Theory InSort

Up to index of Isabelle/HOL/ex

theory InSort
imports Sorting
begin

(*  Title:      HOL/ex/insort.thy
    ID:         $Id: InSort.thy,v 1.9 2005/04/22 15:32:03 paulson Exp $
    Author:     Tobias Nipkow
    Copyright   1994 TU Muenchen
*)

header{*Insertion Sort*}

theory InSort
imports Sorting
begin

consts
  ins    :: "('a => 'a => bool) => 'a => 'a list => 'a list"
  insort :: "('a => 'a => bool) => 'a list => 'a list"

primrec
  "ins le x [] = [x]"
  "ins le x (y#ys) = (if le x y then (x#y#ys) else y#(ins le x ys))"

primrec
  "insort le [] = []"
  "insort le (x#xs) = ins le x (insort le xs)"


lemma multiset_ins[simp]:
 "!!y. multiset_of (ins le x xs) = multiset_of (x#xs)"
  by (induct xs) (auto simp: union_ac)

theorem insort_permutes[simp]:
 "!!x. multiset_of (insort le xs) = multiset_of xs"
  by (induct "xs") auto

lemma set_ins [simp]: "set(ins le x xs) = insert x (set xs)"
  by (simp add: set_count_greater_0) fast

lemma sorted_ins[simp]:
 "[| total le; transf le |] ==> sorted le (ins le x xs) = sorted le xs";
apply (induct xs)
apply simp_all
apply (unfold Sorting.total_def Sorting.transf_def)
apply blast
done

theorem sorted_insort:
 "[| total(le); transf(le) |] ==>  sorted le (insort le xs)"
by (induct xs) auto

end


lemma multiset_ins:

  multiset_of (ins le x xs) = multiset_of (x # xs)

theorem insort_permutes:

  multiset_of (insort le xs) = multiset_of xs

lemma set_ins:

  set (ins le x xs) = insert x (set xs)

lemma sorted_ins:

  [| total le; transf le |] ==> sorted le (ins le x xs) = sorted le xs

theorem sorted_insort:

  [| total le; transf le |] ==> sorted le (insort le xs)