Triple Integrals (7A)

- Triple Integral
- Triple Integrals in Polar Coordinates

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Area and Volume

$$
\begin{aligned}
& A=\iint_{R} d A \\
& V=\iint_{R} f(x, y) d A
\end{aligned}
$$

Vector Form of Green's Theorem - Div

C: a piecewise simple closed curve

Line Integral
$\oint_{C}(\boldsymbol{F} \cdot \boldsymbol{T}) d s=\oint_{C} P d x+Q d y$

$$
\oint_{C}(\boldsymbol{F} \cdot \boldsymbol{n}) d s=\oint_{C} P d y-Q d x
$$

bounding by a simply connected region \mathbf{R}

Double Integral
$=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{R}(\operatorname{curl} \boldsymbol{F}) \cdot \boldsymbol{k} d A$
$=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A=\iint_{R}(\operatorname{div} \boldsymbol{F}) d A$

Divergence Theorem

C: a piecewise simple closed curve a simply connected region \mathbf{R}

D: a closed, bounded region
with a piecewise smooth boundary \mathbf{S}

Line Integral

$$
\oint_{C}(\boldsymbol{F} \cdot \boldsymbol{n}) d s
$$

Surface Integral

$$
\iint_{S}(\boldsymbol{F} \cdot \boldsymbol{n}) d S
$$

Double Integral

$$
=\iint_{R}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A=\iint_{R}(\operatorname{div} \boldsymbol{F}) d A
$$

Triple Integral

$$
=\iiint_{D}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d V=\iiint_{D}(\operatorname{div} \boldsymbol{F}) d S
$$

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] D.G. Zill, "Advanced Engineering Mathematics"

