Group Delay and Phase Delay (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Phase Shift and Time Shift

measure phase shift not in second
but in portions of a cosine wave cycle
within phase change in one cycle

Given time shift (delay) $\quad t_{1} \mathrm{sec}$

The same delay applied to all frequencies

Phase Shift \longrightarrow in radians, degrees
Delay $\quad \longrightarrow$ in seconds (time)

The actual phase shift is different according to the frequency $\pi, 2 \pi, 3 \pi \mathrm{rad}$

The different phase shift to the different frequency

Frequency Response

Frequency Response $H\left(e^{j \omega}\right)$

LPF example
$\left|H\left(e^{j \omega}\right)\right| \quad$ Magnitude Response

Linear Phase System

Linear Phase System

Phase Shift \propto Frequency

$$
\angle H\left(e^{j \omega}\right) \propto
$$

a) FIR Filter (Type II) having Linear Phase

c) IIR Filter having Non-Linear Phase

b) FIR Filter (Type IV) having Linear Phase

Non-Linear Phase System

Uniform Time Delay (1)

Frequency Response $H\left(e^{j \omega}\right)$

Uniform Time Delay (2)

Frequency Response $H\left(e^{j \omega}\right) \quad$ Uniform Time Delay

Could remove delay from the phase response to achieve a horizontal line at zero degree (No delay)

The waveform shape can be preserved.
$\left\{\begin{array}{l}\text { uniform magnitude } \\ \text { uniform time delay }\end{array}\left|H\left(e^{j \omega}\right)\right|=c\right.$

linear phase $\quad \angle H\left(e^{j \omega}\right)=k \omega$

CTFT of Sinc Function

$$
t= \pm T_{0}, \pm 2 T_{0}, \pm 3 T_{0}, \cdots \quad x(t)=0
$$

Real Symmetric Signal

CTFT

$$
H(f)=\left\{\begin{array}{l}
T_{0},|f| \leq f_{s} / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

$x(t)=\frac{\sin \left(\pi t / T_{0}\right)}{\pi t / T_{0}}=\frac{\sin \left(\pi f_{s} t\right)}{\pi f_{s} t}$

CTFT Time Shifting Property

CTFT

$$
X(f)=\left\{\begin{array}{l}
T_{0},|f| \leq f_{s} / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

$x(t)=\frac{\sin \left(\pi t / T_{0}\right)}{\pi t / T_{0}}=\frac{\sin \left(\pi f_{s} t\right)}{\pi f_{s} t}$

CTFT

CTFT of Sinc Function Shifted by T_{0}

$$
x(t)=\frac{\sin \left(\pi t / T_{0}\right)}{\pi t / T_{0}}=\frac{\sin \left(\pi f_{s} t\right)}{\pi f_{s} t}
$$

$$
y(t)=x\left(t-T_{0}\right)
$$

$$
\begin{aligned}
& \text { Arg } \Rightarrow \Phi(f) \\
& \text { slope }=\frac{d \Phi}{d f}=-2 \pi T_{0} \Rightarrow \frac{d \Phi}{d \omega}=-T_{0}
\end{aligned}
$$

$$
\text { Group Delay } \quad-\frac{d \Phi}{d \omega}=T_{0}
$$

Pure Delay (No Dispersion)

$$
\frac{1}{T_{0}} \equiv f_{s}
$$

CTFT

$$
X(f)=\left\{\begin{array}{l}
T_{0},|f| \leq f_{s} / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

Linear Phase Change
slope $=-2 \pi T_{0}$

CTFT of Sinc Function Shifted by $2 T_{0}$

CTFT

$$
X(f)=\left\{\begin{array}{l}
T_{0},|f| \leq f_{s} / 2 \\
0, \text { otherwise }
\end{array}\right.
$$

Group Delay $\quad-\frac{d \Phi}{d \omega}=2 T_{0}$

Pure Delay (No Dispersion)

Linear Phase Change
slope $=-2 \pi 2 T_{0}$

Group Delay (1)

Consider the cosine components at closely spaced frequencies and their phase shifts in relation to each other

Group Delay:
The phase shift changes
for small changes in frequency
small changes in frequency

A uniform, waveform preserving phase response \rightarrow linear

Constant Group Delay

Uniform Time Delay (linear phase)

Group Delay (2)

Constant slope \quad Constant Group Delay

Linear Phase System

Phase Shift \propto Frequency
$\angle H\left(e^{j \omega}\right) \propto$
No dispersion
a) FIR Filter (Type II) having Linear Phase

c) IIR Filter having Non-Linear Phase

b) FIR Filter (Type IV) having Linear Phase

Varying slope \quad Varying Group Delay

Simple Low Pass Filter (1)

Frequency Response

$$
\begin{gathered}
H(j \omega)=\frac{1}{1+j \omega / \omega_{0}} \quad \omega_{0}=\frac{1}{R C} \\
H(j \omega)=A(j \omega) e^{j \phi(j \omega)} \\
A(j \omega)=\frac{1}{\sqrt{1+\omega^{2} / \omega_{0}^{2}}} \\
\phi(j \omega)=\tan ^{-1}\left(-\omega / \omega_{0}\right) \\
\tau(\omega)=-\frac{d \phi}{d \omega}=-\frac{1}{1+\omega^{2} / \omega_{0}^{2}}
\end{gathered}
$$

Simple Low Pass Filter (2)

Frequency Response

$$
v_{o}(t)=1-e^{-\frac{t}{\tau}} \quad \omega_{0}=\frac{1}{R C}=\frac{1}{\tau}
$$

which delay?

Group delay is not constant Dispersion

Frequency ω

Simple Low Pass Filter (3)

Frequency Response

$v_{o}(t)=1-e^{-\frac{t}{\tau}} \quad \omega_{0}=\frac{1}{R C}=\frac{1}{\tau}$

When focusing Narrow Band

Output
Time delayed by $\tau\left(\omega_{0}\right)$
Amplitude scaled by $A\left(\omega_{0}\right)$
Phase shifted by $\phi\left(\omega_{0}\right)$

Beat Signal

Very similar frequency signals

1.1 Hz	$\cos (2 \pi * 1.1 * t)$
0.9 Hz	$\cos (2 \pi * 0.9 * t)$

$$
\cos (2 \pi * 1.1 * t)+\cos (2 \pi * 0.9 * t)
$$

$$
=\cos \left(2 \pi * \frac{(1.1-0.9)}{2} * t\right) \cdot \cos \left(2 \pi * \frac{(1.1+0.9)}{2} * t\right)
$$

$$
=\cos (2 \pi * 0.1 * t) \cdot \cos (2 \pi * 1.0 * t)
$$

Slow moving envelop

Fast moving carrier

Angle and Angular Speed

Group Delay

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] http://www.libinst.com/tpfd.htm

