Correlation (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Probability Density Function

Probability Density Function $\quad f(x ; t)=\frac{\partial}{\partial x} F(x ; t)$

$$
P[a \leq X(t) \leq b]=\int_{a}^{b} f(x ; t) d x
$$

Cumulative Distribution Function $\quad F(x ; t)=\int_{-\infty}^{x} f(x ; t) d x$

$$
P[X(t) \leq b]=\int_{-\infty}^{b} f(x ; t) d x=F(b ; t)
$$

$X(t)$	random variable $X(t)$ at a given time t
$f(x ; t)$	The probability density function
	of random variable $X(t)$

$$
\begin{aligned}
& P[x \leq X(t) \leq x+d t]=f(x ; t) d x \\
& P[X(t)=x] \Rightarrow f(x ; t)
\end{aligned}
$$

Probability Density Function

$X(t)$	random variable $X(t)$ at a given time t
$f(x ; t)$	The probability density function
	of random variable $X(t)$

$$
\begin{aligned}
& P[x \leq X(t) \leq x+d t]=f(x ; t) d x \\
& P[X(t)=x] \Rightarrow f(x ; t)
\end{aligned}
$$

$1^{s t}$ trial $x_{1}(t) \quad X\left(t_{0}\right)$	random variable at a given time t_{0}
summunnmu*w	$X\left(t_{0}\right)=x_{1}\left(t_{0}\right)$
$2^{\text {nd }}$ trial $x_{2}(t)$	r.v. $X\left(t_{0}\right)$ has a value $x_{1}\left(t_{0}\right)$ at time t_{0} in the $1^{s t}$ trial
Annumwn~un•m	$X\left(t_{0}\right)=x_{2}\left(t_{0}\right)$
$3^{\text {rd }}$ trial $x_{3}(t)$	r.v. $X\left(t_{0}\right)$ has a value $x_{2}\left(t_{0}\right)$ at time t_{0} in the $2^{n d}$ trial
"WMunnumun。	$X\left(t_{0}\right)=x_{3}\left(t_{0}\right)$
$t=t_{0}$	r.v. $X\left(t_{0}\right)$ has a value $x_{3}\left(t_{0}\right)$ at time t_{0} in the $3^{\text {rd }}$ trial

Joint Probability Density Function

Joint Probability Density Function

$$
f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=\frac{\partial^{2}}{\partial x_{1} \partial x_{2}} F\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)
$$

$$
P\left[\left\{a \leq X\left(t_{1}\right) \leq b\right\} \cap\left\{c \leq X\left(t_{2}\right) \leq d\right\}\right]=\int_{a}^{b} \int_{c}^{d} f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2}
$$

Joint Cumulative Distribution Function $\quad F\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2}$

$$
P\left[\left\{X\left(t_{1}\right) \leq b\right\} \cap\left\{X\left(t_{2}\right) \leq d\right\}\right]=\int_{-\infty}^{b} \int_{-\infty}^{d} f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2}=F\left(b, d ; t_{1}, t_{2}\right)
$$

$X\left(t_{1}\right), \quad X\left(t_{2}\right) \quad$ random variables at time t_{1} and t_{2}
$f\left(x_{1}, t_{1} ; x_{2}, t_{2}\right)$ joint probability density function

$$
\begin{aligned}
& \text { r.v. } X\left(t_{1}\right) \text { r.v. } X\left(t_{2}\right) \\
& { }_{a}^{b}={ }_{t=t_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& P\left[\left\{X\left(t_{1}\right)=x_{1}\right\} \cap\left\{X\left(t_{2}\right)=x_{2}\right\}\right] \\
& \Rightarrow f\left(x_{1}, t_{1} ; x_{2}, t_{2}\right)
\end{aligned}
$$

Probability Density Function

$X\left(t_{1}\right), \quad X\left(t_{2}\right) \quad$ random variables at time t_{1} and t_{2}

$$
\begin{aligned}
& P\left[\left\{X\left(t_{1}\right)=x_{1}\right\} \cap\left\{X\left(t_{2}\right)=x_{2}\right\}\right] \\
& \Rightarrow f\left(x_{1}, t_{1} ; x_{2}, t_{2}\right)
\end{aligned}
$$

Moments of a Random Process

The n-th Moment

$$
E\left[X^{n}(t)\right]=\int_{-\infty}^{+\infty} x^{n} f(x ; t) d x
$$

1st Moment

$$
E[X(t)]=\int_{-\infty}^{+\infty} x f(x ; t) d x=\mu(t)
$$

2nd Moment

$$
E\left[X^{2}(t)\right]=\int_{-\infty}^{+\infty} x^{2} f(x ; t) d x
$$

The n-th Central Moment

$$
E\left[(X(t)-\mu(t))^{n}\right]=\int_{-\infty}^{+\infty}(x-\mu(t))^{n} f(x ; t) d x
$$

1st Central Moment

$$
E[(X(t)-\mu(t))]=\int_{-\infty}^{+\infty}(x-\mu(t)) f(x ; t) d x
$$

2nd Central Moment

$$
\begin{aligned}
E\left[(X(t)-\mu(t))^{2}\right] & =\int_{-\infty}^{+\infty}(x-\mu(t))^{2} f(x ; t) d x \\
& =\sigma^{2}(t)
\end{aligned}
$$

Moments of a Random Process

$X(t) \quad$ Random Variable at a given time t
$x_{i}(t) \quad$ outcome of $\mathrm{i}^{\text {th }}$ realization at a given time t

Ensemble

Moments of a Random Process

The n-th Moment

$$
E\left[X^{n}(t)\right]=\int_{-\infty}^{+\infty} x^{n} f(x ; t) d x \quad E\left[(X(t)-\mu(t))^{n}\right]=\int_{-\infty}^{+\infty}(x-\mu(t))^{n} f(x ; t) d x
$$

$$
f(x, t) \Rightarrow f(x)
$$

if \boldsymbol{f} does not change with time

The n-th Central Moment

$$
E\left[X^{n}(t)\right] \Rightarrow E\left[X^{n}\right] \quad E\left[(X(t)-\mu(t))^{n}\right] \Rightarrow E\left[(X-\mu)^{n}\right]
$$

$$
E[X(t)] \Rightarrow E[X]=\mu
$$

$$
E\left[(X(t)-\mu(t))^{2}\right] \Rightarrow E\left[(X-\mu)^{2}\right]=\sigma^{2}
$$

Stationarity

First-Order Stationary Process

$$
f\left(x_{1} ; t_{1}\right)=f\left(x_{1} ; t_{1}+\tau\right)
$$

Second-Order Stationary Process

$$
f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right)=f\left(x_{1}, x_{2} ; t_{1}+\tau, t_{2}+\tau\right)
$$

Nth-Order Stationary Process

$$
f\left(x_{1}, x_{2}, \cdots, x_{n} ; t_{1}, t_{2}, \cdots, t_{n}\right)=f\left(x_{1}, x_{2}, \cdots, x_{n} ; t_{1}+\tau, t_{2}+\tau, \cdots, t_{n}+\tau\right)
$$

Correlation Functions (1)

auto-covariance function

$$
\begin{aligned}
& C_{x x}\left(t_{1}, t_{2}\right)=E\left[\underline{\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)} \underline{\left(X\left(t_{2}\right)-\mu_{x}\left(t_{2}\right)\right)}\right] \\
& C_{x x}\left(t_{2}-t_{1}\right)=E\left[\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-\mu_{x}\left(t_{2}\right)\right)\right] \\
& C_{x x}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(X(t+\tau)-\mu_{x}\right)\right]
\end{aligned}
$$

auto-correlation function

$$
\begin{aligned}
& R_{x x}\left(t_{1}, t_{2}\right)=E\left[\underline{X\left(t_{1}\right)} \underline{X\left(t_{2}\right)}\right] \\
& R_{x x}(\tau)=E[X(t) X(t+\tau)]
\end{aligned}
$$

Correlation Functions (2)

cross-covariance function

$$
\begin{aligned}
& C_{x y}\left(t_{1}, t_{2}\right)=E\left[\underline{\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)} \underline{\left(Y\left(t_{2}\right)-\mu_{y}\left(t_{2}\right)\right)}\right] \\
& C_{x y}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(Y(t+\tau)-\mu_{y}\right)\right]
\end{aligned}
$$

cross-correlation function

$$
\begin{aligned}
& R_{x y}\left(t_{1}, t_{2}\right)=E\left[\underline{X\left(t_{1}\right)} \underline{Y\left(t_{2}\right)}\right] \\
& R_{x y}(\tau)=E[X(t) Y(t+\tau)]
\end{aligned}
$$

Ergodicity

$$
\begin{aligned}
& \mu_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t \\
& \hat{\mu}_{x}=\frac{1}{T} \int_{0}^{T} x(t) d t=\bar{x} \\
& \bar{\psi}_{x}^{2}=\frac{1}{T} \int_{0}^{T} x^{2}(t) d t=\bar{x}^{2} \\
& C_{x y}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(Y(t+\tau)-\mu_{y}\right)\right] \\
& C_{x y}(\tau)=\lim _{T \rightarrow 0} \frac{1}{T} \int_{0}^{T}\left(x(t)-\mu_{x}\right)\left(y(t+\tau)-\mu_{y}\right) d t \\
& \hat{C}_{x y}(\tau)=\frac{1}{T-\tau} \int_{0}^{T-\tau}(x(t)-\bar{x})(y(t+\tau)-\bar{y}) d t \quad 0 \leq \tau<T \\
& \hat{C}_{x y}(\tau)=\frac{1}{T-|\tau|} \int_{0}^{T-|\tau|}(x(t)-\bar{x})(y(t+\tau)-\bar{y}) d t \quad-T<\tau \leq 0
\end{aligned}
$$

Time Average

whinnownsmons
MNMMNNMMWMn

Frequency Response

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

single frequency
component: ω
single frequency component : ω

$$
H(j \omega)=\int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] K.H. Shin, J.K. Hammond, Fundamentals of Signal Processing for Sound and Vibration Engineers, Wiley, 2008

