FreeBSD Architecture Handbook

FreeBSD Architecture Handbook

Revision: eablc5d1f6

2021-01-12 19:33:23 +0100 by Daniel Ebdrup Jensen.

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2012, 2013 The FreeBSD Documentation Project

Abstract

Welcome to the FreeBSD Architecture Handbook. This manual is a work in progress and is the work of many
individuals. Many sections do not yet exist and some of those that do exist need to be updated. If you are
interested in helping with this project, send email to the FreeBSD documentation project mailing list.

The latest version of this document is always available from the FreeBSD World Wide Web server. It may also
be downloaded in a variety of formats and compression options from the FreeBSD FTP server or one of the
numerous mirror sites.

FreeBSD is a registered trademark of the FreeBSD Foundation.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Apple, AirPort, FireWire, iMac, iPhone, iPad, Mac, Macintosh, Mac 0S, Quicktime, and TrueType are trade-
marks of Apple Inc., registered in the U.S. and other countries.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windows Media and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this document, and the FreeBSD Project was aware of the
trademark claim, the designations have been followed by the “™” or the “®” symbol.

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTML, PDF, PostScript, RTF and
so forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this list of condi-
tions and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

c Important

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD DOCUMENTATION
PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

https://cgit.freebsd.org/doc/commit/?id=eab1c5d1f6
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
https://www.FreeBSD.org/index.html
https://download.freebsd.org/ftp/doc/
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html

Table of Contents

L KETTIL 1ottt ettt et ettt ettt ettt ettt e et e e aaaas 1
1. Bootstrapping and Kernel INitializationccuuueriineiiinneiiineiiineiiieeiieeiieeeieeeieeeiieeaieeeins 5
B) 5 T 5 e 5

B 03 T4 1= N 5

B TR 6 T-IN 2 (01 PPN 6

1.4. The Master Boot Record (DOOTO) ...uvuivnivnirniiniieiiiiii ettt ettt iei e 6

1.5, D0OTL STAZE tuvininiiiiiiiii i 11

1.6, THE BTX SEIVET .ueviunetiineeiineetiieettie ettt eetie et e e ete e et e et e aat e e et e e et eeaineesieaetaeesannas 15

1.7, DOOE2 SEAZE . evvvveeeriiiieee et e ettt ettt ettt et ettt ettt e et a e e 22

1.8, 10AAET SEAGE +vvvvevvineeiineeeie ettt et ettt ettt a e aaas 22

1.9. Kernel INIHaliZationveveiiineeriiii ettt e e 22

2. LOCKING NOLES . eevvueetiinettineetiettiee et et e et e et e e et e et e et e et e e eas e et e e at e e st eaetaseasineesineaess 31
0 LD 15 31

2.2. Shared EXCIUSIVE LOCKS ...vvuueriineriineiiiieiiiee ettt et e et e e e e e e et e e e eaieaea 32

2.3. Atomically Protected Variablesccvuuuureriiiiineriiiiine e 33

3. KETTIEL OBJECES 1vvueviieiiietii et ettt et e e et e et e et e e et e et e et e e et e et 35
3.1, TEIIMINOLOZY +evvueeriiiieetiii e ettt e ettt e et e et e e e et e e e et e e e et e e e eainnes 35

3.2. KODJ OPEIALION L.vvvueiiietiineeiieetiee et et e et e e tteetie e et e e et e et s e et e st eesineaatneesiaees 35

3.3. USINE KODJ 1uuetiiiieeiiii ettt et ettt e et e e et et e e 35

4. The Jail SUDSYSTEIM ..vvvuniiiiiiiieiii it e ettt et e et e e et e e ein e e eeaes 39
4.1, ATCHIEECEUTE L.uevviiieeeeiii ettt ettt et e e et e e et e e ettt e e e et e e e et e e e aaiaeeees 39

2/ XL 4 (6 o) o LS 43

5. The SYSINIT FIAMEWOTKeeviiineeiiiineeeiiii ettt e ettt e e ettt e ettt e e et e e e et e e e et e e eaaiineaeens 49
5.1 TEITMINOLOZY «vvvneeviieeiietiietiie et et e e e ettt ettt e et e et eeets e et e et e e st e eeteeeaineeaines 49

5.2, SYSINIT OPETation ...cueuiuinininititititiiieiee ittt ettt ettt eenenens 49

5.3, USINE SYSINIT .viiiitiininiiiinitiinittiite et e st et ettt et et st et et e st enetetetsaenenaneans 49

6. The TrustedBSD MAC FIAMEWOTKccvvvunieiiiiieeriiiieeeiiiineeeeiin e e et e e e et e e e et e e e et e eeeaiieas 53
6.1. MAC Documentation COPYTIGIEuuvvuuneriineiiinieiiineeiire et et e e et e et e eai e et eeiieens 53

L 4 4 o) ¢ 53

6.3 TNETOAUCEION 1..evtieeiieeii ettt et e ettt e et e e e et e e et e e et e et e e et e e et e aaieesins 53

6.4. POLICY BACKGIOUNG ...vvuiiiiiiieiiiiis ettt 54

6.5. MAC Framework Kernel ArChiteCturecvvvueviineiiieiiieeiieeiieeeieeeii e eeie e e e 54

6.6. MAC POlICY ATCRIEECTUIE ..vvvvvieiiiiiieeeiiis ettt e e e e e 58

6.7. MAC Policy Entry POINt REETENCE ...vvvuvivriniiiineiiiieeiiieeiieeeiieeeii e tie et e e e eeaineeeies 60

6.8. Userland ArchiteCtUreccvvuuueriiiiieeiiiis et e e 174

6.9. COMCIUSION 11tteviinetiiie it ettt ettt ettt e e e et e e et e et e e e e e eie e et e eesans 175

7. VIrtUAl MEIMIOTY SYSEEITL 1evvuueetiiiineetiiii ettt eeetiis e ettt s e ettt s e e et e e et e e e eatneeeaabineeeeabaeeas 177
7.1. Management of Physical MEMOry—vm Page Tecevuveriuneriineriineeiineeiinneeiineenineennnss 177

7.2. The Unified Buffer Cache—vm 0bJeCt Tccvvvivniiiniiieiiiiieiieiieieee e 177

7.3. Filesystem I/O—Struct DUT ...ccovuueiiiiieeriiiieesiiie e e eeiee e et e e ettt e e e et e e e et e eeaaaen 178

7.4. Mapping Page Tables—vm map_t, VM entry Tcooeeeriiireriiiineeiiiineeeiiineeeiiineeeeiinnen 178

7.5. KVM MeMOTY MaPPING +.vvvuinirnininininiininiiiniiiteiinetsieteiineteteininetreetsiiensineenninns 178

7.6. Tuning the FreeBSD VIM SYSLEIM ...cvvvuuneeiiiineeeiiiieeeiiieeeeeiiseeetiineeeeiineeeeiineeeerinnees 179

8. SMPNE DeSigN DOCUIMEIIE t.evuvuiniiiniiitiiiitiiiiitii ittt ettt et e et et et s et e aeneaens 181
8.1, TIETOAUCEION ..evvvvieetiiiiee ettt e e ettt e et e e ettt e e ettt e e ettt e e e et e e e et e e e et e e e eatine s 181

8.2. Basic Tools and Locking Fundamentalsoevuuneiiinneiiineiiineiiineeiieeiieeeiineeiieens 181

8.3. General Architecture and DESIZNcuuuuneeriiiuneeeiiineeeiiiineeeiis e e et e eetieneeeiiineeeenaas 182

8.4. SPeCific LOCKING SErAteZIES .vvuuvruneriiieeiiieeiiisetii ettt e ettt e e et e et e e eeaes 185

8.5. IMPleMENtAtionN NOTES .vvuuevseneriineriineeiieeiieetteesiie e st estteettestteestteessteestaeesrneesses 188

8.6. MiSCEIlANEOUS TOPICS .uvvvvnerrineeiineiinetiieeii ettt e e tie et e ettt e et e et e eeiieeetineesineesieesins 189

B D18 UoT I) N3 191
9. Writing FreeBSD DevViCe DITVEISouuvuiuniniiiiiiiiiitiiiiiiiiiiiicinietsiie et ieanieteaeisaeneanens 195
9.1, TAETOAUCEION ..evvvtieetiiiiseee et ettt ettt e ettt e e et e e e et e e e et e e e et e e e e st e e e eaianeas 195

9.2. Dynamic Kernel Linker Facility - KLDvvuueviineriineriineeiiieiiineeiieeiineeiineeeiieenineeninss 195

9.3, CRATACLET DEVICES .vuevvviineeiiiieeetiii e ettt e e ettt e e et e ettt e e ettt s e e e st e e eeabieeaestaneas 196

9.4, BlOCK DEVICES (A€ GOYIE) ..vvnvvinineineiteineineie et e et e et e et e te e te e te e te e eeaneans 199

Table of Contents

0.5, NEEWOTK DITVEI'S 1uvvivniiniiniiteineiteieiei et ettt et et e e e et et et et e et e e te e rerernernes 199
B ST N D274 T D' T/ S 201
B0) 6 T o 201
10.2. Basic INFOTIMALION «.vuivnivniiniiiii ittt e e e e e e 201
10.3. device_t Pointer
10.4. Configuration File and the Order of Identifying and Probing During Auto-Configuration 203
10,5, RESOUICES tuvtinitiniinntenntennteeteetenseeteeseessnsssnssssssssssssmsssssssssssssssssssssssssssnnens 205
10.6. Bus MeMOTY MAPPINIE tvuvvivninirininiiiiniiiiniiritiiiiiniiineiiaeiineaietrieneieneieneanienreaes 207
O D) 1 PP 213
10.8. XXX _ISA_PIODE 11vueeriiinseeiiii ettt e ettt e e et e e e et e e e et s e e et e e e et eeaaa 215
10,9, XXX_ISA_AEEACK 11uivniviiiiiiie ittt 219
10.10. XXX_ISA_AELTACKH 1vviiniiiiieiii i 222
10,11, XXX_ISA_SHULAOWIL «.vviiniiiii e 223
0 /200 1 S 223
10 PCI DBVICES vtutttententtetenteetetet et ettt enteseneeuseneesenseessnseesenseeseesensenseneensenseisensesenseonnenns 225
11.1. Probe and ATEACHiveieiiiiii et 225
11,2, BUS RESOUICES 1uuvtintiintiitittieetietttatteeteeateeateeasesasseanseasssesssesssenssenssesssenssenssenssenens 228
12. Common Access Method SCST CONIOIIErsuuivuivniieiiiiii e 231
B T 4 T 0 231
12.2. General ATCHItECEUTEvvnieieieiie et 231
12,3, POLING evvneviieiii ettt ettt et ettt a e 247
12,4, ASYNICHIOTIOUS EVENES ..vvvvunerrriiieeiiiiieeeiiiseeeiiiseeetiineeeetineeaetiineeeettneeestinneeearinnes 247
12,5, INEEITUPLES Lvvviniiiiiiniiiti e 248
12.6. EXTOTS SUIMIMIATY ..viviuiuiiitiiitiiiiiiii e et e et et et et ettt ettt et e eeeaeaeans 253
12.7. Timeout HAndIiNgcccuueiineiiieiiineriieeiineeiin et e e et et e et e et e eeineesineerines 254
B T U Y T D=1 ol Pt 255
13,1, INEFOAUCEION 11uitinititeiteit ittt ettt ettt ettt et e et ettt e et e e e et e e et e e e e e e s aaeaasaas 255
13.2. HOSE CONETOIIETS 1.vvivniiiiiiii ettt ee s 256
13.3. USB Device INfOIrMAtiON .v.vv.iviiriiseitiiteiteiteit ettt et et et et et et eeete e verernennes 257
13.4. Device Probe and AttaChoouivviniiiii e 259
13.5. USB Drivers Protocol INfOrmationeuuvvniiniiniiniiniiiieiiieieieineieieereeinersinenns 260
T4, NEWDUS .vvtieite ittt ettt ettt e e et et et e et 263
14.1. DEVICE DIIVET'S tuvturttitenteetenteetenttetettenteteneenteneenseneeseessesenseesenseesensensensensenseneensens 263
14.2. OVEIVIEW OF NEWDUS ..vuiviiiiiiiiiiiii et e ettt e e e et e et e e e e aeaas 263
14.3. NEWDUS API Loiiviiniiniitiiteit ettt e ettt e e et et et et et e et e e e vaeans 265
15, SOUNA SUDSYSEEITL 1.vvueeviiiisetiiiiseettiis e ettt ettt ettt e e e et e e et e e e et e e e atineeaatineas 267
15,1, INEFOAUCEION 11tivinititeiteit ittt ettt ettt et ettt et et ettt e e et e e et e e s e e e s aaeaaeaaas 267
15,2, FAlES irniii it 267
15.3. Probing, Attaching, €tC.vivuneiiiiiiiireiie et 267
154, TNEEITACES 1uivvieiieiie e 268
16, PC CATA 1vvviiniiniit ittt et ettt ettt et et 273
16.1. AAdING @ DEVICE ..evvriuneeriiiineeeeiiieeetiieeeetis e e e et e e s attneeeattneesaatneeeesianeesestaneeaens 273
TTL, APPEIIAICES +uevvvneriinetiieetieeti e et e et e et e et e e et e e e ts e et e e st e e et e e et s ettt e s s e estnsasbnsestnnessanessaneens 277
BIDHOGIAPIY .. eeveviieeeiiii ettt ettt ettt e et eeaaaas 281
£ [OO 283

List of Figures

1.1. SYyS/bo0ot/1386/b00t0/MaKeTile ..o 7
1.2. SYS/b0o0ot/1386/b00t0/D00t0.S . ovviiiiiiiiii e 8
1.3. SYS/b0o0ot/1386/b00T0/D00t0.S .oovviiiiiiiiii 8
1.4. SYs/b0o0t/1i386/b00t0/b00T0.S . o 9
1.5. SYS/bo0ot/1386/b00t0/D00TO.S ..coeviiiiiieie e 9
1.6. SYS/b0o0ot/1386/b00t0/D00TO.S .ooiiieiiiiiieii e 9
1.7. SyS/boot/1386/b00t0/D00TO.S .oooiiiiiiiieei e 10
1.8. SYS/bo0ot/1386/b00t0/D00TO.S .ooiiieiiiiei e 10
1.9. SYS/boot/1386/b00t0/D00t0.S ..ccvniiiiii 10
1.10. SYs/bo0ot/1i386/D00t0/b00TO.S ..oiiiiiiiiiei e 11
1.11. SYS/bo0t/1i386/D00t2/D00TL.S .oiiiiiiiiiieeeee e 12
1.12. SYS/b00t/1386/D00t2/D00TL.S oooiiiiiiiieiiee e 12
1.13. SyS/b00t/1386/b00T2/b00TL1.S i 12
1.14. SyS/b00t/1386/b00T2/MaKeTLIL@ .uuiiiiiiiieiiiiiiee e 13
1.15. SYS/b00t/1386/b00t2/b00TL1.S .o 13
1.16. SYS/b00t/1386/D00t2/b00TL.S i 13
1.17. SYS/b00t/1i386/D00t2/b00TL.S ..o 14
1.18. SYS/b00t/1386/D00t2/D00TL.S Loiiiiiiiieiiee e 14
1.19. SYS/bo0t/1386/D00t2/D00TL.S ooiiiiiiiieiee e 15
1.20. SYS/b00t/1386/b00T2/MaKeTLIL .uuiiiiiiiieiiiiii e 16
1.21. SYS/b00t/1386/b00T2/MaKETLILE .uuiiiiiiiieiiiiiieei e 16
1.22. SYS/b00t/1386/b00t2/MaKeTLILE .uuiiiiiiiiiiiiiieee e 16
1.23. sYs/bo0t/1i386/D00t2/MaKefile oo 17
1.24. SYS/bo0ot/1i386/D00t2/b00T2. N oiiiiiiiei e 17
1.25. SYS/b00t/1386/DtX/DEX/DEX.S i 18
1.26. SYS/b00t/1386/bTX/DEX/DEX.S e 18
1.27. SYS/b00t/1386/DTX/DEX/DEX.S o 18
1.28. SYS/b00t/1386/DTX/DEX/DEX.S oo 19
1.29. SYS/b00t/1i386/DtX/DEX/DEX.S i 19
1.30. SYS/b00t/i386/DtX/DEX/DEX.S i 20
1.31. SYS/b00t/1i386/DtX/DEX/DEX.S i 20
1.32. SYS/b00t/1386/DtX/DEX/DEX.S i 21
14.1. driver_t TMPIEMENTATION ...vvvueeiineeii ettt ettt ettt e et e et e et e et e ettt e et e et e e et e e et e e et eeaieeaineaees 266
14,2, DEVICE SEALES deVICE SEALE T vvvvverserserserseiseeteiteetettetetteste et e ee st e et e ete st eete st estestestessestessestesseenenes 266

List of Tables

2.1. Mutex Listcevvennens
2.2. Shared Exclusive Lock List

List of Examples

5.1, EXAMPLE OF @ SYSINIT () vevvvurtrneirnneetunetiunestunestteessueesttesttesstnesstntestneessnesstesstesstnessnnessnneses 50
5.2. Example of Adjusting SYSINIT() OFdercvvvueiiuneriineeiineeiiieeeiieeeiieeeiieetieeeiineeaineetieeaineeeineenes 50
5.3. EXample Of @ SYSUNINIT() tevuuuvvuuneiruneirunestinesttnestineestieestnessieesunesttneesteestnessinessnessnessneesnnnns 50
9.1. Example of a Sample Echo Pseudo-Device Driver for FreeBSD 10.X - 12.X ...uvvuurriunerinneriineriineerinennnns 196

14.1. NEWDUS METNOAS .uivviiniiiiiiiiii ettt ettt

Part I. Kernel

Table of Contents

1. Bootstrapping and Kernel INitializationuueriiiinreriiiieeeiiiineeeiiin e e e e et e eeeiieeeeaiinnes 5
B) 4 T £ 5
B 03 1= 5
B T N < T30 5 01 Nt 6
1.4. The Master Boot ReCOTd (DOOTO) ...uvurirnieineieeiei ettt et et eaenen 6
1.5, DOOTL SEAGE tuivininiiiiiiiiii e 11
1.6, THE BTX SEIVET ..evvriineetiiinneetiiieeetiiseeetii e e ettt e e eeat s e e et e e e e tbn e e e etbneeeetbneeaettaneeastinnes 15
1.7, DOOE2 SEAZE vvueevtietrieeii ettt e et ettt et ettt e et e e ettt ettt et e ettt e et a e e eias 22
1.8, 10AAET SEAZE . eevvviieetiii ettt et ettt ettt et e e e et e ettt e et eaes 22
1.9. Kernel INIHAlIZAtION ..v.uuviuneiineiiieeii et ettt ettt e e et e e et e aaineeaines 22
2. LOCKING NOLES +evvteteiiiieetitis e ettt ettt e ettt e ettt e e e et e e e et e e et e e e et e e e et e e e et e e e etbneeeebinnes 31
0 O L L3 (e 31
2.2. Shared EXCIUSIVE LOCKS t..uueeviiiieeiiiiiseeiiiis ettt e et e e et eeeaii e eeees 32
2.3. Atomically Protected Variablescceuueeiiiiiiiieiiieiiiiee et 33
3. KEINEL OBJECES 1ueeviiiieeiiiie ettt e et et e e e et e et 35
3.1 TEITMNOLOZY «evvueviietiineeii ettt et et e et e et e ettt e et e et e et e e e e e et e e et e et e e et e eeaineesieeees 35
3.2, KODJ OPEIALION 1evvvtieetiiiieetiiis e ettt e e ettt e e et e e ettt e e e et e e e et e e e et e e e et e e ee bt e eeastanaes 35
3.3 USING KODJ +evvuettiieiiieetiie ettt ettt et et e e e e et e e et e et e e s e e et e e e b e e et e et e eaineeeis 35
4, The Jail SUDSYSTEIM ..evvvvineiiiiii ettt e ettt et ettt e ettt e et e e et e e e et e e e et e e eabi e eesaans 39
4.1, ATCHIEECEUTE ovuiiiiieiii ettt ettt ettt et e e et e et e et e e et e e et eeaies 39
4.2, RESITICEIONS 1vviviiniiiiiiiiiiniii et 43
5. The SYSINIT FIAMEWOTK ..vvuuevrineriineeiiietiieeiieeiieeeieetii e ettt eetieeet e eetis e et e etineeetasestnneesineesaneesins 49
5.1, TEIIMINOLOZY +vvvueetiiiieetiii ettt ettt ettt e e et e e e et e e e et e e e et s e e e et e eaebinnes 49
SN) 1N RO T 1 () s R PP 49
5.3, USINE SYSINIT L.iviininiiiniiiiiniiiniiiiinic ittt ettt et et e e et e bt eareeastensaeneaas 49
6. The TrustedBSD MAC FIaMEWOTKuvvvuneiiineiiieeiieeiieetieetieeeie e et e et e et e et s e etie e st eeaineasineesinns 53
6.1. MAC Documentation COPYTIZNE ...cevvvuneeriiiineeiiiiieeeiiis e ettt e ettt e e e et eeeeii s e e ettt s eeeaiineeees 53
LC T 4 4 o) o1 1 53
6.3, TAETOAUCEION ..vvitieeeiiii ettt ettt ettt e ettt e ettt e e ettt e et ettt e e e et s e e e et e e e et e e eaaineeesaan 53
6.4. POLICY BACKGIOUNG ...iiiiiiiieiii ettt ettt ettt e e e et e et e et e e et e e e eeaes 54
6.5. MAC Framework Kernel Architecturecoouuuveviiiinieiiiiiiseeiiiin e 54
6.6. MAC POICY ATCRIEECLUIE ..ovvvieiiieiiieiii et ettt ettt e e ettt et e et e e et e e eiaeeeaes 58
6.7. MAC POlicy ENtry POINE REETENCE t.vuveeviiiieeriiiieeeiiieeeeiiieeeeiiiseeeiiie s e e et e e e eaii e e esaiineeeenns 60
6.8. USerland ATCHIEECTUIEvuuueeiiieiiie ittt e ettt et e ettt e et e et e e et e eaieeaen 174
6.9, CONCIUSION ..vvtiiieetiiii ettt ettt et et e et e e et e et et e e ettt e e e et e e e et e e eabineeeanas 175
7. VIPtUAL MEMOTY SYSEEIM L.vvtieiiineirineeiineeiineetiieeetieeti ettt e eetie e et eeatee st eeeiaae et esstneesineassneeeinees 177
7.1. Management of Physical MEMOTry—VM PAge T ...c.uuveeriiineeriiinreeiiiineeeiiineeeiiineeeeiineeeeiinnes 177
7.2. The Unified Buffer Cache—vm 0bJeCt Tcccuiviriiiiiiiiii e 177
7.3. FilesyStem I/O—STrUCt DUT ..ooivviviiieiseeeeririiiiiiiseeee e ettt e e e e e e ettt s e e e eeaeaaaiinaaeeees 178
7.4. Mapping Page Tables—vm map t, VM @NTry t ..o..oeviiviiinreiineiiineiiieeiieeiieeiieeeiieeeiieenines 178
7.5. KVM MeMOTY MaPPING ..vuivnininiininiininiiininiiiitiiiiniiinenineniieteieneienensiensiensisensinenemsinenns 178
7.6. TUNING the FreeBSD VM SYSLEIM 1.uuvvuueiineiiieiiineeiineeiieetineeeiineetieetieetineesineesinneesineeriees 179
8. SMPNg Design DOCUIMENE ..vuivuiuiniiiiniiiiniiiiiiiitiiie ittt e e e e eeasiensanes 181
8.1 TNETOAUCEION 1vueviieetieeii ettt et ettt et e et e et e ettt e et et e et e et e e et e et e e bt e aabneesansas 181
8.2. Basic Tools and Locking FUNdamentalsoeevvuunreriiiinneriiiinneeiiiineeeeiineeeeiineeeeiiineeeens 181
8.3. General Architecture and DESIZNvvvuneiiineiiiieeiiireii et e ettt e e e e e e e 182
8.4. SPECIfiC LOCKING SEIALEGIES +vvvvnerrriineeriiiieeetiiieeetiis e e ettt e e e et e e eettieeeeaiiseesettineeeaniineeeens 185
8.5. TMPIEMENLALION NOTES .ovvunervineriineeiineetii ettt ettt e et e e et et e et e et e e et e et eeaieesineeetaneenanes 188

8.6. MiSCEIIANEOUS TOPICS . uevvvurrineriineeiineeiiieettie e st ee st eette ettt e et e et e ettt e st e st essteessaeasranees 189

Chapter 1. Bootstrapping and Kernel
Initialization

Contributed by Sergey Lyubka.
Updated and enhanced by Sergio Andrés Gémez del Real.

1.1. Synopsis

This chapter is an overview of the boot and system initialization processes, starting from the BIOS (firmware) POST,
to the first user process creation. Since the initial steps of system startup are very architecture dependent, the
[A-32 architecture is used as an example.

The FreeBSD boot process can be surprisingly complex. After control is passed from the BIOS, a considerable
amount of low-level configuration must be done before the kernel can be loaded and executed. This setup must be
done in a simple and flexible manner, allowing the user a great deal of customization possibilities.

1.2. Overview

The boot process is an extremely machine-dependent activity. Not only must code be written for every computer
architecture, but there may also be multiple types of booting on the same architecture. For example, a directory
listing of /usr/src/sys/boot reveals a great amount of architecture-dependent code. There is a directory for each
of the various supported architectures. In the x86-specific 1386 directory, there are subdirectories for different
boot standards like mbr (Master Boot Record), gpt (GUID Partition Table), and efi (Extensible Firmware Interface).
Each boot standard has its own conventions and data structures. The example that follows shows booting an x86
computer from an MBR hard drive with the FreeBSD boot@ multi-boot loader stored in the very first sector. That
boot code starts the FreeBSD three-stage boot process.

The key to understanding this process is that it is a series of stages of increasing complexity. These stages are
bootl, boot2, and loader (see boot(8) for more detail). The boot system executes each stage in sequence. The last
stage, loader, is responsible for loading the FreeBSD kernel. Each stage is examined in the following sections.

Here is an example of the output generated by the different boot stages. Actual output may differ from machine
to machine:

FreeBSD Component Output (may vary)
boot0 F1 FreeBSD
F2 BSD
F5 Disk 2
boot2 ? >>FreeBSD/i386 BOOT
Default: 1l:ad(1,a)/boot/loader
boot:
loader BTX loader 1.00 BTX version is 1.02

Consoles: internal video/keyboard
BIOS drive C: is disk0
BIOS 639kB/2096064kB available memory

FreeBSD/x86 bootstrap loader, Revision 1.1
Console internal video/keyboard
(root@snap.freebsd.org, Thu Jan 16 22:18:05
UTC 2014)

Loading /boot/defaults/loader.conf

/boot/kernel/kernel text=0xed9008
data=0x117d28+0x176650
syms=[0x8+0x137988+0x8+0x1515f8]

https://www.FreeBSD.org/cgi/man.cgi?query=boot&sektion=8&manpath=freebsd-release-ports

The BIOS

kernel Copyright (c) 1992-2013 The FreeBSD
Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988,
1989, 1991, 1992, 1993, 1994
The Regents of the University of
California. All rights reserved.
FreeBSD is a registered trademark of The
FreeBSD Foundation.
FreeBSD 10.0-RELEASE #0 r260789: Thu Jan 16
22:34:59 UTC 2014
root@snap.freebsd.org:/usr/obj/usr/src/
sys/GENERIC amd64
FreeBSD clang version 3.3 (tags/RELEASE 33/
final 183502) 20130610

*This prompt will appear if the user presses a key just after selecting an OS to boot at the boot0 stage.

1.3. The BIOS

When the computer powers on, the processor's registers are set to some predefined values. One of the registers is
the instruction pointer register, and its value after a power on is well defined: it is a 32-bit value of Oxfffffff0 . The
instruction pointer register (also known as the Program Counter) points to code to be executed by the processor.
Another important register is the cr@ 32-bit control register, and its value just after a reboot is 0. One of cr's bits,
the PE (Protection Enabled) bit, indicates whether the processor is running in 32-bit protected mode or 16-bit real
mode. Since this bit is cleared at boot time, the processor boots in 16-bit real mode. Real mode means, among other
things, that linear and physical addresses are identical. The reason for the processor not to start immediately in
32-bit protected mode is backwards compatibility. In particular, the boot process relies on the services provided
by the BIOS, and the BIOS itself works in legacy, 16-bit code.

The value of Oxfffffffo is slightly less than 4 GB, so unless the machine has 4 GB of physical memory, it cannot
point to a valid memory address. The computer's hardware translates this address so that it points to a BIOS mem-
ory block.

The BIOS (Basic Input Output System) is a chip on the motherboard that has a relatively small amount of read-only
memory (ROM). This memory contains various low-level routines that are specific to the hardware supplied with
the motherboard. The processor will first jump to the address 0xfttffffo, which really resides in the BIOS's memory.
Usually this address contains a jump instruction to the BIOS's POST routines.

The POST (Power On Self Test) is a set of routines including the memory check, system bus check, and other low-
level initialization so the CPU can set up the computer properly. The important step of this stage is determining the
boot device. Modern BIOS implementations permit the selection of a boot device, allowing booting from a floppy,
CD-ROM, hard disk, or other devices.

The very last thing in the POST is the INT 0x19 instruction. The INT 0x19 handler reads 512 bytes from the
first sector of boot device into the memory at address 0x7c00. The term first sector originates from hard drive
architecture, where the magnetic plate is divided into a number of cylindrical tracks. Tracks are numbered, and
every track is divided into a number (usually 64) of sectors. Track numbers start at 0, but sector numbers start
from 1. Track 0 is the outermost on the magnetic plate, and sector 1, the first sector, has a special purpose. It is
also called the MBR, or Master Boot Record. The remaining sectors on the first track are never used.

This sector is our boot-sequence starting point. As we will see, this sector contains a copy of our boot0® program.
A jump is made by the BIOS to address 0x7c00 so it starts executing.

1.4. The Master Boot Record (booto)

After control is received from the BIOS at memory address 0x7c@0, boot0 starts executing. It is the first piece of
code under FreeBSD control. The task of boot@ is quite simple: scan the partition table and let the user choose

Chapter 1. Bootstrapping and Kernel Initialization

which partition to boot from. The Partition Table is a special, standard data structure embedded in the MBR (hence
embedded in boot@) describing the four standard PC “partitions” . boot@ resides in the filesystem as /boot/
boot0. It is a small 512-byte file, and it is exactly what FreeBSD's installation procedure wrote to the hard disk's
MBR if you chose the “bootmanager” option at installation time. Indeed, boot0 is the MBR.

As mentioned previously, the INT 0x19 instruction causes the INT 0x19 handler to load an MBR (boot0) into
memory at address 0x7c00. The source file for boot0 can be found in sys/boot/i386/boot®/boot0.S - which is
an awesome piece of code written by Robert Nordier.

A special structure starting from offset 0x1be in the MBR is called the partition table. It has four records of 16 bytes
each, called partition records, which represent how the hard disk is partitioned, or, in FreeBSD's terminology, sliced.
One byte of those 16 says whether a partition (slice) is bootable or not. Exactly one record must have that flag set,
otherwise boot@'s code will refuse to proceed.

A partition record has the following fields:

the 1-byte filesystem type

+ the 1-byte bootable flag

+ the 6 byte descriptor in CHS format
+ the 8 byte descriptor in LBA format

A partition record descriptor contains information about where exactly the partition resides on the drive. Both
descriptors, LBA and CHS, describe the same information, but in different ways: LBA (Logical Block Addressing) has
the starting sector for the partition and the partition's length, while CHS (Cylinder Head Sector) has coordinates
for the first and last sectors of the partition. The partition table ends with the special signature 0xaa55.

The MBR must fit into 512 bytes, a single disk sector. This program uses low-level “tricks” like taking advantage of
the side effects of certain instructions and reusing register values from previous operations to make the most out
of the fewest possible instructions. Care must also be taken when handling the partition table, which is embedded
in the MBR itself. For these reasons, be very careful when modifying boot0.S.

Note that the boot0.S source file is assembled “as is”: instructions are translated one by one to binary, with no
additional information (no ELF file format, for example). This kind of low-level control is achieved at link time
through special control flags passed to the linker. For example, the text section of the program is set to be located
at address 0x600. In practice this means that boot® must be loaded to memory address 8x600 in order to function

properly.

It is worth looking at the Makefile for boot® (sys/boot/i386/boot0/Makefile), as it defines some of the run-
time behavior of boot0. For instance, if a terminal connected to the serial port (COM1) is used for 1/0, the macro
SI0 must be defined (-DSI0). -DPXE enables boot through PXE by pressing F6. Additionally, the program defines
a set of flags that allow further modification of its behavior. All of this is illustrated in the Makefile. For example,
look at the linker directives which command the linker to start the text section at address 0x600, and to build the
output file “as is” (strip out any file formatting):

BOOT BOOTO ORG?=0x600
LDFLAGS=-e start -Ttext ${BOOT BOOTO® ORG} \
-Wl, -N, -S, --oformat,binary

Figure 1.1. sys/boot/1386/boot0/Makefile

Let us now start our study of the MBR, or boot®, starting where execution begins.

http://en.wikipedia.org/wiki/Master_boot_record

http://en.wikipedia.org/wiki/Master_boot_record

The Master Boot Record (boot0)

Note

@ Some modifications have been made to some instructions in favor of better exposition. For
example, some macros are expanded, and some macro tests are omitted when the result of
the test is known. This applies to all of the code examples shown.

start:
cld # String ops inc
Xorw %ax,%ax # Zero
movw %ax,%es # Address
movw %ax,%ds # data
movw %ax,%ss # Set up
movw 0x7c00,%sp # stack

Figure 1.2. sys/boot/i386/boot0/boot0.S

This first block of code is the entry point of the program. It is where the BIOS transfers control. First, it makes
sure that the string operations autoincrement its pointer operands (the cld instruction) % Then, as it makes no
assumption about the state of the segment registers, it initializes them. Finally, it sets the stack pointer register
(%sp) to address 0x7¢00, so we have a working stack.

The next block is responsible for the relocation and subsequent jump to the relocated code.

movw $0x7c00,%si # Source

movw $0x600,%di # Destination

movw $512,%cx # Word count

rep # Relocate

movsb # code

movw %di,%bp # Address variables

movb $16,%cl # Words to clear

rep # Zero

stosb # them

incb -0xe(%di) # Set the S field to 1
jmp main-0x7c00+0x600 # Jump to relocated code

Figure 1.3. sys/boot/i386/boot0/boot0.S

As boot0 is loaded by the BIOS to address 8x7C00, it copies itself to address 0x600 and then transfers control there
(recall that it was linked to execute at address 0x600). The source address, 0x7¢c00, is copied to register %si. The
destination address, 0x600, to register %di. The number of bytes to copy, 512 (the program's size), is copied to
register %cx. Next, the rep instruction repeats the instruction that follows, that is, movsb, the number of times
dictated by the %cx register. The movsb instruction copies the byte pointed to by %si to the address pointed to
by %di. This is repeated another 511 times. On each repetition, both the source and destination registers, %si and
%di, are incremented by one. Thus, upon completion of the 512-byte copy, %di has the value 0x600+512= 0x800,
and %s1i has the value 0x7c00 +512= 0x7e00 ; we have thus completed the code relocation.

Next, the destination register %di is copied to %bp. %bp gets the value 0x800. The value 16 is copied to %cl in
preparation for a new string operation (like our previous movsb). Now, stosb is executed 16 times. This instruction
copies a 0 value to the address pointed to by the destination register (%di, which is 0x800), and increments it. This is
repeated another 15 times, so %di ends up with value 0x810. Effectively, this clears the address range 0x800-0x80f.
This range is used as a (fake) partition table for writing the MBR back to disk. Finally, the sector field for the CHS
addressing of this fake partition is given the value 1 and a jump is made to the main function from the relocated
code. Note that until this jump to the relocated code, any reference to an absolute address was avoided.

2When in doubt, we refer the reader to the official Intel manuals, which describe the exact semantics for each instruction: http://www.in-

tel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Chapter 1. Bootstrapping and Kernel Initialization

The following code block tests whether the drive number provided by the BIOS should be used, or the one stored
in boot0.

Figure 1.4. sys/boot/1386/boot0/boot0.S

This code tests the SETDRV bit (6x20) in the flags variable. Recall that register %bp points to address location 6x800,
so the test is done to the flags variable at address 0x800-69= 0x7bb. This is an example of the type of modifications
that can be done to boot®. The SETDRV flag is not set by default, but it can be set in the Makefile. When set, the
drive number stored in the MBR is used instead of the one provided by the BIOS. We assume the defaults, and that
the BIOS provided a valid drive number, so we jump to save curdrive.

The next block saves the drive number provided by the BIOS, and calls putn to print a new line on the screen.

Figure 1.5. sys/boot/i386/boot0/boot0.S

Note that we assume TEST is not defined, so the conditional code in it is not assembled and will not appear in our
executable boot0.

Our next block implements the actual scanning of the partition table. It prints to the screen the partition type for
each of the four entries in the partition table. It compares each type with a list of well-known operating system
file systems. Examples of recognized partition types are NTFS (Windows®, ID 0x7), ext2fs (Linux®, ID 0x83), and,
of course, ffs/ufs2 (FreeBSD, ID 0xa5). The implementation is fairly simple.

Figure 1.6. sys/boot/1386/boot0/boot0.5S

O

The Master Boot Record (boot0)

It is important to note that the active flag for each entry is cleared, so after the scanning, no partition entry is
active in our memory copy of boot0. Later, the active flag will be set for the selected partition. This ensures that
only one active partition exists if the user chooses to write the changes back to disk.

The next block tests for other drives. At startup, the BIOS writes the number of drives present in the computer
to address 0x475. If there are any other drives present, boot@ prints the current drive to screen. The user may
command boot0 to scan partitions on another drive later.

popw %ax # Drive number

subb $0x79,%al # Does next

cmpb 0x475,%al # drive exist? (from BI0S?)
jb print drive # Yes

decw %ax # Already drive 07?

jz print prompt # Yes

Figure 1.7. sys/boot/i386/boot0/boot0.S

We make the assumption that a single drive is present, so the jump to print drive is not performed. We also
assume nothing strange happened, so we jump to print_prompt .

This next block just prints out a prompt followed by the default option:

print prompt:
movw $prompt,%si # Display
callw putstr # prompt
movb OPT(%bp),%dl # Display
decw %si # default
callw putkey # key
jmp start input # Skip beep

Figure 1.8. sys/boot/i386/boot0/boot0.S

Finally, a jump is performed to start_input, where the BIOS services are used to start a timer and for reading user
input from the keyboard; if the timer expires, the default option will be selected:

start input:
xorb %ah,%ah # BIOS: Get
int $0x1la # system time
movw %dx,%di # Ticks when
addw TICKS(%bp),%di # timeout
read key:
movb $0x1,%ah # BIOS: Check
int $0x16 # for keypress
jnz got key # Have input
xorb %ah,%ah # BIOS: int Oxla, 00
int $0xla # get system time
cmpw %di,%dx # Timeout?
jb read key # No

Figure 1.9. sys/boot/1386/boot0/boot0.S

An interrupt is requested with number 0x1la and argument 0 in register %ah. The BIOS has a predefined set of
services, requested by applications as software-generated interrupts through the int instruction and receiving
arguments in registers (in this case, %ah). Here, particularly, we are requesting the number of clock ticks since last
midnight; this value is computed by the BIOS through the RTC (Real Time Clock). This clock can be programmed
to work at frequencies ranging from 2 Hz to 8192 Hz. The BIOS sets it to 18.2 Hz at startup. When the request is
satisfied, a 32-bit result is returned by the BIOS in registers %cx and %dx (lower bytes in %dx). This result (the %sdx
part) is copied to register %di, and the value of the TICKS variable is added to %di. This variable resides in boot@
at offset _TICKS (a negative value) from register %bp (which, recall, points to 0x800). The default value of this

10

Chapter 1. Bootstrapping and Kernel Initialization

variable is Oxb6 (182 in decimal). Now, the idea is that boot® constantly requests the time from the BIOS, and when
the value returned in register %dx is greater than the value stored in %di, the time is up and the default selection
will be made. Since the RTC ticks 18.2 times per second, this condition will be met after 10 seconds (this default
behavior can be changed in the Makefile). Until this time has passed, boot@ continually asks the BIOS for any user
input; this is done through int 0x16, argument 1 in %ah.

Whether a key was pressed or the time expired, subsequent code validates the selection. Based on the selection, the
register %si is set to point to the appropriate partition entry in the partition table. This new selection overrides
the previous default one. Indeed, it becomes the new default. Finally, the ACTIVE flag of the selected partition is
set. If it was enabled at compile time, the in-memory version of boot® with these modified values is written back
to the MBR on disk. We leave the details of this implementation to the reader.

We now end our study with the last code block from the boot® program:

movw $0x7c00,%bx # Address for read
movb $0x2,%ah # Read sector

callw intx13 # from disk

jc beep # If error

cmpw $0xaa55,0x1fe(%bx) # Bootable?

jne beep # No

pushw %si # Save ptr to selected part.
callw putn # Leave some space

popw %si # Restore, next stage uses it
jmp *%bx # Invoke bootstrap

Figure 1.10. sys/boot/i386/boot0/boot0.S

Recall that %si points to the selected partition entry. This entry tells us where the partition begins on disk. We
assume, of course, that the partition selected is actually a FreeBSD slice.

Note
@ From now on, we will favor the use of the technically more accurate term “slice” rather than
“partition”.

The transfer buffer is set to 0x7c00 (register %bx), and a read for the first sector of the FreeBSD slice is requested
by calling intx13. We assume that everything went okay, so a jump to beep is not performed. In particular, the
new sector read must end with the magic sequence 0xaa55. Finally, the value at %si (the pointer to the selected
partition table) is preserved for use by the next stage, and a jump is performed to address 0x7c00 , where execution
of our next stage (the just-read block) is started.

1.5. voot1 Stage

So far we have gone through the following sequence:

+ The BIOS did some early hardware initialization, including the POST. The MBR (boot®) was loaded from absolute
disk sector one to address 0x7c00. Execution control was passed to that location.

* boot0 relocated itself to the location it was linked to execute (0x600), followed by a jump to continue execution
at the appropriate place. Finally, boot® loaded the first disk sector from the FreeBSD slice to address 0x7c00.
Execution control was passed to that location.

bootl is the next step in the boot-loading sequence. It is the first of three boot stages. Note that we have been
dealing exclusively with disk sectors. Indeed, the BIOS loads the absolute first sector, while boot® loads the first
sector of the FreeBSD slice. Both loads are to address 0x7c00. We can conceptually think of these disk sectors

11

bootl Stage

as containing the files boot® and boot1, respectively, but in reality this is not entirely true for boot1. Strictly
speaking, unlike boot@, boot1 is not part of the boot blocks *. Instead, a single, full-blown file, boot (/boot/boot),
is what ultimately is written to disk. This file is a combination of boot1, boot2 and the Boot Extender (or BTX).
This single file is greater in size than a single sector (greater than 512 bytes). Fortunately, bootl occupies exactly
the first 512 bytes of this single file, so when boot0 loads the first sector of the FreeBSD slice (512 bytes), it is
actually loading boot1 and transferring control to it.

The main task of boot1 is to load the next boot stage. This next stage is somewhat more complex. It is composed of
a server called the “Boot Extender”, or BTX, and a client, called boot2. As we will see, the last boot stage, loader,
is also a client of the BTX server.

Let us now look in detail at what exactly is done by boot1, starting like we did for boot®, at its entry point:

start:
jmp main

Figure 1.11. sys/boot/1386/boot2/bootl.S

The entry point at start simply jumps past a special data area to the label main, which in turn looks like this:

main:
cld # String ops inc
X0r %CX,%Cx # Zero
mov %Cx,%es # Address
mov %cx,%ds # data
mov %CX,%ss # Set up
mov $start,%sp # stack
mov %sp,%si # Source
mov $0x700,%di # Destination
incb %ch # Word count
rep # Copy
movsw # code

Figure 1.12. sys/boot/1386/boot2/bootl.S

Just like boot0, this code relocates boot1, this time to memory address 0x700. However, unlike boot®, it does not
jump there. boot1 is linked to execute at address 0x7c00, effectively where it was loaded in the first place. The
reason for this relocation will be discussed shortly.

Next comes a loop that looks for the FreeBSD slice. Although boot® loaded bootl from the FreeBSD slice, no in-
formation was passed to it about this 4 5o bootl must rescan the partition table to find where the FreeBSD slice
starts. Therefore it rereads the MBR:

mov $partd,%si # Partition
cmpb $0x80,%dl # Hard drive?
jb main.4 # No

movb $0x1,%dh # Block count
callw nread # Read MBR

Figure 1.13. sys/boot/1386/boot2/bootl.S

In the code above, register %d1 maintains information about the boot device. This is passed on by the BIOS and
preserved by the MBR. Numbers 0x80 and greater tells us that we are dealing with a hard drive, so a call is made

*There is a file /b00t/bo0t1 , but it is not the written to the beginning of the FreeBSD slice. Instead, it is concatenated with bo0t2 to form
boot, which is written to the beginning of the FreeBSD slice and read at boot time.
*Actually we did pass a pointer to the slice entry in register %S1i. However, b0ot1 does not assume that it was loaded by boot® (perhaps

some other MBR loaded it, and did not pass this information), so it assumes nothing.

12

Chapter 1. Bootstrapping and Kernel Initialization

to nread, where the MBR is read. Arguments to nread are passed through %si and %dh. The memory address at
label part4 is copied to %si. This memory address holds a “fake partition” to be used by nread. The following is
the data in the fake partition:

Figure 1.14. sys/boot/1386/boot2/Makefile

In particular, the LBA for this fake partition is hardcoded to zero. This is used as an argument to the BIOS for
reading absolute sector one from the hard drive. Alternatively, CHS addressing could be used. In this case, the fake
partition holds cylinder 0, head 0 and sector 1, which is equivalent to absolute sector one.

Let us now proceed to take a look at nread:

Figure 1.15. sys/boot/1386/boot2/boot1.S

Recall that %si points to the fake partition. The word ° at offset ©x8 is copied to register %ax and word at offset
0xa to %cx. They are interpreted by the BIOS as the lower 4-byte value denoting the LBA to be read (the upper
four bytes are assumed to be zero). Register %bx holds the memory address where the MBR will be loaded. The
instruction pushing %cs onto the stack is very interesting. In this context, it accomplishes nothing. However, as we
will see shortly, boot2, in conjunction with the BTX server, also uses xread. 1. This mechanism will be discussed
in the next section.

The code at xread.1 further calls the read function, which actually calls the BIOS asking for the disk sector:

Figure 1.16. sys/boot/1386/boot2/boot1.S

Note the long return instruction at the end of this block. This instruction pops out the %cs register pushed by
nread, and returns. Finally, nread also returns.

With the MBR loaded to memory, the actual loop for searching the FreeBSD slice begins:

°In the context of 16-bit real mode, a word is 2 bytes.

bootl Stage

Figure 1.17. sys/boot/1386/boot2/boot1.S

If a FreeBSD slice is identified, execution continues at main.5. Note that when a FreeBSD slice is found %si points
to the appropriate entry in the partition table, and %dh holds the partition number. We assume that a FreeBSD
slice is found, so we continue execution at main.5:

Figure 1.18. sys/boot/i386/boot2/boot1.S

Recall that at this point, register %si points to the FreeBSD slice entry in the MBR partition table, so a call to nread
will effectively read sectors at the beginning of this partition. The argument passed on register %dh tells nread to
read 16 disk sectors. Recall that the first 512 bytes, or the first sector of the FreeBSD slice, coincides with the boot1
program. Also recall that the file written to the beginning of the FreeBSD slice is not /boot/bootl , but /boot/
boot. Let us look at the size of these files in the filesystem:

Both boot@ and boot1 are 512 bytes each, so they fit exactly in one disk sector. boot2 is much bigger, holding both
the BTX server and the boot2 client. Finally, a file called simply boot is 512 bytes larger than boot2. This file is a
concatenation of boot1 and boot2. As already noted, boot® is the file written to the absolute first disk sector (the
MBR), and boot is the file written to the first sector of the FreeBSD slice; boot1 and boot2 are not written to disk.
The command used to concatenate bootl and boot2 into a single boot is merely cat bootl boot2 > boot .

So bootl occupies exactly the first 512 bytes of boot and, because boot is written to the first sector of the FreeBSD
slice, boot1 fits exactly in this first sector. When nread reads the first 16 sectors of the FreeBSD slice, it effectively
reads the entire boot file . We will see more details about how boot is formed from boot1 and boot2 in the next
section.

©512*16=8192 bytes, exactly the size of boot

14

Chapter 1. Bootstrapping and Kernel Initialization

Recall that nread uses memory address 0x8c00 as the transfer buffer to hold the sectors read. This address is
conveniently chosen. Indeed, because boot1 belongs to the first 512 bytes, it ends up in the address range 0x8c00 -
0x8dff. The 512 bytes that follows (range 6x8e00 -0x8fff) is used to store the bsdlabel ’.

Starting at address 0x9000 is the beginning of the BTX server, and immediately following is the boot2 client. The
BTX server acts as a kernel, and executes in protected mode in the most privileged level. In contrast, the BTX
clients (boot2, for example), execute in user mode. We will see how this is accomplished in the next section. The
code after the call to nread locates the beginning of boot2 in the memory buffer, and copies it to memory address
0xc000. This is because the BTX server arranges boot2 to execute in a segment starting at 0xaf00 . We explore
this in detail in the following section.

The last code block of boot1 enables access to memory above 1MB ® and concludes with a jump to the starting
point of the BTX server:

seta20:

cli # Disable interrupts
seta20.1:

dec %cx # Timeout?

jz seta20.3 # Yes

inb $0x64,%al # Get status
testb $0x2,%al # Busy?

jnz seta20.1 # Yes

movb $0xdl,%al # Command: Write
outb %al,$0x64 # output port
seta20.2:

inb $0x64,%al # Get status
testb $0x2,%al # Busy?

jnz seta20.2 # Yes

movb $0xdf,%al # Enable

outb %al,$0x60 # A20
seta20.3:

sti # Enable interrupts

jmp 0x9010 # Start BTX

Figure 1.19. sys/boot/i386/boot2/boot1.S

Note that right before the jump, interrupts are enabled.

1.6. The BTX Server

Next in our boot sequence is the BTX Server. Let us quickly remember how we got here:
+ The BIOS loads the absolute sector one (the MBR, or boot0), to address 0x7¢00 and jumps there.

+ boot0 relocates itself to 0x600, the address it was linked to execute, and jumps over there. It then reads the first
sector of the FreeBSD slice (which consists of boot1) into address 8x7c00 and jumps over there.

* bootl loads the first 16 sectors of the FreeBSD slice into address 8x8c00. This 16 sectors, or 8192 bytes, is the
whole file boot. The file is a concatenation of boot1 and boot2. boot2, in turn, contains the BTX server and the
boot2 client. Finally, a jump is made to address 0x9010, the entry point of the BTX server.

Before studying the BTX Server in detail, let us further review how the single, all-in-one boot file is created. The
way boot is built is defined in its Makefile (/usr/src/sys/boot/i386/boot2/Makefile). Let us look at the rule
that creates the boot file:

7His’corically known as “disklabel”. If you ever wondered where FreeBSD stored this information, it is in this region. See bsdlabel(8)

8This is necessary for legacy reasons. Interested readers should see http://en.wikipedia.org/wiki/A20_line.

15

https://www.FreeBSD.org/cgi/man.cgi?query=bsdlabel&sektion=8&manpath=freebsd-release-ports
http://en.wikipedia.org/wiki/A20_line

The BTX Server

Figure 1.20. sys/boot/1386/boot2/Makefile

This tells us that boot1 and boot2 are needed, and the rule simply concatenates them to produce a single file called
boot. The rules for creating boot1 are also quite simple:

Figure 1.21. sys/boot/1386/boot2/Makefile

To apply the rule for creating bootl, bootl.out must be resolved. This, in turn, depends on the existence of
bootl.o. This last file is simply the result of assembling our familiar boot1.S, without linking. Now, the rule for
creating boot1.out is applied. This tells us that boot1.0 should be linked with start as its entry point, and start-
ing at address 0x7c00. Finally, bootl is created from bootl.out applying the appropriate rule. This rule is the
objcopy command applied to bootl.out . Note the flags passed to objcopy: -S tells it to strip all relocation and
symbolic information; -0 binary indicates the output format, that is, a simple, unformatted binary file.

Having boot1, let us take a look at how boot2 is constructed:

Figure 1.22. sys/boot/1386/boot2/Makefile

The mechanism for building boot2 is far more elaborate. Let us point out the most relevant facts. The dependency
list is as follows:

16

Chapter 1. Bootstrapping and Kernel Initialization

boot2: boot2.1ld

boot2.1d: boot2.ldr boot2.bin ${BTXDIR}/btx/btx

boot2.bin: boot2.out

boot2.out: ${BTXDIR}/lib/crt0.0 boot2.0 sio.o

boot2.0: boot2.s

boot2.s: boot2.c boot2.h ${.CURDIR}/../../common/ufsread.c
boot2.h: bootl.out

Figure 1.23. sys/boot/i386/boot2/Makefile

Note that initially there is no header file boot2.h, but its creation depends on boot1.out , which we already have.
The rule for its creation is a bit terse, but the important thing is that the output, boot2.h, is something like this:

#define XREADORG 0x725

Figure 1.24. sys/boot/1386/boot2/boot2.h

Recall that boot1 was relocated (i.e., copied from 0x7c00 to 0x700). This relocation will now make sense, because
as we will see, the BTX server reclaims some memory, including the space where boot1 was originally loaded.
However, the BTX server needs access to boot1's xread function; this function, according to the output of boot2.h,
is at location 0x725. Indeed, the BTX server uses the xread function from boot1's relocated code. This function
is now accessible from within the boot2 client.

We next build boot2.s fromfiles boot2.h,boot2.c and /usr/src/sys/boot/common/ufsread.c .Therulefor this
is to compile the code in boot2.c (which includes boot2.h and ufsread.c) into assembly code. Having boot2.s,
the next rule assembles boot2. s, creating the object file boot2. 0. The next rule directs the linker to link various
files (crt0.0, boot2.0 and sio.o0). Note that the output file, boot2.out , is linked to execute at address 0x2000.
Recall that boot2 will be executed in user mode, within a special user segment set up by the BTX server. This
segment starts at 0xa000. Also, remember that the boot2 portion of boot was copied to address 0xc000, that is,
offset 0x2000 from the start of the user segment, so boot2 will work properly when we transfer control to it. Next,
boot2.bin is created from boot2.out by stripping its symbols and format information; boot2.bin is a raw binary.
Now, note that a file boot2.1dr is created as a 512-byte file full of zeros. This space is reserved for the bsdlabel.

Now that we have files boot1, boot2.bin and boot2.1dr, only the BTX server is missing before creating the all-in-
one boot file. The BTX server is located in /usr/src/sys/boot/i386/btx/btx ;it has its own Makefile with its
own set of rules for building. The important thing to notice is that it is also compiled as a raw binary, and that it is
linked to execute at address 0x9000 . The details can be found in /usr/src/sys/boot/i386/btx/btx/Makefile

Having the files that comprise the boot program, the final step is to merge them. This is done by a special program
called btx1d (source located in /usr/src/usr.sbin/btxld). Some arguments to this program include the name of
the output file (boot), its entry point (0x2000) and its file format (raw binary). The various files are finally merged
by this utility into the file boot, which consists of boot1, boot2, the bsdlabel and the BTX server. This file, which
takes exactly 16 sectors, or 8192 bytes, is what is actually written to the beginning of the FreeBSD slice during
installation. Let us now proceed to study the BTX server program.

The BTX server prepares a simple environment and switches from 16-bit real mode to 32-bit protected mode, right
before passing control to the client. This includes initializing and updating the following data structures:

+ Modifies the Interrupt Vector Table (IVT).TheIVT provides exception and interrupt handlers for Real-Mode
code.

+ The Interrupt Descriptor Table (IDT) is created. Entries are provided for processor exceptions, hardware
interrupts, two system calls and V86 interface. The IDT provides exception and interrupt handlers for Protect-

ed-Mode code.

+ ATask-State Segment (TSS) is created. This is necessary because the processor works in the least privileged
level when executing the client (boot2), but in the most privileged level when executing the BTX server.

17

The BTX Server

+ The GDT (Global Descriptor Table) is set up. Entries (descriptors) are provided for supervisor code and data, user
code and data, and real-mode code and data. °

Let us now start studying the actual implementation. Recall that boot1 made a jump to address 0x9010, the BTX
server's entry point. Before studying program execution there, note that the BTX server has a special header at
address range 0x9000-0x900f , right before its entry point. This header is defined as follows:

Figure 1.25. sys/boot/i386/btx/btx/btx.S

Note the first two bytes are Oxeb and 0xe. In the IA-32 architecture, these two bytes are interpreted as a relative
jump past the header into the entry point, so in theory, boot1 could jump here (address ©x9000) instead of address
0x9010. Note that the last field in the BTX header is a pointer to the client's (boot2) entry point. This field is
patched at link time.

Immediately following the header is the BTX server's entry point:

Figure 1.26. sys/boot/1386/btx/btx/btx.S

This code disables interrupts, sets up a working stack (starting at address 0x1800) and clears the flags in the EFLAGS
register. Note that the popfl instruction pops out a doubleword (4 bytes) from the stack and places it in the EFLAGS
register. As the value actually popped is 2, the EFLAGS register is effectively cleared (IA-32 requires that bit 2 of
the EFLAGS register always be 1).

Our next code block clears (sets to 0) the memory range 0x5e00-0x8fff . This range is where the various data
structures will be created:

Figure 1.27. sys/boot/i386/btx/btx/btx.S

°Real-mode code and data are necessary when switching back to real mode from protected mode, as suggested by the Intel manuals.

18

Chapter 1. Bootstrapping and Kernel Initialization

Recall that boot1 was originally loaded to address 0x7¢c00 , so, with this memory initialization, that copy effectively
disappeared. However, also recall that bootl was relocated to 0x700, so that copy is still in memory, and the BTX
server will make use of it.

Next, the real-mode IVT (Interrupt Vector Table is updated. The IVT is an array of segment/offset pairs for excep-
tion and interrupt handlers. The BIOS normally maps hardware interrupts to interrupt vectors 0x8 to 0xf and
0x70 to 0x77 but, as will be seen, the 8259A Programmable Interrupt Controller, the chip controlling the actu-
al mapping of hardware interrupts to interrupt vectors, is programmed to remap these interrupt vectors from
0x8-0xT to 0x20-0x27 and from 0x70-0x77 to 0x28-0x2f . Thus, interrupt handlers are provided for interrupt
vectors 0x20-0x2f . The reason the BIOS-provided handlers are not used directly is because they work in 16-bit real
mode, but not 32-bit protected mode. Processor mode will be switched to 32-bit protected mode shortly. However,
the BTX server sets up a mechanism to effectively use the handlers provided by the BIOS:

/*

* Update real mode IDT for reflecting hardware interrupts.
*/

mov $intr20,%bx # Address first handler

mov $0x10,%cx # Number of handlers

mov $0x20*4,%di # First real mode IDT entry
init.0: mov %bx, (%di) # Store IP

inc %di # Address next

inc %di # entry

stosw # Store CS

add $4,%bx # Next handler

loop init.® # Next IRQ

Figure 1.28. sys/boot/1386/btx/btx/btx.S

The next block creates the IDT (Interrupt Descriptor Table). The IDT is analogous, in protected mode, to the IVT
in real mode. That is, the IDT describes the various exception and interrupt handlers used when the processor is
executing in protected mode. In essence, it also consists of an array of segment/offset pairs, although the structure
is somewhat more complex, because segments in protected mode are different than in real mode, and various
protection mechanisms apply:

/*

* Create IDT.

W

mov $0x5e00,%di # IDT's address

mov $idtctl,%si # Control string
init.1: Tlodsb # Get entry

cbw # count

xchg %ax,%cx # as word

jcxz init.4 # If done

lodsb # Get segment

xchg %ax,%dx # P:DPL:type

lodsw # Get control

xchg %ax, %bx # set

lodsw # Get handler offset

mov $SEL SCODE,%dh # Segment selector
init.2: shr %bx # Handle this int?

jnc init.3 # No

mov %ax, (%di) # Set handler offset

mov %dh,0x2(%di) # and selector

mov %dl,0x5(%di) # Set P:DPL:type

add $0x4,%ax # Next handler
init.3: Tlea 0x8(%di),%di # Next entry

loop init.2 # Till set done

jmp init.1 # Continue

Figure 1.29. sys/boot/1386/btx/btx/btx.S

Each entry in the IDT is 8 bytes long. Besides the segment/offset information, they also describe the segment type,
privilege level, and whether the segment is present in memory or not. The construction is such that interrupt

19

The BTX Server

vectors from 0 to Oxf (exceptions) are handled by function intx00; vector 0x10 (also an exception) is handled by
intx10; hardware interrupts, which are later configured to start at interrupt vector 0x20 all the way to interrupt
vector 0x2f, are handled by function intx20. Lastly, interrupt vector 6x30, which is used for system calls, is han-
dled by intx30, and vectors 0x31 and 0x32 are handled by intx31. It must be noted that only descriptors for in-
terrupt vectors 0x30, 0x31 and 0x32 are given privilege level 3, the same privilege level as the boot2 client, which
means the client can execute a software-generated interrupt to this vectors through the int instruction without
failing (this is the way boot2 use the services provided by the BTX server). Also, note that only software-gener-
ated interrupts are protected from code executing in lesser privilege levels. Hardware-generated interrupts and
processor-generated exceptions are always handled adequately, regardless of the actual privileges involved.

The next step is to initialize the TSS (Task-State Segment). The TSS is a hardware feature that helps the operating
system or executive software implement multitasking functionality through process abstraction. The IA-32 archi-
tecture demands the creation and use of at least one TSS if multitasking facilities are used or different privilege
levels are defined. Since the boot2 client is executed in privilege level 3, but the BTX server runs in privilege level
0, a TSS must be defined:

/*
* Initialize TSS.
*/
init.4: movb $ ESPOH,TSS ESPO+1(%di) # Set ESPO
movb $SEL SDATA,TSS SSO(%di) # Set SSO
movb $ TSSIO,TSS MAP(%di) # Set I/0 bit map base

Figure 1.30. sys/boot/i386/btx/btx/btx.S

Note that a value is given for the Privilege Level 0 stack pointer and stack segment in the TSS. This is needed
because, if an interrupt or exception is received while executing boot2 in Privilege Level 3, a change to Privilege
Level 0 is automatically performed by the processor, so a new working stack is needed. Finally, the 1/0 Map Base
Address field of the TSS is given a value, which is a 16-bit offset from the beginning of the TSS to the I/0 Permission
Bitmap and the Interrupt Redirection Bitmap.

After the IDT and TSS are created, the processor is ready to switch to protected mode. This is done in the next block:

/*

* Bring up the system.

*/

mov $0x2820,%bx # Set protected mode

callw setpic # IRQ offsets

lidt idtdesc # Set IDT

lgdt gdtdesc # Set GDT

mov %cr@,%eax # Switch to protected

inc %ax # mode

mov S%eax,%cro #

1jmp $SEL SCODE,$init.8 # To 32-bit code

.code32
init.8: xorl %ecx,%ecx # Zero

movb $SEL SDATA,%cl # To 32-bit

movw %CX,%ss # stack

Figure 1.31. sys/boot/1386/btx/btx/btx.S

First, a call is made to setpic to program the 8259A PIC (Programmable Interrupt Controller). This chip is con-
nected to multiple hardware interrupt sources. Upon receiving an interrupt from a device, it signals the processor
with the appropriate interrupt vector. This can be customized so that specific interrupts are associated with spe-
cific interrupt vectors, as explained before. Next, the IDTR (Interrupt Descriptor Table Register) and GDTR (Glob-
al Descriptor Table Register) are loaded with the instructions lidt and lgdt, respectively. These registers are
loaded with the base address and limit address for the IDT and GDT. The following three instructions set the Pro-
tection Enable (PE) bit of the %cr0 register. This effectively switches the processor to 32-bit protected mode. Next,
a long jump is made to init.8 using segment selector SEL_SCODE, which selects the Supervisor Code Segment.
The processor is effectively executing in CPL 0, the most privileged level, after this jump. Finally, the Supervisor

20

Chapter 1. Bootstrapping and Kernel Initialization

Data Segment is selected for the stack by assigning the segment selector SEL_SDATA to the %ss register. This data
segment also has a privilege level of 6.

Our last code block is responsible for loading the TR (Task Register) with the segment selector for the TSS we
created earlier, and setting the User Mode environment before passing execution control to the boot2 client.

/*

* Launch user task.

*/

movb $SEL TSS,%cl # Set task

1tr %cx # register

movl $0xa000,%edx # User base address

movzwl %ss:BDA MEM,%eax # Get free memory

shll $0xa,%eax # To bytes

subl $ARGSPACE,%eax # Less arg space

subl %edx,%eax # Less base

movb $SEL UDATA,%cl # User data selector

pushl %ecx # Set SS

pushl %eax # Set ESP

push $0x202 # Set flags (IF set)

push $SEL UCODE # Set CS

pushl btx hdr+0xc # Set EIP

pushl %ecx # Set GS

pushl %ecx # Set FS

pushl %ecx # Set DS

pushl %ecx # Set ES

pushl %edx # Set EAX

movb $0x7,%cl # Set remaining
init.9: push $6x0 # general

loop init.9 # registers

popa # and initialize

popl %es # Initialize

popl %ds # user

popl %fs # segment

popl %gs # registers

iret # To user mode

Figure 1.32. sys/boot/i386/btx/btx/btx.S

Note that the client's environment include a stack segment selector and stack pointer (registers %ss and %esp).
Indeed, once the TR is loaded with the appropriate stack segment selector (instruction 1tr), the stack pointer is
calculated and pushed onto the stack along with the stack's segment selector. Next, the value 0x202 is pushed onto
the stack; it is the value that the EFLAGS will get when control is passed to the client. Also, the User Mode code
segment selector and the client's entry point are pushed. Recall that this entry point is patched in the BTX header
at link time. Finally, segment selectors (stored in register %secx) for the segment registers %gs, %fs, %ds and %es
are pushed onto the stack, along with the value at %edx (0xa000). Keep in mind the various values that have been
pushed onto the stack (they will be popped out shortly). Next, values for the remaining general purpose registers
are also pushed onto the stack (note the loop that pushes the value 0 seven times). Now, values will be started to be
popped out of the stack. First, the popa instruction pops out of the stack the latest seven values pushed. They are
stored in the general purpose registers in order %edi, %esi, %ebp, %ebx, %edx, %ecx, %eax .Then, the various
segment selectors pushed are popped into the various segment registers. Five values still remain on the stack. They
are popped when the iret instruction is executed. This instruction first pops the value that was pushed from the
BTX header. This value is a pointer to boot2's entry point. It is placed in the register %eip, the instruction pointer
register. Next, the segment selector for the User Code Segment is popped and copied to register %cs. Remember
that this segment's privilege level is 3, the least privileged level. This means that we must provide values for the
stack of this privilege level. This is why the processor, besides further popping the value for the EFLAGS register,
does two more pops out of the stack. These values go to the stack pointer (%esp) and the stack segment (%ss). Now,
execution continues at boot0's entry point.

It is important to note how the User Code Segment is defined. This segment's base address is set to 0xa000. This
means that code memory addresses are relative to address 0xa000; if code being executed is fetched from address
0x2000, the actual memory addressed is 0xa000+0x2000=0xcO00.

21

boot2 Stage

1.7. boot2 Stage

boot2 defines an important structure, struct bootinfo. This structure is initialized by boot2 and passed to the
loader, and then further to the kernel. Some nodes of this structures are set by boot2, the rest by the loader. This
structure, among other information, contains the kernel filename, BIOS harddisk geometry, BIOS drive number
for boot device, physical memory available, envp pointer etc. The definition for it is:

/usr/include/machine/bootinfo.h:
struct bootinfo {
u int32 t bi version;
u int32 t bi kernelname; /* represents a char * */
u int32 t bi nfs diskless; /* struct nfs diskless * */
/* End of fields that are always present. */
#define bi endcommon bi n bios used
u int32 t bi n bios used;
u int32 t bi bios geom[N BIOS GEOM];
u int32 t bi size;
u int8 t bi memsizes valid;
u int8 t bi bios dev; /* bootdev BIOS unit number */
u int8 t bi pad[2];
u_int32 t bi basemem;
u int32 t bi extmem;
u int32 t bi symtab; /* struct symtab * */
u_int32_t bi_esymtab; /* struct symtab * */
/* Items below only from advanced bootloader */
u int32 t bi kernend; /* end of kernel space */
u_int32_t bi envp; /* environment */
u int32 t bi modulep; /* preloaded modules */
}i

boot2 enters into an infinite loop waiting for user input, then calls load() . If the user does not press anything,
the loop breaks by a timeout, so load() will load the default file (/boot/loader). Functions ino_t lookup(char
*filename) and int xfsread(ino t inode, void *buf, size t nbyte) are used to read the content of a file
into memory. /boot/loader is an ELF binary, but where the ELF header is prepended with a.out's struct exec
structure. load() scans the loader's ELF header, loading the content of /boot/loader into memory, and passing
the execution to the loader's entry:
sys/boot/i386/boot2/boot2.c:
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX MASK),

MAKEBOOTDEV (dev_maj [dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
0, 0, 0, VTOP(&bootinfo));

1.8. loader Stage

loader is a BTX client as well. I will not describe it here in detail, there is a comprehensive man page written by
Mike Smith, loader(8). The underlying mechanisms and BTX were discussed above.

The main task for the loader is to boot the kernel. When the kernel is loaded into memory, it is being called by
the loader:

sys/boot/common/boot.c:

/* Call the exec handler from the loader matching the kernel */
module formats[km->m loader]->1 exec(km);

1.9. Kernel Initialization

Let us take a look at the command that links the kernel. This will help identify the exact location where the loader
passes execution to the kernel. This location is the kernel's actual entry point.

sys/conf/Makefile.i386:

22

https://www.FreeBSD.org/cgi/man.cgi?query=loader&sektion=8&manpath=freebsd-release-ports

Chapter 1. Bootstrapping and Kernel Initialization

A few interesting things can be seen here. First, the kernel is an ELF dynamically linked binary, but the dynamic
linker for kernel is /red/herring, which is definitely a bogus file. Second, taking a look at the file sys/conf/
ldscript.i386 gives an idea about what Id options are used when compiling a kernel. Reading through the first
few lines, the string

says that a kernel's entry point is the symbol ‘btext'. This symbol is defined in locore.s:

First, the register EFLAGS is set to a predefined value of 0x00000002. Then all the segment registers are initialized:

btext calls the routines recover bootinfo(), identify cpu(), create pagetables(), which are also defined in
locore.s. Here is a description of what they do:

recover bootinfo This routine parses the parameters to the kernel
passed from the bootstrap. The kernel may have been
booted in 3 ways: by the loader, described above, by the
old disk boot blocks, or by the old diskless boot proce-
dure. This function determines the booting method,
and stores the struct bootinfo structure into the
kernel memory.

identify cpu This functions tries to find out what CPU it is running
on, storing the value found in a variable cpu.

create pagetables This function allocates and fills out a Page Table Direc-
tory at the top of the kernel memory area.

The next steps are enabling VME, if the CPU supports it:

23

init386()

Then, enabling paging:

The next three lines of code are because the paging was set, so the jump is needed to continue the execution in
virtualized address space:

The function init386() is called with a pointer to the first free physical page, after that mi_startup(). init386
is an architecture dependent initialization function, and mi_startup() is an architecture independent one (the
'mi_' prefix stands for Machine Independent). The kernel never returns from mi_startup(), and by calling it, the
kernel finishes booting:

1.9.1. init386()

init386() isdefinedin sys/i386/i386/machdep.c and performslow-level initialization specific to the 1386 chip.
The switch to protected mode was performed by the loader. The loader has created the very first task, in which
the kernel continues to operate. Before looking at the code, consider the tasks the processor must complete to
initialize protected mode execution:

+ Initialize the kernel tunable parameters, passed from the bootstrapping program.

Prepare the GDT.

Prepare the IDT.

Initialize the system console.

Initialize the DDB, if it is compiled into kernel.

Initialize the TSS.

Prepare the LDT.

init386() initializes the tunable parameters passed from bootstrap by setting the environment pointer (envp)
and calling init_paraml() . The envp pointer has been passed from loader in the bootinfo structure:

Set up proc0's pcb.

Chapter 1. Bootstrapping and Kernel Initialization

init_paraml() is defined in sys/kern/subr_param.c . That file has a number of sysctls, and two functions,
init paraml() and init param2() ,that are called from init386() :

sys/kern/subr _param.c:
hz = HZ;
TUNABLE _INT FETCH("kern.hz", &hz);

TUNABLE_<typename>_FETCH is used to fetch the value from the environment:

/usr/src/sys/sys/kernel.h:
#define TUNABLE INT_FETCH(path, var) getenv_int((path), (var))

Sysctl kern.hz is the system clock tick. Additionally, these sysctls are set by init paraml() : kern.maxswzone,
kern.maxbcache, kern.maxtsiz, kern.dfldsiz, kern.maxdsiz, kern.dflssiz, kern.maxssiz, kern.sgrow-
siz.

Then init386() prepares the Global Descriptors Table (GDT). Every task on an x86 is running in its own virtual
address space, and this space is addressed by a segment:offset pair. Say, for instance, the current instruction to be
executed by the processor lies at CS:EIP, then the linear virtual address for that instruction would be “the virtual
address of code segment CS” + EIP. For convenience, segments begin at virtual address 0 and end at a 4Gb boundary.
Therefore, the instruction's linear virtual address for this example would just be the value of EIP. Segment registers
such as CS, DS etc are the selectors, i.e., indexes, into GDT (to be more precise, an index is not a selector itself, but
the INDEX field of a selector). FreeBSD's GDT holds descriptors for 15 selectors per CPU:

sys/1386/1386/machdep.c:
union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */

sys/1386/include/segments.h:
/*

* Entries in the Global Descriptor Table (GDT)

*/
#define GNULL SEL 0 /* Null Descriptor */
#define GCODE SEL 1 /* Kernel Code Descriptor */
#define GDATA SEL 2 /* Kernel Data Descriptor */
#define GPRIV_SEL 3 /* SMP Per-Processor Private Data */
#define GPROCO SEL 4 /* Task state process slot zero and up */
#define GLDT SEL 5 /* LDT - eventually one per process */
#define GUSERLDT SEL 6 /* User LDT */
#define GTGATE_SEL 7 /* Process task switch gate */
#define GBIOSLOWMEM SEL 8 /* BIOS low memory access (must be entry 8) */
#define GPANIC SEL 9 /* Task state to consider panic from */
#define GBIOSCODE32 SEL 10 /* BIOS interface (32bit Code) */
#define GBIOSCODE16 SEL 11 /* BIOS interface (16bit Code) */
#define GBIOSDATA SEL 12 /* BIOS interface (Data) */
#define GBIOSUTIL SEL 13 /* BIOS interface (Utility) */
#define GBIOSARGS SEL 14 /* BIOS interface (Arguments) */

Note that those #defines are not selectors themselves, but just a field INDEX of a selector, so they are exactly the
indices of the GDT. for example, an actual selector for the kernel code (GCODE_SEL) has the value 0x08.

The next step is to initialize the Interrupt Descriptor Table (IDT). This table is referenced by the processor when a
software or hardware interrupt occurs. For example, to make a system call, user application issues the INT 0x80
instruction. This is a software interrupt, so the processor's hardware looks up a record with index 0x80 in the IDT.
This record points to the routine that handles this interrupt, in this particular case, this will be the kernel's syscall
gate. The IDT may have a maximum of 256 (0x100) records. The kernel allocates NIDT records for the IDT, where
NIDT is the maximum (256):

sys/1386/1386/machdep.c:
static struct gate descriptor idt@[NIDT];
struct gate descriptor *idt = &idt0[0]; /* interrupt descriptor table */

For each interrupt, an appropriate handler is set. The syscall gate for INT 0x80 is set as well:

25

mi startup()

So when a userland application issues the INT 0x80 instruction, control will transfer to the function Xin-
t0x80_syscall, which is in the kernel code segment and will be executed with supervisor privileges.

Console and DDB are then initialized:

The Task State Segment is another x86 protected mode structure, the TSS is used by the hardware to store task
information when a task switch occurs.

The Local Descriptors Table is used to reference userland code and data. Several selectors are defined to point to
the LDT, they are the system call gates and the user code and data selectors:

Next, proc0's Process Control Block (struct pcb) structure is initialized. proc0 is a struct proc structure that
describes a kernel process. It is always present while the kernel is running, therefore it is declared as global:

The structure struct pcb is a part of a proc structure. It is defined in /usr/include/machine/pcb.h and has a
process's information specific to the i386 architecture, such as registers values.

1.9.2. mi_startup()

This function performs a bubble sort of all the system initialization objects and then calls the entry of each object
one by one:

Although the sysinit framework is described in the Developers' Handbook, I will discuss the internals of it.

Every system initialization object (sysinit object) is created by calling a SYSINIT() macro. Let us take as example an
announce sysinit object. This object prints the copyright message:

26

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook

Chapter 1. Bootstrapping and Kernel Initialization

The subsystem ID for this object is SI_SUB_COPYRIGHT (0x0800001), which comes right after the SI_SUB_CONSOLE
(0x0800000). So, the copyright message will be printed out first, just after the console initialization.

Let us take a look at what exactly the macro SYSINIT() does.ItexpandstoaC_SYSINIT() macro.The C_SYSINIT()
macro then expands to a static struct sysinit structure declaration with another DATA SET macro call:

The DATA_SET() macro expands to aMAKE_SET() , and that macro is the point where all the sysinit magic is hidden:

In our case, the following declaration will occur:

The first __asm instruction will create an ELF section within the kernel's executable. This will happen at kernel
link time. The section will have the name .set.sysinit set . The content of this section is one 32-bit value, the
address of announce_sys_init structure, and that is what the second __asm is. The third __asm instruction marks
the end of a section. If a directive with the same section name occurred before, the content, i.e., the 32-bit value,
will be appended to the existing section, so forming an array of 32-bit pointers.

Running objdump on a kernel binary, you may notice the presence of such small sections:

27

mi startup()

This screen dump shows that the size of .set.sysinit_set section is 0x664 bytes, so 0x664/sizeof (void *) sysinit
objects are compiled into the kernel. The other sections such as .set.sysctl set represent other linker sets.

By defining a variable of type struct linker_set the content of .set.sysinit _set section will be “collected”
into that variable:

The struct linker set is defined as follows:

The first node will be equal to the number of a sysinit objects, and the second node will be a NULL-terminated
array of pointers to them.

Returning to the mi_startup() discussion, it is must be clear now, how the sysinit objects are being organized. The
mi_startup() function sorts them and calls each. The very last object is the system scheduler:

The system scheduler sysinit object is defined in the file sys/vm/vm_glue.c , and the entry point for that object is
scheduler(). That function is actually an infinite loop, and it represents a process with PID 0, the swapper process.
The proco0 structure, mentioned before, is used to describe it.

The first user process, called init, is created by the sysinit object init:

Chapter 1. Bootstrapping and Kernel Initialization

The create_init() allocates a new process by calling fork1(), but does not mark it runnable. When this new
process is scheduled for execution by the scheduler, the start_init() will be called. That function is defined
in init _main.c . It tries to load and exec the init binary, probing /sbin/init first, then /sbin/oinit , /sbin/
init.bak, and finally /stand/sysinstall:

29

Chapter 2. Locking Notes

This chapter is maintained by the FreeBSD SMP Next Generation Project.

This document outlines the locking used in the FreeBSD kernel to permit effective multi-processing within the
kernel. Locking can be achieved via several means. Data structures can be protected by mutexes or lockmgr(9)
locks. A few variables are protected simply by always using atomic operations to access them.

2.1. Mutexes

A mutex is simply a lock used to guarantee mutual exclusion. Specifically, a mutex may only be owned by one
entity at a time. If another entity wishes to obtain a mutex that is already owned, it must wait until the mutex is
released. In the FreeBSD kernel, mutexes are owned by processes.

Mutexes may be recursively acquired, but they are intended to be held for a short period of time. Specifically, one
may not sleep while holding a mutex. If you need to hold a lock across a sleep, use a lockmgr(9) lock.

Each mutex has several properties of interest:

Variable Name
The name of the struct mtx variable in the kernel source.

Logical Name
The name of the mutex assigned to it by mtx_init . This name is displayed in KTR trace messages and witness
errors and warnings and is used to distinguish mutexes in the witness code.

Type
The type of the mutex in terms of the MTX * flags. The meaning for each flag is related to its meaning as
documented in mutex(9).

MTX_DEF
A sleep mutex

MTX_SPIN
A spin mutex

MTX RECURSE
This mutex is allowed to recurse.

Protectees
A list of data structures or data structure members that this entry protects. For data structure members, the
name will be in the form of structure name.member name.

Dependent Functions
Functions that can only be called if this mutex is held.

Table 2.1. Mutex List

Variable Name Logical Name Type Protectees Dependent Functions
sched_lock “sched lock” MTX_SPIN | MTX RE-| gmonparam, cn- |setrunqueue, rem-
CURSE t.v_swtch, cp time,|runqueue,

curpriority, mi switch, choose-
mtx.mtx_blocked , proc, schedclock,
mtx.mtx contested, |resetpriority, up-
proc.p procq, datepri,
proc.p_slpq, maybe resched ,
proc.p_sflag, cpu_switch,
proc.p stat, cpu_throw,

https://www.FreeBSD.org/cgi/man.cgi?query=lockmgr&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=lockmgr&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=mutex&sektion=9&manpath=freebsd-release-ports

Shared Exclusive Locks

Variable Name Logical Name Type Protectees Dependent Functions
proc.p_estcpu, need resched ,
proc.p_cpticks resched wanted,
proc.p_pctcpu, clear resched, as-
proc.p_wchan, ton, astoff, ast-
proc.p_wmesg, pending, calcru,
proc.p swtime, proc_compare

proc.p_slptime,
proc.p_runtime,
proc.p_uu,
proc.p_su,
proc.p_iu,
proc.p_uticks,
proc.p_sticks,
proc.p_iticks,
proc.p_oncpu,
proc.p_lastcpu,
proc.p_rgindex,
proc.p_heldmtx,
proc.p_blocked,
proc.p_mtxname,
proc.p_contested,
proc.p _priority,
proc.p_usrpri,
proc.p _nativepri,
proc.p_nice,
proc.p_rtprio, psc-
nt, slpque,
itqueuebits,
itqueues,
rtqueuebits ,
rtqueues,
queuebits, queues,
idqueuebits ,
idqueues,
switchtime,
switchticks

vm86pcb_lock “vm86pch lock” MTX_DEF vm86pch vm86_bioscall

Giant “Giant” MTX_DEF | MTX RE-|nearly everything |lots
CURSE

callout_lock “callout lock” MTX_SPIN | MTX RE-|callfree, callwheel,
CURSE nextsoftcheck ,
proc.p_itcallout,
proc.p_slpcallout,
softticks, ticks

2.2. Shared Exclusive Locks

These locks provide basic reader-writer type functionality and may be held by a sleeping process. Currently they
are backed by lockmgr(9).

32

https://www.FreeBSD.org/cgi/man.cgi?query=lockmgr&sektion=9&manpath=freebsd-release-ports

Chapter 2. Locking Notes

Table 2.2. Shared Exclusive Lock List

Variable Name

Protectees

allproc_lock

allproc zombproc pidhashtbl proc.p list
proc.p_hash nextpid

proctree lock

proc.p_children proc.p sibling

2.3. Atomically Protected Variables

An atomically protected variable is a special variable that is not protected by an explicit lock. Instead, all data
accesses to the variables use special atomic operations as described in atomic(9). Very few variables are treated
this way, although other synchronization primitives such as mutexes are implemented with atomically protected

variables.

e mtx.mtx_lock

33

https://www.FreeBSD.org/cgi/man.cgi?query=atomic&sektion=9&manpath=freebsd-release-ports

Chapter 3. Kernel Objects

Kernel Objects, or Kobj provides an object-oriented C programming system for the kernel. As such the data being
operated on carries the description of how to operate on it. This allows operations to be added and removed from
an interface at run time and without breaking binary compatibility.

3.1. Terminology

Object
A set of data - data structure - data allocation.

Method
An operation - function.

Class
One or more methods.

Interface
A standard set of one or more methods.

3.2. Kobj Operation

Kobj works by generating descriptions of methods. Each description holds a unique id as well as a default function.
The description's address is used to uniquely identify the method within a class' method table.

A class is built by creating a method table associating one or more functions with method descriptions. Before use
the class is compiled. The compilation allocates a cache and associates it with the class. A unique id is assigned to
each method description within the method table of the class if not already done so by another referencing class
compilation. For every method to be used a function is generated by script to qualify arguments and automatically
reference the method description for a lookup. The generated function looks up the method by using the unique
id associated with the method description as a hash into the cache associated with the object's class. If the method
is not cached the generated function proceeds to use the class' table to find the method. If the method is found
then the associated function within the class is used; otherwise, the default function associated with the method
description is used.

These indirections can be visualized as the following:

object->cache<->class

3.3. Using Kobj

3.3.1. Structures

struct kobj method

3.3.2. Functions

void kobj class compile(kobj class t cls);

void kobj class compile static(kobj class t cls, kobj ops t ops);

void kobj class free(kobj class t cls);

kobj t kobj create(kobj class t cls, struct malloc type *mtype, int mflags);
void kobj init(kobj t obj, kobj class t cls);

void kobj delete(kobj t obj, struct malloc type *mtype);

Macros

3.3.3. Macros

3.3.4. Headers

3.3.5. Creating an Interface Template

The first step in using Kobj is to create an Interface. Creating the interface involves creating a template that the
script src/sys/kern/makeobjops.pl can use to generate the header and code for the method declarations and
method lookup functions.

Within this template the following keywords are used: #include, INTERFACE, CODE, METHOD , STATICMETHOD , and
DEFAULT.

The #include statement and what follows it is copied verbatim to the head of the generated code file.

For example:

The INTERFACE keyword is used to define the interface name. This name is concatenated with each method name
as [interface name] [method name]. Its syntax is INTERFACE [interface name];.

For example:

The CODE keyword copies its arguments verbatim into the code file. Its syntax is CODE { [whatever] };

For example:

The METHOD keyword describes a method. Its syntax is METHOD [return type] [method name] { [object [,
arguments]] };

For example:

The DEFAULT keyword may follow the METHOD keyword. It extends the METHOD key word to include the default
function for method. The extended syntax is METHOD [return type] [method name] { [object; [other
arguments]] }DEFAULT [default function];

For example:

w

6

Chapter 3. Kernel Objects

struct object *;
struct foo *;

int bar;

} DEFAULT foo_hack;

The STATICMETHOD keyword is used like the METHOD keyword except the kobj data is not at the head of the object
structure so casting to kobj_t would be incorrect. Instead STATICMETHOD relies on the Kobj data being referenced
as 'ops'. This is also useful for calling methods directly out of a class's method table.

Other complete examples:

src/sys/kern/bus_if.m
src/sys/kern/device if.m

3.3.6. Creating a Class

The second step in using Kobj is to create a class. A class consists of a name, a table of methods, and the size of
objects if Kobj's object handling facilities are used. To create the class use the macro DEFINE CLASS().To create the
method table create an array of kobj_method_t terminated by a NULL entry. Each non-NULL entry may be created
using the macro KOBIJMETHOD().

For example:
DEFINE CLASS(fooclass, foomethods, sizeof(struct foodata));

kobj method t foomethods[] = {
KOBJMETHOD (bar_doo, foo doo),
KOBJMETHOD (bar_ foo, foo foo),
{ NULL, NULL}

}i

The class must be “compiled”. Depending on the state of the system at the time that the class is to be initialized a
statically allocated cache, “ops table” have to be used. This can be accomplished by declaring a struct kobj_ops
and using kobj_class_compile_static(); otherwise, kobj_class_compile() should be used.

3.3.7. Creating an Object

The third step in using Kobj involves how to define the object. Kobj object creation routines assume that Kobj data
is at the head of an object. If this in not appropriate you will have to allocate the object yourself and then use
kobj init() on the Kobj portion of it; otherwise, you may use kobj create() to allocate and initialize the Kobj
portion of the object automatically. kobj init() may also be used to change the class that an object uses.

To integrate Kobj into the object you should use the macro KOBJ_FIELDS.

For example

struct foo data {
KOBJ_FIELDS;
foo foo;
foo_bar;

}i
3.3.8. Calling Methods

The last step in using Kobj is to simply use the generated functions to use the desired method within the object's
class. This is as simple as using the interface name and the method name with a few modifications. The interface
name should be concatenated with the method name using a'_' between them, all in upper case.

For example, if the interface name was foo and the method was bar then the call would be:

[return value =] FOO BAR(object [, other parameters]);

37

Cleaning Up

3.3.9. Cleaning Up

When an object allocated through kobj create() is no longer needed kobj delete() may be called on it, and
when a class is no longer being used kobj class free() may be called on it.

38

Chapter 4. The Jail Subsystem

Evan Sarmiento

<evms@cs.bu.edu >

On most UNIX® systems, root has omnipotent power. This promotes insecurity. If an attacker gained root on
a system, he would have every function at his fingertips. In FreeBSD there are sysctls which dilute the power of
root, in order to minimize the damage caused by an attacker. Specifically, one of these functions is called secure
levels. Similarly, another function which is present from FreeBSD 4.0 and onward, is a utility called jail(8). Jail
chroots an environment and sets certain restrictions on processes which are forked within the jail. For example,
a jailed process cannot affect processes outside the jail, utilize certain system calls, or inflict any damage on the
host environment.

Jail is becoming the new security model. People are running potentially vulnerable servers such as Apache, BIND,
and sendmail within jails, so that if an attacker gains root within the jail, it is only an annoyance, and not a dev-
astation. This article mainly focuses on the internals (source code) of jail. For information on how to set up a jail
see the handbook entry on jails.

4.1. Architecture

Jail consists of two realms: the userland program, jail(8), and the code implemented within the kernel: the jail(2)
system call and associated restrictions. I will be discussing the userland program and then how jail is implemented
within the kernel.

4.1.1. Userland Code

The source for the userland jail is located in /usr/src/usr.sbin/jail , consisting of one file, jail.c. The program
takes these arguments: the path of the jail, hostname, IP address, and the command to be executed.

4.1.1.1. Data Structures

In jail.c, the first thing I would note is the declaration of an important structure struct jail j; which was
included from /usr/include/sys/jail.h .

The definition of the jail structure is:
/usr/include/sys/jail.h

struct jail {

u int32 t version;
char *path;
char *hostname;
u int32 t ip_number;

}i

As you can see, there is an entry for each of the arguments passed to the jail(8) program, and indeed, they are set
during its execution.

/usr/src/usr.sbin/jail/jail.c
char path[PATH MAX];

if (realpath(argv[0], path) == NULL)
err(1l, "realpath: %s", argv[0]);
if (chdir(path) != 0)
err(l, "chdir: %s", path);

mailto:evms@cs.bu.edu
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/jails.html
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports

Kernel Space

4.1.1.2. Networking

One of the arguments passed to the jail(8) program is an IP address with which the jail can be accessed over the
network. jail(8) translates the IP address given into host byte order and then stores it in j (the jail structure).

The inet_aton(3) function "interprets the specified character string as an Internet address, placing the address into
the structure provided." The ip_number member in the jail structure is set only when the IP address placed onto
the in structure by inet_aton(3) is translated into host byte order by ntohl(3).

4.1.1.3. Jailing the Process

Finally, the userland program jails the process. Jail now becomes an imprisoned process itself and then executes
the command given using execv(3).

As you can see, the jail() function is called, and its argument is the jail structure which has been filled with
the arguments given to the program. Finally, the program you specify is executed. I will now discuss how jail is
implemented within the kernel.

4.1.2. Kernel Space

We will now be looking at the file /usr/src/sys/kern/kern_jail.c . This is the file where the jail(2) system call,
appropriate sysctls, and networking functions are defined.

4.1.2.1. Sysctls

In kern_jail.c, the following sysctls are defined:

https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=inet_aton&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=inet_aton&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ntohl&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=execv&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports

Chapter 4. The Jail Subsystem

Each of these sysctls can be accessed by the user through the sysctl(8) program. Throughout the kernel, these spe-
cific sysctls are recognized by their name. For example, the name of the first sysctl is security.jail.set_host-
name_allowed.

4.1.2.2. jail(2) System Call

Like all system calls, the jail(2) system call takes two arguments, struct thread *td and struct jail args *uap .
td is a pointer to the thread structure which describes the calling thread. In this context, uap is a pointer to the
structure in which a pointer to the jail structure passed by the userland jail.c is contained. When I described
the userland program before, you saw that the jail(2) system call was given a jail structure as its own argument.

Therefore, uap->jail can be used to access the jail structure which was passed to the system call. Next, the
system call copies the jail structure into kernel space using the copyin(9) function. copyin(9) takes three argu-
ments: the address of the data which is to be copied into kernel space, uap->jail, where to store it, j and the
size of the storage. The jail structure pointed by uap->jail is copied into kernel space and is stored in another
jail structure, j.

There is another important structure defined in jail.h. It is the prison structure. The prison structure is used
exclusively within kernel space. Here is the definition of the prison structure.

41

https://www.FreeBSD.org/cgi/man.cgi?query=sysctl&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=copyin&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=copyin&sektion=9&manpath=freebsd-release-ports

Kernel Space

The jail(2) system call then allocates memory for a prison structure and copies data between the jail and prison
structure.

Next, we will discuss another important system call jail_attach(2), which implements the function to put a process
into the jail.

This system call makes the changes that can distinguish a jailed process from those unjailed ones. To understand
what jail_attach(2) does for us, certain background information is needed.

On FreeBSD, each kernel visible thread is identified by its thread structure, while the processes are described by
their proc structures. You can find the definitions of the thread and proc structure in /usr/include/sys/proc.h .
For example, the td argument in any system call is actually a pointer to the calling thread's thread structure, as
stated before. The td_proc member in the thread structure pointed by td is a pointer to the proc structure which
represents the process that contains the thread represented by td. The proc structure contains members which
can describe the owner's identity(p_ucred), the process resource limits(p_limit), and so on. In the ucred structure
pointed by p_ucred member in the proc structure, there is a pointer to the prison structure(cr_prison).

Inkern_jail.c ,thefunction jail() then calls function jail attach() withagiven jid.And jail attach() calls
function change_root() to change the root directory of the calling process. The jail_attach() then creates a
new ucred structure, and attaches the newly created ucred structure to the calling process after it has successfully
attached the prison structure to the ucred structure. From then on, the calling process is recognized as jailed.
When the kernel routine jailed() is called in the kernel with the newly created ucred structure as its argument,

42

https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail_attach&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail_attach&sektion=2&manpath=freebsd-release-ports

Chapter 4. The Jail Subsystem

it returns 1 to tell that the credential is connected with a jail. The public ancestor process of all the process forked
within the jail, is the process which runs jail(8), as it calls the jail(2) system call. When a program is executed
through execve(2), it inherits the jailed property of its parent's ucred structure, therefore it has a jailed ucred
structure.

When a process is forked from its parent process, the fork(2) system call uses crhold() to maintain the credential
for the newly forked process. It inherently keep the newly forked child's credential consistent with its parent, so
the child process is also jailed.

4.2. Restrictions

Throughout the kernel there are access restrictions relating to jailed processes. Usually, these restrictions only
check whether the process is jailed, and if so, returns an error. For example:

4.2.1. SysV IPC

System V IPC is based on messages. Processes can send each other these messages which tell them how to act.
The functions which deal with messages are: msgctl(3), msgget(3), msgsnd(3) and msgrcv(3). Earlier, I mentioned
that there were certain sysctls you could turn on or off in order to affect the behavior of jail. One of these sysctls
was security.jail.sysvipc_allowed. By default, this sysctl is set to 0. If it were set to 1, it would defeat the
whole purpose of having a jail; privileged users from the jail would be able to affect processes outside the jailed
environment. The difference between a message and a signal is that the message only consists of the signal number.

43

https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=execve&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=fork&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=msgctl&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=msgget&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=msgsnd&sektion=3&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=msgrcv&sektion=3&manpath=freebsd-release-ports

Sockets

/usr/src/sys/kern/sysv_msg.c :

+ msgget(key, msgflg) :msgget returns (and possibly creates) a message descriptor that designates a message
queue for use in other functions.

+ msgctl(msgid, cmd, buf):Using this function, a process can query the status of a message descriptor.
+ msgsnd(msgid, msgp, msgsz, msgflg):msgsnd sends a message to a process.
 msgrecv(msgid, msgp, msgsz, msgtyp, msgflg):a process receives messages using this function

In each of the system calls corresponding to these functions, there is this conditional:

/usr/src/sys/kern/sysv_msg.c
if (!jail sysvipc allowed && jailed(td->td ucred))
return (ENOSYS);

Semaphore system calls allow processes to synchronize execution by doing a set of operations atomically on a set
of semaphores. Basically semaphores provide another way for processes lock resources. However, process waiting
on a semaphore, that is being used, will sleep until the resources are relinquished. The following semaphore system
calls are blocked inside a jail: semget(2), semctl(2) and semop(2).

/usr/src/sys/kern/sysv_sem.c
 semctl(semid, semnum, cmd, ...):semctldoes the specified cmd on the semaphore queue indicated by semid.
« semget(key, nsems, flag) :semget creates an array of semaphores, corresponding to key.
key and flag take on the same meaning as they do in msgget.
+ semop(semid, array, nops):semop performs a group of operations indicated by array, to the set of semaphores

identified by semid.

System V IPC allows for processes to share memory. Processes can communicate directly with each other by shar-
ing parts of their virtual address space and then reading and writing data stored in the shared memory. These
system calls are blocked within a jailed environment: shmdt(2), shmat(2), shmctl(2) and shmget(2).

/usr/src/sys/kern/sysv_shm.c

 shmctl(shmid, cmd, buf): shmctl does various control operations on the shared memory region identified
by shmid.

+ shmget(key, size, flag) :shmget accesses or creates a shared memory region of size bytes.

+ shmat(shmid, addr, flag) :shmat attaches a shared memory region identified by shmid to the address space
of a process.

+ shmdt(addr): shmdt detaches the shared memory region previously attached at addr.

4.2.2. Sockets

Jail treats the socket(2) system call and related lower-level socket functions in a special manner. In order to de-
termine whether a certain socket is allowed to be created, it first checks to see if the sysctl security.jail.sock-
et_unixiproute only is set. If set, sockets are only allowed to be created if the family specified is either PF_LOCAL,
PF_INET or PF_ROUTE . Otherwise, it returns an error.

/usr/src/sys/kern/uipc_socket.c
int

44

https://www.FreeBSD.org/cgi/man.cgi?query=semget&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=semctl&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=semop&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=shmdt&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=shmat&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=shmctl&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=shmget&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=socket&sektion=2&manpath=freebsd-release-ports

Chapter 4. The Jail Subsystem

4.2.3. Berkeley Packet Filter

The Berkeley Packet Filter provides a raw interface to data link layers in a protocol independent fashion. BPF is
now controlled by the devfs(8) whether it can be used in a jailed environment.

4.2.4. Protocols

There are certain protocols which are very common, such as TCP, UDP, IP and ICMP. IP and ICMP are on the same
level: the network layer 2. There are certain precautions which are taken in order to prevent a jailed process from
binding a protocol to a certain address only if the nam parameter is set. nam is a pointer to a sockaddr structure,
which describes the address on which to bind the service. A more exact definition is that sockaddr "may be used
as a template for referring to the identifying tag and length of each address". In the function in_pcbbind_setup(),
sin is a pointer to a sockaddr in structure, which contains the port, address, length and domain family of the
socket which is to be bound. Basically, this disallows any processes from jail to be able to specify the address that
does not belong to the jail in which the calling process exists.

https://www.FreeBSD.org/cgi/man.cgi?query=devfs&sektion=8&manpath=freebsd-release-ports

Filesystem

You might be wondering what function prison_ip() does. prison ip() is given three arguments, a pointer to
the credential(represented by cred), any flags, and an IP address. It returns 1 if the IP address does NOT belong
to the jail or 0 otherwise. As you can see from the code, if it is indeed an IP address not belonging to the jail, the
protocol is not allowed to bind to that address.

4.2.5. Filesystem

Even root users within the jail are not allowed to unset or modify any file flags, such as immutable, append-only,
and undeleteable flags, if the securelevel is greater than 0.

Chapter 4. The Jail Subsystem

47

Chapter 5. The SYSINIT Framework

SYSINIT is the framework for a generic call sort and dispatch mechanism. FreeBSD currently uses it for the dynamic
initialization of the kernel. SYSINIT allows FreeBSD's kernel subsystems to be reordered, and added, removed, and
replaced at kernel link time when the kernel or one of its modules is loaded without having to edit a statically
ordered initialization routing and recompile the kernel. This system also allows kernel modules, currently called
KLD's, to be separately compiled, linked, and initialized at boot time and loaded even later while the system is
already running. This is accomplished using the “kernel linker” and “linker sets”.

5.1. Terminology

Linker Set
A linker technique in which the linker gathers statically declared data throughout a program's source files
into a single contiguously addressable unit of data.

5.2. SYSINIT Operation

SYSINIT relies on the ability of the linker to take static data declared at multiple locations throughout a program's
source and group it together as a single contiguous chunk of data. This linker technique is called a “linker set”.
SYSINIT uses two linker sets to maintain two data sets containing each consumer's call order, function, and a
pointer to the data to pass to that function.

SYSINIT uses two priorities when ordering the functions for execution. The first priority is a subsystem ID giving
an overall order for SYSINIT's dispatch of functions. Current predeclared ID's are in <sys/kernel.h> in the enum
list sysinit_sub_id . The second priority used is an element order within the subsystem. Current predeclared
subsystem element orders are in <sys/kernel.h> in the enum list sysinit_elem order.

There are currently two uses for SYSINIT. Function dispatch at system startup and kernel module loads, and func-
tion dispatch at system shutdown and kernel module unload. Kernel subsystems often use system startup SYSINIT's
to initialize data structures, for example the process scheduling subsystem uses a SYSINIT to initialize the run
queue data structure. Device drivers should avoid using SYSINIT() directly. Instead drivers for real devices that
are part of a bus structure should use DRIVER MODULE () to provide a function that detects the device and, if it is
present, initializes the device. It will do a few things specific to devices and then call SYSINIT() itself. For pseu-
do-devices, which are not part of a bus structure, use DEV_MODULE().

5.3. Using SYSINIT
5.3.1. Interface

5.3.1.1. Headers

<sys/kernel.h>

5.3.1.2. Macros

SYSINIT(uniquifier, subsystem, order, func, ident)
SYSUNINIT(uniquifier, subsystem, order, func, ident)

5.3.2. Startup

The SYSINIT() macro creates the necessary SYSINIT data in SYSINIT's startup data set for SYSINIT to sort and
dispatch a function at system startup and module load. SYSINIT() takes a uniquifier that SYSINIT uses to identify

Shutdown

the particular function dispatch data, the subsystem order, the subsystem element order, the function to call, and
the data to pass the function. All functions must take a constant pointer argument.

Example 5.1. Example of a sysinr()

Note that SI SUB_FO0 and SI_ORDER F0O need to be in the sysinit sub id and sysinit elem order enum's as
mentioned above. Either use existing ones or add your own to the enum's. You can also use math for fine-tuning
the order a SYSINIT will run in. This example shows a SYSINIT that needs to be run just barely before the SYSINIT's
that handle tuning kernel parameters.

Example 5.2. Example of Adjusting sysmzr() Order

5.3.3. Shutdown

The SYSUNINIT() macro behaves similarly to the SYSINIT() macro except that it adds the SYSINIT data to
SYSINIT's shutdown data set.

Example 5.3. Example of a sysunznzr()

50

Chapter 5. The SYSINIT Framework

51

Chapter 6. The TrustedBSD MAC
Framework

Chris Costello and Robert Watson.

6.1. MAC Documentation Copyright

This documentation was developed for the FreeBSD Project by Chris Costello at Safeport Network Services and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under DARPA/SPAWAR
contract N66001-01-C-8035 (“CBOSS”), as part of the DARPA CHATS research program.

Redistribution and use in source (SGML DocBook) and 'compiled' forms (SGML, HTML, PDF, PostScript, RTF and so
forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other for-
mats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important

A THIS DOCUMENTATION IS PROVIDED BY THE NETWORKS ASSOCIATES TECHNOLOGY, INC
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL NETWORKS ASSOCIATES TECHNOLOGY, INC BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.2. Synopsis

FreeBSD includes experimental support for several mandatory access control policies, as well as a framework for
kernel security extensibility, the TrustedBSD MAC Framework. The MAC Framework is a pluggable access control
framework, permitting new security policies to be easily linked into the kernel, loaded at boot, or loaded dynami-
cally at run-time. The framework provides a variety of features to make it easier to implement new security poli-
cies, including the ability to easily tag security labels (such as confidentiality information) onto system objects.

This chapter introduces the MAC policy framework and provides documentation for a sample MAC policy module.

6.3. Introduction

The TrustedBSD MAC framework provides a mechanism to allow the compile-time or run-time extension of the
kernel access control model. New system policies may be implemented as kernel modules and linked to the kernel;
if multiple policy modules are present, their results will be composed. The MAC Framework provides a variety

Policy Background

of access control infrastructure services to assist policy writers, including support for transient and persistent
policy-agnostic object security labels. This support is currently considered experimental.

This chapter provides information appropriate for developers of policy modules, as well as potential consumers
of MAC-enabled environments, to learn about how the MAC Framework supports access control extension of the
kernel.

6.4. Policy Background

Mandatory Access Control (MAC), refers to a set of access control policies that are mandatorily enforced on users
by the operating system. MAC policies may be contrasted with Discretionary Access Control (DAC) protections,
by which non-administrative users may (at their discretion) protect objects. In traditional UNIX systems, DAC
protections include file permissions and access control lists; MAC protections include process controls preventing
inter-user debugging and firewalls. A variety of MAC policies have been formulated by operating system designers
and security researches, including the Multi-Level Security (MLS) confidentiality policy, the Biba integrity policy,
Role-Based Access Control (RBAC), Domain and Type Enforcement (DTE), and Type Enforcement (TE). Each model
bases decisions on a variety of factors, including user identity, role, and security clearance, as well as security labels
on objects representing concepts such as data sensitivity and integrity.

The TrustedBSD MAC Framework is capable of supporting policy modules that implement all of these policies, as
well as a broad class of system hardening policies, which may use existing security attributes, such as user and
group IDs, as well as extended attributes on files, and other system properties. In addition, despite the name,
the MAC Framework can also be used to implement purely discretionary policies, as policy modules are given
substantial flexibility in how they authorize protections.

6.5. MAC Framework Kernel Architecture

The TrustedBSD MAC Framework permits kernel modules to extend the operating system security policy, as well as
providing infrastructure functionality required by many access control modules. If multiple policies are simulta-
neously loaded, the MAC Framework will usefully (for some definition of useful) compose the results of the policies.

6.5.1. Kernel Elements

The MAC Framework contains a number of kernel elements:
+ Framework management interfaces

« Concurrency and synchronization primitives.

« Policy registration

« Extensible security label for kernel objects

« Policy entry point composition operators

+ Label management primitives

« Entry point API invoked by kernel services

« Entry point API to policy modules

+ Entry points implementations (policy life cycle, object life cycle/label management, access control checks).
« Policy-agnostic label-management system calls

+ mac_syscall() multiplex system call

* Various security policies implemented as MAC policy modules

54

Chapter 6. The TrustedBSD MAC Framework

6.5.2. Framework Management Interfaces
The TrustedBSD MAC Framework may be directly managed using sysctl's, loader tunables, and system calls.

In most cases, sysctl's and loader tunables of the same name modify the same parameters, and control behavior
such as enforcement of protections relating to various kernel subsystems. In addition, if MAC debugging support
is compiled into the kernel, several counters will be maintained tracking label allocation. It is generally advisable
that per-subsystem enforcement controls not be used to control policy behavior in production environments, as
they broadly impact the operation of all active policies. Instead, per-policy controls should be preferred, as they
provide greater granularity and greater operational consistency for policy modules.

Loading and unloading of policy modules is performed using the system module management system calls and
other system interfaces, including boot loader variables; policy modules will have the opportunity to influence
load and unload events, including preventing undesired unloading of the policy.

6.5.3. Policy List Concurrency and Synchronization

As the set of active policies may change at run-time, and the invocation of entry points is non-atomic, synchroniza-
tion is required to prevent loading or unloading of policies while an entry point invocation is in progress, freezing
the set of active policies for the duration. This is accomplished by means of a framework busy count: whenever an
entry point is entered, the busy count is incremented; whenever it is exited, the busy count is decremented. While
the busy count is elevated, policy list changes are not permitted, and threads attempting to modify the policy list
will sleep until the list is not busy. The busy count is protected by a mutex, and a condition variable is used to wake
up sleepers waiting on policy list modifications. One side effect of this synchronization model is that recursion
into the MAC Framework from within a policy module is permitted, although not generally used.

Various optimizations are used to reduce the overhead of the busy count, including avoiding the full cost of incre-
menting and decrementing if the list is empty or contains only static entries (policies that are loaded before the
system starts, and cannot be unloaded). A compile-time option is also provided which prevents any change in the
set of loaded policies at run-time, which eliminates the mutex locking costs associated with supporting dynami-
cally loaded and unloaded policies as synchronization is no longer required.

As the MAC Framework is not permitted to block in some entry points, a normal sleep lock cannot be used; as a
result, it is possible for the load or unload attempt to block for a substantial period of time waiting for the frame-
work to become idle.

6.5.4. Label Synchronization

As kernel objects of interest may generally be accessed from more than one thread at a time, and simultaneous
entry of more than one thread into the MAC Framework is permitted, security attribute storage maintained by
the MAC Framework is carefully synchronized. In general, existing kernel synchronization on kernel object data
is used to protect MAC Framework security labels on the object: for example, MAC labels on sockets are protected
using the existing socket mutex. Likewise, semantics for concurrent access are generally identical to those of the
container objects: for credentials, copy-on-write semantics are maintained for label contents as with the remainder
of the credential structure. The MAC Framework asserts necessary locks on objects when invoked with an object
reference. Policy authors must be aware of these synchronization semantics, as they will sometimes limit the types
of accesses permitted on labels: for example, when a read-only reference to a credential is passed to a policy via
an entry point, only read operations are permitted on the label state attached to the credential.

6.5.5. Policy Synchronization and Concurrency

Policy modules must be written to assume that many kernel threads may simultaneously enter one more policy
entry points due to the parallel and preemptive nature of the FreeBSD kernel. If the policy module makes use of
mutable state, this may require the use of synchronization primitives within the policy to prevent inconsistent
views on that state resulting in incorrect operation of the policy. Policies will generally be able to make use of
existing FreeBSD synchronization primitives for this purpose, including mutexes, sleep locks, condition variables,
and counting semaphores. However, policies should be written to employ these primitives carefully, respecting

55

Policy Registration

existing kernel lock orders, and recognizing that some entry points are not permitted to sleep, limiting the use of
primitives in those entry points to mutexes and wakeup operations.

When policy modules call out to other kernel subsystems, they will generally need to release any in-policy locks
in order to avoid violating the kernel lock order or risking lock recursion. This will maintain policy locks as leaf
locks in the global lock order, helping to avoid deadlock.

6.5.6. Policy Registration

The MAC Framework maintains two lists of active policies: a static list, and a dynamic list. The lists differ only with
regards to their locking semantics: an elevated reference count is not required to make use of the static list. When
kernel modules containing MAC Framework policies are loaded, the policy module will use SYSINIT to invoke a
registration function; when a policy module is unloaded, SYSINIT will likewise invoke a de-registration function.
Registration may fail if a policy module is loaded more than once, if insufficient resources are available for the
registration (for example, the policy might require labeling and insufficient labeling state might be available),
or other policy prerequisites might not be met (some policies may only be loaded prior to boot). Likewise, de-
registration may fail if a policy is flagged as not unloadable.

6.5.7. Entry Points

Kernel services interact with the MAC Framework in two ways: they invoke a series of APIs to notify the framework
of relevant events, and they provide a policy-agnostic label structure pointer in security-relevant objects. The label
pointer is maintained by the MAC Framework via label management entry points, and permits the Framework to
offer a labeling service to policy modules through relatively non-invasive changes to the kernel subsystem main-
taining the object. For example, label pointers have been added to processes, process credentials, sockets, pipes,
vnodes, Mbufs, network interfaces, IP reassembly queues, and a variety of other security-relevant structures. Ker-
nel services also invoke the MAC Framework when they perform important security decisions, permitting policy
modules to augment those decisions based on their own criteria (possibly including data stored in security labels).
Most of these security critical decisions will be explicit access control checks; however, some affect more general
decision functions such as packet matching for sockets and label transition at program execution.

6.5.8. Policy Composition

When more than one policy module is loaded into the kernel at a time, the results of the policy modules will be
composed by the framework using a composition operator. This operator is currently hard-coded, and requires
that all active policies must approve a request for it to return success. As policies may return a variety of error
conditions (success, access denied, object does not exist, ...), a precedence operator selects the resulting error from
the set of errors returned by policies. In general, errors indicating that an object does not exist will be preferred to
errors indicating that access to an object is denied. While it is not guaranteed that the resulting composition will
be useful or secure, we have found that it is for many useful selections of policies. For example, traditional trusted
systems often ship with two or more policies using a similar composition.

6.5.9. Labeling Support

As many interesting access control extensions rely on security labels on objects, the MAC Framework provides a set
of policy-agnostic label management system calls covering a variety of user-exposed objects. Common label types
include partition identifiers, sensitivity labels, integrity labels, compartments, domains, roles, and types. By policy
agnostic, we mean that policy modules are able to completely define the semantics of meta-data associated with
an object. Policy modules participate in the internalization and externalization of string-based labels provides by
user applications, and can expose multiple label elements to applications if desired.

In-memory labels are stored in slab-allocated struct label, which consists of a fixed-length array of unions,
each holding a void * pointer and a long. Policies registering for label storage will be assigned a "slot" identifier,
which may be used to dereference the label storage. The semantics of the storage are left entirely up to the policy
module: modules are provided with a variety of entry points associated with the kernel object life cycle, including
initialization, association/creation, and destruction. Using these interfaces, it is possible to implement reference
counting and other storage models. Direct access to the object structure is generally not required by policy modules

56

Chapter 6. The TrustedBSD MAC Framework

to retrieve a label, as the MAC Framework generally passes both a pointer to the object and a direct pointer to
the object's label into entry points. The primary exception to this rule is the process credential, which must be
manually dereferenced to access the credential label. This may change in future revisions of the MAC Framework.

Initialization entry points frequently include a sleeping disposition flag indicating whether or not an initialization
is permitted to sleep; if sleeping is not permitted, a failure may be returned to cancel allocation of the label (and
hence object). This may occur, for example, in the network stack during interrupt handling, where sleeping is not
permitted, or while the caller holds a mutex. Due to the performance cost of maintaining labels on in-flight network
packets (Mbufs), policies must specifically declare a requirement that Mbuf labels be allocated. Dynamically loaded
policies making use of labels must be able to handle the case where their init function has not been called on an
object, as objects may already exist when the policy is loaded. The MAC Framework guarantees that uninitialized
label slots will hold a 0 or NULL value, which policies may use to detect uninitialized values. However, as allocation
of Mbuf labels is conditional, policies must also be able to handle a NULL label pointer for Mbufs if they have been
loaded dynamically.

In the case of file system labels, special support is provided for the persistent storage of security labels in extended
attributes. Where available, extended attribute transactions are used to permit consistent compound updates of
security labels on vnodes--currently this support is present only in the UFS2 file system. Policy authors may choose
to implement multilabel file system object labels using one (or more) extended attributes. For efficiency reasons,
the vnode label (v_label) is a cache of any on-disk label; policies are able to load values into the cache when the
vnode is instantiated, and update the cache as needed. As a result, the extended attribute need not be directly
accessed with every access control check.

Note

@ Currently, if a labeled policy permits dynamic unloading, its state slot cannot be reclaimed,
which places a strict (and relatively low) bound on the number of unload-reload operations
for labeled policies.

6.5.10. System Calls

The MAC Framework implements a number of system calls: most of these calls support the policy-agnostic label
retrieval and manipulation APIs exposed to user applications.

The label management calls accept a label description structure, struct mac, which contains a series of MAC label
elements. Each element contains a character string name, and character string value. Each policy will be given
the chance to claim a particular element name, permitting policies to expose multiple independent elements if
desired. Policy modules perform the internalization and externalization between kernel labels and user-provided
labels via entry points, permitting a variety of semantics. Label management system calls are generally wrapped by
user library functions to perform memory allocation and error handling, simplifying user applications that must
manage labels.

The following MAC-related system calls are present in the FreeBSD kernel:

+ mac_get proc() may be used to retrieve the label of the current process.

+ mac_set proc() may be used to request a change in the label of the current process.

+ mac_get fd() may be used to retrieve the label of an object (file, socket, pipe, ...) referenced by a file descriptor.
+ mac_get file() may be used to retrieve the label of an object referenced by a file system path.

+ mac_set fd() may be used to request a change in the label of an object (file, socket, pipe, ...) referenced by a
file descriptor.

+ mac_set file() may be used to request a change in the label of an object referenced by a file system path.

57

MAC Policy Architecture

 mac_syscall() permits policy modules to create new system calls without modifying the system call table; it
accepts a target policy name, operation number, and opaque argument for use by the policy.

« mac_get pid() may be used to request the label of another process by process id.

+ mac_get link() isidentical tomac get file() ,only it will not follow a symbolic link if it is the final entry in
the path, so may be used to retrieve the label on a symlink.

+ mac_set_link() isidentical tomac_set_file() , only it will not follow a symbolic link if it is the final entry in
a path, so may be used to manipulate the label on a symlink.

« mac_execve() is identical to the execve() system call, only it also accepts a requested label to set the process
label to when beginning execution of a new program. This change in label on execution is referred to as a "tran-
sition".

+ mac_get peer() , actually implemented via a socket option, retrieves the label of a remote peer on a socket,
if available.

In addition to these system calls, the STOCSIGMAC and SIOCSIFMAC network interface ioctls permit the labels on
network interfaces to be retrieved and set.

6.6. MAC Policy Architecture

Security policies are either linked directly into the kernel, or compiled into loadable kernel modules that may be
loaded at boot, or dynamically using the module loading system calls at runtime. Policy modules interact with the
system through a set of declared entry points, providing access to a stream of system events and permitting the
policy to influence access control decisions. Each policy contains a number of elements:

« Optional configuration parameters for policy.

« Centralized implementation of the policy logic and parameters.

« Optional implementation of policy life cycle events, such as initialization and destruction.

« Optional support for initializing, maintaining, and destroying labels on selected kernel objects.
+ Optional support for user process inspection and modification of labels on selected objects.

« Implementation of selected access control entry points that are of interest to the policy.

+ Declaration of policy identity, module entry points, and policy properties.

6.6.1. Policy Declaration

Modules may be declared using the MAC_POLICY SET() macro, which names the policy, provides a reference to the
MAC entry point vector, provides load-time flags determining how the policy framework should handle the policy,
and optionally requests the allocation of label state by the framework.

static struct mac_policy ops mac_policy ops =
{
.mpo_destroy = mac_policy destroy,
.mpo_init = mac_policy init,
.mpo_init bpfdesc label = mac policy init bpfdesc label,
.mpo_init cred label = mac policy init label,
J% aoa %Y
.mpo_check vnode setutimes = mac policy check vnode setutimes,
.mpo_check vnode stat = mac policy check vnode stat,
.mpo_check_vnode write = mac_policy check vnode write,
}i

The MAC policy entry point vector, mac_policy ops in this example, associates functions defined in the mod-
ule with specific entry points. A complete listing of available entry points and their prototypes may be found

58

Chapter 6. The TrustedBSD MAC Framework

in the MAC entry point reference section. Of specific interest during module registration are the .mpo_destroy
and .mpo_init entry points. .mpo_init will be invoked once a policy is successfully registered with the module
framework but prior to any other entry points becoming active. This permits the policy to perform any policy-spe-
cific allocation and initialization, such as initialization of any data or locks. .mpo_destroy will be invoked when a
policy module is unloaded to permit releasing of any allocated memory and destruction of locks. Currently, these
two entry points are invoked with the MAC policy list mutex held to prevent any other entry points from being
invoked: this will be changed, but in the mean time, policies should be careful about what kernel primitives they
invoke so as to avoid lock ordering or sleeping problems.

The policy declaration's module name field exists so that the module may be uniquely identified for the purposes
of module dependencies. An appropriate string should be selected. The full string name of the policy is displayed
to the user via the kernel log during load and unload events, and also exported when providing status information
to userland processes.

6.6.2. Policy Flags

The policy declaration flags field permits the module to provide the framework with information about its capa-
bilities at the time the module is loaded. Currently, three flags are defined:

MPC_LOADTIME_FLAG_UNLOADOK
This flag indicates that the policy module may be unloaded. If this flag is not provided, then the policy frame-
work will reject requests to unload the module. This flag might be used by modules that allocate label state
and are unable to free that state at runtime.

MPC_LOADTIME_FLAG_NOTLATE
This flag indicates that the policy module must be loaded and initialized early in the boot process. If the flag
is specified, attempts to register the module following boot will be rejected. The flag may be used by policies
that require pervasive labeling of all system objects, and cannot handle objects that have not been properly
initialized by the policy.

MPC_LOADTIME_FLAG_LABELMBUFS
This flag indicates that the policy module requires labeling of Mbufs, and that memory should always be allo-
cated for the storage of Mbuf labels. By default, the MAC Framework will not allocate label storage for Mbufs
unless at least one loaded policy has this flag set. This measurably improves network performance when poli-
cies do not require Mbuf labeling. A kernel option, MAC_ALWAYS LABEL MBUF, exists to force the MAC Frame-
work to allocate Mbuf label storage regardless of the setting of this flag, and may be useful in some environ-
ments.

Note

@ Policies using the MPC_LOADTIME FLAG LABELMBUFS without the MPC LOADTIME FLAG NOT-
LATE flag set must be able to correctly handle NULL Mbuf label pointers passed into entry
points. This is necessary as in-flight Mbufs without label storage may persist after a policy
enabling Mbuf labeling has been loaded. If a policy is loaded before the network subsystem
is active (i.e., the policy is not being loaded late), then all Mbufs are guaranteed to have label
storage.

6.6.3. Policy Entry Points

Four classes of entry points are offered to policies registered with the framework: entry points associated with
the registration and management of policies, entry points denoting initialization, creation, destruction, and other
life cycle events for kernel objects, events associated with access control decisions that the policy module may
influence, and calls associated with the management of labels on objects. In addition, amac_syscall() entry point
is provided so that policies may extend the kernel interface without registering new system calls.

59

MAC Policy Entry Point Reference

Policy module writers should be aware of the kernel locking strategy, as well as what object locks are available
during which entry points. Writers should attempt to avoid deadlock scenarios by avoiding grabbing non-leaf
locks inside of entry points, and also follow the locking protocol for object access and modification. In particular,
writers should be aware that while necessary locks to access objects and their labels are generally held, sufficient
locks to modify an object or its label may not be present for all entry points. Locking information for arguments
is documented in the MAC framework entry point document.

Policy entry points will pass a reference to the object label along with the object itself. This permits labeled policies
to be unaware of the internals of the object yet still make decisions based on the label. The exception to this is the
process credential, which is assumed to be understood by policies as a first class security object in the kernel.

6.7. MAC Policy Entry Point Reference

6.7.1. General-Purpose Module Entry Points
6.7.1.1. mpo_init

void mpo_init(conf);

struct mac_policy conf *conf;

Pack-
magip-
hhea
ter

bOAE
pol-
i-

cy
de-

tion

Policy load event. The policy list mutex is held, so sleep operations cannot be performed, and calls out to other
kernel subsystems must be made with caution. If potentially sleeping memory allocations are required during
policy initialization, they should be made using a separate module SYSINIT().

6.7.1.2. mpo_destroy
void mpo_destroy(conf);
struct mac_policy conf *conf;

Pack-
Bagip-
hhea
ter

bOAE
pol-
i-

cy
de-
£

i-

60

Chapter 6. The TrustedBSD MAC Framework

Pack-
bagip-
then
ter

n-

i-
tion

Policy load event. The policy list mutex is held, so caution should be applied.
6.7.1.3. mpo_syscall
int mpo_syscall(td, call, arg);

struct thread *td;
int call;
void *arg;

Pack-
Bagip-
then
ter
€dll-
ing
thread
Pall

i
cy-spe-
cif-

ic
syscall
num-
ber
Bognt-
er

to
syscall
ar-
gu-
ments

This entry point provides a policy-multiplexed system call so that policies may provide additional services to user
processes without registering specific system calls. The policy name provided during registration is used to demux
calls from userland, and the arguments will be forwarded to this entry point. When implementing new services,
security modules should be sure to invoke appropriate access control checks from the MAC framework as needed.
For example, if a policy implements an augmented signal functionality, it should call the necessary signal access
control checks to invoke the MAC framework and other registered policies.

Note

S Modules must currently perform the copyin() of the syscall data on their own.

61

Label Operations

6.7.1.4. mpo_thread_userret
void mpo_thread_userret(td);
struct thread *td;

Peck-
Bagip-
hhen
ter
M-
turn-
ing
thread

This entry point permits policy modules to perform MAC-related events when a thread returns to user space, viaa
system call return, trap return, or otherwise. This is required for policies that have floating process labels, as it is not
always possible to acquire the process lock at arbitrary points in the stack during system call processing; process
labels might represent traditional authentication data, process history information, or other data. To employ this
mechanism, intended changes to the process credential label may be stored in the p_label protected by a per-
policy spin lock, and then set the per-thread TDF_ASTPENDING flag and per-process PS_MACPENDM flag to schedule
a call to the userret entry point. From this entry point, the policy may create a replacement credential with less
concern about the locking context. Policy writers are cautioned that event ordering relating to scheduling an AST
and the AST being performed may be complex and interlaced in multithreaded applications.

6.7.2. Label Operations

6.7.2.1. mpo_init_bpfdesc_label

void mpo_init_bpfdesc_label(label);
struct label *label;

Peck-
bagip-
hhea
ter

New
kel
bel
to
ap-
ply

Initialize the label on a newly instantiated bpfdesc (BPF descriptor). Sleeping is permitted.
6.7.2.2. mpo_init_cred_label

void mpo_init_cred_label(label);

struct label *label;

Peck-

Bagip-

hiea

ter

New
kel

62

Chapter 6. The TrustedBSD MAC Framework

Pack-
bagip-
then
ter
bel

to
ini-
tial-
ize

Initialize the label for a newly instantiated user credential. Sleeping is permitted.
6.7.2.3. mpo_init_devfsdirent_label
void mpo_init devfsdirent_label(label);

struct label *label;

Pack-
pagip-
hen
ter

New
bel
bel
to
ap-
ply

Initialize the label on a newly instantiated devfs entry. Sleeping is permitted.
6.7.2.4. mpo_init_ifnet_label
void mpo_init_ifnet_label(label);

struct label *label;

Peck-
bagip-
hhen
ter

New
el
bel
to
ap-
ply

Initialize the label on a newly instantiated network interface. Sleeping is permitted.

6.7.2.5. mpo_init_ipq_label
void mpo_init_ipq_label(label, flag);

struct label *label;

63

Label Operations

int flag;

Peck-
bagip-
hhen
ter

New
kel
bel

to

ap-
ply
$lezp-
ing/non-
sleep-
ing
mal-
loc(9);
see
be-

low

Initialize the label on a newly instantiated IP fragment reassembly queue. The flag field may be one of M_WAI-
TOK and M_NOWAIT, and should be employed to avoid performing a sleeping malloc(9) during this initialization
call. IP fragment reassembly queue allocation frequently occurs in performance sensitive environments, and the
implementation should be careful to avoid sleeping or long-lived operations. This entry point is permitted to fail
resulting in the failure to allocate the IP fragment reassembly queue.

6.7.2.6. mpo_init_mbuf_label
void mpo_init mbuf label(flag, label);

int flag;
struct label *label;

Peck-
bagip-
then
ter
$lep-
ing/non-
sleep-
ing
mal-
loc(9);
see
be-

low

Pal-
bel
cy
la-
bel
to

64

https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports

Chapter 6. The TrustedBSD MAC Framework

Pack-
bagip-
then
ter
ini-
tial-
ize

Initialize the label on a newly instantiated mbuf packet header (mbuf). The flag field may be one of M_WAITOK and
M_NOWAIT, and should be employed to avoid performing a sleeping malloc(9) during this initialization call. Mbuf
allocation frequently occurs in performance sensitive environments, and the implementation should be careful

to avoid sleeping or long-lived operations. This entry point is permitted to fail resulting in the failure to allocate
the mbuf header.

6.7.2.7. mpo_init_mount_label
void mpo_init_mount_label(mntlabel, fslabel);

struct label *mntlabel;
struct label *fslabel;

Peck-
bagip-
hea
ter

Pot-
ia-
bgl
la-
bel
to
be
ini-
tial-
ized
for
the
mount
it-
self
Pol-
ia-
byl
la-
bel
to
be
ini-
tial-
ized
for
the
file
sys-
tem

65

https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports

Label Operations

Initialize the labels on a newly instantiated mount point. Sleeping is permitted.

6.7.2.8. mpo_init_mount_fs_label
void mpo_init_mount_fs_label(label);
struct label *label;

Peek-
bagip-
hhea
ter

La-
bel
to
be
ini-
tial-
ized

Initialize the label on a newly mounted file system. Sleeping is permitted
6.7.2.9. mpo_init_pipe label

void mpo_init pipe_ label(label);

struct label*label;

Peck-
bagip-
hhen

La-
bel
to

be
filled

n

Initialize a label for a newly instantiated pipe. Sleeping is permitted.
6.7.2.10. mpo_init_socket_label
void mpo_init socket_label(label, flag);

struct label *label;
int flag;

Pack-
bagip-
hea
ter

New
kel
bel
to
ini-

66

Chapter 6. The TrustedBSD MAC Framework

Pack-
Bagip-
then
ter
tial-
ize

filalg
loc(9)
flags

Initialize a label for a newly instantiated socket. The flag field may be one of M_WAITOK and M_NOWAIT, and
should be employed to avoid performing a sleeping malloc(9) during this initialization call.

6.7.2.11. mpo_init_socket_peer_label
void mpo_init socket_peer_label(label, flag);

struct label *label;
int flag;

Peck-
bagip-
hhen
ter

New
kel
bel
to
ini-
tial-
ize

filzlg
loc(9)
flags

Initialize the peer label for a newly instantiated socket. The flag field may be one of M_WAITOK and M_NOWAIT,
and should be employed to avoid performing a sleeping malloc(9) during this initialization call.

6.7.2.12. mpo_init_proc_label
void mpo_init_proc_label(label);
struct label *label;

Pack-
pagip-
hen
ter

Rew
el
bel
to
ini-
tial-
ize

67

https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=9&manpath=freebsd-release-ports

Label Operations

Initialize the label for a newly instantiated process. Sleeping is permitted.

6.7.2.13. mpo_init_vnode_label
void mpo_init_vnode_label(label);

struct label *label;

Peck-
bagip-
hhen
ter

Rew
el
bel
to
ini-
tial-
ize

Initialize the label on a newly instantiated vnode. Sleeping is permitted.
6.7.2.14. mpo_destroy bpfdesc_label
void mpo_destroy_bpfdesc_label(label);

struct label *label;

Peek-
bagip-
hhea
ter

bapfde-
bel

la-
bel

Destroy the label on a BPF descriptor. In this entry point a policy should free any internal storage associated with

label so that it may be destroyed.
6.7.2.15. mpo_destroy_cred_label
void mpo_destroy_cred_label(label);

struct label *label;

Peck-
pagip-
hen
ter

La-
bel
be-
ing
de-
stroyed

68

Chapter 6. The TrustedBSD MAC Framework

Destroy the label on a credential. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.16. mpo_destroy_devfsdirent_label
void mpo_destroy_devfsdirent_label(label);

struct label *label;

Peck-
bagip-
hen
ter

La-
bel
be-
ing
de-
stroyed

Destroy the label on a devfs entry. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.17. mpo_destroy_ifnet_label
void mpo_destroy_ifnet_label(label);

struct label *label;

Pack-
Bagip-
hen

La-
bel
be-
ing
de-
stroyed

Destroy the label on a removed interface. In this entry point, a policy module should free any internal storage
associated with label so that it may be destroyed.

6.7.2.18. mpo_destroy_ipq_label
void mpo_destroy_ipq_label(label);

struct label *label;

Pack-
Bagip-
tieA
ter
La-
bel
be-

69

Label Operations

Peck-
bagip-
tien
ter

ing

de-
stroyed

Destroy the label on an IP fragment queue. In this entry point, a policy module should free any internal storage
associated with label so that it may be destroyed.

6.7.2.19. mpo_destroy_mbuf_label
void mpo_destroy_mbuf_label(label);

struct label *label;

Peck-
bagip-
hhen
ter

La-
bel
be-
ing
de-
stroyed

Destroy the label on an mbuf header. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.20. mpo_destroy_mount_label
void mpo_destroy_mount_label(label);

struct label *label;

Peck-
magip-
hhea
ter

Mount
pelnt
la-

bel

be-

ing

de-
stroyed

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mntlabel so that they may be destroyed.

6.7.2.21. mpo_destroy_mount_label

void mpo_destroy_mount_label(mntlabel, fslabel);

70

Chapter 6. The TrustedBSD MAC Framework

struct label *mntlabel;
struct label *fslabel;

Peek-
bagip-
hhen
ter

hhdunt
peint
kel

bel

be-

ing

de-
stroyed
File
gws-
bexth

la-

bel

be-

ing

de-
stroyed>

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mntlabel and fslabel so that they may be destroyed.

6.7.2.22. mpo_destroy_socket_label
void mpo_destroy_socket_label(label);

struct label *label;

Pack-
bagip-
hhen
ter

Sack-
bel

la-

bel

be-

ing

de-
stroyed

Destroy the label on a socket. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.23. mpo_destroy_socket_peer_label
void mpo_destroy_socket_peer_label(peerlabel);

struct label *peerlabel;

71

Label Operations

Peck-
bagip-
hhea
ter

Peek-
éb-
peér

la-

bel

be-

ing

de-
stroyed

Destroy the peer label on a socket. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.24. mpo_destroy _pipe_label
void mpo_destroy_pipe_label(label);

struct label *label;

Peek-
bagip-
hheA
ter
Pipe
kel
bel

Destroy the label on a pipe. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.25. mpo_destroy_proc_label
void mpo_destroy_proc_label(label);

struct label *label;

Pack-
bagip-
hhen
ter

Paocess
bel
bel

Destroy the label on a process. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.26. mpo_destroy_vnode_label
void mpo_destroy_vnode_label(label);

struct label *label;

72

Chapter 6. The TrustedBSD MAC Framework

Peek-
bagip-
hen
ter

Paocess
bel
bel

Destroy the label on a vnode. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.27. mpo_copy_mbuf_label
void mpo_copy_mbuf_label(src, dest);

struct label *src;
struct label *dest;

Pack-
Bagip-
hen
ter

Soarce
la-

bel
Dest
ti-

na-
tion
la-

bel

Copy the label information in src into dest.
6.7.2.28. mpo_copy_pipe_label
void mpo_copy_pipe_label(src, dest);

struct label *src;
struct label *dest;

Pack-
bagip-
hea
ter

Soarce
la-

bel
Dest
ti-

na-
tion
la-

bel

73

Label Operations

Copy the label information in src into dest.

6.7.2.29. mpo_copy_vnode_label
void mpo_copy_vnode_label(src,

struct label *src;
struct label *dest;

Pack-
bagip-
hen
ter

Soarce
la-
bel

Dest
ti-
na-
tion
la-

bel

Copy the label information in src into dest.

6.7.2.30. mpo_externalize_cred_label

dest);

int mpo_externalize_cred_label(label, element name, sb, *claimed);

struct label *label;
char *element name;
struct sbuf *sb;

int *claimed;

Peck-
bagip-
hhea
ter

La-
bel
to

be
ex-
ter-
nal-
ized
Name
of
ihe-
pokame

cy
whose

74

Chapter 6. The TrustedBSD MAC Framework

Pack-
bagip-
hen
ter
la-
bel
should
be
ex-
ter-
nal-
ized

String
buffer
to

be
filled
with
a

text
rep-
re-
sen-
ta-
tion
of

la-

bel
Shaidd
be

in-
cre-
ment-
ed
when
el-

e-
men-
t da-
ta
can
be
filled

.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element_name
before attempting to fill in sb. If element_name does not match the name of your policy, simply return 0. Only re-
turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element data, *claimed
should be incremented.

6.7.2.31. mpo_externalize_ifnet_label

int mpo_externalize_ifnet_label(label, element name, sb, *claimed);

75

Label Operations

struct label *label;
char *element name;
struct sbuf *sb;

int *claimed;

Pack-
bagip-
hen

ter-
nal-
ized

of
iea-
pohame

cy
whose
la-

bel
should
be

ex-
ter-
nal-
ized

String
buffer
to

be
filled
with

text
rep-
re-
sen-
ta-
tion
of
la-
bel
Shaindd
be
cre-

ment-
ed

76

Chapter 6. The TrustedBSD MAC Framework

Peek-
bagip-
hen
ter

when
el-
e-
men-
t da-
ta
can
be
filled
in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element name
before attempting to fill in sb. If element name does not match the name of your policy, simply return 0. Only re-
turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element data, *claimed
should be incremented.

6.7.2.32. mpo_externalize_pipe_label
int mpo_externalize_pipe_label(label, element name, sb, *claimed);

struct label *label;
char *element name;
struct sbuf *sb;

int *claimed;

Peck-
bagip-
hen
ter

La-
bel

to

be

ex-
ter-
nal-
ized
Name
of

iea -
pokame
i_

cy
whose
la-

bel
should
be

77

Label Operations

Pack-
bagip-
then
ter
ex-
ter-
nal-
ized

String
buffer
to

be
filled
with
a

text
rep-
re-
sen-
ta-
tion
of

la-
bel
Shaidd
be

in-
cre-
ment-
ed
when
el-

e-
men-
t da-
ta
can
be
filled

1.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element_name
before attempting to fill in sb. If element_name does not match the name of your policy, simply return 0. Only re-
turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element_data, *claimed
should be incremented.

6.7.2.33. mpo_externalize_socket_label
int mpo_externalize_socket_label(label, element name, sb, *claimed);

struct label *label;
char *element name;
struct sbuf *sb;

78

Chapter 6. The TrustedBSD MAC Framework

int *claimed;

Pack-
Bagip-
hen
ter

La-
bel
to
be
ex-
ter-
nal-
ized

of
e -
pobame

cy
whose
la-

bel
should
be

ex-
ter-
nal-
ized

Sbring
buffer
to

be
filled
with

text
rep-
re-
sen-
ta-
tion
of

la-
bel
Shaidd
be

in-
cre-
ment-
ed
when
el-

79

Label Operations

Peck-
bagip-
hhea
ter

men-
t da-
ta
can
be
filled
in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element_name
before attempting to fill in sb. If element_name does not match the name of your policy, simply return 0. Only re-
turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element_data, *claimed
should be incremented.

6.7.2.34. mpo_externalize socket_peer label
int mpo_externalize_socket_peer_label(label, element name, sb, *claimed);

struct label *label;
char *element name;
struct sbuf *sb;

int *claimed;

Peck-
Bagip-
hhea
ter

La-
bel
to
be
ex-
ter-
nal-
ized

of
e -
pobare

cy
whose

bel
should
be

ter-
nal-
ized

80

Chapter 6. The TrustedBSD MAC Framework

Peek-
bagip-
hen
ter

Sbring
buffer
to

be
filled
with

a

text
rep-
re-
sen-
ta-
tion
of

la-
bel
Shaindd
be

in-
cre-
ment-
ed
when
el-

e-
men-
t da-
ta
can
be
filled
in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element name
before attempting to fill in sb. If element name does not match the name of your policy, simply return 0. Only re-

turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element data, *claimed

should be incremented.

6.7.2.35. mpo_externalize_vnode_label

int mpo_externalize_vnode_label(label, element name, sb, *claimed);

struct label *label;
char *element name;
struct sbuf *sb;

int *claimed;

81

Label Operations

Peck-
bagip-
hhea
ter

La-
bel

to

be

ex-
ter-
nal-
ized
Name
of
ihe-
pokame
i_

cy
whose
la-

bel
should
be

ex-
ter-
nal-
ized

String
buffer
to

be

filled
with

a

text
rep-

re-

sen-

ta-

tion

of

la-

bel
Shaindd
be
in-
cre-
ment-
ed
when
el-

e-
men-
t da-

82

Chapter 6. The TrustedBSD MAC Framework

Peek-
bagip-
hen
ter

ta
can
be
filled
in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text repre-
sentation of the label contents that can be used with userland applications and read by the user. Currently, all poli-
cies' externalize entry points will be called, so the implementation should check the contents of element name
before attempting to fill in sb. If element name does not match the name of your policy, simply return 0. Only re-
turn nonzero if an error occurs while externalizing the label data. Once the policy fills in element data, *claimed
should be incremented.

6.7.2.36. mpo_internalize cred_label
int mpo_internalize_cred_label(label, element name, element data, claimed);

struct label *label;
char *element name;
char *element data;
int *claimed;

Pack-
bagip-
hhen
ter

La-
bel

to

be
filled
in
Name
of
lea -
pohame
i_

cy
whose
la-

bel
should
be

in-
ter-
nal-
ized
dext
da-

83

Label Operations

Peck-
bagip-
ter

toda-
be

ter-

nal-
ized
8haidd
be

cre-
ment-
ed
when
da-

ta

can
be
suc-
cess-

ter-
nal-
ized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies' inter-
nalize entry points are called when inte