Binary Angle Measurement (4A)

- Redundant CORDIC
-

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

BAM Background

T. Vladimirova, "FPGA implementation of sine and cosine generators using CORDIC algorithm", Proceedings of 2006 MAPLD International Conference
[Bake76] P.W. Baker, "Suggestion for a Binary Cosine Generator", 1975
[Erce87] M.D. Ercegovac, "Fast Cosine/Sine Implementation Using CORDIC Iterations", 1987
[Taka91] N. Takagi, "Redundant CORDIC Methods with a Constant Scale Factor For Sine and Cosine Computation", 1991
[Timm92] D. Timmerman, "Low Latency Time CORDIC Algorithms", 1992

Redundant Singed Digit (RSD)

RSD binary system

$$
\text { three digit set }\{0,+1,-1\} \quad\{0,1, \overline{1}\}
$$

Redundant Adder

$$
Y=\sum_{i=0}^{n} y_{i} \cdot 2^{i}=\sum_{i=0}^{n}\left(y_{i}^{*}-y_{i}^{* *}\right) \cdot 2^{i} \quad y_{i}^{*}, y_{i}^{* *} \in\left\{\begin{array}{ll}
0, & 1
\end{array}\right\}
$$

Redundant CORDIC Schemes

Limitations of Redundant CORDIC

- Conversion to / from RSD (Redundant Sign Digit)
- Sign evaluation of a RSD number
σ_{i}
- The Scale Factor is not constant K_{n}
[Erce87] the scale factor is calculated during computation, corrected at the end of rotation
[Taka91, Timm92] the scale factor is compensated during iteration process
[Bake76] pre-computation of angle rotation σ_{i}

Double Rotation

[Taka91]
Combination of two sub-rotation

- rotation
+ rotation
0 rotation

$\quad\left\{\begin{array}{l}\begin{array}{l}\begin{array}{l}-- \text { sub-rotations } \\
-+ \text { sub-rotations } \\
++ \text { sub-rotations }\end{array} \\
\text { two sub-rotations }\end{array} \\
\begin{array}{l}\sigma_{i}= \pm 1 \\
\sigma_{i}=0\end{array} \quad \square \\
\sigma_{i} \tan ^{-1}\left(2^{-i-1}\right) \text { and double rotation } \sigma_{i} \tan ^{-1}\left(2^{-i-1}\right)\end{array}\right.$
[Timm92]
σ_{i} has to be estimated from the most significant digit
if all the digits inspected are zero
then it is necessary the knowledge of the remaining digits
Parallelizing the generation of σ_{i} by prediction
initial value in binary representation

$$
\begin{array}{ll}
z_{0}=\sum_{i} Z_{i} 2^{-i} & Z_{i} \in\{0,1\} \\
z_{0}=\sum_{i} \sigma_{i} 2^{-i} & \sigma_{i} \in\{-1,+1\}
\end{array}
$$

References

[1] http://en.wikipedia.org/
[2] CORDIC FAQ, www.dspguru.com
[3] T. Vladimirova, "FPGA implementation of sine and cosine generators using CORDIC algorithm", Proceedings of 2006 MAPLD International Conference
[4] P.W. Baker, "Suggestion for a Binary Cosine Generator", 1975
[5] M.D. Ercegovac, "Fast Cosine/Sine Implementation Using CORDIC Iterations", 1987
[6] N. Takagi, "Redundant CORDIC Methods with a Constant Scale Factor For Sine and Cosine Computation", 1991
[7] D. Timmerman, "Low Latency Time CORDIC Algorithms", 1992

