Theory Nat

Up to index of Isabelle/Sequents/LK

theory Nat
imports LK
uses [Nat.ML]
begin

(*  Title:      Sequents/LK/Nat.thy
    ID:         $Id: Nat.thy,v 1.4 2005/09/18 13:20:11 wenzelm Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1999  University of Cambridge
*)

header {* Theory of the natural numbers: Peano's axioms, primitive recursion *}

theory Nat
imports LK
begin

typedecl nat
arities nat :: "term"
consts  "0" :: nat      ("0")
        Suc :: "nat=>nat"
        rec :: "[nat, 'a, [nat,'a]=>'a] => 'a"
        "+" :: "[nat, nat] => nat"                (infixl 60)

axioms
  induct:  "[| $H |- $E, P(0), $F;
              !!x. $H, P(x) |- $E, P(Suc(x)), $F |] ==> $H |- $E, P(n), $F"

  Suc_inject:  "|- Suc(m)=Suc(n) --> m=n"
  Suc_neq_0:   "|- Suc(m) ~= 0"
  rec_0:       "|- rec(0,a,f) = a"
  rec_Suc:     "|- rec(Suc(m), a, f) = f(m, rec(m,a,f))"
  add_def:     "m+n == rec(m, n, %x y. Suc(y))"

ML {* use_legacy_bindings (the_context ()) *}

end

theorem Suc_n_not_n:

   |- Suc(k) ≠ k

theorem add_0:

   |- 0 + n = n

theorem add_Suc:

   |- Suc(m) + n = Suc(m + n)

theorem add_assoc:

   |- k + m + n = k + (m + n)

theorem add_0_right:

   |- m + 0 = m

theorem add_Suc_right:

   |- m + Suc(n) = Suc(m + n)