Theory Substitution

Up to index of Isabelle/ZF/Resid

theory Substitution
imports Redex
begin

(*  Title:      ZF/Resid/Substitution.thy
    ID:         $Id: Substitution.thy,v 1.13 2005/06/17 14:15:11 haftmann Exp $
    Author:     Ole Rasmussen
    Copyright   1995  University of Cambridge
    Logic Image: ZF
*)

theory Substitution imports Redex begin

consts
  lift_aux      :: "i=>i"
  lift          :: "i=>i"
  subst_aux     :: "i=>i"
  "'/"          :: "[i,i]=>i"  (infixl 70)  (*subst*)

constdefs
  lift_rec      :: "[i,i]=> i"
    "lift_rec(r,k) == lift_aux(r)`k"

  subst_rec     :: "[i,i,i]=> i"        (**NOTE THE ARGUMENT ORDER BELOW**)
    "subst_rec(u,r,k) == subst_aux(r)`u`k"

translations
  "lift(r)"  == "lift_rec(r,0)"
  "u/v"      == "subst_rec(u,v,0)"
  

(** The clumsy _aux functions are required because other arguments vary
    in the recursive calls ***)

primrec
  "lift_aux(Var(i)) = (λk ∈ nat. if i<k then Var(i) else Var(succ(i)))"

  "lift_aux(Fun(t)) = (λk ∈ nat. Fun(lift_aux(t) ` succ(k)))"

  "lift_aux(App(b,f,a)) = (λk ∈ nat. App(b, lift_aux(f)`k, lift_aux(a)`k))"


  
primrec
  "subst_aux(Var(i)) =
     (λr ∈ redexes. λk ∈ nat. if k<i then Var(i #- 1) 
                                else if k=i then r else Var(i))"
  "subst_aux(Fun(t)) =
     (λr ∈ redexes. λk ∈ nat. Fun(subst_aux(t) ` lift(r) ` succ(k)))"

  "subst_aux(App(b,f,a)) = 
     (λr ∈ redexes. λk ∈ nat. App(b, subst_aux(f)`r`k, subst_aux(a)`r`k))"


(* ------------------------------------------------------------------------- *)
(*   Arithmetic extensions                                                   *)
(* ------------------------------------------------------------------------- *)

lemma gt_not_eq: "p < n ==> n≠p"
by blast

lemma succ_pred [rule_format, simp]: "j ∈ nat ==> i < j --> succ(j #- 1) = j"
by (induct_tac "j", auto)

lemma lt_pred: "[|succ(x)<n; n ∈ nat|] ==> x < n #- 1 "
apply (rule succ_leE)
apply (simp add: succ_pred)
done

lemma gt_pred: "[|n < succ(x); p<n; n ∈ nat|] ==> n #- 1 < x "
apply (rule succ_leE)
apply (simp add: succ_pred)
done


declare not_lt_iff_le [simp] if_P [simp] if_not_P [simp]


(* ------------------------------------------------------------------------- *)
(*     lift_rec equality rules                                               *)
(* ------------------------------------------------------------------------- *)
lemma lift_rec_Var:
     "n ∈ nat ==> lift_rec(Var(i),n) = (if i<n then Var(i) else Var(succ(i)))"
by (simp add: lift_rec_def)

lemma lift_rec_le [simp]:
     "[|i ∈ nat; k≤i|] ==> lift_rec(Var(i),k) = Var(succ(i))"
by (simp add: lift_rec_def le_in_nat)

lemma lift_rec_gt [simp]: "[| k ∈ nat; i<k |] ==> lift_rec(Var(i),k) = Var(i)"
by (simp add: lift_rec_def)

lemma lift_rec_Fun [simp]:
     "k ∈ nat ==> lift_rec(Fun(t),k) = Fun(lift_rec(t,succ(k)))"
by (simp add: lift_rec_def)

lemma lift_rec_App [simp]:
     "k ∈ nat ==> lift_rec(App(b,f,a),k) = App(b,lift_rec(f,k),lift_rec(a,k))"
by (simp add: lift_rec_def)


(* ------------------------------------------------------------------------- *)
(*    substitution quality rules                                             *)
(* ------------------------------------------------------------------------- *)

lemma subst_Var:
     "[|k ∈ nat; u ∈ redexes|]   
      ==> subst_rec(u,Var(i),k) =   
          (if k<i then Var(i #- 1) else if k=i then u else Var(i))"
by (simp add: subst_rec_def gt_not_eq leI)


lemma subst_eq [simp]:
     "[|n ∈ nat; u ∈ redexes|] ==> subst_rec(u,Var(n),n) = u"
by (simp add: subst_rec_def)

lemma subst_gt [simp]:
     "[|u ∈ redexes; p ∈ nat; p<n|] ==> subst_rec(u,Var(n),p) = Var(n #- 1)"
by (simp add: subst_rec_def)

lemma subst_lt [simp]:
     "[|u ∈ redexes; p ∈ nat; n<p|] ==> subst_rec(u,Var(n),p) = Var(n)"
by (simp add: subst_rec_def gt_not_eq leI lt_nat_in_nat)

lemma subst_Fun [simp]:
     "[|p ∈ nat; u ∈ redexes|]
      ==> subst_rec(u,Fun(t),p) = Fun(subst_rec(lift(u),t,succ(p))) "
by (simp add: subst_rec_def)

lemma subst_App [simp]:
     "[|p ∈ nat; u ∈ redexes|]
      ==> subst_rec(u,App(b,f,a),p) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))"
by (simp add: subst_rec_def)


lemma lift_rec_type [rule_format, simp]:
     "u ∈ redexes ==> ∀k ∈ nat. lift_rec(u,k) ∈ redexes"
apply (erule redexes.induct)
apply (simp_all add: lift_rec_Var lift_rec_Fun lift_rec_App)
done

lemma subst_type [rule_format, simp]:
     "v ∈ redexes ==>  ∀n ∈ nat. ∀u ∈ redexes. subst_rec(u,v,n) ∈ redexes"
apply (erule redexes.induct)
apply (simp_all add: subst_Var lift_rec_type)
done


(* ------------------------------------------------------------------------- *)
(*    lift and  substitution proofs                                          *)
(* ------------------------------------------------------------------------- *)

(*The i∈nat is redundant*)
lemma lift_lift_rec [rule_format]:
     "u ∈ redexes 
      ==> ∀n ∈ nat. ∀i ∈ nat. i≤n -->    
           (lift_rec(lift_rec(u,i),succ(n)) = lift_rec(lift_rec(u,n),i))"
apply (erule redexes.induct, auto)
apply (case_tac "n < i")
apply (frule lt_trans2, assumption)
apply (simp_all add: lift_rec_Var leI)
done

lemma lift_lift:
     "[|u ∈ redexes; n ∈ nat|] 
      ==> lift_rec(lift(u),succ(n)) = lift(lift_rec(u,n))"
by (simp add: lift_lift_rec)

lemma lt_not_m1_lt: "[|m < n; n ∈ nat; m ∈ nat|]==> ~ n #- 1 < m"
by (erule natE, auto)

lemma lift_rec_subst_rec [rule_format]:
     "v ∈ redexes ==>   
       ∀n ∈ nat. ∀m ∈ nat. ∀u ∈ redexes. n≤m--> 
          lift_rec(subst_rec(u,v,n),m) =  
               subst_rec(lift_rec(u,m),lift_rec(v,succ(m)),n)"
apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u) 
apply (case_tac "n < n'")
 apply (frule_tac j = n' in lt_trans2, assumption)
 apply (simp add: leI, simp)
apply (erule_tac j=n in leE)
apply (auto simp add: lift_rec_Var subst_Var leI lt_not_m1_lt)
done


lemma lift_subst:
     "[|v ∈ redexes; u ∈ redexes; n ∈ nat|] 
      ==> lift_rec(u/v,n) = lift_rec(u,n)/lift_rec(v,succ(n))"
by (simp add: lift_rec_subst_rec)


lemma lift_rec_subst_rec_lt [rule_format]:
     "v ∈ redexes ==>   
       ∀n ∈ nat. ∀m ∈ nat. ∀u ∈ redexes. m≤n--> 
          lift_rec(subst_rec(u,v,n),m) =  
               subst_rec(lift_rec(u,m),lift_rec(v,m),succ(n))"
apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u) 
apply (case_tac "n < n'")
apply (case_tac "n < m")
apply (simp_all add: leI)
apply (erule_tac i=n' in leE)
apply (frule lt_trans1, assumption)
apply (simp_all add: succ_pred leI gt_pred)
done


lemma subst_rec_lift_rec [rule_format]:
     "u ∈ redexes ==>   
        ∀n ∈ nat. ∀v ∈ redexes. subst_rec(v,lift_rec(u,n),n) = u"
apply (erule redexes.induct, auto)
apply (case_tac "n < na", auto)
done

lemma subst_rec_subst_rec [rule_format]:
     "v ∈ redexes ==>   
        ∀m ∈ nat. ∀n ∈ nat. ∀u ∈ redexes. ∀w ∈ redexes. m≤n -->  
          subst_rec(subst_rec(w,u,n),subst_rec(lift_rec(w,m),v,succ(n)),m) = 
          subst_rec(w,subst_rec(u,v,m),n)"
apply (erule redexes.induct)
apply (simp_all add: lift_lift [symmetric] lift_rec_subst_rec_lt, safe)
apply (rename_tac n' u w) 
apply (case_tac "n ≤ succ(n') ")
 apply (erule_tac i = n in leE)
 apply (simp_all add: succ_pred subst_rec_lift_rec leI)
 apply (case_tac "n < m")
  apply (frule lt_trans2, assumption, simp add: gt_pred)
 apply simp
 apply (erule_tac j = n in leE, simp add: gt_pred)
 apply (simp add: subst_rec_lift_rec)
(*final case*)
apply (frule nat_into_Ord [THEN le_refl, THEN lt_trans], assumption)
apply (erule leE)
 apply (frule succ_leI [THEN lt_trans], assumption)
 apply (frule_tac i = m in nat_into_Ord [THEN le_refl, THEN lt_trans], 
        assumption)
 apply (simp_all add: succ_pred lt_pred)
done


lemma substitution:
     "[|v ∈ redexes; u ∈ redexes; w ∈ redexes; n ∈ nat|]
      ==> subst_rec(w,u,n)/subst_rec(lift(w),v,succ(n)) = subst_rec(w,u/v,n)"
by (simp add: subst_rec_subst_rec)


(* ------------------------------------------------------------------------- *)
(*          Preservation lemmas                                              *)
(*          Substitution preserves comp and regular                          *)
(* ------------------------------------------------------------------------- *)


lemma lift_rec_preserve_comp [rule_format, simp]:
     "u ~ v ==> ∀m ∈ nat. lift_rec(u,m) ~ lift_rec(v,m)"
by (erule Scomp.induct, simp_all add: comp_refl)

lemma subst_rec_preserve_comp [rule_format, simp]:
     "u2 ~ v2 ==> ∀m ∈ nat. ∀u1 ∈ redexes. ∀v1 ∈ redexes. 
                  u1 ~ v1--> subst_rec(u1,u2,m) ~ subst_rec(v1,v2,m)"
by (erule Scomp.induct, 
    simp_all add: subst_Var lift_rec_preserve_comp comp_refl)

lemma lift_rec_preserve_reg [simp]:
     "regular(u) ==> ∀m ∈ nat. regular(lift_rec(u,m))"
by (erule Sreg.induct, simp_all add: lift_rec_Var)

lemma subst_rec_preserve_reg [simp]:
     "regular(v) ==>   
        ∀m ∈ nat. ∀u ∈ redexes. regular(u)-->regular(subst_rec(u,v,m))"
by (erule Sreg.induct, simp_all add: subst_Var lift_rec_preserve_reg)

end



lemma gt_not_eq:

  p < n ==> np

lemma succ_pred:

  [| j ∈ nat; i < j |] ==> succ(j #- 1) = j

lemma lt_pred:

  [| succ(x) < n; n ∈ nat |] ==> x < n #- 1

lemma gt_pred:

  [| nx; p < n; n ∈ nat |] ==> n #- 1 < x

lemma lift_rec_Var:

  n ∈ nat ==> lift_rec(Var(i), n) = (if i < n then Var(i) else Var(succ(i)))

lemma lift_rec_le:

  [| i ∈ nat; ki |] ==> lift_rec(Var(i), k) = Var(succ(i))

lemma lift_rec_gt:

  [| k ∈ nat; i < k |] ==> lift_rec(Var(i), k) = Var(i)

lemma lift_rec_Fun:

  k ∈ nat ==> lift_rec(Fun(t), k) = Fun(lift_rec(t, succ(k)))

lemma lift_rec_App:

  k ∈ nat ==> lift_rec(App(b, f, a), k) = App(b, lift_rec(f, k), lift_rec(a, k))

lemma subst_Var:

  [| k ∈ nat; u ∈ redexes |]
  ==> subst_rec(u, Var(i), k) =
      (if k < i then Var(i #- 1) else if k = i then u else Var(i))

lemma subst_eq:

  [| n ∈ nat; u ∈ redexes |] ==> subst_rec(u, Var(n), n) = u

lemma subst_gt:

  [| u ∈ redexes; p ∈ nat; p < n |] ==> subst_rec(u, Var(n), p) = Var(n #- 1)

lemma subst_lt:

  [| u ∈ redexes; p ∈ nat; n < p |] ==> subst_rec(u, Var(n), p) = Var(n)

lemma subst_Fun:

  [| p ∈ nat; u ∈ redexes |]
  ==> subst_rec(u, Fun(t), p) = Fun(subst_rec(lift(u), t, succ(p)))

lemma subst_App:

  [| p ∈ nat; u ∈ redexes |]
  ==> subst_rec(u, App(b, f, a), p) =
      App(b, subst_rec(u, f, p), subst_rec(u, a, p))

lemma lift_rec_type:

  [| u ∈ redexes; k ∈ nat |] ==> lift_rec(u, k) ∈ redexes

lemma subst_type:

  [| v ∈ redexes; n ∈ nat; u ∈ redexes |] ==> subst_rec(u, v, n) ∈ redexes

lemma lift_lift_rec:

  [| u ∈ redexes; n ∈ nat; i ∈ nat; in |]
  ==> lift_rec(lift_rec(u, i), succ(n)) = lift_rec(lift_rec(u, n), i)

lemma lift_lift:

  [| u ∈ redexes; n ∈ nat |] ==> lift_rec(lift(u), succ(n)) = lift(lift_rec(u, n))

lemma lt_not_m1_lt:

  [| m < n; n ∈ nat; m ∈ nat |] ==> ¬ n #- 1 < m

lemma lift_rec_subst_rec:

  [| v ∈ redexes; n ∈ nat; m ∈ nat; u ∈ redexes; nm |]
  ==> lift_rec(subst_rec(u, v, n), m) =
      subst_rec(lift_rec(u, m), lift_rec(v, succ(m)), n)

lemma lift_subst:

  [| v ∈ redexes; u ∈ redexes; n ∈ nat |]
  ==> lift_rec(u / v, n) = lift_rec(u, n) / lift_rec(v, succ(n))

lemma lift_rec_subst_rec_lt:

  [| v ∈ redexes; n ∈ nat; m ∈ nat; u ∈ redexes; mn |]
  ==> lift_rec(subst_rec(u, v, n), m) =
      subst_rec(lift_rec(u, m), lift_rec(v, m), succ(n))

lemma subst_rec_lift_rec:

  [| u ∈ redexes; n ∈ nat; v ∈ redexes |] ==> subst_rec(v, lift_rec(u, n), n) = u

lemma subst_rec_subst_rec:

  [| v ∈ redexes; m ∈ nat; n ∈ nat; u ∈ redexes; w ∈ redexes; mn |]
  ==> subst_rec(subst_rec(w, u, n), subst_rec(lift_rec(w, m), v, succ(n)), m) =
      subst_rec(w, subst_rec(u, v, m), n)

lemma substitution:

  [| v ∈ redexes; u ∈ redexes; w ∈ redexes; n ∈ nat |]
  ==> subst_rec(w, u, n) / subst_rec(lift(w), v, succ(n)) = subst_rec(w, u / v, n)

lemma lift_rec_preserve_comp:

  [| u ~ v; m ∈ nat |] ==> lift_rec(u, m) ~ lift_rec(v, m)

lemma subst_rec_preserve_comp:

  [| u2.0 ~ v2.0; m ∈ nat; u1.0 ∈ redexes; v1.0 ∈ redexes; u1.0 ~ v1.0 |]
  ==> subst_rec(u1.0, u2.0, m) ~ subst_rec(v1.0, v2.0, m)

lemma lift_rec_preserve_reg:

  regular(u) ==> ∀m∈nat. regular(lift_rec(u, m))

lemma subst_rec_preserve_reg:

  regular(v) ==> ∀m∈nat. ∀u∈redexes. regular(u) --> regular(subst_rec(u, v, m))