General Vector Space (3A)

Young Won Lim 11/24/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/24/12

Vector Space

V: non-empty <u>set</u> of objects				
defined operations:	addition	u + v		
	scalar multiplication	k u		
if the following axioms ar	re satisfied	V: vector space		
for all object u , v , w and	all scalar <i>k</i> , <i>m</i>	objects in V: vectors		
1. if u and v are objects in V , then $\mathbf{u} + \mathbf{v}$ is in V				
2. $u + v = v + u$				
3. $u + (v + w) = (u + v) + w$				
4. 0 + u = u + 0 = u (zero vector)				
5. u + (- u) = (- u) + (u) = 0				
6. if k is any scalar and u is objects in V, then $k\mathbf{u}$ is in V				
7. $k(u + v) = ku + kv$				
8. (<i>k</i> + <i>m</i>) u = <i>k</i> u + <i>m</i> u				
9. <i>k(m</i> u) = (<i>km</i>) u				
10. 1(u) = u				

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then \mathbf{u} + \mathbf{v} is in W

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace Example (1)

In vector space R^2

Genera	(3A)
Vector \$	Space

Subspace Example (2)

Subspace Example (3)

In vector space R^3

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any two non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^3	3-dim space
	(linearly dep.)	spans	R^3	3-dim space

Genera	d ((3A)	
Vector	S	pac	e

Dimension

Dimension of a Basis (1)

Dimension of a Basis (2)

Basis Test

Plus / Minus Theorem

General	(3A)
Vector S	pace

Finding a Basis

Vectors in a Vector Space

S a nonempty set of vectors in a vector space V

if **S** is a *linearly independent* set that is <u>not already a basis</u> for V, then **S** can be <u>enlarged</u> to a basis for V by <u>inserting</u> appropriate vectors into **S**

Every <u>linearly independent</u> set in a subspace is either a **basis** for that subspace or can be **extended to a basis** for it

if S <u>spans</u> V but is <u>not a basis</u> for V, then S can be <u>reduced</u> to a basis for V by <u>**removing**</u> appropriate vectors from S

Every <u>spanning set</u> for a subspace is either a **basis** for that subspace or has a **basis as a subset**

Dimension of a Subspace

Real-Valued Functions (1)

V the set of real-valued functions

defined at every x in $(-\infty, +\infty)$

$$u = u(x)$$

 $v = v(x)$
 $u+v = u(x)+v(x)$
 $ku = ku(x)$

```
1. if u and v are objects in V, then u + v is in V

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Real-Valued Functions (2)

References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,