Thu Nov 10, 2011 8:35 AM

Xiu 2010 p.15, Prop.2.11, point 2

$U \sim U(0,1)=$ random variable U having the uniform distribution on $(0,1)$
U 1 sim U(0.1)
\sim = tilde notation; latex code \sim is used for similarity for asymptotic, so it is better to use a different symbol to prevent confusion. Note that some authors (not everyone) in probability use the "tilde" notation. A possible alternative notation would be \doteqdot, i.e., \doteqdot, which is not used often. So we can write:
$U \doteqdot U(0,1)=$ random variable U having the uniform distribution on $(0,1)$
$X \doteqdot N(\mu, \sigma)=$ random variable X having the normal distribution with mean μ and standard deviation σ (or variance σ^{2})

Point 3:

Point 2:
$U \doteqdot U(0,1) \Rightarrow X:=F_{X}^{-1}(U)$ has $F_{X}(\cdot)$ as cdf
Point 3:
$X:=F_{X}^{-1}(U) \Rightarrow F_{X}(X)=F_{X}\left(F_{X}^{-1}(U)\right)=U$
$X:=F_{-} X^{\wedge}\{-1\}(U) \backslash R i g h t a r r o w F_{-} X(X)=F_{-} X\left(F_{-} X^{\wedge}\{-1\}(U)\right)=U$

So Point 2 implies Point 3.
To prove Point 2, there are two ways.
Method 1:
Follow the logics of Fig.4.2 to build up a proof.

Method 2:

$$
[A \Rightarrow B] \Leftrightarrow[B \Rightarrow A]
$$

[A \Rightarrow B] \Leftrightarrow [\cancel $\{B\} \backslash$ Rightarrow \backslash cancel $\{A\}$]
Show that if the random variable $F_{X}^{-1}(U)$ does not have $F_{X}(\cdot)$ as $c d f$, i.e., has a different function as $c d f$, then the random variable U cannot have the uniform distribution $U(0,1)$.

