Binary Angle Measurement (5A)

- Adaptive CORDIC
-

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

BAM Background

T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010

Rotation of 25 degree

Original CORDIC

$$
\begin{aligned}
25^{\circ} \approx & +45^{\circ} \\
& -26.565^{\circ} \\
& +14.036^{\circ} \\
& -7.125^{\circ} \\
& -3.576^{\circ} \\
& +1.79^{\circ} \\
& +0.895^{\circ} \\
& +0.448^{\circ} \\
& +0.2238^{\circ} \\
= & 25.1268^{\circ}
\end{aligned}
$$

Angle Constants that is used

$$
Q=\left\{45^{\circ}, 26.565^{\circ}, 14.036^{\circ}, 7.125^{\circ}, 3.576^{\circ}, 1.79^{\circ}, 0.895^{\circ}, 0.448^{\circ}, 0.2238^{\circ}\right\}
$$

Range of Residual Angles around Angle Constant

45°	35.78	$\underline{(45+26.565)}$	[$Z_{45^{\circ}}{ }^{\text {] }}$	$=[35.78,67.5]$
26.565°	20.295		[$Z_{26.565}$	$=[20.295,35.78]$
14.036°	10.5775		[$Z_{14.036}$]	$=[10.5775,20.295]$
7.125°	5.5305		[$Z_{7.125}$]	$=[5.3505,10.5775]$
3.576°	2.6825		$\left[Z_{3.576}\right.$]	$=[2.6825,5.3505]$
$1.79{ }^{\circ}$	1.342		[$Z_{1.79}{ }^{\circ}$]	$=[1.342,2.6825]$
0.895°	0.6715		[$Z_{0.895}{ }^{\text {a }}$]	$=[0.6715,1.342]$
0.448°	0.3359		[$Z_{0.448}{ }^{\circ}$]	$=\left[\begin{array}{lll}0.3359, & 0.6715\end{array}\right]$
$0.2238{ }^{\circ}$	0.1119		[$Z_{0.2238}$	$=[0.1119,0.3359]$

Angle Recording Method

$$
\begin{aligned}
& \alpha \leftarrow \alpha_{N} \\
& Z \leftarrow \theta
\end{aligned}
$$

$$
\text { while }\left(|Z|>\alpha_{\text {min }} / 2\right)\{
$$

$$
\sigma=(Z \geq 0) ?+1:-1
$$

$$
\text { foreach } \alpha_{i}\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{N}\right)\{
$$

$$
\begin{aligned}
& \text { if } \quad\left(\left||Z|-\alpha_{i}\right|<\left||Z|-\alpha_{\max }\right|\right)\{ \\
& \quad \alpha_{\min }=\alpha_{i}
\end{aligned}
$$

Store $\alpha_{\max }$ on adaptive-angle-list

$$
Z=Z-\sigma * \alpha_{\max }
$$

Range

$$
\begin{gathered}
m_{i}=\frac{\left(\alpha_{i+1}+\alpha_{i}\right)}{2} \\
{\left[Z_{\alpha i}\right]=\left[m_{i}, m_{i-1}\right)}
\end{gathered}
$$

$$
\text { residual angle } Z \quad \text { residual angle } Z
$$

Angle Recording selects the angle constant α_{i} for the angles in the range $\left[Z_{\alpha n}\right]$
is closer to α_{i+1} is closer to α_{i}

Estimated Range

assume

$$
\begin{aligned}
& {\left[Z^{\prime}{ }_{a n}\right]_{\text {RHS }}=\alpha_{m}+\left[Z_{\alpha n}\right] \quad \leadsto\left\{\left[Z_{\alpha_{n}}\right]_{\text {RHS }}-\alpha_{m} \Rightarrow\left[Z_{\alpha n}\right]\right.} \\
& {\left[Z_{{ }_{\alpha n}}\right]^{L H S} \text { }=\alpha_{m}-\left[Z_{\alpha n}\right]} \\
& {\left[Z_{{ }_{\text {an }}}\right]_{L H S}-\alpha_{m} \Rightarrow\left[Z_{\alpha n}\right]}
\end{aligned}
$$

Conditions of Estimated Range

CORDIC Rotation

$\cos \theta$ in term of $\tan \theta$

References

[1] http://en.wikipedia.org/
[2] CORDIC FAQ, www.dspguru.com
[3] R. Andraka, A survey of CORDIC algorithms for FPGA based computers
[4] J. S. Walther, A Unified Algorithm for Elementary Functions
[5] J. P. Deschamps, G. A. Bioul, G.D. Sutter, Synthesis of Arithmetic Circuits
[6] T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010

