Theory NS_Public

Up to index of Isabelle/HOL/Auth

theory NS_Public
imports Public
begin

(*  Title:      HOL/Auth/NS_Public
    ID:         $Id: NS_Public.thy,v 1.23 2005/06/17 14:13:06 haftmann Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge

Inductive relation "ns_public" for the Needham-Schroeder Public-Key protocol.
Version incorporating Lowe's fix (inclusion of B's identity in round 2).
*)

header{*Verifying the Needham-Schroeder-Lowe Public-Key Protocol*}

theory NS_Public imports Public begin

consts  ns_public  :: "event list set"

inductive ns_public
  intros 
         (*Initial trace is empty*)
   Nil:  "[] ∈ ns_public"

         (*The spy MAY say anything he CAN say.  We do not expect him to
           invent new nonces here, but he can also use NS1.  Common to
           all similar protocols.*)
   Fake: "[|evsf ∈ ns_public;  X ∈ synth (analz (spies evsf))|]
          ==> Says Spy B X  # evsf ∈ ns_public"

         (*Alice initiates a protocol run, sending a nonce to Bob*)
   NS1:  "[|evs1 ∈ ns_public;  Nonce NA ∉ used evs1|]
          ==> Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>)
                 # evs1  ∈  ns_public"

         (*Bob responds to Alice's message with a further nonce*)
   NS2:  "[|evs2 ∈ ns_public;  Nonce NB ∉ used evs2;
           Says A' B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs2|]
          ==> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>)
                # evs2  ∈  ns_public"

         (*Alice proves her existence by sending NB back to Bob.*)
   NS3:  "[|evs3 ∈ ns_public;
           Says A  B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs3;
           Says B' A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>)
              ∈ set evs3|]
          ==> Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 ∈ ns_public"

declare knows_Spy_partsEs [elim]
declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un  [dest]
declare image_eq_UN [simp]  (*accelerates proofs involving nested images*)

(*A "possibility property": there are traces that reach the end*)
lemma "∃NB. ∃evs ∈ ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
apply (intro exI bexI)
apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2, 
                                   THEN ns_public.NS3], possibility)
done

(** Theorems of the form X ∉ parts (spies evs) imply that NOBODY
    sends messages containing X! **)

(*Spy never sees another agent's private key! (unless it's bad at start)*)
lemma Spy_see_priEK [simp]: 
      "evs ∈ ns_public ==> (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)"
by (erule ns_public.induct, auto)

lemma Spy_analz_priEK [simp]: 
      "evs ∈ ns_public ==> (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto

subsection{*Authenticity properties obtained from NS2*}


(*It is impossible to re-use a nonce in both NS1 and NS2, provided the nonce
  is secret.  (Honest users generate fresh nonces.)*)
lemma no_nonce_NS1_NS2 [rule_format]: 
      "evs ∈ ns_public 
       ==> Crypt (pubEK C) \<lbrace>NA', Nonce NA, Agent D\<rbrace> ∈ parts (spies evs) -->
           Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace> ∈ parts (spies evs) -->  
           Nonce NA ∈ analz (spies evs)"
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done

(*Unicity for NS1: nonce NA identifies agents A and B*)
lemma unique_NA: 
     "[|Crypt(pubEK B)  \<lbrace>Nonce NA, Agent A \<rbrace> ∈ parts(spies evs);  
       Crypt(pubEK B') \<lbrace>Nonce NA, Agent A'\<rbrace> ∈ parts(spies evs);  
       Nonce NA ∉ analz (spies evs); evs ∈ ns_public|]
      ==> A=A' ∧ B=B'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)   
apply (erule ns_public.induct, simp_all)
(*Fake, NS1*)
apply (blast intro: analz_insertI)+
done


(*Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure
  The major premise "Says A B ..." makes it a dest-rule, so we use
  (erule rev_mp) rather than rule_format. *)
theorem Spy_not_see_NA: 
      "[|Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs;
        A ∉ bad;  B ∉ bad;  evs ∈ ns_public|]                     
       ==> Nonce NA ∉ analz (spies evs)"
apply (erule rev_mp)   
apply (erule ns_public.induct, simp_all, spy_analz)
apply (blast dest: unique_NA intro: no_nonce_NS1_NS2)+
done


(*Authentication for A: if she receives message 2 and has used NA
  to start a run, then B has sent message 2.*)
lemma A_trusts_NS2_lemma [rule_format]: 
   "[|A ∉ bad;  B ∉ bad;  evs ∈ ns_public|]                     
    ==> Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace> ∈ parts (spies evs) -->
        Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs -->
        Says B A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs"
apply (erule ns_public.induct, simp_all)
(*Fake, NS1*)
apply (blast dest: Spy_not_see_NA)+
done

theorem A_trusts_NS2: 
     "[|Says A  B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs;   
       Says B' A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs;
       A ∉ bad;  B ∉ bad;  evs ∈ ns_public|]                     
      ==> Says B A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs"
by (blast intro: A_trusts_NS2_lemma)


(*If the encrypted message appears then it originated with Alice in NS1*)
lemma B_trusts_NS1 [rule_format]:
     "evs ∈ ns_public                                         
      ==> Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace> ∈ parts (spies evs) -->
          Nonce NA ∉ analz (spies evs) -->
          Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs"
apply (erule ns_public.induct, simp_all)
(*Fake*)
apply (blast intro!: analz_insertI)
done


subsection{*Authenticity properties obtained from NS2*}

(*Unicity for NS2: nonce NB identifies nonce NA and agents A, B 
  [unicity of B makes Lowe's fix work]
  [proof closely follows that for unique_NA] *)

lemma unique_NB [dest]: 
     "[|Crypt(pubEK A)  \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace> ∈ parts(spies evs);
       Crypt(pubEK A') \<lbrace>Nonce NA', Nonce NB, Agent B'\<rbrace> ∈ parts(spies evs);
       Nonce NB ∉ analz (spies evs); evs ∈ ns_public|]
      ==> A=A' ∧ NA=NA' ∧ B=B'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)   
apply (erule ns_public.induct, simp_all)
(*Fake, NS2*)
apply (blast intro: analz_insertI)+
done


(*Secrecy: Spy does not see the nonce sent in msg NS2 if A and B are secure*)
theorem Spy_not_see_NB [dest]:
     "[|Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs;
       A ∉ bad;  B ∉ bad;  evs ∈ ns_public|]
      ==> Nonce NB ∉ analz (spies evs)"
apply (erule rev_mp)
apply (erule ns_public.induct, simp_all, spy_analz)
apply (blast intro: no_nonce_NS1_NS2)+
done


(*Authentication for B: if he receives message 3 and has used NB
  in message 2, then A has sent message 3.*)
lemma B_trusts_NS3_lemma [rule_format]:
     "[|A ∉ bad;  B ∉ bad;  evs ∈ ns_public|] ==>
      Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) -->
      Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs -->
      Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
by (erule ns_public.induct, auto)

theorem B_trusts_NS3:
     "[|Says B A  (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs;
       Says A' B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;             
       A ∉ bad;  B ∉ bad;  evs ∈ ns_public|]                    
      ==> Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
by (blast intro: B_trusts_NS3_lemma)

subsection{*Overall guarantee for B*}

(*If NS3 has been sent and the nonce NB agrees with the nonce B joined with
  NA, then A initiated the run using NA.*)
theorem B_trusts_protocol:
     "[|A ∉ bad;  B ∉ bad;  evs ∈ ns_public|] ==>
      Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) -->
      Says B A  (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB, Agent B\<rbrace>) ∈ set evs -->
      Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs"
by (erule ns_public.induct, auto)

end

lemma

NB. ∃evs∈ns_public. Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs

lemma Spy_see_priEK:

  evs ∈ ns_public ==> (Key (priEK A) ∈ parts (knows Spy evs)) = (A ∈ bad)

lemma Spy_analz_priEK:

  evs ∈ ns_public ==> (Key (priEK A) ∈ analz (knows Spy evs)) = (A ∈ bad)

Authenticity properties obtained from NS2

lemma no_nonce_NS1_NS2:

  [| evs ∈ ns_public;
     Crypt (pubK C) {|NA', Nonce NA, Agent D|} ∈ parts (knows Spy evs);
     Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs) |]
  ==> Nonce NA ∈ analz (knows Spy evs)

lemma unique_NA:

  [| Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs);
     Crypt (pubK B') {|Nonce NA, Agent A'|} ∈ parts (knows Spy evs);
     Nonce NA ∉ analz (knows Spy evs); evs ∈ ns_public |]
  ==> A = A'B = B'

theorem Spy_not_see_NA:

  [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs; A ∉ bad; B ∉ bad;
     evs ∈ ns_public |]
  ==> Nonce NA ∉ analz (knows Spy evs)

lemma A_trusts_NS2_lemma:

  [| A ∉ bad; B ∉ bad; evs ∈ ns_public;
     Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|} ∈ parts (knows Spy evs);
     Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs |]
  ==> Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs

theorem A_trusts_NS2:

  [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs;
     Says B' A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;
     A ∉ bad; B ∉ bad; evs ∈ ns_public |]
  ==> Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs

lemma B_trusts_NS1:

  [| evs ∈ ns_public;
     Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs);
     Nonce NA ∉ analz (knows Spy evs) |]
  ==> Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs

Authenticity properties obtained from NS2

lemma unique_NB:

  [| Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|} ∈ parts (knows Spy evs);
     Crypt (pubK A') {|Nonce NA', Nonce NB, Agent B'|} ∈ parts (knows Spy evs);
     Nonce NB ∉ analz (knows Spy evs); evs ∈ ns_public |]
  ==> A = A'NA = NA'B = B'

theorem Spy_not_see_NB:

  [| Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs; A ∉ bad;
     B ∉ bad; evs ∈ ns_public |]
  ==> Nonce NB ∉ analz (knows Spy evs)

lemma B_trusts_NS3_lemma:

  [| A ∉ bad; B ∉ bad; evs ∈ ns_public;
     Crypt (pubK B) (Nonce NB) ∈ parts (knows Spy evs);
     Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs |]
  ==> Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs

theorem B_trusts_NS3:

  [| Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;
     Says A' B (Crypt (pubK B) (Nonce NB)) ∈ set evs; A ∉ bad; B ∉ bad;
     evs ∈ ns_public |]
  ==> Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs

Overall guarantee for B

theorem B_trusts_protocol:

  [| A ∉ bad; B ∉ bad; evs ∈ ns_public |]
  ==> Crypt (pubK B) (Nonce NB) ∈ parts (knows Spy evs) -->
      Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs -->
      Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs