(* Title: CTT/rew ID: $Id: rew.ML,v 1.3 2005/09/20 06:22:27 haftmann Exp $ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1991 University of Cambridge Simplifier for CTT, using Typedsimp *) (*Make list of ProdE RS ProdE ... RS ProdE RS EqE for using assumptions as rewrite rules*) fun peEs 0 = [] | peEs n = EqE :: map (curry (op RS) ProdE) (peEs (n-1)); (*Tactic used for proving conditions for the cond_rls*) val prove_cond_tac = eresolve_tac (peEs 5); structure TSimp_data: TSIMP_DATA = struct val refl = refl_elem val sym = sym_elem val trans = trans_elem val refl_red = refl_red val trans_red = trans_red val red_if_equal = red_if_equal val default_rls = comp_rls val routine_tac = routine_tac routine_rls end; structure TSimp = TSimpFun (TSimp_data); val standard_congr_rls = intrL2_rls @ elimL_rls; (*Make a rewriting tactic from a normalization tactic*) fun make_rew_tac ntac = TRY eqintr_tac THEN TRYALL (resolve_tac [TSimp.split_eqn]) THEN ntac; fun rew_tac thms = make_rew_tac (TSimp.norm_tac(standard_congr_rls, thms)); fun hyp_rew_tac thms = make_rew_tac (TSimp.cond_norm_tac(prove_cond_tac, standard_congr_rls, thms));