General Vector Space (3A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Vector Space

V : non-empty set of objects
defined operations:

addition	$\mathbf{u}+\mathbf{v}$
scalar multiplication	$k \mathbf{u}$

if the following axioms are satisfied
for all object $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalar k, m
V : vector space
objects in V : vectors

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Test for a Vector Space

1. Identify the set V of objects
2. Identify the addition and scalar multiplication on V
3. Verify $\mathbf{u}+\mathbf{v}$ is in V and $k \mathbf{u}$ is in V
closure under addition and scalar multiplication
4. Confirm other axioms.
5. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
6. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
7. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
8. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
9. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
10. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
11. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
12. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
13. $k(m \mathbf{u})=(k m) \mathbf{u}$
14. $1(\mathbf{u})=\mathbf{u}$

Subspace

a subset W of a vector space V

If the subset W is itself a vector space
the subset W is a subspace of V

1. if \mathbf{u} and \mathbf{v} are objects in W , then $\mathbf{u}+\mathbf{v}$ is in W
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in W, then $k \mathbf{u}$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Subspace Example (1)

Subspace Example (2)

Subspace Example (3)

In vector space R^{3}

any one vector	(linearly indep.)	spans	R^{1}	line through 0
any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane through 0
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^{3}	3-dim space

Subspaces of R^{3}

line through 0
R^{2}
plane through 0

$$
R^{3}
$$

3-dim space

Dimension

In a finite-dimensional vector space $\quad R^{n} \quad R^{\infty}$

many bases but the same number of basis vectors
basis $\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}\right\} \quad R^{2}$

basis $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\} \quad R^{2}$

basis $\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}\right\} \quad R^{2}$

The dimension of a finite-dimensional vector space V
$\operatorname{dim}(\mathrm{V})$
the number of vectors in a basis

Dimension of a Basis (1)

In vector space
R^{2}

basis	any one vector	(linearly indep.)	spans	R^{2}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane
	any three or more vectors	(linearly indep.)	spans	R^{2}	plane
	In vector space R^{3}				
basis	any one vector	(linearly indep.)	spans	R^{3}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{3}	plane through 0
	any three vectors non-collinear, non-coplanar	(linearly indep.)	spans	R^{3}	3-dim space
	any four or more vectors	(linearty indep.)	spans	R^{3}	3-dim space

Dimension of a Basis (2)

In vector space R^{n}

| any $n-1$ vectors | (linearly indep.)? | spans R^{n} | line through 0 |
| :--- | :--- | :--- | :--- | :--- |
| basis n vectors of a basis | (linearly indep.) | spans R^{n} | plane |
| any $n+1$ vectors | (linearly indep.) | spans? R^{n} | plane |

$$
\begin{aligned}
& \text { a finite-dimensional vector space } V \\
& \text { a basis } \quad\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \\
& \begin{cases}\text { a set of more than } \mathrm{n} \text { vectors } & \square \\
\text { a set of less than } \mathrm{n} \text { vectors } & \square \\
\text { (linearly indep.) } \\
\text { spans } V\end{cases}
\end{aligned}
$$

$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad$ non-empty finite set of vectors in V
S is a basis

S linearly independent
S spans V

Basis Test

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{\boldsymbol{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad \begin{array}{l}
\text { non-empty finite set of vectors in } V \\
S \text { is a basis }
\end{array} \Rightarrow\left\{\begin{array}{l}
S \text { linearly independent } \\
S \text { spans } V
\end{array}\right.
\end{aligned}
$$

$V \quad$ an n -dimensional vector space
$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ a set of \boldsymbol{n} vectors in V
S linearly independent $\square S$ is a basis
S spans $V \quad \square \quad S$ is a basis

Plus / Minus Theorem

S a nonempty set of vectors in a vector space V
$\left\{\begin{array}{l}S \text { : linear independent } \\ \boldsymbol{v} \text { a vector in } V \text { but outside of span(S) }\end{array}\right.$
$\left\{\begin{array}{l}\boldsymbol{v}, \boldsymbol{u}_{i} \in S \quad \text { linear combination } \\ \boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{n}\end{array} \Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})\right.$: linear independent

Finding a Basis

S a nonempty set of vectors in a vector space

```V
```

S : linear independent

- $S \cup\{\boldsymbol{v}\}$: linear independent

\boldsymbol{v} a vector in V but outside of span(S)
if S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V
by inserting appropriate vectors into S
$\boldsymbol{v}, \boldsymbol{u}_{\boldsymbol{i}} \in S \quad$ linear combination

$$
\Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})
$$

$\boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{\boldsymbol{n}}$
if S spans V but is not a basis for V , then S can be reduced to a basis for V by removing appropriate vectors from S

Vectors in a Vector Space

S a nonempty set of vectors in a vector space V
if S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V
by inserting appropriate vectors into S

Every linearly independent set in a subspace is either a basis for that subspace or can be extended to a basis for it
if S spans V but is not a basis for V, then S can be reduced to a basis for V
by removing appropriate vectors from S

Every spanning set for a subspace is either a basis for that subspace or has a basis as a subset

Dimension of a Subspace

W a subspace of a finite-dimensional vector space V

W is finite-dimensional

$\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$
$W=V \quad \Rightarrow \quad \operatorname{dim}(W)=\operatorname{dim}(V)$

Real-Valued Functions (1)

V the set of real-valued functions
defined at every x in $(-\infty,+\infty)$

$$
\begin{array}{ll}
\boldsymbol{u}=u(x) & \boldsymbol{u}+\boldsymbol{v}=u(x)+v(x) \\
\boldsymbol{v}=v(x) & k \boldsymbol{u}=k u(x)
\end{array}
$$

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Real-Valued Functions (2)

V the set of real-valued functions

$$
\{\sin (x), \sin (2 x), \sin (3 x), \cdots\}
$$

defined at every x in $[0,2 \pi]$

$$
\begin{aligned}
& \boldsymbol{u}_{\mathbf{1}}=\sin (x) \\
& \boldsymbol{u}_{\mathbf{2}}=\sin (2 \mathrm{x}) \\
& \boldsymbol{u}_{\mathbf{3}}=\sin (3 \mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{u}_{\boldsymbol{m}}+\boldsymbol{v}_{\boldsymbol{n}}=\sin (m x)+\sin (n x) \\
& k \boldsymbol{u}_{\boldsymbol{m}}=k \sin (m x)
\end{aligned}
$$

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
V basis R^{∞}
linear independent
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

