Problem 2.7

Derive the MacLaurin Series expansions for $\cos (t)$ and $\sin (t)$
$f(t)=\cos (t)$

Derivative	Value at $\mathrm{t}=0$
$f(t)=\cos (t)$	1
$f^{\prime}(t)=-\sin (t)$	0
$f^{\prime \prime}(t)=-\cos (t)$	-1
$f^{\prime \prime \prime}(t)=\sin (t)$	0
\ldots	\ldots

$$
\begin{aligned}
& \cos (t)=f(0)+f^{\prime}(0) t+\frac{f^{\prime \prime}(0) t^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) t^{3}}{3!}+\cdots \\
& \cos (t)=1-\frac{1}{2} t^{2}+\frac{1}{24} t^{4}+\cdots \\
& \cos (t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

$f(t)=\sin (t)$

Derivative	Value at $\mathrm{t}=0$
$f(t)=\sin (t)$	0
$f^{\prime}(t)=\cos (t)$	1
$f^{\prime \prime}(t)=-\sin (t)$	0
$f^{\prime \prime \prime}(t)=-\cos (t)$	-1
\ldots	\ldots

$\sin (t)=f(0)+f^{\prime}(0) t+\frac{f^{\prime \prime}(0) t^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) t^{3}}{3!}+\cdots$
$\sin (t)=t-\frac{1}{6} t^{3}+\frac{1}{120} t^{5}+\cdots$
$\sin (t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

