Theory Subst

Up to index of Isabelle/HOL/Subst

theory Subst
imports AList UTerm
begin

(*  Title:      Subst/Subst.thy
    ID:         $Id: Subst.thy,v 1.11 2005/04/01 19:04:00 paulson Exp $
    Author:     Martin Coen, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
*)

header{*Substitutions on uterms*}

theory Subst
imports AList UTerm
begin

consts

  "=$="  ::  "[('a*('a uterm)) list,('a*('a uterm)) list] => bool" (infixr 52)
  "<|"   ::  "'a uterm => ('a * 'a uterm) list => 'a uterm"        (infixl 55)
  "<>"   ::  "[('a*('a uterm)) list, ('a*('a uterm)) list] 
                 => ('a*('a uterm)) list"                          (infixl 56)
  sdom   ::  "('a*('a uterm)) list => 'a set"
  srange ::  "('a*('a uterm)) list => 'a set"


syntax (xsymbols)
  "op =$=" :: "[('a*('a uterm)) list,('a*('a uterm)) list] => bool" 
              (infixr "\<doteq>" 52)
  "op <|" :: "'a uterm => ('a * 'a uterm) list => 'a uterm" (infixl "\<lhd>" 55)
  "op <>" :: "[('a*('a uterm)) list, ('a*('a uterm)) list] 
                 => ('a*('a uterm)) list"                   (infixl "◊" 56)


primrec
  subst_Var:      "(Var v \<lhd> s) = assoc v (Var v) s"
  subst_Const:  "(Const c \<lhd> s) = Const c"
  subst_Comb:  "(Comb M N \<lhd> s) = Comb (M \<lhd> s) (N \<lhd> s)"


defs 

  subst_eq_def:  "r =$= s == ALL t. t \<lhd> r = t \<lhd> s"

  comp_def:    "al ◊ bl == alist_rec al bl (%x y xs g. (x,y \<lhd> bl)#g)"

  sdom_def:
  "sdom(al) == alist_rec al {}  
                (%x y xs g. if Var(x)=y then g - {x} else g Un {x})"

  srange_def:
   "srange(al) == Union({y. ∃x ∈ sdom(al). y = vars_of(Var(x) \<lhd> al)})"



subsection{*Basic Laws*}

lemma subst_Nil [simp]: "t \<lhd> [] = t"
by (induct_tac "t", auto)

lemma subst_mono [rule_format]: "t \<prec> u --> t \<lhd> s \<prec> u \<lhd> s"
by (induct_tac "u", auto)

lemma Var_not_occs [rule_format]:
     "~ (Var(v) \<prec> t) --> t \<lhd> (v,t \<lhd> s) # s = t \<lhd> s"
apply (case_tac "t = Var v")
apply (erule_tac [2] rev_mp)
apply (rule_tac [2] P = 
         "%x. x ≠ Var v --> ~(Var v \<prec> x) --> x \<lhd> (v,t\<lhd>s) #s = x\<lhd>s" 
       in uterm.induct)
apply auto 
done

lemma agreement: "(t\<lhd>r = t\<lhd>s) = (∀v ∈ vars_of t. Var v \<lhd> r = Var v \<lhd> s)"
by (induct_tac "t", auto)

lemma repl_invariance: "~ v: vars_of(t) ==> t \<lhd> (v,u)#s = t \<lhd> s"
by (simp add: agreement)

lemma Var_in_subst [rule_format]:
     "v ∈ vars_of(t) --> w ∈ vars_of(t \<lhd> (v,Var(w))#s)"
by (induct_tac "t", auto)


subsection{*Equality between Substitutions*}

lemma subst_eq_iff: "r \<doteq> s = (∀t. t \<lhd> r = t \<lhd> s)"
by (simp add: subst_eq_def)

lemma subst_refl [iff]: "r \<doteq> r"
by (simp add: subst_eq_iff)

lemma subst_sym: "r \<doteq> s ==> s \<doteq> r"
by (simp add: subst_eq_iff)

lemma subst_trans: "[| q \<doteq> r; r \<doteq> s |] ==> q \<doteq> s"
by (simp add: subst_eq_iff)

lemma subst_subst2:
    "[| r \<doteq> s; P (t \<lhd> r) (u \<lhd> r) |] ==> P (t \<lhd> s) (u \<lhd> s)"
by (simp add: subst_eq_def)

lemmas ssubst_subst2 = subst_sym [THEN subst_subst2]


subsection{*Composition of Substitutions*}

lemma [simp]: 
     "[] ◊ bl = bl"
     "((a,b)#al) ◊ bl = (a,b \<lhd> bl) # (al ◊ bl)"
     "sdom([]) = {}"
     "sdom((a,b)#al) = (if Var(a)=b then (sdom al) - {a} else sdom al Un {a})"
by (simp_all add: comp_def sdom_def) 

lemma comp_Nil [simp]: "s ◊ [] = s"
by (induct "s", auto)

lemma subst_comp_Nil: "s \<doteq> s ◊ []"
by simp

lemma subst_comp [simp]: "(t \<lhd> r ◊ s) = (t \<lhd> r \<lhd> s)"
apply (induct_tac "t")
apply (simp_all (no_asm_simp))
apply (induct "r", auto)
done

lemma comp_assoc: "(q ◊ r) ◊ s \<doteq> q ◊ (r ◊ s)"
by (simp add: subst_eq_iff)

lemma subst_cong:
     "[| theta \<doteq> theta1; sigma \<doteq> sigma1|] 
      ==> (theta ◊ sigma) \<doteq> (theta1 ◊ sigma1)"
by (simp add: subst_eq_def)


lemma Cons_trivial: "(w, Var(w) \<lhd> s) # s \<doteq> s"
apply (simp add: subst_eq_iff)
apply (rule allI)
apply (induct_tac "t", simp_all)
done


lemma comp_subst_subst: "q ◊ r \<doteq> s ==>  t \<lhd> q \<lhd> r = t \<lhd> s"
by (simp add: subst_eq_iff)


subsection{*Domain and range of Substitutions*}

lemma sdom_iff: "(v ∈ sdom(s)) = (Var(v) \<lhd> s ~= Var(v))"
apply (induct "s")
apply (case_tac [2] a, auto)  
done


lemma srange_iff: 
   "v ∈ srange(s) = (∃w. w ∈ sdom(s) & v ∈ vars_of(Var(w) \<lhd> s))"
by (auto simp add: srange_def)

lemma empty_iff_all_not: "(A = {}) = (ALL a.~ a:A)"
by (unfold empty_def, blast)

lemma invariance: "(t \<lhd> s = t) = (sdom(s) Int vars_of(t) = {})"
apply (induct_tac "t")
apply (auto simp add: empty_iff_all_not sdom_iff)
done

lemma Var_in_srange [rule_format]:
     "v ∈ sdom(s) -->  v ∈ vars_of(t \<lhd> s) --> v ∈ srange(s)"
apply (induct_tac "t")
apply (case_tac "a ∈ sdom s")
apply (auto simp add: sdom_iff srange_iff)
done

lemma Var_elim: "[| v ∈ sdom(s); v ∉ srange(s) |] ==>  v ∉ vars_of(t \<lhd> s)"
by (blast intro: Var_in_srange)

lemma Var_intro [rule_format]:
     "v ∈ vars_of(t \<lhd> s) --> v ∈ srange(s) | v ∈ vars_of(t)"
apply (induct_tac "t")
apply (auto simp add: sdom_iff srange_iff)
apply (rule_tac x=a in exI, auto) 
done

lemma srangeD: "v ∈ srange(s) ==> ∃w. w ∈ sdom(s) & v ∈ vars_of(Var(w) \<lhd> s)"
by (simp add: srange_iff)

lemma dom_range_disjoint:
     "sdom(s) Int srange(s) = {} = (∀t. sdom(s) Int vars_of(t \<lhd> s) = {})"
apply (simp add: empty_iff_all_not)
apply (force intro: Var_in_srange dest: srangeD)
done

lemma subst_not_empty: "~ u \<lhd> s = u ==> (∃x. x ∈ sdom(s))"
by (auto simp add: empty_iff_all_not invariance)


lemma id_subst_lemma [simp]: "(M \<lhd> [(x, Var x)]) = M"
by (induct_tac "M", auto)


end

Basic Laws

lemma subst_Nil:

  t <| [] = t

lemma subst_mono:

  t <: u ==> t <| s <: u <| s

lemma Var_not_occs:

  ¬ Var v <: t ==> t <| (v, t <| s) # s = t <| s

lemma agreement:

  (t <| r = t <| s) = (∀v∈vars_of t. Var v <| r = Var v <| s)

lemma repl_invariance:

  v ∉ vars_of t ==> t <| (v, u) # s = t <| s

lemma Var_in_subst:

  v ∈ vars_of t ==> w ∈ vars_of (t <| (v, Var w) # s)

Equality between Substitutions

lemma subst_eq_iff:

  r =$= s = (∀t. t <| r = t <| s)

lemma subst_refl:

  r =$= r

lemma subst_sym:

  r =$= s ==> s =$= r

lemma subst_trans:

  [| q =$= r; r =$= s |] ==> q =$= s

lemma subst_subst2:

  [| r =$= s; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)

lemmas ssubst_subst2:

  [| s =$= r; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)

lemmas ssubst_subst2:

  [| s =$= r; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)

Composition of Substitutions

lemma

  [] <> bl = bl
  (a, b) # al <> bl = (a, b <| bl) # (al <> bl)
  sdom [] = {}
  sdom ((a, b) # al) = (if Var a = b then sdom al - {a} else sdom al ∪ {a})

lemma comp_Nil:

  s <> [] = s

lemma subst_comp_Nil:

  s =$= s <> []

lemma subst_comp:

  t <| r <> s = t <| r <| s

lemma comp_assoc:

  q <> r <> s =$= q <> (r <> s)

lemma subst_cong:

  [| theta =$= theta1.0; sigma =$= sigma1.0 |]
  ==> theta <> sigma =$= theta1.0 <> sigma1.0

lemma Cons_trivial:

  (w, Var w <| s) # s =$= s

lemma comp_subst_subst:

  q <> r =$= s ==> t <| q <| r = t <| s

Domain and range of Substitutions

lemma sdom_iff:

  (v ∈ sdom s) = (Var v <| s ≠ Var v)

lemma srange_iff:

  (v ∈ srange s) = (∃w. w ∈ sdom sv ∈ vars_of (Var w <| s))

lemma empty_iff_all_not:

  (A = {}) = (∀a. aA)

lemma invariance:

  (t <| s = t) = (sdom s ∩ vars_of t = {})

lemma Var_in_srange:

  [| v ∈ sdom s; v ∈ vars_of (t <| s) |] ==> v ∈ srange s

lemma Var_elim:

  [| v ∈ sdom s; v ∉ srange s |] ==> v ∉ vars_of (t <| s)

lemma Var_intro:

  v ∈ vars_of (t <| s) ==> v ∈ srange sv ∈ vars_of t

lemma srangeD:

  v ∈ srange s ==> ∃w. w ∈ sdom sv ∈ vars_of (Var w <| s)

lemma dom_range_disjoint:

  (sdom s ∩ srange s = {}) = (∀t. sdom s ∩ vars_of (t <| s) = {})

lemma subst_not_empty:

  u <| su ==> ∃x. x ∈ sdom s

lemma id_subst_lemma:

  M <| [(x, Var x)] = M