Signals and Spectra (1A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Energy and Power

Instantaneous Power

$$
p(t)=\chi^{2}(t)
$$

Energy dissipated during ($-T / 2,+T / 2$)

$$
E_{x}^{T}=\int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

Affects the performance of a communication system

Real signal

Average power dissipated during ($-T / 2,+T / 2$)

$$
P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

The rate at which energy is dissipated
Determines the voltage

Energy and Power Signals (1)

Energy dissipated during ($-T / 2,+T / 2$)

$$
E_{x}^{T}=\int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

Energy Signal

Nonzero but finite energy For all time

$$
\begin{aligned}
0 & <E_{x}<+\infty \\
E_{x} & =\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} x^{2}(t) d t
\end{aligned}
$$

Average power dissipated during ($-T / 2,+T / 2$)

$$
P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

Power Signal

Nonzero but finite power For all time
$0<P_{x}<+\infty$
$P_{x}=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t$

Energy and Power Signals (2)

Energy Signal

$$
\begin{aligned}
0 & <E_{x}<+\infty \\
E_{x} & =\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} x^{2}(t) d t \\
P_{x} & =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& =\lim _{T \rightarrow+\infty} \frac{B}{T} \rightarrow 0
\end{aligned}
$$

Non-periodic signals Deterministic signals

Power Signal

$$
0<P_{x}<+\infty
$$

$$
P_{x}=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

$$
\begin{aligned}
E_{\chi} & =\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t \\
& =\lim _{T \rightarrow+\infty} B \cdot T \rightarrow+\infty
\end{aligned}
$$

Periodic signals
Random signals

Energy and Power Spectral Densities (1)

Energy Spectral Density

$$
\begin{array}{rlrl}
\text { ergy Spectral Density } & \text { Power Spectral Density } \\
\begin{array}{rlrl}
E_{x} & =\int_{-\infty}^{+\infty} \chi^{2}(t) d t & P_{x} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi^{2}(t) d t \\
& =\int_{-\infty}^{+\infty}|X(f)|^{2} d f & & =\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \\
& =\int_{-\infty}^{+\infty} \Psi(f) d f & & =\int_{-\infty}^{+\infty} G_{x}(f) d f \\
& =2 \int_{0}^{+\infty} \Psi(f) d f & & =2 \int_{0}^{+\infty} G_{x}(f) d f \\
\Psi(f) & =|X(f)|^{2} & G_{x}(f)=\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)
\end{array}
\end{array}
$$

Energy and Power Spectral Densities (2)

Energy Spectral Density

$$
\left.\begin{array}{rl}
E_{x}=\int_{-\infty}^{+\infty} x^{2}(t) d t & P_{\chi}
\end{array}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi^{2}(t) d t\right] \text { } \begin{aligned}
=\int_{-\infty}^{+\infty} \Psi(f) d f & \int_{-\infty}^{+\infty} G_{\chi}(f) d f \\
\Psi(f)=|X(f)|^{2} & G_{\chi}(f)=\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right) \\
& G_{\chi}(f)=\lim _{T \rightarrow+\infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
\end{aligned}
$$

Autocorrelation of Energy and Power Signals

Autocorrelation of an Energy Signal

$$
R_{\chi}(\tau)=\int_{-\infty}^{+\infty} \chi(t) \chi(t+\tau) d t
$$

$$
R_{x}(\tau)=R_{x}(-\tau)
$$

$$
R_{\chi}(\tau) \leq R_{\chi}(0)
$$

$$
R_{\chi}(\tau) \Leftrightarrow \Psi(f)
$$

$$
R_{\chi}(0)=\int_{-\infty}^{+\infty} x^{2}(t) d t
$$

Autocorrelation of a Power Signal

$$
R_{\chi}(\tau)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x(t) x(t+\tau) d t
$$

$$
R_{x}(\tau)=R_{x}(-\tau)
$$

$$
R_{\chi}(\tau) \leq R_{\chi}(0)
$$

$$
R_{x}(\tau) \Leftrightarrow G_{x}(f)
$$

$$
R_{\chi}(0)=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi^{2}(t) d t
$$

Ensemble Average

Random Variable

$$
\begin{aligned}
m_{\chi} & =\boldsymbol{E}\{\boldsymbol{X}\} \\
& =\int_{-\infty}^{+\infty} x p_{X}(x) d x
\end{aligned}
$$

$$
\boldsymbol{E}\left\{X^{2}\right\}
$$

$$
=\int_{-\infty}^{+\infty} x^{2} p_{X}(x) d x
$$

Random Process

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{X_{k}}(x) d x
\end{aligned}
$$

$$
R_{\chi}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}
$$

$$
p_{X_{1}}(x) p_{X_{2}}(x)
$$

WSS (Wide Sense Stationary)

Random Process

$$
\begin{aligned}
m_{x}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{X_{k}}(x) d x
\end{aligned}
$$

$$
R_{\chi}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}
$$

WSS Process

 $m_{x}$$$
R_{\chi}\left(t_{1}-t_{2}\right)
$$

Autocorrelation of Random and Power Signals

Autocorrelation of an Random Signal

$$
\begin{aligned}
R_{\chi}(\tau) & =\boldsymbol{E}\{X(t) X(t+\tau)\} \\
R_{\chi}(\tau) & =R_{\chi}(-\tau) \\
R_{\chi}(\tau) & \leq R_{\chi}(0) \\
R_{\chi}(\tau) & \Leftrightarrow G_{\chi}(f) \\
R_{\chi}(0) & =\boldsymbol{E}\left\{X^{2}(t)\right\}
\end{aligned}
$$

Autocorrelation of a Power Signal

$$
\begin{aligned}
R_{\chi}(\tau) & =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x(t) \chi(t+\tau) d t \\
R_{\chi}(\tau) & =R_{\chi}(-\tau) \\
R_{\chi}(\tau) & \leq R_{\chi}(0) \\
R_{\chi}(\tau) & \Leftrightarrow G_{\chi}(f) \\
R_{\chi}(0) & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi^{2}(t) d t
\end{aligned}
$$

Time Averaging and Ergodicity

Random Process

$$
\begin{array}{rlr}
m_{x}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} & R_{x}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{X_{k}}(x) d x
\end{array}
$$

WSS Process

$$
\Longrightarrow \quad R_{x}\left(t_{1}-t_{2}\right)
$$

Ergodic Process

$$
\longrightarrow \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) d t \quad \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) X(t+\tau) d t
$$

Autocorrelation of Random and Power Signals

Autocorrelation of a Random Signal

$$
\begin{aligned}
R_{\chi}(\tau) & =\boldsymbol{E}\{X(t) X(t+\tau)\} \\
R_{\chi}(\tau) & =R_{\chi}(-\tau) \\
R_{\chi}(\tau) & \leq R_{\chi}(0) \\
R_{\chi}(\tau) & \Leftrightarrow G_{\chi}(f) \\
R_{\chi}(0) & =\boldsymbol{E}\left\{X^{2}(t)\right\}
\end{aligned}
$$

Power Spectral Density of a Random Signal

$$
G_{\chi}(f)=\lim _{T \rightarrow+\infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
$$

$$
G_{\chi}(f)=G_{\chi}(-f)
$$

$$
G_{\chi}(f) \geq 0
$$

$$
G_{\chi}(f) \Leftrightarrow R_{\chi}(\tau)
$$

$$
P_{x}(0)=\int_{-\infty}^{+\infty} G_{X}(f) d f
$$

Time Averaging and Ergodicity

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"

