Correlation (1A)

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Correlation Functions (1)

auto-covariance function

$$
\begin{aligned}
& C_{x x}\left(t_{1}, t_{2}\right)=E\left[\underline{\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)} \underline{\left(X\left(t_{2}\right)-\mu_{x}\left(t_{2}\right)\right)}\right] \\
& C_{x x}\left(t_{2}-t_{1}\right)=E\left[\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-\mu_{x}\left(t_{2}\right)\right)\right] \\
& C_{x x}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(X(t+\tau)-\mu_{x}\right)\right]
\end{aligned}
$$

auto-correlation function

$$
\begin{aligned}
& R_{x x}\left(t_{1}, t_{2}\right)=E\left[\underline{X\left(t_{1}\right)} \underline{X\left(t_{2}\right)}\right] \\
& R_{x x}(\tau)=E[X(t) X(t+\tau)]
\end{aligned}
$$

Correlation Functions (2)

cross-covariance function

$$
\begin{aligned}
& C_{x y}\left(t_{1}, t_{2}\right)=E\left[\underline{\left(X\left(t_{1}\right)-\mu_{x}\left(t_{1}\right)\right)} \underline{\left(Y\left(t_{2}\right)-\mu_{y}\left(t_{2}\right)\right)}\right] \\
& C_{x y}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(Y(t+\tau)-\mu_{y}\right)\right]
\end{aligned}
$$

cross-correlation function

$$
\begin{aligned}
& R_{x y}\left(t_{1}, t_{2}\right)=E\left[\underline{X\left(t_{1}\right)} \underline{Y\left(t_{2}\right)}\right] \\
& R_{x y}(\tau)=E[X(t) Y(t+\tau)]
\end{aligned}
$$

Ergodicity

$$
\begin{aligned}
& \mu_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t \\
& \hat{\mu}_{x}=\frac{1}{T} \int_{0}^{T} x(t) d t=\bar{x} \\
& \bar{\psi}_{x}^{2}=\frac{1}{T} \int_{0}^{T} x^{2}(t) d t=\bar{x}^{2} \\
& C_{x y}(\tau)=E\left[\left(X(t)-\mu_{x}\right)\left(Y(t+\tau)-\mu_{y}\right)\right] \\
& C_{x y}(\tau)=\lim _{T \rightarrow 0} \frac{1}{T} \int_{0}^{T}\left(x(t)-\mu_{x}\right)\left(y(t+\tau)-\mu_{y}\right) d t \\
& \hat{C}_{x y}(\tau)=\frac{1}{T-\tau} \int_{0}^{T-\tau}(x(t)-\bar{x})(y(t+\tau)-\bar{y}) d t \quad 0 \leq \tau<T \\
& \hat{C}_{x y}(\tau)=\frac{1}{T-|\tau|} \int_{0}^{T-|\tau|}(x(t)-\bar{x})(y(t+\tau)-\bar{y}) d t \quad-T<\tau \leq 0
\end{aligned}
$$

Frequency Response

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

single frequency
component: ω
single frequency component : ω

$$
H(j \omega)=\int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] K.H. Shin, J.K. Hammond, Fundamentals of Signal Processing for Sound and Vibration Engineers, Wiley, 2008

