Correlation

Lecture 4 Survey Research & Design in Psychology James Neill, 2012

Overview

- 1. Purpose of correlation
- 2. Covariation
- 3. Linear correlation
- 4. Types of correlation
- 5. Interpreting correlation
- 6. Assumptions / limitations
- 7. Dealing with several correlations

2

Readings

Howell (2010)

- Ch6 Categorical Data & Chi-Square
- Ch9 Correlation & Regression
- Ch10 Alternative Correlational Techniques
 - 10.1 Point-Biserial Correlation and Phi: Pearson Correlation by Another Name
 - 10.3 Correlation Coefficients for Ranked Data

i	
Purpose of correlation	
4	

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- degree of association or
- amount of shared variance

between two variables?

5

Purpose of correlation

Other ways of expressing the underlying correlational question include:

To what extent

- do two variables covary?
- are two variables **dependent** or **independent** of one another?
- can one variable be **predicted** from another?

8

The world is made of covariation.

We observe covariations in the psychosocial world.

Covariations are the basis of more complex models.

	i	
Linear correlation		
	12	

Linear correlation

The extent to which two variables have a simple **linear** (straight-line) relationship.

Linear correlations provide the building blocks for multivariate correlational analyses, such as:

- Factor analysis
- Reliability
- Multiple linear regression

Linear correlation

Linear relations between variables are indicated by correlations:

- **Direction:** Correlation sign (+ / -) indicates direction of linear relationship
- **Strength:** Correlation size indicates strength (ranges from -1 to +1)
- **Statistical significance:** *p* indicates likelihood that observed relationship could have occurred by chance

14

13

What is the linear correlation? Types of answers

- No relationship (independence)
- Linear relationship:
 As one variable ↑s, so does the other (+ve)
 As one variable ↑s, the other ↓s (-ve)
- Non-linear relationship
- Pay caution due to:
 - -Heteroscedasticity
 - -Restricted range
 - Heterogeneous samples

Types of correlation

To decide which type of correlation to use, consider the levels of measurement for each variable

16

Types of correlation

- Nominal by nominal: Phi (Φ) / Cramer's V, Chi-squared
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio: Product-moment or Pearson's *r*

Types of correlation and LOM							
	Nominal	Ordinal	Int/Ratio				
Nominal	Clustered bar- chart, Chi-square, Phi (φ) or Cramer's V	← Recode	Scatterplot, bar chart or error-bar chart Point bi-serial correlation (r_{pb})				
Ordinal		Scatterplot or clustered bar chart Spearman's Rho or Kendall's Tau	⇐Ĥ _{Recode}				
Int/Ratio			Scatterplot Product- moment correlation (18				

i		
Nominal by nominal		
	19	

Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
 - Observed
 - Expected
 - Row and/or column %s
 - Marginal totals
- Clustered bar chart
- Chi-square
- Phi/Cramer's V

Contingency table: Example

b2 Do you snore? * b3r Smoker Crosstabulation Count

		b3r Sr		
		0 No	1 Yes	Total
b2 Do you	0 yes	50	16	66
sn ore?	1 no	111	9	120
Total		(161	25	186

RED = Contingency cells BLUE = Marginal totals 22

Contingency	table:	Example

b2 Doyou snore? * b3r Smoker Crosstabulation							
			b3r Sm	oker			
	0 No 1 Yes Total						
b2 Do you	0 yes	Count	50	16	66		
snore?	\langle	Expected Count	57.1	8.9	66.0		
	1 no	Count	111	9	120		
		Expected Count	103.9	16.1	120.0		
Total		Count	161	25	186		
		Expected Count	161.0	25.0	186.0		

Chi-square is based on the differences between the actual and expected cell counts.

د∠

b2 Doyou snore? * b3r Smoker Crosstabulation						
Do you sno	ore?					
b3r Smoker						
	0 No	1 Yes	Total			
0 yes	75.8%	24.2%	100.0%			
1 no	92.5%	7.5%	100.0%			
	86.6%	13.4%	100.0%			
	Do you sno - 0 yes	Do you snore? b3r Sr 0 No 0 yes 75.8% 1 no 92.5%	by you shore? b3r Smoker 0 No 1 Yes 0 yes 75.8% 24.2% 1 no 92.5% 7.5%			

Row and/or column cell percentages may also aid interpretation e.g., ~2/3rds of smokers snore, whereas only ~1/3rd of non-smokers snore. b2 Do you snore? * b3r \smoker Crosstabulation

% within b3r	Smoker			
		b3r S	moker	
		0 No	1 Yes	Total
b2 Do you	0 yes	31.4%	64.0%	35.5%
sn ore?	1 no	68.9%	▲36.0%	64.5%
Total		100.0%	100.0%	100.0%

-		
-		

Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where

- X^2 = the test statistic that approaches a χ^2 distribution.
- O = frequencies observed;
- E = frequencies expected (asserted by the null hypothesis).

Pearson chi-square test: Example						
Asymp. Sig. Value df (2-sided)						
Pearson Chi-Square	10.259	(1)	0.001			
Continuity Correction ^a	8.870	1	.003			
Likelih ood Ratio	9.780	1	.002			
Fisher's Exact Test						
Linear-by-Linear Association	10.204	1	.001			
N of Valid Cases	186					

Write-up: χ^2 (1, 186) = 10.26, p = .001

Phi (ϕ) & Cramer's V

(non-parametric measures of correlation)

Phi (ø)

• Use for 2x2, 2x3, 3x2 analyses e.g., Gender (2) & Pass/Fail (2)

Cramer's V

• Use for 3x3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

Ordinal by ordinal correlational approaches

- Spearman's rho (r_s)
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., treat as lower level of measurement)

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, yet there may be many points.
- Consider using:
 - -Non-parametric approaches (e.g., clustered bar chart)
 - -Parametric approaches (e.g., scatterplot with binning)

34

Spearman's rho (r_s) or Spearman's rank order correlation

- For ranked (ordinal) data
 –e.g. Olympic Placing correlated with
- World RankingUses product-moment correlation
- formula

 Interpretation is adjusted to consider
- Interpretation is adjusted to consider the underlying ranked scales

35

Kendall's Tau (τ)

- Tau a
 - -Does not take joint ranks into account
- Tau b
 - -Takes joint ranks into account
 - -For square tables
- Tau c
 - Takes joint ranks into account
 - -For rectangular tables

	i	
Dichotomous by interval/ratio		
	37	

Point-biserial correlation (r_{pb})

One dichotomous & one continuous variable

-e.g., belief in god (yes/no) and amount of international travel

- Calculate as for Pearson's product-moment *r*,
- Adjust interpretation to consider the underlying scales

Point	-biserial cor Examp		n (<i>r</i> _{pb}):	_	
	Correlation	s			
		b4r God	b8 Countries		
o4r God	Pearson Correlation	1	095		
0 = No	Sig. (2-tailed)		.288	-	
1 = Yes	Ν	127	127		
o8 Countries	Pearson Correlation	095	1	_	
	Sig. (2-tailed)	.288			
	Ν	127	190		

Scatterplot

- Plot each pair of observations (X, Y)
 -x = predictor variable (independent)
 -y = criterion variable (dependent)
- By convention:
 - the IV should be plotted on the x (horizontal) axis
 - -the DV on the y (vertical) axis.

Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- Check for:
 - -outliers
 - -linearity

Pearson product-moment correlation (r)

• The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\operatorname{cov}(X,Y)}{S_X S_Y}$$

Covariance

• Variance shared by 2 variables

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$
 Cross products

• Covariance reflects the direction of the relationship: +ve cov indicates + relationship -ve cov indicates - relationship.

50

Covariance

- Dependent on the scale of measurement → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos versus age by weight in grams).
- Therefore, **standardise covariance** (divide by the cross-product of the Sds) → **correlation**
- Correlation is an effect size i.e., standardised measure of strength of linear relationship 52

Covariance, SD, and correlation: Quiz

For a given set of data the covariance between X and Y is 1.20. The SD of X is 2 and the SD of Y is 3. The resulting correlation is: a. .20

b. .30

c. .40

d. 1.20

Answer: 1.20 / 2 x 3 = .20 ₅₃

Hypothesis testing

Almost all correlations are not 0, therefore the question is: "What is the **likelihood** that a relationship between variables is a 'true' relationship - or could it simply be a result of random sampling variability or 'chance'?"

Significance of correlation

- Null hypothesis (H₀): ρ = 0: assumes that there is no 'true' relationship (in the population)
- Alternative hypothesis (H₁): ρ <> 0: assumes that the relationship is real (in the population)
- Initially assume ${\rm H_0}$ is true, and evaluate whether the data support ${\rm H_1}.$
- ρ (rho) = population product-moment correlation coefficient

How to test the null hypothesis

- Select a critical value (alpha (α)); commonly .05
- Can use a 1 or 2-tailed test
- Calculate correlation and its *p* value. Compare this to the critical value.
- If *p* < critical value, the correlation is statistically significant, i.e., that there is less than a x% chance that the relationship being tested is due to random sampling variability.

	Correlatio	ons	
		Consumption M per Adult per	CHD Mortali ty per 10,000
Cigarette Consumption per	Pearson Correlation	-	
Adult per Day	Sig. (2-tailed) N	\frown	
CHD Mortality per 10,000	Pearson Correlation	.713*)
	Sig. (2-tailed)	.000)
	Ν	21	

Imprecision in hypothesis testing

- Type I error: rejects H_0 when it is true
- Type II error: Accepts H₀ when it is false
- Significance test result will depend on the power of study, which is a function of:
 - -Effect size (r)
 - -Sample size (N)
 - –Critical alpha level (α_{crit})

58

Significance of correlation

	•		
(df	critical	
(<u>(N-2)</u>	<u>p = .05</u>	
	5	.67	The size of
1	10	.50	correlation
1	15	.41	
2	20	.36	required to be
2	25	.32	significant
3	30	.30	decreases as N
5	50	.23	increases –
2	200	.11	why?
5	500	.07	wity :
	1000	.05	59

Practice quiz question: Significance of correlation

- If the correlation between Age and test Performance is statistically significant, it means that:
- a. there is an important relationship between Age and test Performance
- b. the true correlation between Age and Performance in the population is equal to 0
- c. the true correlation between Age and Performance in the population is not equal to 0
- d. getting older causes you to do poorly on tests 62

Interpreting correlation	
63	

Coefficient of Determination (r²)

- CoD = The proportion of variance or change in one variable that can be accounted for by another variable.
- e.g., r = .60, $r^2 = .36$

A correlation is an **effect size**, so guidelines re strength can be suggested.

 Strength
 r
 r²

 weak:
 .1 to .3
 (1 to 10%)

 moderate:
 .3 to .5
 (10 to 25%)

 strong:
 >.5
 (> 25%)

Interpreting correlation (Evans, 1996)

<u>Strength</u>	<u>r</u>	<u>ľ</u> ²
very weak	019	(0 to 4%)
weak	.2039	(4 to 16%)
moderate	.4059	(16 to 36%)
strong	.6079	(36% to 64%)
very strong	.80 - 1.00	(64% to 100%)

Write-up: Example

"Number of children and marital satisfaction were inversely related (r (48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect (see Figure 1)."

74

75

Assumptions and limitations

- 1. Levels of measurement \geq interval
- 2. Correlation is not causation
- 3. Linearity
 - 1. Effects of outliers
 - 2. Non-linearity
- 4. Normality
- 5. Homoscedasticity
- 6. Range restriction
- 7. Heterogenous samples

Correlation is not causation e.g.,: Stop global warming: Become a pirate

Effect of outliers

- Outliers can disproportionately increase or decrease *r*.
- Options
 - -compute r with & without outliers
 - -get more data for outlying values
 - recode outliers as having more conservative scores
 - -transformation
 - recode variable into lower level of measurement

Non-linear relationships

Check scatterplot Can a linear relationship 'capture' the lion's share of the variance? If so,use *r*.

Non-linear relationships

If non-linear, consider

- Does a linear relation help?
- Transforming variables to 'create' linear relationship
- Use a non-linear mathematical function to describe the relationship between the variables

83

Normality

- The X and Y data should be sampled from populations with normal distributions
- Do not overly rely on a single indicator of normality; use histograms, skewness and kurtosis, and inferential tests (e.g., Shapiro-Wilks)
- Note that inferential tests of normality are overly sensitive when sample is large

Homoscedasticity

- Homoscedasticity refers to even spread about a line of best fit
- Heteroscedasticity refers to uneven spread about a line of best fit
- Assess visually and with Levene's test

85

Range restriction

- Range restriction is when the sample contains restricted (or truncated) range of scores
 - e.g., cognitive capacity and age < 18 might have linear relationship
- If range restriction, be cautious in generalising beyond the range for which data is available
 - E.g., cognitive capacity does not continue to increase linearly with age after age 18

Dealing with several correlations

Scatterplot matrices organise scatterplots and correlations amongst several variables at once.

However, they are not detailed over for more than about five variables at a time.

Correlation matrix: Example of an APA Style Correlation Table

Table 1.

Correlations Between Five Life Effectiveness Factors for Adolescents and Adults (N = 3640)

	Time Manage- ment	Social Compet- ence	Achieve- ment Motivation	Intellectual Flexibility	Task Leadership
Time Management		.36	.53	.31	.42
Social Competence			.37	.32	.57
Achievement Motivation				.42	.41
Intellectual Flexibility					.37
Task Leadership					
					ç

Key points

- 1. Covariations are the building blocks of more complex analyses, e.g., reliability analysis, factor analysis, multiple regression
- 2. Correlation does not prove causation – may be in opposite direction, co-causal, or due to other variables.

97

Key points

- 3. Choose measure of correlation and graphs based on levels of measurement.
- 4. Check graphs (e.g., scatterplot):
 - -Outliers?
 - -Linear?
 - -Range?
 - -Homoscedasticity?
 - -Sub-samples to consider?

98

Key points

- 5. Consider effect size (e.g., Φ , Cramer's *V*, *r*, *r*²) and direction of relationship
- 6. Conduct inferential test (if needed).

Key points

- 7. Interpret/Discuss
 - Relate back to research hypothesis
 - Describe & interpret correlation (direction, size, significance)
 - Acknowledge limitations e.g., • Heterogeneity (sub-samples)
 - Range restriction
 - Causality?

100

References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). *Fundamental statistics for the behavioral sciences*. Belmont, CA: Wadsworth.

Howell, D. C. (2010). *Statistical methods for psychology* (7th ed.). Belmont, CA: Wadsworth.

101

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- <u>http://www.openoffice.org/product/impress.html</u>

