Theory Union

Up to index of Isabelle/ZF/UNITY

theory Union
imports SubstAx FP
begin

(*  Title:      ZF/UNITY/Union.thy
    ID:         $Id: Union.thy,v 1.8 2005/06/17 14:15:11 haftmann Exp $
    Author:     Sidi O Ehmety, Computer Laboratory
    Copyright   2001  University of Cambridge

Unions of programs

Partly from Misra's Chapter 5: Asynchronous Compositions of Programs

Theory ported form HOL..

*)

theory Union imports SubstAx FP begin

constdefs

  (*FIXME: conjoin Init(F) Int Init(G) ≠ 0 *) 
  ok :: "[i, i] => o"     (infixl "ok" 65)
    "F ok G == Acts(F) ⊆ AllowedActs(G) &
               Acts(G) ⊆ AllowedActs(F)"

  (*FIXME: conjoin (\<Inter>i ∈ I. Init(F(i))) ≠ 0 *) 
  OK  :: "[i, i=>i] => o"
    "OK(I,F) == (∀i ∈ I. ∀j ∈ I-{i}. Acts(F(i)) ⊆ AllowedActs(F(j)))"

   JOIN  :: "[i, i=>i] => i"
  "JOIN(I,F) == if I = 0 then SKIP else
                 mk_program(\<Inter>i ∈ I. Init(F(i)), \<Union>i ∈ I. Acts(F(i)),
                 \<Inter>i ∈ I. AllowedActs(F(i)))"

  Join :: "[i, i] => i"    (infixl "Join" 65)
  "F Join G == mk_program (Init(F) Int Init(G), Acts(F) Un Acts(G),
                                AllowedActs(F) Int AllowedActs(G))"
  (*Characterizes safety properties.  Used with specifying AllowedActs*)
  safety_prop :: "i => o"
  "safety_prop(X) == X⊆program &
      SKIP ∈ X & (∀G ∈ program. Acts(G) ⊆ (\<Union>F ∈ X. Acts(F)) --> G ∈ X)"
  
syntax
  "@JOIN1"     :: "[pttrns, i] => i"         ("(3JN _./ _)" 10)
  "@JOIN"      :: "[pttrn, i, i] => i"       ("(3JN _:_./ _)" 10)

translations
  "JN x:A. B"   == "JOIN(A, (%x. B))"
  "JN x y. B"   == "JN x. JN y. B"
  "JN x. B"     == "JOIN(state,(%x. B))"

syntax (symbols)
   SKIP     :: i                      ("⊥")
  Join      :: "[i, i] => i"          (infixl "\<squnion>" 65)
  "@JOIN1"  :: "[pttrns, i] => i"     ("(3\<Squnion> _./ _)" 10)
  "@JOIN"   :: "[pttrn, i, i] => i"   ("(3\<Squnion> _ ∈ _./ _)" 10)


subsection{*SKIP*}

lemma reachable_SKIP [simp]: "reachable(SKIP) = state"
by (force elim: reachable.induct intro: reachable.intros)

text{*Elimination programify from ok and Join*}

lemma ok_programify_left [iff]: "programify(F) ok G <-> F ok G"
by (simp add: ok_def)

lemma ok_programify_right [iff]: "F ok programify(G) <-> F ok G"
by (simp add: ok_def)

lemma Join_programify_left [simp]: "programify(F) Join G = F Join G"
by (simp add: Join_def)

lemma Join_programify_right [simp]: "F Join programify(G) = F Join G"
by (simp add: Join_def)

subsection{*SKIP and safety properties*}

lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) <-> (A⊆B & st_set(A))"
by (unfold constrains_def st_set_def, auto)

lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B)<-> (state Int A⊆B)"
by (unfold Constrains_def, auto)

lemma SKIP_in_stable [iff]: "SKIP ∈ stable(A) <-> st_set(A)"
by (auto simp add: stable_def)

lemma SKIP_in_Stable [iff]: "SKIP ∈ Stable(A)"
by (unfold Stable_def, auto)

subsection{*Join and JOIN types*}

lemma Join_in_program [iff,TC]: "F Join G ∈ program"
by (unfold Join_def, auto)

lemma JOIN_in_program [iff,TC]: "JOIN(I,F) ∈ program"
by (unfold JOIN_def, auto)

subsection{*Init, Acts, and AllowedActs of Join and JOIN*}
lemma Init_Join [simp]: "Init(F Join G) = Init(F) Int Init(G)"
by (simp add: Int_assoc Join_def)

lemma Acts_Join [simp]: "Acts(F Join G) = Acts(F) Un Acts(G)"
by (simp add: Int_Un_distrib2 cons_absorb Join_def)

lemma AllowedActs_Join [simp]: "AllowedActs(F Join G) =  
  AllowedActs(F) Int AllowedActs(G)"
apply (simp add: Int_assoc cons_absorb Join_def)
done

subsection{*Join's algebraic laws*}

lemma Join_commute: "F Join G = G Join F"
by (simp add: Join_def Un_commute Int_commute)

lemma Join_left_commute: "A Join (B Join C) = B Join (A Join C)"
apply (simp add: Join_def Int_Un_distrib2 cons_absorb)
apply (simp add: Un_ac Int_ac Int_Un_distrib2 cons_absorb)
done

lemma Join_assoc: "(F Join G) Join H = F Join (G Join H)"
by (simp add: Un_ac Join_def cons_absorb Int_assoc Int_Un_distrib2)

subsection{*Needed below*}
lemma cons_id [simp]: "cons(id(state), Pow(state * state)) = Pow(state*state)"
by auto

lemma Join_SKIP_left [simp]: "SKIP Join F = programify(F)"
apply (unfold Join_def SKIP_def)
apply (auto simp add: Int_absorb cons_eq)
done

lemma Join_SKIP_right [simp]: "F Join SKIP =  programify(F)"
apply (subst Join_commute)
apply (simp add: Join_SKIP_left)
done

lemma Join_absorb [simp]: "F Join F = programify(F)"
by (rule program_equalityI, auto)

lemma Join_left_absorb: "F Join (F Join G) = F Join G"
by (simp add: Join_assoc [symmetric])

subsection{*Join is an AC-operator*}
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute

subsection{*Eliminating programify form JN and OK expressions*}

lemma OK_programify [iff]: "OK(I, %x. programify(F(x))) <-> OK(I, F)"
by (simp add: OK_def)

lemma JN_programify [iff]: "JOIN(I, %x. programify(F(x))) = JOIN(I, F)"
by (simp add: JOIN_def)


subsection{*JN*}

lemma JN_empty [simp]: "JOIN(0, F) = SKIP"
by (unfold JOIN_def, auto)

lemma Init_JN [simp]:
     "Init(\<Squnion>i ∈ I. F(i)) = (if I=0 then state else (\<Inter>i ∈ I. Init(F(i))))"
by (simp add: JOIN_def INT_extend_simps del: INT_simps)

lemma Acts_JN [simp]: 
     "Acts(JOIN(I,F)) = cons(id(state), \<Union>i ∈ I.  Acts(F(i)))"
apply (unfold JOIN_def)
apply (auto simp del: INT_simps UN_simps)
apply (rule equalityI)
apply (auto dest: Acts_type [THEN subsetD])
done

lemma AllowedActs_JN [simp]: 
     "AllowedActs(\<Squnion>i ∈ I. F(i)) = 
      (if I=0 then Pow(state*state) else (\<Inter>i ∈ I. AllowedActs(F(i))))"
apply (unfold JOIN_def, auto)
apply (rule equalityI)
apply (auto elim!: not_emptyE dest: AllowedActs_type [THEN subsetD])
done

lemma JN_cons [simp]: "(\<Squnion>i ∈ cons(a,I). F(i)) = F(a) Join (\<Squnion>i ∈ I. F(i))"
by (rule program_equalityI, auto)

lemma JN_cong [cong]:
    "[| I=J;  !!i. i ∈ J ==> F(i) = G(i) |] ==>  
     (\<Squnion>i ∈ I. F(i)) = (\<Squnion>i ∈ J. G(i))"
by (simp add: JOIN_def)



subsection{*JN laws*}
lemma JN_absorb: "k ∈ I ==>F(k) Join (\<Squnion>i ∈ I. F(i)) = (\<Squnion>i ∈ I. F(i))"
apply (subst JN_cons [symmetric])
apply (auto simp add: cons_absorb)
done

lemma JN_Un: "(\<Squnion>i ∈ I Un J. F(i)) = ((\<Squnion>i ∈ I. F(i)) Join (\<Squnion>i ∈ J. F(i)))"
apply (rule program_equalityI)
apply (simp_all add: UN_Un INT_Un)
apply (simp_all del: INT_simps add: INT_extend_simps, blast)
done

lemma JN_constant: "(\<Squnion>i ∈ I. c) = (if I=0 then SKIP else programify(c))"
by (rule program_equalityI, auto)

lemma JN_Join_distrib:
     "(\<Squnion>i ∈ I. F(i) Join G(i)) = (\<Squnion>i ∈ I. F(i))  Join  (\<Squnion>i ∈ I. G(i))"
apply (rule program_equalityI)
apply (simp_all add: INT_Int_distrib, blast) 
done

lemma JN_Join_miniscope: "(\<Squnion>i ∈ I. F(i) Join G) = ((\<Squnion>i ∈ I. F(i) Join G))"
by (simp add: JN_Join_distrib JN_constant)

text{*Used to prove guarantees_JN_I*}
lemma JN_Join_diff: "i ∈ I==>F(i) Join JOIN(I - {i}, F) = JOIN(I, F)"
apply (rule program_equalityI)
apply (auto elim!: not_emptyE)
done

subsection{*Safety: co, stable, FP*}


(*Fails if I=0 because it collapses to SKIP ∈ A co B, i.e. to A⊆B.  So an
  alternative precondition is A⊆B, but most proofs using this rule require
  I to be nonempty for other reasons anyway.*)

lemma JN_constrains: 
 "i ∈ I==>(\<Squnion>i ∈ I. F(i)) ∈ A co B <-> (∀i ∈ I. programify(F(i)) ∈ A co B)"

apply (unfold constrains_def JOIN_def st_set_def, auto)
prefer 2 apply blast
apply (rename_tac j act y z)
apply (cut_tac F = "F (j) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done

lemma Join_constrains [iff]:
     "(F Join G ∈ A co B) <-> (programify(F) ∈ A co B & programify(G) ∈ A co B)"
by (auto simp add: constrains_def)

lemma Join_unless [iff]:
     "(F Join G ∈ A unless B) <->  
    (programify(F) ∈ A unless B & programify(G) ∈ A unless B)"
by (simp add: Join_constrains unless_def)


(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
  reachable (F Join G) could be much bigger than reachable F, reachable G
*)

lemma Join_constrains_weaken:
     "[| F ∈ A co A';  G ∈ B co B' |]  
      ==> F Join G ∈ (A Int B) co (A' Un B')"
apply (subgoal_tac "st_set (A) & st_set (B) & F ∈ program & G ∈ program")
prefer 2 apply (blast dest: constrainsD2, simp)
apply (blast intro: constrains_weaken)
done

(*If I=0, it degenerates to SKIP ∈ state co 0, which is false.*)
lemma JN_constrains_weaken:
  assumes major: "(!!i. i ∈ I ==> F(i) ∈ A(i) co A'(i))"
      and minor: "i ∈ I"
  shows "(\<Squnion>i ∈ I. F(i)) ∈ (\<Inter>i ∈ I. A(i)) co (\<Union>i ∈ I. A'(i))"
apply (cut_tac minor)
apply (simp (no_asm_simp) add: JN_constrains)
apply clarify
apply (rename_tac "j")
apply (frule_tac i = j in major)
apply (frule constrainsD2, simp)
apply (blast intro: constrains_weaken)
done

lemma JN_stable:
     "(\<Squnion>i ∈ I. F(i)) ∈  stable(A) <-> ((∀i ∈ I. programify(F(i)) ∈ stable(A)) & st_set(A))"
apply (auto simp add: stable_def constrains_def JOIN_def)
apply (cut_tac F = "F (i) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done

lemma initially_JN_I: 
  assumes major: "(!!i. i ∈ I ==>F(i) ∈ initially(A))"
      and minor: "i ∈ I"
  shows  "(\<Squnion>i ∈ I. F(i)) ∈ initially(A)"
apply (cut_tac minor)
apply (auto elim!: not_emptyE simp add: Inter_iff initially_def) 
apply (frule_tac i = x in major)
apply (auto simp add: initially_def) 
done

lemma invariant_JN_I: 
  assumes major: "(!!i. i ∈ I ==> F(i) ∈ invariant(A))"
      and minor: "i ∈ I"
  shows "(\<Squnion>i ∈ I. F(i)) ∈ invariant(A)"
apply (cut_tac minor)
apply (auto intro!: initially_JN_I dest: major simp add: invariant_def JN_stable)
apply (erule_tac V = "i ∈ I" in thin_rl)
apply (frule major)
apply (drule_tac [2] major)
apply (auto simp add: invariant_def)
apply (frule stableD2, force)+
done

lemma Join_stable [iff]:
     " (F Join G ∈ stable(A)) <->   
      (programify(F) ∈ stable(A) & programify(G) ∈  stable(A))"
by (simp add: stable_def)

lemma initially_JoinI [intro!]:
     "[| F ∈ initially(A); G ∈ initially(A) |] ==> F Join G ∈ initially(A)"
by (unfold initially_def, auto)

lemma invariant_JoinI:
     "[| F ∈ invariant(A); G ∈ invariant(A) |]   
      ==> F Join G ∈ invariant(A)"
apply (subgoal_tac "F ∈ program&G ∈ program")
prefer 2 apply (blast dest: invariantD2)
apply (simp add: invariant_def)
apply (auto intro: Join_in_program)
done


(* Fails if I=0 because \<Inter>i ∈ 0. A(i) = 0 *)
lemma FP_JN: "i ∈ I ==> FP(\<Squnion>i ∈ I. F(i)) = (\<Inter>i ∈ I. FP (programify(F(i))))"
by (auto simp add: FP_def Inter_def st_set_def JN_stable)

subsection{*Progress: transient, ensures*}

lemma JN_transient:
     "i ∈ I ==> 
      (\<Squnion>i ∈ I. F(i)) ∈ transient(A) <-> (∃i ∈ I. programify(F(i)) ∈ transient(A))"
apply (auto simp add: transient_def JOIN_def)
apply (unfold st_set_def)
apply (drule_tac [2] x = act in bspec)
apply (auto dest: Acts_type [THEN subsetD])
done

lemma Join_transient [iff]:
     "F Join G ∈ transient(A) <->  
      (programify(F) ∈ transient(A) | programify(G) ∈ transient(A))"
apply (auto simp add: transient_def Join_def Int_Un_distrib2)
done

lemma Join_transient_I1: "F ∈ transient(A) ==> F Join G ∈ transient(A)"
by (simp add: Join_transient transientD2)


lemma Join_transient_I2: "G ∈ transient(A) ==> F Join G ∈ transient(A)"
by (simp add: Join_transient transientD2)

(*If I=0 it degenerates to (SKIP ∈ A ensures B) = False, i.e. to ~(A⊆B) *)
lemma JN_ensures:
     "i ∈ I ==>  
      (\<Squnion>i ∈ I. F(i)) ∈ A ensures B <->  
      ((∀i ∈ I. programify(F(i)) ∈ (A-B) co (A Un B)) &   
      (∃i ∈ I. programify(F(i)) ∈ A ensures B))"
by (auto simp add: ensures_def JN_constrains JN_transient)


lemma Join_ensures: 
     "F Join G ∈ A ensures B  <->      
      (programify(F) ∈ (A-B) co (A Un B) & programify(G) ∈ (A-B) co (A Un B) &  
       (programify(F) ∈  transient (A-B) | programify(G) ∈ transient (A-B)))"

apply (unfold ensures_def)
apply (auto simp add: Join_transient)
done

lemma stable_Join_constrains: 
    "[| F ∈ stable(A);  G ∈ A co A' |]  
     ==> F Join G ∈ A co A'"
apply (unfold stable_def constrains_def Join_def st_set_def)
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = G in Acts_type, force) 
done

(*Premise for G cannot use Always because  F ∈ Stable A  is
   weaker than G ∈ stable A *)
lemma stable_Join_Always1:
     "[| F ∈ stable(A);  G ∈ invariant(A) |] ==> F Join G ∈ Always(A)"
apply (subgoal_tac "F ∈ program & G ∈ program & st_set (A) ")
prefer 2 apply (blast dest: invariantD2 stableD2)
apply (simp add: Always_def invariant_def initially_def Stable_eq_stable)
apply (force intro: stable_Int)
done

(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
     "[| F ∈ invariant(A);  G ∈ stable(A) |] ==> F Join G ∈ Always(A)"
apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done



lemma stable_Join_ensures1:
     "[| F ∈ stable(A);  G ∈ A ensures B |] ==> F Join G ∈ A ensures B"
apply (subgoal_tac "F ∈ program & G ∈ program & st_set (A) ")
prefer 2 apply (blast dest: stableD2 ensures_type [THEN subsetD])
apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done


(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
     "[| F ∈ A ensures B;  G ∈ stable(A) |] ==> F Join G ∈ A ensures B"
apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done

subsection{*The ok and OK relations*}

lemma ok_SKIP1 [iff]: "SKIP ok F"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)

lemma ok_SKIP2 [iff]: "F ok SKIP"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)

lemma ok_Join_commute:
     "(F ok G & (F Join G) ok H) <-> (G ok H & F ok (G Join H))"
by (auto simp add: ok_def)

lemma ok_commute: "(F ok G) <->(G ok F)"
by (auto simp add: ok_def)

lemmas ok_sym = ok_commute [THEN iffD1, standard]

lemma ok_iff_OK: "OK({<0,F>,<1,G>,<2,H>}, snd) <-> (F ok G & (F Join G) ok H)"
by (simp add: ok_def Join_def OK_def Int_assoc cons_absorb
                 Int_Un_distrib2 Ball_def,  safe, force+)

lemma ok_Join_iff1 [iff]: "F ok (G Join H) <-> (F ok G & F ok H)"
by (auto simp add: ok_def)

lemma ok_Join_iff2 [iff]: "(G Join H) ok F <-> (G ok F & H ok F)"
by (auto simp add: ok_def)

(*useful?  Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F Join G) ok H |] ==> F ok (G Join H)"
by (auto simp add: ok_def)

lemma ok_JN_iff1 [iff]: "F ok JOIN(I,G) <-> (∀i ∈ I. F ok G(i))"
by (force dest: Acts_type [THEN subsetD] elim!: not_emptyE simp add: ok_def)

lemma ok_JN_iff2 [iff]: "JOIN(I,G) ok F   <->  (∀i ∈ I. G(i) ok F)"
apply (auto elim!: not_emptyE simp add: ok_def)
apply (blast dest: Acts_type [THEN subsetD])
done

lemma OK_iff_ok: "OK(I,F) <-> (∀i ∈ I. ∀j ∈ I-{i}. F(i) ok (F(j)))"
by (auto simp add: ok_def OK_def)

lemma OK_imp_ok: "[| OK(I,F); i ∈ I; j ∈ I; i≠j|] ==> F(i) ok F(j)"
by (auto simp add: OK_iff_ok)


lemma OK_0 [iff]: "OK(0,F)"
by (simp add: OK_def)

lemma OK_cons_iff:
     "OK(cons(i, I), F) <->  
      (i ∈ I & OK(I, F)) | (i∉I & OK(I, F) & F(i) ok JOIN(I,F))"
apply (simp add: OK_iff_ok)
apply (blast intro: ok_sym) 
done


subsection{*Allowed*}

lemma Allowed_SKIP [simp]: "Allowed(SKIP) = program"
by (auto dest: Acts_type [THEN subsetD] simp add: Allowed_def)

lemma Allowed_Join [simp]:
     "Allowed(F Join G) =  
   Allowed(programify(F)) Int Allowed(programify(G))"
apply (auto simp add: Allowed_def)
done

lemma Allowed_JN [simp]:
     "i ∈ I ==>  
   Allowed(JOIN(I,F)) = (\<Inter>i ∈ I. Allowed(programify(F(i))))"
apply (auto simp add: Allowed_def, blast)
done

lemma ok_iff_Allowed:
     "F ok G <-> (programify(F) ∈ Allowed(programify(G)) &  
   programify(G) ∈ Allowed(programify(F)))"
by (simp add: ok_def Allowed_def)


lemma OK_iff_Allowed:
     "OK(I,F) <->  
  (∀i ∈ I. ∀j ∈ I-{i}. programify(F(i)) ∈ Allowed(programify(F(j))))"
apply (auto simp add: OK_iff_ok ok_iff_Allowed)
done

subsection{*safety_prop, for reasoning about given instances of "ok"*}

lemma safety_prop_Acts_iff:
     "safety_prop(X) ==> (Acts(G) ⊆ cons(id(state), (\<Union>F ∈ X. Acts(F)))) <-> (programify(G) ∈ X)"
apply (simp (no_asm_use) add: safety_prop_def)
apply clarify
apply (case_tac "G ∈ program", simp_all, blast, safe)
prefer 2 apply force
apply (force simp add: programify_def)
done

lemma safety_prop_AllowedActs_iff_Allowed:
     "safety_prop(X) ==>  
  (\<Union>G ∈ X. Acts(G)) ⊆ AllowedActs(F) <-> (X ⊆ Allowed(programify(F)))"
apply (simp add: Allowed_def safety_prop_Acts_iff [THEN iff_sym] 
                 safety_prop_def, blast) 
done


lemma Allowed_eq:
     "safety_prop(X) ==> Allowed(mk_program(init, acts, \<Union>F ∈ X. Acts(F))) = X"
apply (subgoal_tac "cons (id (state), Union (RepFun (X, Acts)) Int Pow (state * state)) = Union (RepFun (X, Acts))")
apply (rule_tac [2] equalityI)
  apply (simp del: UN_simps add: Allowed_def safety_prop_Acts_iff safety_prop_def, auto)
apply (force dest: Acts_type [THEN subsetD] simp add: safety_prop_def)+
done

lemma def_prg_Allowed:
     "[| F == mk_program (init, acts, \<Union>F ∈ X. Acts(F)); safety_prop(X) |]  
      ==> Allowed(F) = X"
by (simp add: Allowed_eq)

(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]:
     "safety_prop(A co B) <-> (A ⊆ B & st_set(A))"
by (simp add: safety_prop_def constrains_def st_set_def, blast)

(* To be used with resolution *)
lemma safety_prop_constrainsI [iff]:
     "[| A⊆B; st_set(A) |] ==>safety_prop(A co B)"
by auto

lemma safety_prop_stable [iff]: "safety_prop(stable(A)) <-> st_set(A)"
by (simp add: stable_def)

lemma safety_prop_stableI: "st_set(A) ==> safety_prop(stable(A))"
by auto

lemma safety_prop_Int [simp]:
     "[| safety_prop(X) ; safety_prop(Y) |] ==> safety_prop(X Int Y)"
apply (simp add: safety_prop_def, safe, blast)
apply (drule_tac [2] B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (Y, Acts))" in subset_trans)
apply (drule_tac B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (X, Acts))" in subset_trans)
apply blast+
done

(* If I=0 the conclusion becomes safety_prop(0) which is false *)
lemma safety_prop_Inter:
  assumes major: "(!!i. i ∈ I ==>safety_prop(X(i)))"
      and minor: "i ∈ I"
  shows "safety_prop(\<Inter>i ∈ I. X(i))"
apply (simp add: safety_prop_def)
apply (cut_tac minor, safe)
apply (simp (no_asm_use) add: Inter_iff)
apply clarify
apply (frule major)
apply (drule_tac [2] i = xa in major)
apply (frule_tac [4] i = xa in major)
apply (auto simp add: safety_prop_def)
apply (drule_tac B = "Union (RepFun (Inter (RepFun (I, X)), Acts))" and C = "Union (RepFun (X (xa), Acts))" in subset_trans)
apply blast+
done

lemma def_UNION_ok_iff: 
"[| F == mk_program(init,acts, \<Union>G ∈ X. Acts(G)); safety_prop(X) |]  
      ==> F ok G <-> (programify(G) ∈ X & acts Int Pow(state*state) ⊆ AllowedActs(G))"
apply (unfold ok_def)
apply (drule_tac G = G in safety_prop_Acts_iff)
apply (cut_tac F = G in AllowedActs_type)
apply (cut_tac F = G in Acts_type, auto)
done


ML
{*
val safety_prop_def = thm "safety_prop_def";

val reachable_SKIP = thm "reachable_SKIP";
val ok_programify_left = thm "ok_programify_left";
val ok_programify_right = thm "ok_programify_right";
val Join_programify_left = thm "Join_programify_left";
val Join_programify_right = thm "Join_programify_right";
val SKIP_in_constrains_iff = thm "SKIP_in_constrains_iff";
val SKIP_in_Constrains_iff = thm "SKIP_in_Constrains_iff";
val SKIP_in_stable = thm "SKIP_in_stable";
val SKIP_in_Stable = thm "SKIP_in_Stable";
val Join_in_program = thm "Join_in_program";
val JOIN_in_program = thm "JOIN_in_program";
val Init_Join = thm "Init_Join";
val Acts_Join = thm "Acts_Join";
val AllowedActs_Join = thm "AllowedActs_Join";
val Join_commute = thm "Join_commute";
val Join_left_commute = thm "Join_left_commute";
val Join_assoc = thm "Join_assoc";
val cons_id = thm "cons_id";
val Join_SKIP_left = thm "Join_SKIP_left";
val Join_SKIP_right = thm "Join_SKIP_right";
val Join_absorb = thm "Join_absorb";
val Join_left_absorb = thm "Join_left_absorb";
val OK_programify = thm "OK_programify";
val JN_programify = thm "JN_programify";
val JN_empty = thm "JN_empty";
val Init_JN = thm "Init_JN";
val Acts_JN = thm "Acts_JN";
val AllowedActs_JN = thm "AllowedActs_JN";
val JN_cons = thm "JN_cons";
val JN_cong = thm "JN_cong";
val JN_absorb = thm "JN_absorb";
val JN_Un = thm "JN_Un";
val JN_constant = thm "JN_constant";
val JN_Join_distrib = thm "JN_Join_distrib";
val JN_Join_miniscope = thm "JN_Join_miniscope";
val JN_Join_diff = thm "JN_Join_diff";
val JN_constrains = thm "JN_constrains";
val Join_constrains = thm "Join_constrains";
val Join_unless = thm "Join_unless";
val Join_constrains_weaken = thm "Join_constrains_weaken";
val JN_constrains_weaken = thm "JN_constrains_weaken";
val JN_stable = thm "JN_stable";
val initially_JN_I = thm "initially_JN_I";
val invariant_JN_I = thm "invariant_JN_I";
val Join_stable = thm "Join_stable";
val initially_JoinI = thm "initially_JoinI";
val invariant_JoinI = thm "invariant_JoinI";
val FP_JN = thm "FP_JN";
val JN_transient = thm "JN_transient";
val Join_transient = thm "Join_transient";
val Join_transient_I1 = thm "Join_transient_I1";
val Join_transient_I2 = thm "Join_transient_I2";
val JN_ensures = thm "JN_ensures";
val Join_ensures = thm "Join_ensures";
val stable_Join_constrains = thm "stable_Join_constrains";
val stable_Join_Always1 = thm "stable_Join_Always1";
val stable_Join_Always2 = thm "stable_Join_Always2";
val stable_Join_ensures1 = thm "stable_Join_ensures1";
val stable_Join_ensures2 = thm "stable_Join_ensures2";
val ok_SKIP1 = thm "ok_SKIP1";
val ok_SKIP2 = thm "ok_SKIP2";
val ok_Join_commute = thm "ok_Join_commute";
val ok_commute = thm "ok_commute";
val ok_sym = thm "ok_sym";
val ok_iff_OK = thm "ok_iff_OK";
val ok_Join_iff1 = thm "ok_Join_iff1";
val ok_Join_iff2 = thm "ok_Join_iff2";
val ok_Join_commute_I = thm "ok_Join_commute_I";
val ok_JN_iff1 = thm "ok_JN_iff1";
val ok_JN_iff2 = thm "ok_JN_iff2";
val OK_iff_ok = thm "OK_iff_ok";
val OK_imp_ok = thm "OK_imp_ok";
val Allowed_SKIP = thm "Allowed_SKIP";
val Allowed_Join = thm "Allowed_Join";
val Allowed_JN = thm "Allowed_JN";
val ok_iff_Allowed = thm "ok_iff_Allowed";
val OK_iff_Allowed = thm "OK_iff_Allowed";
val safety_prop_Acts_iff = thm "safety_prop_Acts_iff";
val safety_prop_AllowedActs_iff_Allowed = thm "safety_prop_AllowedActs_iff_Allowed";
val Allowed_eq = thm "Allowed_eq";
val def_prg_Allowed = thm "def_prg_Allowed";
val safety_prop_constrains = thm "safety_prop_constrains";
val safety_prop_constrainsI = thm "safety_prop_constrainsI";
val safety_prop_stable = thm "safety_prop_stable";
val safety_prop_stableI = thm "safety_prop_stableI";
val safety_prop_Int = thm "safety_prop_Int";
val safety_prop_Inter = thm "safety_prop_Inter";
val def_UNION_ok_iff = thm "def_UNION_ok_iff";

val Join_ac = thms "Join_ac";
*}


end

SKIP

lemma reachable_SKIP:

  reachable(SKIP) = state

lemma ok_programify_left:

  programify(F) ok G <-> F ok G

lemma ok_programify_right:

  F ok programify(G) <-> F ok G

lemma Join_programify_left:

  programify(F) Join G = F Join G

lemma Join_programify_right:

  F Join programify(G) = F Join G

SKIP and safety properties

lemma SKIP_in_constrains_iff:

  SKIP ∈ A co B <-> AB ∧ st_set(A)

lemma SKIP_in_Constrains_iff:

  SKIP ∈ A Co B <-> state ∩ AB

lemma SKIP_in_stable:

  SKIP ∈ stable(A) <-> st_set(A)

lemma SKIP_in_Stable:

  SKIP ∈ Stable(A)

Join and JOIN types

lemma Join_in_program:

  F Join G ∈ program

lemma JOIN_in_program:

  JOIN(I, F) ∈ program

Init, Acts, and AllowedActs of Join and JOIN

lemma Init_Join:

  Init(F Join G) = Init(F) ∩ Init(G)

lemma Acts_Join:

  Acts(F Join G) = Acts(F) ∪ Acts(G)

lemma AllowedActs_Join:

  AllowedActs(F Join G) = AllowedActs(F) ∩ AllowedActs(G)

Join's algebraic laws

lemma Join_commute:

  F Join G = G Join F

lemma Join_left_commute:

  A Join (B Join C) = B Join (A Join C)

lemma Join_assoc:

  F Join G Join H = F Join (G Join H)

Needed below

lemma cons_id:

  cons(id(state), Pow(state × state)) = Pow(state × state)

lemma Join_SKIP_left:

  SKIP Join F = programify(F)

lemma Join_SKIP_right:

  F Join SKIP = programify(F)

lemma Join_absorb:

  F Join F = programify(F)

lemma Join_left_absorb:

  F Join (F Join G) = F Join G

Join is an AC-operator

lemmas Join_ac:

  F Join G Join H = F Join (G Join H)
  F Join (F Join G) = F Join G
  F Join G = G Join F
  A Join (B Join C) = B Join (A Join C)

lemmas Join_ac:

  F Join G Join H = F Join (G Join H)
  F Join (F Join G) = F Join G
  F Join G = G Join F
  A Join (B Join C) = B Join (A Join C)

Eliminating programify form JN and OK expressions

lemma OK_programify:

  OK(I, %x. programify(F(x))) <-> OK(I, F)

lemma JN_programify:

  (JN x:I. programify(F(x))) = JOIN(I, F)

JN

lemma JN_empty:

  JOIN(0, F) = SKIP

lemma Init_JN:

  Init(JN i:I. F(i)) = (if I = 0 then state else \<Inter>iI. Init(F(i)))

lemma Acts_JN:

  Acts(JOIN(I, F)) = cons(id(state), \<Union>iI. Acts(F(i)))

lemma AllowedActs_JN:

  AllowedActs(JN i:I. F(i)) =
  (if I = 0 then Pow(state × state) else \<Inter>iI. AllowedActs(F(i)))

lemma JN_cons:

  (JN i:cons(a, I). F(i)) = F(a) Join (JN i:I. F(i))

lemma JN_cong:

  [| I = J; !!i. iJ ==> F(i) = G(i) |] ==> (JN i:I. F(i)) = (JN i:J. G(i))

JN laws

lemma JN_absorb:

  kI ==> F(k) Join (JN i:I. F(i)) = (JN i:I. F(i))

lemma JN_Un:

  (JN i:IJ. F(i)) = (JN i:I. F(i)) Join (JN i:J. F(i))

lemma JN_constant:

  (JN i:I. c) = (if I = 0 then SKIP else programify(c))

lemma JN_Join_distrib:

  (JN i:I. F(i) Join G(i)) = (JN i:I. F(i)) Join (JN i:I. G(i))

lemma JN_Join_miniscope:

  (JN i:I. F(i) Join G) = (JN i:I. F(i) Join G)

lemma JN_Join_diff:

  iI ==> F(i) Join JOIN(I - {i}, F) = JOIN(I, F)

Safety: co, stable, FP

lemma JN_constrains:

  iI ==> (JN i:I. F(i)) ∈ A co B <-> (∀iI. programify(F(i)) ∈ A co B)

lemma Join_constrains:

  F Join GA co B <-> programify(F) ∈ A co B ∧ programify(G) ∈ A co B

lemma Join_unless:

  F Join GA unless B <->
  programify(F) ∈ A unless B ∧ programify(G) ∈ A unless B

lemma Join_constrains_weaken:

  [| FA co A'; GB co B' |] ==> F Join GAB co A'B'

lemma JN_constrains_weaken:

  [| !!i. iI ==> F(i) ∈ A(i) co A'(i); iI |]
  ==> (JN i:I. F(i)) ∈ (\<Inter>iI. A(i)) co (\<Union>iI. A'(i))

lemma JN_stable:

  (JN i:I. F(i)) ∈ stable(A) <-> (∀iI. programify(F(i)) ∈ stable(A)) ∧ st_set(A)

lemma initially_JN_I:

  [| !!i. iI ==> F(i) ∈ initially(A); iI |]
  ==> (JN i:I. F(i)) ∈ initially(A)

lemma invariant_JN_I:

  [| !!i. iI ==> F(i) ∈ invariant(A); iI |]
  ==> (JN i:I. F(i)) ∈ invariant(A)

lemma Join_stable:

  F Join G ∈ stable(A) <-> programify(F) ∈ stable(A) ∧ programify(G) ∈ stable(A)

lemma initially_JoinI:

  [| F ∈ initially(A); G ∈ initially(A) |] ==> F Join G ∈ initially(A)

lemma invariant_JoinI:

  [| F ∈ invariant(A); G ∈ invariant(A) |] ==> F Join G ∈ invariant(A)

lemma FP_JN:

  iI ==> FP(JN i:I. F(i)) = (\<Inter>iI. FP(programify(F(i))))

Progress: transient, ensures

lemma JN_transient:

  iI
  ==> (JN i:I. F(i)) ∈ transient(A) <-> (∃iI. programify(F(i)) ∈ transient(A))

lemma Join_transient:

  F Join G ∈ transient(A) <->
  programify(F) ∈ transient(A) ∨ programify(G) ∈ transient(A)

lemma Join_transient_I1:

  F ∈ transient(A) ==> F Join G ∈ transient(A)

lemma Join_transient_I2:

  G ∈ transient(A) ==> F Join G ∈ transient(A)

lemma JN_ensures:

  iI
  ==> (JN i:I. F(i)) ∈ A ensures B <->
      (∀iI. programify(F(i)) ∈ A - B co AB) ∧
      (∃iI. programify(F(i)) ∈ A ensures B)

lemma Join_ensures:

  F Join GA ensures B <->
  programify(F) ∈ A - B co AB ∧
  programify(G) ∈ A - B co AB ∧
  (programify(F) ∈ transient(A - B) ∨ programify(G) ∈ transient(A - B))

lemma stable_Join_constrains:

  [| F ∈ stable(A); GA co A' |] ==> F Join GA co A'

lemma stable_Join_Always1:

  [| F ∈ stable(A); G ∈ invariant(A) |] ==> F Join G ∈ Always(A)

lemma stable_Join_Always2:

  [| F ∈ invariant(A); G ∈ stable(A) |] ==> F Join G ∈ Always(A)

lemma stable_Join_ensures1:

  [| F ∈ stable(A); GA ensures B |] ==> F Join GA ensures B

lemma stable_Join_ensures2:

  [| FA ensures B; G ∈ stable(A) |] ==> F Join GA ensures B

The ok and OK relations

lemma ok_SKIP1:

  SKIP ok F

lemma ok_SKIP2:

  F ok SKIP

lemma ok_Join_commute:

  F ok GF Join G ok H <-> G ok HF ok (G Join H)

lemma ok_commute:

  F ok G <-> G ok F

lemmas ok_sym:

  F ok G ==> G ok F

lemmas ok_sym:

  F ok G ==> G ok F

lemma ok_iff_OK:

  OK({⟨0, F⟩, ⟨1, G⟩, ⟨2, H⟩}, snd) <-> F ok GF Join G ok H

lemma ok_Join_iff1:

  F ok (G Join H) <-> F ok GF ok H

lemma ok_Join_iff2:

  G Join H ok F <-> G ok FH ok F

lemma ok_Join_commute_I:

  [| F ok G; F Join G ok H |] ==> F ok (G Join H)

lemma ok_JN_iff1:

  F ok JOIN(I, G) <-> (∀iI. F ok G(i))

lemma ok_JN_iff2:

  JOIN(I, G) ok F <-> (∀iI. G(i) ok F)

lemma OK_iff_ok:

  OK(I, F) <-> (∀iI. ∀jI - {i}. F(i) ok F(j))

lemma OK_imp_ok:

  [| OK(I, F); iI; jI; ij |] ==> F(i) ok F(j)

lemma OK_0:

  OK(0, F)

lemma OK_cons_iff:

  OK(cons(i, I), F) <-> iI ∧ OK(I, F) ∨ iI ∧ OK(I, F) ∧ F(i) ok JOIN(I, F)

Allowed

lemma Allowed_SKIP:

  Allowed(SKIP) = program

lemma Allowed_Join:

  Allowed(F Join G) = Allowed(programify(F)) ∩ Allowed(programify(G))

lemma Allowed_JN:

  iI ==> Allowed(JOIN(I, F)) = (\<Inter>iI. Allowed(programify(F(i))))

lemma ok_iff_Allowed:

  F ok G <->
  programify(F) ∈ Allowed(programify(G)) ∧ programify(G) ∈ Allowed(programify(F))

lemma OK_iff_Allowed:

  OK(I, F) <-> (∀iI. ∀jI - {i}. programify(F(i)) ∈ Allowed(programify(F(j))))

safety_prop, for reasoning about given instances of "ok"

lemma safety_prop_Acts_iff:

  safety_prop(X)
  ==> Acts(G) ⊆ cons(id(state), \<Union>FX. Acts(F)) <-> programify(G) ∈ X

lemma safety_prop_AllowedActs_iff_Allowed:

  safety_prop(X)
  ==> (\<Union>GX. Acts(G)) ⊆ AllowedActs(F) <-> X ⊆ Allowed(programify(F))

lemma Allowed_eq:

  safety_prop(X) ==> Allowed(mk_program(init, acts, \<Union>FX. Acts(F))) = X

lemma def_prg_Allowed:

  [| F == mk_program(init, acts, \<Union>FX. Acts(F)); safety_prop(X) |]
  ==> Allowed(F) = X

lemma safety_prop_constrains:

  safety_prop(A co B) <-> AB ∧ st_set(A)

lemma safety_prop_constrainsI:

  [| AB; st_set(A) |] ==> safety_prop(A co B)

lemma safety_prop_stable:

  safety_prop(stable(A)) <-> st_set(A)

lemma safety_prop_stableI:

  st_set(A) ==> safety_prop(stable(A))

lemma safety_prop_Int:

  [| safety_prop(X); safety_prop(Y) |] ==> safety_prop(XY)

lemma safety_prop_Inter:

  [| !!i. iI ==> safety_prop(X(i)); iI |] ==> safety_prop(\<Inter>iI. X(i))

lemma def_UNION_ok_iff:

  [| F == mk_program(init, acts, \<Union>GX. Acts(G)); safety_prop(X) |]
  ==> F ok G <-> programify(G) ∈ Xacts ∩ Pow(state × state) ⊆ AllowedActs(G)