[solutions_BVP_odd_extension.mw
$\overline{>}$ restart $\overline{\operatorname{assume}}(\bar{n}$, integer $): L:=2$;

$$
\begin{equation*}
L:=2 \tag{1}
\end{equation*}
$$

To solve the BVP $y^{\prime \prime}+4 y=4 x$ with $y(0)=0, y(L)=0$,

1) Find the homogeneous solution y_{h}
2) Any solution to the inhomogeneous problem, y_{p}. Use a fourier series to represent the solution.

$$
y_{p}=\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{L}\right)
$$

3) Create the solution $y=y_{h}+y_{p}$.
4) Use boundary conditions to determine coefficients.

I
Next find a solution that satisfies the nonhomogeneous problem $y^{\prime \prime}+4 \cdot y=4 x$, this is y_{p}.

First, use a even extension of $f(x)=4 \cdot x$ and compute the fourier coefficients.

1) Find the general solution, y_{h}, to the homogeneous

problem.

In the notes we found $y_{h}=c_{1} \cdot \cos (2 \cdot x)+c_{2} \cdot \sin (2 \cdot x)$ for the homogeneous equation $y^{\prime \prime}+4 \cdot y=0$.
[$>$ restart:
$>y h:=c 1 \cdot \cos (2 \cdot x)+c 2 \cdot \sin (2 \cdot x)$

$$
\begin{equation*}
y h:=c 1 \cos (2 x)+c 2 \sin (2 x) \tag{2}
\end{equation*}
$$

$\overline{>}>L:=2$

$$
\begin{equation*}
L:=2 \tag{3}
\end{equation*}
$$

2) Find any solution, y_{p}, to the inhomogeneous

 problem. For the BVP use a fourier series to represent the solution.$$
\begin{aligned}
& y_{p}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cdot \cos \left(\frac{n \cdot \operatorname{Pi} \cdot x}{L}\right)+b_{n} \\
& \cdot \sin \left(\frac{n \cdot \operatorname{Pi} \cdot x}{L}\right)
\end{aligned}
$$

To determine the coefficients for the preceding series, it is necessary to determine the Fourier series representation of the function $f(x)=4 \cdot x$.

Find the FS of $f(x)=4 x$.
A first attempt is to extend $f(x)$ as an odd function with period $T=2 \cdot L$. For this problem $L=2$.
The even extension of $f(x)$ is represented by a cosine series only.
$f(x)=\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{L}\right)$
the coefficients are found with the following integrals.

$$
\begin{align*}
& {\left[\begin{array}{l}
\text { assume }(n:: \text { integer }): \\
>f:=x \rightarrow 4 \cdot x ; \\
\\
b_{n}=\frac{2}{L} \cdot \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \cdot \operatorname{Pi} \cdot x}{L}\right) \mathrm{d} x \\
\\
\\
>b n:=\frac{2}{L} \cdot \operatorname{int}\left(f(x) \cdot \sin \left(\frac{n \cdot \operatorname{Pi} \cdot x}{L}\right), x=0 . . L\right) ; \\
\\
\\
\\
b n:=\frac{16(-1)^{1+n \sim}}{n \sim \pi}
\end{array}\right.}
\end{align*}
$$

To check the FS approximation a plot of the original function $f(x)=4 \cdot x$ and an approximation using

10 terms in the fourier series is plotted below.

$$
\begin{aligned}
& >\text { fapprox }:=\operatorname{sum}\left(b n \cdot \sin \left(\frac{n \cdot \operatorname{Pi} \cdot x}{L}\right), n=1 . .20\right) \\
& \text { fapprox }:=\frac{16 \sin \left(\frac{1}{2} \pi x\right)}{\pi}-\frac{8 \sin (\pi x)}{\pi}+\frac{16}{3} \frac{\sin \left(\frac{3}{2} \pi x\right)}{\pi}-\frac{4 \sin (2 \pi x)}{\pi} \\
& \quad+\frac{16}{5} \frac{\sin \left(\frac{5}{2} \pi x\right)}{\pi}-\frac{8}{3} \frac{\sin (3 \pi x)}{\pi}+\frac{16}{7} \frac{\sin \left(\frac{7}{2} \pi x\right)}{\pi}-\frac{2 \sin (4 \pi x)}{\pi} \\
& \quad+\frac{16}{9} \frac{\sin \left(\frac{9}{2} \pi x\right)}{\pi}-\frac{8}{5} \frac{\sin (5 \pi x)}{\pi}+\frac{16}{11} \frac{\sin \left(\frac{11}{2} \pi x\right)}{\pi}-\frac{4}{3} \frac{\sin (6 \pi x)}{\pi} \\
& \quad+\frac{16}{13} \frac{\sin \left(\frac{13}{2} \pi x\right)}{\pi}-\frac{8}{7} \frac{\sin (7 \pi x)}{\pi}+\frac{16}{15} \frac{\sin \left(\frac{15}{2} \pi x\right)}{\pi}-\frac{\sin (8 \pi x)}{\pi} \\
& \quad+\frac{16}{17} \frac{\sin \left(\frac{17}{2} \pi x\right)}{\pi}-\frac{8}{9} \frac{\sin (9 \pi x)}{\pi}+\frac{16}{19} \frac{\sin \left(\frac{19}{2} \pi x\right)}{\pi}-\frac{4}{5} \frac{\sin (10 \pi x)}{\pi}
\end{aligned}
$$

$$
[>\operatorname{plot}([4 \cdot x, \text { fapprox }], x=0 . . L)
$$

The plots are fairly close over the interval $(0, L)$. However at the boundaries there is a worsening match.

Next assume the solution is of the same form as $f(x)$. This gives $y_{p}=\sum_{n=1}^{\infty} B_{n} \cdot \sin \left(\frac{n \cdot \pi \cdot x}{L}\right)$.
Substitute this into the differential equation,

$$
\begin{aligned}
y_{p}^{\prime} & =\sum_{n=1}^{\infty} B_{n} \cdot\left(\frac{n \cdot \pi}{L}\right) \cos \left(\frac{n \cdot \pi \cdot x}{L}\right) \\
y_{p}^{\prime \prime} & =\sum_{n=1}^{\infty}-B_{n} \cdot\left(\frac{n \cdot \pi}{L}\right)^{2} \sin \left(\frac{n \cdot \pi \cdot x}{L}\right)
\end{aligned}
$$

This gives the equation,

$$
y_{p}{ }^{\prime \prime}+4 y_{p}=4 \cdot x
$$

$$
\begin{gathered}
\sum_{n=1}^{\infty}-B_{n} \cdot\left(\frac{n \cdot \pi}{L}\right)^{2} \sin \left(\frac{n \cdot \pi \cdot x}{L}\right)+4 \cdot \sum_{n=1}^{\infty} B_{n} \cdot \sin \left(\frac{n \cdot \pi \cdot x}{L}\right)=\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{L}\right) \\
\sum_{n=1}^{\infty} B_{n} \cdot\left(4-\left(\frac{n \cdot \pi}{L}\right)^{2}\right) \sin \left(\frac{n \cdot \pi \cdot x}{L}\right)=\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{L}\right)
\end{gathered}
$$

Equate the coefficients of like terms on each side and solve for B_{n} in terms of b_{n}

Similarly $B_{n} \cdot\left(4-\left(\frac{n \cdot \pi}{L}\right)^{2}\right)=b_{n}$ so $B_{n}=\frac{b_{n}}{4-\left(\frac{n \cdot \pi}{L}\right)^{2}}$ and again a_{n} was found above.

The calculations follow.
$\stackrel{+}{\stackrel{L}{l}} \gg B n:=\frac{b n}{4-\left(\frac{n \cdot P \mathrm{Pi}}{L}\right)^{2}}$

$$
B n:=\frac{16(-1)^{1+n \sim}}{n \sim \pi\left(4-\frac{1}{4} n \sim^{2} \pi^{2}\right)}
$$

$\stackrel{>}{ }>B n$

$$
\begin{equation*}
\frac{16(-1)^{1+n \sim}}{n \sim \pi\left(4-\frac{1}{4} n \sim^{2} \pi^{2}\right)} \tag{8}
\end{equation*}
$$

Let's look at an approximation of y_{p} using the fourier sum with 5 terms.
$\left[>y p:=\operatorname{sum}\left(B n \cdot \sin \left(\frac{n \cdot \mathrm{Pi} \cdot x}{L}\right), n=1 . .30\right):\right.$
A plot of the approximation of y_{p}. This certainly fulfills the boundary conditions.
$=>\operatorname{plot}(y p, x=0 . . L) ;$

And it does satisfy the ODE.
$\lceil>\operatorname{plot}([\operatorname{diff}(y p, x, x)+4 \cdot y p, 4 \cdot x], x=0 . . L) ;$

Use the homogeneous solution y_{h} that was found earlier and form the general solution $y=y_{h}+y_{p}$

The complete solution is $y=y_{h}+y_{p}$
$\overline{=}>y:=y h+y p$
$y:=c 1 \cos (2 x)+c 2 \sin (2 x)+\frac{16 \sin \left(\frac{1}{2} \pi x\right)}{\pi\left(4-\frac{1}{4} \pi^{2}\right)}+\frac{16}{11} \frac{\sin \left(\frac{11}{2} \pi x\right)}{\pi\left(4-\frac{121}{4} \pi^{2}\right)}$
$-\frac{2}{3} \frac{\sin (12 \pi x)}{\pi\left(4-144 \pi^{2}\right)}-\frac{2 \sin (4 \pi x)}{\pi\left(4-16 \pi^{2}\right)}-\frac{8}{7} \frac{\sin (7 \pi x)}{\pi\left(4-49 \pi^{2}\right)}+\frac{16}{7} \frac{\sin \left(\frac{7}{2} \pi x\right)}{\pi\left(4-\frac{49}{4} \pi^{2}\right)}$
$-\frac{4}{3} \frac{\sin (6 \pi x)}{\pi\left(4-36 \pi^{2}\right)}-\frac{4}{5} \frac{\sin (10 \pi x)}{\pi\left(4-100 \pi^{2}\right)}+\frac{16}{9} \frac{\sin \left(\frac{9}{2} \pi x\right)}{\pi\left(4-\frac{81}{4} \pi^{2}\right)}-\frac{\sin (8 \pi x)}{\pi\left(4-64 \pi^{2}\right)}$
$+\frac{16}{23} \frac{\sin \left(\frac{23}{2} \pi x\right)}{\pi\left(4-\frac{529}{4} \pi^{2}\right)}+\frac{16}{17} \frac{\sin \left(\frac{17}{2} \pi x\right)}{\pi\left(4-\frac{289}{4} \pi^{2}\right)}-\frac{8}{9} \frac{\sin (9 \pi x)}{\pi\left(4-81 \pi^{2}\right)}$
$+\frac{16}{19} \frac{\sin \left(\frac{19}{2} \pi x\right)}{\pi\left(4-\frac{361}{4} \pi^{2}\right)}+\frac{16}{3} \frac{\sin \left(\frac{3}{2} \pi x\right)}{\pi\left(4-\frac{9}{4} \pi^{2}\right)}-\frac{4 \sin (2 \pi x)}{\pi\left(4-4 \pi^{2}\right)}$
$+\frac{16}{27} \frac{\sin \left(\frac{27}{2} \pi x\right)}{\pi\left(4-\frac{729}{4} \pi^{2}\right)}+\frac{16}{13} \frac{\sin \left(\frac{13}{2} \pi x\right)}{\pi\left(4-\frac{169}{4} \pi^{2}\right)}+\frac{16}{15} \frac{\sin \left(\frac{15}{2} \pi x\right)}{\pi\left(4-\frac{225}{4} \pi^{2}\right)}$
$-\frac{8}{3} \frac{\sin (3 \pi x)}{\pi\left(4-9 \pi^{2}\right)}+\frac{16}{29} \frac{\sin \left(\frac{29}{2} \pi x\right)}{\pi\left(4-\frac{841}{4} \pi^{2}\right)}+\frac{16}{21} \frac{\sin \left(\frac{21}{2} \pi x\right)}{\pi\left(4-\frac{441}{4} \pi^{2}\right)}$
$-\frac{4}{7} \frac{\sin (14 \pi x)}{\pi\left(4-196 \pi^{2}\right)}-\frac{8}{11} \frac{\sin (11 \pi x)}{\pi\left(4-121 \pi^{2}\right)}-\frac{8}{5} \frac{\sin (5 \pi x)}{\pi\left(4-25 \pi^{2}\right)}-\frac{8 \sin (\pi x)}{\pi\left(4-\pi^{2}\right)}$
$+\frac{16}{25} \frac{\sin \left(\frac{25}{2} \pi x\right)}{\pi\left(4-\frac{625}{4} \pi^{2}\right)}+\frac{16}{5} \frac{\sin \left(\frac{5}{2} \pi x\right)}{\pi\left(4-\frac{25}{4} \pi^{2}\right)}-\frac{8}{13} \frac{\sin (13 \pi x)}{\pi\left(4-169 \pi^{2}\right)}$
$-\frac{8}{15} \frac{\sin (15 \pi x)}{\pi\left(4-225 \pi^{2}\right)}$
Use boundary conditions to find c_{1}, c_{2}.

Solve $y(0)=0=c_{1} \cdot \cos (0)+c_{2} \cdot \sin (0)+y_{p}(0)$ for c_{1}.

$$
\begin{align*}
& {[>c 1:=\operatorname{solve}(\operatorname{subs}(x=0, y)=0, c 1): \operatorname{evalf}(c 1) ;} \tag{10}\\
& {\left[\begin{array}{c}
\text { And } c_{2} . \\
\\
> \\
> \\
\\
\hline 2:=\operatorname{solve}(\operatorname{subs}(x=L, y)=0, c 2): \operatorname{evalf}(c 2) ; \\
0 .
\end{array}\right.}
\end{align*}
$$

Both coefficients are zero so $y_{h}=0$ on the interval [0,2]. The is different from the even extension where a nonzero homogeneous solution is needed to fulfill the boundary conditions.

Whoopi! THis is a really interesting outcome.
Next an approximation of the solution, $y=y_{h}+y_{p}$, of the BVP is made by cutting off the Fourier sum at " N " terms.

It is used to check to see if the solution satisfies the differential equations and the boundary condition.

1) Does the solution satisfy the ODE $y^{\prime \prime}+4 y=4 x$ on the interval [0,2]. I could substitute our solution into the lefts and right sides of the DE and work through it by hand. Another way is to use the finite series with " N " terms to approximate $\mathrm{y}(\mathrm{x})$ and use maple to plot the left and right sides of the DE. If the plots are similar then the solution would seem to satisfy the DE.

A maple plot of the these follows
$>\operatorname{plot}([\operatorname{diff}(y, x, x)+4 \cdot y, 4 \cdot x], x=0 . . L$, title $=[L H S$ and $R H S])$;
\# The approximation is close .

$L H s$ and $R H S$

2) Does the solution satisfy the boundary conditions. Check the boundary conditions.

At the left end $y(0)=0$? The solution works.
$\stackrel{>}{ } \boldsymbol{\operatorname { e v a l f } (\operatorname { s u b s } (x = 0 , y)) \text { ; }}$
0.

These are close to "zero" , this is because we are using the approximation of the solution.

Note: The approximation of the solution on the [0,2] interval.
${ }^{5}>\operatorname{plot}(y, x=0 . .2)$

