General Vector Space (3A)

Young Won Lim 11/20/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/20/12

Vector Space

V: non-empty <u>set</u> of obje	cts	
defined operations:	addition scalar multiplication	u + v <i>k</i> u
if the following axioms ar for all object u , v , w and	V: vector space objects in V: vectors	
1. if u and v are objects 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{u}$ 4. $0 + \mathbf{u} = \mathbf{u} + 0 = \mathbf{u}$ (zero 5. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{u}$ 6. if <i>k</i> is any scalar and u 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$	in V, then u + v is in V - w o vector) = 0 ∎ is objects in V, then <i>k</i> u i	is in V
9. <i>k</i> (<i>m</i> u) = (<i>km</i>) u 10. 1(u) = u		

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then \mathbf{u} + \mathbf{v} is in W

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace Example (1)

In vector space R^2

General (2A) Vector Space

Subspace Example (2)

Subspace Example (3)

In vector space R^3

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any two non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any three vectors non-collinear, non-coplanar	(linearly indep.)	spans	R^3	3-dim space
any four or more vectors	(linearly dep.)	spans	R^3	3-dim space

Genera	al ((2A)
Vector	S	pace

Row & Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Spacesubspace of
$$\mathbb{R}^n$$
= $span\{r_1, r_2, \cdots, r_m\}$ **COLUMN Space**subspace of \mathbb{R}^m

 $= span\{c_1, c_2, \cdots, c_n\}$

$$C_1$$
 C_2 C_n $c_i \in \mathbb{R}^m$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} \vdots \vdots \ldots a_{2n} \vdots a_{m2} \cdots a_{mn}

Row Space

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

*a*_{1*n*}

*a*_{2*n*}

•

a_{mn}

ROW Spacesubspace of
$$\mathbb{R}^n$$
= $span\{r_1, r_2, \dots, r_m\}$ = $\{w\}$

$$\mathbf{r}_i \in \mathbf{R}^n$$

 $r_1 = [a_{11} \ a_{12} \cdots]$

 $\mathbf{r}_2 = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$

 $\mathbf{r}_{\mathbf{m}} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots \end{bmatrix}$

• • • •

n

$$\boldsymbol{w} = \boldsymbol{k}_1 \boldsymbol{r}_1 + \boldsymbol{k}_2 \boldsymbol{r}_2 + \cdots + \boldsymbol{k}_m \boldsymbol{r}_m$$

$$= k_{1} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \\ + k_{2} \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ + k_{m} \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

General (2A) Vector Space

10

Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

COLUMN Space subspace of
$$\mathbb{R}^m$$

= $span\{c_1, c_2, \dots, c_n\}$
= $\{w\}$

$$\boldsymbol{w} = k_1 \boldsymbol{c_1} + k_2 \boldsymbol{c_2} + \cdots + k_n \boldsymbol{c_n}$$

$$= k_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{vmatrix} + k_{2} \begin{vmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{vmatrix} + k_{n} \begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{vmatrix}$$

Null Space

Null Space

$m \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots \end{bmatrix}$	$\begin{array}{c c} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \\ x_n \end{array} \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}$	$= \left(\begin{array}{c} 0\\ 0\\ \vdots\\ 0\end{array}\right)^{\bullet}$	n	
NULL Space solution space Invertible A	subspace of R^n Ax = 0 $x = A^{-1}0 = 0$	only trivial	solution	{ 0 }
Non-invertible A	zero row(s) in a RREF one two three	free variables one two three	parameters <i>s, t, u,</i> a <u>line</u> through the origin a <u>plane</u> through the origin a <u>3-dim</u> space through the origin	R^1 R^2 R^3
General (2A)		13	Young	Won L

Vector Space

13

Solution Space of **Ax=b** (1)

1	0	0	0		1	0	3	-1		_	-5	1	4
0	1	2	0		0	1	-4	2	C)	0	0	0
0	0	0	1		0	0	0	0	C)	0	0	0
$0 \cdot x_{1} + 0 \cdot x_{2} + 0 \cdot x_{3} = 1$ $1 \cdot x_{1} + 3 \cdot x_{3} = -1$ $1 \cdot x_{2} - 4 \cdot x_{3} = 2$ $1 \cdot x_{3} = 2$								-5x	$_{2} + 1 x$	$r_{3} = 4$			
Solve	for a	leadin	g variat	ole <i>x</i>	1 =	-1-3	$3 \cdot x_3$			<i>x</i> ₁	= 4 ·	+ 5· <i>x</i> ₂	$-1 \cdot x_{3}$
				X	2 =	2 + 4.	x ₃						
Treat as a p	a free aram	variat eter	ole	X	₃ =	t				x ₂	= s	x ₃ =	= t
					1 =	-1-3	3t			<i>x</i> ₁	= 4 ·	+ 5 <i>s</i> –	1 <i>t</i>
				$\begin{cases} x \\ x \end{cases}$	2 =	2 + 4 <i>t</i>			$\left\{ \right\}$	<i>x</i> ₂	= s		
				X	₃ =	t				<i>X</i> ₃	= t		

Solution Space of Ax=b (2)

Vector Space

15

Solution Space of Ax=b (3)

ſ	1	0	0	0	1	0	3	-1]	1	-5	1	4	
	0	1	2	0	0	1	-4	2		0	0	0	0	
	0	0	0	1	0	0	0	0		0	0	0	0	
					$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \end{cases}$	-1 - 3 $2 + 4t$ t	ßt			$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$	= 4 + 5 = s = t	5 <i>s</i> — 1	t	
					$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$	$\begin{bmatrix} -1\\2\\0\end{bmatrix}$	+ $t\begin{bmatrix} -3\\4\\1 \end{bmatrix}$	3		$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$= \begin{bmatrix} 4\\0\\0 \end{bmatrix}$	+ $s\begin{bmatrix}5\\1\\0\end{bmatrix}$	$\left] + t \right[$	$\begin{bmatrix} -1\\0\\1 \end{bmatrix}$
		Gene Solut Ax	eral tion of = b		Partic Solut $Ax =$	cular ion of = b	Ger Solu A x	neral ution o = 0	f	Pa So A	$\begin{array}{l} \text{articula} \\ \text{olution} \\ x = b \end{array}$	r (of S	Genera Solutior A x =	l n of 0

Linear System & Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$\boldsymbol{a}$$
 = $(\boldsymbol{a}_1$, \boldsymbol{a}_2 , \cdots , $\boldsymbol{a}_n)$

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$$

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

normal vector
$$a \cdot x = b$$

$$a \cdot x = 0$$

each solution vector \mathbf{x} of a homogeneous equation orthogonal to the coefficient vector \mathbf{a}

Homogeneous Linear System

Linear System & Inner Product (2)

Homogeneous Linear System

each solution vector \mathbf{X} of a homogeneous equation orthogonal to the row vector \mathbf{r}_i of the coefficient matrix

Homogeneous Linear System $\mathbf{A} \cdot \mathbf{x} = \mathbf{0}$ $\mathbf{A} : m \times n$

solution set consists of all vectors in \mathbb{R}^n that are **orthogonal** to every row vector of \mathbb{A}

General	(2A)
Vector S	pace

Linear System & Inner Product (3)

Linear System & Inner Product (4)

Consistent Linear System **Ax=b**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + & \cdots & a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + & \cdots & a_{2n}x_n \\ \vdots & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots & a_{mn}x_n \end{pmatrix}$$

$$Ax = b \quad \text{consistent} \quad \bigstar \quad x_n = b \quad x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \quad \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$Ax = x_1c_1 + x_2c_2 + \cdots + x_nc_n = b$$

Dimension

Dimension of a Basis (1)

Dimension of a Basis (2)

Basis Test

Plus / Minus Theorem

General	(2A)
Vector S	pace

Finding a Basis

Vectors in a Vector Space

S a nonempty set of vectors in a vector space V

if **S** is a *linearly independent* set that is <u>not already a basis</u> for V, then **S** can be <u>enlarged</u> to a basis for V by <u>inserting</u> appropriate vectors into **S**

Every <u>linearly independent</u> set in a subspace is either a **basis** for that subspace or can be **extended to a basis** for it

if S <u>spans</u> V but is <u>not a basis</u> for V, then S can be <u>reduced</u> to a basis for V by <u>**removing**</u> appropriate vectors from S

Every <u>spanning set</u> for a subspace is either a **basis** for that subspace or has a **basis as a subset**

Dimension of a Subspace

Rank and Nullity

A =	$\begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \end{bmatrix}$	· a _{1n} · a _{2n}	ROW Space subspace = $span\{r_1, r_2, \dots, r_m\}$	\mathbf{R}^n
	$\begin{array}{c} \vdots \\ a_{m1} \\ a_{m2} \\ \cdots \end{array}$	$\cdot a_{mn}$	COLUMN Space subspace = $span\{c_1, c_2, \dots, c_n\}$	e of R^m
NULL S Inverti Non-ir	ble A vertible A	Subspace of \mathbb{R}^n $x = A^{-1}0 = 0$ zero row(s) in a RRE	solution space $Ax = 0$ only trivial solutionFfree variablesparameterss, t, u,	

dim(row space of A) = dim(column space of A) = rank(A)
dim(null space of A) = nullity(A)

Solution Space of Ax=0

Elementary Row Operation (1)

ROW Space	subspace of	R^n
$= span \{ \boldsymbol{r}_1, \boldsymbol{r}_2,$	··· , r _m }	
COLUMN Space	subspace of	R^m
$= span\{\boldsymbol{c_1}, \boldsymbol{c_2},$	··· , <mark>C</mark> _n }	

NULL Space	subspace of R ⁿ	
solution space	Ax = 0	
free variables	parameters s, t, u,	

Elementary row operations do <u>not change</u> the **null space** of a matrix

Elementary row operations do <u>not change</u> the **row space** of a matrix

Elementary row operations <u>do change</u> the col space of a matrix

Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors Elementary row operations do <u>not change</u> the **null space** of a matrix Elementary row operations do <u>not change</u> the **row space** of a matrix Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors

Elementary row operations <u>do change</u> the col space of a matrix

General (2A) **Vector Space**

Elementary row operations

- do not change the null space of a matrix
- do not change the row space of a matrix
- do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors
- <u>do change</u> the col space of a matrix

Bases of Row & Column Spaces (1)

dim(row space of A) = dim(column space of A) = rank(A)

Bases of Row & Column Spaces (2)

the basis consisting of columns of A

the basis consisting of rows of A

General (2A) Vector Space 111

1

Bases of Row & Column Spaces (3)

Rank and Nullity

Overdetermined System

n column vectors can span at most Rⁿ **b** is in R^m $\mathbb{R}^m \supset \mathbb{R}^n$ At least one vector **b** in R^m does not lie in column space For such **b** in R^m Ab = b inconsistent

References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,