EigenSpaces (5A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

EigenValues and EigenVectors

$$
\begin{aligned}
& \text { n } \times \text { n } \\
& \left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & & a_{1 n} \\
a_{21} & a_{22} & \cdots & & a_{2 n} \\
\vdots & \vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& \boldsymbol{A x}=\lambda \boldsymbol{x} \\
& \text { eigenvector } \\
& \left(\begin{array}{clll}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& (A-\lambda I) x=0 \\
& \text { characteristic Equation } \\
& \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
\end{aligned}
$$

Characteristic Equation

$$
\begin{aligned}
& \text { n } \times \text { n } \\
& \left(\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \begin{array}{c}
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0} \\
\text { characteristic Equation } \\
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
\end{array} \\
& \left(\begin{array}{cccc}
\lambda-a_{22} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & \lambda-a_{22} & \cdots & -a_{2 n} \\
\vdots & \vdots & & \vdots \\
-a_{n 1} & -a_{n 2} & \cdots & \lambda-a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& \left.\begin{array}{rl}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =0 \\
\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A}) & =0
\end{array}\right\} \\
& \lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}=0
\end{aligned}
$$

Triangular Matrix

Powers of Matrix

$n \times n \quad A$
eigenvalue λ

eigenvector x \begin{tabular}{c}
$n \times n \quad A^{k}$

eigenvalue λ^{k}

eigenvector x

\quad

$A^{2} x=A(A x)=A(\lambda I) x=\lambda A x=\lambda^{2} x$

$A^{2} x=\lambda^{2} x$
\end{tabular}

EigenValue 0

$$
\begin{aligned}
& \text { n x } \\
& \left(\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \begin{array}{c}
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0} \\
\text { characteristic Equation } \\
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
\end{array} \\
& \operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n} \\
& c_{n}=0 \Leftrightarrow \lambda=0 \Leftrightarrow \operatorname{det}(-\boldsymbol{A})=c_{n} \\
& (-1)^{n} \operatorname{det}(\boldsymbol{A})=c_{n} \\
& \operatorname{det}(\boldsymbol{A})=0
\end{aligned}
$$

A nxn Matrix A (1)

1. A is invertible
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution
3. $\operatorname{The} \operatorname{RREF}(A)=I_{n}$
4. A can be written as a product of elementary matrix
5. $\mathbf{A x}=\mathbf{b}$ is consistent for every $\mathrm{n} \times 1 \mathbf{b}$
6. $\mathbf{A x}=\mathbf{b}$ has exactly one solution for every $\mathrm{n} \times 1 \mathbf{b}$
7. $\operatorname{det}(\mathbf{A}) \neq 0$
8. The column vectors are linearly independent
9. The row vectors are linearly independent
10. The column vectors span R^{n}
11. The row vectors span R^{n}
12. The column vectors form a basis for R^{n}
13. The row vectors form a basis for R^{n}
14. $\operatorname{rank}(\mathbf{A})=n$
15. $\operatorname{nullity}(\mathbf{A})=0$
16. The orthogonal complement of the null space is R^{n}
17. The orthogonal complement of the row space is $\{\mathbf{0}\}$

A nxn Matrix A (2)

18. The range of T_{A} is R^{n}
19. T_{A} is one-to-one
20. $\lambda=0$ is not the eigenvalue of A

Diagonalizable

n \times n
A \square

$$
B=P^{-1} A P
$$

$$
\operatorname{det}(\boldsymbol{B})=\operatorname{det}\left(\boldsymbol{P}^{-1} \mathbf{A} \boldsymbol{P}\right)=\operatorname{det}\left(\boldsymbol{P}^{-1}\right) \operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{P})
$$

$$
=\frac{1}{\operatorname{det}(\boldsymbol{P})} \operatorname{det}(\mathbf{A}) \operatorname{det}(\boldsymbol{P})=\operatorname{det}(\mathbf{A})
$$

$$
\operatorname{rank}(\boldsymbol{B})=\operatorname{rank}(\boldsymbol{A})
$$

$$
\operatorname{nullity}(\boldsymbol{B})=\operatorname{nullity}(\boldsymbol{A})
$$

$$
(\lambda I-A)=0 \quad(\lambda I-B)=0
$$

Similarity Transform

$$
\begin{array}{ll}
n \times n & n \times n \\
A & \square=P^{-1} A P \quad: \text { Diagonal Matrix }
\end{array}
$$

A: diagonalizable \Rightarrow n linear independent eigenvectors

$$
\text { A: diagonalizable } \quad \Rightarrow \quad \boldsymbol{D}=\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} \quad \boldsymbol{P} \boldsymbol{D}=\boldsymbol{A} \boldsymbol{P}
$$

$$
\boldsymbol{P}=\left[\begin{array}{llll}
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \cdots & \boldsymbol{p}_{\boldsymbol{n}}
\end{array}\right] \quad \boldsymbol{D}=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & & \lambda_{n}
\end{array}\right) \quad \boldsymbol{D}=\left(\begin{array}{ll}
\lambda_{1} \boldsymbol{p}_{1} \lambda_{2} \boldsymbol{p}_{2} & \lambda_{n} \boldsymbol{p}_{n} \\
& \\
& \\
& \\
& \\
&
\end{array}\right.
$$

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

