# Line Integrals (4A)

- Line Integral
- Path Independence

| Copyright (c) 2012 Young W. Lim.                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
| Please send corrections (or suggestions) to <a href="mailto:youngwlim@hotmail.com">youngwlim@hotmail.com</a> .                                                                                                                                                                                                                                                                  |
| This document was produced by using OpenOffice and Octave.                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |

### Line Integral In the Plane

$$x = f(t)$$



$$\frac{dx}{dt} = f'(t)$$



$$dx = f'(t) dt$$

$$y = g(t)$$

$$y = g(t)$$
  $\frac{dy}{dt} = g'(t)$   $dy = g'(t) dt$ 



$$dy = g'(t) dt$$

$$ds = \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$$

Curve C 
$$a \le t \le b$$



$$\int_C G(x, y) dx$$

$$= \int_a^b G(f(t), g(t)) \frac{f'(t)}{dt} dt$$

$$\int_C G(x, y) \, dy$$

$$= \int_a^b G(f(t), g(t)) \frac{g'(t)}{dt} dt$$

$$\int_C G(x, y) ds$$

$$= \int_a^b G(f(t), g(t)) \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$$

## Line Integral In Space

$$x = f(t)$$

$$\frac{dx}{dt} = f'(t)$$



$$dx = f'(t) dt$$

$$y = g(t)$$

$$\frac{dy}{dt} = g'(t) \qquad \qquad dy = g'(t) dt$$



$$dy = g'(t) dt$$

$$z = h(t)$$

$$\frac{dz}{dt} = h'(t)$$



$$dz = \frac{h'(t)}{dt}$$

Curve C

$$a \leq t \leq b$$

$$ds = \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} dt$$

$$\int_C G(x, y, z) dz = \int_a^b G(f(t), g(t), h(t)) h'(t) dt$$



$$\int_{C} G(x, y, z) ds = \int_{a}^{b} G(f(t), g(t), h(t)) \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

## Line Integral using **r**(t)

#### Arc Length Parameter

s increases in the direction of increasing t

$$s(t) = \int_{t_0}^{t} |\mathbf{v}(\tau)| d\tau = \int_{t_0}^{t} |\mathbf{r}'(\tau)| d\tau = \int_{t_0}^{t} \sqrt{[f'(\tau)]^2 + [g'(\tau)]^2 + [h'(\tau)]^2} d\tau$$

$$ds = |\mathbf{v}(t)| dt$$

$$ds = \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2} dt$$

$$\int_{C} G(x, y, z) ds = \int_{a}^{b} G(|r(t)|) |r'(t)| dt$$

$$= \int_{a}^{b} G(f(t), g(t), h(t)) |v(t)| dt$$

$$= \int_{a}^{b} G(f(t), g(t), h(t)) \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

## Line Integral with an Explicit Curve Function

$$\mathbf{y} = f(\mathbf{x})$$



$$y = f(x)$$
  $\frac{dy}{dx} = f'(x)$   $dy = f'(x) dx$ 



$$dy = f'(x) dx$$

$$a \leq x \leq b$$

$$ds = \sqrt{[dx]^2 + [dy]^2} dt$$

$$ds = \sqrt{1 + [f'(x)]^2} dx$$



$$\int_C G(x, y) dx = \int_a^b G(x, f(x)) dx$$

$$\int_C G(x, y) dy = \int_a^b G(x, f(x)) \frac{f'(x)}{f'(x)} dx$$

$$\int_{C} G(x, y) ds = \int_{a}^{b} G(x, f(x)) \sqrt{1 + [f'(x)]^{2}} dx$$

### Line Integral Notation

#### In many applications

$$\int_{C} G(x, y) ds = \int_{C} P(x, y) dx + \int_{C} Q(x, y) dy$$
$$= \int_{C} P(x, y) dx + Q(x, y) dy$$
$$= \int_{C} P dx + Q dy$$

$$\int_{C} G(x, y, z) ds = \int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

## Line Integral over a 2-D Vector Field (1)

#### a given point in a 2-d space



#### $(x_0, y_0)$



#### A vector

$$\langle P(x_0, y_0), Q(x_0, y_0) \rangle$$

#### 2 functions

$$(x_0, y_0) \longrightarrow P(x_0, y_0)$$

$$(x_0, y_0) \longrightarrow Q(x_0, y_0)$$

#### only points that are on the curve

$$r(t) = f(t)i + g(t)j$$
  $F(x_0, y_0) = P(x_0, y_0)i + Q(x_0, y_0)j$   
 $x = f(t) \quad y = g(t) \quad a \le t \le b$ 

### Line Integral over a 2-D Vector Field (2)

$$\mathbf{r}(t) = f(t)\,\mathbf{i} + g(t)\,\mathbf{j}$$

$$\frac{d\mathbf{r}}{dt} = f'(t)\mathbf{i} + g'(t)\mathbf{j} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j}$$

$$\frac{d\mathbf{r}}{dt}dt = \left(\frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j}\right)dt = dx\mathbf{i} + dy\mathbf{j}$$

$$d\mathbf{r} = dx \, \mathbf{i} + dy \, \mathbf{j}$$

$$\boldsymbol{F}(x,y) = P(x,y)\,\boldsymbol{i} + Q(x,y)\,\boldsymbol{j}$$

$$\mathbf{F} \cdot d\mathbf{r} = P(x, y) d\mathbf{x} + Q(x, y) d\mathbf{y}$$

$$\int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P(x, y) dx + Q(x, y) dy$$

### Line Integral over a 3-D Vector Field (1)

#### A given point in a 3-d space



#### A vector

$$(x_0, y_0, z_0)$$

$$\langle P(x_0, y_0, z_0), Q(x_0, y_0, z_0), R(x_0, y_0, z_0) \rangle$$



#### 3 functions

$$(x_0, y_0, z_0) \longrightarrow P(x_0, y_0, Z_0)$$

$$(x_0, y_0, z_0) \longrightarrow Q(x_0, y_0, z_0)$$

$$(x_{0}, y_{0}, z_{0}) \longrightarrow R(x_{0}, y_{0}, z_{0})$$

# only points that are on the curve

$$F(x_0, y_0, z_0) = P(x_0, y_0, z_0) \mathbf{i} + Q(x_0, y_0, z_0) \mathbf{j} + R(x_0, y_0, z_0) \mathbf{k}$$

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{j}$$

$$x = f(t)$$
  $y = g(t)$   $z = h(t)$   $a \le t \le b$ 

## Line Integral over a 3-D Vector Field (2)

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

$$\frac{d\mathbf{r}}{dt} = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$

$$\frac{d\mathbf{r}}{dt}dt = \left(\frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}\right)dt = dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k}$$

$$d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k}$$

$$F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k$$

$$\mathbf{F} \cdot d\mathbf{r} = P(x, y, z) d\mathbf{x} + Q(x, y, z) d\mathbf{y} + R(x, y, z) d\mathbf{z}$$

$$\int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dy$$

### Line Integral in Vector Fields

$$\mathbf{r}(t) = f(t) \mathbf{i} + g(t) \mathbf{j}$$

$$d\mathbf{r} = dx \mathbf{i} + dy \mathbf{j}$$

$$\mathbf{F}(x, y, z) = P \mathbf{i} + Q \mathbf{j}$$

$$\int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy$$

$$\begin{cases} P(x,y) \\ Q(x,y) \end{cases}$$

$$r(t) = f(t) \mathbf{i} + g(t) \mathbf{j} + h(t) \mathbf{k}$$

$$dr = dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}$$

$$F(x, y, z) = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$$

$$\int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz$$

$$\begin{cases} P(x,y,z) \\ Q(x,y,z) \\ R(x,y,z) \end{cases}$$

## Work (1)

$$W = \mathbf{F} \cdot \mathbf{d}$$

A force field 
$$F(x,y) = P(x,y)i + Q(x,y)j$$

A smooth curve 
$$C: x = f(t), y = g(t), a \le t \le b$$

Work done by **F** along C 
$$W = \int_{c} \mathbf{F}(x, y) \cdot d\mathbf{r}$$

$$= \int_C P(x, y) dx + Q(x, y) dy$$

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} \qquad d\mathbf{r} = \frac{d\mathbf{r}}{ds}ds \qquad d\mathbf{r} = \mathbf{T}ds$$

$$W = \int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{c} \mathbf{F} \cdot \mathbf{T} ds$$

# Work (2)

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt}$$

$$d\mathbf{r} = \frac{d\mathbf{r}}{ds}ds$$
  $d\mathbf{r} = \mathbf{T}ds$ 

$$d\mathbf{r} = \mathbf{T} ds$$

$$W = \int_{c} \mathbf{F} \cdot d\mathbf{r} = \int_{c} \mathbf{F} \cdot \mathbf{T} ds$$

$$= \int_{t_{1}}^{t_{0}} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$

$$= \int_{t_{0}}^{t_{1}} \left( P \frac{df}{dt} + Q \frac{dg}{dt} + R \frac{dh}{dt} \right) dt$$

$$= \int_{t_{0}}^{t_{1}} \left( P \frac{dx}{dt} + Q \frac{dy}{dt} + R \frac{dz}{dt} \right) dt$$

$$= \int_{t_{0}}^{t_{1}} P dx + Q dy + R dz$$

$$F(x,y,z) = Pi + Qj + Rk$$

$$= P(x,y,z)i$$

$$+ Q(x,y,z)j$$

$$+ R(x,y,z)k$$

$$egin{aligned} oldsymbol{r}(t) &= f(t)oldsymbol{i} + g(t)oldsymbol{j} + h(t)oldsymbol{k} \ & x = f(t) \ & y = g(t) \ & z = h(t) \end{aligned}$$

#### Circulation

#### A Simple Closed Curve C → Circulation

circulation = 
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot \mathbf{T} d\mathbf{s}$$

Assume **F** is a velocity field of a fluid

**Circulation**: a measure of the amount by which the fluid tends to turn the curve C by rotating around it



$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot \mathbf{T} d\mathbf{s} = 0$$



$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot \mathbf{T} d\mathbf{s} > 0$$

# Path Independence

$$C1 \neq C2$$



$$C1 \neq C2$$
  $\int_{C1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{C2} \mathbf{F} \cdot d\mathbf{r}$  In general

#### **Path Independence**

for a <u>special kind</u> of a vector field  $\boldsymbol{F}$ 



#### **Conservative Vector Field**

If we can find a scalar function  $\Phi$ 

that satisfies  $\mathbf{F} = \nabla \Phi$ 

$$\mathbf{F} = \nabla \Phi$$

 $\boldsymbol{F}$  is a gradient field of a scalar function  $\Phi$ 

#### Conservative Vector Field

 $m{F}$  can be written as the gradient of a scalar function  $\Phi$ 

$$\mathbf{F} = \nabla \Phi$$



A vector function F in 2-d or 3-d space is conservative

$$\boldsymbol{F}(x,y) = P(x,y)\,\boldsymbol{i} + Q(x,y)\,\boldsymbol{j}$$

If  $\Phi(x, y)$  satisfies

$$\nabla \Phi(x, y) = \frac{\partial \Phi}{\partial x} \mathbf{i} + \frac{\partial \Phi}{\partial y} \mathbf{j}$$

$$= P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$$

$$\begin{cases} \frac{\partial}{\partial x} \Phi(x, y) = P(x, y) \\ \frac{\partial}{\partial y} \Phi(x, y) = Q(x, y) \end{cases}$$

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$$

If 
$$\Phi(x, y, z)$$
 satisfies

$$\nabla \Phi(x, y, z) = \frac{\partial \Phi}{\partial x} \mathbf{i} + \frac{\partial \Phi}{\partial y} \mathbf{j} + \frac{\partial \Phi}{\partial z} \mathbf{k}$$
$$= P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$$

$$\begin{cases} \frac{\partial}{\partial x} \Phi(x, y, z) = P(x, y, z) \\ \frac{\partial}{\partial y} \Phi(x, y, z) = Q(x, y, z) \\ \frac{\partial}{\partial z} \Phi(x, y, z) = R(x, y, z) \end{cases}$$

## Fundamental Line Integral Theorem (1)

 $\boldsymbol{F}$  can be written as the gradient of a scalar function  $\Phi$ 

$$\mathbf{F} = \nabla \Phi$$



A vector function  $\mathbf{F}$  in 2-d or 3-d space is conservative

Conservative vector field F(x, y) = P(x, y) i + Q(x, y) j

$$\int_{C} \nabla \Phi \cdot d\mathbf{r} = \Phi(B) - \Phi(A) \qquad A = (f(a), g(a)), \quad B = (f(b), g(b))$$

$$A = (f(a), g(a)), B = (f(b), g(b))$$

$$\int_a^b f'(x) dx = f(b) - f(a)$$

think as a differentiation

$$\mathbf{F} = \nabla \Phi \qquad \Phi^{\vee}(x, y)$$

$$\Phi^{\nabla}(x,y)$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla \Phi \cdot d\mathbf{r} = \Phi(B) - \Phi(A)$$

## Fundamental Line Integral Theorem (2)

Conservative vector field F(x, y) = P(x, y) i + Q(x, y) j



$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla \Phi \cdot d\mathbf{r} = \Phi(B) - \Phi(A)$$

$$A = (f(a), g(a))$$

$$B = (f(b), g(b))$$

$$A = (f(a), g(a))$$
  
$$B = (f(b), g(b))$$

$$\begin{aligned} \boldsymbol{F}(x,y) &= \nabla \Phi(x,y) = \frac{\partial \Phi}{\partial x} \boldsymbol{i} + \frac{\partial \Phi}{\partial y} \boldsymbol{j} \\ \int_{C} \boldsymbol{F} \cdot d\boldsymbol{r} &= \int_{C} \boldsymbol{F} \cdot \frac{d\boldsymbol{r}(t)}{dt} dt = \int_{C} \boldsymbol{F} \cdot \boldsymbol{r}'(t) dt \\ &= \int_{C} \left( \frac{\partial \Phi}{\partial x} \boldsymbol{i} + \frac{\partial \Phi}{\partial y} \boldsymbol{j} \right) \cdot \left( \frac{dx}{dt} \boldsymbol{i} + \frac{dy}{dt} \boldsymbol{j} \right) dt = \int_{C} \left( \frac{\partial \Phi}{\partial x} \frac{dx}{dt} + \frac{\partial \Phi}{\partial y} \frac{dy}{dt} \right) dt \\ &= \int_{C} \left( \frac{\partial \Phi}{\partial t} \right) dt \\ &= \left[ \Phi(x(t), y(t)) \right]_{a}^{b} = \Phi(x(b), y(b)) - \Phi(x(a), y(a)) \\ &= \Phi(B) - \Phi(A) \end{aligned}$$

### Connected Region (1)

#### **Connected**

Every pair of points A and B in the region can be joined by a piecewise smooth <u>curve</u> that lies <u>entirely in the region</u>

#### **Simply Connected**

Connected and every <u>simple closed curve</u> lying entirely <u>within</u> the region can be <u>shrunk</u>, or <u>contracted</u>, to a point <u>without</u> leaving the region

The interior of the curve lies also entirely <u>in</u> the region

No holes in the region

#### **Disconnected**

Cannot be <u>joined</u> by a piecewise smooth <u>curve</u> that lies <u>entirely in the region</u>

**Multiply Connected** Many holes within the region

**Open Connected** Contains no boundary points

# Connected Region (2)

**Connected** 

**Simply Connected** 



**Disconnected** 



**Multiply Connected** 



**Open Connected** 



### Equivalence

### In an open connected region

Path Independence

$$\int_{C} \mathbf{F} \cdot d\mathbf{r}$$

$$\mathbf{F} = \nabla \Phi$$

Closed path C

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = 0$$

#### Test for a Conservative Field

$$F(x,y) = P(x,y) i + Q(x,y) j$$
 : conservative vector field in an open region R

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$F(x,y) = P(x,y) i + Q(x,y) j$$
 : conservative vector field in R

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 for all points in a **simply connected** region R

$$\mathbf{F} = \nabla \Phi = \frac{\partial \Phi}{\partial x} \mathbf{i} + \frac{\partial \Phi}{\partial y} \mathbf{j}$$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$P = \frac{\partial \Phi}{\partial x}$$

$$Q = \frac{\partial \Phi}{\partial y}$$

$$\frac{\partial Q}{\partial x} = \frac{\partial^2 \Phi}{\partial x \partial y}$$

### Equivalence in 3-D

#### In an open connected region

Path Independence  $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ 

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$



Conservative

$$\mathbf{F} = \nabla \Phi$$



Closed path C

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$$



$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \frac{\partial P}{\partial z} =$$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

$$\operatorname{curl} \mathbf{F} = \left( \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \mathbf{i} + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \mathbf{j} + \left( \frac{\partial Q}{\partial z} - \frac{\partial R}{\partial y} \right) \mathbf{k}$$

$$F = P i + Q j + R k$$

$$\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$$
  $\mathbf{F} = \nabla \Phi = \frac{\partial \Phi}{\partial x} \mathbf{i} + \frac{\partial \Phi}{\partial y} \mathbf{j} + \frac{\partial \Phi}{\partial z} \mathbf{k}$ 

## 2-Divergence

Flux across rectangle boundary

$$\approx \left(\frac{\partial M}{\partial x} \Delta x\right) \Delta y + \left(\frac{\partial N}{\partial y} \Delta y\right) \Delta x = \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) \Delta x \Delta y$$

Flux density 
$$= \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right)$$
 Divergence of **F** Flux Density

#### **References**

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [4] D.G. Zill, "Advanced Engineering Mathematics"