General Vector Space (3A)

Young Won Lim 11/10/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/10/12

Vector Space

V: non-empty <u>set</u> of obje	cts	
defined operations:	addition scalar multiplication	u + v k u
if the following axioms ar for all object u , v , w and	e satisfied all scalar k, m	V: vector space objects in V: vectors
1. if u and v are objects i 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{u}$ 4. $0 + \mathbf{u} = \mathbf{u} + 0 = \mathbf{u}$ (zero 5. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{u}$ 6. if <i>k</i> is any scalar and u 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$	n V, then u + v is in V · w ⊃ vector) : 0 i is objects in V, then <i>k</i> u i	s in ∨
9. <i>k</i> (<i>m</i> u) = (<i>km</i>) u 10. 1(u) = u		

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then \mathbf{u} + \mathbf{v} is in W

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace Example (1)

In vector space R^2

General (2A) Vector Space

Subspace Example (2)

Subspace Example (3)

In vector space R^3

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any two non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any three vectors	(linearly indep.)	spans	R^3	3-dim space
any four or more vectors	(linearly dep.)	spans	R^3	3-dim space

General	(2A)
Vector S	Space

Row & Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Spacesubspace of
$$\mathbb{R}^n$$
= $span\{r_1, r_2, \cdots, r_m\}$ **COLUMN Space**subspace of \mathbb{R}^m

 $= span\{c_1, c_2, \cdots, c_n\}$

$$C_1$$
 C_2 C_n $c_i \in \mathbb{R}^m$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} \vdots \vdots \ldots a_{2n} \vdots a_{m2} \cdots a_{mn}

Row Space

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Space subspace of
$$\mathbb{R}^n$$

= span{ $\mathbf{r_1}, \mathbf{r_2}, \dots, \mathbf{r_m}$ }

$$\boldsymbol{r}_i \in \boldsymbol{R}^n$$

$$\mathbf{r_1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$
$$\mathbf{r_2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$
$$\vdots & \vdots & \vdots \\\mathbf{r_m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
$$\mathbf{n}$$

$$k_1 \mathbf{r_1} + k_2 \mathbf{r_2} + \cdots + k_m \mathbf{r_m}$$

$$= k_{1} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \\ + k_{2} \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \\ \vdots & \vdots & \vdots \\ + k_{m} \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

COLUMN Spacesubspace of
$$\mathbb{R}^m$$
= span{ $\{c_1, c_2, \cdots, c_n\}$

$$k_{1}c_{1} + k_{2}c_{2} + \cdots + k_{n}c_{n}$$

$$= k_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{vmatrix} + k_{2} \begin{vmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{vmatrix} \cdots + k_{n} \begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{vmatrix}$$

General (2A) Vector Space

11

Null Space

Null Space

m	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right) $ n	$= \left(\begin{array}{c} 0\\ 0\\ \vdots\\ 0 \end{array}\right) \mathbf{n}$	1	
	NULL Space R' solution space Invertible A	^a subspace A x = 0 $x = A^{-1}0 = 0$	only trivial s	solution	{ 0 }
	Non-invertible A	zero row(s) in a RREF one two three	free variables one two three	parameters <i>s, t, u,</i> a <u>line</u> through the origin a <u>plane</u> through the origin a <u>3-dim</u> space through the origin	$egin{array}{c} R^1 \ R^2 \ R^3 \end{array}$
_					

Solution Space of **Ax=b** (1)

1 0 0 0		1 -5 1 4
0 1 2 0	0 1 -4 2	0 0 0 0
0 0 0 1	0 0 0	0 0 0
$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$	$1 \underbrace{x_{1}}_{1 \underbrace{x_{2}}}^{+} + 3 \cdot \underbrace{x_{3}}_{1 \underbrace{x_{2}}}^{+} - 1 = 2$	$1 (x_1) - 5 (x_2) + 1 (x_3) = 4$
Solve for a leading variable	$x_1 = -1 - 3 \cdot x_3$	$x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3$
	$x_2 = 2 + 4 \cdot x_3$	
Treat a free variable as a parameter	$x_3 = t$	$x_2 = s x_3 = t$
	$x_1 = -1 - 3t$	$x_1 = 4 + 5s - 1t$
	$x_2 = 2 + 4t$	$\begin{cases} x_2 = s \end{cases}$
	$x_3 = t$	$x_3 = t$

Solution Space of Ax=b (2)

Vector Space

15

Solution Space of Ax=b (3)

ſ	1	0	0	0	í	1 (0	3	-1		ſ	1	-5	1	4	
	0	1	2	0		0	1	-4	2			0	0	0	0	
	0	0	0	1		0	0	0	0			0	0	0	0	ļ
					$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$	= -1 = 2 + = t	. — 3 [.] - 4 <i>t</i>	t				$ x_1 = x_2 = x_3 = $	4 + 5 s t	s — 1 t		
					$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$=\begin{bmatrix} -&&\\ 2&&\\ 0&& \end{bmatrix}$	$\begin{bmatrix} 1\\ 2\\ \end{pmatrix} +$	$t\begin{bmatrix} -3\\4\\1 \end{bmatrix}$	3]		$\begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix}$	$\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} =$	$\begin{bmatrix} 4\\0\\0\end{bmatrix} +$	+ s [5] 1 0	+ t	$\begin{bmatrix} -1\\0\\1 \end{bmatrix}$
		Gene Solut Ax	eral tion of = b		Pa So A	articular olution $x = 1$	ar Of b	Ger Solu A x	neral ution c = 0	of		Part Solu A x	icular Ition c = b	of S	Senera Solutior Ax =	l n of 0

Linear System & Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$\boldsymbol{a}$$
 = $(\boldsymbol{a}_1$, \boldsymbol{a}_2 , \cdots , $\boldsymbol{a}_n)$

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$$

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

normal vector
$$a \cdot x = b$$

$$a \cdot x = 0$$

each solution vector \mathbf{x} of a homogeneous equation orthogonal to the coefficient vector \mathbf{a}

Homogeneous Linear System

Linear System & Inner Product (2)

Homogeneous Linear System

each solution vector \mathbf{X} of a homogeneous equation orthogonal to the row vector \mathbf{r}_i of the coefficient matrix

Homogeneous Linear System $\mathbf{A} \cdot \mathbf{x} = 0$ $\mathbf{A} : m \times n$

solution set consists of all vectors in \mathbb{R}^n that are **orthogonal** to every row vector of \mathbb{A}

General	(2A)
Vector S	pace

Linear System & Inner Product (3)

Linear System & Inner Product (4)

General (2A) Vector Space

20

Consistent Linear System **Ax=b**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + & \cdots & a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + & \cdots & a_{2n}x_n \\ \vdots & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots & a_{mn}x_n \end{pmatrix}$$

$$Ax = b \quad \text{consistent} \quad \bigstar \quad x_n = b \quad x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \quad \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$Ax = x_1c_1 + x_2c_2 + \cdots + x_nc_n = b$$

References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,