Theory Asig

Up to index of Isabelle/HOL/IOA

theory Asig
imports Main
uses [Asig.ML]
begin

(*  Title:      HOL/IOA/Asig.thy
    ID:         $Id: Asig.thy,v 1.5 2005/09/06 17:03:39 wenzelm Exp $
    Author:     Tobias Nipkow & Konrad Slind
    Copyright   1994  TU Muenchen
*)

header {* Action signatures *}

theory Asig
imports Main
begin

types
  'a signature = "('a set * 'a set * 'a set)"

consts
  "actions" :: "'action signature => 'action set"
  "inputs" :: "'action signature => 'action set"
  "outputs" :: "'action signature => 'action set"
  "internals" :: "'action signature => 'action set"
  externals :: "'action signature => 'action set"

  is_asig       ::"'action signature => bool"
  mk_ext_asig   ::"'action signature => 'action signature"


defs

asig_inputs_def:    "inputs == fst"
asig_outputs_def:   "outputs == (fst o snd)"
asig_internals_def: "internals == (snd o snd)"

actions_def:
   "actions(asig) == (inputs(asig) Un outputs(asig) Un internals(asig))"

externals_def:
   "externals(asig) == (inputs(asig) Un outputs(asig))"

is_asig_def:
  "is_asig(triple) ==
      ((inputs(triple) Int outputs(triple) = {})    &
       (outputs(triple) Int internals(triple) = {}) &
       (inputs(triple) Int internals(triple) = {}))"


mk_ext_asig_def:
  "mk_ext_asig(triple) == (inputs(triple), outputs(triple), {})"

ML {* use_legacy_bindings (the_context ()) *}

end

theorems asig_projections:

  inputs == fst
  outputs == fst o snd
  internals == snd o snd

theorem int_and_ext_is_act:

  [| a ∉ internals S; a ∉ externals S |] ==> a ∉ actions S

theorem ext_is_act:

  a ∈ externals S ==> a ∈ actions S