Installation Package

Separate Build

December 21, 2004

Contents

1

Installation 1
1.1 Introduction. 2
1.2 Prerequisites. e e e 2
1.3 Getting GAL o o 3
1.4 Installing GSAL e e e 4
1.5 ASamplelinstallation 4
1.6 Theinteractive mode e 7
1.7 Thenon-interactive mode. 12
1.8 Upgrading a previous@AL installation 15
1.9 Identifying OSand Compiler 15
1.10 The GAL makefile structure 16
1.11 Compilinga GAL application. 17
1.12 Installation on Cygwin. e e e e e e 17
1 Using GSAL and LEDA o o o e e 19
2 Compilerworkarounds. 19
.3 Compiler Optimizations e 20
A Troubleshooting L e 20
B SCHPES. o e 24

Chapter 1

Installation

Contents
1.1 Introduction e e 2
1.2 PrereqUISIteS o e 2
1.3 GettingCGAL . . v v v v e 3
1.3.1 Visualization. 4
1.4 Installing CGAL 4
1.5 ASamplelInstallation 4
151 Startingthescript. 4
1.5.2 Buildingthe GAL libraries 5
1.5.3 Buildingthe GAL libraries 6
1.6 Theinteractivemode L. 7
1.6.1 Filescreatedduringinstallation 7
1.6.2 TheCompilerMenu. e 8
1.6.3 TheSupportMenu e 8
164 TheGMPMENU. e e e 9
165 TheCOREMeENU e e e 9
1.6.6 ThelEDAMENU e 10
1.6.7 TheQtMenu. e e e 10
1.7 Thenon-interactive mode. e 12
1.7.1 Settingupsupportfor GMP. 13
1.7.2 Settingup supportfor GMPXX. e 13
1.7.3 Settingupsupportfor CORE. 13
1.7.4 Settingup EDASUPPOrt. o e 13
1.75 SettingupsupportforQt. 14
1.7.6 Setting custom compiler/linkerflags.o oo . 14
1.7.7 Disabling shared libraries building. 14
1.7.8 OtherOptions e 14
1.8 Upgrading a previousCGAL installation 15
1.9 IdentifyingOSand Compiler e 15
1.10 TheCGAL makefile structure 16
1.11 CompilingaCGAL application 17
1.12 Installation on Cygwin e 17
1.12.1 Pathnames. e e e 17

1.12.2 MSVisuab++-setup 18

UsingCGAL and LEDA o 19
Compilerworkarounds e e e 19
.2.1 Standard Header Replacements. 20
Compiler Optimizations o o e e e 20
Troubleshooting e 20
4.1 Compiler version testexecutionfailed. 20
4.2 Defectinthe G++3.2ABL 21
4.3 The“Long-Name-Problem”onIRIX6 21
4.4 The“Long-Name-Problem”onSolaris 22
45 Lebpaand STLconflicts. 23
4.6 MS Visualc++ -specific G+ problems 23
SCHPLS . o o e e 24
5.1 createmakefile e e e e e e e e 24

1.1 Introduction

CGAL stands fortComputational Geometry Algorithms Librarit is a software library written in €+, whose
development started in ansERIT LTR project. The goal of GAL is to make the large body of geometric
algorithms developed in the field of computational geometry available for industrial application.

This document describes how to instalb&. on Unix-like systems. Besides that, you will find some informa-
tion about the makefile structure ofS&L and the support for using@xL together with other software libraries,
such as the 8u Multiple Precision library P!, the QoRE library? for robust numerical and geometric com-
putation, LEDA, the Library of Efficient Datatypes and Algorithf®r Trolltech’s QT toolkit.

1.2 Prerequisites

In order to build the GAL libraries you need a €& compiler. Most recent compilers on Unix platforms and
MS Windows are supported, provided that they reasonnably conform to the ISO 14882 standard for C

CGAL-3.1 supports the following compilers/operating systems:

compiler ‘ operating system

SGI Mips(Pro)cc 7.4 (n32 and 64} | IRIX 6.5

GNU g++2.95.3,3.2,3.3, 3.3 IRIX 6.5/ Solaris 2.6+ / Linux 2.x / MacOS X / MS Windows 95/98/2000/XP/N 4
SunpPRrocCC 5.511 Solaris 2.6+

MS Visualc++ 7.1 ((NET)12

MS Windows 95/98/2000/XP/NT4

INTEL C++ 8

013

MS Windows 95/98/2000/XP/NT4

Thttp://www.
“http://wuw.
Shttp://wuw.
“http://www.

swox.com/gmp/
cs.nyu.edu/exact/core/
mpi-sb.mpg.de/LEDA
trolltech.com

}

If you are going to install GAL using Cygwirt?, please read Sectidn12first.

Note that Guu g++ 2.96/97 are not officiacc releases that are neither supported byabe teant® nor by
CGAL. Please upgrade toN® g++ 3, if you happen to have this compiler.

1.3 Getting CGAL

The GsAL library can be downloaded from thes@L homepage:
http://www.cgal.org

and go to the ‘Download’ section. Just follow the instructions on this page to obtain your copy of the library.

After you have downloaded the file containing the AL library, you have to decompress it. Use the commands

gunzip <filename>.tar.gz
tar xvf <filename>.tar

Alternatively, your browser might be able to invoke the right decompression program by itself.

In both cases the directoryzar-3.1 will be created. This directory contains the following subdirectories:

directory contents ‘

auxiliary | packages that can optionally be used withAT

config configuration files for install script

demo demo programs (some of them neegdlda, geomview or other third-party products
doc_html documentation (HTML)

~—

doc_pdf documentation (PDF)

doc_ps documentation (Postscript)

examples | example programs

include header files

lib (shared) object libraries

make files with platform dependent makefile settings
scripts some useful scripts (e.g. for creating makefiles)
src source files

"http://www.sgi.com/software/irix/tools/c++.html
Shttp://gcc.gnu.org/

LOwith Cygwin (http: //www.cygwin. con)
Unttp://www.sun.com/software/Developer-products/cplusplus/
nttp://msdn.microsoft.com/visualc/
Bhttp://developer.intel.com/software/products/compilers/
2http://www.cygwin. con

Bhttp://gcc.gnu.org/gcc-2.96.html

The directoryauxiliary contains a distribution of the B Multiple Precision library &p4. The directory
src/Core contains a distribution of the @RE library™® for robust numerical and geometric computation.

The directoryinclude/boost contains header files of thed®sT project®.

GmP, CorEand BoosTare not part of GAL and have their own licenses.

1.3.1 Visualization

The programs in theemo directory provide visual output. Most of these UBBAL::Qt widget a widget and
some helper classes that allow to interact with two dimensioalLlGobjects in Q based applications.

If you have LEDA installed, you might want to us@GAL::Windowstreamas an interface between two dimen-
sional GsAL objects and éeda window To be able to use thé&/indow stream you need do nothing more than
compile GSAL with LEDA support.

Some demo programs for 3D structures require the geomview program for visualization. This is available from
http://www.geonview.org (note that it does not run on MS Windows).

1.4 Installing CGAL

The directoryCGaL-3.1 contains a Bourne shell script calledstall_cgal . The script can be run in two
modes: a menu-driven interactive mode and a non-interactive mode. Normally you should use the interactive
mode, but in case you run into problems with it or do not like it for some reason, you can still use the non-
interactive mode.

We first describe a sample installation in sectlof This provides you with an overview on how the interactive
installation works. If you want more detailed information about specific menus and their options, take a look at
sectionl.6. Finally, for the non-interactive mode refer to sectib.

If you want to use [EDA together with GAL, have a look at sectior.

1.5 A Sample Installation

In this section we sketch an example installation orua 8unning Solaris 2.9 with the & g++ 3.3 compiler.
For a complete description of the different menus and their options refer to sédiion

1.5.1 Starting the script

Go to thecGaL-3.1 directory and enter the command

./install_cgal -1

http://www. swox.com/gmp/
Bhttp://www.cs.nyu.edu/exact/core/
18http://www.boost .org/

You get a message indicating th&&L version you are going to install and that you are running the interactive
mode. Then it takes some time while the script locates a number of utility programs. You will not get informed
about thi$’, but see some dots written to the screen indicating progress.

This is the install script for CGAL 3.1

starting interactive mode - one moment, please

Choosing compiler GNU 3.3.2.

If there is any compiler installed on your system and accessible throughpgoarenvironment variable that

is supported by GAL, one of these compilers is chosen. If there is more than one compiler installed on your
system (and supported bya@L), you may choose to use a different compiler from the compiler menu (cf.
Sectionl.6.2.

A menu similar to the following will appear on your screen.

R Y

*x CGAL 3.1 Installation Main Menu *x
* ok * %
** * K
** 0S: sparc_sun0S-5.9 *x
** Compiler: GNU 3.3.2 *x
*H Support for: no other library. *x
*k * %
** Compiler is supported by CGAL. *x
** The setup has not been tested. *x
* % * %
*H There are no libs for this os/compiler. *x
* % * %
*k <C> Compiler Menu *x
** <S> Support Menu *x
*k <T> Test (and save) setup *x
*k <A> Run all setup tests (no cache) *x
*% * %
** Build CGAL Libraries *x
* K * %
** <Q> Back to 0S *x
* % * %
*H Your Choice: *x

** *%

R R S T Y

The first lines below the headline contain some kind of status report: current OS and compiler, and which
third-party software libraries are supported (such &@CORE, LEDA, or QT). Moreover you can see that the
current setup has not yet been tested, and that there do not existliBraries for this OS/compiler combination

in the GaAL lib directory by now.

1.5.2 Building the CGAL libraries

In a first step, you should test the current setup by typirig Then a number of tests are done to check whether
your compiler supports certain language constructs or has specific bugs. There is quite a number of these tests,
so this step may take a while. For each test you should get a message what particularly is tested at the moment
and what the result is.

171f you are that curious what happens exactly, have a look at thedile-3.1/install.log.

5

R R S e

** The following lines show results of configuration tests. **
*H Some of the tests might fail, since many compilers are *o

*H still not completely ANSI/ISO compliant. *x
*x Since we worked around the arising problems, *x
*H **%% CGAL will work fine *** *x
*x regardless of the outcome of these tests. *x

kK kk Kk kkkkk kA Kk kK khkhh Kk kkkhkhkkkkkhkkkh Kk kkkhkhk Kk kkhkkk Ak kkkk % K

Checking for standard header files
algorithm ... ok.

<many lines omitted>

Testing for VC7_PRIVATE_TYPE_BUG ... ok.
Saving current setup ... done.

If all these tests have been completed successfully, the current settings are saved into a file that resides in the
directoryCGAL-3.1/config/install. Thus, if you run the install script a second time for this OS/compiler,

you will not have to go through the whole config-/test cycle again, but the configuration will be retrieved from
the corresponding config file instead.

1.5.3 Building the CGAL libraries

We are now ready to build thedL libraries. Just typel” to start compilation. Building consists of three
steps:

1. writing the include makefile,
2. compiling the static librarieand

3. compiling the shared libraries.

The include makefile encapsulates the OS— and compiler-specific settings and should be included (hence the
name) in all makefiles that compiled@L applications. If everything went ok, the output should look as follows.
(Otherwise, you should have a look at the error messages from compiler or linker.)

R R R

* K * K
*x Compiling CGAL 3.1 *x
kk o * %
* ok * %

R R R

0S: sparc_Sun0S-5.9
COMPILER: GNU 3.3.2

GMP : not supported
GMPXX: not supported

CORE: not supported

LEDA: not supported

Qt: not supported
Generating Makefiles ... done.
Building CGAL_lib ... done.
Building CGAL_sharedlib ... done.

R R R R e

*K Please press <ENTER> to continue. *x
khkhkkkk kX kkkkhhhhkhk kXA kkkhhhhkhkkkkkkkhhkhkhkhkkkkkkhkkkkhkkkkkkkkkkkx

That's all, it's done. Press<tNTER>" to return to the main menu and proceed by installing for a different
compiler (go to the compiler menu and choosgt6 get a list of supported compilers detected on your system),
or with GMP, CORE, LEDA, or QT support (go to the @p, CORE, LEDA, or QT menu, respectively). Another

6

option is to simply quit the install script by typing™ When leaving the script, you get a list of successful builds
during the session. Furthermore, the script prints the settingzof MAKEFILE for the last active configuration.
Remember to set this environment variable before compilisgiCapplications. On bourne shell derivatives,
you would type in our example

export CGAL_MAKEFILE=CGAL-3.1/make/makefile_sparc_Sun0S-5.6_g++-2.95.3
while for csh descendants the syntax is
setenv CGAL_MAKEFILE CGAL-3.1/make/makefile_sparc_Sun0S-5.6_g++-2.95.3

In Section1.10you can find more information on thed@L makefile structure, and how to SEIAL_MAKEFILE
when using GAL on several platforms.

1.6 The interactive mode

To run the install script in the interactive mode, go totiser-3.1 directory and enter the command
./install_cgal -1

After initialization during which certain utility programs are located and your system is searched for compilers
supported by GAL, you get into the GAL installationmain menusee pagé for a picture).

From the main menu you can reach a number of different sub-menus, of which the most important maybe is the
compiler menuThis is where you can choose the compiler you want to work with and set custom compiler or
linker options. The compiler menu is described in Seclidh2

If you want to use &P, CORE, LEDA, or QT with CGAL, you will have to go to thggmp menucf. Sec-
tion 1.6.4, core menu(cf. Section1.6.5, leda menu(cf. Sectionl1.6.69, or gt menu(cf. Sectionl.6.7),
respectively.

There is no menu for BosThecause it is available in thed@L installation by default. If you want to specify
an alternate BosTinstallation, you can use tl®JSTOM_CXXFLAGS facility.

Finally you can build the GAL libraries by typingo. However, it is recommended to run teetup test which

is available in all menus as optian- before. The setup test includes an STL testp@est, a @REtest, a

LEDA test, and a @ test. But not all tests are performed always; e.g., tie @&st is only done, if you enabled

GMP support. The install script keeps track of the tests passed and only tests again, if you change the setup in a
way that might affect the test result. If you want to readbtests, you have to choose optiost from the main

menu. This also retests forM®/L EDA/QT installations in system directories. Otherwise, this is only done the

first time you enable @&p/LEDA/QT support for an OS/compiler combination.

1.6.1 Files created during installation
The install script stores all relevant settings for an OS/compiler combination in the directory

CGAL-3.1/config/install/<CGAL-OS-description >

7

where<CGAL-OS-description identifies your OS/compiler combination in a way specified in sectién'®
This saves you typing everything again, if you upgradeAC or another package that makes recompiling the
CGAL libraries necessary.

Besides the config filesnstall_cgal uses several temporary files during interactive installation. Most of them

are removed after use, but some are not, since it might be helpful to keep some information about the last run.
You can keep or delete them as you like, as they are not needed anymore once the script terminated. A list of
these files (all are plain ASCII and resided@eaL-3. 1) follows.

’ filename content

install.log detailed overall protocol

install.completed | list of systems for which GAL libraries have been built

compile.log output of the last compiler call

1.6.2 The Compiler Menu

Here is the place to set the compiler specific options, such as the compiler to use (if more than one has been
detected), custom compiler or linker flags, or deciding whether to build shared libraries or not.

Compiler Menu

<C> Choose the compiler to be used from the list of detected compilers. You can also register other
compilers, if they have not been detected automatically.

<F> Setcustom compiler flags. These are the first flags given to the compiler in every call. Under hormal
circumstances there should be no need to set any such flag.

<L> Set custom linker flags. These are the first flags given to the linker in every call. Under normal
circumstances there should be no need to set any such flag.

<S> Toggle shared libraries building. By default, shared libraries are built (gigcGAL. s0), but it is
possible to only build static libraries using this option.

1.6.3 The Support Menu

This menu provides the starting point to setup the support for third-party software libraries suakh aS@RE,
LEDA, or QT.

Support Menu
<G> Setup support for the KB Multiple Precision library @p.

<C> Setup support for the @RE library for robust numerical and geometric computation.
<L> Setup support for EDA, the Library of Efficient Datatypes and Algorithms.

<K> Setup support for Trolltech’s Qtoolkit.

18Note that these files are only OS/compiler specific, i.e. there are no different files for with and wittmasupport.

8

1.6.4 The GMP Menu

This menu is to set @p (GNU Multiple Precision Library) specific options, if you plan to us&&together
with CGAL. In case you do not already havev@ installed on your system, an@ distribution is shipped with
CGAL. You can find it in theauxiliary directory. The menu provides an option to instaM&in your CGAL
directory treé®, but — of course — you can also instalM® independently from GAL.

If GMP support is enabled for the first time, the script tests whethe S installed in standard system directo-
ries or in the GAL tree. If this test does not succeed, you have to supply directories containing/thedader
files (GMP_INCL_DIR) and GuP libraries GMP_LIB_DIR). Even if the tests are passed, you still have the option to
set these directories differently.

If you decide to install the &P distribution shipped with GAL from the install script, P will be configured

by calling itsconfigurescript. Gup being a C library, it requires a C compiler. ttenfigurescript usually does

a good job at finding a C compiler on the system, but it also gives the possibility to specify it by setting the
environment variabl€C before callingconfigure If you want the GAL install script to build G1p and specify

the C compiler to be used, you can also to the same, by settinGGhenvironment variable (see themMe
installation documentation for details). If you need a more complex configuratiomef @e recommend that

you install Qup yourself separately.

If GMP support is enabled, you may additionnally enable support for GMPXg'&built-in C++ interface,
from the GQuP menu. Note that this is not supported by all C++ compilers, you should checkmirar@nual
for more information. Once you choose to have GMPXX support, then if you insia fom the CGAL tree,
GmP will be configured with C++ support.

GMP Menu

<C> Install the Gup distribution shipped with GAL in the GGAL directory tree.

<G> Enable/Disable @GP support in GAL.

<X> Enable/Disable GMPXX support in@AL.

<I> (present ifGMP support is enabledpet the include directory for &p.

<L> (present ifGMP support is enabledyet the directory containing theM® libraries.

<M> (present if GMP support is enabled, there is @MP installation in system directories or in the
CGAL tree andGMP_INCL_DIR or GMPLIB _DIR have been set)se Qup installation from system
directories / GAL tree.

1.6.5 The CORE Menu

This menu is to set GRE specific options, if you plan to usedRE together with GAL. Since ®RErequires
GMP, you have to enable 1@ support together with GRE support. Refer to Sectioh.6.4for how to setup
GMP support for GSAL.

The current ©RErelease is shipped together witle&L. If CORE support is enabled, thedRElibrary is built
and installed together with thed®@L libraries. Hence, if you enabledRE support, you have to (re)build the
CacAL libraries afterwards (cf. Sectiah5.3. Another option is to use a@RE installation that is independent

19This option on MS Visuat++ just unpacks a pre-compiled library that comes withaC.

9

from CGAL. For this you have to supply directories containing tteRE header files{ORE_INCL_DIR) and the
CoRElibrary (CORE_LIB_DIR).

CORE Menu

<C> Enable/Disable GRE support in GAL.
<I> (present if CORE support is enabledpet the include directory for GRE.
<L> (present if CORE support is enabledpet the directory containing thedRE library.

<Z> (present if CORE support is enabled andoRE_INCL_DIR or CORELIB _DIR have been set)se
CoRreEinstallation from GsAL directories.

1.6.6 TheLEDA Menu

This is the place to setdDA specific options, if you plan to useelDA together with GAL (see also Section).
In order to enable EDA support in GGAL, LEDA has to be installed on your system.

If L EDA support is enabled the first time, the script tests whettEwaLis installed in standard system di-
rectories. If this test does not succeed, you have to supply directories containingtheheader files
(LEDA_INCL_DIR) and LEDA libraries (EDA_LIB_DIR). Even if the tests are passed, you still have the option
to set these directories differently.

LEDA Menu
<E> Enable/Disable EDA support in GAL.
<I> (presentifLEDA support is enabled$et the include directory for#DA.

<J> (present ifLEDA support is enabled, EDA headers have been found in a system include directory
andLEDA_INCL_DIR has been sefyse LEDA header from system include directory.

<L> (presentifLEDA support is enabled}et the directory containing theelDA libraries.

<M> (present ifLEDA support is enabledl.EDA libs have been found in a system lib directory and
LEDALIB _DIR has been set)yse LEDA libraries from system lib directory.

1.6.7 The Qt Menu

This menu is to set @ specific options, if you plan to usetQogether with GAL. Note that for use with
CGAL, Qrt version 2.2 (or later) if required. In order to enable Qupport in GAL, QT has to be installed
on your system first. Unlike for @p, there is no option to install @from the GsAL installation script. For
information on @, please refer to

http://doc.trolltech.com/

advanceGq——

The Qr menu has a basic mode and an advanced one. If youngdallation is standard, you shouldn’t have to
go into the advanced mode.

10

The Qr menu starts in basic mode, unless 3 installed in standard system directories (because in that case,
the advanced mode is quicker).

I— advanceq———

Basic mode (to use with a standard Qt installation)

If QT support is enabled the first time, the script tests whethes¢heIR environment variable points to a
valid QT directory. is installed in standard system directories. If that is not the case, you have to supply the Q
directory containing your @installation. Even if the test passed, you still have the option to set this directory
differently. If your Qr installation is not standard, you would have to go into the advanced mode.

Qt basic Menu
<K> Enable/Disable Qt support in&L.
<A> (present if Qt support is enable@o to the advanced mode
<D> (present if Qt support is enablg&et the Qt directory.

<E> (present if Qt support is enablefiQTDIR points to a valid Qt directory andT_DIR has been st
UsesQTDIR as Qt directory.

li advanceq——

Advanced mode (to use with a non-standard Qt installation)

In that mode, you have to specify separately directories containing thee@der filesqT_INCL_DIR) and the
Qr library (0T_LIB_DIR), and the path to the MO® executableqT_Moc) unless they are in system directories.
Even in that case, you still have the option to set them differently.

2pttp://doc.trolltech.com/moc.html

11

Qt advanced Menu
<K> Enable/Disable Qt support inGL.

 (present if Qt support is enable@o to the basic mode
<I> (present if Qt support is enablg&et the directory containing Qt headers.

<J> (present if Qt support is enabled, Qt headers are in system directorieg@nuCL_DIR has been
sed Use Qt headers from system include directories.

<L> (presentif Qt support is enable&et the directory containing Qt library.

<M> (present if Qt support is enabled, Qt library is in system directories@ndIB_DIR has been st
Use Qt library from system library directories.

<O> (present if Qt support is enable&et the path to MOC executable.

<P> (presentif Qt supportis enabled, MOC is in path grmdMoc has been s¢tUse Qt MOC executable
in path.

I— advanceG———

1.7 The non-interactive mode

To run the install script in the non-interactive mode, go todb&L-3. 1 directory and enter the command
./install_cgal -ni <compiler>

where<compiler> is the C++ compiler executable.

You can either specify a full path, e.gusr/local/bin/g++, or just the basename, e.g++, which means

the script searches yoBATH for the compiler location. If your compiler call contains whitespaces it has to be
quoted, e.g../install_cgal -ni "CC -n32". The options given this way become part of yousAL-OS
description (see sectioh.9) which is useful e.g. to distinguish between different compilers using the same
frontend (SGI Mips(ProJc on IRIX6).

There are a number of additional command line options to customize yeuar Getup which are discussed
below. You should read the corresponding paragraphs before you continue, especially if one or more of the
following conditions apply to you:

you want to use @p together with GAL (Sectionl.7.]),

you want to use @p’s built-in C++ interface together with €aL (Sectionl.7.2),

you want to use ORE together with GAL (Sectionl.7.3,

you want to use EDA together with GAL (Sectionl.7.4),

you want to use @ together with GAL (Sectionl.7.5.

Once you started the script, it should give you a message indicatingthe &rsion you are going to install and
that you are running the non-interactive mode. Then it proceeds by locating some utility programs, determining
your OS and compiler version and displaying the settings you gave via command line. Your compiler is also

12

checked for a number of bugs resp. support of certain language features; a measabgays indicates that
your compiler works as it should, that is, a feature is supported or a Ingj jgesent. On the other hand; or
unfortunately indicate a lack of support or the presence of a bug.

Finally the current setup is summarized, system specific directories for makefiles and libraries are created (if
they did not exist before) and a new include makefile is written into the makefile directory. If there already
exists a makefile for the current OS/compiler combination, it is backed up and you should get a corresponding
message.

To compile the GAL libraries go now to therc directory. Then typ@aake -f makefile_1ib to compile the
CGAL object library andnake -f makefile_sharedlib to compile the GAL shared object library. If you
want to make changes to the makefiles first, see sedtibdfor an explanation of the makefile structure of
CGAL.

If you enabled ©RE support and want to use theo®E distribution shipped with GAL, go to thesrc/Core
directory and typeake to compile the ©RE library.

If you enabled @ support, go to therc/CGALQt directory and typenake to compile the GAL QT support
library.

1.7.1 Setting up support for GMP

By default there is no support forN@, but you can change this easily by use of the command line option
“—gmp”. If GMP is installed in system directories on your system, you are already done now. If this is not the
case, you have to supply the directories containing the Geader files (*-GMP_INCL_DIR <dir>") and the

GMP library (“--GMP_LIB_DIR <dir>").

1.7.2 Setting up support for GMPXX

By default there is no support for GMPXX,M8's built-in C++ interface, but you can change this easily by use
of the command line option-gmpxx”. The only requirement for this to work is thatM® support is enabled
correctly.

1.7.3 Setting up support for CORE

By default there is no support fordRg, but you can change this easily by use of the command line option
“—core”. If you want to use the ORE distribution shipped with GAL, this is all you have to do. Otherwise,
you also have to supply the directories containing tlte€header files (*~-CORE_INCL_DIR <dir>") and the
CoreElibrary (“--CORE_LIB_DIR <dir>").

1.7.4 Setting upLEDA support

See also sectiorll. By default there is no support forebA, but you can change this easily by use of the
command line option“1eda”. Unless LEDA is installed in system directories, you have to supply the directories
containing the [EDA header files (*-LEDA_INCL_DIR <dir>") resp. the LEDA libraries for your compiler
(“--LEDA_LIB_DIR <dir>").

13

1.7.5 Setting up support for Qt

By default there is no support for 1Q but you can change this easily by use of the command line option
“—qt”. If QT is installed in system directories on your system or$heDIR environment variable points to
the Qr directory, you are already done now. If this is not the case, you have to supply either thiee@

tory (“--QT_DIR <dir>") if your QT installation is standard, either directories containing threh®ader files
(“--QT_INCL_DIR <dir>") and the Qr library (“--QT_LIB_DIR <dir>"), and the path to the MO& executable
(“--oT_MOC <exe>") if your QT installation is not standard.

1.7.6 Setting custom compiler/linker flags

You can supply custom compiler and linker flags using the optionsc(fsToM_CxxFLAGS <flags>") and
(“--cusTOM_LDFLAGS <flags>"). These are the first flags given to the compiler/linker in every call.

Note: Do not forget to quote your options in case they contain spaces. Example:

./install_cgal -ni g++ —--CUSTOM_CXXFLAGS "-I/my/include -02"

1.7.7 Disabling shared libraries building

You can disable the building of shared libraries (eLgbCGAL. so) using the option (“-disable-shared”).
This way, only static libraries (object file archives) are built.

Example:

./install_cgal --disable-shared -ni g++

1.7.8 Other Options

There are some less important features of the install script we will summarize here.

First of all, you can get the version numberiofstall_cgal with option “--version”. Note that all other
options are ignored in this case.

Second there is an optiorés <compiler >" where <compiler> is your C-+ compiler. This allows you to
determine your GAL-OS description (see sectidn9). The compiler can either be given by an absolute path
like

./install_cgal -os /usr/local/gcc-2.95.3/sun/bin/g++
or just by denoting its basename, as long as it is on your path:

./install_cgal -os CC

2Ihttp://doc.trolltech.com/moc.html

14

The option is intended for testing purposes and automatic detection of the correct include makefile (see also
sectionl.10).

Finally, there exists an option-“verbose” that can be set in interactive mode as well as in non-interactive
mode. When set you get a detailed summary of error messages occurringahysampiler test (determining

STL version etc.). Normally you only get these messages, if a required test (such as the general STL test) fails,
otherwise you are just informed, it succeeded or not. This option is not recommended for general use, but it
can be useful to check why a certain test fails that was expected to be passed.

1.8 Upgrading a previousCGAL installation

In case you already have a previous release ®@ACinstalled on your system, you might like to reuse your
configuration files and @p installations. Simply use the following command to copy them into the right place:

./install_cgal --upgrade <OLD_CGAL_DIR>

where<0LD_CGAL_DIR> is the root directory of your existing &L installation
(e.g. /pub/local/CGAL-3.0). You can then build all libraries for the actual operating system that existed in
your previous GAL installation with

./install_cgal --rebuild-all

If you want to install GGAL for more than one operating system in the same directory structure, you have to run
the latter commandrébuild-all) once on each operating system.

Using--build-all instead of--rebuild-all will save you the time of the configuration tests, and will only
rebuild the libraries.

If you want to install only one configuration on a given operating system, you can specify its name (the base
name of a file iCGAL-3.1/config/install) with the option--rebuild <config> Or --build <config>.

Notethat some compilers that have been supported in previaus.€eleases might not be supported iGAL-
3.1 anymore, see sectidn2. Trying to build GsAL-3.1 with these compilers will most probably fail. You can
solve this problem by deleting the obsolete config files (see sett®d) from CGAL-3.1/config/install
before issuing theebuild-all command.

Similarly, you might want to use compilers withd@L-3.1 that have not been supported in previous releases.
For these compilers please follow the usual procedure as described in de6ton.7.

1.9 Identifying OS and Compiler

Since GsAL supports several different operating systems and compilers, this is also reflected in the structure of
the GeAL directory tree. Each OS/compiler combination has its own lib directory urgear-3.1/1ib) (and
analogously its own include makefile @2A1-3.1/make) named as determined by the following scheme.

<arch>_<0s>- <0s-version-_<comp>-<comp-version[_LEDA]

15

<arch> is the system architecture as defined bydme -p” or “uname -m”,
<o0s> is the operating system as defined hyidme -s”,

<os-version> is the operating system version as defined inathe -r”,
<comp> is the basename of the compiler executable (if it contains spaces, these are replacedrny "-")

<comp-versiorn> is the compiler’s version number (which unfortunately can not be derived in a uniform man-
ner, since it is quite compiler specific).

The suffix_LEDA is appended to indicatedDA support.

We call the resulting string €aL-OS description.
Examples ar@ips_IRIX-6.2_CC-7.2 Of sparc_Sun0S-5.5_g++-2.95.3_LEDA.
You can use the install script to get youc&L-OS description, see sectidn/.8

1.10 TheCacAL makefile structure

The CeAL distribution contains the following makefiles:

e CGAL-3.1/src/makefile_1ib for compiling the GAL object librarylibCGAL. a,
e CGAL-3.1/src/makefile_sharedlib for compiling the GAL shared object libraryibCGAL. so and

e CGAL-3.1/examples/*/makefile for compiling the GGAL example programs.

All these makefiles are generic: they can be used for more than one compiler. To achieve this, the first section
of each makefile contains an include statement that looks as follows:

CGAL_MAKEFILE = /users/jannes/CGAL-3.1/make/makefile_<CGAL-0S description>
include $(CGAL_MAKEFILE)

The file CGAL MAKEFILE is an include file with platform dependent makefile settings. The abbreviation
<CGAL-0S description> (See sectiorl.9 for details) is used to identify the operating system and compiler
for which the settings hold. For example, the filskefile mips_IRIX64-6.5_.CC-n32-7.30 contains make-

file settings for the IRIX 6.5 operating system and the SGI Mips(Peoj.3 compiler. These include files are
automatically generated by thestall_cgal script and they are all located in theaL-3.1/make directory.

For convenience, thenstall_cgal script will substitute the include makefile that was generated most recently.

If you want to compile an application or an object library with a different compiler, the only thing you need to
do is to substitute another include makefile for tiia1,_MAKEFILE variable. An alternative way to do this is to
create an environment varialleAL _MAKEFILE. To pass the value of the environment variable to the makefile
you can either comment out theAL MAKEFILE line in the makefile or use an appropriate command line option
for the make utility. A comfortable way to setAL MAKEFILE iS by usinginstall_cgal -os (See section
1.7.8. E.g. if your compiler isy++, you would type

CGAL_MAKEFILE='<insert your CGAL-3.1 dir >/install_cgal -os g++°

in bourne shell resp.

16

setenv CGAL_MAKEFILE ‘<insert your CGAL-3.1 dir >/install_cgal -os g++°

in csh derivatives.

Tip: Include the setting of GAL_MAKEFILE into your shell startup script (e.g(t)cshrc for (t)csh or .bashrc
for bash).

All makefiles contain sections with compiler and linker flags. You can add your own flags here. For exam-
ple, you might want to add the flagpCGAL_NO_PRECONDITIONS to turn off precondition checking. The flags
$ (CGAL_CXXFLAGS) ands$ (CGAL_LDFLAGS) should never be removed.

The default extension for €L source files is.C. The last section of the makefiles contains a suffix rule that
tells the compiler how to create.a-file from a . c-file. If you want to use the default rule that is defined by the
make utility, you may want to remove this suffix rule. However, note that this may have consequences for the
makefile variablesGAT_CXx andCXXFLAGS.

1.11 Compiling aCGAL application

The directoryCGAL-3.1/examples contains a small program (example.C) and a sample makefile with some
comments. TheGAL_MAKEFILE variable in this makefile (see sectidnl(is automatically substituted by
the install_cgal script and equals the most recently generated include makefile itGthie 3.1 /make di-
rectory. After the installation of GAL this sample makefile is ready for use. Just typgkée example’ to
compile the programxample.C. There is a script for conveniently creating makefiles f@aC applications,

see sectiorb.1

Furthermore the directoriesal-3.1/examples andCGAL-3.1/demo contain many subdirectories with non-

graphical and graphical example programs. In all these directories you will find a makefile that is ready for
use.

1.12 Installation on Cygwin

Cygwin is a free Unix-like environment for MS-Windows, distributed by Cygnus Solutions. For our tests we
have used version 1.3.2 aBd20.1.

It consists of a port of a large number of GNU tools, such as bash, make, gcc, gas, file utilities, etc, as well
as tools ensuring an ability to emulate Unix-like access to resources, for instance mount. For a comprehensive

introduction and details, segtp://www.cygwin.com/ .

Make sure that the linkbin/sh.exe exists. If not, create it:

cd /bin
In -s bash.exe sh.exe

1.12.1 Pathnames

Cygwin has a UNIX-like way of navigating hard drives, NFS shares, etc. This is also the way in which direc-
tories and pathnames have to given to the installation script. They are automatically converted to Win32-style
pathnames when given to the compiler or linker.

17

The main difference is that directories are seperated by slash (/") rather than by back§tasiife other
difference is concerned with specifying drives. One way is to use POSIX-style pathnames that map Win32-style
drives @:,B:)to //a/..., //b/... respectively. For instance, the path\Mystuff\Mydir\LEDA translates

to //d/Mystuff/Mydir/LEDA.

Alternatively, it can be done using the mount utility, that can be used to establish a map between Win32-style
drives and the Unix-like style. More precisely, it maps the forest of the directories/files on Win32-drives to a
tree with the root that is usually located at the top level of the boot drive; sayhe root location can be seen

by typingmount command without parameters. For instance,:ifis mounted orc: \ddrive?? then the path
D:\Mystuff\Mydir\LEDA translates t¢gddrive/Mystuff/Mydir/LEDA.

Upper/lower case and spaces in file namesBehavior of Cygwin in this regard might be different from the
MS Windows behavior. In particular, using spaces in filenames should better be avoided.

Links, shortcuts, etc should be avoided as well.

1.12.2 MS VisualC++-setup

A number of environment variables has to be set (or updated) in order to use the installation.

PATH should contain MS Visual++ command line tools locations. The environment variables,UDE andL1B
should point to the location of MS Visuak+ header files and to the location of the MS Visaal libraries,
respectively. The interface for doing this is different for NT and for Win9*.

MS Windows-NT4.0. One can set the corresponding environment variables using the usual NT irfferface
Alternatively, they can be set in the@ashrc file for the particular user, or in the system-wigesh customiza-
tion file (usually/etc/bashrc).

The result should look roughly as follows, assuming that{PROGRA~1\MICROS~2) is the location of the
MS Visualc++ installation.

LIB=C:\PROGRA™1\MICROS"2\VC98\LIB
INCLUDE=C:\PROGRA™1\MICROS~2\VC98\INCLUDE

andPATH should contain

/PROGRA™1/MICROS™2/Common/msdev98/BIN:
/PROGRA™1/MICROS2/VC98/BIN:/PROGRA™1/MICROS™2/Common/TOOLS:
/PROGRA™1/MICROS~2/Common/TOOLS/WINNT

MS Windows-9*. First, the memory for environment variables has to be increased. Select the Cygwin icon
from the Start-menu, press the right mouse button and cHeogerties Go toMemory selectinitial Environ-
ment set it to at least 2048 arapplythe changes.

Second, edit the fileygwin.bat (or cygnus.bat in Cygwin 0.9), located in the cygwin main directory and
add the line

22py typingmount D: /ddrive
230pen MyComputer, press right mouse button, select Properties, select Environment, set the relevant variables

18

call C:\PROGRA™1\MICROS 2\VC98\Bin\MSCVARS32.BAT

customized according to where MS Visual+ is installed on your system. Depending on the version of
MS Visualc++ you might have to repladesCvARS32.BAT by VCVARS32.BAT.

.1 UsingCGAL and LEDA

CGAL supports IEDA in the following ways.

1. There are support functions defined for theda number typesig_float, integer, rational and
real (see the filesCGAL/leda_*>).

2. For all two-dimensional geometric objects there are input/output operators éaawindow.
3. For all two-dimensional geometric objects there are output operatorsd@eaps _file.

4. The registration functions needed to interact witheda_geowin are defined for all geometric objects
from the GsAL kernel.

5. CcAL defines the following EDA-related compiler flags whenHDA is used: CGAL_USE_LEDA and
LEDA_PREFIX.

The include makefiles in thesaL-3.1/make directory corresponding toBDA can be recognized by the suffix
“_LEDA”"

.2 Compiler workarounds

In CGAL, a number of compiler flags is defined. All of them start with the prefit._crG. These flags are used
to work around compiler bugs and limitations. For example, thedtag._CFG_NO_LONG_LONG denotes that the
compiler does not know the typeng long.

For each compiler a fileCGAL/compiler_config.h> is defined, with the correct settings of all flags. This
file is generated automatically by thestall_cgal script, and it is located in the compiler specific include
directory. This directory can be found belawclude/CGAL/config/; itis named according to the compiler’s

CGAL-OS description (cf. Sectioh.9).

The test programs used to generate dbepiler_config.h file can be found inconfig/testfiles. Both
compiler_config.h and the test programs contain a short description of the problem. In case of trouble with
one of thecGAL_CFG flags, it is a good idea to take a look at it.

Within CGAL, the file<CGAL/basic.h> manages all configuration problems. In particular, it includes the file
CGAL/compiler_config.h. Itis thereforamportant that <CGAL/basic.h> is always included before any
other file. In most cases you do not have to do anything special for this, because rsanyfil@s (in particular,
<CGAL/Cartesian.h> and <CGAL/Homogeneous.h>) already take care of includingCGAL/basic.h> first.
Nevertheless it is a good idea to always start yogrC programs with includingCGAL/basic.h>.

19

.2.1 Standard Header Replacements

Some compilers do still not provide a complete standard library. In particular they fail to provide the
wrappers for files from the standa@llibrary, like cstddef for stddef.h. The GSAL install scripts checks
for all standard header files and generates a simple wrapper file indhe ticlude directory for those that
are missing. These wrapper files include the correspondihgader files and add all symbols required by
the c++ standard into namespas#d. You can turn off the additions to namespatée by defining the macro
CGAL.NO_STDCNAMESPACE

.3 Compiler Optimizations

You may have noticed that we do not set optimizer flagsodsy default in the include makefiles(see sectiot0

for a description of the makefile structure irG&L). The main reason for not doing this is that compilers run
much more stable without. On the other hand, most if not alhACprograms will run considerably faster when
compiled with optimizations! So if you are going for performance, you should/have te@dd3 or maybe
more specific optimizer flags (please refer to the compiler documentation for that)apxhieaGs variable in
your application makefile:

. #
compiler flags
e #

The flag CGAL_CXXFLAGS contains the path to the compiler and is defined
in the file CGAL_MAKEFILE. You may add your own compiler flags to CXXFLAGS.

CXXFLAGS = $(CGAL_CXXFLAGS) -0

4 Troubleshooting

This section contains some remarks about known problems and the solutions we propose. If your problem is
not listed here, please have a look at theAC homepage:

http://www.cgal.org

or send an email tonfo at cgal dot org.

4.1 Compiler version test execution failed

Possibly already during the startup of the install script, the execution of the compiler version test might fail with
the following (or similar) error message.

1d.so.1l: ./tmp_test: fatal: libstdc++.s0.5:
open failed: No such file or directory

This means that the standare-Qibrary for your compiler is installed in a directory that is not on your current
runtime linker path. You can solve this problem by adding the directory containingtdc++.so to your
runtime linker path, usually represented by the environment variahfe BRARY _PATH.

20

For example, if you have a standayek installation below/software/gcc-3.3.2/, you would type
export LD_LIBRARY_PATH=/software/gcc-3.3.2/1ib:S$SLD_LIBRARY_PATH

for bourne shell alikes, while farsh descendants the syntax is
setenv LD_LIBRARY_PATH /software/gcc-3.3.2/1ib:S$SLD_LIBRARY_PATH

You might want to add this command to your shell startup file.

Alternatively, you can build the runtime linker path into the executables by setting corresponding custom linker
flags (cf. Sectiorl.6.2.

4.2 Defectinthe G++ 3.2 ABI

Some versions oficc, for example Giu g++ 3.3.0, have problems in their+@-ABI, that surface in error
messages similar to the following.

error: due to a defect in the G++ 3.2 ABI, G++ has assigned
the same mangled name to two different types.

If this occurs to you, please seriously consider upgrading your compiler. This issue is fixed starting from
GNU g++ 3.3.1. Alternatively, you can adefabi-version=0 to your custom compiler flag& In interactive
mode, this is done via the Compiler Menu, as described in Setth& Afterwards rebuild the libraries. But

note that changing the 8¢ might have side effects. Hence, a compiler upgrade is the recommended fix here.

4.3 The “Long-Name-Problem” on IRIX6

The system assembler and linker on IRIX6 cannot handle symbols with more than 4096 characters. But this
number can be exceeded when one starts nesting templates into each other. So if you encounter strange assem-
bler or linker errors like

as: Error: /var/tmp/ccPBl5vJ.s, line 41289: Truncating token:
<some ridiculously long token snipped>

there is a good chance that you suffer from this “long-name” problem.

In contrast to Solaris, using theNG binutils does not work, sincgas has not been ported to IRIX6 yet. The
solution proposed in the GCC f&yis to compile with the (experimental) optiorfsquangle, that enables
compression of symbol names. This option was experimental and has disappeared in GCC 3.0, where the ABI
has been improved. So this is only interesting for GCC 2.95.3.

Citing from the above FAQ:

24Thanks to Christopher Intemann for pointing this out
2pttp://gec.gnu.org/cgi-bin/fom.cgi?file=41

21

Note that this option is still under development, and subject to
change. Since it modifies the name mangling mechanism, you’ll need to
build libstdc++ and any other C++ libraries with this option enabled.
Furthermore, if this option changes its behavior in the future, you’ll
have to rebuild them all again. :—(

This option can be enabled by default by initializing
‘flag_do_squangling’ with ‘1’ in ‘gcc/cp/decl2.c’ (it is not
initialized by default), then rebuilding GCC and any C++ libraries.

4.4 The “Long-Name-Problem” on Solaris

The system assembler and linker on Solaris 2.5 and 2.6 cannot handle symbols with more than 1024 characters.
But this number is quickly exceeded where one starts nesting templates into each other. So if you encounter
strange assembler or linker errors like

/usr/ccs/bin/as: "/var/tmp/cc0B5iGc.s", line 24:
error: can’t compute value of an expression involving an external symbol

there is a good chance that you suffer from this “long-name” problem.

A solution is to install the Gu-binutils?® and to tell the compiler that it shall use thesG- instead of the native
tools. From the compiler-menu (described in sectigh? you can set the corresponding option through the
custom compiler flags, i.e. fefcc you would add

-B/my/path/to/gnu/binutils/bin

assuming you installed theN®-binutils executables ifimy /path/to/gnu/binutils/bin.

If you cannot (or do not want to) install\@-binutils, there is a workaround that lets you compile, link and run
your programs, but it prevents debugging, since the executables have to be stripped. In short the workaround is
to compile with-g and to link with-z nodefs -s on Solaris-U -s on IRIX, respectively.

In order to still have portable makefiles (see secti@f)), we define flags.0NG_NAME_PROBLEM_CXXFLAGS and
LONG_NAME_PROBLEM_LDFLAGS in the include makefiles which are empty except for the Solaris platform where
they are set as stated above. In order to use these flags, edit your application makefile and add the flags to
CXXFLAGS resp.LDFLAGS as indicated below.

o #
compiler flags
ettt #

The flag CGAL_CXXFLAGS contains the path to the compiler and is defined
in the file CGAL_MAKEFILE. You may add your own compiler flags to CXXFLAGS.

CXXFLAGS = $(LONG_NAME_PROBLEM_CXXFLAGS) $(CGAL_CXXFLAGS)

e #
linker flags
e #

%6seenttp://www.gnu.org/software/binutils/

22

The flag CGAL_LDFLAGS contains common linker flags and is defined
in the file CGAL_MAKEFILE. You may add your own linker flags to CXXFLAGS.

LDFLAGS = $(LONG_NAME_PROBLEM_LDFLAGS) $ (CGAL_LDFLAGS)

4.5 LEDA and STL conflicts

If you are using an old version ofdDA, the combination of EDA and STL may give some problems. In order
to avoid them, it is highly recommended to use the latestA release, since this is what we test & with.

With MS Visual c++ or BORLAND C++ , LEDA has to be compiled and used with thebA_STD_HEADERS

flag set. @AL uses G+ standard conformant head®fs while LEDA can also work with the old-
style header files; but mixing the styles is strictly forbidden. Before compilimpA. edit the file
$ (LEDAROOT) /incl/LEDA/system.h and uncomment thdefine in the following fragment there.

// use c++ std headers
//#define LEDA_STD_HEADERS

MS Visual C++ -specific problems. Also, the LEDA and GsAL libraries have to be compiled with the same
options controlling the use of debugging and multithreadffig.

If a binary release of EDA is used, make sure that it is one of them that uses new-style headers. Namely, among
the self-extracting executables, choose one of these that have the name ending withxe.

4.6 MS VisualC++ -specific C-+ problems
MS Visual C++6.0

This compiler version is no longer supported starting withaC 3.0.

MS Visual C++7.0(.NET)
This compiler version is no longer supported starting wittaC 3.1.

Other problems.

Here goes an incomplete list of problems encountered, awl &pecific workarounds, if available. Compiler
error messages are meant to be hints only, and do not pretend to be complete, as well.

1. Compiler does not support the Koenig lookup. That is, it does not search in the namespace of the argu-
ments for the function. Seenfig/testfiles/CGAL_CFG_NO_KOENIG_LOOKUP.C.

2. Internal compiler errors can sometimes be avoided by increasing the amount of memory available to the
compiler. Use-zZm<number> option. In GGAL makefiles it is set tezm900, meaning “using 900% out of
the usual memory limit”.

27the ones that do not have suffix
28MS Visualc++ compilation/linking optionsML, -MT, -MD, -MLD, -MTD, -MDD

23

3. [...]/VC98/INCLUDE/xlocnum(268) : error C2587: ' U’ :
illegal use of local variable as default parameter can occuf’. The only workaround we
know is to redefine the macr@IRTUAL in <xlocnum>3° to be empty. Search for
#define _VIRTUAL virtual there and replace it bydefine _VIRTUAL .

4. Various matching failures for overloaded functions and ctors. Use dummy parameters.
5. Avoid multiple forward declarations.

6. If necessary, simplify template parameters by using extradefs.

.5 Scripts

5.1 create _makefile

The bourne-shell scriptreate makefile is contained in theGAL-3.1/scripts directory. It can be used to
create makefiles for compiling @L applications. Executingreate makefile in an application directory
creates aakefile containing rules for every.c file there.

In order to use this makefile, you have to specify tt@AC include makefile (see sectidnl0 to be used. This
can be done be either setting the environment variedie MAKEFILE or by editing the line

CGAL_MAKEFILE = ENTER_YOUR_INCLUDE_MAKEFILE_HERE

of the created makefile. First remove the at the beginning of the line and then replace the text ak&bY
the location of the include makefile.

Finally typemake to compile the application programs.

29For instance, in GAL Min_circle package
30ves, in the MS Visuat++ header! You need not edit the actual file though. Copy it to a directory that is searched ahead of the other
directories. DISCLAIMERWe do not know if the actions described in this footnote are legal in your country. You are on your own here.

24

Index

building applications17

CGAL
getting,3
homepage3
upgrade8, 15
CGAL_MAKEFILE, 16
CGAL_NO_STDC_NAMESPACE, 20
compile.log, 8
compiler menug
compiler specific include director§9
Compiler version tesg0
compilers
choosing8, 12
disabling shared libraries building4
g++ 3.2 ABI, 21
missing standard header fil&X)
optimization,20
setting custom flags, 14
supported?
version test20
workarounds19
compiling applications]7
CORE
enable support,0, 13
installing, 10
menu,9
CORE
enable supporg
CORE_INCL.DIR, 10, 13
CORE_LIB.DIR, 10, 13
create_makefile, 24
CUSTOM_CXXFLAGS, 14
CUSTOM_LDFLAGS, 14
Cygwin
installation on]17
pathnamesl7
setup for MS Visuat++ , 18
setup on MS Windows-9*18
setup on NT418

directories
compiler specific19
config/install, 6,7, 15
config/testfiles, 19
include/CGAL/config, 19

25

structure 3
disable-shared, 14

files

basic.h, 19
compiler_config.h, 19
temporary8

g++ 3.2 ABI, 21
getting GzAL, 3
GwmP
enable supporg, 13
installing,9
menu,9
GmpP
enable supporg
GMP_INCL_DIR, 9, 13
GMP_LIB.DIR, 9,13
GMPXX
enable support,3

identifying OS and compiled 5
include makefileg, 15, 16
install.completed, 8
install.log, 5, 8
install_cgal, 4

interactive modey

non-interactive model,2

rebuild-all option,15

upgrade option]5

verbose model5

version numberl4
installation

interactive,’

non-interactive12

on Cygwin,17
interactive installationy

LEDA
enable support0, 13
menu,10
on BORLAND C++, 23
on MS Visualc++, 23
support in GAL, 19
LEDA
enable supporg

LEDA_INCL.DIR, 10, 13
LEDA_LIB.DIR, 10, 13
logfiles, 8

long name problengl, 22

main menub
makefile structurel6
menus
CORE, 9
GwmP, 9
LEDA, 10
compiler,8
main,5
Qt, 10
support,8
missing standard header fil&X)
MS Visualc++
setup on cygwinl8
specific G+ problems23

non-interactive installatiori,2

optimization compiler flag20
OS description12, 14, 15

problems with long nameg1, 22

Qt
enable supporg, 11, 12, 14
menu,10
QT_DIR, 14
QT-INCL_DIR, 11, 14
QT_LIB.DIR, 11,14
QT_MoC, 11, 14

scripts
create_makefile, 24
install cgal, 4
standard header replacemer,
support menud
supported compilers,

troubleshooting20
upgrading GAL, 8, 15

visualization
geomview4
LEDA, 4

Qt,4
workaround flags]9

26

	1 Installation
	1.1 Introduction
	1.2 Prerequisites
	1.3 Getting Cgal
	1.4 Installing Cgal
	1.5 A Sample Installation
	1.6 The interactive mode
	1.7 The non-interactive mode
	1.8 Upgrading a previous Cgal installation
	1.9 Identifying OS and Compiler
	1.10 The Cgal makefile structure
	1.11 Compiling a Cgal application
	1.12 Installation on Cygwin
	.1 Using Cgal and Leda
	.2 Compiler workarounds
	.3 Compiler Optimizations
	.4 Troubleshooting
	.5 Scripts

