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Abstract

Isar offers a high-level proof (and theory) language for Isabelle.
We give various examples of Isabelle/Isar proof developments, ranging
from simple demonstrations of certain language features to a bit more
advanced applications. Note that the “real” applications of Isar are
found elsewhere.
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1 Basic logical reasoning

theory BasicLogic imports Main begin

1.1 Pure backward reasoning

In order to get a first idea of how Isabelle/Isar proof documents may look
like, we consider the propositions I, K, and S. The following (rather ex-
plicit) proofs should require little extra explanations.

lemma I: "A --> A"

proof
assume A

show A by assumption

qed

lemma K: "A --> B --> A"

proof
assume A

show "B --> A"

proof
show A by assumption

qed
qed

lemma S: "(A --> B --> C) --> (A --> B) --> A --> C"

proof
assume "A --> B --> C"

show "(A --> B) --> A --> C"

proof
assume "A --> B"

show "A --> C"

proof
assume A

show C

proof (rule mp)

show "B --> C" by (rule mp)

show B by (rule mp)

qed
qed

qed
qed

Isar provides several ways to fine-tune the reasoning, avoiding excessive de-
tail. Several abbreviated language elements are available, enabling the writer
to express proofs in a more concise way, even without referring to any au-
tomated proof tools yet.
First of all, proof by assumption may be abbreviated as a single dot.

lemma "A --> A"
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proof
assume A

show A .
qed

In fact, concluding any (sub-)proof already involves solving any remaining
goals by assumption1. Thus we may skip the rather vacuous body of the
above proof as well.

lemma "A --> A"

proof
qed

Note that the proof command refers to the rule method (without argu-
ments) by default. Thus it implicitly applies a single rule, as determined
from the syntactic form of the statements involved. The by command ab-
breviates any proof with empty body, so the proof may be further pruned.

lemma "A --> A"

by rule

Proof by a single rule may be abbreviated as double-dot.

lemma "A --> A" ..

Thus we have arrived at an adequate representation of the proof of a tau-
tology that holds by a single standard rule.2

Let us also reconsider K. Its statement is composed of iterated connectives.
Basic decomposition is by a single rule at a time, which is why our first
version above was by nesting two proofs.
The intro proof method repeatedly decomposes a goal’s conclusion.3

lemma "A --> B --> A"

proof (intro impI)

assume A

show A .
qed

Again, the body may be collapsed.

lemma "A --> B --> A"

by (intro impI)

Just like rule, the intro and elim proof methods pick standard structural
rules, in case no explicit arguments are given. While implicit rules are
usually just fine for single rule application, this may go too far with iteration.

1This is not a completely trivial operation, as proof by assumption may involve full
higher-order unification.

2Apparently, the rule here is implication introduction.
3The dual method is elim, acting on a goal’s premises.
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Thus in practice, intro and elim would be typically restricted to certain
structures by giving a few rules only, e.g. proof (intro impI allI) to strip
implications and universal quantifiers.
Such well-tuned iterated decomposition of certain structures is the prime
application of intro and elim. In contrast, terminal steps that solve a goal
completely are usually performed by actual automated proof methods (such
as by blast).

1.2 Variations of backward vs. forward reasoning

Certainly, any proof may be performed in backward-style only. On the
other hand, small steps of reasoning are often more naturally expressed in
forward-style. Isar supports both backward and forward reasoning as a first-
class concept. In order to demonstrate the difference, we consider several
proofs of A ∧B → B ∧A.
The first version is purely backward.

lemma "A & B --> B & A"

proof
assume "A & B"

show "B & A"

proof
show B by (rule conjunct2)

show A by (rule conjunct1)

qed
qed

Above, the conjunct1/2 projection rules had to be named explicitly, since
the goals B and A did not provide any structural clue. This may be avoided
using from to focus on prems (i.e. the A ∧ B assumption) as the current
facts, enabling the use of double-dot proofs. Note that from already does
forward-chaining, involving the conjE rule here.

lemma "A & B --> B & A"

proof
assume "A & B"

show "B & A"

proof
from prems show B ..
from prems show A ..

qed
qed

In the next version, we move the forward step one level upwards. Forward-
chaining from the most recent facts is indicated by the then command.
Thus the proof of B∧A from A∧B actually becomes an elimination, rather
than an introduction. The resulting proof structure directly corresponds
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to that of the conjE rule, including the repeated goal proposition that is
abbreviated as ?thesis below.

lemma "A & B --> B & A"

proof
assume "A & B"

then show "B & A"

proof — rule conjE of A ∧B
assume A B

show ?thesis .. — rule conjI of B ∧A
qed

qed

In the subsequent version we flatten the structure of the main body by doing
forward reasoning all the time. Only the outermost decomposition step is
left as backward.

lemma "A & B --> B & A"

proof
assume ab: "A & B"

from ab have a: A ..
from ab have b: B ..
from b a show "B & A" ..

qed

We can still push forward-reasoning a bit further, even at the risk of getting
ridiculous. Note that we force the initial proof step to do nothing here, by
referring to the “-” proof method.

lemma "A & B --> B & A"

proof -

{
assume ab: "A & B"

from ab have a: A ..
from ab have b: B ..
from b a have "B & A" ..

}
thus ?thesis .. — rule impI

qed

With these examples we have shifted through a whole range from purely
backward to purely forward reasoning. Apparently, in the extreme ends we
get slightly ill-structured proofs, which also require much explicit naming of
either rules (backward) or local facts (forward).
The general lesson learned here is that good proof style would achieve just
the right balance of top-down backward decomposition, and bottom-up for-
ward composition. In general, there is no single best way to arrange some
pieces of formal reasoning, of course. Depending on the actual applications,
the intended audience etc., rules (and methods) on the one hand vs. facts on
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the other hand have to be emphasized in an appropriate way. This requires
the proof writer to develop good taste, and some practice, of course.

For our example the most appropriate way of reasoning is probably the
middle one, with conjunction introduction done after elimination. This reads
even more concisely using thus, which abbreviates then show.4

lemma "A & B --> B & A"

proof
assume "A & B"

thus "B & A"

proof
assume A B

show ?thesis ..
qed

qed

1.3 A few examples from “Introduction to Isabelle”

We rephrase some of the basic reasoning examples of [6], using HOL rather
than FOL.

1.3.1 A propositional proof

We consider the proposition P ∨P → P . The proof below involves forward-
chaining from P∨P , followed by an explicit case-analysis on the two identical
cases.

lemma "P | P --> P"

proof
assume "P | P"

thus P

proof — rule disjE:
A ∨B

[A]....
C

[B]....
C

C
assume P show P .

next
assume P show P .

qed
qed

Case splits are not hardwired into the Isar language as a special feature.
The next command used to separate the cases above is just a short form of
managing block structure.

In general, applying proof methods may split up a goal into separate “cases”,
i.e. new subgoals with individual local assumptions. The corresponding
proof text typically mimics this by establishing results in appropriate con-
texts, separated by blocks.

4In the same vein, hence abbreviates then have.
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In order to avoid too much explicit parentheses, the Isar system implicitly
opens an additional block for any new goal, the next statement then closes
one block level, opening a new one. The resulting behavior is what one
would expect from separating cases, only that it is more flexible. E.g. an
induction base case (which does not introduce local assumptions) would not
require next to separate the subsequent step case.

In our example the situation is even simpler, since the two cases actually
coincide. Consequently the proof may be rephrased as follows.

lemma "P | P --> P"

proof
assume "P | P"

thus P

proof
assume P

show P .
show P .

qed
qed

Again, the rather vacuous body of the proof may be collapsed. Thus the
case analysis degenerates into two assumption steps, which are implicitly
performed when concluding the single rule step of the double-dot proof as
follows.

lemma "P | P --> P"

proof
assume "P | P"

thus P ..
qed

1.3.2 A quantifier proof

To illustrate quantifier reasoning, let us prove (∃x. P (f x)) → (∃x. P x).
Informally, this holds because any a with P (f a) may be taken as a witness
for the second existential statement.
The first proof is rather verbose, exhibiting quite a lot of (redundant) detail.
It gives explicit rules, even with some instantiation. Furthermore, we en-
counter two new language elements: the fix command augments the context
by some new “arbitrary, but fixed” element; the is annotation binds term
abbreviations by higher-order pattern matching.

lemma "(EX x. P (f x)) --> (EX y. P y)"

proof
assume "EX x. P (f x)"

thus "EX y. P y"

proof (rule exE) — rule exE:
∃x. A(x)

[A(x)]x....
B

B
fix a
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assume "P (f a)" ( is "P ?witness")

show ?thesis by (rule exI [of P ?witness])

qed
qed

While explicit rule instantiation may occasionally improve readability of
certain aspects of reasoning, it is usually quite redundant. Above, the basic
proof outline gives already enough structural clues for the system to infer
both the rules and their instances (by higher-order unification). Thus we
may as well prune the text as follows.

lemma "(EX x. P (f x)) --> (EX y. P y)"

proof
assume "EX x. P (f x)"

thus "EX y. P y"

proof
fix a

assume "P (f a)"

show ?thesis ..
qed

qed

Explicit ∃-elimination as seen above can become quite cumbersome in prac-
tice. The derived Isar language element “obtain” provides a more handsome
way to do generalized existence reasoning.

lemma "(EX x. P (f x)) --> (EX y. P y)"

proof
assume "EX x. P (f x)"

then obtain a where "P (f a)" ..
thus "EX y. P y" ..

qed

Technically, obtain is similar to fix and assume together with a soundness
proof of the elimination involved. Thus it behaves similar to any other
forward proof element. Also note that due to the nature of general existence
reasoning involved here, any result exported from the context of an obtain
statement may not refer to the parameters introduced there.

1.3.3 Deriving rules in Isabelle

We derive the conjunction elimination rule from the corresponding projec-
tions. The proof is quite straight-forward, since Isabelle/Isar supports non-
atomic goals and assumptions fully transparently.

theorem conjE: "A & B ==> (A ==> B ==> C) ==> C"

proof -

assume "A & B"

assume r: "A ==> B ==> C"
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show C

proof (rule r)

show A by (rule conjunct1)

show B by (rule conjunct2)

qed
qed

Note that classic Isabelle handles higher rules in a slightly different way.
The tactic script as given in [6] for the same example of conjE depends on
the primitive goal command to decompose the rule into premises and con-
clusion. The actual result would then emerge by discharging of the context
at qed time.

end

2 Cantor’s Theorem

theory Cantor imports Main begin5

Cantor’s Theorem states that every set has more subsets than it has ele-
ments. It has become a favorite basic example in pure higher-order logic
since it is so easily expressed:

∀f :: α → α → bool . ∃S :: α → bool . ∀x :: α. f x 6= S

Viewing types as sets, α → bool represents the powerset of α. This version
of the theorem states that for every function from α to its powerset, some
subset is outside its range. The Isabelle/Isar proofs below uses HOL’s set
theory, with the type α set and the operator range :: (α → β) → β set .

theorem "EX S. S ~: range (f :: ’a => ’a set)"

proof
let ?S = "{x. x ~: f x}"

show "?S ~: range f"

proof
assume "?S : range f"

then obtain y where "?S = f y" ..
thus False

proof (rule equalityCE)

assume "y : f y"

assume "y : ?S" hence "y ~: f y" ..
thus ?thesis by contradiction

next
assume "y ~: ?S"

assume "y ~: f y" hence "y : ?S" ..
thus ?thesis by contradiction

5This is an Isar version of the final example of the Isabelle/HOL manual [5].
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qed
qed

qed

How much creativity is required? As it happens, Isabelle can prove this
theorem automatically using best-first search. Depth-first search would di-
verge, but best-first search successfully navigates through the large search
space. The context of Isabelle’s classical prover contains rules for the rele-
vant constructs of HOL’s set theory.

theorem "EX S. S ~: range (f :: ’a => ’a set)"

by best

While this establishes the same theorem internally, we do not get any idea
of how the proof actually works. There is currently no way to transform
internal system-level representations of Isabelle proofs back into Isar text.
Writing intelligible proof documents really is a creative process, after all.

end

3 Peirce’s Law

theory Peirce imports Main begin

We consider Peirce’s Law: ((A → B) → A) → A. This is an inherently
non-intuitionistic statement, so its proof will certainly involve some form of
classical contradiction.
The first proof is again a well-balanced combination of plain backward and
forward reasoning. The actual classical step is where the negated goal may
be introduced as additional assumption. This eventually leads to a contra-
diction.6

theorem "((A --> B) --> A) --> A"

proof
assume aba: "(A --> B) --> A"

show A

proof (rule classical)

assume "~ A"

have "A --> B"

proof
assume A

thus B by contradiction

qed
with aba show A ..

qed
qed

6The rule involved there is negation elimination; it holds in intuitionistic logic as well.
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In the subsequent version the reasoning is rearranged by means of “weak
assumptions” (as introduced by presume). Before assuming the negated
goal ¬A, its intended consequence A → B is put into place in order to solve
the main problem. Nevertheless, we do not get anything for free, but have
to establish A → B later on. The overall effect is that of a logical cut.
Technically speaking, whenever some goal is solved by show in the context
of weak assumptions then the latter give rise to new subgoals, which may
be established separately. In contrast, strong assumptions (as introduced
by assume) are solved immediately.

theorem "((A --> B) --> A) --> A"

proof
assume aba: "(A --> B) --> A"

show A

proof (rule classical)

presume "A --> B"

with aba show A ..
next

assume "~ A"

show "A --> B"

proof
assume A

thus B by contradiction

qed
qed

qed

Note that the goals stemming from weak assumptions may be even left until
qed time, where they get eventually solved “by assumption” as well. In
that case there is really no fundamental difference between the two kinds of
assumptions, apart from the order of reducing the individual parts of the
proof configuration.
Nevertheless, the “strong” mode of plain assumptions is quite important in
practice to achieve robustness of proof text interpretation. By forcing both
the conclusion and the assumptions to unify with the pending goal to be
solved, goal selection becomes quite deterministic. For example, decomposi-
tion with rules of the “case-analysis” type usually gives rise to several goals
that only differ in there local contexts. With strong assumptions these may
be still solved in any order in a predictable way, while weak ones would
quickly lead to great confusion, eventually demanding even some backtrack-
ing.

end
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4 The Drinker’s Principle

theory Drinker imports Main begin

Here is another example of classical reasoning: the Drinker’s Principle says
that for some person, if he is drunk, everybody else is drunk!
We first prove a classical part of de-Morgan’s law.

lemma deMorgan:

assumes "¬ (∀ x. P x)"

shows "∃ x. ¬ P x"

using prems

proof (rule contrapos_np)

assume a: "¬ (∃ x. ¬ P x)"

show "∀ x. P x"

proof
fix x

show "P x"

proof (rule classical)

assume "¬ P x"

then have "∃ x. ¬ P x" ..
with a show ?thesis by contradiction

qed
qed

qed

theorem Drinker’s_Principle: "∃ x. drunk x −→ (∀ x. drunk x)"

proof cases

fix a assume "∀ x. drunk x"

then have "drunk a −→ (∀ x. drunk x)" ..
then show ?thesis ..

next
assume "¬ (∀ x. drunk x)"

then have "∃ x. ¬ drunk x" by (rule deMorgan)

then obtain a where a: "¬ drunk a" ..
have "drunk a −→ (∀ x. drunk x)"

proof
assume "drunk a"

with a show "∀ x. drunk x" by (contradiction)

qed
then show ?thesis ..

qed

end

5 Correctness of a simple expression compiler

theory ExprCompiler imports Main begin
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This is a (rather trivial) example of program verification. We model a com-
piler for translating expressions to stack machine instructions, and prove its
correctness wrt. some evaluation semantics.

5.1 Binary operations

Binary operations are just functions over some type of values. This is both
for abstract syntax and semantics, i.e. we use a “shallow embedding” here.

types
’val binop = "’val => ’val => ’val"

5.2 Expressions

The language of expressions is defined as an inductive type, consisting of
variables, constants, and binary operations on expressions.

datatype (’adr, ’val) expr =

Variable ’adr |

Constant ’val |

Binop "’val binop" "(’adr, ’val) expr" "(’adr, ’val) expr"

Evaluation (wrt. some environment of variable assignments) is defined by
primitive recursion over the structure of expressions.

consts
eval :: "(’adr, ’val) expr => (’adr => ’val) => ’val"

primrec
"eval (Variable x) env = env x"

"eval (Constant c) env = c"

"eval (Binop f e1 e2) env = f (eval e1 env) (eval e2 env)"

5.3 Machine

Next we model a simple stack machine, with three instructions.

datatype (’adr, ’val) instr =

Const ’val |

Load ’adr |

Apply "’val binop"

Execution of a list of stack machine instructions is easily defined as follows.

consts
exec :: "((’adr, ’val) instr) list

=> ’val list => (’adr => ’val) => ’val list"

primrec
"exec [] stack env = stack"

"exec (instr # instrs) stack env =
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(case instr of

Const c => exec instrs (c # stack) env

| Load x => exec instrs (env x # stack) env

| Apply f => exec instrs (f (hd stack) (hd (tl stack))

# (tl (tl stack))) env)"

constdefs
execute :: "((’adr, ’val) instr) list => (’adr => ’val) => ’val"

"execute instrs env == hd (exec instrs [] env)"

5.4 Compiler

We are ready to define the compilation function of expressions to lists of
stack machine instructions.

consts
compile :: "(’adr, ’val) expr => ((’adr, ’val) instr) list"

primrec
"compile (Variable x) = [Load x]"

"compile (Constant c) = [Const c]"

"compile (Binop f e1 e2) = compile e2 @ compile e1 @ [Apply f]"

The main result of this development is the correctness theorem for compile.
We first establish a lemma about exec and list append.

lemma exec_append:

"ALL stack. exec (xs @ ys) stack env =

exec ys (exec xs stack env) env" ( is "?P xs")

proof (induct xs)

show "?P []" by simp

next
fix x xs assume hyp: "?P xs"

show "?P (x # xs)"

proof (induct x)

from hyp show "!!val. ?P (Const val # xs)" by simp

from hyp show "!!adr. ?P (Load adr # xs)" by simp

from hyp show "!!fun. ?P (Apply fun # xs)" by simp

qed
qed

theorem correctness: "execute (compile e) env = eval e env"

proof -

have "ALL stack. exec (compile e) stack env =

eval e env # stack" ( is "?P e")

proof (induct e)

show "!!adr. ?P (Variable adr)" by simp

show "!!val. ?P (Constant val)" by simp

show "!!fun e1 e2. ?P e1 ==> ?P e2 ==> ?P (Binop fun e1 e2)"

by (simp add: exec_append)
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qed
thus ?thesis by (simp add: execute_def)

qed

In the proofs above, the simp method does quite a lot of work behind the
scenes (mostly “functional program execution”). Subsequently, the same
reasoning is elaborated in detail — at most one recursive function definition
is used at a time. Thus we get a better idea of what is actually going on.

lemma exec_append’:

"ALL stack. exec (xs @ ys) stack env

= exec ys (exec xs stack env) env" ( is "?P xs")

proof (induct xs)

show "?P []" ( is "ALL s. ?Q s")

proof
fix s have "exec ([] @ ys) s env = exec ys s env" by simp

also have "... = exec ys (exec [] s env) env" by simp

finally show "?Q s" .
qed
fix x xs assume hyp: "?P xs"

show "?P (x # xs)"

proof (induct x)

fix val

show "?P (Const val # xs)" ( is "ALL s. ?Q s")

proof
fix s

have "exec ((Const val # xs) @ ys) s env =

exec (Const val # xs @ ys) s env"

by simp

also have "... = exec (xs @ ys) (val # s) env" by simp

also from hyp

have "... = exec ys (exec xs (val # s) env) env" ..
also have "... = exec ys (exec (Const val # xs) s env) env"

by simp

finally show "?Q s" .
qed

next
fix adr from hyp show "?P (Load adr # xs)" by simp — same as above

next
fix fun

show "?P (Apply fun # xs)" ( is "ALL s. ?Q s")

proof
fix s

have "exec ((Apply fun # xs) @ ys) s env =

exec (Apply fun # xs @ ys) s env"

by simp

also have "... =

exec (xs @ ys) (fun (hd s) (hd (tl s)) # (tl (tl s))) env"
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by simp

also from hyp have "... =

exec ys (exec xs (fun (hd s) (hd (tl s)) # tl (tl s)) env) env"

..
also have "... = exec ys (exec (Apply fun # xs) s env) env" by simp

finally show "?Q s" .
qed

qed
qed

theorem correctness’: "execute (compile e) env = eval e env"

proof -

have exec_compile:

"ALL stack. exec (compile e) stack env = eval e env # stack"

( is "?P e")

proof (induct e)

fix adr show "?P (Variable adr)" ( is "ALL s. ?Q s")

proof
fix s

have "exec (compile (Variable adr)) s env = exec [Load adr] s env"

by simp

also have "... = env adr # s" by simp

also have "env adr = eval (Variable adr) env" by simp

finally show "?Q s" .
qed

next
fix val show "?P (Constant val)" by simp — same as above

next
fix fun e1 e2 assume hyp1: "?P e1" and hyp2: "?P e2"

show "?P (Binop fun e1 e2)" ( is "ALL s. ?Q s")

proof
fix s have "exec (compile (Binop fun e1 e2)) s env

= exec (compile e2 @ compile e1 @ [Apply fun]) s env" by simp

also have "... = exec [Apply fun]

(exec (compile e1) (exec (compile e2) s env) env) env"

by (simp only: exec_append)

also from hyp2

have "exec (compile e2) s env = eval e2 env # s" ..
also from hyp1

have "exec (compile e1) ... env = eval e1 env # ..." ..
also have "exec [Apply fun] ... env =

fun (hd ...) (hd (tl ...)) # (tl (tl ...))" by simp

also have "... = fun (eval e1 env) (eval e2 env) # s" by simp

also have "fun (eval e1 env) (eval e2 env) =

eval (Binop fun e1 e2) env"

by simp

finally show "?Q s" .
qed

qed
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have "execute (compile e) env = hd (exec (compile e) [] env)"

by (simp add: execute_def)

also from exec_compile

have "exec (compile e) [] env = [eval e env]" ..
also have "hd ... = eval e env" by simp

finally show ?thesis .
qed

end

6 Basic group theory

theory Group imports Main begin

6.1 Groups and calculational reasoning

Groups over signature (× :: α → α → α, one :: α, inverse :: α → α) are
defined as an axiomatic type class as follows. Note that the parent class
times is provided by the basic HOL theory.

consts
one :: "’a"

inverse :: "’a => ’a"

axclass
group < times

group_assoc: "(x * y) * z = x * (y * z)"

group_left_one: "one * x = x"

group_left_inverse: "inverse x * x = one"

The group axioms only state the properties of left one and inverse, the right
versions may be derived as follows.

theorem group_right_inverse: "x * inverse x = (one::’a::group)"

proof -

have "x * inverse x = one * (x * inverse x)"

by (simp only: group_left_one)

also have "... = one * x * inverse x"

by (simp only: group_assoc)

also have "... = inverse (inverse x) * inverse x * x * inverse x"

by (simp only: group_left_inverse)

also have "... = inverse (inverse x) * (inverse x * x) * inverse x"

by (simp only: group_assoc)

also have "... = inverse (inverse x) * one * inverse x"

by (simp only: group_left_inverse)

also have "... = inverse (inverse x) * (one * inverse x)"

by (simp only: group_assoc)

also have "... = inverse (inverse x) * inverse x"
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by (simp only: group_left_one)

also have "... = one"

by (simp only: group_left_inverse)

finally show ?thesis .
qed

With group-right-inverse already available, group-right-one is now estab-
lished much easier.

theorem group_right_one: "x * one = (x::’a::group)"

proof -

have "x * one = x * (inverse x * x)"

by (simp only: group_left_inverse)

also have "... = x * inverse x * x"

by (simp only: group_assoc)

also have "... = one * x"

by (simp only: group_right_inverse)

also have "... = x"

by (simp only: group_left_one)

finally show ?thesis .
qed

The calculational proof style above follows typical presentations given in
any introductory course on algebra. The basic technique is to form a tran-
sitive chain of equations, which in turn are established by simplifying with
appropriate rules. The low-level logical details of equational reasoning are
left implicit.
Note that “. . .” is just a special term variable that is bound automatically
to the argument7 of the last fact achieved by any local assumption or proven
statement. In contrast to ?thesis, the “. . .” variable is bound after the proof
is finished, though.
There are only two separate Isar language elements for calculational proofs:
“also” for initial or intermediate calculational steps, and “finally” for ex-
hibiting the result of a calculation. These constructs are not hardwired into
Isabelle/Isar, but defined on top of the basic Isar/VM interpreter. Expand-
ing the also and finally derived language elements, calculations may be
simulated by hand as demonstrated below.

theorem "x * one = (x::’a::group)"

proof -

have "x * one = x * (inverse x * x)"

by (simp only: group_left_inverse)

note calculation = this

— first calculational step: init calculation register

7The argument of a curried infix expression happens to be its right-hand side.
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have "... = x * inverse x * x"

by (simp only: group_assoc)

note calculation = trans [OF calculation this]

— general calculational step: compose with transitivity rule

have "... = one * x"

by (simp only: group_right_inverse)

note calculation = trans [OF calculation this]

— general calculational step: compose with transitivity rule

have "... = x"

by (simp only: group_left_one)

note calculation = trans [OF calculation this]

— final calculational step: compose with transitivity rule ...
from calculation

— ... and pick up the final result

show ?thesis .
qed

Note that this scheme of calculations is not restricted to plain transitivity.
Rules like anti-symmetry, or even forward and backward substitution work
as well. For the actual implementation of also and finally, Isabelle/Isar
maintains separate context information of “transitivity” rules. Rule selec-
tion takes place automatically by higher-order unification.

6.2 Groups as monoids

Monoids over signature (× :: α → α → α, one :: α) are defined like this.

axclass monoid < times

monoid_assoc: "(x * y) * z = x * (y * z)"

monoid_left_one: "one * x = x"

monoid_right_one: "x * one = x"

Groups are not yet monoids directly from the definition. For monoids,
right-one had to be included as an axiom, but for groups both right-one and
right-inverse are derivable from the other axioms. With group-right-one
derived as a theorem of group theory (see page 19), we may still instantiate
group ⊆ monoid properly as follows.

instance group < monoid

by (intro_classes,

rule group_assoc,

rule group_left_one,

rule group_right_one)
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The instance command actually is a version of theorem, setting up a goal
that reflects the intended class relation (or type constructor arity). Thus
any Isar proof language element may be involved to establish this statement.
When concluding the proof, the result is transformed into the intended type
signature extension behind the scenes.

6.3 More theorems of group theory

The one element is already uniquely determined by preserving an arbitrary
group element.

theorem group_one_equality: "e * x = x ==> one = (e::’a::group)"

proof -

assume eq: "e * x = x"

have "one = x * inverse x"

by (simp only: group_right_inverse)

also have "... = (e * x) * inverse x"

by (simp only: eq)

also have "... = e * (x * inverse x)"

by (simp only: group_assoc)

also have "... = e * one"

by (simp only: group_right_inverse)

also have "... = e"

by (simp only: group_right_one)

finally show ?thesis .
qed

Likewise, the inverse is already determined by the cancel property.

theorem group_inverse_equality:

"x’ * x = one ==> inverse x = (x’::’a::group)"

proof -

assume eq: "x’ * x = one"

have "inverse x = one * inverse x"

by (simp only: group_left_one)

also have "... = (x’ * x) * inverse x"

by (simp only: eq)

also have "... = x’ * (x * inverse x)"

by (simp only: group_assoc)

also have "... = x’ * one"

by (simp only: group_right_inverse)

also have "... = x’"

by (simp only: group_right_one)

finally show ?thesis .
qed

The inverse operation has some further characteristic properties.

theorem group_inverse_times:

"inverse (x * y) = inverse y * inverse (x::’a::group)"
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proof (rule group_inverse_equality)

show "(inverse y * inverse x) * (x * y) = one"

proof -

have "(inverse y * inverse x) * (x * y) =

(inverse y * (inverse x * x)) * y"

by (simp only: group_assoc)

also have "... = (inverse y * one) * y"

by (simp only: group_left_inverse)

also have "... = inverse y * y"

by (simp only: group_right_one)

also have "... = one"

by (simp only: group_left_inverse)

finally show ?thesis .
qed

qed

theorem inverse_inverse: "inverse (inverse x) = (x::’a::group)"

proof (rule group_inverse_equality)

show "x * inverse x = one"

by (simp only: group_right_inverse)

qed

theorem inverse_inject: "inverse x = inverse y ==> x = (y::’a::group)"

proof -

assume eq: "inverse x = inverse y"

have "x = x * one"

by (simp only: group_right_one)

also have "... = x * (inverse y * y)"

by (simp only: group_left_inverse)

also have "... = x * (inverse x * y)"

by (simp only: eq)

also have "... = (x * inverse x) * y"

by (simp only: group_assoc)

also have "... = one * y"

by (simp only: group_right_inverse)

also have "... = y"

by (simp only: group_left_one)

finally show ?thesis .
qed

end

7 Summing natural numbers

theory Summation

imports Main

begin8

8This example is somewhat reminiscent of the http://isabelle.in.tum.de/library/HOL/
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Subsequently, we prove some summation laws of natural numbers (including
odds, squares, and cubes). These examples demonstrate how plain natural
deduction (including induction) may be combined with calculational proof.

7.1 Summation laws

The sum of natural numbers 0 + · · · + n equals n × (n + 1)/2. Avoiding
formal reasoning about division we prove this equation multiplied by 2.

theorem sum_of_naturals:

"2 * (
∑

i::nat=0..n. i) = n * (n + 1)"

( is "?P n" is "?S n = _")

proof (induct n)

show "?P 0" by simp

next
fix n have "?S (n + 1) = ?S n + 2 * (n + 1)" by simp

also assume "?S n = n * (n + 1)"

also have "... + 2 * (n + 1) = (n + 1) * (n + 2)" by simp

finally show "?P (Suc n)" by simp

qed

The above proof is a typical instance of mathematical induction. The main
statement is viewed as some ?P n that is split by the induction method into
base case ?P 0, and step case ?P n =⇒ ?P (Suc n) for arbitrary n.
The step case is established by a short calculation in forward manner. Start-
ing from the left-hand side ?S (n+1) of the thesis, the final result is achieved
by transformations involving basic arithmetic reasoning (using the Simpli-
fier). The main point is where the induction hypothesis ?S n = n× (n+1) is
introduced in order to replace a certain subterm. So the “transitivity” rule
involved here is actual substitution. Also note how the occurrence of “. . . ”
in the subsequent step documents the position where the right-hand side of
the hypothesis got filled in.

A further notable point here is integration of calculations with plain natural
deduction. This works so well in Isar for two reasons.

1. Facts involved in also / finally calculational chains may be just any-
thing. There is nothing special about have, so the natural deduction
element assume works just as well.

2. There are two separate primitives for building natural deduction con-
texts: fix x and assume A. Thus it is possible to start reasoning with
some new “arbitrary, but fixed” elements before bringing in the actual
assumption. In contrast, natural deduction is occasionally formalized
with basic context elements of the form x : A instead.

ex/NatSum.html, which is discussed in [7] in the context of permutative rewrite rules and
ordered rewriting.
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We derive further summation laws for odds, squares, and cubes as follows.
The basic technique of induction plus calculation is the same as before.

theorem sum_of_odds:

"(
∑

i::nat=0..<n. 2 * i + 1) = n^Suc (Suc 0)"

( is "?P n" is "?S n = _")

proof (induct n)

show "?P 0" by simp

next
fix n have "?S (n + 1) = ?S n + 2 * n + 1" by simp

also assume "?S n = n^Suc (Suc 0)"

also have "... + 2 * n + 1 = (n + 1)^Suc (Suc 0)" by simp

finally show "?P (Suc n)" by simp

qed

Subsequently we require some additional tweaking of Isabelle built-in arith-
metic simplifications, such as bringing in distributivity by hand.

lemmas distrib = add_mult_distrib add_mult_distrib2

theorem sum_of_squares:

"6 * (
∑

i::nat=0..n. i^Suc (Suc 0)) = n * (n + 1) * (2 * n + 1)"

( is "?P n" is "?S n = _")

proof (induct n)

show "?P 0" by simp

next
fix n have "?S (n + 1) = ?S n + 6 * (n + 1)^Suc (Suc 0)" by (simp add:

distrib)

also assume "?S n = n * (n + 1) * (2 * n + 1)"

also have "... + 6 * (n + 1)^Suc (Suc 0) =

(n + 1) * (n + 2) * (2 * (n + 1) + 1)" by (simp add: distrib)

finally show "?P (Suc n)" by simp

qed

theorem sum_of_cubes:

"4 * (
∑

i::nat=0..n. i^3) = (n * (n + 1))^Suc (Suc 0)"

( is "?P n" is "?S n = _")

proof (induct n)

show "?P 0" by (simp add: power_eq_if)

next
fix n have "?S (n + 1) = ?S n + 4 * (n + 1)^3"

by (simp add: power_eq_if distrib)

also assume "?S n = (n * (n + 1))^Suc (Suc 0)"

also have "... + 4 * (n + 1)^3 = ((n + 1) * ((n + 1) + 1))^Suc (Suc

0)"

by (simp add: power_eq_if distrib)

finally show "?P (Suc n)" by simp

qed

Comparing these examples with the tactic script version http://isabelle.in.
tum.de/library/HOL/ex/NatSum.html, we note an important difference of
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how induction vs. simplification is applied. While [7, §10] advises for these
examples that “induction should not be applied until the goal is in the
simplest form” this would be a very bad idea in our setting.
Simplification normalizes all arithmetic expressions involved, producing huge
intermediate goals. With applying induction afterwards, the Isar proof text
would have to reflect the emerging configuration by appropriate sub-proofs.
This would result in badly structured, low-level technical reasoning, without
any good idea of the actual point.

As a general rule of good proof style, automatic methods such as simp or
auto should normally be never used as initial proof methods, but only as
terminal ones, solving certain goals completely.

end

8 Textbook-style reasoning: the Knaster-Tarski
Theorem

theory KnasterTarski imports Main begin

8.1 Prose version

According to the textbook [1, pages 93–94], the Knaster-Tarski fixpoint
theorem is as follows.9

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice
and f :L → L an order-preserving map. Then

∧
{x ∈ L | f(x) ≤ x} is a

fixpoint of f .
Proof. Let H = {x ∈ L | f(x) ≤ x} and a =

∧
H. For all x ∈ H we

have a ≤ x, so f(a) ≤ f(x) ≤ x. Thus f(a) is a lower bound of H, whence
f(a) ≤ a. We now use this inequality to prove the reverse one (!) and
thereby complete the proof that a is a fixpoint. Since f is order-preserving,
f(f(a)) ≤ f(a). This says f(a) ∈ H, so a ≤ f(a).

8.2 Formal versions

The Isar proof below closely follows the original presentation. Virtually all
of the prose narration has been rephrased in terms of formal Isar language
elements. Just as many textbook-style proofs, there is a strong bias towards
forward proof, and several bends in the course of reasoning.

theorem KnasterTarski: "mono f ==> EX a::’a set. f a = a"

proof

9We have dualized the argument, and tuned the notation a little bit.
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let ?H = "{u. f u <= u}"

let ?a = "Inter ?H"

assume mono: "mono f"

show "f ?a = ?a"

proof -

{
fix x

assume H: "x : ?H"

hence "?a <= x" by (rule Inter_lower)

with mono have "f ?a <= f x" ..
also from H have "... <= x" ..
finally have "f ?a <= x" .

}
hence ge: "f ?a <= ?a" by (rule Inter_greatest)

{
also presume "... <= f ?a"

finally (order_antisym) show ?thesis .
}
from mono ge have "f (f ?a) <= f ?a" ..
hence "f ?a : ?H" ..
thus "?a <= f ?a" by (rule Inter_lower)

qed
qed

Above we have used several advanced Isar language elements, such as ex-
plicit block structure and weak assumptions. Thus we have mimicked the
particular way of reasoning of the original text.
In the subsequent version the order of reasoning is changed to achieve struc-
tured top-down decomposition of the problem at the outer level, while only
the inner steps of reasoning are done in a forward manner. We are cer-
tainly more at ease here, requiring only the most basic features of the Isar
language.

theorem KnasterTarski’: "mono f ==> EX a::’a set. f a = a"

proof
let ?H = "{u. f u <= u}"

let ?a = "Inter ?H"

assume mono: "mono f"

show "f ?a = ?a"

proof (rule order_antisym)

show ge: "f ?a <= ?a"

proof (rule Inter_greatest)

fix x

assume H: "x : ?H"

hence "?a <= x" by (rule Inter_lower)

with mono have "f ?a <= f x" ..
also from H have "... <= x" ..
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finally show "f ?a <= x" .
qed
show "?a <= f ?a"

proof (rule Inter_lower)

from mono ge have "f (f ?a) <= f ?a" ..
thus "f ?a : ?H" ..

qed
qed

qed

end

9 The Mutilated Checker Board Problem

theory MutilatedCheckerboard imports Main begin

The Mutilated Checker Board Problem, formalized inductively. See [8] and
http://isabelle.in.tum.de/library/HOL/Induct/Mutil.html for the original
tactic script version.

9.1 Tilings

consts
tiling :: "’a set set => ’a set set"

inductive "tiling A"

intros
empty: "{} : tiling A"

Un: "a : A ==> t : tiling A ==> a <= - t ==> a Un t : tiling A"

The union of two disjoint tilings is a tiling.

lemma tiling_Un:

"t : tiling A ==> u : tiling A ==> t Int u = {}

==> t Un u : tiling A"

proof -

let ?T = "tiling A"

assume u: "u : ?T"

assume "t : ?T"

thus "t Int u = {} ==> t Un u : ?T" ( is "PROP ?P t")

proof (induct t)

case empty

with u show "{} Un u : ?T" by simp

next
case (Un a t)

show "(a Un t) Un u : ?T"

proof -

have "a Un (t Un u) : ?T"
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proof (rule tiling.Un)

show "a : A" .
have atu: "(a Un t) Int u = {}" .
hence "t Int u = {}" by blast

thus "t Un u: ?T" by (rule Un)

have "a <= - t" .
with atu show "a <= - (t Un u)" by blast

qed
also have "a Un (t Un u) = (a Un t) Un u"

by (simp only: Un_assoc)

finally show ?thesis .
qed

qed
qed

9.2 Basic properties of “below”

constdefs
below :: "nat => nat set"

"below n == {i. i < n}"

lemma below_less_iff [iff]: "(i: below k) = (i < k)"

by (simp add: below_def)

lemma below_0: "below 0 = {}"

by (simp add: below_def)

lemma Sigma_Suc1:

"m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)"

by (simp add: below_def less_Suc_eq) blast

lemma Sigma_Suc2:

"m = n + 2 ==> A <*> below m =

(A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)"

by (auto simp add: below_def)

lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2

9.3 Basic properties of “evnodd”

constdefs
evnodd :: "(nat * nat) set => nat => (nat * nat) set"

"evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"

lemma evnodd_iff:

"(i, j): evnodd A b = ((i, j): A & (i + j) mod 2 = b)"

by (simp add: evnodd_def)

lemma evnodd_subset: "evnodd A b <= A"

by (unfold evnodd_def, rule Int_lower1)
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lemma evnoddD: "x : evnodd A b ==> x : A"

by (rule subsetD, rule evnodd_subset)

lemma evnodd_finite: "finite A ==> finite (evnodd A b)"

by (rule finite_subset, rule evnodd_subset)

lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b"

by (unfold evnodd_def) blast

lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b"

by (unfold evnodd_def) blast

lemma evnodd_empty: "evnodd {} b = {}"

by (simp add: evnodd_def)

lemma evnodd_insert: "evnodd (insert (i, j) C) b =

(if (i + j) mod 2 = b

then insert (i, j) (evnodd C b) else evnodd C b)"

by (simp add: evnodd_def) blast

9.4 Dominoes

consts
domino :: "(nat * nat) set set"

inductive domino

intros
horiz: "{(i, j), (i, j + 1)} : domino"

vertl: "{(i, j), (i + 1, j)} : domino"

lemma dominoes_tile_row:

"{i} <*> below (2 * n) : tiling domino"

( is "?B n : ?T")

proof (induct n)

case 0

show ?case by (simp add: below_0 tiling.empty)

next
case (Suc n)

let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}"

have "?B (Suc n) = ?a Un ?B n"

by (auto simp add: Sigma_Suc Un_assoc)

also have "... : ?T"

proof (rule tiling.Un)

have "{(i, 2 * n), (i, 2 * n + 1)} : domino"

by (rule domino.horiz)

also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast

finally show "... : domino" .
show "?B n : ?T" by (rule Suc)
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show "?a <= - ?B n" by blast

qed
finally show ?case .

qed

lemma dominoes_tile_matrix:

"below m <*> below (2 * n) : tiling domino"

( is "?B m : ?T")

proof (induct m)

case 0

show ?case by (simp add: below_0 tiling.empty)

next
case (Suc m)

let ?t = "{m} <*> below (2 * n)"

have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc)

also have "... : ?T"

proof (rule tiling_Un)

show "?t : ?T" by (rule dominoes_tile_row)

show "?B m : ?T" by (rule Suc)

show "?t Int ?B m = {}" by blast

qed
finally show ?case .

qed

lemma domino_singleton:

"d : domino ==> b < 2 ==> EX i j. evnodd d b = {(i, j)}"

proof -

assume b: "b < 2"

assume "d : domino"

thus ?thesis ( is "?P d")

proof induct

from b have b_cases: "b = 0 | b = 1" by arith

fix i j

note [simp] = evnodd_empty evnodd_insert mod_Suc

from b_cases show "?P {(i, j), (i, j + 1)}" by rule auto

from b_cases show "?P {(i, j), (i + 1, j)}" by rule auto

qed
qed

lemma domino_finite: "d: domino ==> finite d"

proof -

assume "d: domino"

thus ?thesis

proof induct

fix i j :: nat

show "finite {(i, j), (i, j + 1)}" by (intro Finites.intros)

show "finite {(i, j), (i + 1, j)}" by (intro Finites.intros)

qed
qed
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9.5 Tilings of dominoes

lemma tiling_domino_finite:

"t : tiling domino ==> finite t" ( is "t : ?T ==> ?F t")

proof -

assume "t : ?T"

thus "?F t"

proof induct

show "?F {}" by (rule Finites.emptyI)

fix a t assume "?F t"

assume "a : domino" hence "?F a" by (rule domino_finite)

thus "?F (a Un t)" by (rule finite_UnI)

qed
qed

lemma tiling_domino_01:

"t : tiling domino ==> card (evnodd t 0) = card (evnodd t 1)"

( is "t : ?T ==> _")

proof -

assume "t : ?T"

thus ?thesis

proof induct

case empty

show ?case by (simp add: evnodd_def)

next
case (Un a t)

let ?e = evnodd

have hyp: "card (?e t 0) = card (?e t 1)" .
have at: "a <= - t" .
have card_suc:

"!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))"

proof -

fix b :: nat assume "b < 2"

have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un)

also obtain i j where e: "?e a b = {(i, j)}"

proof -

have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton)

thus ?thesis by (blast intro: that)

qed
also have "... Un ?e t b = insert (i, j) (?e t b)" by simp

also have "card ... = Suc (card (?e t b))"

proof (rule card_insert_disjoint)

show "finite (?e t b)"

by (rule evnodd_finite, rule tiling_domino_finite)

from e have "(i, j) : ?e a b" by simp

with at show "(i, j) ~: ?e t b" by (blast dest: evnoddD)

qed
finally show "?thesis b" .

qed
hence "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp
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also from hyp have "card (?e t 0) = card (?e t 1)" .
also from card_suc have "Suc ... = card (?e (a Un t) 1)"

by simp

finally show ?case .
qed

qed

9.6 Main theorem

constdefs
mutilated_board :: "nat => nat => (nat * nat) set"

"mutilated_board m n ==

below (2 * (m + 1)) <*> below (2 * (n + 1))

- {(0, 0)} - {(2 * m + 1, 2 * n + 1)}"

theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino"

proof (unfold mutilated_board_def)

let ?T = "tiling domino"

let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))"

let ?t’ = "?t - {(0, 0)}"

let ?t’’ = "?t’ - {(2 * m + 1, 2 * n + 1)}"

show "?t’’ ~: ?T"

proof
have t: "?t : ?T" by (rule dominoes_tile_matrix)

assume t’’: "?t’’ : ?T"

let ?e = evnodd

have fin: "finite (?e ?t 0)"

by (rule evnodd_finite, rule tiling_domino_finite, rule t)

note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff

have "card (?e ?t’’ 0) < card (?e ?t’ 0)"

proof -

have "card (?e ?t’ 0 - {(2 * m + 1, 2 * n + 1)})

< card (?e ?t’ 0)"

proof (rule card_Diff1_less)

from _ fin show "finite (?e ?t’ 0)"

by (rule finite_subset) auto

show "(2 * m + 1, 2 * n + 1) : ?e ?t’ 0" by simp

qed
thus ?thesis by simp

qed
also have "... < card (?e ?t 0)"

proof -

have "(0, 0) : ?e ?t 0" by simp

with fin have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)"

by (rule card_Diff1_less)

thus ?thesis by simp
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qed
also from t have "... = card (?e ?t 1)"

by (rule tiling_domino_01)

also have "?e ?t 1 = ?e ?t’’ 1" by simp

also from t’’ have "card ... = card (?e ?t’’ 0)"

by (rule tiling_domino_01 [symmetric])

finally have "... < ..." . thus False ..
qed

qed

end

10 Fib and Gcd commute

theory Fibonacci imports Primes begin10

10.1 Fibonacci numbers

consts fib :: "nat => nat"

recdef fib less_than

"fib 0 = 0"

"fib (Suc 0) = 1"

"fib (Suc (Suc x)) = fib x + fib (Suc x)"

lemma [simp]: "0 < fib (Suc n)"

by (induct n rule: fib.induct) (simp+)

Alternative induction rule.

theorem fib_induct:

"P 0 ==> P 1 ==> (!!n. P (n + 1) ==> P n ==> P (n + 2)) ==> P (n::nat)"

by (induct rule: fib.induct, simp+)

10.2 Fib and gcd commute

A few laws taken from [2].

lemma fib_add:

"fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n"

( is "?P n")

— see [2, page 280]
proof (induct n rule: fib_induct)

show "?P 0" by simp

show "?P 1" by simp

fix n

have "fib (n + 2 + k + 1)

10Isar version by Gertrud Bauer. Original tactic script by Larry Paulson. A few proofs
of laws taken from [2].
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= fib (n + k + 1) + fib (n + 1 + k + 1)" by simp

also assume "fib (n + k + 1)

= fib (k + 1) * fib (n + 1) + fib k * fib n"

( is " _ = ?R1")

also assume "fib (n + 1 + k + 1)

= fib (k + 1) * fib (n + 1 + 1) + fib k * fib (n + 1)"

( is " _ = ?R2")

also have "?R1 + ?R2

= fib (k + 1) * fib (n + 2 + 1) + fib k * fib (n + 2)"

by (simp add: add_mult_distrib2)

finally show "?P (n + 2)" .
qed

lemma gcd_fib_Suc_eq_1: "gcd (fib n, fib (n + 1)) = 1" ( is "?P n")

proof (induct n rule: fib_induct)

show "?P 0" by simp

show "?P 1" by simp

fix n

have "fib (n + 2 + 1) = fib (n + 1) + fib (n + 2)"

by simp

also have "gcd (fib (n + 2), ...) = gcd (fib (n + 2), fib (n + 1))"

by (simp only: gcd_add2’)

also have "... = gcd (fib (n + 1), fib (n + 1 + 1))"

by (simp add: gcd_commute)

also assume "... = 1"

finally show "?P (n + 2)" .
qed

lemma gcd_mult_add: "0 < n ==> gcd (n * k + m, n) = gcd (m, n)"

proof -

assume "0 < n"

hence "gcd (n * k + m, n) = gcd (n, m mod n)"

by (simp add: gcd_non_0 add_commute)

also have "... = gcd (m, n)" by (simp! add: gcd_non_0)

finally show ?thesis .
qed

lemma gcd_fib_add: "gcd (fib m, fib (n + m)) = gcd (fib m, fib n)"

proof (cases m)

assume "m = 0"

thus ?thesis by simp

next
fix k assume "m = Suc k"

hence "gcd (fib m, fib (n + m)) = gcd (fib (n + k + 1), fib (k + 1))"

by (simp add: gcd_commute)

also have "fib (n + k + 1)

= fib (k + 1) * fib (n + 1) + fib k * fib n"

by (rule fib_add)

also have "gcd (..., fib (k + 1)) = gcd (fib k * fib n, fib (k + 1))"
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by (simp add: gcd_mult_add)

also have "... = gcd (fib n, fib (k + 1))"

by (simp only: gcd_fib_Suc_eq_1 gcd_mult_cancel)

also have "... = gcd (fib m, fib n)"

by (simp! add: gcd_commute)

finally show ?thesis .
qed

lemma gcd_fib_diff:

"m <= n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)"

proof -

assume "m <= n"

have "gcd (fib m, fib (n - m)) = gcd (fib m, fib (n - m + m))"

by (simp add: gcd_fib_add)

also have "n - m + m = n" by (simp!)

finally show ?thesis .
qed

lemma gcd_fib_mod:

"0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)"

proof -

assume m: "0 < m"

show ?thesis

proof (induct n rule: nat_less_induct)

fix n

assume hyp: "ALL ma. ma < n

--> gcd (fib m, fib (ma mod m)) = gcd (fib m, fib ma)"

show "gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)"

proof -

have "n mod m = (if n < m then n else (n - m) mod m)"

by (rule mod_if)

also have "gcd (fib m, fib ...) = gcd (fib m, fib n)"

proof cases

assume "n < m" thus ?thesis by simp

next
assume not_lt: "~ n < m" hence le: "m <= n" by simp

have "n - m < n" by (simp!)

with hyp have "gcd (fib m, fib ((n - m) mod m))

= gcd (fib m, fib (n - m))" by simp

also from le have "... = gcd (fib m, fib n)"

by (rule gcd_fib_diff)

finally have "gcd (fib m, fib ((n - m) mod m)) =

gcd (fib m, fib n)" .
with not_lt show ?thesis by simp

qed
finally show ?thesis .

qed
qed

qed
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theorem fib_gcd: "fib (gcd (m, n)) = gcd (fib m, fib n)" ( is "?P m n")

proof (induct m n rule: gcd_induct)

fix m show "fib (gcd (m, 0)) = gcd (fib m, fib 0)" by simp

fix n :: nat assume n: "0 < n"

hence "gcd (m, n) = gcd (n, m mod n)" by (rule gcd_non_0)

also assume hyp: "fib ... = gcd (fib n, fib (m mod n))"

also from n have "... = gcd (fib n, fib m)" by (rule gcd_fib_mod)

also have "... = gcd (fib m, fib n)" by (rule gcd_commute)

finally show "fib (gcd (m, n)) = gcd (fib m, fib n)" .
qed

end

11 An old chestnut

theory Puzzle imports Main begin11

Problem. Given some function f : IN → IN such that f (f n) < f (Suc n) for

all n. Demonstrate that f is the identity. theorem "(!!n::nat. f (f

n) < f (Suc n)) ==> f n = n"

proof (rule order_antisym)

assume f_ax: "!!n. f (f n) < f (Suc n)"

Note that the generalized form of n ≤ f n is required later for monotonicity as well.

show ge: "!!n. n <= f n"

proof -

fix k show "!!n. k == f n ==> n <= k" ( is "PROP ?P k")

proof (induct k rule: less_induct)

fix k assume hyp: "!!m. m < k ==> PROP ?P m"

fix n assume k_def: "k == f n"

show "n <= k"

proof (cases n)

assume "n = 0" thus ?thesis by simp

next
fix m assume Suc: "n = Suc m"

from f_ax have "f (f m) < f (Suc m)" .
with hyp k_def Suc have "f m <= f (f m)" by simp

also from f_ax have "... < f (Suc m)" .
finally have less: "f m < f (Suc m)" .
with hyp k_def Suc have "m <= f m" by simp

also note less

finally have "m < f (Suc m)" .
hence "n <= f n" by (simp only: Suc)

thus ?thesis by (simp only: k_def)

11A question from “Bundeswettbewerb Mathematik”. Original pen-and-paper proof
due to Herbert Ehler; Isabelle tactic script by Tobias Nipkow.
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qed
qed

qed

In order to show the other direction, we first establish monotonicity of f .

{
fix m n

have "m <= n =⇒ f m <= f n" ( is "PROP ?P n")

proof (induct n)

assume "m <= 0" hence "m = 0" by simp

thus "f m <= f 0" by simp

next
fix n assume hyp: "PROP ?P n"

assume "m <= Suc n"

thus "f m <= f (Suc n)"

proof (rule le_SucE)

assume "m <= n"

with hyp have "f m <= f n" .
also from ge f_ax have "... < f (Suc n)"

by (rule le_less_trans)

finally show ?thesis by simp

next
assume "m = Suc n"

thus ?thesis by simp

qed
qed

} note mono = this

show "f n <= n"

proof -

have "~ n < f n"

proof
assume "n < f n"

hence "Suc n <= f n" by simp

hence "f (Suc n) <= f (f n)" by (rule mono)

also have "... < f (Suc n)" by (rule f_ax)

finally have "... < ..." . thus False ..
qed
thus ?thesis by simp

qed
qed

end

12 Nested datatypes

theory NestedDatatype imports Main begin
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12.1 Terms and substitution

datatype (’a, ’b) "term" =

Var ’a

| App ’b "(’a, ’b) term list"

consts
subst_term :: "(’a => (’a, ’b) term) => (’a, ’b) term => (’a, ’b) term"

subst_term_list ::

"(’a => (’a, ’b) term) => (’a, ’b) term list => (’a, ’b) term list"

primrec (subst)

"subst_term f (Var a) = f a"

"subst_term f (App b ts) = App b (subst_term_list f ts)"

"subst_term_list f [] = []"

"subst_term_list f (t # ts) = subst_term f t # subst_term_list f ts"

A simple lemma about composition of substitutions.

lemma
"subst_term (subst_term f1 o f2) t =

subst_term f1 (subst_term f2 t) &

subst_term_list (subst_term f1 o f2) ts =

subst_term_list f1 (subst_term_list f2 ts)"

by (induct t and ts) simp_all

lemma "subst_term (subst_term f1 o f2) t =

subst_term f1 (subst_term f2 t)"

proof -

let "?P t" = ?thesis

let ?Q = "λts. subst_term_list (subst_term f1 o f2) ts =

subst_term_list f1 (subst_term_list f2 ts)"

show ?thesis

proof (induct t)

fix a show "?P (Var a)" by simp

next
fix b ts assume "?Q ts"

thus "?P (App b ts)" by (simp add: o_def)

next
show "?Q []" by simp

next
fix t ts

assume "?P t" "?Q ts" thus "?Q (t # ts)" by simp

qed
qed

12.2 Alternative induction

theorem term_induct’ [case_names Var App]:

"(!!a. P (Var a)) ==>
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(!!b ts. list_all P ts ==> P (App b ts)) ==> P t"

proof -

assume var: "!!a. P (Var a)"

assume app: "!!b ts. list_all P ts ==> P (App b ts)"

show ?thesis

proof (induct t)

fix a show "P (Var a)" by (rule var)

next
fix b t ts assume "list_all P ts"

thus "P (App b ts)" by (rule app)

next
show "list_all P []" by simp

next
fix t ts assume "P t" "list_all P ts"

thus "list_all P (t # ts)" by simp

qed
qed

lemma
"subst_term (subst_term f1 o f2) t = subst_term f1 (subst_term f2 t)"

( is "?P t")

proof (induct t rule: term_induct’)

case (Var a)

show "?P (Var a)" by (simp add: o_def)

next
case (App b ts)

thus "?P (App b ts)" by (induct ts) simp_all

qed

end

13 Hoare Logic

theory Hoare imports Main

uses ("~~/src/HOL/Hoare/hoare.ML") begin

13.1 Abstract syntax and semantics

The following abstract syntax and semantics of Hoare Logic over WHILE pro-
grams closely follows the existing tradition in Isabelle/HOL of formalizing
the presentation given in [11, §6]. See also http://isabelle.in.tum.de/library/
Hoare/ and [4].

types
’a bexp = "’a set"

’a assn = "’a set"

datatype ’a com =
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Basic "’a => ’a"

| Seq "’a com" "’a com" ("(_;/ _)" [60, 61] 60)

| Cond "’a bexp" "’a com" "’a com"

| While "’a bexp" "’a assn" "’a com"

syntax
"_skip" :: "’a com" ("SKIP")

translations
"SKIP" == "Basic id"

types
’a sem = "’a => ’a => bool"

consts
iter :: "nat => ’a bexp => ’a sem => ’a sem"

primrec
"iter 0 b S s s’ = (s ~: b & s = s’)"

"iter (Suc n) b S s s’ =

(s : b & (EX s’’. S s s’’ & iter n b S s’’ s’))"

consts
Sem :: "’a com => ’a sem"

primrec
"Sem (Basic f) s s’ = (s’ = f s)"

"Sem (c1; c2) s s’ = (EX s’’. Sem c1 s s’’ & Sem c2 s’’ s’)"

"Sem (Cond b c1 c2) s s’ =

(if s : b then Sem c1 s s’ else Sem c2 s s’)"

"Sem (While b x c) s s’ = (EX n. iter n b (Sem c) s s’)"

constdefs
Valid :: "’a bexp => ’a com => ’a bexp => bool"

("(3|- _/ (2_)/ _)" [100, 55, 100] 50)

"|- P c Q == ALL s s’. Sem c s s’ --> s : P --> s’ : Q"

syntax (xsymbols)

Valid :: "’a bexp => ’a com => ’a bexp => bool"

("(3` _/ (2_)/ _)" [100, 55, 100] 50)

lemma ValidI [intro?]:

"(!!s s’. Sem c s s’ ==> s : P ==> s’ : Q) ==> |- P c Q"

by (simp add: Valid_def)

lemma ValidD [dest?]:

"|- P c Q ==> Sem c s s’ ==> s : P ==> s’ : Q"

by (simp add: Valid_def)
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13.2 Primitive Hoare rules

From the semantics defined above, we derive the standard set of primitive
Hoare rules; e.g. see [11, §6]. Usually, variant forms of these rules are applied
in actual proof, see also §13.4 and §13.5.

The basic rule represents any kind of atomic access to the state space. This
subsumes the common rules of skip and assign, as formulated in §13.4.

theorem basic: "|- {s. f s : P} (Basic f) P"

proof
fix s s’ assume s: "s : {s. f s : P}"

assume "Sem (Basic f) s s’"

hence "s’ = f s" by simp

with s show "s’ : P" by simp

qed

The rules for sequential commands and semantic consequences are estab-
lished in a straight forward manner as follows.

theorem seq: "|- P c1 Q ==> |- Q c2 R ==> |- P (c1; c2) R"

proof
assume cmd1: "|- P c1 Q" and cmd2: "|- Q c2 R"

fix s s’ assume s: "s : P"

assume "Sem (c1; c2) s s’"

then obtain s’’ where sem1: "Sem c1 s s’’" and sem2: "Sem c2 s’’ s’"

by auto

from cmd1 sem1 s have "s’’ : Q" ..
with cmd2 sem2 show "s’ : R" ..

qed

theorem conseq: "P’ <= P ==> |- P c Q ==> Q <= Q’ ==> |- P’ c Q’"

proof
assume P’P: "P’ <= P" and QQ’: "Q <= Q’"

assume cmd: "|- P c Q"

fix s s’ :: ’a

assume sem: "Sem c s s’"

assume "s : P’" with P’P have "s : P" ..
with cmd sem have "s’ : Q" ..
with QQ’ show "s’ : Q’" ..

qed

The rule for conditional commands is directly reflected by the corresponding
semantics; in the proof we just have to look closely which cases apply.

theorem cond:

"|- (P Int b) c1 Q ==> |- (P Int -b) c2 Q ==> |- P (Cond b c1 c2) Q"

proof
assume case_b: "|- (P Int b) c1 Q" and case_nb: "|- (P Int -b) c2 Q"

fix s s’ assume s: "s : P"

assume sem: "Sem (Cond b c1 c2) s s’"
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show "s’ : Q"

proof cases

assume b: "s : b"

from case_b show ?thesis

proof
from sem b show "Sem c1 s s’" by simp

from s b show "s : P Int b" by simp

qed
next

assume nb: "s ~: b"

from case_nb show ?thesis

proof
from sem nb show "Sem c2 s s’" by simp

from s nb show "s : P Int -b" by simp

qed
qed

qed

The while rule is slightly less trivial — it is the only one based on recur-
sion, which is expressed in the semantics by a Kleene-style least fixed-point
construction. The auxiliary statement below, which is by induction on the
number of iterations is the main point to be proven; the rest is by routine
application of the semantics of WHILE.

theorem while: "|- (P Int b) c P ==> |- P (While b X c) (P Int -b)"

proof
assume body: "|- (P Int b) c P"

fix s s’ assume s: "s : P"

assume "Sem (While b X c) s s’"

then obtain n where iter: "iter n b (Sem c) s s’" by auto

have "!!s. iter n b (Sem c) s s’ ==> s : P ==> s’ : P Int -b"

proof (induct n)

case (0 s)

thus ?case by auto

next
case (Suc n s)

then obtain s’’ where b: "s : b" and sem: "Sem c s s’’"

and iter: "iter n b (Sem c) s’’ s’"

by auto

from Suc and b have "s : P Int b" by simp

with body sem have "s’’ : P" ..
with iter show ?case by (rule Suc)

qed
from this iter s show "s’ : P Int -b" .

qed
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13.3 Concrete syntax for assertions

We now introduce concrete syntax for describing commands (with embed-
ded expressions) and assertions. The basic technique is that of semantic
“quote-antiquote”. A quotation is a syntactic entity delimited by an im-
plicit abstraction, say over the state space. An antiquotation is a marked
expression within a quotation that refers the implicit argument; a typical
antiquotation would select (or even update) components from the state.
We will see some examples later in the concrete rules and applications.

The following specification of syntax and translations is for Isabelle experts
only; feel free to ignore it.
While the first part is still a somewhat intelligible specification of the con-
crete syntactic representation of our Hoare language, the actual “ML drivers”
is quite involved. Just note that the we re-use the basic quote/antiquote
translations as already defined in Isabelle/Pure (see Syntax.quote_tr and
Syntax.quote_tr’).

syntax
"_quote" :: "’b => (’a => ’b)" ("(.’(_’).)" [0] 1000)

"_antiquote" :: "(’a => ’b) => ’b" ("´_" [1000] 1000)

"_Subst" :: "’a bexp ⇒ ’b ⇒ idt ⇒ ’a bexp"

("_[_’/´_]" [1000] 999)

"_Assert" :: "’a => ’a set" ("(.{_}.)" [0] 1000)

"_Assign" :: "idt => ’b => ’a com" ("(´_ :=/ _)" [70, 65] 61)

"_Cond" :: "’a bexp => ’a com => ’a com => ’a com"

("(0IF _/ THEN _/ ELSE _/ FI)" [0, 0, 0] 61)

"_While_inv" :: "’a bexp => ’a assn => ’a com => ’a com"

("(0WHILE _/ INV _ //DO _ /OD)" [0, 0, 0] 61)

"_While" :: "’a bexp => ’a com => ’a com"

("(0WHILE _ //DO _ /OD)" [0, 0] 61)

syntax (xsymbols)

"_Assert" :: "’a => ’a set" ("({|_ |})" [0] 1000)

translations
".{b}." => "Collect .(b)."

"B [a/´x]" => ".{´(_update_name x a) ∈ B}."

"´x := a" => "Basic .(´(_update_name x a))."

"IF b THEN c1 ELSE c2 FI" => "Cond .{b}. c1 c2"

"WHILE b INV i DO c OD" => "While .{b}. i c"

"WHILE b DO c OD" == "WHILE b INV arbitrary DO c OD"

parse translation {*

let

fun quote_tr [t] = Syntax.quote_tr "_antiquote" t

| quote_tr ts = raise TERM ("quote_tr", ts);

in [("_quote", quote_tr)] end
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*}

As usual in Isabelle syntax translations, the part for printing is more com-
plicated — we cannot express parts as macro rules as above. Don’t look
here, unless you have to do similar things for yourself.

print translation {*

let

fun quote_tr’ f (t :: ts) =

Term.list_comb (f $ Syntax.quote_tr’ "_antiquote" t, ts)

| quote_tr’ _ _ = raise Match;

val assert_tr’ = quote_tr’ (Syntax.const "_Assert");

fun bexp_tr’ name ((Const ("Collect", _) $ t) :: ts) =

quote_tr’ (Syntax.const name) (t :: ts)

| bexp_tr’ _ _ = raise Match;

fun upd_tr’ (x_upd, T) =

(case try (unsuffix RecordPackage.updateN) x_upd of

SOME x => (x, if T = dummyT then T else Term.domain_type T)

| NONE => raise Match);

fun update_name_tr’ (Free x) = Free (upd_tr’ x)

| update_name_tr’ ((c as Const ("_free", _)) $ Free x) =

c $ Free (upd_tr’ x)

| update_name_tr’ (Const x) = Const (upd_tr’ x)

| update_name_tr’ _ = raise Match;

fun assign_tr’ (Abs (x, _, f $ t $ Bound 0) :: ts) =

quote_tr’ (Syntax.const "_Assign" $ update_name_tr’ f)

(Abs (x, dummyT, t) :: ts)

| assign_tr’ _ = raise Match;

in

[("Collect", assert_tr’), ("Basic", assign_tr’),

("Cond", bexp_tr’ "_Cond"), ("While", bexp_tr’ "_While_inv")]

end

*}

13.4 Rules for single-step proof

We are now ready to introduce a set of Hoare rules to be used in single-step
structured proofs in Isabelle/Isar. We refer to the concrete syntax introduce
above.

Assertions of Hoare Logic may be manipulated in calculational proofs, with
the inclusion expressed in terms of sets or predicates. Reversed order is
supported as well.

lemma [trans]: "|- P c Q ==> P’ <= P ==> |- P’ c Q"
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by (unfold Valid_def) blast

lemma [trans] : "P’ <= P ==> |- P c Q ==> |- P’ c Q"

by (unfold Valid_def) blast

lemma [trans]: "Q <= Q’ ==> |- P c Q ==> |- P c Q’"

by (unfold Valid_def) blast

lemma [trans]: "|- P c Q ==> Q <= Q’ ==> |- P c Q’"

by (unfold Valid_def) blast

lemma [trans]:

"|- .{´P}. c Q ==> (!!s. P’ s --> P s) ==> |- .{´P’}. c Q"

by (simp add: Valid_def)

lemma [trans]:

"(!!s. P’ s --> P s) ==> |- .{´P}. c Q ==> |- .{´P’}. c Q"

by (simp add: Valid_def)

lemma [trans]:

"|- P c .{´Q}. ==> (!!s. Q s --> Q’ s) ==> |- P c .{´Q’}."
by (simp add: Valid_def)

lemma [trans]:

"(!!s. Q s --> Q’ s) ==> |- P c .{´Q}. ==> |- P c .{´Q’}."
by (simp add: Valid_def)

Identity and basic assignments.12

lemma skip [intro?]: "|- P SKIP P"

proof -

have "|- {s. id s : P} SKIP P" by (rule basic)

thus ?thesis by simp

qed

lemma assign: "|- P [´a/´x] ´x := ´a P"

by (rule basic)

Note that above formulation of assignment corresponds to our preferred way
to model state spaces, using (extensible) record types in HOL [3]. For any
record field x, Isabelle/HOL provides a functions x (selector) and x-update
(update). Above, there is only a place-holder appearing for the latter kind
of function: due to concrete syntax x́ := á also contains x update.13

Sequential composition — normalizing with associativity achieves proper of
chunks of code verified separately.

lemmas [trans, intro?] = seq

12The hoare method introduced in §13.5 is able to provide proper instances for any
number of basic assignments, without producing additional verification conditions.

13Note that due to the external nature of HOL record fields, we could not even state
a general theorem relating selector and update functions (if this were required here); this
would only work for any particular instance of record fields introduced so far.
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lemma seq_assoc [simp]: "( |- P c1;(c2;c3) Q) = ( |- P (c1;c2);c3 Q)"

by (auto simp add: Valid_def)

Conditional statements.

lemmas [trans, intro?] = cond

lemma [trans, intro?]:

"|- .{´P & ´b}. c1 Q

==> |- .{´P & ~ ´b}. c2 Q

==> |- .{´P}. IF ´b THEN c1 ELSE c2 FI Q"

by (rule cond) (simp_all add: Valid_def)

While statements — with optional invariant.

lemma [intro?]:

"|- (P Int b) c P ==> |- P (While b P c) (P Int -b)"

by (rule while)

lemma [intro?]:

"|- (P Int b) c P ==> |- P (While b arbitrary c) (P Int -b)"

by (rule while)

lemma [intro?]:

"|- .{´P & ´b}. c .{´P}.
==> |- .{´P}. WHILE ´b INV .{´P}. DO c OD .{´P & ~ ´b}."

by (simp add: while Collect_conj_eq Collect_neg_eq)

lemma [intro?]:

"|- .{´P & ´b}. c .{´P}.
==> |- .{´P}. WHILE ´b DO c OD .{´P & ~ ´b}."

by (simp add: while Collect_conj_eq Collect_neg_eq)

13.5 Verification conditions

We now load the original ML file for proof scripts and tactic definition
for the Hoare Verification Condition Generator (see http://isabelle.in.tum.
de/library/Hoare/). As far as we are concerned here, the result is a proof
method hoare, which may be applied to a Hoare Logic assertion to extract
purely logical verification conditions. It is important to note that the method
requires WHILE loops to be fully annotated with invariants beforehand. Fur-
thermore, only concrete pieces of code are handled — the underlying tactic
fails ungracefully if supplied with meta-variables or parameters, for example.

lemma SkipRule: "p ⊆ q =⇒ Valid p (Basic id) q"

by (auto simp:Valid_def)

lemma BasicRule: "p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f) q"

by (auto simp:Valid_def)
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lemma SeqRule: "Valid P c1 Q =⇒ Valid Q c2 R =⇒ Valid P (c1;c2) R"

by (auto simp:Valid_def)

lemma CondRule:

"p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w’)}

=⇒ Valid w c1 q =⇒ Valid w’ c2 q =⇒ Valid p (Cond b c1 c2) q"

by (auto simp:Valid_def)

lemma iter_aux: "! s s’. Sem c s s’ --> s : I & s : b --> s’ : I ==>

(
∧
s s’. s : I =⇒ iter n b (Sem c) s s’ =⇒ s’ : I & s’ ~: b)"

apply(induct n)

apply clarsimp

apply(simp (no_asm_use))

apply blast

done

lemma WhileRule:

"p ⊆ i =⇒ Valid (i ∩ b) c i =⇒ i ∩ (-b) ⊆ q =⇒ Valid p (While b

i c) q"

apply (clarsimp simp:Valid_def)

apply(drule iter_aux)

prefer 2 apply assumption

apply blast

apply blast

done

ML {* val Valid_def = thm "Valid_def" *}

use "~~/src/HOL/Hoare/hoare.ML"

method setup hoare = {*

Method.no_args

(Method.SIMPLE_METHOD’ HEADGOAL (hoare_tac (K all_tac))) *}

"verification condition generator for Hoare logic"

end

14 Using Hoare Logic

theory HoareEx imports Hoare begin

14.1 State spaces

First of all we provide a store of program variables that occur in any of the
programs considered later. Slightly unexpected things may happen when
attempting to work with undeclared variables.
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record vars =

I :: nat

M :: nat

N :: nat

S :: nat

While all of our variables happen to have the same type, nothing would
prevent us from working with many-sorted programs as well, or even poly-
morphic ones. Also note that Isabelle/HOL’s extensible record types even
provides simple means to extend the state space later.

14.2 Basic examples

We look at few trivialities involving assignment and sequential composition,
in order to get an idea of how to work with our formulation of Hoare Logic.

Using the basic assign rule directly is a bit cumbersome.

lemma
"|- .{´(N_update (2 * ´N)) : .{´N = 10}.}. ´N := 2 * ´N .{´N = 10}."

by (rule assign)

Certainly we want the state modification already done, e.g. by simplification.
The hoare method performs the basic state update for us; we may apply the
Simplifier afterwards to achieve “obvious” consequences as well.

lemma "|- .{True}. ´N := 10 .{´N = 10}."

by hoare

lemma "|- .{2 * ´N = 10}. ´N := 2 * ´N .{´N = 10}."

by hoare

lemma "|- .{´N = 5}. ´N := 2 * ´N .{´N = 10}."

by hoare simp

lemma "|- .{´N + 1 = a + 1}. ´N := ´N + 1 .{´N = a + 1}."

by hoare

lemma "|- .{´N = a}. ´N := ´N + 1 .{´N = a + 1}."

by hoare simp

lemma "|- .{a = a & b = b}. ´M := a; ´N := b .{´M = a & ´N = b}."

by hoare

lemma "|- .{True}. ´M := a; ´N := b .{´M = a & ´N = b}."

by hoare simp

lemma
"|- .{´M = a & ´N = b}.

´I := ´M; ´M := ´N; ´N := ´I
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.{´M = b & ´N = a}."

by hoare simp

It is important to note that statements like the following one can only be
proven for each individual program variable. Due to the extra-logical nature
of record fields, we cannot formulate a theorem relating record selectors and
updates schematically.

lemma "|- .{´N = a}. ´N := ´N .{´N = a}."

by hoare

lemma "|- .{´x = a}. ´x := ´x .{´x = a}."
...

lemma
"Valid {s. x s = a} (Basic (λs. x_update (x s) s)) {s. x s = n}"

— same statement without concrete syntax
...

In the following assignments we make use of the consequence rule in order
to achieve the intended precondition. Certainly, the hoare method is able
to handle this case, too.

lemma "|- .{´M = ´N}. ´M := ´M + 1 .{´M ~= ´N}."
proof -

have ".{´M = ´N}. <= .{´M + 1 ~= ´N}."
by auto

also have "|- ... ´M := ´M + 1 .{´M ~= ´N}."
by hoare

finally show ?thesis .
qed

lemma "|- .{´M = ´N}. ´M := ´M + 1 .{´M ~= ´N}."
proof -

have "!!m n::nat. m = n --> m + 1 ~= n"

— inclusion of assertions expressed in “pure” logic,
— without mentioning the state space

by simp

also have "|- .{´M + 1 ~= ´N}. ´M := ´M + 1 .{´M ~= ´N}."
by hoare

finally show ?thesis .
qed

lemma "|- .{´M = ´N}. ´M := ´M + 1 .{´M ~= ´N}."
by hoare simp
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14.3 Multiplication by addition

We now do some basic examples of actual WHILE programs. This one is a loop
for calculating the product of two natural numbers, by iterated addition. We
first give detailed structured proof based on single-step Hoare rules.

lemma
"|- .{´M = 0 & ´S = 0}.

WHILE ´M ~= a

DO ´S := ´S + b; ´M := ´M + 1 OD

.{´S = a * b}."

proof -

let "|- _ ?while _" = ?thesis

let ".{´?inv}." = ".{´S = ´M * b}."

have ".{´M = 0 & ´S = 0}. <= .{´?inv}." by auto

also have "|- ... ?while .{´?inv & ~ (´M ~= a)}."

proof
let ?c = "´S := ´S + b; ´M := ´M + 1"

have ".{´?inv & ´M ~= a}. <= .{´S + b = (´M + 1) * b}."

by auto

also have "|- ... ?c .{´?inv}." by hoare

finally show "|- .{´?inv & ´M ~= a}. ?c .{´?inv}." .
qed
also have "... <= .{´S = a * b}." by auto

finally show ?thesis .
qed

The subsequent version of the proof applies the hoare method to reduce
the Hoare statement to a purely logical problem that can be solved fully
automatically. Note that we have to specify the WHILE loop invariant in the
original statement.

lemma
"|- .{´M = 0 & ´S = 0}.

WHILE ´M ~= a

INV .{´S = ´M * b}.

DO ´S := ´S + b; ´M := ´M + 1 OD

.{´S = a * b}."

by hoare auto

14.4 Summing natural numbers

We verify an imperative program to sum natural numbers up to a given limit.
First some functional definition for proper specification of the problem.

The following proof is quite explicit in the individual steps taken, with the
hoare method only applied locally to take care of assignment and sequential
composition. Note that we express intermediate proof obligation in pure
logic, without referring to the state space.
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declare atLeast0LessThan[symmetric,simp]

theorem
"|- .{True}.

´S := 0; ´I := 1;

WHILE ´I ~= n

DO

´S := ´S + ´I;
´I := ´I + 1

OD

.{´S = (SUM j<n. j)}."

( is "|- _ (_; ?while) _")

proof -

let ?sum = "λk::nat. SUM j<k. j"

let ?inv = "λs i::nat. s = ?sum i"

have "|- .{True}. ´S := 0; ´I := 1 .{?inv ´S ´I}."
proof -

have "True --> 0 = ?sum 1"

by simp

also have "|- .{...}. ´S := 0; ´I := 1 .{?inv ´S ´I}."
by hoare

finally show ?thesis .
qed
also have "|- ... ?while .{?inv ´S ´I & ~ ´I ~= n}."

proof
let ?body = "´S := ´S + ´I; ´I := ´I + 1"

have "!!s i. ?inv s i & i ~= n --> ?inv (s + i) (i + 1)"

by simp

also have "|- .{´S + ´I = ?sum (´I + 1)}. ?body .{?inv ´S ´I}."
by hoare

finally show "|- .{?inv ´S ´I & ´I ~= n}. ?body .{?inv ´S ´I}." .
qed
also have "!!s i. s = ?sum i & ~ i ~= n --> s = ?sum n"

by simp

finally show ?thesis .
qed

The next version uses the hoare method, while still explaining the resulting
proof obligations in an abstract, structured manner.

theorem
"|- .{True}.

´S := 0; ´I := 1;

WHILE ´I ~= n

INV .{´S = (SUM j<´I. j)}.

DO

´S := ´S + ´I;
´I := ´I + 1

OD
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.{´S = (SUM j<n. j)}."

proof -

let ?sum = "λk::nat. SUM j<k. j"

let ?inv = "λs i::nat. s = ?sum i"

show ?thesis

proof hoare

show "?inv 0 1" by simp

next
fix s i assume "?inv s i & i ~= n"

thus "?inv (s + i) (i + 1)" by simp

next
fix s i assume "?inv s i & ~ i ~= n"

thus "s = ?sum n" by simp

qed
qed

Certainly, this proof may be done fully automatic as well, provided that the
invariant is given beforehand.

theorem
"|- .{True}.

´S := 0; ´I := 1;

WHILE ´I ~= n

INV .{´S = (SUM j<´I. j)}.

DO

´S := ´S + ´I;
´I := ´I + 1

OD

.{´S = (SUM j<n. j)}."

by hoare auto

14.5 Time

A simple embedding of time in Hoare logic: function timeit inserts an extra
variable to keep track of the elapsed time.

record tstate = time :: nat

types ’a time = "(|time::nat, . . .::’a |)"

consts timeit :: "’a time com ⇒ ’a time com"

primrec
"timeit(Basic f) = (Basic f; Basic(%s. s(|time := Suc(time s) |)))"
"timeit(c1;c2) = (timeit c1; timeit c2)"

"timeit(Cond b c1 c2) = Cond b (timeit c1) (timeit c2)"

"timeit(While b iv c) = While b iv (timeit c)"

record tvars = tstate +
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I :: nat

J :: nat

lemma lem: "(0::nat) < n =⇒ n+n ≤ Suc(n*n)"

by(induct n, simp_all)

lemma "|- .{i = ´I & ´time = 0}.

timeit(

WHILE ´I 6= 0

INV .{2*´time + ´I*´I + 5*´I = i*i + 5*i}.

DO

´J := ´I;
WHILE ´J 6= 0

INV .{0 < ´I & 2*´time + ´I*´I + 3*´I + 2*´J - 2 = i*i + 5*i}.

DO ´J := ´J - 1 OD;

´I := ´I - 1

OD

) .{2*´time = i*i + 5*i}."

apply simp

apply hoare

apply simp

apply clarsimp

apply clarsimp

apply arith

prefer 2

apply clarsimp

apply (clarsimp simp:nat_distrib)

apply(frule lem)

apply arith

done

end
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