nbunch,with labels=True) - return dict mapping each n in nbunch to degree(n)

Functions

number of nodes(G) - number of nodes in G.
order(G) - equivalent to above.
number of edges(G) - number of edges in G.
size(G) - equivalent to above.

nodes(G) - return copy of all nodes of G in a list.
node iter(G) - return iterator over all nodes in G.
edges(G) - return list of all edges in G.
edge iter(G) - return iterator over all edges in G.

diameter(G) - return maximum of all-pairs shortest path.
periphery(G) - return list of nodes with eccentricity equal to diameter.
radius(G) - return minimum of all-pairs shortest path.
center(G) - return list of nodes with eccentricity equal to radius.

is connected(G) - True if G is a connected graph.
number connected components(G) - number of connected components in G.
connected components(G) - list of lists of nodes in each component of G.
average clustering(G) - clustering coefficient averaged over nodes of G.
transitivity(G) - fraction of transitive triples that are triangles.
communities(G) - list of lists storing binary-tree community dendrogram.
kl connected subgraph(G) - subgraph of G that is kl-connected.
is kl connected(G) - True if G is kl-connected.

amatrix(G) - adjacency matrix for G as a Numeric array.
laplacian(G) - Graph Laplacian for G as a Numeric array.
fan chung laplacian(G) - Fan Chung generalized graph Laplacian for G as a Numeric array.

Nodal Properties

If n is unspecified, then report properties of all nodes in graph.

neighbors(G,n) - neighbors of n in G.
degree(G,n) - number of edges for n in G.

3

eccentricity(G,n) - maximum of shortest-path lengths from n to anywhere in G.
triangles(G,n) - number of triangles which include n.
clustering(G,n) - clustering coefficient: ratio of triangles to potential.
node betweenness(G,n) - number of shortest paths through n.
shortest path(G,u,v) - list denoting the shortest path from u to v.
shortest path length(G,u,v) - length of the shortest path from u to v.
node connected component(G,n) - list of nodes in node n’s connected component.

Generating Graphs

Variable size graphs

make small graph(graph description,create using=None,**kwds)
LCF graph(n,shift list,repeats)

balanced tree(r,h)
barbell graph(m1,m2)
complete graph(n)
complete bipartite graph(n1,n2)
circular ladder graph(n)
cycle graph(n)
empty graph(n,create using=None,**kwds)
grid graph([m1,m2,...,mk])
grid 2d graph(m,n)
hypercube graph(n)
ladder graph(n)
lollipop graph(m,n)
null graph(create using=None,**kwds)
path graph(n)
periodic grid 2d graph(m,n)
star graph(n)
wheel graph(n)

Small, named graphs of fixed size

bull graph(), chvatal graph(), cubical graph(), desargues graph(),
diamond graph(), dodecahedral graph(), frucht graph(),
heawood graph(), house graph(), house x graph(),
icosahedral graph(), krackhardt kite graph(),
moebius kantor graph(), octahedral graph(), pappus graph(),
petersen graph(), sedgewick maze graph(), tetrahedral graph(), trivial graph()
truncated cube graph(), truncated tetrahedron graph(), tutte graph()

Random graphs

barabasi albert graph(n,m,seed=None)
binomial graph(n,p,seed=None)
erdos renyi graph(n,m,seed=None)
powerlaw cluster graph(n,m,p,seed=None)
random regular graph(d,n,seed=None)

4

random lobster(n,p1,p2,seed=None)
watts strogatz graph(n,k,p,seed=None)

Graphs from degree sequences

configuration model(deg sequence,seed=None)
havel hakimi graph(deg sequence,seed=None)
is valid degree sequence(deg sequence)
create degree sequence(n, sfunction=None, max tries=50, **kwds)

IO:

read adjlist(path=False, create using=False)
write adjlist(G,path=False)
read edgelist(path=False, create using=False)
write edgelist(G,path=False)
read multiline adjlist(path=False, create using=False)
write multiline adjlist(G,path=False)
read gpickle(path=False)
write gpickle(G,path=False)

5

