
installation Package

Separate Build

December 21, 2004

Contents

1 Installation 1

1.1 Introduction. 2

1.2 Prerequisites. 2

1.3 Getting CGAL . 3

1.4 Installing CGAL . 4

1.5 A Sample Installation. 4

1.6 The interactive mode. 7

1.7 The non-interactive mode. .12

1.8 Upgrading a previous CGAL installation .15

1.9 Identifying OS and Compiler. .15

1.10 The CGAL makefile structure. .16

1.11 Compiling a CGAL application .17

1.12 Installation on Cygwin. .17

.1 Using CGAL and LEDA .19

.2 Compiler workarounds. .19

.3 Compiler Optimizations. .20

.4 Troubleshooting. .20

.5 Scripts. .24

i

ii

Chapter 1

Installation

Contents

1.1 Introduction . 2
1.2 Prerequisites . 2
1.3 GettingCGAL . 3

1.3.1 Visualization . 4

1.4 Installing CGAL . 4
1.5 A Sample Installation . 4

1.5.1 Starting the script. 4

1.5.2 Building the CGAL libraries . 5

1.5.3 Building the CGAL libraries . 6

1.6 The interactive mode . 7
1.6.1 Files created during installation. 7

1.6.2 The Compiler Menu. 8

1.6.3 The Support Menu. 8

1.6.4 The GMP Menu . 9

1.6.5 The CORE Menu. 9

1.6.6 The LEDA Menu . 10

1.6.7 The Qt Menu. 10

1.7 The non-interactive mode. 12
1.7.1 Setting up support for GMP. 13

1.7.2 Setting up support for GMPXX. 13

1.7.3 Setting up support for CORE. 13

1.7.4 Setting up LEDA support . 13

1.7.5 Setting up support for Qt. 14

1.7.6 Setting custom compiler/linker flags. 14

1.7.7 Disabling shared libraries building. 14

1.7.8 Other Options. 14

1.8 Upgrading a previousCGAL installation . 15
1.9 Identifying OS and Compiler . 15
1.10 TheCGAL makefile structure . 16
1.11 Compiling aCGAL application . 17
1.12 Installation on Cygwin . 17

1.12.1 Pathnames. .17

1

1.12.2 MS VisualC++ -setup . 18

.1 UsingCGAL and LEDA . 19

.2 Compiler workarounds . 19

.2.1 Standard Header Replacements. 20

.3 Compiler Optimizations . 20

.4 Troubleshooting .20

.4.1 Compiler version test execution failed. 20

.4.2 Defect in the G++ 3.2 ABI. 21

.4.3 The “Long-Name-Problem” on IRIX6. 21

.4.4 The “Long-Name-Problem” on Solaris. 22

.4.5 LEDA and STL conflicts. 23

.4.6 MS VisualC++ -specific C++ problems . 23

.5 Scripts .24

.5.1 create makefile . 24

1.1 Introduction

CGAL stands forComputational Geometry Algorithms Library. It is a software library written in C++, whose
development started in an ESPRIT LTR project. The goal of CGAL is to make the large body of geometric
algorithms developed in the field of computational geometry available for industrial application.

This document describes how to install CGAL on Unix-like systems. Besides that, you will find some informa-
tion about the makefile structure of CGAL and the support for using CGAL together with other software libraries,
such as the GNU Multiple Precision library GMP1, the CORE library2 for robust numerical and geometric com-
putation, LEDA, the Library of Efficient Datatypes and Algorithms3, or Trolltech’s4 QT toolkit.

1.2 Prerequisites

In order to build the CGAL libraries you need a C++ compiler. Most recent compilers on Unix platforms and
MS Windows are supported, provided that they reasonnably conform to the ISO 14882 standard for C++.

CGAL-3.1 supports the following compilers/operating systems:

compiler operating system

SGI Mips(Pro)CC 7.4 (n32 and 64)7 IRIX 6.5

GNU g++ 2.95.3, 3.2, 3.3, 3.49 IRIX 6.5 / Solaris 2.6+ / Linux 2.x / MacOS X / MS Windows 95/98/2000/XP/NT410

SUNPROCC 5.511 Solaris 2.6+

MS VisualC++ 7.1 (.NET)12 MS Windows 95/98/2000/XP/NT410

INTEL C++ 8.013 MS Windows 95/98/2000/XP/NT410

1http://www.swox.com/gmp/
2http://www.cs.nyu.edu/exact/core/
3http://www.mpi-sb.mpg.de/LEDA
4http://www.trolltech.com

2

If you are going to install CGAL using Cygwin12, please read Section1.12first.

Note that GNU g++ 2.96/97 are not officialgcc releases that are neither supported by theGCC team13 nor by
CGAL. Please upgrade to GNU g++ 3, if you happen to have this compiler.

1.3 GettingCGAL

The CGAL library can be downloaded from the CGAL homepage:

http://www.cgal.org

and go to the ‘Download’ section. Just follow the instructions on this page to obtain your copy of the library.

After you have downloaded the file containing the CGAL library, you have to decompress it. Use the commands

gunzip <filename>.tar.gz
tar xvf <filename>.tar

Alternatively, your browser might be able to invoke the right decompression program by itself.

In both cases the directoryCGAL-3.1 will be created. This directory contains the following subdirectories:

directory contents

auxiliary packages that can optionally be used with CGAL

config configuration files for install script

demo demo programs (some of them need LEDA, geomview or other third-party products)

doc html documentation (HTML)

doc pdf documentation (PDF)

doc ps documentation (Postscript)

examples example programs

include header files

lib (shared) object libraries

make files with platform dependent makefile settings

scripts some useful scripts (e.g. for creating makefiles)

src source files

7http://www.sgi.com/software/irix/tools/c++.html
9http://gcc.gnu.org/

10with Cygwin (http://www.cygwin.com)
11http://www.sun.com/software/Developer-products/cplusplus/
12http://msdn.microsoft.com/visualc/
13http://developer.intel.com/software/products/compilers/
12http://www.cygwin.com
13http://gcc.gnu.org/gcc-2.96.html

3

The directoryauxiliary contains a distribution of the GNU Multiple Precision library GMP14. The directory
src/Core contains a distribution of the CORE library15 for robust numerical and geometric computation.

The directoryinclude/boost contains header files of the BOOSTproject16.

GMP, CORE and BOOSTare not part of CGAL and have their own licenses.

1.3.1 Visualization

The programs in thedemo directory provide visual output. Most of these useCGAL::Qt widget, a widget and
some helper classes that allow to interact with two dimensional CGAL objects in QT based applications.

If you have LEDA installed, you might want to useCGAL::Windowstreamas an interface between two dimen-
sional CGAL objects and aleda window. To be able to use theWindowstream, you need do nothing more than
compile CGAL with LEDA support.

Some demo programs for 3D structures require the geomview program for visualization. This is available from
http://www.geomview.org (note that it does not run on MS Windows).

1.4 Installing CGAL

The directoryCGAL-3.1 contains a Bourne shell script calledinstall cgal . The script can be run in two
modes: a menu-driven interactive mode and a non-interactive mode. Normally you should use the interactive
mode, but in case you run into problems with it or do not like it for some reason, you can still use the non-
interactive mode.

We first describe a sample installation in section1.5. This provides you with an overview on how the interactive
installation works. If you want more detailed information about specific menus and their options, take a look at
section1.6. Finally, for the non-interactive mode refer to section1.7.

If you want to use LEDA together with CGAL, have a look at section.1.

1.5 A Sample Installation

In this section we sketch an example installation on a SUN running Solaris 2.9 with the GNU g++ 3.3 compiler.
For a complete description of the different menus and their options refer to section1.6.

1.5.1 Starting the script

Go to theCGAL-3.1 directory and enter the command

./install_cgal -i

14http://www.swox.com/gmp/
15http://www.cs.nyu.edu/exact/core/
16http://www.boost.org/

4

You get a message indicating the CGAL version you are going to install and that you are running the interactive
mode. Then it takes some time while the script locates a number of utility programs. You will not get informed
about this17, but see some dots written to the screen indicating progress.

--
This is the install script for CGAL 3.1

--

starting interactive mode - one moment, please
.......

Choosing compiler GNU 3.3.2.

If there is any compiler installed on your system and accessible through yourPATH environment variable that
is supported by CGAL, one of these compilers is chosen. If there is more than one compiler installed on your
system (and supported by CGAL), you may choose to use a different compiler from the compiler menu (cf.
Section1.6.2).

A menu similar to the following will appear on your screen.

**
** CGAL 3.1 Installation Main Menu **
** ------------------------------- **
** **
** OS: sparc_SunOS-5.9 **
** Compiler: GNU 3.3.2 **
** Support for: no other library. **
** **
** Compiler is supported by CGAL. **
** The setup has not been tested. **
** **
** There are no libs for this os/compiler. **
** **
** <C> Compiler Menu **
** <S> Support Menu **
** <T> Test (and save) setup **
** <A> Run all setup tests (no cache) **
** **
** Build CGAL Libraries **
** **
** <Q> Back to OS **
** **
** Your Choice: **
** **
**

The first lines below the headline contain some kind of status report: current OS and compiler, and which
third-party software libraries are supported (such as GMP, CORE, LEDA, or QT). Moreover you can see that the
current setup has not yet been tested, and that there do not exist CGAL libraries for this OS/compiler combination
in the CGAL lib directory by now.

1.5.2 Building theCGAL libraries

In a first step, you should test the current setup by typing “t”. Then a number of tests are done to check whether
your compiler supports certain language constructs or has specific bugs. There is quite a number of these tests,
so this step may take a while. For each test you should get a message what particularly is tested at the moment
and what the result is.

17If you are that curious what happens exactly, have a look at the fileCGAL-3.1/install.log.

5

**
** The following lines show results of configuration tests. **
** Some of the tests might fail, since many compilers are **
** still not completely ANSI/ISO compliant. **
** Since we worked around the arising problems, **
** *** CGAL will work fine *** **
** regardless of the outcome of these tests. **
**
Checking for standard header files
algorithm ... ok.

<many lines omitted>

Testing for VC7_PRIVATE_TYPE_BUG ... ok.
Saving current setup ... done.

If all these tests have been completed successfully, the current settings are saved into a file that resides in the
directoryCGAL-3.1/config/install. Thus, if you run the install script a second time for this OS/compiler,
you will not have to go through the whole config-/test cycle again, but the configuration will be retrieved from
the corresponding config file instead.

1.5.3 Building theCGAL libraries

We are now ready to build the CGAL libraries. Just type “b” to start compilation. Building consists of three
steps:

1. writing the include makefile,

2. compiling the static librariesand

3. compiling the shared libraries.

The include makefile encapsulates the OS– and compiler-specific settings and should be included (hence the
name) in all makefiles that compile CGAL applications. If everything went ok, the output should look as follows.
(Otherwise, you should have a look at the error messages from compiler or linker.)

**
** **
** Compiling CGAL 3.1 **
** ------------------ **
** **
**

OS: sparc_SunOS-5.9
COMPILER: GNU 3.3.2
GMP: not supported
GMPXX: not supported
CORE: not supported
LEDA: not supported
Qt: not supported

Generating Makefiles ... done.
Building CGAL_lib ... done.
Building CGAL_sharedlib ... done.

**
** Please press <ENTER> to continue. **
**

That’s all, it’s done. Press “<ENTER>” to return to the main menu and proceed by installing for a different
compiler (go to the compiler menu and choose “c” to get a list of supported compilers detected on your system),
or with GMP, CORE, LEDA, or QT support (go to the GMP, CORE, LEDA, or QT menu, respectively). Another

6

option is to simply quit the install script by typing “q”. When leaving the script, you get a list of successful builds
during the session. Furthermore, the script prints the setting ofCGAL MAKEFILE for the last active configuration.
Remember to set this environment variable before compiling CGAL applications. On bourne shell derivatives,
you would type in our example

export CGAL_MAKEFILE=CGAL-3.1/make/makefile_sparc_SunOS-5.6_g++-2.95.3

while for csh descendants the syntax is

setenv CGAL_MAKEFILE CGAL-3.1/make/makefile_sparc_SunOS-5.6_g++-2.95.3

In Section1.10you can find more information on the CGAL makefile structure, and how to setCGAL MAKEFILE
when using CGAL on several platforms.

1.6 The interactive mode

To run the install script in the interactive mode, go to theCGAL-3.1 directory and enter the command

./install_cgal -i

After initialization during which certain utility programs are located and your system is searched for compilers
supported by CGAL, you get into the CGAL installationmain menu(see page5 for a picture).

From the main menu you can reach a number of different sub-menus, of which the most important maybe is the
compiler menu. This is where you can choose the compiler you want to work with and set custom compiler or
linker options. The compiler menu is described in Section1.6.2.

If you want to use GMP, CORE, LEDA, or QT with CGAL, you will have to go to thegmp menu(cf. Sec-
tion 1.6.4), core menu(cf. Section1.6.5), leda menu(cf. Section1.6.6), or qt menu(cf. Section1.6.7),
respectively.

There is no menu for BOOSTbecause it is available in the CGAL installation by default. If you want to specify
an alternate BOOST installation, you can use theCUSTOM CXXFLAGS facility.

Finally you can build the CGAL libraries by typingb. However, it is recommended to run thesetup test– which
is available in all menus as optiont – before. The setup test includes an STL test, a GMP test, a CORE test, a
LEDA test, and a QT test. But not all tests are performed always; e.g., the GMP test is only done, if you enabled
GMP support. The install script keeps track of the tests passed and only tests again, if you change the setup in a
way that might affect the test result. If you want to redoall tests, you have to choose option “a” from the main
menu. This also retests for GMP/LEDA/QT installations in system directories. Otherwise, this is only done the
first time you enable GMP/LEDA/QT support for an OS/compiler combination.

1.6.1 Files created during installation

The install script stores all relevant settings for an OS/compiler combination in the directory

CGAL-3.1/config/install/<CGAL-OS-description >

7

where<CGAL-OS-description> identifies your OS/compiler combination in a way specified in section1.9. 18

This saves you typing everything again, if you upgrade CGAL or another package that makes recompiling the
CGAL libraries necessary.

Besides the config files,install cgal uses several temporary files during interactive installation. Most of them
are removed after use, but some are not, since it might be helpful to keep some information about the last run.
You can keep or delete them as you like, as they are not needed anymore once the script terminated. A list of
these files (all are plain ASCII and reside inCGAL-3.1) follows.

filename content

install.log detailed overall protocol

install.completed list of systems for which CGAL libraries have been built

compile.log output of the last compiler call

1.6.2 The Compiler Menu

Here is the place to set the compiler specific options, such as the compiler to use (if more than one has been
detected), custom compiler or linker flags, or deciding whether to build shared libraries or not.

Compiler Menu

<C> Choose the compiler to be used from the list of detected compilers. You can also register other
compilers, if they have not been detected automatically.

<F> Set custom compiler flags. These are the first flags given to the compiler in every call. Under normal
circumstances there should be no need to set any such flag.

<L> Set custom linker flags. These are the first flags given to the linker in every call. Under normal
circumstances there should be no need to set any such flag.

<S> Toggle shared libraries building. By default, shared libraries are built (e.g.libCGAL.so), but it is
possible to only build static libraries using this option.

1.6.3 The Support Menu

This menu provides the starting point to setup the support for third-party software libraries such as GMP, CORE,
LEDA, or QT.

Support Menu

<G> Setup support for the GNU Multiple Precision library GMP.

<C> Setup support for the CORE library for robust numerical and geometric computation.

<L> Setup support for LEDA, the Library of Efficient Datatypes and Algorithms.

<K> Setup support for Trolltech’s QT toolkit.

18Note that these files are only OS/compiler specific, i.e. there are no different files for with and without LEDA support.

8

1.6.4 The GMP Menu

This menu is to set GMP (GNU Multiple Precision Library) specific options, if you plan to use GMP together
with CGAL. In case you do not already have GMP installed on your system, a GMP distribution is shipped with
CGAL. You can find it in theauxiliary directory. The menu provides an option to install GMP in your CGAL

directory tree19, but – of course – you can also install GMP independently from CGAL.

If GMP support is enabled for the first time, the script tests whether GMP is installed in standard system directo-
ries or in the CGAL tree. If this test does not succeed, you have to supply directories containing the GMP header
files (GMP INCL DIR) and GMP libraries (GMP LIB DIR). Even if the tests are passed, you still have the option to
set these directories differently.

If you decide to install the GMP distribution shipped with CGAL from the install script, GMP will be configured
by calling itsconfigurescript. GMP being a C library, it requires a C compiler. Itsconfigurescript usually does
a good job at finding a C compiler on the system, but it also gives the possibility to specify it by setting the
environment variableCCbefore callingconfigure. If you want the CGAL install script to build GMP and specify
the C compiler to be used, you can also to the same, by setting theCC environment variable (see the GMP

installation documentation for details). If you need a more complex configuration of GMP, we recommend that
you install GMP yourself separately.

If GMP support is enabled, you may additionnally enable support for GMPXX, GMP’s built-in C++ interface,
from the GMP menu. Note that this is not supported by all C++ compilers, you should check the GMP manual
for more information. Once you choose to have GMPXX support, then if you install GMP from the CGAL tree,
GMP will be configured with C++ support.

GMP Menu

<C> Install the GMP distribution shipped with CGAL in the CGAL directory tree.

<G> Enable/Disable GMP support in CGAL.

<X> Enable/Disable GMPXX support in CGAL.

<I> (present ifGMP support is enabled)Set the include directory for GMP.

<L> (present ifGMP support is enabled)Set the directory containing the GMP libraries.

<M> (present if GMP support is enabled, there is aGMP installation in system directories or in the
CGAL tree andGMP INCL DIR or GMPLIB DIR have been set)Use GMP installation from system
directories / CGAL tree.

1.6.5 The CORE Menu

This menu is to set CORE specific options, if you plan to use CORE together with CGAL. Since CORE requires
GMP, you have to enable GMP support together with CORE support. Refer to Section1.6.4for how to setup
GMP support for CGAL.

The current CORE release is shipped together with CGAL. If COREsupport is enabled, the CORE library is built
and installed together with the CGAL libraries. Hence, if you enable CORE support, you have to (re)build the
CGAL libraries afterwards (cf. Section1.5.3). Another option is to use a CORE installation that is independent

19This option on MS VisualC++ just unpacks a pre-compiled library that comes with CGAL.

9

from CGAL. For this you have to supply directories containing the CORE header files (CORE INCL DIR) and the
CORE library (CORE LIB DIR).

CORE Menu

<C> Enable/Disable CORE support in CGAL.

<I> (present ifCORE support is enabled)Set the include directory for CORE.

<L> (present ifCORE support is enabled)Set the directory containing the CORE library.

<Z> (present ifCORE support is enabled andCORE INCL DIR or CORELIB DIR have been set)Use
CORE installation from CGAL directories.

1.6.6 TheLEDA Menu

This is the place to set LEDA specific options, if you plan to use LEDA together with CGAL (see also Section.1).
In order to enable LEDA support in CGAL, LEDA has to be installed on your system.

If L EDA support is enabled the first time, the script tests whether LEDA is installed in standard system di-
rectories. If this test does not succeed, you have to supply directories containing the LEDA header files
(LEDA INCL DIR) and LEDA libraries (LEDA LIB DIR). Even if the tests are passed, you still have the option
to set these directories differently.

LEDA Menu

<E> Enable/Disable LEDA support in CGAL.

<I> (present ifLEDA support is enabled)Set the include directory for LEDA.

<J> (present ifLEDA support is enabled,LEDA headers have been found in a system include directory
andLEDA INCL DIR has been set)Use LEDA header from system include directory.

<L> (present ifLEDA support is enabled)Set the directory containing the LEDA libraries.

<M> (present ifLEDA support is enabled,LEDA libs have been found in a system lib directory and
LEDA LIB DIR has been set)Use LEDA libraries from system lib directory.

1.6.7 The Qt Menu

This menu is to set QT specific options, if you plan to use QT together with CGAL. Note that for use with
CGAL, QT version 2.2 (or later) if required. In order to enable QT support in CGAL, QT has to be installed
on your system first. Unlike for GMP, there is no option to install QT from the CGAL installation script. For
information on QT, please refer to

http://doc.trolltech.com/

advanced

The QT menu has a basic mode and an advanced one. If your QT installation is standard, you shouldn’t have to
go into the advanced mode.

10

The QT menu starts in basic mode, unless QT is installed in standard system directories (because in that case,
the advanced mode is quicker).

advanced

Basic mode (to use with a standard Qt installation)

If QT support is enabled the first time, the script tests whether the$QTDIR environment variable points to a
valid QT directory. is installed in standard system directories. If that is not the case, you have to supply the QT

directory containing your QT installation. Even if the test passed, you still have the option to set this directory
differently. If your QT installation is not standard, you would have to go into the advanced mode.

Qt basic Menu

<K> Enable/Disable Qt support in CGAL.

<A> (present if Qt support is enabled)Go to the advanced mode

<D> (present if Qt support is enabled) Set the Qt directory.

<E> (present if Qt support is enabled,$QTDIR points to a valid Qt directory andQT DIR has been set)
Use$QTDIR as Qt directory.

advanced

Advanced mode (to use with a non-standard Qt installation)

In that mode, you have to specify separately directories containing the QT header files (QT INCL DIR) and the
QT library (QT LIB DIR), and the path to the MOC20 executable (QT MOC) unless they are in system directories.
Even in that case, you still have the option to set them differently.

20http://doc.trolltech.com/moc.html

11

Qt advanced Menu

<K> Enable/Disable Qt support in CGAL.

 (present if Qt support is enabled)Go to the basic mode

<I> (present if Qt support is enabled) Set the directory containing Qt headers.

<J> (present if Qt support is enabled, Qt headers are in system directories andQT INCL DIR has been
set) Use Qt headers from system include directories.

<L> (present if Qt support is enabled) Set the directory containing Qt library.

<M> (present if Qt support is enabled, Qt library is in system directories andQT LIB DIR has been set)
Use Qt library from system library directories.

<O> (present if Qt support is enabled) Set the path to MOC executable.

<P> (present if Qt support is enabled, MOC is in path andQT MOC has been set) Use Qt MOC executable
in path.

advanced

1.7 The non-interactive mode

To run the install script in the non-interactive mode, go to theCGAL-3.1 directory and enter the command

./install_cgal -ni <compiler>

where<compiler> is the C++ compiler executable.
You can either specify a full path, e.g./usr/local/bin/g++, or just the basename, e.g.g++, which means
the script searches yourPATH for the compiler location. If your compiler call contains whitespaces it has to be
quoted, e.g../install cgal -ni "CC -n32". The options given this way become part of your CGAL-OS
description (see section1.9) which is useful e.g. to distinguish between different compilers using the same
frontend (SGI Mips(Pro)CC onIRIX6).

There are a number of additional command line options to customize your CGAL setup which are discussed
below. You should read the corresponding paragraphs before you continue, especially if one or more of the
following conditions apply to you:

• you want to use GMP together with CGAL (Section1.7.1),

• you want to use GMP’s built-in C++ interface together with CGAL (Section1.7.2),

• you want to use CORE together with CGAL (Section1.7.3),

• you want to use LEDA together with CGAL (Section1.7.4),

• you want to use QT together with CGAL (Section1.7.5).

Once you started the script, it should give you a message indicating the CGAL version you are going to install and
that you are running the non-interactive mode. Then it proceeds by locating some utility programs, determining
your OS and compiler version and displaying the settings you gave via command line. Your compiler is also

12

checked for a number of bugs resp. support of certain language features; a messageok always indicates that
your compiler works as it should, that is, a feature is supported or a bug isnot present. On the other hand,no or
unfortunately indicate a lack of support or the presence of a bug.

Finally the current setup is summarized, system specific directories for makefiles and libraries are created (if
they did not exist before) and a new include makefile is written into the makefile directory. If there already
exists a makefile for the current OS/compiler combination, it is backed up and you should get a corresponding
message.

To compile the CGAL libraries go now to thesrc directory. Then typemake -f makefile lib to compile the
CGAL object library andmake -f makefile sharedlib to compile the CGAL shared object library. If you
want to make changes to the makefiles first, see section1.10 for an explanation of the makefile structure of
CGAL.

If you enabled CORE support and want to use the CORE distribution shipped with CGAL, go to thesrc/Core
directory and typemake to compile the CORE library.

If you enabled QT support, go to thesrc/CGALQt directory and typemake to compile the CGAL QT support
library.

1.7.1 Setting up support for GMP

By default there is no support for GMP, but you can change this easily by use of the command line option
“-gmp”. If G MP is installed in system directories on your system, you are already done now. If this is not the
case, you have to supply the directories containing the GMP header files (“--GMP INCL DIR <dir>”) and the
GMP library (“--GMP LIB DIR <dir>”).

1.7.2 Setting up support for GMPXX

By default there is no support for GMPXX, GMP’s built-in C++ interface, but you can change this easily by use
of the command line option “-gmpxx”. The only requirement for this to work is that GMP support is enabled
correctly.

1.7.3 Setting up support for CORE

By default there is no support for CORE, but you can change this easily by use of the command line option
“-core”. If you want to use the CORE distribution shipped with CGAL, this is all you have to do. Otherwise,
you also have to supply the directories containing the CORE header files (“--CORE INCL DIR <dir>”) and the
CORE library (“--CORE LIB DIR <dir>”).

1.7.4 Setting upLEDA support

See also section.1. By default there is no support for LEDA, but you can change this easily by use of the
command line option “-leda”. Unless LEDA is installed in system directories, you have to supply the directories
containing the LEDA header files (“--LEDA INCL DIR <dir>”) resp. the LEDA libraries for your compiler
(“--LEDA LIB DIR <dir>”).

13

1.7.5 Setting up support for Qt

By default there is no support for QT, but you can change this easily by use of the command line option
“-qt”. If Q T is installed in system directories on your system or the$QTDIR environment variable points to
the QT directory, you are already done now. If this is not the case, you have to supply either the QT direc-
tory (“--QT DIR <dir>”) if your QT installation is standard, either directories containing the QT header files
(“--QT INCL DIR <dir>”) and the QT library (“--QT LIB DIR <dir>”), and the path to the MOC21 executable
(“--QT MOC <exe>”) if your QT installation is not standard.

1.7.6 Setting custom compiler/linker flags

You can supply custom compiler and linker flags using the options (“--CUSTOM CXXFLAGS <flags>”) and
(“--CUSTOM LDFLAGS <flags>”). These are the first flags given to the compiler/linker in every call.

Note: Do not forget to quote your options in case they contain spaces. Example:

./install_cgal -ni g++ --CUSTOM_CXXFLAGS "-I/my/include -O2"

1.7.7 Disabling shared libraries building

You can disable the building of shared libraries (e.g.libCGAL.so) using the option (“--disable-shared”).
This way, only static libraries (object file archives) are built.

Example:

./install_cgal --disable-shared -ni g++

1.7.8 Other Options

There are some less important features of the install script we will summarize here.

First of all, you can get the version number ofinstall cgal with option “--version”. Note that all other
options are ignored in this case.

Second there is an option “-os <compiler >” where<compiler> is your C++ compiler. This allows you to
determine your CGAL-OS description (see section1.9). The compiler can either be given by an absolute path
like

./install_cgal -os /usr/local/gcc-2.95.3/sun/bin/g++

or just by denoting its basename, as long as it is on your path:

./install_cgal -os CC

21http://doc.trolltech.com/moc.html

14

The option is intended for testing purposes and automatic detection of the correct include makefile (see also
section1.10).

Finally, there exists an option “--verbose” that can be set in interactive mode as well as in non-interactive
mode. When set you get a detailed summary of error messages occurring duringanycompiler test (determining
STL version etc.). Normally you only get these messages, if a required test (such as the general STL test) fails,
otherwise you are just informed,if it succeeded or not. This option is not recommended for general use, but it
can be useful to check why a certain test fails that was expected to be passed.

1.8 Upgrading a previousCGAL installation

In case you already have a previous release of CGAL installed on your system, you might like to reuse your
configuration files and GMP installations. Simply use the following command to copy them into the right place:

./install_cgal --upgrade <OLD_CGAL_DIR>

where<OLD CGAL DIR> is the root directory of your existing CGAL installation
(e.g. /pub/local/CGAL-3.0). You can then build all libraries for the actual operating system that existed in
your previous CGAL installation with

./install_cgal --rebuild-all

If you want to install CGAL for more than one operating system in the same directory structure, you have to run
the latter command (rebuild-all) once on each operating system.

Using--build-all instead of--rebuild-all will save you the time of the configuration tests, and will only
rebuild the libraries.

If you want to install only one configuration on a given operating system, you can specify its name (the base
name of a file inCGAL-3.1/config/install) with the option--rebuild <config> or --build <config>.

Note that some compilers that have been supported in previous CGAL releases might not be supported in CGAL-
3.1 anymore, see section1.2. Trying to build CGAL-3.1 with these compilers will most probably fail. You can
solve this problem by deleting the obsolete config files (see section1.6.1) from CGAL-3.1/config/install
before issuing therebuild-all command.

Similarly, you might want to use compilers with CGAL-3.1 that have not been supported in previous releases.
For these compilers please follow the usual procedure as described in section1.6or 1.7.

1.9 Identifying OS and Compiler

Since CGAL supports several different operating systems and compilers, this is also reflected in the structure of
the CGAL directory tree. Each OS/compiler combination has its own lib directory underCGAL-3.1/lib) (and
analogously its own include makefile inCGAL-3.1/make) named as determined by the following scheme.

<arch> <os>- <os-version> <comp>-<comp-version>[LEDA]

15

<arch> is the system architecture as defined by “uname -p” or “ uname -m”,

<os> is the operating system as defined by “uname -s”,

<os-version> is the operating system version as defined by “uname -r”,

<comp> is the basename of the compiler executable (if it contains spaces, these are replaced by ”-”)and

<comp-version> is the compiler’s version number (which unfortunately can not be derived in a uniform man-
ner, since it is quite compiler specific).

The suffix LEDA is appended to indicate LEDA support.

We call the resulting string CGAL-OS description.
Examples aremips IRIX-6.2 CC-7.2 or sparc SunOS-5.5 g++-2.95.3 LEDA.
You can use the install script to get your CGAL-OS description, see section1.7.8.

1.10 TheCGAL makefile structure

The CGAL distribution contains the following makefiles:

• CGAL-3.1/src/makefile lib for compiling the CGAL object librarylibCGAL.a,

• CGAL-3.1/src/makefile sharedlib for compiling the CGAL shared object librarylibCGAL.so and

• CGAL-3.1/examples/*/makefile for compiling the CGAL example programs.

All these makefiles are generic: they can be used for more than one compiler. To achieve this, the first section
of each makefile contains an include statement that looks as follows:

CGAL_MAKEFILE = /users/jannes/CGAL-3.1/make/makefile_<CGAL-OS description>
include $(CGAL_MAKEFILE)

The file CGAL MAKEFILE is an include file with platform dependent makefile settings. The abbreviation
<CGAL-OS description> (see section1.9 for details) is used to identify the operating system and compiler
for which the settings hold. For example, the filemakefile mips IRIX64-6.5 CC-n32-7.30 contains make-
file settings for the IRIX 6.5 operating system and the SGI Mips(Pro)CC 7.3 compiler. These include files are
automatically generated by theinstall cgal script and they are all located in theCGAL-3.1/make directory.
For convenience, theinstall cgal script will substitute the include makefile that was generated most recently.

If you want to compile an application or an object library with a different compiler, the only thing you need to
do is to substitute another include makefile for theCGAL MAKEFILE variable. An alternative way to do this is to
create an environment variableCGAL MAKEFILE. To pass the value of the environment variable to the makefile
you can either comment out theCGAL MAKEFILE line in the makefile or use an appropriate command line option
for the make utility. A comfortable way to setCGAL MAKEFILE is by usinginstall cgal -os (see section
1.7.8). E.g. if your compiler isg++, you would type

CGAL_MAKEFILE=‘<insert your CGAL-3.1 dir >/install_cgal -os g++‘

in bourne shell resp.

16

setenv CGAL_MAKEFILE ‘<insert your CGAL-3.1 dir >/install_cgal -os g++‘

in csh derivatives.

Tip: Include the setting ofCGAL MAKEFILE into your shell startup script (e.g..(t)cshrc for (t)csh or .bashrc
for bash).

All makefiles contain sections with compiler and linker flags. You can add your own flags here. For exam-
ple, you might want to add the flag-DCGAL NO PRECONDITIONS to turn off precondition checking. The flags
$(CGAL CXXFLAGS) and$(CGAL LDFLAGS) should never be removed.

The default extension for CGAL source files is.C. The last section of the makefiles contains a suffix rule that
tells the compiler how to create a.o-file from a.C-file. If you want to use the default rule that is defined by the
make utility, you may want to remove this suffix rule. However, note that this may have consequences for the
makefile variablesCGAL CXX andCXXFLAGS.

1.11 Compiling aCGAL application

The directoryCGAL-3.1/examples contains a small program (example.C) and a sample makefile with some
comments. TheCGAL MAKEFILE variable in this makefile (see section1.10) is automatically substituted by
the install cgal script and equals the most recently generated include makefile in theCGAL-3.1/make di-
rectory. After the installation of CGAL this sample makefile is ready for use. Just type ’make example’ to
compile the programexample.C. There is a script for conveniently creating makefiles for CGAL applications,
see section.5.1.

Furthermore the directoriesCGAL-3.1/examples andCGAL-3.1/demo contain many subdirectories with non-
graphical and graphical example programs. In all these directories you will find a makefile that is ready for
use.

1.12 Installation on Cygwin

Cygwin is a free Unix-like environment for MS-Windows, distributed by Cygnus Solutions. For our tests we
have used version 1.3.2 andB-20.1.

It consists of a port of a large number of GNU tools, such as bash, make, gcc, gas, file utilities, etc, as well
as tools ensuring an ability to emulate Unix-like access to resources, for instance mount. For a comprehensive
introduction and details, seehttp://www.cygwin.com/ .

Make sure that the link/bin/sh.exe exists. If not, create it:

cd /bin
ln -s bash.exe sh.exe

1.12.1 Pathnames

Cygwin has a UNIX-like way of navigating hard drives, NFS shares, etc. This is also the way in which direc-
tories and pathnames have to given to the installation script. They are automatically converted to Win32-style
pathnames when given to the compiler or linker.

17

The main difference is that directories are seperated by slash (“/”) rather than by backslash (“\”). The other
difference is concerned with specifying drives. One way is to use POSIX-style pathnames that map Win32-style
drives (A:, B:) to //a/..., //b/... respectively. For instance, the pathD:\Mystuff\Mydir\LEDA translates
to //d/Mystuff/Mydir/LEDA.

Alternatively, it can be done using the mount utility, that can be used to establish a map between Win32-style
drives and the Unix-like style. More precisely, it maps the forest of the directories/files on Win32-drives to a
tree with the root that is usually located at the top level of the boot drive, sayC:. The root location can be seen
by typingmount command without parameters. For instance, ifD: is mounted onC:\ddrive22 then the path
D:\Mystuff\Mydir\LEDA translates to/ddrive/Mystuff/Mydir/LEDA.

Upper/lower case and spaces in file namesBehavior of Cygwin in this regard might be different from the
MS Windows behavior. In particular, using spaces in filenames should better be avoided.

Links, shortcuts, etc should be avoided as well.

1.12.2 MS VisualC++ -setup

A number of environment variables has to be set (or updated) in order to use the installation.

PATH should contain MS VisualC++ command line tools locations. The environment variablesINCLUDE andLIB
should point to the location of MS VisualC++ header files and to the location of the MS VisualC++ libraries,
respectively. The interface for doing this is different for NT and for Win9*.

MS Windows-NT4.0. One can set the corresponding environment variables using the usual NT interface23.
Alternatively, they can be set in the.bashrc file for the particular user, or in the system-widebash customiza-
tion file (usually/etc/bashrc).

The result should look roughly as follows, assuming thatC:\PROGRA∼1\MICROS∼2\ is the location of the
MS VisualC++ installation.

LIB=C:\PROGRA˜1\MICROS˜2\VC98\LIB
INCLUDE=C:\PROGRA˜1\MICROS˜2\VC98\INCLUDE

andPATH should contain

/PROGRA˜1/MICROS˜2/Common/msdev98/BIN:
/PROGRA˜1/MICROS˜2/VC98/BIN:/PROGRA˜1/MICROS˜2/Common/TOOLS:
/PROGRA˜1/MICROS˜2/Common/TOOLS/WINNT

MS Windows-9*. First, the memory for environment variables has to be increased. Select the Cygwin icon
from the Start-menu, press the right mouse button and chooseProperties. Go toMemory, selectInitial Environ-
ment, set it to at least 2048 andapplythe changes.

Second, edit the filecygwin.bat (or cygnus.bat in Cygwin 0.9), located in the cygwin main directory and
add the line

22by typingmount D: /ddrive
23open MyComputer, press right mouse button, select Properties, select Environment, set the relevant variables

18

call C:\PROGRA˜1\MICROS˜2\VC98\Bin\MSCVARS32.BAT

customized according to where MS VisualC++ is installed on your system. Depending on the version of
MS VisualC++ you might have to replaceMSCVARS32.BAT by VCVARS32.BAT.

.1 UsingCGAL and LEDA

CGAL supports LEDA in the following ways.

1. There are support functions defined for the LEDA number typesbig float, integer, rational and
real (see the files<CGAL/leda *>).

2. For all two-dimensional geometric objects there are input/output operators for aleda window.

3. For all two-dimensional geometric objects there are output operators to aleda ps file.

4. The registration functions needed to interact with aleda geowin are defined for all geometric objects
from the CGAL kernel.

5. CGAL defines the following LEDA-related compiler flags when LEDA is used: CGAL USE LEDA and
LEDA PREFIX.

The include makefiles in theCGAL-3.1/make directory corresponding to LEDA can be recognized by the suffix
“ LEDA”.

.2 Compiler workarounds

In CGAL, a number of compiler flags is defined. All of them start with the prefixCGAL CFG. These flags are used
to work around compiler bugs and limitations. For example, the flagCGAL CFG NO LONG LONG denotes that the
compiler does not know the typelong long.

For each compiler a file<CGAL/compiler config.h> is defined, with the correct settings of all flags. This
file is generated automatically by theinstall cgal script, and it is located in the compiler specific include
directory. This directory can be found belowinclude/CGAL/config/; it is named according to the compiler’s
CGAL-OS description (cf. Section1.9).

The test programs used to generate thecompiler config.h file can be found inconfig/testfiles. Both
compiler config.h and the test programs contain a short description of the problem. In case of trouble with
one of theCGAL CFG flags, it is a good idea to take a look at it.

Within CGAL, the file<CGAL/basic.h> manages all configuration problems. In particular, it includes the file
CGAL/compiler config.h. It is thereforeimportant that <CGAL/basic.h> is always included before any
other file. In most cases you do not have to do anything special for this, because many CGAL files (in particular,
<CGAL/Cartesian.h> and <CGAL/Homogeneous.h>) already take care of including<CGAL/basic.h> first.
Nevertheless it is a good idea to always start your CGAL programs with including<CGAL/basic.h>.

19

.2.1 Standard Header Replacements

Some compilers do still not provide a complete standard library. In particular they fail to provide theC++
wrappers for files from the standardC library, like cstddef for stddef.h. The CGAL install scripts checks
for all standard header files and generates a simple wrapper file in the CGAL include directory for those that
are missing. These wrapper files include the correspondingC header files and add all symbols required by
theC++ standard into namespacestd. You can turn off the additions to namespacestd by defining the macro
CGAL NO STDCNAMESPACE.

.3 Compiler Optimizations

You may have noticed that we do not set optimizer flags as-O by default in the include makefiles(see section1.10
for a description of the makefile structure in CGAL). The main reason for not doing this is that compilers run
much more stable without. On the other hand, most if not all CGAL programs will run considerably faster when
compiled with optimizations! So if you are going for performance, you should/have to add-O, -O3 or maybe
more specific optimizer flags (please refer to the compiler documentation for that) to theCXXFLAGS variable in
your application makefile:

#---#
compiler flags
#---#
The flag CGAL_CXXFLAGS contains the path to the compiler and is defined
in the file CGAL_MAKEFILE. You may add your own compiler flags to CXXFLAGS.

CXXFLAGS = $(CGAL_CXXFLAGS) -O

.4 Troubleshooting

This section contains some remarks about known problems and the solutions we propose. If your problem is
not listed here, please have a look at the CGAL homepage:

http://www.cgal.org

or send an email toinfo at cgal dot org.

.4.1 Compiler version test execution failed

Possibly already during the startup of the install script, the execution of the compiler version test might fail with
the following (or similar) error message.

ld.so.1: ./tmp_test: fatal: libstdc++.so.5:
open failed: No such file or directory

This means that the standard C++ library for your compiler is installed in a directory that is not on your current
runtime linker path. You can solve this problem by adding the directory containinglibstdc++.so to your
runtime linker path, usually represented by the environment variableLD LIBRARY PATH.

20

For example, if you have a standardgcc installation below/software/gcc-3.3.2/, you would type

export LD_LIBRARY_PATH=/software/gcc-3.3.2/lib:$LD_LIBRARY_PATH

for bourne shell alikes, while forcsh descendants the syntax is

setenv LD_LIBRARY_PATH /software/gcc-3.3.2/lib:$LD_LIBRARY_PATH

You might want to add this command to your shell startup file.

Alternatively, you can build the runtime linker path into the executables by setting corresponding custom linker
flags (cf. Section1.6.2).

.4.2 Defect in the G++ 3.2 ABI

Some versions ofgcc, for example GNU g++ 3.3.0, have problems in their C++-ABI, that surface in error
messages similar to the following.

error: due to a defect in the G++ 3.2 ABI, G++ has assigned
the same mangled name to two different types.

If this occurs to you, please seriously consider upgrading your compiler. This issue is fixed starting from
GNU g++ 3.3.1. Alternatively, you can add-fabi-version=0 to your custom compiler flags24. In interactive
mode, this is done via the Compiler Menu, as described in Section1.6.2. Afterwards rebuild the libraries. But
note that changing the ABI might have side effects. Hence, a compiler upgrade is the recommended fix here.

.4.3 The “Long-Name-Problem” on IRIX6

The system assembler and linker on IRIX6 cannot handle symbols with more than 4096 characters. But this
number can be exceeded when one starts nesting templates into each other. So if you encounter strange assem-
bler or linker errors like

as: Error: /var/tmp/ccPBl5vJ.s, line 41289: Truncating token:
<some ridiculously long token snipped>

there is a good chance that you suffer from this “long-name” problem.

In contrast to Solaris, using the GNU binutils does not work, sincegas has not been ported to IRIX6 yet. The
solution proposed in the GCC faq25 is to compile with the (experimental) option-fsquangle, that enables
compression of symbol names. This option was experimental and has disappeared in GCC 3.0, where the ABI
has been improved. So this is only interesting for GCC 2.95.3.

Citing from the above FAQ:

24Thanks to Christopher Intemann for pointing this out.
25http://gcc.gnu.org/cgi-bin/fom.cgi?file=41

21

Note that this option is still under development, and subject to
change. Since it modifies the name mangling mechanism, you’ll need to
build libstdc++ and any other C++ libraries with this option enabled.
Furthermore, if this option changes its behavior in the future, you’ll
have to rebuild them all again. :-(

This option can be enabled by default by initializing
‘flag_do_squangling’ with ‘1’ in ‘gcc/cp/decl2.c’ (it is not
initialized by default), then rebuilding GCC and any C++ libraries.

.4.4 The “Long-Name-Problem” on Solaris

The system assembler and linker on Solaris 2.5 and 2.6 cannot handle symbols with more than 1024 characters.
But this number is quickly exceeded where one starts nesting templates into each other. So if you encounter
strange assembler or linker errors like

/usr/ccs/bin/as: "/var/tmp/cc0B5iGc.s", line 24:
error: can’t compute value of an expression involving an external symbol

there is a good chance that you suffer from this “long-name” problem.

A solution is to install the GNU-binutils26 and to tell the compiler that it shall use the GNU– instead of the native
tools. From the compiler-menu (described in section1.6.2) you can set the corresponding option through the
custom compiler flags, i.e. forgcc you would add

-B/my/path/to/gnu/binutils/bin

assuming you installed the GNU-binutils executables in/my/path/to/gnu/binutils/bin.

If you cannot (or do not want to) install GNU-binutils, there is a workaround that lets you compile, link and run
your programs, but it prevents debugging, since the executables have to be stripped. In short the workaround is
to compile with-g and to link with-z nodefs -s on Solaris,-U -s on IRIX, respectively.

In order to still have portable makefiles (see section1.10), we define flagsLONG NAME PROBLEM CXXFLAGS and
LONG NAME PROBLEM LDFLAGS in the include makefiles which are empty except for the Solaris platform where
they are set as stated above. In order to use these flags, edit your application makefile and add the flags to
CXXFLAGS resp.LDFLAGS as indicated below.

#---#
compiler flags
#---#
The flag CGAL_CXXFLAGS contains the path to the compiler and is defined
in the file CGAL_MAKEFILE. You may add your own compiler flags to CXXFLAGS.

CXXFLAGS = $(LONG_NAME_PROBLEM_CXXFLAGS) $(CGAL_CXXFLAGS)

#---#
linker flags
#---#

26seehttp://www.gnu.org/software/binutils/

22

The flag CGAL_LDFLAGS contains common linker flags and is defined
in the file CGAL_MAKEFILE. You may add your own linker flags to CXXFLAGS.

LDFLAGS = $(LONG_NAME_PROBLEM_LDFLAGS) $(CGAL_LDFLAGS)

.4.5 LEDA and STL conflicts

If you are using an old version of LEDA, the combination of LEDA and STL may give some problems. In order
to avoid them, it is highly recommended to use the latest LEDA release, since this is what we test CGAL with.

With MS Visual C++ or BORLAND C++ , LEDA has to be compiled and used with theLEDA STD HEADERS
flag set. CGAL uses C++ standard conformant headers27, while LEDA can also work with the old-
style header files; but mixing the styles is strictly forbidden. Before compiling LEDA edit the file
$(LEDAROOT)/incl/LEDA/system.h and uncomment the#define in the following fragment there.

// use c++ std headers
//#define LEDA_STD_HEADERS

MS Visual C++ -specific problems. Also, the LEDA and CGAL libraries have to be compiled with the same
options controlling the use of debugging and multithreading.28

If a binary release of LEDA is used, make sure that it is one of them that uses new-style headers. Namely, among
the self-extracting executables, choose one of these that have the name ending with-std.exe.

.4.6 MS VisualC++ -specific C++ problems

MS Visual C++ 6.0

This compiler version is no longer supported starting with CGAL 3.0.

MS Visual C++ 7.0 (.NET)

This compiler version is no longer supported starting with CGAL 3.1.

Other problems.

Here goes an incomplete list of problems encountered, and CGAL-specific workarounds, if available. Compiler
error messages are meant to be hints only, and do not pretend to be complete, as well.

1. Compiler does not support the Koenig lookup. That is, it does not search in the namespace of the argu-
ments for the function. Seeconfig/testfiles/CGAL CFG NO KOENIG LOOKUP.C.

2. Internal compiler errors can sometimes be avoided by increasing the amount of memory available to the
compiler. Use-Zm<number> option. In CGAL makefiles it is set to-Zm900, meaning “using 900% out of
the usual memory limit”.

27the ones that do not have.h suffix
28MS VisualC++ compilation/linking options-ML, -MT, -MD, -MLD, -MTD, -MDD

23

3. [...]/VC98/INCLUDE/xlocnum(268) : error C2587: ’ U’ :
illegal use of local variable as default parameter can occur29. The only workaround we
know is to redefine the macroVIRTUAL in <xlocnum>30 to be empty. Search for
#define VIRTUAL virtual there and replace it by#define VIRTUAL .

4. Various matching failures for overloaded functions and ctors. Use dummy parameters.

5. Avoid multiple forward declarations.

6. If necessary, simplify template parameters by using extratypedefs.

.5 Scripts

.5.1 create makefile

The bourne-shell scriptcreate makefile is contained in theCGAL-3.1/scripts directory. It can be used to
create makefiles for compiling CGAL applications. Executingcreate makefile in an application directory
creates amakefile containing rules for every*.C file there.

In order to use this makefile, you have to specify the CGAL include makefile (see section1.10) to be used. This
can be done be either setting the environment variableCGAL MAKEFILE or by editing the line

CGAL_MAKEFILE = ENTER_YOUR_INCLUDE_MAKEFILE_HERE

of the created makefile. First remove the “#” at the beginning of the line and then replace the text after “=” by
the location of the include makefile.

Finally typemake to compile the application programs.

29For instance, in CGAL Min circle package
30Yes, in the MS VisualC++ header! You need not edit the actual file though. Copy it to a directory that is searched ahead of the other

directories. DISCLAIMER:We do not know if the actions described in this footnote are legal in your country. You are on your own here.

24

Index

building applications,17

CGAL

getting,3
homepage,3
upgrade,8, 15

CGAL MAKEFILE, 16
CGAL NO STDC NAMESPACE, 20
compile.log, 8
compiler menu,8
compiler specific include directory,19
Compiler version test,20
compilers

choosing,8, 12
disabling shared libraries building,14
g++ 3.2 ABI, 21
missing standard header files,20
optimization,20
setting custom flags,8, 14
supported,2
version test,20
workarounds,19

compiling applications,17
CORE

enable support,10, 13
installing,10
menu,9

CORE

enable support,8
CORE INCL DIR, 10, 13
CORE LIB DIR, 10, 13
create makefile, 24
CUSTOM CXXFLAGS, 14
CUSTOM LDFLAGS, 14
Cygwin

installation on,17
pathnames,17
setup for MS VisualC++ , 18
setup on MS Windows-9*,18
setup on NT4,18

directories
compiler specific,19
config/install, 6, 7, 15
config/testfiles, 19
include/CGAL/config, 19

structure,3
disable-shared, 14

files
basic.h, 19
compiler config.h, 19
temporary,8

g++ 3.2 ABI, 21
getting CGAL, 3
GMP

enable support,9, 13
installing,9
menu,9

GMP

enable support,8
GMP INCL DIR, 9, 13
GMP LIB DIR, 9, 13
GMPXX

enable support,13

identifying OS and compiler,15
include makefile,6, 15, 16
install.completed, 8
install.log, 5, 8
install cgal, 4

interactive mode,7
non-interactive mode,12
rebuild-all option,15
upgrade option,15
verbose mode,15
version number,14

installation
interactive,7
non-interactive,12
on Cygwin,17

interactive installation,7

LEDA

enable support,10, 13
menu,10
on BORLAND C++ , 23
on MS VisualC++ , 23
support in CGAL, 19

LEDA

enable support,8

25

LEDA INCL DIR, 10, 13
LEDA LIB DIR, 10, 13
logfiles,8
long name problem,21, 22

main menu,5
makefile structure,16
menus

CORE, 9
GMP, 9
LEDA, 10
compiler,8
main,5
Qt, 10
support,8

missing standard header files,20
MS VisualC++

setup on cygwin,18
specific C++ problems,23

non-interactive installation,12

optimization compiler flags,20
OS description,12, 14, 15

problems with long names,21, 22

Qt
enable support,8, 11, 12, 14
menu,10

QT DIR, 14
QT INCL DIR, 11, 14
QT LIB DIR, 11, 14
QT MOC, 11, 14

scripts
create makefile, 24
install cgal, 4

standard header replacements,20
support menu,8
supported compilers,2

troubleshooting,20

upgrading CGAL, 8, 15

visualization
geomview,4
LEDA, 4
Qt, 4

workaround flags,19

26

	1 Installation
	1.1 Introduction
	1.2 Prerequisites
	1.3 Getting Cgal
	1.4 Installing Cgal
	1.5 A Sample Installation
	1.6 The interactive mode
	1.7 The non-interactive mode
	1.8 Upgrading a previous Cgal installation
	1.9 Identifying OS and Compiler
	1.10 The Cgal makefile structure
	1.11 Compiling a Cgal application
	1.12 Installation on Cygwin
	.1 Using Cgal and Leda
	.2 Compiler workarounds
	.3 Compiler Optimizations
	.4 Troubleshooting
	.5 Scripts

