Elementary Matrix

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

Backward Phase
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Elementary Row Operation

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Elementary Matrix

Identity Matrix
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Interchange two rows

Multiply a row by a nonzero constant

Add a multiple of one row to another

Multiplication by an Elementary Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
4 & 5 & 6 \\
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 6 & 9 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
8 & 13 & 18 \\
7 & 8 & 9
\end{array}\right]}
\end{aligned}
$$

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"

