| Copyright (c) 2012 Young W. Lim.                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
| Please send corrections (or suggestions) to <a href="mailto:youngwlim@hotmail.com">youngwlim@hotmail.com</a> .                                                                                                                                                                                                                                                                  |
| This document was produced by using OpenOffice and Octave.                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |

$$\begin{bmatrix} a_{m1} & x_1 & + & a_{m2} & x_2 & + & \cdots & + & a_{mn} & x_n & = & b_m \\ \hline a_{m1} & a_{m2} & \cdots & & & & \\ \hline \sum_{j=1}^n a_{mj} \cdot x_j & = & b_m \\ \hline \vdots & & & & \\ \hline row index & & & \\ \hline col index & & & \\ mxn Matrix & & & \\ \hline \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

#### Echelon Forms (1)

zero rows

Should be grouped at the bottom

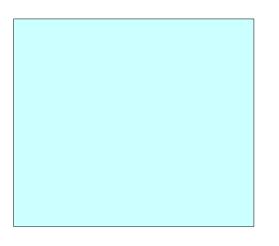
non-zero row

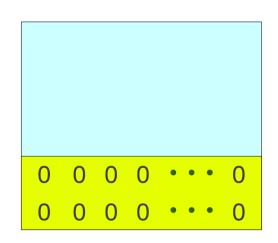
A leading one

The 1<sup>st</sup> non-zero element should be one

Any successive non-zero rows




The leading one of the lower row should be farther to the right than the leading one of the higher row


### Echelon Forms (2)

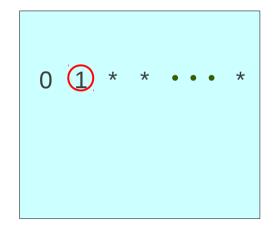
zero rows

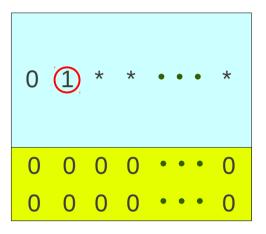


Should be grouped at the bottom






### Echelon Forms (3)


non-zero row

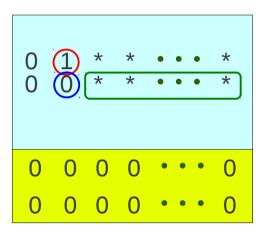


A leading one

The 1<sup>st</sup> non-zero element should be one






### Echelon Forms (3)

Any successive non-zero rows



The leading one of the lower row should be farther to the right than the leading one of the higher row





*The possible location of the leading one* 

Could be like this

0 0 1 \* • • • \*

Or like this

Or like this

0 0000 000

#### Reduced Echelon Forms

zero rows

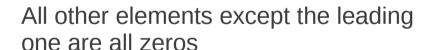


Should be grouped at the bottom

non-zero row



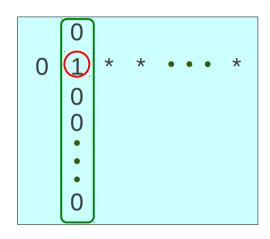
A leading one

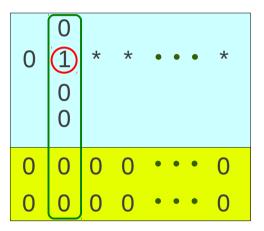

The 1st non-zero element should be one

Any successive non-zero rows

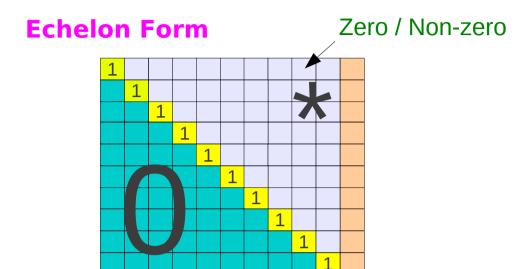


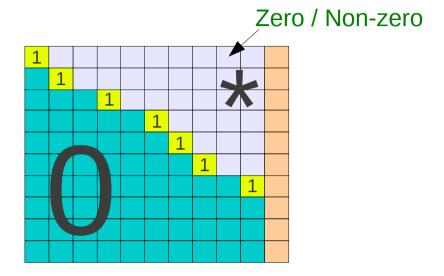
The leading one of the lower row should be farther to the right than the leading one of the higher row


Any column that contains a leading one

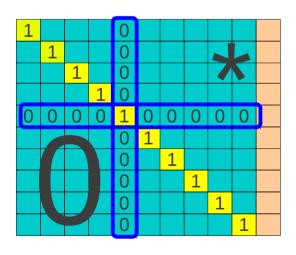


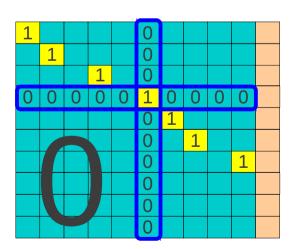

#### Reduced Echelon Forms


Any column that contains a leading one


All other elements except the leading one are all zeros







### **Examples**





#### **Reduced Echelon Form**





## Example

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} +8 \\ -11 \\ -3 \end{pmatrix}$$

### **Gauss-Jordan Elimination**

$$\begin{bmatrix} +2 & +1 & -1 \\ -3 & -1 & +2 \\ -2 & +1 & +2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} +8 \\ -11 \\ -3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$$

# Gauss-Jordan Elimination - Step 1

$$+2x_1 + x_2 - x_3 = 8 (L_1)$$

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
  $(\frac{1}{2} \times L_1)$ 

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
  $(\frac{1}{2} \times L_1)$ 

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

# Gauss-Jordan Elimination – Step 2

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

$$+3x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 = +12$$

$$-3x_1 - x_2 + 2x_3 = -11$$
(L<sub>2</sub>)

$$+2x_1 + \frac{2}{2}x_2 - \frac{2}{2}x_3 = +8 \qquad \qquad \boxed{2 \times L_1}$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (3 \times L_1 + L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5 (2 \times L_1 + L_3)$$

# Gauss-Jordan Elimination – Step 3

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$0x_1 + 1x_2 + 1x_3 = +2$$

$$(2 \times L_2)$$

 $(L_1)$ 

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$

$$0x_1 + 1x_2 + 1x_3 = +2 (2 \times$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3$$

# Gauss-Jordan Elimination - Step 4

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 2x_{2} + 1x_{3} = +5 \qquad (L_{3})$$

$$0x_1 - 2x_2 - 2x_3 = -4 [-2 \times L_2]$$
  

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} - 1x_{3} = +1 \qquad \boxed{-2 \times L_{2} + L_{3}}$$

### Gauss-Jordan Elimination - Step 5

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} - 1x_{3} = +1 \qquad (L_{3})$$

$$0x_1 - 0x_2 + 1x_3 = -1 (-1 \times L_3)$$

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 \qquad (-1 \times L_{3})$$

#### Forward Phase

Forward Phase - Gaussian Elimination

## Gauss-Jordan Elimination - Step 6

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 (L_3)$$

$$0x_1 + 0x_2 + \frac{1}{2}x_3 = -\frac{1}{2} \qquad \left[ +\frac{1}{2} \times L_3 \right]$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$0x_1 + 0x_2 - 1x_3 = +1 \qquad (-1 \times L_3)$$

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$+1x_1 + 0x_2 - 0x_3 = +2$$
  $(+1 \times L_3 + L_1)$ 

$$0x_1 + 1x_2 + 0x_3 = +3 \qquad (-1 \times L_3 + L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 (L_3)$$

# Gauss-Jordan Elimination – Step 7

$$+1x_{1} + 0x_{2} - 0x_{3} = +2 (L_{1})$$

$$0x_{1} + 1x_{2} + 0x_{3} = +3 (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 (L_{3})$$

$$0x_1 - \frac{1}{2}x_2 + 0x_3 = -\frac{3}{2} \qquad \left(-\frac{1}{2} \times L_2\right) + 1x_1 + 0x_2 - 0x_3 = +2 \qquad (L_1)$$

$$+1x_1 + 0x_2 - 0x_3 = +2 \qquad (+1 \times L_3 + L_1)$$

$$0x_1 + 1x_2 + 0x_3 = +3 \qquad (-1 \times L_3 + L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 \qquad (L_3)$$

#### **Backward Phase**

# **Gauss-Jordan Elimination**

#### Forward Phase - Gaussian Elimination

$$\begin{bmatrix} +2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +2 & +1 & +5 \end{bmatrix} \rightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 1 & +1/2 & -1/2 & +4 \end{bmatrix}$$

$$\begin{bmatrix}
+1 & +1/2 & -1/2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+1 & +1/2 & -1/2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+1 & +1/2 & -1/2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+1 & +1/2 & -1/2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & +1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+1 & +1/2 & -1/2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & +1
\end{bmatrix}
\rightarrow$$

#### **Backward Phase**

# Storing Magnetic Energy

# Dissipate Magnetic Energy

### Pulse

### Pulse

#### References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003