Baseband (3A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Pulse \& Waveform

Bit Time Slot

Codeword Time Slot

Bits / PCM Word

L : number of quantization levels $\quad L=2^{l}$

Bits / Symbol
M: size of a set of message symbols $\quad M=2^{k}$

M-ary Pulse Modulation Waveforms

PAM (Pulse Amplitude Modulation)

PPM (Pulse Position Modulation)

PDM (Pulse Duration Modulation)
PWM (Pulse Width Modulation)

M-ary Pulse Modulation M-ary alphabet set
M-ary PAM : M allowable amplitude levels are assigned to each of the M possible symbol values.

PAM

The amplitude of transmitted pulses is varied in a discrete manner in accordance with an input stream of digital data

M-ary PAM

The amplitude of transmitted pulses is varied in a discrete manner in accordance with an input stream of digital data

Inter-Symbol Interference

distortion of a signal
in which one symbol interferes with subsequent symbols.
multipath propagation
inherent non-linear filter \rightarrow long tail, smear, blur ...

- adaptive equalization
- error correcting codes

Pulse Shaping

Changing the waveform of transmitted p Bandwidth constraints
Control ISI (inter-Symbol Interference)

- Sinc Filter
- Raised Cosine Filter
- Gaussian Filter

Signal Space

N-dim orthogonal space
Characterized by a set of N linearly independent functions
Basis functions $\quad \Psi_{j}(t)$
Independent \rightarrow not interfering in detection

$$
\int_{0}^{T} \Psi_{j}(t) \Psi_{k}(t) d t=K_{j} \delta_{j k} \quad 0 \leq t \leq T \quad j, k=1, \cdots, N
$$

Kronecker delta functions

$$
\delta_{j k}= \begin{cases}1 & \text { for } j=k \\ 0 & \text { otherwise }\end{cases}
$$

N -dim orthonormal space

$$
K_{j}=1
$$

$$
E_{j}=\int_{0}^{T} \Psi_{j}^{2}(t) d t=K_{j}
$$

Linear Combination

Any finite set of waveform $\quad\left\{s_{i}(t)\right\} \quad i=1, \cdots, M$
Characterized by a set of N linearly independent functions

$$
\begin{array}{ccccccc}
s_{1}(t)= & a_{11} \Psi_{1}(t) & +a_{12} \Psi_{2}(t) & + & \cdots & + & a_{1 n} \Psi_{N}(t) \\
s_{2}(t)= & a_{21} \Psi_{1}(t) & +a_{22} \Psi_{2}(t) & + & \cdots & +a_{2 n} \Psi_{N}(t) \\
\vdots & \vdots & \vdots & & & \vdots \\
s_{M}(t)= & a_{M 1} \Psi_{1}(t)+a_{M 2} \Psi_{2}(t) & +\cdots \cdots+a_{M N} \Psi_{N}(t) \\
& \\
& \\
s_{1}(t)=\sum_{j=1}^{N} a_{i j} \Psi_{j}(t) \quad i=1, \cdots, M \\
& N \leq M
\end{array}
$$

Linear Combination

Any finite set of waveform $\quad\left\{s_{i}(t)\right\} \quad i=1, \cdots, M$
Characterized by a set of N linearly independent functions

$$
\begin{gathered}
s_{i}(t)=\sum_{j=1}^{N} a_{i j} \Psi_{j}(t) \quad \begin{array}{l}
i=1, \cdots, M \\
\\
\\
N \leq M
\end{array} \\
a_{i j}=\frac{1}{K_{j}} \int_{0}^{T} s_{i}(t) \Psi_{j}(t) d t \quad \begin{array}{l}
i=1, \cdots, M \quad 0 \leq t \leq T \\
\\
j=1, \cdots, N
\end{array} \\
\left\{s_{i}(t)\right\} \longleftrightarrow \quad\left\{\boldsymbol{s}_{i}\right\} \quad=\left\{a_{i 1}, a_{i 2}, \cdots, a_{i N}\right\} \quad i=1, \cdots, M
\end{gathered}
$$

Signals and Noise

Any finite set of waveform $\quad\left\{s_{i}(t)\right\} \quad i=1, \cdots, M$
Characterized by a set of N linearly independent functions

$$
\left.\left\{s_{i}(t)\right\} \Longleftrightarrow \boldsymbol{s}_{i}\right\} \quad=\left\{a_{i 1}, a_{i 2}, \cdots, a_{i N}\right\} \quad i=1, \cdots, M
$$

Detection of Binary Signals

Transmitted Signal

$$
s_{i}(t)=\left\{\begin{array}{lll}
s_{1}(t) & 0 \leq t \leq T & \text { for a binary } 1 \\
s_{2}(t) & 0 \leq t \leq T & \text { for a binary } 0
\end{array}\right.
$$

Received Signal

$$
r(t)=s_{i}(t)+n(t) \quad i=1,2 ; \quad 0 \leq t \leq T
$$

Detection of Binary Signals

$$
z(T)=a_{i}(T)+n_{0}(T) \quad \square \quad z=a_{i}+n_{0}
$$

$$
p\left(n_{0}\right)=\frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{n_{0}}{\sigma_{0}}\right)^{2}\right]
$$

$$
p\left(z \mid s_{1}\right)=\frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{z-a_{1}}{\sigma_{0}}\right)^{2}\right]
$$

$$
p\left(z \mid s_{2}\right)=\frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{z-a_{2}}{\sigma_{0}}\right)^{2}\right]
$$

$$
\begin{aligned}
& \begin{array}{c}
\stackrel{H_{1}}{>} \\
z(T) \stackrel{y}{<} \\
H_{2}
\end{array} \gamma \\
& \frac{p\left(z \mid s_{1}\right)}{p\left(z \mid s_{2}\right)} \underset{\substack{H_{1} \\
H_{2}}}{\stackrel{H_{2}}{<}} \frac{P\left(s_{2}\right)}{P\left(s_{1}\right)} \\
& \frac{p\left(z \mid s_{1}\right)}{p\left(z \mid s_{2}\right)} \underset{H_{2}}{\stackrel{H_{1}}{<}} \quad \frac{a_{1}+a_{2}}{2}=\gamma_{0}
\end{aligned}
$$

Error Probability

error

$$
\begin{aligned}
& p\left(e \mid s_{1}\right)=p\left(H_{2} \mid S_{1}\right)=\int_{-\infty}^{\gamma_{0}} p\left(z \mid s_{1}\right) d z \\
& p\left(e \mid s_{2}\right)=p\left(H_{1} \mid s_{2}\right)=\int_{\gamma_{0}}^{-\infty} p\left(z \mid s_{2}\right) d z
\end{aligned}
$$

probability of bit error $\quad P_{B}$

$$
\begin{aligned}
P_{B} & =P\left(e \mid s_{1}\right) P\left(s_{1}\right)+P\left(e \mid s_{2}\right) P\left(s_{2}\right) \\
& =P\left(H_{2} \mid s_{1}\right) P\left(s_{1}\right)+P\left(H_{1} \mid s_{2}\right) P\left(s_{2}\right)
\end{aligned}
$$

equal a priori probabilities

$$
\begin{aligned}
P_{B} & =\frac{1}{2} P\left(H_{2} \mid s_{1}\right)+\frac{1}{2} P\left(H_{1} \mid s_{2}\right) \\
& =P\left(H_{2} \mid s_{1}\right)=P\left(H_{1} \mid s_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{B} & =\int_{\gamma_{0}=\left(a_{1}+a_{2}\right) / 2}^{+\infty} p\left(z \mid s_{2}\right) d z \\
& =\int_{\gamma_{0}=\left(a_{1}+a_{2}\right) / 2}^{+\infty} \frac{1}{\sigma_{0} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{z-a_{2}}{\sigma_{0}}\right)^{2}\right] d z \\
& u=\left(z-a_{2}\right) / \sigma_{0} \quad \sigma_{0} d u=d z \\
& =\int_{u=\left(a_{1}-a_{2}\right) / 2 \sigma_{0}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-u^{2}}{2}\right) d u \\
& =Q\left(\frac{a_{1}-a_{2}}{2 \sigma_{0}}\right)
\end{aligned}
$$

complementary error function (co-error function)

$$
Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) d x
$$

Gaussian Random Process

Thermal Noise zero-mean white Gaussian random process
$n(t) \quad$ random function the value at time t is characterized by Gaussian probability density function
$p(n)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{n}{\sigma}\right)^{2}\right]$
$\sigma^{2} \quad$ variance of n
$\sigma=1 \quad$ normalized (standardized) Gaussian function

Central Limit Theorem
sum of statistically independent random variables approaches Gaussian distribution
regardless of individual distribution functions

White Gaussian Noise

Thermal Noise
power spectral density is the same for all frequencies

$$
\begin{aligned}
& G_{n}(f)=\frac{N_{0}}{2} \text { watts / hertz } \begin{array}{l}
\text { equal amount of noise power } \\
\text { per unit bandwidth }
\end{array} \\
& \text { uniform spectral density } \square \text { White Noise }
\end{aligned}
$$

average power

$$
P_{n}=\int_{-\infty}^{+\infty} \frac{N_{0}}{2} d f=\infty \quad P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t=\int_{-\infty}^{+\infty} G_{x}(f) d f
$$

$R_{n}(t)=\frac{N_{0}}{2} \delta(t) \Leftrightarrow G_{n}(f)=\frac{N_{0}}{2}$
$\delta(t)$ totally uncorrelated, noise samples are independent memoryless channel
additive and no multiplicative mechanism

Additive White Gaussian Noise (AWGN)

Matched Filter (1)

to find a filter $h(t)$ that gives max signal-to-noise ratio

$$
\begin{gathered}
\text { variance of } n_{0}(t) \quad \sigma_{0}^{2} \quad \text { avg noise power } \\
\frac{\text { instantaneous signal power }}{\text { average noise power }} \Longleftrightarrow\left(\frac{S}{N}\right)_{T}=\frac{a_{i}^{2}}{\sigma_{0}^{2}}
\end{gathered}
$$

assume $H_{0}(f)$ a filter transfer function that maximizes $\left(\frac{S}{N}\right)_{T}$

Matched Filter (2)

$$
S(f) \quad A(f)=S(f) H(f) \quad \Leftrightarrow a(t)=\int_{-\infty}^{+\infty} S(f) H(f) e^{j 2 \pi f t} d f
$$

$G_{n}(f)=\frac{N_{0}}{2}$

$$
G_{n o}(f)=G_{n}(f)|H(f)|^{2}=\left\{\begin{array}{cl}
\frac{N_{0}}{2}|H(f)|^{2} & \text { for }|f|<f_{u} \\
0 & \text { otherwise }
\end{array}\right.
$$

Average output noise power $\quad \sigma_{0}=\frac{N_{0}}{2} \int_{-\infty}^{+\infty}|H(f)|^{2} d f$

Matched Filter (3)

instantaneous signal power

$$
\begin{aligned}
& a_{i}^{2}<a(t)=\int_{-\infty}^{+\infty} S(f) H(f) e^{j 2 \pi f t} d f \\
& \sigma_{0}=\frac{N_{0}}{2} \int_{-\infty}^{+\infty}|H(f)|^{2} d f
\end{aligned}
$$

$$
\left(\frac{S}{N}\right)_{T}=\frac{a_{i}{ }^{2}}{\sigma_{0}{ }^{2}}=\frac{\left|\int_{-\infty}^{+\infty} H(f) S(f) e^{+j 2 \pi f T} d f\right|^{2}}{N_{0} / 2 \int_{-\infty}^{+\infty}|H(f)|^{2} d f}
$$

Does not depend on the particular shape of the waveform

Cauchy Schwarz's Inequality

$$
\left|\int_{-\infty}^{+\infty} f_{1}(x) f_{2}(x) d x\right|^{2} \leq \int_{-\infty}^{+\infty}\left|f_{1}(x)\right|^{2} d x \int_{-\infty}^{+\infty}\left|f_{2}(x)\right|^{2} d x \quad \text { '=' holds when } f_{1}(x)=k f_{2}^{*}(x)
$$

$$
\left|\int_{-\infty}^{+\infty} H(f) S(f) e^{+j 2 \pi f t} d x\right|^{2} d f \leq \int_{-\infty}^{+\infty}|H(f)|^{2} d f \int_{-\infty}^{+\infty}\left|S(f) e^{+j 2 \pi f T}\right|^{2} d f \quad\left|e^{+j 2 \pi f T}\right|=1
$$

$$
\left(\left.\frac{S}{N}\right|_{T}=\frac{a_{i}^{2}}{\sigma_{0}{ }^{2}}=\frac{\left|\int_{\infty}^{+\infty} H(f) S(f) e^{+j 2 \pi f T} d f\right|^{2}}{N_{0} / 2 \int_{-\infty}^{+\infty}|H(f)|^{2} d f} \leq \frac{\int_{-\infty}^{+\infty}|H(f)|^{2} d f\left|\int_{\int_{\infty}}^{+\infty}\right| S(f) e^{+\left.j 2 \pi f T\right|^{2}} d f}{N_{0} / 2 \int_{\int_{\infty}^{+\infty}}|H(f)|^{2} d f}=\frac{2}{N_{0}} \int_{-\infty}^{+\infty}|S(f)|^{2} d f\right.
$$

Matched Filter (4)

Two-sided power spectral density of input noise

$$
\Rightarrow \quad \frac{N_{0}}{2}
$$

Average noise power $\quad \sigma_{0}=\frac{N_{0}}{2} \int_{-\infty}^{+\infty}|H(f)|^{2} d f$

$$
\left(\frac{S}{N}\right)_{T}=\frac{a_{i}{ }^{2}}{\sigma_{0}{ }^{2}}=\frac{\left|\int_{-\infty}^{+\infty} H(f) S(f) e^{+j 2 \pi f T} d f\right|^{2}}{N_{0} / 2 \int_{-\infty}^{+\infty}|H(f)|^{2} d f}
$$

Cauchy Schwarz's Inequality

$$
\begin{aligned}
& \left(\frac{S}{N}\right)_{T} \leq \frac{2}{N_{0}} \int_{-\infty}^{+\infty}|S(f)|^{2} d f \\
& \max \left(\frac{S}{N}\right)_{T}=\frac{2}{N_{0}} \int_{-\infty}^{+\infty}|S(f)|^{2} d f=\frac{2 E}{N_{0}} \quad \begin{array}{l}
\text { input signal energy } \\
\text { power spectral density } \\
\text { of input noise }
\end{array}
\end{aligned}
$$

does not depend on the particular shape of the waveform

Matched Filter (5)

$$
\left.\begin{array}{l}
\left|\int_{-\infty}^{+\infty} H(f) S(f) e^{+j 2 \pi f t} d x\right|^{2} d f \leqq\left.\int_{-\infty}^{+\infty}|H(f)|^{2} d f \int_{-\infty}^{+\infty}\left|S(f) e^{+\left.j 2 \pi f T\right|^{2}} d f \quad\left(\frac{S}{N}\right)_{T} \leq \frac{2}{N_{0}} \int_{-\infty}^{+\infty}\right| S(f)\right|^{2} d f \\
\max \left(\left.\frac{S}{N}\right|_{T}=\frac{2}{N_{0}} \int_{-\infty}^{+\infty}|S(f)|^{2} d f=\frac{2 E}{N_{0}}\right. \\
\text { when complex conjugate relationship exists } \\
H(f)=H_{0}(f)=k S^{*}(f) e^{-j 2 \pi f T}
\end{array}\right] \begin{aligned}
& h(t)=h_{0}(t)= \begin{cases}k s(T-t) \quad 0 \leq t \leq T \\
0 \quad \text { elsewhere }\end{cases} \\
& \Leftrightarrow \quad H_{0}(f) \text { a filter transfer function that maximizes } \quad\left(\frac{S}{N}\right)_{T} \\
& \text { impulse response : delayed version of } \\
& \text { the mirror image of the signal waveform }
\end{aligned}
$$

Correlation Realization

$$
\begin{aligned}
z(t) & =\int_{0}^{t} r(\tau) h(t-\tau) d \tau \\
& =\int_{0}^{t} r(\tau) s(T-(t-\tau)) d \tau \\
& =\int_{0}^{t} r(\tau) s(T-t+\tau) d \tau \\
z(T) & =\int_{0}^{t} r(\tau) s(\tau) d \tau
\end{aligned}
$$

Power spectral density of input noise
$\begin{array}{cl}\text { convolution } \quad z(t)=\int_{0}^{t} r(\tau) s(T-t+\tau) d \tau & \begin{array}{l}\text { a sine-wave amplitude modulated } \\ \\ \text { by a linear ramp }\end{array}\end{array}$
correlation $\quad z(T)=\int_{0}^{T} r(\tau) s(\tau) d \tau \quad$ a linear ramp output

Correlation and Convolution

z : integrate $(\cos (\mathrm{x}) * \cos (2 * \% \mathrm{pi}-\mathrm{t}+\mathrm{x}), \mathrm{x}, 0, \mathrm{t})$;

$$
(\sin (\mathrm{t})+2 * \mathrm{t} * \cos (\mathrm{t})) / 4+\sin (\mathrm{t}) / 4
$$

convolution
correlation
z : integrate $(\cos (x) * \cos (x), x, 0, t)$;

$$
(\sin (2 * t)+2 * t) / 4
$$

Binary Correlator Receiver

Maximum Likelihood Receiver

maximum likelihood detector

$$
\begin{array}{ll}
P\left(s_{1}\right)=P\left(s_{2}\right) & \text { equal a priori probability } \\
p\left(z \mid s_{1}\right), \quad p\left(z \mid s_{2}\right) & \text { symmetric likelihood }
\end{array}
$$

$$
\Rightarrow \gamma_{0}=\frac{\left(a_{1}+a_{2}\right)}{2}
$$

optimum threshold for minimizing the error probability
select the hypothesis with the maximum likelihood
complementary error function

$$
Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-u^{2}}{2}\right) d u
$$

$$
P_{B}=\int_{\gamma_{0}=\left(a_{1}-a_{2}\right) / 2 \sigma_{0}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-u^{2}}{2}\right) d u
$$

$$
=Q\left(\frac{a_{1}-a_{2}}{2 \sigma_{0}}\right)
$$

Matched Filter Minimizes P_{B} by Maximizing SNR

Matched Filter / Correlator

$$
\begin{aligned}
& \text { maximize } \frac{\left(a_{1}-a_{2}\right)^{2}}{\sigma_{0}^{2}} \\
& \text { maximize } \frac{\left(a_{1}-a_{2}\right)^{2}}{2 \sigma_{0}} \\
& \text { maximize }\left(\frac{S}{N}\right)_{T}=\frac{a_{i}^{2}}{\sigma_{0}^{2}} \max \left(\frac{S}{N}\right)_{T}=Q\left(\frac{a_{1}-a_{2}}{2 \sigma_{0}}\right) \\
& \text { matched to } s_{1}-s_{2} \\
& \qquad\left(\frac{S}{N}\right)_{T}=\frac{a_{1}-a_{2}{ }^{2}}{\sigma_{0}^{2}}=\frac{2 E_{d}}{N_{0}}
\end{aligned}
$$

complementary error function

$$
Q(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-u^{2}}{2}\right) d u
$$

$$
\begin{aligned}
P_{B} & =\int_{y_{0}=\left(a_{1}-a_{2}\right) / 2 \sigma_{0}}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-u^{2}}{2}\right) d u \\
& =Q\left(\frac{E_{d}}{2 N_{0}}\right)
\end{aligned}
$$

Energy Difference E_{b}

matched to $s_{1}-s_{2}$

$$
\begin{aligned}
\left(\frac{S}{N}\right)_{T}=\frac{a_{1}-a_{2}^{2}}{\sigma_{0}^{2}} & =\frac{2 E_{d}}{N_{0}} \\
\frac{1}{2} \frac{a_{1}-a_{2}}{\sigma_{0}} & =\sqrt{\frac{2 E_{d}}{N_{0}} \frac{1}{4}}
\end{aligned}
$$

Energy Difference

$$
E_{d}=\int_{0}^{T}\left[s_{1}(t)-s_{2}(t)\right]^{2} d t
$$

Bit-Error Probability

$$
P_{B}=Q\left(\frac{E_{d}}{2 N_{0}}\right)
$$

Time Averaging and Ergodicity

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] B. Sklar, "Digital Communications: Fundamentals and Applications"

