Theory List_lexord

Up to index of Isabelle/HOL/Library

theory List_lexord
imports Main
begin

(*  Title:      HOL/Library/List_lexord.thy
    ID:         $Id: List_lexord.thy,v 1.2 2005/08/31 13:46:37 wenzelm Exp $
    Author:     Norbert Voelker
*)

header {* Lexicographic order on lists *}

theory List_lexord
imports Main
begin

instance list :: (ord) ord ..
defs (overloaded)
  list_le_def:  "(xs::('a::ord) list) ≤ ys ≡ (xs < ys ∨ xs = ys)"
  list_less_def: "(xs::('a::ord) list) < ys ≡ (xs, ys) ∈ lexord {(u,v). u < v}"

lemmas list_ord_defs = list_less_def list_le_def

instance list :: (order) order
  apply (intro_classes, unfold list_ord_defs)
     apply (rule disjI2, safe)
    apply (blast intro: lexord_trans transI order_less_trans)
   apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
    apply simp
   apply (blast intro: lexord_trans transI order_less_trans)
  apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
  apply simp
  apply assumption
  done

instance list::(linorder)linorder
  apply (intro_classes, unfold list_le_def list_less_def, safe)
  apply (cut_tac x = x and y = y and  r = "{(a,b). a < b}"  in lexord_linear)
   apply force
  apply simp
  done

lemma not_less_Nil[simp]: "~(x < [])"
  by (unfold list_less_def) simp

lemma Nil_less_Cons[simp]: "[] < a # x"
  by (unfold list_less_def) simp

lemma Cons_less_Cons[simp]: "(a # x < b # y) = (a < b | a = b & x < y)"
  by (unfold list_less_def) simp

lemma le_Nil[simp]: "(x <= []) = (x = [])"
  by (unfold list_ord_defs, cases x) auto

lemma Nil_le_Cons [simp]: "([] <= x)"
  by (unfold list_ord_defs, cases x) auto

lemma Cons_le_Cons[simp]: "(a # x <= b # y) = (a < b | a = b & x <= y)"
  by (unfold list_ord_defs) auto

end

lemmas list_ord_defs:

  xs < ys == (xs, ys) ∈ lexord {(u, v). u < v}
  xsys == xs < ysxs = ys

lemmas list_ord_defs:

  xs < ys == (xs, ys) ∈ lexord {(u, v). u < v}
  xsys == xs < ysxs = ys

lemma not_less_Nil:

  ¬ x < []

lemma Nil_less_Cons:

  [] < a # x

lemma Cons_less_Cons:

  (a # x < b # y) = (a < ba = bx < y)

lemma le_Nil:

  (x ≤ []) = (x = [])

lemma Nil_le_Cons:

  [] ≤ x

lemma Cons_le_Cons:

  (a # xb # y) = (a < ba = bxy)