
Young Won Lim
09/01/2012

●

●

MPI Programming Techniques

Young Won Lim
09/01/2012

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

MPI Programming 3 Young Won Lim
09/01/2012

Eager Protocol

For short messages

The message itself + supplementary information (message envelope)
may be sent and stored at the receiver side
without receiver’s intervention

A matching receiver operation may not be needed
But afterward, the message in the intermediate buffer
must be copied to the receive buffer

+Synchronization overhead is reduced
- May require large amount of preallocated buffer space
- Flooding a process with many eager messages may overflow → contention

MPI Programming 4 Young Won Lim
09/01/2012

Rendezvous Protocol

For large messages

Buffering the data is impossible

The message envelope is immediately stored at the receiver
The actual message transfer blocks until the user’s receive buffer is available

Extra data copy could be avoided,
improving effective bandwidth,
but sender and receiver must synchronize.

Rendezvous Protocol

MPI Programming 5 Young Won Lim
09/01/2012

MPI_Send

computation communication

After return from MPI_Send,
Send / Receive buffer can be used

Sending data had departed from the sent buffer
Receiving data has arrived completely at the receive buffer

Blocking Communication

Until MPI 2.2, collective communication
is always blocking communication

MPI_Recv

Post send / receive operation,
Handshake,
Data transfer

MPI Programming 6 Young Won Lim
09/01/2012

MPI_Isend

MPI_Wait

computation communication

After return from MPI_Send,
Send / Receive buffer cannot be used

MPI_Irecv
MPI_Isend, MPI_Irecv merely initiates
 a message transmission and returns
immediately to the user.

Synchronization is required
MPI_Wait: blocks until the buffer is available
MPI_Test: only tests for completion and returns flag

C
an do ot her usefu l

com
putat ion unless it

access th e buffer

Non-Blocking Communication (1)

MPI Programming 7 Young Won Lim
09/01/2012

MPI_Isend

MPI_Wait

computation communication

MPI_Irecv

Post send / receive operation,
Handshake,
Data transfer

possible message transfers

Non-Blocking Communication (2)

MPI Programming 8 Young Won Lim
09/01/2012

MPI_Irecv 1
MPI_Irecv 2
MPI_Irecv 3

MPI_Irecv n

MPI_Waitall

computation communication

Post send / receive operation,
Handshake,
Data transfer

Multiple Request

MPI_Send MPI_Send MPI_Send
P1 P2 Pn

MPI Programming 9 Young Won Lim
09/01/2012

Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

RecvSend

RecvSend

RecvSend

MPI Programming 10 Young Won Lim
09/01/2012

Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking but not Synchronous Send

Blocking Recv

Eager Delivery
Not Synchronous – enables a send to end
before the corresponding recv is posted

MPI Programming 11 Young Won Lim
09/01/2012

Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking Synchronous Send

Blocking Recv

Eager Delivery
Synchronous – forces a send finish only
after it’s matching recv is posted

MPI Programming 12 Young Won Lim
09/01/2012

Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking Send

Blocking Recv

Rendezvous Protocol – forces a serial
message transmission because buffering is
not used

MPI Programming 13 Young Won Lim
09/01/2012

Rank Reorder

ROUND-ROBIN One rank per node, wrap around
Sequential ranks are placed on the next node

SMP-STYLE Fill up one node before going to next
All cores from all nodes are allocated in a sequential order

FOLDED RANK One rank per node, wrap back

PE 0, 1, 2, 3, 4, 5, 6, ….

Ex) MPICH on CrayPAT MPICH_RANK_REORDER_METHOD

MPI Programming 14 Young Won Lim
09/01/2012

Rank

MPI_Comm_size : Determines the size of the group associated with a communicator

MPI_Comm_rank : Determines the rank of the calling process in the communicator

MPI_Cart_create : Makes a new communicator to which topology information has been
 attached

MPI_Dims_create : Creates a division of processors in a cartesian grid

MPI_Cart_coords : Determines process coords in cartesian topology given rank in group

MPI_Cart_rank : Determines process rank in communicator given Cartesian location

MPI_Cart_shift : Returns the shifted source and destination ranks, given a shift
Direction and amount

MPI Programming 15 Young Won Lim
09/01/2012

Rank

int MPI_Comm_size (MPI_Comm comm, int *size)

int MPI_Comm_rank (MPI_Comm comm, int *rank)

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods,
 int reorder, MPI_Comm *comm_cart)

Int MPI_Dims_create (int nnodes, int ndims, int *dims)

int MPI_Cart_coords (MPI_Comm comm, int rank, int maxdims, int *coords)

int MPI_Cart_rank (MPI_Comm comm, int *coords, int *rank)

int MPI_Cart_shift (MPI_Comm comm, int direction, int displ, int *source, int *dest)

MPI Programming 16 Young Won Lim
09/01/2012

Rank

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods,
 int reorder, MPI_Comm *comm_cart)

MPI_Cart_create (MPI_COMM_WORLD, // standard communicator
2, // two dimensions

MPI Programming 17 Young Won Lim
09/01/2012

Nonblocking s. Asynchronous Communication

Nonblocking :

implies that the message buffer cannot be used
after the call has returned from the MPI library.

It depends on the implementation
whether data transfer (MPI progress) takes place
outside MPI while user code is being executed

If MPI_Irecv() triggers a truly asynchronous data transfer,

the measured overall time will stay constant with increasing delay until the delay equals the
message transfer time. Beyond this point, there will be a linear rise in execution time.

If MPI progress occurs only inside the MPI library
(which means, in this example, within MPI_Wait()),

the time for data transfer and the time for executing do_work() will always add up
and there will be linear rise of overall execution time starting from zero delay

 T = MPI_Wtime()

MPI_Irecv(...);
do_work(delay);
MPI_Wait(...);

 T = MPI_Wtime() - T;

MPI Programming 18 Young Won Lim
09/01/2012

Nonblocking s. Asynchronous Communication

If MPI_Irecv() triggers a truly asynchronous data transfer,

the measured overall time will stay constant with increasing
delay until the delay equals the message transfer time.
Beyond this point, there will be a linear rise in execution
time.

If MPI progress occurs only inside the MPI library
(which means, in this example, within MPI_Wait()),

the time for data transfer and the time for executing
do_work() will always add up
and there will be linear rise of overall execution time starting
from zero delay

 T = MPI_Wtime()

MPI_Irecv(...);
do_work(delay);
MPI_Wait(...);

 T = MPI_Wtime() - T;

 truly asynchronous

only inside the MPI library

MPI Programming 19 Young Won Lim
09/01/2012

Intranode point-to-point communication (1)

Cray XT5 system

One XT5 node
– 2 AMD Opteron chips

With a 2MB quad-core L3 group each
These nodes are connected via 3D torus network

Different Level of
point-to-point communication characteristics

Intranode intrasocket : inside an L3 group
Intranode intersocket : between core on different sockets
Internode : between different nodes

Internode ↔ Intranode : large difference
Intersocket ↔ Intrasocket : similar

MPI Programming 20 Young Won Lim
09/01/2012

Intranode point-to-point communication (2)

False Assumption:
Any intranode MPI communication is infinitely fast.

Depends on the MPI implementation

When the MPI library is not aware of intranode
communication, relatively slow network protocols are used
instead of memory-to-memory copies

Nontemporal stores or cache line zero
Depending on message size and cache sizes
Large message / No shared cache : avoid the write allocate

Single copy (simple block copy command)
From send buf to recv buf
(synchronizing randezvous protocol)
Intermediate buffer (additional copy)

Hardware support for intranode memory-to-memory copy

MPI Programming 21 Young Won Lim
09/01/2012

Ping-Pong Benchmark (1)

P1 P2

Recv

Send

Send

Recv

T = T l +
N
B

Message Size

Latency Max Bandwidth

Beff =
N
T =

N
T l + N /B

A multicore processor with a shared cache
- fit into the cache

IMB (Intel Benchmarks)

MPI Programming 22 Young Won Lim
09/01/2012

Ping-Pong Benchmark (2)

T = T l +
N
B

Beff =
N
T =

N
T l + N /B

Large sized message : effective bandwidth saturating

T ≈ T l

Small sized message : latency dominating

Beff ≈ B

May be inaccurate because of the followings:

All protocols have some overhead (headers)

Some protocols have min message size > 1 byte

Involves multiple software layers (added latencies)

May not have optimized low-latency I/O

Measured latency with N=0

Different buffering algorithms at a certain message size

Extremely large message must be split into smaller chunks

MPI Programming 23 Young Won Lim
09/01/2012

Ping-Pong Benchmark (3)

T = T l +
N
B

Beff = N
T = N

T l + N /B = B
2 T l =

N1 /2

B BT l = N1/2

Beff (βB,T l) = N
T l + N /βB

Beff (B,T l) = N
T l + N /B

Beff (βB,T l)
Beff (B,T l)

=
T l + N /B
T l + N /βB

=
1+ N /BT l

1+ N /βBT l
=

1+ N /N1/2

1+ N /βN1/2

Whether an increase in maximum network bandwidth by a factor of

is really beneficial for all messages?

β

MPI Programming 24 Young Won Lim
09/01/2012

Message Aggregation

Young Won Lim
09/01/2012

References

[1] http://en.wikipedia.org/
[2] http://static.msi.umn.edu/tutorial/scicomp/general/MPI/mpi_coll_new.html
[3] https://computing.llnl.gov/tutorials/mpi/
[4] https://computing.llnl.gov/tutorials/mpi/
[5] Hager & Wellein, Introduction to High Performance Computing for Scientists and

Engineers
[6] http://www.mpi-forum.org/docs/mpi-11-html

http://static.msi.umn.edu/tutorial/scicomp/general/MPI/mpi_coll_new.html
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25

