Theory ListOrder

Up to index of Isabelle/HOL/Lambda

theory ListOrder
imports Accessible_Part
begin

(*  Title:      HOL/Lambda/ListOrder.thy
    ID:         $Id: ListOrder.thy,v 1.10 2005/06/17 14:13:08 haftmann Exp $
    Author:     Tobias Nipkow
    Copyright   1998 TU Muenchen
*)

header {* Lifting an order to lists of elements *}

theory ListOrder imports Accessible_Part begin

text {*
  Lifting an order to lists of elements, relating exactly one
  element.
*}

constdefs
  step1 :: "('a × 'a) set => ('a list × 'a list) set"
  "step1 r ==
    {(ys, xs). ∃us z z' vs. xs = us @ z # vs ∧ (z', z) ∈ r ∧ ys =
      us @ z' # vs}"


lemma step1_converse [simp]: "step1 (r^-1) = (step1 r)^-1"
  apply (unfold step1_def)
  apply blast
  done

lemma in_step1_converse [iff]: "(p ∈ step1 (r^-1)) = (p ∈ (step1 r)^-1)"
  apply auto
  done

lemma not_Nil_step1 [iff]: "([], xs) ∉ step1 r"
  apply (unfold step1_def)
  apply blast
  done

lemma not_step1_Nil [iff]: "(xs, []) ∉ step1 r"
  apply (unfold step1_def)
  apply blast
  done

lemma Cons_step1_Cons [iff]:
    "((y # ys, x # xs) ∈ step1 r) =
      ((y, x) ∈ r ∧ xs = ys ∨ x = y ∧ (ys, xs) ∈ step1 r)"
  apply (unfold step1_def)
  apply simp
  apply (rule iffI)
   apply (erule exE)
   apply (rename_tac ts)
   apply (case_tac ts)
    apply fastsimp
   apply force
  apply (erule disjE)
   apply blast
  apply (blast intro: Cons_eq_appendI)
  done

lemma append_step1I:
  "(ys, xs) ∈ step1 r ∧ vs = us ∨ ys = xs ∧ (vs, us) ∈ step1 r
    ==> (ys @ vs, xs @ us) : step1 r"
  apply (unfold step1_def)
  apply auto
   apply blast
  apply (blast intro: append_eq_appendI)
  done

lemma Cons_step1E [rule_format, elim!]:
  "[| (ys, x # xs) ∈ step1 r;
    ∀y. ys = y # xs --> (y, x) ∈ r --> R;
    ∀zs. ys = x # zs --> (zs, xs) ∈ step1 r --> R
   |] ==> R"
  apply (case_tac ys)
   apply (simp add: step1_def)
  apply blast
  done

lemma Snoc_step1_SnocD:
  "(ys @ [y], xs @ [x]) ∈ step1 r
    ==> ((ys, xs) ∈ step1 r ∧ y = x ∨ ys = xs ∧ (y, x) ∈ r)"
  apply (unfold step1_def)
  apply simp
  apply (clarify del: disjCI)
  apply (rename_tac vs)
  apply (rule_tac xs = vs in rev_exhaust)
   apply force
  apply simp
  apply blast
  done

lemma Cons_acc_step1I [rule_format, intro!]:
    "x ∈ acc r ==> ∀xs. xs ∈ acc (step1 r) --> x # xs ∈ acc (step1 r)"
  apply (erule acc_induct)
  apply (erule thin_rl)
  apply clarify
  apply (erule acc_induct)
  apply (rule accI)
  apply blast
  done

lemma lists_accD: "xs ∈ lists (acc r) ==> xs ∈ acc (step1 r)"
  apply (erule lists.induct)
   apply (rule accI)
   apply simp
  apply (rule accI)
  apply (fast dest: acc_downward)
  done

lemma ex_step1I:
  "[| x ∈ set xs; (y, x) ∈ r |]
    ==> ∃ys. (ys, xs) ∈ step1 r ∧ y ∈ set ys"
  apply (unfold step1_def)
  apply (drule in_set_conv_decomp [THEN iffD1])
  apply force
  done

lemma lists_accI: "xs ∈ acc (step1 r) ==> xs ∈ lists (acc r)"
  apply (erule acc_induct)
  apply clarify
  apply (rule accI)
  apply (drule ex_step1I, assumption)
  apply blast
  done

end

lemma step1_converse:

  step1 (r^-1) = (step1 r)^-1

lemma in_step1_converse:

  (p ∈ step1 (r^-1)) = (p ∈ (step1 r)^-1)

lemma not_Nil_step1:

  ([], xs) ∉ step1 r

lemma not_step1_Nil:

  (xs, []) ∉ step1 r

lemma Cons_step1_Cons:

  ((y # ys, x # xs) ∈ step1 r) =
  ((y, x) ∈ rxs = ysx = y ∧ (ys, xs) ∈ step1 r)

lemma append_step1I:

  (ys, xs) ∈ step1 rvs = usys = xs ∧ (vs, us) ∈ step1 r
  ==> (ys @ vs, xs @ us) ∈ step1 r

lemma Cons_step1E:

  [| (ys, x # xs) ∈ step1 r; !!y. [| ys = y # xs; (y, x) ∈ r |] ==> R;
     !!zs. [| ys = x # zs; (zs, xs) ∈ step1 r |] ==> R |]
  ==> R

lemma Snoc_step1_SnocD:

  (ys @ [y], xs @ [x]) ∈ step1 r
  ==> (ys, xs) ∈ step1 ry = xys = xs ∧ (y, x) ∈ r

lemma Cons_acc_step1I:

  [| x ∈ acc r; xs ∈ acc (step1 r) |] ==> x # xs ∈ acc (step1 r)

lemma lists_accD:

  xs ∈ lists (acc r) ==> xs ∈ acc (step1 r)

lemma ex_step1I:

  [| x ∈ set xs; (y, x) ∈ r |] ==> ∃ys. (ys, xs) ∈ step1 ry ∈ set ys

lemma lists_accI:

  xs ∈ acc (step1 r) ==> xs ∈ lists (acc r)