Group \& Phase Velocities (2B)

- 3-D Group \& Phase Velocities

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Phase Velocity (1)

At any point in space \boldsymbol{x}
$s(x, t)=A e^{j(\omega t-k \cdot x)}$
oscillates with a temporal frequency ω
During one period of oscillation $\quad T=\frac{2 \pi}{\omega}$
in the direction of \boldsymbol{k}
The wave propagates forward
By one wavelength

$$
\lambda=\frac{2 \pi}{|k|}
$$

Phase Velocity (2)

The speed of propagation

The speed at which planes of constant phase $\boldsymbol{k} \cdot \boldsymbol{x}=c$

Phase Velocity

$$
\left|\boldsymbol{v}_{p}\right|=\frac{\lambda}{T}=\frac{\omega}{|k|}
$$

If the directions are the same

$$
\begin{gathered}
\boldsymbol{v}_{p} \quad \boldsymbol{k} \quad v_{p}=\frac{\omega \boldsymbol{k}}{|\boldsymbol{k}|^{2}} \\
\left|v_{p}\right|=\frac{\omega}{|\boldsymbol{k}|}
\end{gathered}
$$

Acoustic Phonon Dispersion

$$
\omega(k)=2 \sqrt{\frac{\gamma}{M}}\left|\sin \frac{k a}{2}\right|
$$

Acoustic branch of vibrations in a crystal

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] http://www.mathpages.com/, Phase, Group, and Signal Velocity
[4] R. Barlow, www.hep.man.ac.uk/u/roger/PHYS10302/lecture15.pdf
[5] P. Hofmann, www.philiphofmann.net/book_material/notes/groupphasevelocity.pdf

