Theory Adm

Up to index of Isabelle/HOLCF

theory Adm
imports Cont
begin

(*  Title:      HOLCF/Adm.thy
    ID:         $Id: Adm.thy,v 1.9 2005/09/22 17:06:34 huffman Exp $
    Author:     Franz Regensburger
*)

header {* Admissibility *}

theory Adm
imports Cont
begin

defaultsort cpo

subsection {* Definitions *}

constdefs
  adm :: "('a::cpo => bool) => bool"
  "adm P ≡ ∀Y. chain Y --> (∀i. P (Y i)) --> P (\<Squnion>i. Y i)"

lemma admI:
   "(!!Y. [|chain Y; ∀i. P (Y i)|] ==> P (\<Squnion>i. Y i)) ==> adm P"
apply (unfold adm_def)
apply blast
done

lemma triv_admI: "∀x. P x ==> adm P"
apply (rule admI)
apply (erule spec)
done

lemma admD: "[|adm P; chain Y; ∀i. P (Y i)|] ==> P (\<Squnion>i. Y i)"
apply (unfold adm_def)
apply blast
done

text {* improved admissibility introduction *}

lemma admI2:
  "(!!Y. [|chain Y; ∀i. P (Y i); ∀i. ∃j>i. Y i ≠ Y j ∧ Y i \<sqsubseteq> Y j|] 
    ==> P (\<Squnion>i. Y i)) ==> adm P"
apply (rule admI)
apply (erule (1) increasing_chain_adm_lemma)
apply fast
done

subsection {* Admissibility on chain-finite types *}

text {* for chain-finite (easy) types every formula is admissible *}

lemma adm_max_in_chain: 
  "∀Y. chain (Y::nat => 'a) --> (∃n. max_in_chain n Y)
    ==> adm (P::'a => bool)"
apply (unfold adm_def)
apply (intro strip)
apply (drule spec)
apply (drule mp)
apply assumption
apply (erule exE)
apply (simp add: maxinch_is_thelub)
done

lemmas adm_chfin = chfin [THEN adm_max_in_chain, standard]

subsection {* Admissibility of special formulae and propagation *}

lemma adm_less: "[|cont u; cont v|] ==> adm (λx. u x \<sqsubseteq> v x)"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (rule lub_mono)
apply (erule (1) ch2ch_cont)
apply (erule (1) ch2ch_cont)
apply assumption
done

lemma adm_conj: "[|adm P; adm Q|] ==> adm (λx. P x ∧ Q x)"
by (fast elim: admD intro: admI)

lemma adm_not_free: "adm (λx. t)"
by (rule admI, simp)

lemma adm_not_less: "cont t ==> adm (λx. ¬ t x \<sqsubseteq> u)"
apply (rule admI)
apply (drule_tac x=0 in spec)
apply (erule contrapos_nn)
apply (rule trans_less)
prefer 2 apply (assumption)
apply (erule cont2mono [THEN monofun_fun_arg])
apply (erule is_ub_thelub)
done

lemma adm_all: "∀y. adm (P y) ==> adm (λx. ∀y. P y x)"
by (fast intro: admI elim: admD)

lemmas adm_all2 = adm_all [rule_format]

lemma adm_ball: "∀y∈A. adm (P y) ==> adm (λx. ∀y∈A. P y x)"
by (fast intro: admI elim: admD)

lemmas adm_ball2 = adm_ball [rule_format]

lemma adm_subst: "[|cont t; adm P|] ==> adm (λx. P (t x))"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (erule admD)
apply (erule (1) ch2ch_cont)
apply assumption
done

lemma adm_UU_not_less: "adm (λx. ¬ ⊥ \<sqsubseteq> t x)"
by (simp add: adm_not_free)

lemma adm_not_UU: "cont t ==> adm (λx. ¬ t x = ⊥)"
by (simp add: eq_UU_iff adm_not_less)

lemma adm_eq: "[|cont u; cont v|] ==> adm (λx. u x = v x)"
by (simp add: po_eq_conv adm_conj adm_less)

text {* admissibility for disjunction is hard to prove. It takes 7 Lemmas *}

lemma adm_disj_lemma1:
  "∀n::nat. P n ∨ Q n ==> (∀i. ∃j≥i. P j) ∨ (∀i. ∃j≥i. Q j)"
apply (erule contrapos_pp)
apply clarsimp
apply (rule exI)
apply (rule conjI)
apply (drule spec, erule mp)
apply (rule le_maxI1)
apply (drule spec, erule mp)
apply (rule le_maxI2)
done

lemma adm_disj_lemma2:
  "[|adm P; ∃X. chain X ∧ (∀n. P (X n)) ∧ (\<Squnion>i. Y i) = (\<Squnion>i. X i)|]
    ==> P (\<Squnion>i. Y i)"
by (force elim: admD)

lemma adm_disj_lemma3: 
  "[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P (Y j)|]
    ==> chain (λm. Y (LEAST j. m ≤ j ∧ P (Y j)))"
apply (rule chainI)
apply (erule chain_mono3)
apply (rule Least_le)
apply (drule_tac x="Suc i" in spec)
apply (rule conjI)
apply (rule Suc_leD)
apply (erule LeastI_ex [THEN conjunct1])
apply (erule LeastI_ex [THEN conjunct2])
done

lemma adm_disj_lemma4: 
  "[|∀i. ∃j≥i. P (Y j)|] ==> ∀m. P (Y (LEAST j::nat. m ≤ j ∧ P (Y j)))"
apply (rule allI)
apply (drule_tac x=m in spec)
apply (erule LeastI_ex [THEN conjunct2])
done

lemma adm_disj_lemma5: 
  "[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P (Y j)|] ==> 
    (\<Squnion>m. Y m) = (\<Squnion>m. Y (LEAST j. m ≤ j ∧ P (Y j)))"
 apply (rule antisym_less)
  apply (rule lub_mono)
    apply assumption
   apply (erule (1) adm_disj_lemma3)
  apply (rule allI)
  apply (erule chain_mono3)
  apply (drule_tac x=k in spec)
  apply (erule LeastI_ex [THEN conjunct1])
 apply (rule lub_mono3)
   apply (erule (1) adm_disj_lemma3)
  apply assumption
 apply (rule allI)
 apply (rule exI)
 apply (rule refl_less)
done

lemma adm_disj_lemma6:
  "[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P(Y j)|] ==>
    ∃X. chain X ∧ (∀n. P (X n)) ∧ (\<Squnion>i. Y i) = (\<Squnion>i. X i)"
apply (rule_tac x = "λm. Y (LEAST j. m ≤ j ∧ P (Y j))" in exI)
apply (fast intro!: adm_disj_lemma3 adm_disj_lemma4 adm_disj_lemma5)
done

lemma adm_disj_lemma7:
  "[|adm P; chain Y; ∀i. ∃j≥i. P (Y j)|] ==> P (\<Squnion>i. Y i)"
apply (erule adm_disj_lemma2)
apply (erule (1) adm_disj_lemma6)
done

lemma adm_disj: "[|adm P; adm Q|] ==> adm (λx. P x ∨ Q x)"
apply (rule admI)
apply (erule adm_disj_lemma1 [THEN disjE])
apply (rule disjI1)
apply (erule (2) adm_disj_lemma7)
apply (rule disjI2)
apply (erule (2) adm_disj_lemma7)
done

lemma adm_imp: "[|adm (λx. ¬ P x); adm Q|] ==> adm (λx. P x --> Q x)"
by (subst imp_conv_disj, rule adm_disj)

lemma adm_iff:
  "[|adm (λx. P x --> Q x); adm (λx. Q x --> P x)|]  
    ==> adm (λx. P x = Q x)"
by (subst iff_conv_conj_imp, rule adm_conj)

lemma adm_not_conj:
  "[|adm (λx. ¬ P x); adm (λx. ¬ Q x)|] ==> adm (λx. ¬ (P x ∧ Q x))"
by (subst de_Morgan_conj, rule adm_disj)

lemmas adm_lemmas =
  adm_less adm_conj adm_not_free adm_imp adm_disj adm_eq adm_not_UU
  adm_UU_not_less adm_all2 adm_not_less adm_not_conj adm_iff

declare adm_lemmas [simp]

(* legacy ML bindings *)
ML
{*
val adm_def = thm "adm_def";
val admI = thm "admI";
val triv_admI = thm "triv_admI";
val admD = thm "admD";
val adm_max_in_chain = thm "adm_max_in_chain";
val adm_chfin = thm "adm_chfin";
val admI2 = thm "admI2";
val adm_less = thm "adm_less";
val adm_conj = thm "adm_conj";
val adm_not_free = thm "adm_not_free";
val adm_not_less = thm "adm_not_less";
val adm_all = thm "adm_all";
val adm_all2 = thm "adm_all2";
val adm_ball = thm "adm_ball";
val adm_ball2 = thm "adm_ball2";
val adm_subst = thm "adm_subst";
val adm_UU_not_less = thm "adm_UU_not_less";
val adm_not_UU = thm "adm_not_UU";
val adm_eq = thm "adm_eq";
val adm_disj_lemma1 = thm "adm_disj_lemma1";
val adm_disj_lemma2 = thm "adm_disj_lemma2";
val adm_disj_lemma3 = thm "adm_disj_lemma3";
val adm_disj_lemma4 = thm "adm_disj_lemma4";
val adm_disj_lemma5 = thm "adm_disj_lemma5";
val adm_disj_lemma6 = thm "adm_disj_lemma6";
val adm_disj_lemma7 = thm "adm_disj_lemma7";
val adm_disj = thm "adm_disj";
val adm_imp = thm "adm_imp";
val adm_iff = thm "adm_iff";
val adm_not_conj = thm "adm_not_conj";
val adm_lemmas = thms "adm_lemmas";
*}

end

Definitions

lemma admI:

  (!!Y. [| chain Y; ∀i. P (Y i) |] ==> P (lub (range Y))) ==> adm P

lemma triv_admI:

x. P x ==> adm P

lemma admD:

  [| adm P; chain Y; ∀i. P (Y i) |] ==> P (lub (range Y))

lemma admI2:

  (!!Y. [| chain Y; ∀i. P (Y i); ∀i. ∃j. i < jY iY jY i << Y j |]
        ==> P (lub (range Y)))
  ==> adm P

Admissibility on chain-finite types

lemma adm_max_in_chain:

Y. chain Y --> (∃n. max_in_chain n Y) ==> adm P

lemmas adm_chfin:

  adm P

lemmas adm_chfin:

  adm P

Admissibility of special formulae and propagation

lemma adm_less:

  [| cont u; cont v |] ==> adm (%x. u x << v x)

lemma adm_conj:

  [| adm P; adm Q |] ==> adm (%x. P xQ x)

lemma adm_not_free:

  adm (%x. t)

lemma adm_not_less:

  cont t ==> adm (%x. ¬ t x << u)

lemma adm_all:

y. adm (P y) ==> adm (%x. ∀y. P y x)

lemmas adm_all2:

  (!!y. adm (P y)) ==> adm (%x. ∀y. P y x)

lemmas adm_all2:

  (!!y. adm (P y)) ==> adm (%x. ∀y. P y x)

lemma adm_ball:

yA. adm (P y) ==> adm (%x. ∀yA. P y x)

lemmas adm_ball2:

  (!!y. yA ==> adm (P y)) ==> adm (%x. ∀yA. P y x)

lemmas adm_ball2:

  (!!y. yA ==> adm (P y)) ==> adm (%x. ∀yA. P y x)

lemma adm_subst:

  [| cont t; adm P |] ==> adm (%x. P (t x))

lemma adm_UU_not_less:

  adm (%x. ¬ UU << t x)

lemma adm_not_UU:

  cont t ==> adm (%x. t x ≠ UU)

lemma adm_eq:

  [| cont u; cont v |] ==> adm (%x. u x = v x)

lemma adm_disj_lemma1:

n. P nQ n ==> (∀i. ∃j. ijP j) ∨ (∀i. ∃j. ijQ j)

lemma adm_disj_lemma2:

  [| adm P; ∃X. chain X ∧ (∀n. P (X n)) ∧ lub (range Y) = lub (range X) |]
  ==> P (lub (range Y))

lemma adm_disj_lemma3:

  [| chain Y; ∀i. ∃j. ijP (Y j) |]
  ==> chain (%m. Y (LEAST j. mjP (Y j)))

lemma adm_disj_lemma4:

i. ∃j. ijP (Y j) ==> ∀m. P (Y (LEAST j. mjP (Y j)))

lemma adm_disj_lemma5:

  [| chain Y; ∀i. ∃j. ijP (Y j) |]
  ==> lub (range Y) = (LUB m. Y (LEAST j. mjP (Y j)))

lemma adm_disj_lemma6:

  [| chain Y; ∀i. ∃j. ijP (Y j) |]
  ==> ∃X. chain X ∧ (∀n. P (X n)) ∧ lub (range Y) = lub (range X)

lemma adm_disj_lemma7:

  [| adm P; chain Y; ∀i. ∃j. ijP (Y j) |] ==> P (lub (range Y))

lemma adm_disj:

  [| adm P; adm Q |] ==> adm (%x. P xQ x)

lemma adm_imp:

  [| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)

lemma adm_iff:

  [| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)

lemma adm_not_conj:

  [| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P xQ x))

lemmas adm_lemmas:

  [| cont u; cont v |] ==> adm (%x. u x << v x)
  [| adm P; adm Q |] ==> adm (%x. P xQ x)
  adm (%x. t)
  [| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)
  [| adm P; adm Q |] ==> adm (%x. P xQ x)
  [| cont u; cont v |] ==> adm (%x. u x = v x)
  cont t ==> adm (%x. t x ≠ UU)
  adm (%x. ¬ UU << t x)
  (!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
  cont t ==> adm (%x. ¬ t x << u)
  [| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P xQ x))
  [| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)

lemmas adm_lemmas:

  [| cont u; cont v |] ==> adm (%x. u x << v x)
  [| adm P; adm Q |] ==> adm (%x. P xQ x)
  adm (%x. t)
  [| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)
  [| adm P; adm Q |] ==> adm (%x. P xQ x)
  [| cont u; cont v |] ==> adm (%x. u x = v x)
  cont t ==> adm (%x. t x ≠ UU)
  adm (%x. ¬ UU << t x)
  (!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
  cont t ==> adm (%x. ¬ t x << u)
  [| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P xQ x))
  [| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)