(* ID: $Id: Mutex.thy,v 1.6 2005/06/02 11:17:06 paulson Exp $ Author: Sidi O Ehmety, Computer Laboratory Copyright 2001 University of Cambridge *) header{*Mutual Exclusion*} theory Mutex imports SubstAx begin text{*Based on "A Family of 2-Process Mutual Exclusion Algorithms" by J Misra Variables' types are introduced globally so that type verification reduces to the usual ZF typechecking: an ill-tyed expressions reduce to the empty set. *} consts p :: i m :: i n :: i u :: i v :: i translations "p" == "Var([0])" "m" == "Var([1])" "n" == "Var([0,0])" "u" == "Var([0,1])" "v" == "Var([1,0])" axioms --{** Type declarations **} p_type: "type_of(p)=bool & default_val(p)=0" m_type: "type_of(m)=int & default_val(m)=#0" n_type: "type_of(n)=int & default_val(n)=#0" u_type: "type_of(u)=bool & default_val(u)=0" v_type: "type_of(v)=bool & default_val(v)=0" constdefs (** The program for process U **) U0 :: i "U0 == {<s,t>:state*state. t = s(u:=1, m:=#1) & s`m = #0}" U1 :: i "U1 == {<s,t>:state*state. t = s(p:= s`v, m:=#2) & s`m = #1}" U2 :: i "U2 == {<s,t>:state*state. t = s(m:=#3) & s`p=0 & s`m = #2}" U3 :: i "U3 == {<s,t>:state*state. t=s(u:=0, m:=#4) & s`m = #3}" U4 :: i "U4 == {<s,t>:state*state. t = s(p:=1, m:=#0) & s`m = #4}" (** The program for process V **) V0 :: i "V0 == {<s,t>:state*state. t = s (v:=1, n:=#1) & s`n = #0}" V1 :: i "V1 == {<s,t>:state*state. t = s(p:=not(s`u), n:=#2) & s`n = #1}" V2 :: i "V2 == {<s,t>:state*state. t = s(n:=#3) & s`p=1 & s`n = #2}" V3 :: i "V3 == {<s,t>:state*state. t = s (v:=0, n:=#4) & s`n = #3}" V4 :: i "V4 == {<s,t>:state*state. t = s (p:=0, n:=#0) & s`n = #4}" Mutex :: i "Mutex == mk_program({s:state. s`u=0 & s`v=0 & s`m = #0 & s`n = #0}, {U0, U1, U2, U3, U4, V0, V1, V2, V3, V4}, Pow(state*state))" (** The correct invariants **) IU :: i "IU == {s:state. (s`u = 1<->(#1 $<= s`m & s`m $<= #3)) & (s`m = #3 --> s`p=0)}" IV :: i "IV == {s:state. (s`v = 1 <-> (#1 $<= s`n & s`n $<= #3)) & (s`n = #3 --> s`p=1)}" (** The faulty invariant (for U alone) **) bad_IU :: i "bad_IU == {s:state. (s`u = 1 <-> (#1 $<= s`m & s`m $<= #3))& (#3 $<= s`m & s`m $<= #4 --> s`p=0)}" (* Title: ZF/UNITY/Mutex.ML ID: $Id ∈ Mutex.ML,v 1.4 2003/05/27 09:39:05 paulson Exp $ Author: Sidi O Ehmety, Computer Laboratory Copyright 2001 University of Cambridge Based on "A Family of 2-Process Mutual Exclusion Algorithms" by J Misra Variables' types are introduced globally so that type verification reduces to the usual ZF typechecking ∈ an ill-tyed expression will reduce to the empty set. *) (** Variables' types **) declare p_type [simp] u_type [simp] v_type [simp] m_type [simp] n_type [simp] lemma u_value_type: "s ∈ state ==>s`u ∈ bool" apply (unfold state_def) apply (drule_tac a = u in apply_type, auto) done lemma v_value_type: "s ∈ state ==> s`v ∈ bool" apply (unfold state_def) apply (drule_tac a = v in apply_type, auto) done lemma p_value_type: "s ∈ state ==> s`p ∈ bool" apply (unfold state_def) apply (drule_tac a = p in apply_type, auto) done lemma m_value_type: "s ∈ state ==> s`m ∈ int" apply (unfold state_def) apply (drule_tac a = m in apply_type, auto) done lemma n_value_type: "s ∈ state ==>s`n ∈ int" apply (unfold state_def) apply (drule_tac a = n in apply_type, auto) done declare p_value_type [simp] u_value_type [simp] v_value_type [simp] m_value_type [simp] n_value_type [simp] declare p_value_type [TC] u_value_type [TC] v_value_type [TC] m_value_type [TC] n_value_type [TC] text{*Mutex is a program*} lemma Mutex_in_program [simp,TC]: "Mutex ∈ program" by (simp add: Mutex_def) declare Mutex_def [THEN def_prg_Init, simp] ML {* program_defs_ref := [thm"Mutex_def"] *} declare U0_def [THEN def_act_simp, simp] declare U1_def [THEN def_act_simp, simp] declare U2_def [THEN def_act_simp, simp] declare U3_def [THEN def_act_simp, simp] declare U4_def [THEN def_act_simp, simp] declare V0_def [THEN def_act_simp, simp] declare V1_def [THEN def_act_simp, simp] declare V2_def [THEN def_act_simp, simp] declare V3_def [THEN def_act_simp, simp] declare V4_def [THEN def_act_simp, simp] declare U0_def [THEN def_set_simp, simp] declare U1_def [THEN def_set_simp, simp] declare U2_def [THEN def_set_simp, simp] declare U3_def [THEN def_set_simp, simp] declare U4_def [THEN def_set_simp, simp] declare V0_def [THEN def_set_simp, simp] declare V1_def [THEN def_set_simp, simp] declare V2_def [THEN def_set_simp, simp] declare V3_def [THEN def_set_simp, simp] declare V4_def [THEN def_set_simp, simp] declare IU_def [THEN def_set_simp, simp] declare IV_def [THEN def_set_simp, simp] declare bad_IU_def [THEN def_set_simp, simp] lemma IU: "Mutex ∈ Always(IU)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety, auto) done lemma IV: "Mutex ∈ Always(IV)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety) done (*The safety property: mutual exclusion*) lemma mutual_exclusion: "Mutex ∈ Always({s ∈ state. ~(s`m = #3 & s`n = #3)})" apply (rule Always_weaken) apply (rule Always_Int_I [OF IU IV], auto) done (*The bad invariant FAILS in V1*) lemma less_lemma: "[| x$<#1; #3 $<= x |] ==> P" apply (drule_tac j = "#1" and k = "#3" in zless_zle_trans) apply (drule_tac [2] j = x in zle_zless_trans, auto) done lemma "Mutex ∈ Always(bad_IU)" apply (rule AlwaysI, force) apply (unfold Mutex_def, safety, auto) apply (subgoal_tac "#1 $<= #3") apply (drule_tac x = "#1" and y = "#3" in zle_trans, auto) apply (simp (no_asm) add: not_zless_iff_zle [THEN iff_sym]) apply auto (*Resulting state: n=1, p=false, m=4, u=false. Execution of V1 (the command of process v guarded by n=1) sets p:=true, violating the invariant!*) oops (*** Progress for U ***) lemma U_F0: "Mutex ∈ {s ∈ state. s`m=#2} Unless {s ∈ state. s`m=#3}" by (unfold Unless_def Mutex_def, safety) lemma U_F1: "Mutex ∈ {s ∈ state. s`m=#1} LeadsTo {s ∈ state. s`p = s`v & s`m = #2}" by (unfold Mutex_def, ensures_tac U1) lemma U_F2: "Mutex ∈ {s ∈ state. s`p =0 & s`m = #2} LeadsTo {s ∈ state. s`m = #3}" apply (cut_tac IU) apply (unfold Mutex_def, ensures_tac U2) done lemma U_F3: "Mutex ∈ {s ∈ state. s`m = #3} LeadsTo {s ∈ state. s`p=1}" apply (rule_tac B = "{s ∈ state. s`m = #4}" in LeadsTo_Trans) apply (unfold Mutex_def) apply (ensures_tac U3) apply (ensures_tac U4) done lemma U_lemma2: "Mutex ∈ {s ∈ state. s`m = #2} LeadsTo {s ∈ state. s`p=1}" apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L Int_lower2 [THEN subset_imp_LeadsTo]]) apply (rule LeadsTo_Trans [OF U_F2 U_F3], auto) apply (auto dest!: p_value_type simp add: bool_def) done lemma U_lemma1: "Mutex ∈ {s ∈ state. s`m = #1} LeadsTo {s ∈ state. s`p =1}" by (rule LeadsTo_Trans [OF U_F1 [THEN LeadsTo_weaken_R] U_lemma2], blast) lemma eq_123: "i ∈ int ==> (#1 $<= i & i $<= #3) <-> (i=#1 | i=#2 | i=#3)" apply auto apply (auto simp add: neq_iff_zless) apply (drule_tac [4] j = "#3" and i = i in zle_zless_trans) apply (drule_tac [2] j = i and i = "#1" in zle_zless_trans) apply (drule_tac j = i and i = "#1" in zle_zless_trans, auto) apply (rule zle_anti_sym) apply (simp_all (no_asm_simp) add: zless_add1_iff_zle [THEN iff_sym]) done lemma U_lemma123: "Mutex ∈ {s ∈ state. #1 $<= s`m & s`m $<= #3} LeadsTo {s ∈ state. s`p=1}" by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib U_lemma1 U_lemma2 U_F3) (*Misra's F4*) lemma u_Leadsto_p: "Mutex ∈ {s ∈ state. s`u = 1} LeadsTo {s ∈ state. s`p=1}" by (rule Always_LeadsTo_weaken [OF IU U_lemma123], auto) (*** Progress for V ***) lemma V_F0: "Mutex ∈ {s ∈ state. s`n=#2} Unless {s ∈ state. s`n=#3}" by (unfold Unless_def Mutex_def, safety) lemma V_F1: "Mutex ∈ {s ∈ state. s`n=#1} LeadsTo {s ∈ state. s`p = not(s`u) & s`n = #2}" by (unfold Mutex_def, ensures_tac "V1") lemma V_F2: "Mutex ∈ {s ∈ state. s`p=1 & s`n = #2} LeadsTo {s ∈ state. s`n = #3}" apply (cut_tac IV) apply (unfold Mutex_def, ensures_tac "V2") done lemma V_F3: "Mutex ∈ {s ∈ state. s`n = #3} LeadsTo {s ∈ state. s`p=0}" apply (rule_tac B = "{s ∈ state. s`n = #4}" in LeadsTo_Trans) apply (unfold Mutex_def) apply (ensures_tac V3) apply (ensures_tac V4) done lemma V_lemma2: "Mutex ∈ {s ∈ state. s`n = #2} LeadsTo {s ∈ state. s`p=0}" apply (rule LeadsTo_Diff [OF LeadsTo_weaken_L Int_lower2 [THEN subset_imp_LeadsTo]]) apply (rule LeadsTo_Trans [OF V_F2 V_F3], auto) apply (auto dest!: p_value_type simp add: bool_def) done lemma V_lemma1: "Mutex ∈ {s ∈ state. s`n = #1} LeadsTo {s ∈ state. s`p = 0}" by (rule LeadsTo_Trans [OF V_F1 [THEN LeadsTo_weaken_R] V_lemma2], blast) lemma V_lemma123: "Mutex ∈ {s ∈ state. #1 $<= s`n & s`n $<= #3} LeadsTo {s ∈ state. s`p = 0}" by (simp add: eq_123 Collect_disj_eq LeadsTo_Un_distrib V_lemma1 V_lemma2 V_F3) (*Misra's F4*) lemma v_Leadsto_not_p: "Mutex ∈ {s ∈ state. s`v = 1} LeadsTo {s ∈ state. s`p = 0}" by (rule Always_LeadsTo_weaken [OF IV V_lemma123], auto) (** Absence of starvation **) (*Misra's F6*) lemma m1_Leadsto_3: "Mutex ∈ {s ∈ state. s`m = #1} LeadsTo {s ∈ state. s`m = #3}" apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] U_F2) apply (simp add: Collect_conj_eq) apply (subst Un_commute) apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] PSP_Unless [OF v_Leadsto_not_p U_F0]) apply (rule U_F1 [THEN LeadsTo_weaken_R], auto) apply (auto dest!: v_value_type simp add: bool_def) done (*The same for V*) lemma n1_Leadsto_3: "Mutex ∈ {s ∈ state. s`n = #1} LeadsTo {s ∈ state. s`n = #3}" apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] V_F2) apply (simp add: Collect_conj_eq) apply (subst Un_commute) apply (rule LeadsTo_cancel2 [THEN LeadsTo_Un_duplicate]) apply (rule_tac [2] PSP_Unless [OF u_Leadsto_p V_F0]) apply (rule V_F1 [THEN LeadsTo_weaken_R], auto) apply (auto dest!: u_value_type simp add: bool_def) done end
lemma u_value_type:
s ∈ state ==> s ` u ∈ bool
lemma v_value_type:
s ∈ state ==> s ` v ∈ bool
lemma p_value_type:
s ∈ state ==> s ` p ∈ bool
lemma m_value_type:
s ∈ state ==> s ` m ∈ int
lemma n_value_type:
s ∈ state ==> s ` n ∈ int
lemma Mutex_in_program:
Mutex ∈ program
lemma IU:
Mutex ∈ Always(IU)
lemma IV:
Mutex ∈ Always(IV)
lemma mutual_exclusion:
Mutex ∈ Always({s ∈ state . ¬ (s ` m = #3 ∧ s ` n = #3)})
lemma less_lemma:
[| x $< #1; #3 $≤ x |] ==> P
lemma U_F0:
Mutex ∈ {s ∈ state . s ` m = #2} Unless {s ∈ state . s ` m = #3}
lemma U_F1:
Mutex ∈ {s ∈ state . s ` m = #1} LeadsTo {s ∈ state . s ` p = s ` v ∧ s ` m = #2}
lemma U_F2:
Mutex ∈ {s ∈ state . s ` p = 0 ∧ s ` m = #2} LeadsTo {s ∈ state . s ` m = #3}
lemma U_F3:
Mutex ∈ {s ∈ state . s ` m = #3} LeadsTo {s ∈ state . s ` p = 1}
lemma U_lemma2:
Mutex ∈ {s ∈ state . s ` m = #2} LeadsTo {s ∈ state . s ` p = 1}
lemma U_lemma1:
Mutex ∈ {s ∈ state . s ` m = #1} LeadsTo {s ∈ state . s ` p = 1}
lemma eq_123:
i ∈ int ==> #1 $≤ i ∧ i $≤ #3 <-> i = #1 ∨ i = #2 ∨ i = #3
lemma U_lemma123:
Mutex ∈ {s ∈ state . #1 $≤ s ` m ∧ s ` m $≤ #3} LeadsTo {s ∈ state . s ` p = 1}
lemma u_Leadsto_p:
Mutex ∈ {s ∈ state . s ` u = 1} LeadsTo {s ∈ state . s ` p = 1}
lemma V_F0:
Mutex ∈ {s ∈ state . s ` n = #2} Unless {s ∈ state . s ` n = #3}
lemma V_F1:
Mutex ∈ {s ∈ state . s ` n = #1} LeadsTo {s ∈ state . s ` p = not(s ` u) ∧ s ` n = #2}
lemma V_F2:
Mutex ∈ {s ∈ state . s ` p = 1 ∧ s ` n = #2} LeadsTo {s ∈ state . s ` n = #3}
lemma V_F3:
Mutex ∈ {s ∈ state . s ` n = #3} LeadsTo {s ∈ state . s ` p = 0}
lemma V_lemma2:
Mutex ∈ {s ∈ state . s ` n = #2} LeadsTo {s ∈ state . s ` p = 0}
lemma V_lemma1:
Mutex ∈ {s ∈ state . s ` n = #1} LeadsTo {s ∈ state . s ` p = 0}
lemma V_lemma123:
Mutex ∈ {s ∈ state . #1 $≤ s ` n ∧ s ` n $≤ #3} LeadsTo {s ∈ state . s ` p = 0}
lemma v_Leadsto_not_p:
Mutex ∈ {s ∈ state . s ` v = 1} LeadsTo {s ∈ state . s ` p = 0}
lemma m1_Leadsto_3:
Mutex ∈ {s ∈ state . s ` m = #1} LeadsTo {s ∈ state . s ` m = #3}
lemma n1_Leadsto_3:
Mutex ∈ {s ∈ state . s ` n = #1} LeadsTo {s ∈ state . s ` n = #3}