Binary Angle Measurement (4A)

- Redundant CORDIC
- •

Young Won Lim 06/20/2012 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 06/20/2012 T. Vladimirova, "FPGA implementation of sine and cosine generators using CORDIC algorithm", Proceedings of 2006 MAPLD International Conference

[Bake76]	P.W. Baker, "Suggestion for a Binary Cosine Generator", 1975
[Erce87]	M.D. Ercegovac, "Fast Cosine/Sine Implementation Using CORDIC
	Iterations", 1987
[Taka91]	N. Takagi, "Redundant CORDIC Methods with a Constant Scale Factor
	For Sine and Cosine Computation", 1991
[Timm92]	D. Timmerman, "Low Latency Time CORDIC Algorithms", 1992

RSD binary system

three digit set { 0, +1, -1} $\{0, 1, \overline{1}\}$

Redundant Adder

$$Y = \sum_{i=0}^{n} y_{i} \cdot 2^{i} = \sum_{i=0}^{n} (y_{i}^{*} - y_{i}^{**}) \cdot 2^{i} \qquad y_{i}^{*}, y_{i}^{**} \in \{0, 1\}$$

Redundant CORDIC Schemes

Limitations of Redundant CORDIC

- Conversion to / from RSD (Redundant Sign Digit)
- Sign evaluation of a RSD number σ_i
- The Scale Factor is not constant K_n
 [Erce87] the scale factor is calculated during computation, corrected at the end of rotation
 [Taka91, Timm92] the scale factor is compensated during iteration process
 [Bake76] pre-computation of angle rotation σ_i
 (Bake76] pre-computation process
 (Bake76] pre-computation of angle rotation σ_i
 (Bake76] pre-computation process
 (Bake76] pre-computation

Double Rotation

[Taka91]

Combination of two sub-rotation

$$\sigma_i = 0$$
 \longrightarrow $+ \tan^{-1}(2^{-i-1})$ and $-\tan^{-1}(2^{-i-1})$

[Timm92]

σ_i has to be estimated from the most significant digit
if all the digits inspected are zero
then it is necessary the knowledge of the remaining digits

Parallelizing the generation of σ_i by prediction

initial value in binary representation

$$z_0 = \sum_i Z_i 2^{-i} \qquad Z_i \in \{0, 1\}$$

$$z_0 = \sum_i \sigma_i 2^{-i} \qquad \sigma_i \in \{-1, +1\}$$

BAM (4A)

References

- [1] http://en.wikipedia.org/
- [2] CORDIC FAQ, www.dspguru.com
- [3] T. Vladimirova, "FPGA implementation of sine and cosine generators using CORDIC algorithm", Proceedings of 2006 MAPLD International Conference
- [4] P.W. Baker, "Suggestion for a Binary Cosine Generator", 1975
- [5] M.D. Ercegovac, "Fast Cosine/Sine Implementation Using CORDIC Iterations", 1987
- [6] N. Takagi, "Redundant CORDIC Methods with a Constant Scale Factor For Sine and Cosine Computation", 1991
- [7] D. Timmerman, "Low Latency Time CORDIC Algorithms", 1992