Optical Sensor (2C)

- Logarithmic Scale
- Photometric Unit

Copyright (c) 2009 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Linear - Linear Scale

Linear - Log Scale

Log - Linear Scale

* A picture from Wikipedia

Log - Log Scale

Logarithmic and Semi-logarithmic Plots

Linear Scale Plot Example

Data points

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100
* A picture from Wikipedia

Semi-Iogarithmic Scale Plot Example (1)

* A picture from Wikipedia

Semi-Iogarithmic Scale Plot Example (2)

Log values

- $\log (1)=0.00$
- $\log (2)=0.31$
- $\log (3)=0.47$
- $\log (4)=0.60$
- $\log (5)=0.70$
- $\log (6)=0.78$
- $\log (7)=0.85$
- $\log (8)=0.90$
- $\log (9)=0.95$
- $\log (10)=1.0$
- $\log (20)=1.31$
- $\log (30)=1.47$
- $\log (40)=1.60$
- $\log (50)=1.70$
- $\log (60)=1.78$
- $\log (70)=1.85$
- $\log (80)=1.90$
- $\log (90)=1.95$
- $\log (100)=2.0$

Data points

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100
* A picture from Wikipedia

Semi-Iogarithmic Scale Plot Example (3)

Log values

- $\log (1)=0.00$
- $\log (2)=0.31$
- $\log (3)=0.47$
- $\log (4)=0.60$
- $\log (5)=0.70$
- $\log (6)=0.78$
- $\log (7)=0.85$
- $\log (8)=0.90$
- $\log (9)=0.95$
- $\log (10)=1.0$
- $\log (20)=1.31$
- $\log (30)=1.47$
- $\log (40)=1.60$
- $\log (50)=1.70$
- $\log (60)=1.78$
- $\log (70)=1.85$
- $\log (80)=1.90$
- $\log (90)=1.95$
- $\log (100)=2.0$

* A picture from Wikipedia

Slope in a Logarithmic Plot (1)

$$
\begin{aligned}
&\left(x_{1}, y_{1}\right) \\
& \text { slope } m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} \quad \text { slope }=\frac{\left(\log \left(y_{2}\right)-\log \left(y_{1}\right)\right)}{\left(\log \left(x_{2}\right)-\log \left(x_{1}\right)\right)} \\
&=\frac{\left.\log \left(y_{1}\right)\right)}{\log \left(y_{2} / y_{1}\right)}
\end{aligned}
$$

Slope in a Logarithmic Plot (2)

$\left(\log \left(x_{2}\right), \log \left(y_{2}\right)\right)$

$$
\begin{gathered}
\frac{\log \left(y_{2} / y_{1}\right)}{\log \left(x_{2} / x_{1}\right)}=2 \\
\log \left(y_{2} / y_{1}\right)=\log \left(x_{2} / x_{1}\right)^{2} \\
\left(\frac{y_{2}}{y_{1}}\right)=\left(\frac{x_{2}}{x_{1}}\right)^{2}
\end{gathered}
$$

Photometric and Radiometric Units

Photometric Unit

- Human eye's visual system
- More sensitive to some wavelengths than others
- Lux = lumen / meter ${ }^{2}$

Radiometric Unit

- Based on physical power
- All wavelengths are weighted equally
- Watt / meter ${ }^{2}$

References

[1] http://en.wikipedia.org/ $10 / 15 / 09$

