Psychometric Instrument Development

Lecture 6 Survey Research & Design in Psychology James Neill, 2012

Overview

- 1. Recap: Exploratory factor analysis
- 2. Concepts & their measurement
- 3. Measurement error
- 4. Psychometrics
- 5. Reliability & validity
- 6. Composite scores
- 7. Writing up instrument development

Readings: Psychometrics

- 1. Bryman & Cramer (1997). Concepts and their measurement. [chapter ereserve]
- 2. DeCoster, J. (2000). Scale construction notes. http://www.stat-help.com/scale.pdf
- 3. Howitt & Cramer (2005). Reliability and validity: Evaluating the value of tests and measures. [chapter ereserve]
- 4. Wikiversity. Reliability and validity http://en.wikiversity.org/wiki/Reliability_and_vali dity

3

Recap: **1** Exploratory Factor Analysis

What is factor analysis?

- FA is:
 - a family of multivariate correlational data analysis methods
 - –used to identify clusters of covariance (called factors)
- Two main types:
 - -Exploratory factor analysis (EFA)
 - -Confirmatory factor analysis (CFA)

5

EFA assumptions

- Sample size
 - 5+ cases per variables (min.)
 - 20+ cases per variable (ideal)
 - Another guideline: Or N > 200
- Check bivariate outliers & linearity
- Factorability: check any of: – Correlation matrix: Some over .3?
 - Anti-image correlation matrix diags > .5
 - Measures of Sampling Adequacy
 - KMO > ~ .5 to 6; Bartlett's sig?

Summary of EFA steps / process

- 1. Test assumptions
 - Sample size, Outliers & linearity, Factorability
- 2. Select type of analysis
 - PC/PAF, Orthorgonal/Oblique rotation

Summary of EFA steps / process

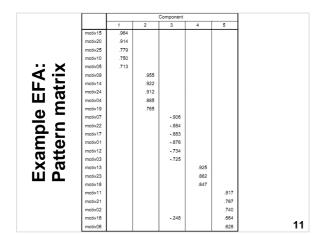
3. Determine no. of factors

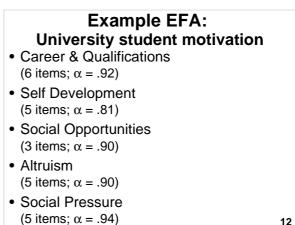
- Theory, Kaiser's criterion, Eigen Values, Scree plot, % variance explained, interpretability of weakest factor

4. Select items

7

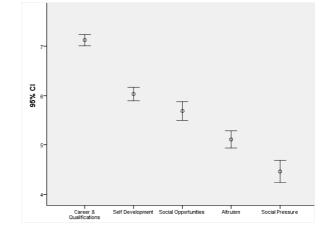
9

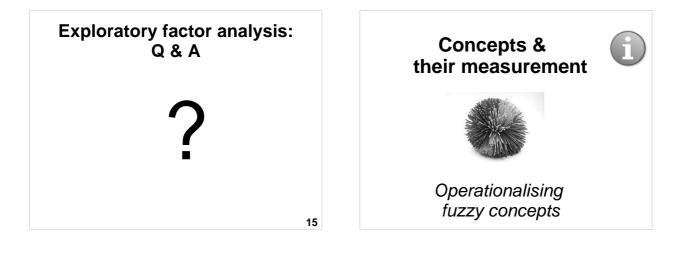

- Check factor loadings to identify which items belong in which factor; drop items 1-by-1 if primarily loading low and/or cross-loadings high and/or item wording doesn't belong to meaning of factor.


Summary of EFA steps / process

- 5. Name and define factors
- 6. Examine correlations amongst factors
- 7. Check factor structure for subgroups
- 8. Analyse internal reliability Covered in
- this lecture 9. Compute composite scores

Example EFA: University student motivation


- 271 UC students responded to 24 university student motivation statements in 2008 using an 8-point Likert scale (False to True) e.g., "I study at university ... "
 - to enhance my job prospects.
 - because other people have told me I should.
- EFA PC Oblimin revealed 5 factors 10



(5 items; α = .94)

Example EFA: Factor correlations									
Motivation CQ SD SO AL SP									
Career & Qualif.		.26	.25	.24	.06				
Self Develop.			.33	.55	18				
Social Enjoyment				.26	.33				
Altruism					.11				
Social Pressure									

Concepts & their measurement: Bryman & Cramer (1997)

Concepts

- form a linchpin in the process of social research
- express common elements in the world (to which we give a name)

Hypotheses

• express relations between concepts

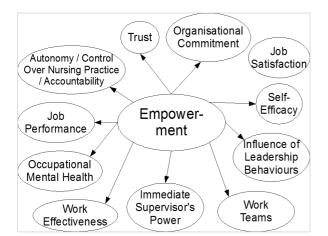
17

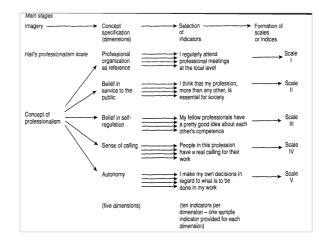
Concepts & their measurement: Bryman & Cramer (1997)

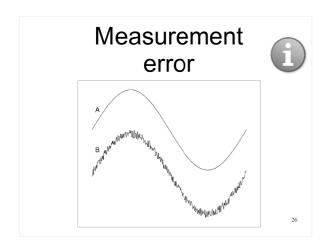
"Once formulated, a concept ... will need to be **operationally defined**, in order for systematic research to be conducted in relation to it..."

Concepts & their measurement: Bryman & Cramer (1997)

"...An operational definition

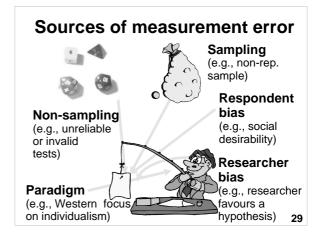

specifies the procedures (operations) that will permit differences between individuals in respect of the concept(s) concerned to be precisely specified..."


Operationalisation


- ...is the act of making a *fuzzy concept* measurable.
- Social sciences often use *multi-item measures* to assess related but distinct aspects of a fuzzy concept.

Operationalisating a fuzzy concept: **Operationalisation steps** Example (Brainstorming indicators) Played position well 1. Brainstorm indicators of a concept Personal skill level was at or Achieved the desired game result above desired standard 2. Define the concept Personally implemented the Communicated well with 3. Draft measurement items ates in g am's game plan 4. Pre-test and pilot test Satisfaction with Game Performance 5. Examine psychometric properties Played consistently well throughout the game (as opposed - how precise are the measures? throughout the game (to playing in patches) Played with good sportsm 6. Redraft/refine and re-test Experienced 'flow' states during Happy with fitness during game game (i.e. optimal arousal/performance) 22

Measurement precision & noise


"The lower the precision, the more subjects you'll need in your study to make up for the "noise" in your measurements. Even with a larger sample, noisy data can be hard to interpret. And if you are an applied scientist in the business of testing and assessing clients, you need special care when interpreting results of noisy tests."

http://www.sportsci.org/resource/stats/precision.html

Measurement error

- **Measurement error** is any deviation from the **true value** caused by the measurement procedure.
- Observed score = true score + measurement error
- Measurement error = systematic error + random error

28

To minimise measurement error

Use well designed measures:

- Multiple indicators for fuzzy constructs
- Sensitive to target constructs
- Clear instructions and questions

To minimise measurement error

Reduce demand effects:

- Train interviewers
- Use standard administration survey protocol

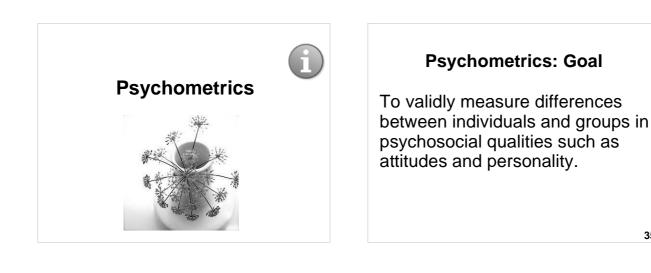
30

To minimise measurement error

Obtain a representative sample:

- Use probability-sampling if possible
- · Minimise bias in selection for nonprobability sampling

Maximise response rate:


- · Pre-survey contact
- Minimise length / time / hassle
- Offer rewards / incentives
- Coloured paper
- Call backs / reminders

To minimise measurement error

Ensure administrative accuracy:

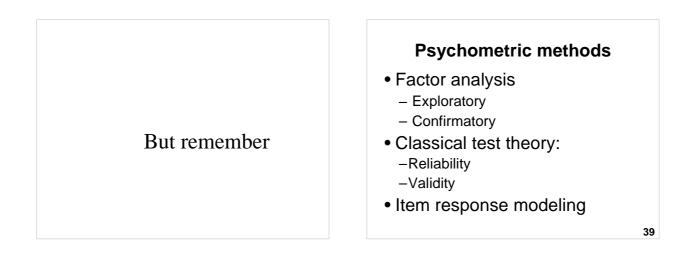
- Set up efficient coding, with welllabelled variables
- Check data (double-check at least a portion of the data)

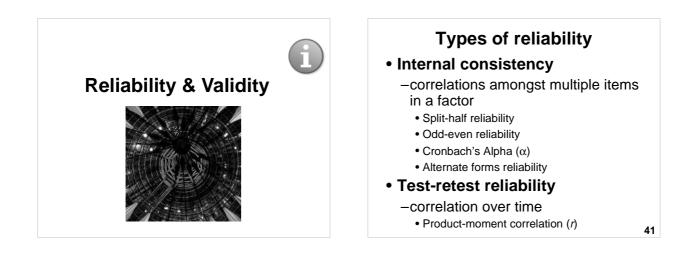
33

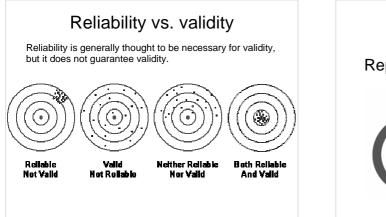
32

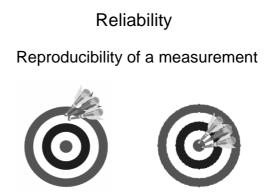
Psychometrics: As test-taking grows, test-makers grow rarer

"Psychometrics, one of the most obscure, esoteric and cerebral professions in America, is now also one of the hottest." - As test-taking grows, test-makers grow rarer, David M. Herszenhor, May 5, 2006, New York Times


e.g., due to increased testing of educational and psychological capacity and performance


36


Psychometric tasks


- Develop approaches and procedures (theory and practice) for measurement of psychological phenomena
- Design and test psychological measurement instrumentation e.g., examine and improve reliability and validity

37

Reliability and validity (Howitt & Cramer, 2005)

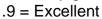
Reliability and validity are the means by which we evaluate the value of psychological tests and measures.

- Reliability is about
 - the consistency of the items within the measure
 - the consistency of a measure over time

• Validity concerns the evidence that the measure actually measures what it is intended to measure.

44

Reliability and validity (Howitt & Cramer, 2005)


 Reliability and validity are not inherent characteristics of measures. They are affected by the context and purpose of the measurement → a measure that is valid for one purpose may not be valid for another purpose.

45

Reliability rule of thumb

- .6 = OK
- .7 = Good
- .8 = Very good, strong

>.95 = may be overly reliable or

redundant – this is subjective and whether a scale is overly reliable depends also on the nature what is being measured

46

Table 7 Fabrigar et al. (1999).	Perso and	nal of onality Social hology	Journal of Applied Psychology		
Variable	N	%	N	%	
Average reliability of variables					
Less than .60	3	1.9	2	3.4	
.6069	6	3.8	5	8.6	
.70–.79	33	20.8	9	15.5	
.8089	33	20.8	11	19.0	
.90-1.00	14	8.8	9	15.5	
Unknown	70	44.0	22	37.9	

Reliability rule of thumb

Internal consistency (or internal reliability)

Internal consistency is about:

- How well multiple items combine as a measure of a single concept
- The extent to which responses to multiple items are consistent with one another

Internal consistency (Recoding)

Remember to:

• Ensure that negatively-worded items are recoded

Types of internal consistency: Split-half reliability

- Sum the first half of the items.
- Sum the second half of the items.
- Compute a correlation between the sums of the two halves.

Types of internal consistency -Odd-even reliability

- Sum items 1, 3, 5, etc.
- Sum items 2, 4, 6, etc.
- Compute a correlation between the sums of the two halves.

Types of internal reliability: Alpha reliability (Cronbach's α)

- Averages all possible split-half reliability coefficients.
- Akin to a single score which represents the degree of intercorrelation amongst the items.

52

50

Internal reliability example: Student-rated quality of maths teaching

- 10-item scale measuring students' assessment of the educational quality of their maths classes
- 4-point Likert scale ranging from: strongly disagree to strongly agree

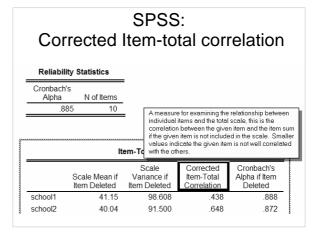
How many items per factor?

- More items → greater reliability (The more items, the more 'rounded' the measure)
- Law of diminishing returns
- Min. = 2?
- Max. = unlimited?
- Typically ~ 4 to 12 items per factor
- Final decision is subjective and depends on research context

53

51

Quality of mathematics teaching


- 1. My maths teacher is friendly and cares about me
- 2. The work we do in our maths class is well organised.
- My maths teacher expects high standards of work from everyone.
- 4. My maths teacher helps me to learn.
- 5. I enjoy the work I do in maths classes.

+ 5 more

55

Internal reliability example: Quality of maths teaching

🗰 student.sav - SPSS Data Editor												
File Edit	View Data	Transform	Analyze	Graphs	Utiliti	es	Wi	ndow Help				
2 1 : sector9		Comp	iptive Stat are Means	;)))		1	0				
	sector93	sex93	Gener Correl	al Linear N Iste	1odel	2	Ι	maths2	maths3	rr		
1	3		Regre			1	З	3	3			
2	3		Logline			•	2	3	2			
3	3		Classi	fy		+	3	4	2			
4	3		Data F	Reduction		ъJ	4	4	4			
5	3		Scale					Reliability Analy				
6	3			arametric	Fests		1	Multidimension	al Scaling			
7	3		Surviv			2	3	3	2			
8	3		Multip	le Respon	se	'	1	3	2			

SPSS: Cronbach's α								
Reliabili	ty Statistics							
Cronbach's Alpha N of Items								
.885 10 A measure for examining the relationship between individual items and the total scale, this is the value of Cronbach's Alpha for the remaining items if the given item is not included in the scale.								
	It	em-Total Statis	tics					
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted				
school1	41.15	98.608	.438	.888				
school2	40.04	91.500	.648	.872				

S	SPSS: F	Reliabi	lity outp	but
Item-total	Statistics			
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Alpha if Item Deleted
MATHS1 MATHS2 MATHS3 MATHS4 MATHS5 MATHS6 MATHS7 MATHS8 MATHS9 MATHS10	25.2749 25.0333 25.0192 24.9786 25.4664 25.0813 25.0909 25.8699 25.0340 25.4642	25.5752 26.5322 30.5174 25.8671 25.6455 24.9830 26.4215 25.7345 26.1201 25.7578	.6614 .6235 .0996 .7255 .6707 .7114 .6208 .6513 .6762 .6495	.8629 .8661 .9021 .8529 .8622 .8587 .8662 .8637 .8633
Reliabilit N of Cases	y Coefficients = 1353.0		N of Items = 1	
Alpha =	.8790			59

S	PSS: R	Reliabi	lity outp	out
Item-total	Statistics			
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Alpha if Item Deleted
MATHS1 MATHS2 MATHS4 MATHS5 MATHS6 MATHS7 MATHS8 MATHS9 MATHS10	22.2694 22.0280 21.9727 22.4605 22.0753 22.0849 22.8642 22.0280 22.4590	24.0699 25.2710 24.4372 24.2235 23.5423 25.0777 24.3449 24.5812 24.3859	.6821 .6078 .7365 .6801 .7255 .6166 .6562 .7015 .6524	.8907 .8961 .8871 .8909 .8873 .8955 .8955 .8957 .8955 .8930
Reliability N of Cases	y Coefficients = 1355.0		N of Items =	9
Alpha =	.9024			60

LEQ 8-factor model	Description	3 items per scale		
		Test- Retest r	Alpha	
Achievement Motivation	Motivation to achieve excellence and put the required effort into action to attain it.	.68	.87	
Active Initiative *	Initiating action in new situations.	.73	.81	
Emotional Control	Maintaining emotional control when faced with potentially stressful situations.	.75	.87	
Intellectual Flexibility	Adapting thinking and accommodating new information from changing conditions and different perspectives.	.60	.78	
Self Confidence *	Confidence in abilities and the success of actions.	.73	.84	
Social Competence	Ability in and success of social interactions.	.75	.86	
Task Leadership	Ability to lead other people effectively when a task needs to be done and productivity is the primary requirement.	.81	.82	
Time Management	Makes optimum use of time.	.75	.84	
Total N	Effective in generic life skills.	.72	.84	

Validity

Validity is the extent to which an instrument actually measures what it purports to measure.

Validity = does the test measure what its meant to measure?

Validity

- Validity is multifaceted and includes:
 - Correlations with similar measures
 - How the measure performs in relation to other variables
 - How well the measure helps to predict the future

Face validity

(low-level of importance overall)

measure what the test purports to

"Do the questions appear to

• Asks:

measure?"

• Important for:

• How assessed:

Respondent buy-in

Read the test items

63

65

Types of validity

- Face validity
- Content validity
- Construct validity
- Criterion validity

64

66

Content validity (next level of importance)

• Asks:

"Are questions measuring the complete construct?"

• Important for: Ensuring holistic assessment

• How assessed: Diverse means of item generation (lit. review, theory, interviews,

expert review)

Criterion validity (high importance)

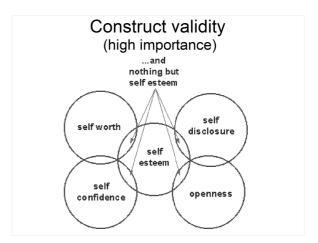
• Asks: Concurrent validity & predictive validity "Can a test score predict real world outcomes?"

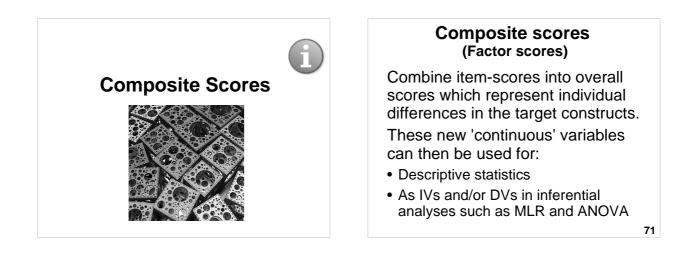
Important for: Test relevance and usefulness How assessed:

Correlate with external criteria such as performance appraisal scores

Construct validity (high importance)

• Asks:

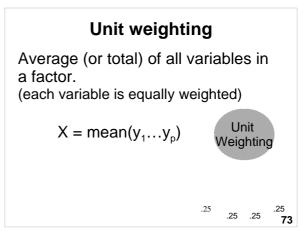

Does the test assess the construct it purports to? ("the truth, the whole truth and nothing but the truth.")


Important for:

Making inferences from operationalisations to theoretical constructs

• How assessed:

Statistical (common factor underlying several measurements using different observable indicators?) and theoretical (is the theory about the construct valid?) **68**



Composite scores (Factor scores)

There are two ways of creating composite scores:

- Unit weighting
- Regression weighting

Creating composite scores: Dealing with missing data

It can be helpful to maximise sample size by allowing for some missing data. Reliability rule of thumb

<.6 = Unreliable

- .6 = OK
- .7 = Good

.9 = Excellent

.8 = Very good, strong

>.95 = may be overly reliable or

redundant – this is subjective and whether a scale is overly reliable depends also on the nature what is being measured

75

Composite scores: Missing data

SPSS syntax:

Compute X = mean (v1, v2, v3, v4, v5, v6) You can specify a min. # of items. If the min. isn't available, the composite score will be missing: e.g.,

Compute X = mea **1.4** (v1, v2, v3, v4, v5, v6) How many items can be missed? Depends on

- overall reliability. A rule of thumb:
- Allow 1 missing per 4 to 5 items
- Allow 2 missing per 6 to 8 items
- Allow 3+ missing per 9+ items

A researcher may decide to be more or less conservative depending on the factors' reliability, sample size, and the nature of the study. **76**

78

5)

74

Regression weighting
Factor score regression weighting
The contribution of each
item to the composite score
is weighted to reflect some
items more than other
items.
X = 20*a + .19*b + .27*c + .34*d
This is arguably more valid, but it
may be marginal, and it makes factor
scores difficult to compare20 .19 .27 d
b c ₇₇

Regression weighting

Two calculation methods:

- Manual (use Compute)
- Automatic (use Factor Analysis – Factor Scores)

Save as variables	Continue
Method	Cancel
Egression	
C Bartlett	Help
C Anderson-Rubin	

64	FAC1_1	Numeric	11	5	REGR factor score	1 for analysis 1	N
65	FAC2_1	Numeric	11	5	REGR factor score	2 for analysis 1	N
66	FAC3_1	Numeric	11	5	REGR factor score	3 for analysis 1	N
67	FAC4_1	Numeric	11	5	REGR factor score	4 for analysis 1	N
68	FAC5_1	Numeric	11	5	REGR factor score	5 for analysis 1	Ν
69	FAC6_1	Numeric	11	5	REGR factor score	6 for analysis 1	N
70	FAC7_1	Numeric	11	5	REGR factor score	7 for analysis 1	N
71	FAC8_1	Numeric	11	5	REGR factor score	8 for analysis 1	N
72	FAC9_1	Numeric	11	5	REGR factor score	9 for analysis 1	N

Variable view

	1											
	FAC1_1	FAC2_1	FAC3_1	FAC4_1	FAC5_1	FAC6_1	FAC7_1	FAC8_1	FAC9_1			
5	.46	.41	-4.41	-1.29	.93	.26	-2.63	.99	-1.21			
3	-1.34	-1.90	3.17	-1.06	10	1.95	-1.39	.66	08			
Ē	36	02	1.61	-1.27	-2.05	-1.77	74	.72	1.00			
?	.51	09	.11	.56	1.05	72	93	1.06	17			
5	.30	54	14	2.65	54	.11	1.82	.53	1.23			
Ē	01	1.18	.56	26	1.35	-1.36	58	-1.06	63			
2	-1.91	-1.74	1.73	36	-2.47	1.34	.37	.86	38			
F	-1.55	13	-1.09	.33	1.28	-2.01	1.86	-1.98	.72			
	Data view											

Writing up instrument development

Writing up instrument development • Introduction

- Lit. review of underlying factors theory and research
- Method

-Materials/Instrumentation summarise how the measures were developed and their expected factor structure

e.g., present a table of the expected factors and their operational definitions.

Writing up instrument development

Results

- -Factor analysis
 - Assumption testing/ factorability
 - Extraction method & rotation
 - # of factors & items removed
 - Names & definitions of factors
 - Item factor loadings & communalities
 - Factor correlations
- -Reliability & composite scores

82

Writing up instrument development

Discussion

- Theoretical underpinning Was it supported by the data? What adaptations should be made to the theory?
- Quality / usefulness of measure Provide an objective, critical assessment, reflecting the measures' strengths and weaknesses
- -Recommendations for further improvement
- Writing up a factor analysis – See downloadable example

83

Summary

- 1. Operationally define concepts
- 2. Brainstorm measurement items
- 3. Draft measure aiming to minimise measurement error
- 4. Pre-test & pilot
- 5. Use EFA, reliability, and validity
- 6. Create composite scores

References

- Allen, P. & Bennett, K. (2008). *Reliability analysis* (Ch 15) in SPSS for the health & behavioural sciences (pp. 205-218). South Melbourne, Victoria, Australia: Thomson.
- Bryman, A. & Cramer, D. (1997). Concepts and their measurement (Ch. 4). In Quantitative data analysis with SPSS for Windows: A guide for social scientists (pp. 53-68). Routledge.
- DeCoster, J. (2000). Scale construction notes. http://www.stat-help.com/scale.pdf (pdf)
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-299.
- Fowler, F. (2002). Designing questions to be good measures. In *Survey research methods* (3rd ed.)(pp. 76-103). Thousand Oaks, CA: Sage. Ereserve.
- Howitt, D. & Cramer, D. (2005). Reliability and validity: Evaluating the value of tests and measures (Ch. 13). In *Introduction to research methods in psychology* (pp. 218-231). Harlow, Essex: Pearson. eReserve.

86

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

