Electrom agnotisme
Chapivre 11
Induction emag
I) Le phonomine d'induction EM

1) deconvent pae Faraday (milien X|XC)

- Un champ $\vec{B}$ raviasle peut cría un comaer ílectrigue.

fi aimat fike, $i^{\prime} / H=0$ umant en mouremes, $\left.i^{(\mathbb{F}}\right) \neq 0$
K sus de $i^{\prime}$ difend hes sers st $\vec{v}$

in rimelats que Ex2
- Il y a apparition d'un comara dams la spire ri:
- elle es fir s traveuse pos un champ $\mathcal{B}$ ranialle (cas de Newrainn $e \times 1 / 2$
- elle se evplace dams un champ $\vec{B}$ shahiommin
(cas de Corentz) ex 3

2) Lai be Faneday

Le phennomeine d'induction $x$ rraduit pan llapparition daas le in anst dlum ceférabeen fictíy di frce Reckemokive (fïm)

$$
e_{i n d i t}=\frac{d \Phi_{D}(\delta)}{d t}
$$

NB ainit orinké: $\Phi_{0}(\mathcal{Y})=\Phi_{0}(\varphi)$ on' Y mpfaceqeg dilimike pan 6 at oriestéc comme 6 (iigle MD)

On

$$
\begin{aligned}
\vec{B} & =\overrightarrow{\operatorname{rot}} \vec{A} \quad \Phi_{B}(\boldsymbol{C})=\iint_{y} \vec{B} \cdot \overrightarrow{d S}=\iint_{y} \overrightarrow{\operatorname{rot}} \vec{A} \cdot \vec{J}=\oint_{\gamma} \vec{A} \cdot \overrightarrow{d C} \\
& \Rightarrow \Phi_{B}(\zeta)=\operatorname{Cine}_{A}(\zeta)
\end{aligned}
$$

3) $\frac{\operatorname{Los} d x \operatorname{lan} z}{\text { enizi- } \frac{d \Phi_{z}}{d t}}$
\& comarlindit usé ear dus le sems >0 et ill víe an champ $\overrightarrow{\mathrm{B}}$ inuir of $\bar{\Phi}_{\text {Pirtair }}>0$.

Plus fíniruburat: la phenmencie d'indendri.. s'oppre per xes connéqumes à sa caun pumioir.

II Induchion, dus le as de Nexuramo

1) Lai de Faraday


In uarrilice we ayine de foll wodutam secrion $A$, lo-pues worabe $L$, condurivité $\gamma$ usisthonce Alecraigue $R=\frac{1}{8} \frac{L}{s}$

Juire plonger ds $\vec{B}(M, H)$ variath - (vitt i'sintanité Evecrualle, amptée posibiramet do le aeno instigán.

$$
\vec{\jmath}=\frac{i}{A} \vec{t} \quad \text { of } \vec{\jmath}(P, H)=\gamma \vec{\epsilon}(P, H)=\gamma\left(\frac{\partial \vec{A}(P, H)}{\partial t}-\overline{\operatorname{grad}} V\right)
$$

Calculbos $\oint_{\text {spire }} \frac{\vec{\lambda}(\nabla, H)}{\gamma} \cdot \overrightarrow{l_{p}}=\oint_{\text {mine }}\left(\frac{i}{\gamma \Delta} \vec{t}\right) \cdot\left(d l_{p} \vec{F}\right)$

$$
=\frac{i}{\gamma^{j}} \phi d l_{p}=\frac{i L}{\gamma s}=R i
$$

$$
\text { or } \oint_{\text {pini }} \overrightarrow{\frac{j}{r}} \cdot \overrightarrow{l_{p}}=\oint_{\text {qien }}\left(-\frac{\partial \vec{F}}{\partial t}-\overrightarrow{\operatorname{grat}} v\right) \cdot \overrightarrow{l_{p}}=\oint_{\text {quin }}-\frac{\partial \vec{A}}{\partial t} \cdot \overrightarrow{l_{p}}+0
$$

Le terme $-\frac{\partial \vec{A}}{\partial t}$ est un champ elecraírue àcirculasion pue corvaratice

$$
\oint_{\text {nime }}-\frac{\partial \vec{A}}{\partial t} \cdot d \overrightarrow{l l}_{p}=-\frac{d}{d t} \oint_{\text {apix }} \vec{A} \cdot \frac{d l_{p}}{}=-\frac{d}{d t} \iint_{\text {ampnee }} \vec{B} \cdot \overrightarrow{d S}=-\frac{d}{d t} \bar{\Phi}_{\theta}(\text { gind })
$$

Finalemat $\quad R_{i}=-\frac{d \Phi_{B} \text { (mmin) }}{d t} \quad$ bides milles pous circiit équinalent
On aduct la foŕervalisationn mirante:



 ap Kleekormatem de Neumomn.
$\|$
Ce teme purriest de l'agn locale lont la foume insoigule m' at pume pue la buiar Fara day $\cdot e_{\text {imhit }}=\oint_{\text {minain }}-\frac{\partial \vec{A}}{\partial t} \cdot \vec{\mu}$
2) Aubt indurtrion

Tout viran't pasiown pos 1 comvest uí an lap ony.
 flur pegre Le puxe pupe a le mame sigme que $\therefore$.

 $\overline{\text { Bpepre }} \longleftrightarrow \lambda$ Bpupe ot $\Phi_{\text {apaper }} \longleftrightarrow \lambda$ Q Bmat Le plux propes ut propurtionel ári-

$$
\Phi_{\text {Bpmpe }}=L i \quad \text { oin } L \text { arvointactance }>0
$$

- Si un circuit un pancomm par unc intemsité raiable i•(t), dons nom thex praperaric er il appanait dans le ciranit ure fóm anvoindmite $e_{\text {autainduit }}=\frac{-d}{d t}(L i)=-L \frac{d i}{d t}$
e' cirusit indéfomable
- Flux may à traves le cinquit
- Ererper de calar ML

Le flue pugpre est le flux de Bpape ì havas ls pins quaǹ inculairs las solenoite

- Hux imaves 1 мpire: $\varphi=\pi a^{2} \mu_{0}$ im
- fhex ì va anes ha volénvile

$$
\text { Espope }=m \text { spis } x y=m l \times \varphi=\underbrace{\mu_{0} \pi a^{2} n^{2} l}_{L} i
$$

4) Matuelle induction

$\vec{B}_{2}$ champ uer pin is panat $d, \zeta_{2}$ On note $\Phi_{32 \rightarrow 1}$ Jluer du chemp $\overrightarrow{B_{2}}$ * mavess le ciranir bs. Le flux er propotionnel à is ets'rait

$$
\Phi_{B 2 \rightarrow 1}=M_{2 \rightarrow 1} i_{2} \quad M_{2 \rightarrow 1} \quad \text { en } H
$$

Reaprocité du flux majuésigne

$$
I_{B 1 \lambda 2}=M_{1 \rightarrow 2} i_{1}
$$

et $M_{1 \rightarrow 2}=M_{2 \rightarrow 1}$

Dan la patique or mote $n=M_{1 \rightarrow 2}=M_{2 \rightarrow 1}$ colfiuiter de muhbelh inductaru.

- Propińté

$$
|M| \leqslant \sqrt{L_{1} L_{2}} \quad N B: \text { bouchy schemoz }
$$

(b) Si 2 ciruits out une menchel induati-ce, leves setímes éjuinalents se pricernt ainsi:

5) Exampls

Ex1]


$$
\begin{aligned}
& \left.I_{B}(\text { gin })=L \text { (gine }\right) i^{\prime}+I_{\text {Brex }} \rightarrow \text { min }
\end{aligned}
$$

$$
\begin{aligned}
& \text { loi der menels : } \left.\frac{-d}{d t}\left(4 \mu^{\prime}-1\right) i^{\prime}\right)-\frac{d}{d t}\left(m_{i}\right)=R_{i} 1 \\
& \text { in } L \text { (2pini) }=\text { oft, } M \text { =ork } \\
& R i^{\prime}+L(\text { min }) \frac{d i^{\prime}}{d t}=-M \frac{1 i}{d i}
\end{aligned}
$$


$\Phi_{\text {indip } \rightarrow \text { apix }}=\oint_{\text {min }} \overrightarrow{A_{\text {dip }}} \cdot \sqrt[d l_{n}]{ } \quad$ coord $c y l d$ daxe $O_{z}(p, \theta, z)$

$$
\begin{aligned}
& \overrightarrow{\operatorname{Adip}_{p}}(M, t)=\frac{\mu_{0}}{4 \pi} \frac{M_{\mu_{z}} \wedge\left(-z_{A} \vec{\mu}_{z}+b \overrightarrow{u_{p}}\right)}{\left(z_{A}^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0} M b}{4_{\pi}\left(z_{A}^{2}+b\right)^{M_{2}}} \overrightarrow{\mu_{\theta}} \overrightarrow{M_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mu_{0} M_{b}{ }^{2}}{2\left(z_{a}^{2}+b^{2}\right)^{3 / 2}}=\frac{\mu_{0} M_{b} b^{2}}{2} \frac{1}{\left[\left(-z_{0}+r+\right)^{2}+b^{3}\right)^{3 / 2}}
\end{aligned}
$$

Fem indrite ds le mine?

$$
e_{\text {inmit }}=-\frac{d \Phi_{B}}{d t}=-\frac{d\left(i_{i} /(t)\right.}{d t}+\frac{\mu_{0} / L^{2}}{2}\left(+\frac{3}{2}\right) \frac{2 v\left(-t_{0}+v t\right)}{\left[\left(-z_{0}+v t\right)^{2}+b^{2}\right)^{5 / 2}}
$$

Antres caluels pous le flux (i)cclualer $\iint_{\text {mispe asyan }}^{\vec{B}} \cdot \vec{S}$
(2) on imajire pre be lisisk ent 1 white zaic, de maface $s$, pacoum par $i$ aree $\mu=s i$


$$
\begin{aligned}
& \simeq\left(\frac{\left.\mu_{0} \vec{i}^{2} b^{2} \overrightarrow{\mu z}\right) \cdot\left(\Delta \overrightarrow{\mu_{z}}\right)}{2\left(z_{A}+b^{4} 4^{3 / 2}\right.}\right) \\
& \simeq \frac{\mu_{0} b^{2} s}{2\left(z_{\left.\mu^{2}+b^{2}\right)^{3 / 2}}^{\Pi_{\text {atual Anductrey }}} \neq r\right.}
\end{aligned}
$$

et recapraité de $\vec{B}$ :

$$
\Phi_{B \operatorname{sip} \rightarrow \operatorname{\mu in} x}=M_{i}=\frac{\mu_{0} b^{2} \mu}{2\left(z_{a}^{2}+b^{2}\right)^{3 / 2}}
$$

b) Enajie my
(a) Enupic wnay d's árouir sene 4 l 'eypace


Kincetheff

$$
e y=L \frac{d_{i}}{d t}+R_{i}
$$

$$
\text { boi is pailh, } x \text { idt: }
$$

$$
\begin{aligned}
& \text { eqidt }=L i d i+R i^{2} d t \\
& \int W_{\text {ym }}=d\left(\frac{1}{2} L i^{2}\right)+\delta W_{f}
\end{aligned}
$$



- Ransie dimpine pa ffetsure
línaje bounnie pan le générnatem et man dimijie pas effet Jouk ot drachée nom foume dícecyie megoritigue $W_{m}=\frac{1}{2} L_{i}{ }^{2}$

Ex Nolimuite

(3) Las de 2 arravis coplés

Kinchholf

$$
\begin{aligned}
& \begin{cases}e_{g}=R_{1} i_{1}+L_{1} \frac{d_{i n}}{d t}+n \frac{l_{i}}{d t} & \times i_{1} d l \\
0=R_{2} i_{2}+L_{2} \frac{i_{i}}{d t}+\frac{n d_{1} /}{d t} & \times i_{2} d t\end{cases} \\
& \Rightarrow\left\{\begin{aligned}
\operatorname{eg} i_{1} d t & =R_{1} i_{1}^{2} d t+L_{1} i_{1} d i_{1}+M i_{1} d i_{2} \\
0 & =R_{2} i_{2}^{2} d t+L_{2} i_{2} d i_{2}+M i_{2} d i_{1}
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
& W_{m}=\frac{\mu_{0} m^{2} i^{2}}{2} \times \pi \pi^{2} l=\frac{1}{2} L i^{2} \Rightarrow L=\mu_{0} m^{2} l \pi a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \log i_{1} d F=R_{1} i_{1}^{2} d t+R_{2} i_{2}^{2} d t+d\left(\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+M i_{1} i_{2}\right) \\
& J W_{y m}=\delta W_{5} \quad+d W m \\
& \mu W_{m}=\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}+\left(V_{i n} i_{2} \quad \rightarrow\right. \text { ine gie mm }
\end{aligned}
$$

NB| $W_{m} \geqslant 0$ ca $\omega_{m} \geqslant 0 \quad\left|\begin{array}{ll}L_{1} & M \\ M & L_{2}\end{array}\right| \geqslant 0 \quad \Rightarrow|N| \leqslant \sqrt{L_{1} L_{2}}$
7) Comonts de Foucault
 Foncoult.

- Pour calcular la dennit́ nodumijue:
loi dohm lo ack: $\vec{\jmath}(n, H)=\gamma \vec{E}(n, H)$
on' $\vec{E}(\Pi, H)=-\frac{\partial \vec{A}}{\partial t}(\Pi, H)-\overline{\text { grad }} V(m, r)$
Cn indmint pon $\vec{B}$ minisle
- Appications:
- chartfage pes intuction: picce uécratiñe dos laquelle an bécelogne us comarto de $F$ est chamffec per effer Jome
- blindage EM
- puts pas ffet Joule musisises
(On vumpleve is prics smanirs pon us pries fuillekés istese)
III Induction $\mu$ lorentz
circust mostie ds un CMI staniomaine.

1) Chargenat de riffraticl poun le champers

- cache = mécamipir clamijue


$$
\vec{V}=\vec{v}_{2}\left(R^{\prime}\right) \text { vimem } \mu \text { vanedainn }
$$

 Arqumut: la perce de coventz sum une chacie go ed la vinu dam Rur R'.

$$
\vec{F}=q_{0}\left(\vec{E}+\vec{V}_{R R} \wedge \vec{B}\right)=q_{0}\left(\overrightarrow{E^{\prime}}+\vec{V}_{R^{\prime}}+\vec{B}^{\prime}\right)
$$

$$
\text { or } \vec{V} / R\left(q_{0}\right)=\vec{V}\left(q_{0}\right)-\vec{V} \text { done } \forall \vec{V} / R
$$

$$
\begin{aligned}
\vec{E} & +\overrightarrow{V_{\mathbb{R}}} \wedge \vec{B}=\vec{E}^{\prime}+\left(\overrightarrow{V_{R}}-\vec{V}\right) \wedge \overrightarrow{B^{\prime}}=\left(\overrightarrow{E^{\prime}}-\vec{V} \wedge \overrightarrow{B^{\prime}}\right)+\overrightarrow{V_{R}} \wedge \overrightarrow{B^{\prime}} \\
& \rightarrow\left\{\begin{array}{l}
\vec{E}=\overrightarrow{E^{\prime}}-\vec{V} \wedge \vec{B} \Rightarrow \vec{B}^{\prime} \\
\overrightarrow{E^{\prime}}
\end{array}\right)=\overrightarrow{\vec{B}^{\prime}}=\overrightarrow{\vec{B}^{\prime}}+\overrightarrow{B^{\prime}}
\end{aligned}
$$

NB Formuls appechés valush ò 2 condition:

- $\|\vec{v}\| \ll c$
- champ EV à dominarte magnótigue ie $\|\vec{B}\| \gg \frac{\|E\|}{c}$
- De plus $\quad \rho=p^{\prime}$ \& chage er volues invaniors

$$
\begin{aligned}
& \vec{j}^{\prime}=\sum m_{i}^{\prime} g_{i} \vec{v}_{i}^{\prime}=\sum m_{i} q_{i}\left(\overrightarrow{v_{i}}-\vec{v}\right) \\
& \overrightarrow{\vec{z}^{\prime}}=\vec{j}-p \vec{v}
\end{aligned}
$$

2) Champ Elechomatem $u$ Lorentz


$$
\text { Y ar mur as R aí rejge } \vec{B}(n, r) \text { _ }
$$

$\Rightarrow \vec{\jmath}^{\prime}=\vec{\gamma} \quad \stackrel{i}{b}$ idloh locale do le uf un undudom:

$$
\vec{J}(P, H)=\gamma \vec{\epsilon}(P, H)=\gamma(\vec{E}(P)+\vec{V}(P, H) \wedge \vec{B}(P))
$$

or $\vec{E}(P)=-\overline{\text { grad }} V(P)$ lan is $R^{\prime}, \vec{B}$ statiomin.
On nypelle chanp ilechnomatemn le Countz: $\left.\overrightarrow{E_{\text {mem }}}(P, H)=\overrightarrow{V_{R}}(P, H) \overrightarrow{A B P}\right)$ et ona $\vec{j}(P, r)=\gamma\left(\overrightarrow{E_{m}}(P, r)-\operatorname{grad} V(P)\right)$
3) Loi drokm génénalike

$$
\begin{aligned}
& \int_{A}^{B} \frac{\vec{g}_{0}}{\gamma} \vec{M}=\int_{A}^{B}\left(\frac{i_{s} \vec{E}}{\gamma}\right) \cdot(d \vec{F}) \text { (s medion-dn fil, } \vec{E} \text { rect kangent) } \\
& =\left.\frac{i}{\partial \gamma}\right|_{A} ^{B} 川=R_{A B} i \\
& \int_{A}^{B} \frac{f}{\gamma} \cdot \vec{l}=\int_{A}^{B} \overrightarrow{E_{A}} \cdot \overrightarrow{d l}-\int_{A}^{B} \overrightarrow{p_{2 a}} V \cdot \overrightarrow{d l}=\int_{A}^{B} \overrightarrow{E_{m}} \cdot \vec{d}-V(B)+V(A) ? \\
& \operatorname{Donc} V(A)-V(B)=R_{A B} i-\int_{A}^{B} \overrightarrow{E_{m}} \cdot d e
\end{aligned}
$$

 $\ell_{A B}$ fonce clechong hice induike arte A AT B
4) Laide Fanday


On aunt que $\phi\left(\bar{V}_{1} \vec{B}\right) \cdot \vec{L}=-\frac{d \Phi_{B}}{1 t}$ lorgme le thux $\Phi_{B}(H)$ est uer fouction det usfinic at ca-sinue à chaque imbener-
5) Exemply
(3) Ex 3


$$
z_{A}=z_{0}-v t
$$

$\rightarrow$ On Kanslate $\vec{v} \vec{v}=-v_{n}^{3}$

- calculder IB mis ue=- $\frac{d \overline{\text { P }} \text { B }}{d t}:$ of ex 2, c'ect paral.
- $e=\oint(\vec{r} \perp \vec{B}) \cdot \overrightarrow{d l}$

$$
\begin{aligned}
& \vec{B}(P)=\frac{\mu_{0}}{\mu_{\pi}} \frac{3(\vec{r} \cdot \overrightarrow{O P}) \overrightarrow{O P}-O P^{2} \vec{\mu}}{O P^{5}} \overrightarrow{\mu_{z}} \\
& \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}=z_{A}+b \overrightarrow{\mu_{r}}
\end{aligned} \vec{\mu}=M \overrightarrow{\mu_{z}}
$$

Go'smadsts

$$
\vec{B}(P)=\frac{\mu_{A}}{4 \pi} \frac{3 \mu z_{A}\left(z_{A} \overrightarrow{\mu_{z}}+b \overrightarrow{\mu_{H}}\right)-\left(z_{A}^{2}+b^{2}\right) \mu \overrightarrow{\mu z}}{\left(z_{A}^{2}+b^{2}\right)^{5 / 2}}
$$

$$
B_{r}=\frac{3 \mu z_{A}^{b} b}{\left(z_{A}^{2}+b^{2}\right)^{5 / 2}} \frac{\mu_{0}}{4 \pi} \quad B_{z}=\frac{M\left(2 z_{A}^{2}-b^{2}\right)}{\left(z_{A}^{2}+b^{2}\right)^{5 / 2}} \frac{\mu_{0}}{4 \pi}
$$

VV

$$
\begin{aligned}
& \vec{v} \wedge \vec{B}=\left(-v \overrightarrow{\mu_{z}}\right)_{1}\left(B, \overrightarrow{\mu_{r}}+B_{z} \overrightarrow{\mu_{z}}\right)=-v B_{r} \overrightarrow{\mu_{\theta}} \\
& e=\oint(\vec{v} \wedge \vec{B}) \cdot \overrightarrow{d l}=\int_{\theta=0}^{2 \pi}\left(-v \frac{3 \sqrt{z_{A}}+}{\left(z_{n}^{2}+b^{2}\right)^{5 / 2}} \frac{\mu_{0}}{4 \pi} \overrightarrow{\mu_{\theta}}\right) \cdot\left(b d \theta \cdot \overrightarrow{\mu_{\theta}}\right) \\
& e=-\frac{\mu_{0}}{4 \pi} \frac{3 / \mu_{A} b^{2} v}{\left(z_{n}^{2}+b^{2}\right)^{5 / 2}} \times 2 \pi
\end{aligned}
$$

(b) Cacre en Eraustation

- As $\vec{B}$ unipone
$\overrightarrow{E_{n}}=\overrightarrow{v_{i} B}$ unifon!

$$
e=\oint \vec{E}_{m}^{3} \cdot \vec{d}=\overrightarrow{E_{r}} \cdot \oint_{\overrightarrow{0}} \oint_{\overrightarrow{l d}}=0
$$


he nère $\Phi_{B}=$ unte $\Rightarrow C=-\frac{d \Phi_{B}}{d l}=0$

- Chp uon unifome


$$
\begin{gathered}
\bar{B}=-B(x) \overrightarrow{u_{y}} \\
\vec{v}=v \overrightarrow{u_{x}}
\end{gathered}
$$

$$
e=\oint \overrightarrow{E_{m}} \cdot \overrightarrow{d l} ; \overrightarrow{E_{1}}=\vec{v} \wedge \vec{B}=-v B(x) \overrightarrow{m z} \perp a \dot{A B e t C D}
$$

ponc $e_{A B}=e_{C D}=0$

$$
\begin{aligned}
\Rightarrow e & =e_{B}+e_{D A}=\left(-v B\left(x_{B}\right) \overrightarrow{u_{z}}\right) \cdot\left(-b \overrightarrow{u_{z}}\right)+\left(-v B\left(x_{D}\right) \overrightarrow{u_{z}}\right) \cdot\left(b \overrightarrow{u_{z}}\right) \\
& =v b\left(B\left(x_{B}\right)-B\left(x_{D}\right)\right)
\end{aligned}
$$

Pan Aa loíde Funaday

$$
\begin{aligned}
\underline{\Phi}_{B} & =\int\left\{\vec{B} \cdot \overrightarrow{d S}=\int_{x=x_{A}}^{x_{A}+a} \int_{\overrightarrow{=}=z_{A}}^{z_{A+b}}\left(-B(x) \overrightarrow{u_{y}}\right) \cdot\left(d x d z_{\vec{m}}\right)\right. \\
& =\left(-\int_{x_{A} A}^{x_{A}+a} B(x) d x\right) x b \quad r \quad x_{A}=x_{0}+v t \\
\Phi_{B} & =-b \int_{x_{0}+v t}^{x_{0}+v t+a} B(x) d x \\
\frac{-d \vec{B}}{d t} & =+b\left[v B\left(x_{0}+v t+a\right)-v B\left(x_{0}+v r\right)\right] \\
C & =b v\left[B\left(x_{B}\right)-B\left(x_{A}\right)\right]
\end{aligned}
$$

(C) Conductrem en notation

- Baver en rotation


Bane conductrice OA tommant pukom de $\mathrm{O}_{z}$

$$
(\theta x, \overrightarrow{O A})=\theta
$$

Chp $B=B \overrightarrow{\mu_{z}}$ uniffens et constast fím e $e_{0 a}$ ?

$$
\begin{aligned}
e_{o A} & =\int_{b}^{A}(\vec{v}, \vec{B}) \cdot \vec{\mu} \quad \vec{v}(M, H)=\vec{\omega} \perp \overrightarrow{O M}=r \dot{\theta} \overrightarrow{u_{\theta}} \\
\quad \vec{v} & \vec{B}=B \dot{\theta} \overrightarrow{u_{r}} \\
e_{o r} & =\int_{r=0}^{a}\left(B \dot{\theta} r \overrightarrow{u_{r}}\right) \cdot\left(d r \vec{u}_{r}\right)=\frac{1}{2} B a^{2} \dot{\theta}
\end{aligned}
$$


fém in duite e?

- loi de Fanaday

$\overline{\Phi_{B}}=\vec{B} \cdot \bar{j}$ of ap omifore + mapace fone

$$
d \vec{J}=a b\left(-\sin (\omega t) \overrightarrow{\mu_{x}}+\cos (s t) \overrightarrow{u_{y}}\right)
$$

$$
\Rightarrow \Phi_{i}=3 a b \text { as }(\omega t)
$$

$$
e=-\frac{d \Phi_{B}}{d t}=3 a b \omega \sin (\operatorname{sit} t)
$$

- par le damp Erm

$$
\begin{aligned}
& \overrightarrow{E_{m}}=\vec{v} \vec{B} \quad \operatorname{coosd} \text { cyl }(r, \theta, z) \\
& \vec{v}=\vec{\omega} \wedge \overrightarrow{0 r}=\left(\omega \overrightarrow{\mu_{z}}\right) \wedge\left(r \overrightarrow{\mu_{r}}+z \overrightarrow{\mu_{z}}\right)=\text { wr } \overrightarrow{\mu_{\theta}} \\
& \bar{B}=B \sin (\omega t) \vec{\mu}_{n}^{2}+B \cos (\omega t) \overrightarrow{\mu g} \\
& \overrightarrow{E n}=\vec{r} \cdot \vec{B}=-B \omega r \sin \omega t \overrightarrow{\mu z} \\
& e=\int_{0 A B C} \overrightarrow{E_{m}} \cdot \overrightarrow{l l}=\int_{0}^{C} \overrightarrow{E_{m}} \cdot \overrightarrow{d e} \text { of } \overrightarrow{E_{m}}=\begin{aligned}
& \overrightarrow{0} \text { mio } A \\
& 1 \dot{a} A B \text { er } C D
\end{aligned} \\
& c=\int_{z=a}^{0}\left(-B \omega b \sin (\omega t) \overrightarrow{\mu_{z}}\right) \cdot\left(d_{z} \overrightarrow{\mu_{z}}\right)=B \omega b \sin (\omega t) a
\end{aligned}
$$

6) Deuxdisponitis Alesniqus
(a) Rails de Laplace


- 2 vils corducrems

A bave conductrice ylime Pronle mn \& rails thamp rag: $\vec{B}=B \overrightarrow{\mu_{z}}$ unifome constart sinuit lectrign funé atere ba 2 aails et contient une usítra-a $R$ (nísiftranu honke du cinaib), une apacité C, une induckunce mejlijre.

- CI condensabem déchargé
- Vikna have: vo $\overrightarrow{\mu_{y}}$
- Axalyse qualitative
bane in mert ds $\vec{B} \rightarrow$ induccionde Lorentz
$\rightarrow$ panage Aloncomast $\hat{V} A \rightarrow B$ le virain' g'chaye $C$
$\rightarrow$ force de laplace sun la bave ¿queine la bane (lo'de lanz)

$$
\overrightarrow{F_{i}}=i_{A B} \overrightarrow{A B} \wedge \vec{B}
$$

- Miscen egn
- Chvix d'oriutration pown le mut $(\overrightarrow{u y})$ et pons l'inkenvité
- eqn Clectaigne
fiom induite: unignemat do $A B$

$$
\begin{aligned}
& 2=e_{A B}=\int_{A}^{B}(\vec{v} \wedge \vec{B}) \cdot \overrightarrow{d l} \\
& \vec{v}^{i} \wedge \vec{B}=\left(v(H) \overrightarrow{\mu_{y}}\right) \wedge\left(B \overrightarrow{\mu_{z}}\right) \quad c=B \vee l
\end{aligned}
$$

$$
\text { sháma EC A } \frac{e=3 v e^{B}}{\left[\|_{1}^{R} L^{B}\right.}
$$

loids mailles: $e=R i+\frac{4}{6}$

$$
\frac{B l v=R i+\frac{q}{c}}{(\epsilon)}, i=\frac{d q}{d F}
$$

- eqn mécancique

$$
\text { BF } \cdot \text { prid }=m g \overrightarrow{u_{z}}
$$

- neachón mivib $\vec{R}=R \overrightarrow{\mu_{z}}$ (m finttcnuta)
- force di unglare $\overrightarrow{F_{L}}=\int_{a}^{B} i d \vec{B}=\overrightarrow{A B}, \vec{B}$ of $\vec{I}$ unif

$$
=i\left(l \overrightarrow{u_{x}}\right)_{1}\left(B \overrightarrow{\mu_{z}}\right)=-B l i \vec{y}
$$

$$
\begin{equation*}
\operatorname{TRC} / \overrightarrow{M_{y}}: m \frac{d v}{d t}=-B l_{i} \tag{n}
\end{equation*}
$$

- Nsolntior

$$
\frac{d i}{d t}+\underbrace{\left(\frac{1}{R c}+\frac{(B l)^{2}}{n R}\right)^{c}}_{1 / \tau}=0 \Rightarrow i(t)=A e^{-t / L}
$$

$$
\begin{aligned}
& \frac{d(E)}{d t}: B l \frac{d v}{d t}=\mathbb{R} \frac{d i}{d t}+\frac{i}{C} \\
& \text { ds }(\sigma 7):-\frac{(B C)^{2}}{M_{-}} i=R \frac{d i}{d t}+\frac{i}{c} \\
& \text { CI: (E) àt=0 } B l v_{0}=R A+0 \\
& \Rightarrow i^{\prime}(t)=\frac{B l v_{0}}{R} e^{-t / \tau}
\end{aligned}
$$

$$
\begin{aligned}
&\left((T): \frac{d v}{d t}\right.=-\frac{(B l)^{2}}{m R} v_{0} e^{-t / \tau} \quad v(t)=\tau \frac{(B l)^{2}}{m R} v_{0} e^{-t / \tau}+B \\
& C I: v(0)=v_{0} \\
& B=v_{0}\left(1-\tau \frac{(B l)^{2}}{m R}\right) \\
& v(t)=v_{0}+v_{0} \tau \frac{(B l)^{2}}{m R}\left(e^{-t / \tau}-1\right) \\
& q(t)=-\tau \frac{B l v_{0}}{R} e^{-t / \tau}+D \\
& C I: q(0)=0 \Rightarrow q(t)=\tau \frac{B l v_{0}}{R}\left(1-e^{-t / \tau}\right)
\end{aligned}
$$

- Bilan léaejuer
(E) $x i d t \left\lvert\, \begin{aligned} & (M) x v d t \\ & (M C \rightarrow x w d t)\end{aligned} \quad\right.$ on obhiert us énengis

$$
\begin{aligned}
& \Rightarrow m v d v=-R_{i}{ }^{2} d t-\frac{q d q}{c} \\
& \left(\begin{array}{l}
\left.\frac{d v}{\frac{d v}{d t} v d r}\right)=-\sqrt{B l i v d t /} \begin{array}{l}
\text { rramspur } \\
\\
d^{\prime} \text { 'éverg'e }
\end{array} \Rightarrow d\left(\frac{1}{2} m v^{2}\right)=R_{i}^{2} d t+d\left(\frac{1}{2 c} q^{2}\right)
\end{array}\right. \\
& \Rightarrow-d E_{c}=\delta W_{\text {sme }}+d W_{u}
\end{aligned}
$$

Vre purtie de llénngie cińsijge de la bance est

- disipier pan effer Tme
- convarie an énerjic electrique stodéedsbe condensaten be harsfert d'Évagic nécanique - éreygie EM xe fair sans perke: corplaje Elchervanécanninn jampoit.
(b) Pour de Barlour
 taluanes is foot autoues de wan ake honizontral Oz
- $\vec{B}=B \overrightarrow{u z}$ unif corstait
- voract Cleckique en Der en A
- inavit femé avec grenéateum es et capaciḱ C
- CI : $\omega(0)=0$
(1)
A
A - a op ruer fro quan lun fiel), dins:
方 ई
(2)
$\oplus$


