Theory Lift

Up to index of Isabelle/HOL/UNITY

theory Lift
imports UNITY_Main
begin

(*  Title:      HOL/UNITY/Lift.thy
    ID:         $Id: Lift.thy,v 1.8 2005/06/02 11:47:08 paulson Exp $
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1998  University of Cambridge

The Lift-Control Example
*)

theory Lift
imports "../UNITY_Main"

begin

record state =
  floor :: "int"            --{*current position of the lift*}
  "open" :: "bool"          --{*whether the door is opened at floor*}
  stop  :: "bool"           --{*whether the lift is stopped at floor*}
  req   :: "int set"        --{*for each floor, whether the lift is requested*}
  up    :: "bool"           --{*current direction of movement*}
  move  :: "bool"           --{*whether moving takes precedence over opening*}

consts
  Min :: "int"       --{*least and greatest floors*}
  Max :: "int"       --{*least and greatest floors*}

axioms
  Min_le_Max [iff]: "Min ≤ Max"
  
constdefs
  
  --{*Abbreviations: the "always" part*}
  
  above :: "state set"
    "above == {s. ∃i. floor s < i & i ≤ Max & i ∈ req s}"

  below :: "state set"
    "below == {s. ∃i. Min ≤ i & i < floor s & i ∈ req s}"

  queueing :: "state set"
    "queueing == above ∪ below"

  goingup :: "state set"
    "goingup   == above ∩ ({s. up s}  ∪ -below)"

  goingdown :: "state set"
    "goingdown == below ∩ ({s. ~ up s} ∪ -above)"

  ready :: "state set"
    "ready == {s. stop s & ~ open s & move s}"
 
  --{*Further abbreviations*}

  moving :: "state set"
    "moving ==  {s. ~ stop s & ~ open s}"

  stopped :: "state set"
    "stopped == {s. stop s  & ~ open s & ~ move s}"

  opened :: "state set"
    "opened ==  {s. stop s  &  open s  &  move s}"

  closed :: "state set"  --{*but this is the same as ready!!*}
    "closed ==  {s. stop s  & ~ open s &  move s}"

  atFloor :: "int => state set"
    "atFloor n ==  {s. floor s = n}"

  Req :: "int => state set"
    "Req n ==  {s. n ∈ req s}"


  
  --{*The program*}
  
  request_act :: "(state*state) set"
    "request_act == {(s,s'). s' = s (|stop:=True, move:=False|)
                                  & ~ stop s & floor s ∈ req s}"

  open_act :: "(state*state) set"
    "open_act ==
         {(s,s'). s' = s (|open :=True,
                           req  := req s - {floor s},
                           move := True|)
                       & stop s & ~ open s & floor s ∈ req s
                       & ~(move s & s ∈ queueing)}"

  close_act :: "(state*state) set"
    "close_act == {(s,s'). s' = s (|open := False|) & open s}"

  req_up :: "(state*state) set"
    "req_up ==
         {(s,s'). s' = s (|stop  :=False,
                           floor := floor s + 1,
                           up    := True|)
                       & s ∈ (ready ∩ goingup)}"

  req_down :: "(state*state) set"
    "req_down ==
         {(s,s'). s' = s (|stop  :=False,
                           floor := floor s - 1,
                           up    := False|)
                       & s ∈ (ready ∩ goingdown)}"

  move_up :: "(state*state) set"
    "move_up ==
         {(s,s'). s' = s (|floor := floor s + 1|)
                       & ~ stop s & up s & floor s ∉ req s}"

  move_down :: "(state*state) set"
    "move_down ==
         {(s,s'). s' = s (|floor := floor s - 1|)
                       & ~ stop s & ~ up s & floor s ∉ req s}"

  button_press  :: "(state*state) set"
      --{*This action is omitted from prior treatments, which therefore are
        unrealistic: nobody asks the lift to do anything!  But adding this
        action invalidates many of the existing progress arguments: various
        "ensures" properties fail. Maybe it should be constrained to only
        allow button presses in the current direction of travel, like in a
        real lift.*}
    "button_press ==
         {(s,s'). ∃n. s' = s (|req := insert n (req s)|)
                        & Min ≤ n & n ≤ Max}"


  Lift :: "state program"
    --{*for the moment, we OMIT @{text button_press}*}
    "Lift == mk_total_program
                ({s. floor s = Min & ~ up s & move s & stop s &
                          ~ open s & req s = {}},
                 {request_act, open_act, close_act,
                  req_up, req_down, move_up, move_down},
                 UNIV)"


  --{*Invariants*}

  bounded :: "state set"
    "bounded == {s. Min ≤ floor s & floor s ≤ Max}"

  open_stop :: "state set"
    "open_stop == {s. open s --> stop s}"
  
  open_move :: "state set"
    "open_move == {s. open s --> move s}"
  
  stop_floor :: "state set"
    "stop_floor == {s. stop s & ~ move s --> floor s ∈ req s}"
  
  moving_up :: "state set"
    "moving_up == {s. ~ stop s & up s -->
                   (∃f. floor s ≤ f & f ≤ Max & f ∈ req s)}"
  
  moving_down :: "state set"
    "moving_down == {s. ~ stop s & ~ up s -->
                     (∃f. Min ≤ f & f ≤ floor s & f ∈ req s)}"
  
  metric :: "[int,state] => int"
    "metric ==
       %n s. if floor s < n then (if up s then n - floor s
                                  else (floor s - Min) + (n-Min))
             else
             if n < floor s then (if up s then (Max - floor s) + (Max-n)
                                  else floor s - n)
             else 0"

locale Floor =
  fixes n
  assumes Min_le_n [iff]: "Min ≤ n"
      and n_le_Max [iff]: "n ≤ Max"

lemma not_mem_distinct: "[| x ∉ A;  y ∈ A |] ==> x ≠ y"
by blast


declare Lift_def [THEN def_prg_Init, simp]

declare request_act_def [THEN def_act_simp, simp]
declare open_act_def [THEN def_act_simp, simp]
declare close_act_def [THEN def_act_simp, simp]
declare req_up_def [THEN def_act_simp, simp]
declare req_down_def [THEN def_act_simp, simp]
declare move_up_def [THEN def_act_simp, simp]
declare move_down_def [THEN def_act_simp, simp]
declare button_press_def [THEN def_act_simp, simp]

(*The ALWAYS properties*)
declare above_def [THEN def_set_simp, simp]
declare below_def [THEN def_set_simp, simp]
declare queueing_def [THEN def_set_simp, simp]
declare goingup_def [THEN def_set_simp, simp]
declare goingdown_def [THEN def_set_simp, simp]
declare ready_def [THEN def_set_simp, simp]

(*Basic definitions*)
declare bounded_def [simp] 
        open_stop_def [simp] 
        open_move_def [simp] 
        stop_floor_def [simp]
        moving_up_def [simp]
        moving_down_def [simp]

lemma open_stop: "Lift ∈ Always open_stop"
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety)
done

lemma stop_floor: "Lift ∈ Always stop_floor"
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety)
done

(*This one needs open_stop, which was proved above*)
lemma open_move: "Lift ∈ Always open_move"
apply (cut_tac open_stop)
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety)
done

lemma moving_up: "Lift ∈ Always moving_up"
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety)
apply (auto dest: order_le_imp_less_or_eq simp add: add1_zle_eq)
done

lemma moving_down: "Lift ∈ Always moving_down"
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety)
apply (blast dest: order_le_imp_less_or_eq)
done

lemma bounded: "Lift ∈ Always bounded"
apply (cut_tac moving_up moving_down)
apply (rule AlwaysI, force) 
apply (unfold Lift_def, safety, auto)
apply (drule not_mem_distinct, assumption, arith)+
done


subsection{*Progress*}

declare moving_def [THEN def_set_simp, simp]
declare stopped_def [THEN def_set_simp, simp]
declare opened_def [THEN def_set_simp, simp]
declare closed_def [THEN def_set_simp, simp]
declare atFloor_def [THEN def_set_simp, simp]
declare Req_def [THEN def_set_simp, simp]


text{*The HUG'93 paper mistakenly omits the Req n from these!*}

(** Lift_1 **)
lemma E_thm01: "Lift ∈ (stopped ∩ atFloor n) LeadsTo (opened ∩ atFloor n)"
apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done  (*lem_lift_1_5*)




lemma E_thm02: "Lift ∈ (Req n ∩ stopped - atFloor n) LeadsTo  
                       (Req n ∩ opened - atFloor n)"
apply (cut_tac stop_floor)
apply (unfold Lift_def, ensures_tac "open_act")
done  (*lem_lift_1_1*)

lemma E_thm03: "Lift ∈ (Req n ∩ opened - atFloor n) LeadsTo  
                       (Req n ∩ closed - (atFloor n - queueing))"
apply (unfold Lift_def, ensures_tac "close_act")
done  (*lem_lift_1_2*)

lemma E_thm04: "Lift ∈ (Req n ∩ closed ∩ (atFloor n - queueing))   
                       LeadsTo (opened ∩ atFloor n)"
apply (unfold Lift_def, ensures_tac "open_act")
done  (*lem_lift_1_7*)


(** Lift 2.  Statements of thm05a and thm05b were wrong! **)

lemmas linorder_leI = linorder_not_less [THEN iffD1]

lemmas (in Floor) le_MinD = Min_le_n [THEN order_antisym]
              and Max_leD = n_le_Max [THEN [2] order_antisym]

declare (in Floor) le_MinD [dest!]
               and linorder_leI [THEN le_MinD, dest!]
               and Max_leD [dest!]
               and linorder_leI [THEN Max_leD, dest!]


(*lem_lift_2_0 
  NOT an ensures_tac property, but a mere inclusion
  don't know why script lift_2.uni says ENSURES*)
lemma (in Floor) E_thm05c: 
    "Lift ∈ (Req n ∩ closed - (atFloor n - queueing))    
             LeadsTo ((closed ∩ goingup ∩ Req n)  ∪ 
                      (closed ∩ goingdown ∩ Req n))"
by (auto intro!: subset_imp_LeadsTo simp add: linorder_neq_iff)

(*lift_2*)
lemma (in Floor) lift_2: "Lift ∈ (Req n ∩ closed - (atFloor n - queueing))    
             LeadsTo (moving ∩ Req n)"
apply (rule LeadsTo_Trans [OF E_thm05c LeadsTo_Un])
apply (unfold Lift_def) 
apply (ensures_tac [2] "req_down")
apply (ensures_tac "req_up", auto)
done


(** Towards lift_4 ***)
 
declare split_if_asm [split]


(*lem_lift_4_1 *)
lemma (in Floor) E_thm12a:
     "0 < N ==>  
      Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ 
              {s. floor s ∉ req s} ∩ {s. up s})    
             LeadsTo  
               (moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac moving_up)
apply (unfold Lift_def, ensures_tac "move_up", safe)
(*this step consolidates two formulae to the goal  metric n s' ≤ metric n s*)
apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done


(*lem_lift_4_3 *)
lemma (in Floor) E_thm12b: "0 < N ==>  
      Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ 
              {s. floor s ∉ req s} - {s. up s})    
             LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac moving_down)
apply (unfold Lift_def, ensures_tac "move_down", safe)
(*this step consolidates two formulae to the goal  metric n s' ≤ metric n s*)
apply (erule linorder_leI [THEN order_antisym, symmetric])
apply (auto simp add: metric_def)
done

(*lift_4*)
lemma (in Floor) lift_4:
     "0<N ==> Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ 
                            {s. floor s ∉ req s}) LeadsTo      
                           (moving ∩ Req n ∩ {s. metric n s < N})"
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
                              LeadsTo_Un [OF E_thm12a E_thm12b]], auto)
done


(** towards lift_5 **)

(*lem_lift_5_3*)
lemma (in Floor) E_thm16a: "0<N    
  ==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingup) LeadsTo  
             (moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_up")
apply (auto simp add: metric_def)
done


(*lem_lift_5_1 has ~goingup instead of goingdown*)
lemma (in Floor) E_thm16b: "0<N ==>    
      Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N} ∩ goingdown) LeadsTo  
                   (moving ∩ Req n ∩ {s. metric n s < N})"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "req_down")
apply (auto simp add: metric_def)
done


(*lem_lift_5_0 proves an intersection involving ~goingup and goingup,
  i.e. the trivial disjunction, leading to an asymmetrical proof.*)
lemma (in Floor) E_thm16c:
     "0<N ==> Req n ∩ {s. metric n s = N} ⊆ goingup ∪ goingdown"
by (force simp add: metric_def)


(*lift_5*)
lemma (in Floor) lift_5:
     "0<N ==> Lift ∈ (closed ∩ Req n ∩ {s. metric n s = N}) LeadsTo    
                     (moving ∩ Req n ∩ {s. metric n s < N})"
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
                              LeadsTo_Un [OF E_thm16a E_thm16b]])
apply (drule E_thm16c, auto)
done


(** towards lift_3 **)

(*lemma used to prove lem_lift_3_1*)
lemma (in Floor) metric_eq_0D [dest]:
     "[| metric n s = 0;  Min ≤ floor s;  floor s ≤ Max |] ==> floor s = n"
by (force simp add: metric_def)


(*lem_lift_3_1*)
lemma (in Floor) E_thm11: "Lift ∈ (moving ∩ Req n ∩ {s. metric n s = 0}) LeadsTo    
                       (stopped ∩ atFloor n)"
apply (cut_tac bounded)
apply (unfold Lift_def, ensures_tac "request_act", auto)
done

(*lem_lift_3_5*)
lemma (in Floor) E_thm13: 
  "Lift ∈ (moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})  
  LeadsTo (stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})"
apply (unfold Lift_def, ensures_tac "request_act")
apply (auto simp add: metric_def)
done

(*lem_lift_3_6*)
lemma (in Floor) E_thm14: "0 < N ==>  
      Lift ∈  
        (stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})  
        LeadsTo (opened ∩ Req n ∩ {s. metric n s = N})"
apply (unfold Lift_def, ensures_tac "open_act")
apply (auto simp add: metric_def)
done

(*lem_lift_3_7*)
lemma (in Floor) E_thm15: "Lift ∈ (opened ∩ Req n ∩ {s. metric n s = N})   
             LeadsTo (closed ∩ Req n ∩ {s. metric n s = N})"
apply (unfold Lift_def, ensures_tac "close_act")
apply (auto simp add: metric_def)
done


(** the final steps **)

lemma (in Floor) lift_3_Req: "0 < N ==>  
      Lift ∈  
        (moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s})    
        LeadsTo (moving ∩ Req n ∩ {s. metric n s < N})"
apply (blast intro!: E_thm13 E_thm14 E_thm15 lift_5 intro: LeadsTo_Trans)
done


(*Now we observe that our integer metric is really a natural number*)
lemma (in Floor) Always_nonneg: "Lift ∈ Always {s. 0 ≤ metric n s}"
apply (rule bounded [THEN Always_weaken])
apply (auto simp add: metric_def)
done

lemmas (in Floor) R_thm11 = Always_LeadsTo_weaken [OF Always_nonneg E_thm11]

lemma (in Floor) lift_3:
     "Lift ∈ (moving ∩ Req n) LeadsTo (stopped ∩ atFloor n)"
apply (rule Always_nonneg [THEN integ_0_le_induct])
apply (case_tac "0 < z")
(*If z ≤ 0 then actually z = 0*)
prefer 2 apply (force intro: R_thm11 order_antisym simp add: linorder_not_less)
apply (rule LeadsTo_weaken_R [OF asm_rl Un_upper1])
apply (rule LeadsTo_Trans [OF subset_imp_LeadsTo
                              LeadsTo_Un [OF lift_4 lift_3_Req]], auto)
done


lemma (in Floor) lift_1: "Lift ∈ (Req n) LeadsTo (opened ∩ atFloor n)"
apply (rule LeadsTo_Trans)
 prefer 2
 apply (rule LeadsTo_Un [OF E_thm04 LeadsTo_Un_post])
 apply (rule E_thm01 [THEN [2] LeadsTo_Trans_Un])
 apply (rule lift_3 [THEN [2] LeadsTo_Trans_Un])
 apply (rule lift_2 [THEN [2] LeadsTo_Trans_Un])
 apply (rule LeadsTo_Trans_Un [OF E_thm02 E_thm03])
apply (rule open_move [THEN Always_LeadsToI])
apply (rule Always_LeadsToI [OF open_stop subset_imp_LeadsTo], clarify)
(*The case split is not essential but makes the proof much faster.*)
apply (case_tac "open x", auto)
done


end

lemma not_mem_distinct:

  [| xA; yA |] ==> xy

lemma open_stop:

  Lift ∈ Always open_stop

lemma stop_floor:

  Lift ∈ Always stop_floor

lemma open_move:

  Lift ∈ Always open_move

lemma moving_up:

  Lift ∈ Always moving_up

lemma moving_down:

  Lift ∈ Always moving_down

lemma bounded:

  Lift ∈ Always bounded

Progress

lemma E_thm01:

  Lift ∈ stopped ∩ atFloor n LeadsTo opened ∩ atFloor n

lemma E_thm02:

  Lift ∈ Req n ∩ stopped - atFloor n LeadsTo Req n ∩ opened - atFloor n

lemma E_thm03:

  Lift
  ∈ Req n ∩ opened - atFloor n LeadsTo
    Req n ∩ Lift.closed - (atFloor n - queueing)

lemma E_thm04:

  Lift ∈ Req n ∩ Lift.closed ∩ (atFloor n - queueing) LeadsTo opened ∩ atFloor n

lemmas linorder_leI:

  ¬ x1 < y1 ==> y1x1

lemmas linorder_leI:

  ¬ x1 < y1 ==> y1x1

lemmas le_MinD:

  [| Floor n; n ≤ Lift.Min |] ==> Lift.Min = n

and Max_leD:

  [| Floor n; Lift.Max ≤ n |] ==> Lift.Max = n

lemma E_thm05c:

  Floor n
  ==> Lift
      ∈ Req n ∩ Lift.closed - (atFloor n - queueing) LeadsTo
        Lift.closed ∩ goingup ∩ Req n ∪ Lift.closed ∩ goingdown ∩ Req n

lemma lift_2:

  Floor n
  ==> Lift ∈ Req n ∩ Lift.closed - (atFloor n - queueing) LeadsTo moving ∩ Req n

lemma E_thm12a:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∉ req s} ∩
        {s. up s} LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma E_thm12b:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∉ req s} -
        {s. up s} LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma lift_4:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∉ req s} LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma E_thm16a:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ Lift.closed ∩ Req n ∩ {s. metric n s = N} ∩ goingup LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma E_thm16b:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ Lift.closed ∩ Req n ∩ {s. metric n s = N} ∩ goingdown LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma E_thm16c:

  [| Floor n; 0 < N |] ==> Req n ∩ {s. metric n s = N} ⊆ goingup ∪ goingdown

lemma lift_5:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ Lift.closed ∩ Req n ∩ {s. metric n s = N} LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma metric_eq_0D:

  [| Floor n; metric n s = 0; Lift.Min ≤ floor s; floor s ≤ Lift.Max |]
  ==> floor s = n

lemma E_thm11:

  Floor n
  ==> Lift ∈ moving ∩ Req n ∩ {s. metric n s = 0} LeadsTo stopped ∩ atFloor n

lemma E_thm13:

  Floor n
  ==> Lift
      ∈ moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s} LeadsTo
        stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s}

lemma E_thm14:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ stopped ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s} LeadsTo
        opened ∩ Req n ∩ {s. metric n s = N}

lemma E_thm15:

  Floor n
  ==> Lift
      ∈ opened ∩ Req n ∩ {s. metric n s = N} LeadsTo
        Lift.closed ∩ Req n ∩ {s. metric n s = N}

lemma lift_3_Req:

  [| Floor n; 0 < N |]
  ==> Lift
      ∈ moving ∩ Req n ∩ {s. metric n s = N} ∩ {s. floor s ∈ req s} LeadsTo
        moving ∩ Req n ∩ {s. metric n s < N}

lemma Always_nonneg:

  Floor n ==> Lift ∈ Always {s. 0 ≤ metric n s}

lemmas R_thm11:

  [| Floor n; {s. 0 ≤ metric n s} ∩ B ⊆ moving ∩ Req n ∩ {s. metric n s = 0};
     {s. 0 ≤ metric n s} ∩ (stopped ∩ atFloor n) ⊆ B' |]
  ==> Lift ∈ B LeadsTo B'

lemma lift_3:

  Floor n ==> Lift ∈ moving ∩ Req n LeadsTo stopped ∩ atFloor n

lemma lift_1:

  Floor n ==> Lift ∈ Req n LeadsTo opened ∩ atFloor n