Sampling Basics(1B)

- - •

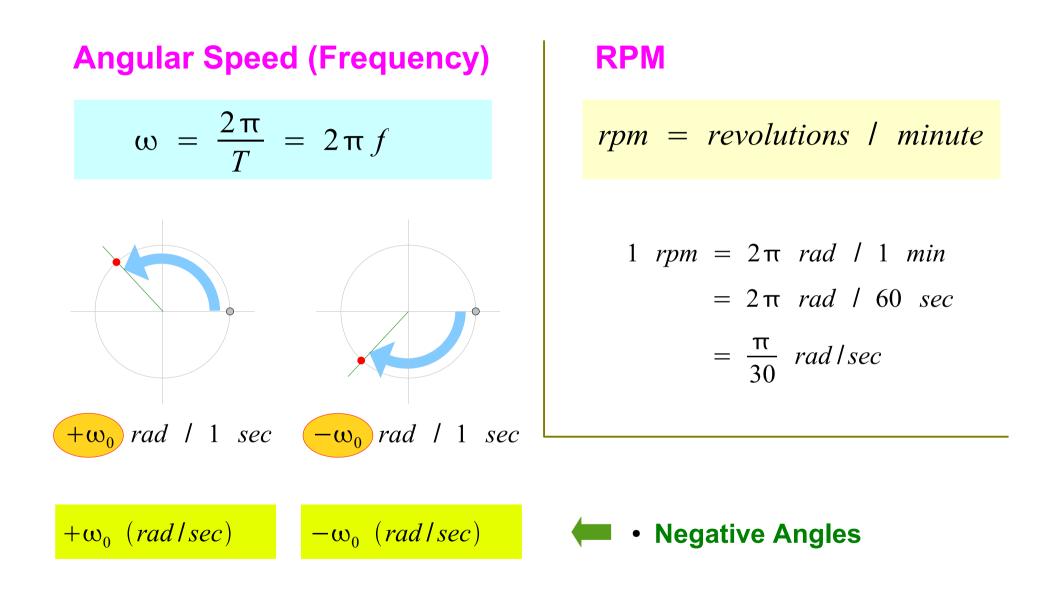
Young Won Lim 9/7/11 Copyright (c) 2009, 2010, 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

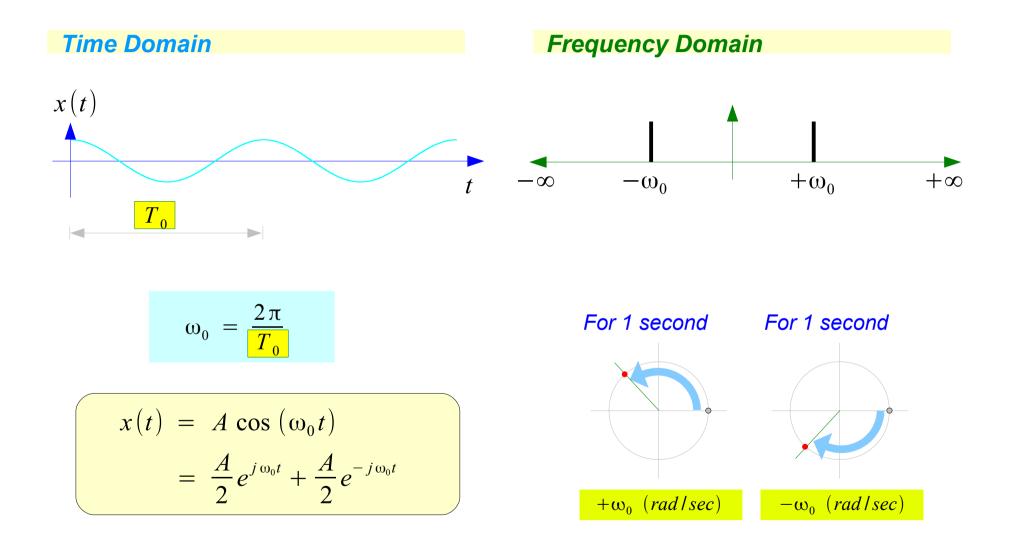
Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

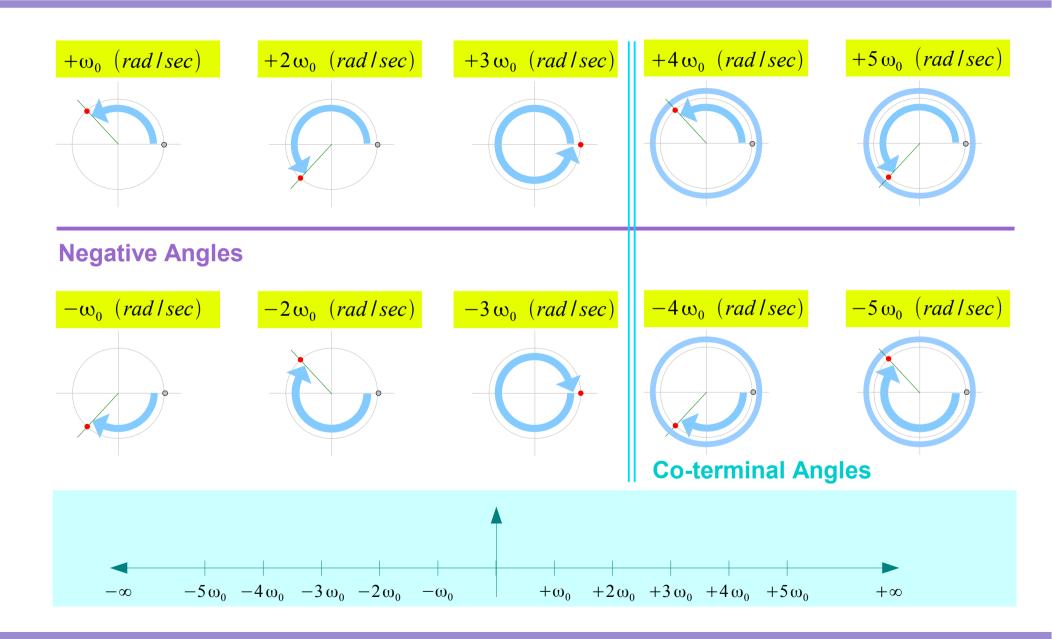
Measuring Rotation Rate



Angular Frequency and Sinusoid

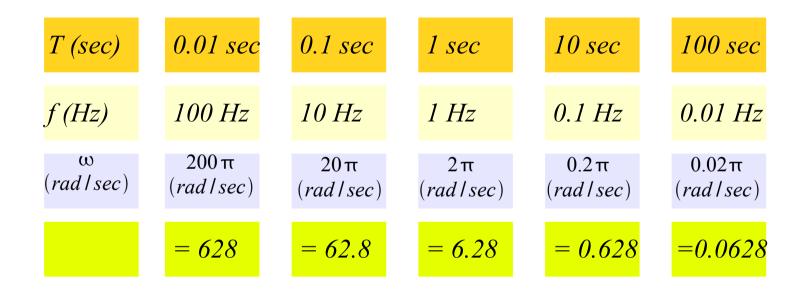


Angular Speed Examples



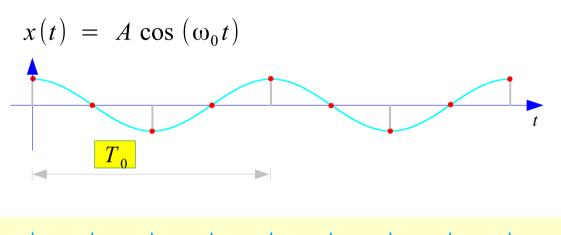
Angular Speed and Frequency

$$\omega = \frac{2\pi}{T} = 2\pi f$$



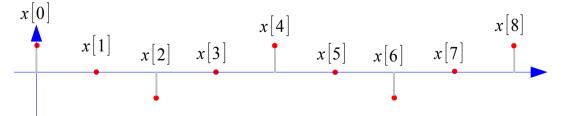
Sampling

continuous-time signals



$$T_{s}(=\tau)$$

discrete-time sequence



Sampling Time $T_s \ (= \tau)$

Sequence Time Length

 $T = N \cdot T_s$

Sampling Frequency

$$f_s = \frac{1}{T_s}$$
 (samples / sec)

Signal's Frequency

$$f_0 = \frac{1}{T_0} \quad (cycles / sec)$$

Sampling Frequency

continuous-time signals $x(t) = A \cos(\omega_0 t)$ T_0 $| = T_s | = \tau \rangle$ For 1 second For 1 second $\frac{1}{T_s}$ $\frac{1}{T_0}$ (samples / sec) (cycles / sec) For 1 <u>sample</u> For 1 <u>cycle</u> 1 (samples) / T_s (sec) 1 (cycles) / T_0 (sec)

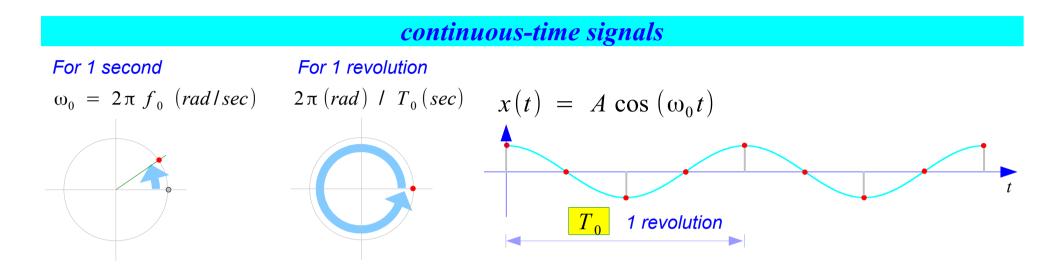
Sampling Time T_s (= τ) Sequence Time Length $T = N \cdot T_s$ Sampling Frequency

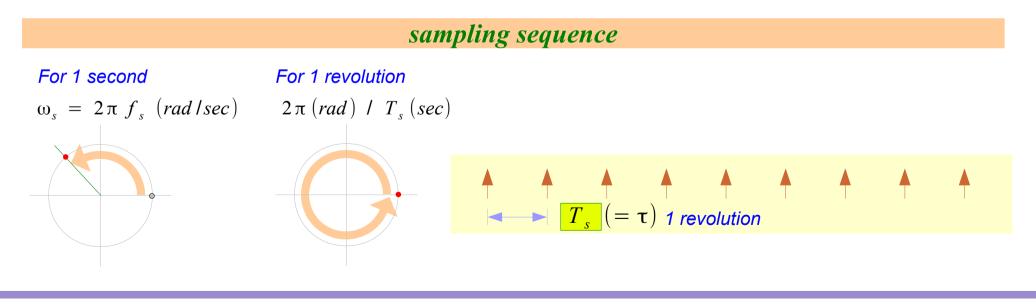
 $f_s = \frac{1}{T_s}$ (samples / sec)

Signal's Frequency

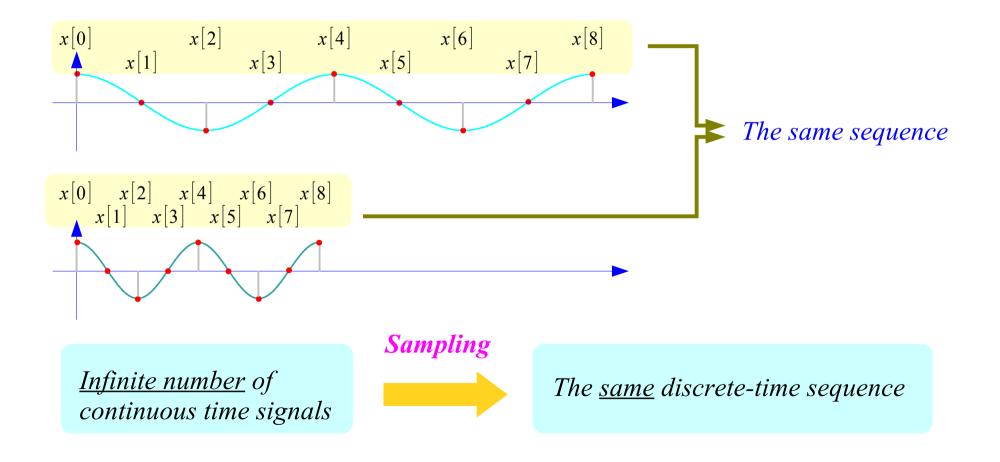
$$f_0 = \frac{1}{T_0}$$
 (cycles / sec)

Angular Frequencies in Sampling





$$x[n] \implies \cdots, x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], \cdots$$



Sampling of Sinusoid Functions

$$x(t) = A \cos (\omega t + \phi)$$

$$\downarrow \quad t \to n T_{s}$$

$$x[n] = x(n T_{s})$$

$$= A \cos (\omega \cdot n T_{s} + \phi)$$

$$= A \cos (\omega \cdot T_{s} n + \phi)$$

$$= A \cos (\hat{\omega} \cdot n + \phi)$$

$$x(t)$$

$$\hat{\omega} = \frac{\omega}{f_{s}} = 2\pi \frac{f}{f_{s}}$$

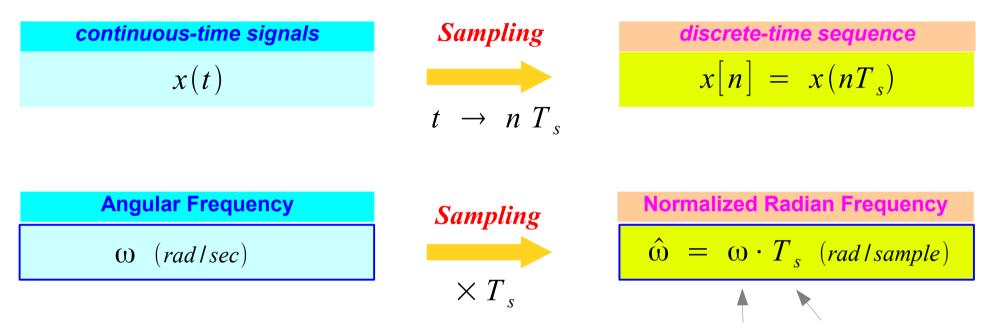
Normalized to f_s
Normalized To f_s

1B Sampling Basics

 $\blacktriangleright T_s$

t

Normalized Radian Frequency (1)



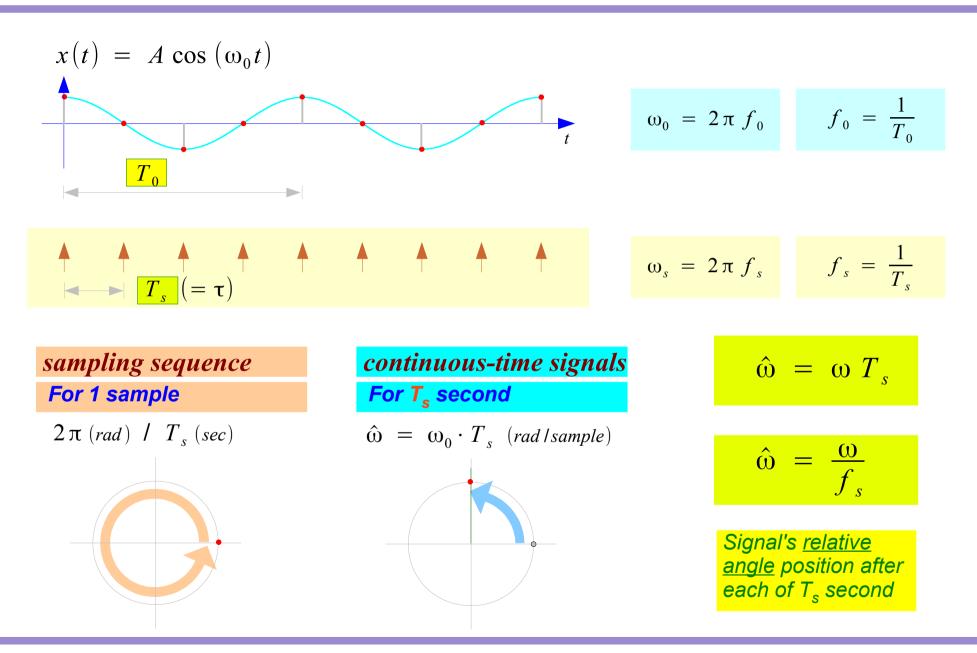
Angular Speed X Sampling Time

Normalized Radian Frequency

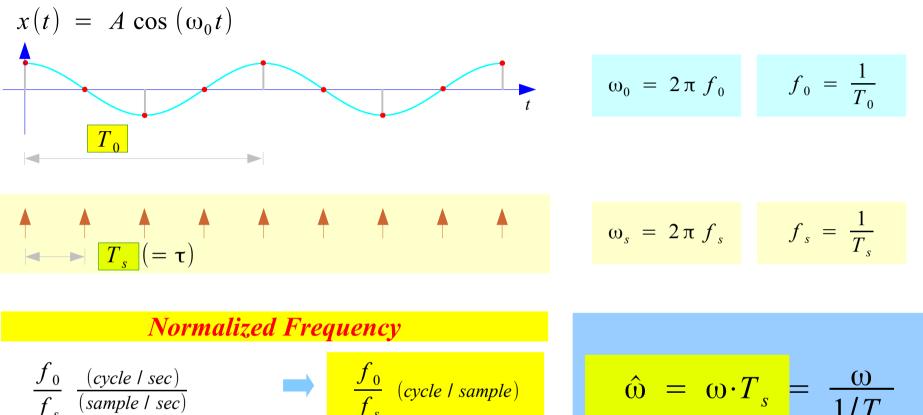
can be viewed as "the <u>angular displacement</u> of a signal during the period of its <u>sample time</u> T_s "

- Negative Angles
 → folding
- Co-terminal Angles
 - \rightarrow periodic

Normalized Radian Frequency (2)



Normalized Radian Frequency (3)



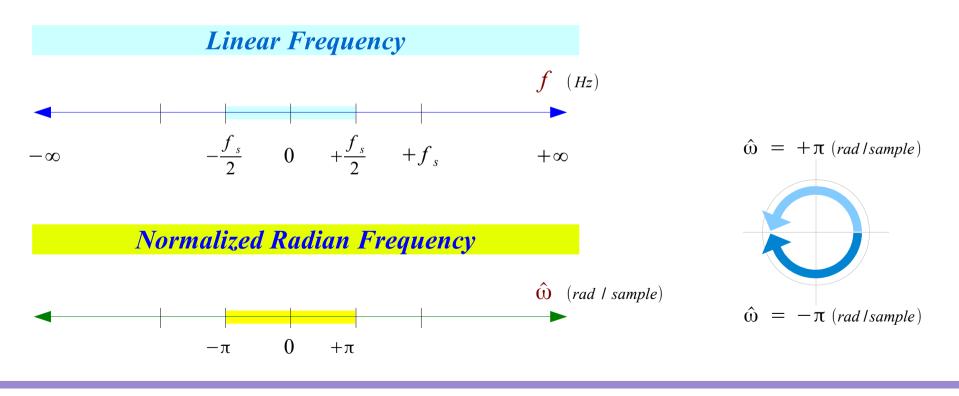
$$2\pi \quad \frac{(rad)}{(cycle)} \cdot \frac{f_0}{f_s} \quad \frac{(cycle)}{(sample)} \qquad \Longrightarrow \qquad \frac{\omega_0}{f_s} \quad (rad \ \ sample)$$

$$\hat{\omega} = \omega \cdot T_s = \frac{\omega}{1/T_s}$$

$$\hat{\omega} = \frac{\omega}{f_s} = 2\pi \frac{f}{f_s}$$

Normalized Radian Frequency (4)

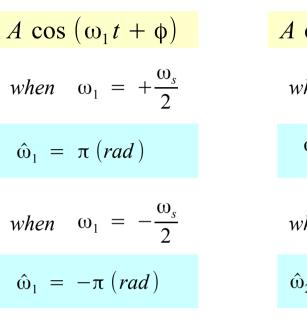
Consider
$$f \in \left(-\frac{f_s}{2}, +\frac{f_s}{2}\right)$$
 \longrightarrow then $\frac{f}{f_s} \in \left(-\frac{1}{2}, +\frac{1}{2}\right)$
 $\hat{\omega} \in \left(-\pi, +\pi\right)$



Example (1)

 $\omega_{s} = 2\pi f_{s} (rad/sec)$ $2\pi (rad) / T_{s} (sec)$ $\hat{\omega}_{1} = \omega_{1} \cdot T_{s} (rad/sample)$ $\hat{\omega}_{2} = \omega_{2} \cdot T_{s} (rad/sample)$

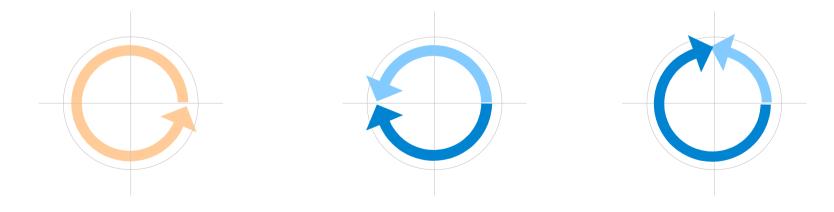
Negative Angles



$$A \cos (\omega_2 t + \phi)$$
when $\omega_2 = +\frac{\omega_s}{4}$
 $\hat{\omega}_2 = \frac{\pi}{2} (rad)$
when $\omega_2 = -\frac{3\omega_s}{4}$

when
$$\omega_2 = -\frac{3\pi}{4}$$

 $\hat{\omega}_2 = -\frac{3\pi}{2}(rad)$



16

Example (2)

 $\omega_s = 2\pi f_s (rad/sec)$ 2π (rad) / T_s (sec) $\hat{\omega}_1 = \omega_1 \cdot T_s \ (rad \, | \, sample)$ $\hat{\omega}_2 = \omega_2 \cdot T_s \ (rad \, | \, sample)$

Co-terminal Angles

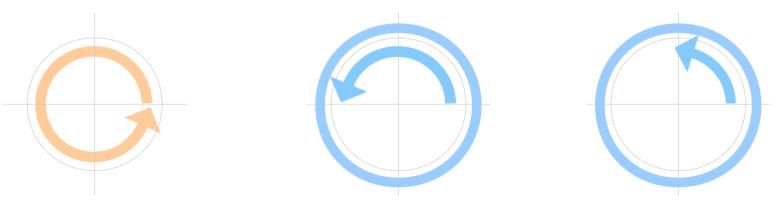
$$A \cos (\omega_{1}t + \phi) \qquad A \cos (\omega_{2}t + \phi)$$

$$when \quad \omega_{1} = \frac{\omega_{s}}{2} \qquad when \quad \omega_{2} = \frac{\omega_{s}}{4}$$

$$\hat{\omega}_{1} = \pi (rad) \qquad \hat{\omega}_{2} = \frac{\pi}{2} (rad)$$

$$when \quad \omega_{1} = \frac{\omega_{s}}{2} + \omega_{s} \qquad when \quad \omega_{2} = \frac{\omega_{s}}{4} + \omega_{s}$$

$$\hat{\omega}_{1} = \pi + 2\pi (rad) \qquad \hat{\omega}_{2} = \frac{\pi}{2} + 2\pi (rad)$$



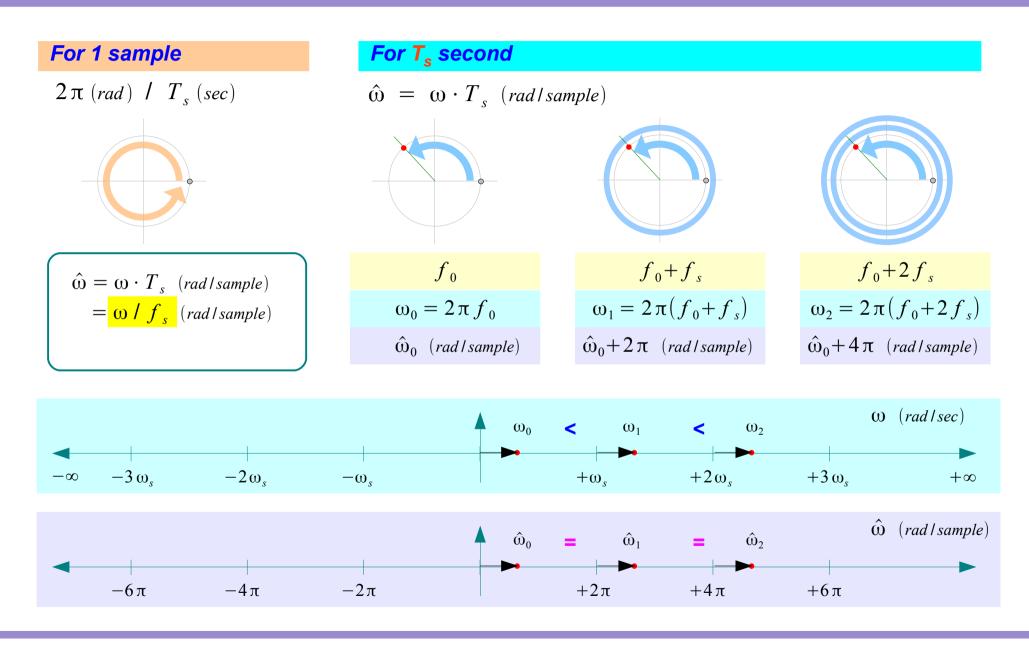
1B Sampling Basics

17

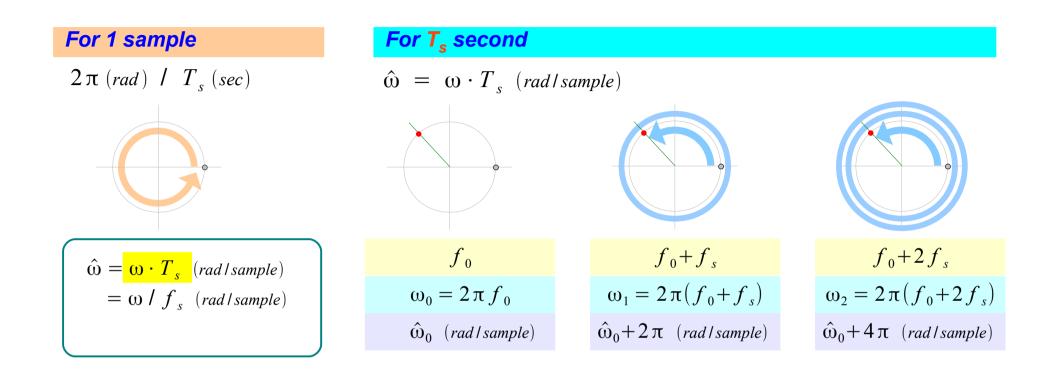
Young Won Lim 9/7/11

 $\frac{\omega_s}{4}$

Co-terminal Angles (1)



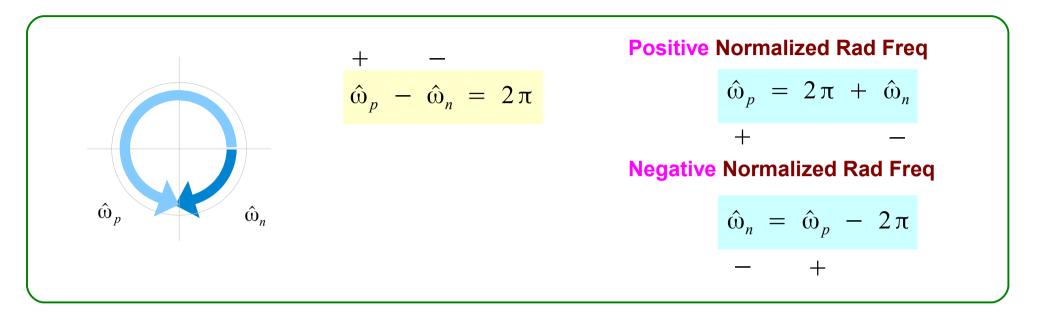
Co-terminal Angles (2)

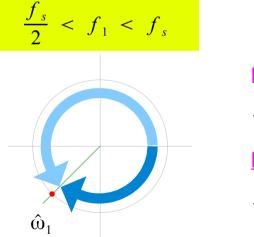


Co-terminal Angles

The same angular positions after each sample time.

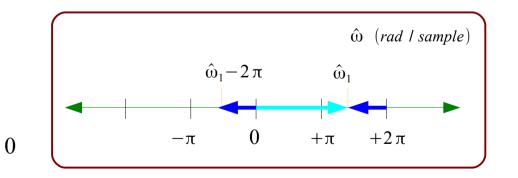
Positive & Negative Angles (1)



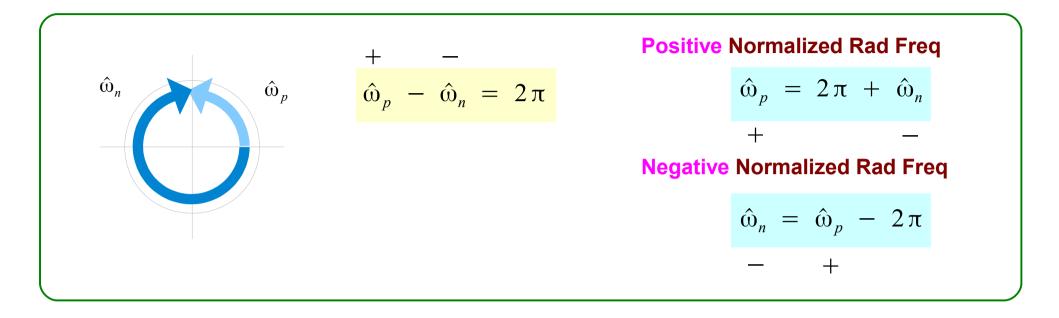


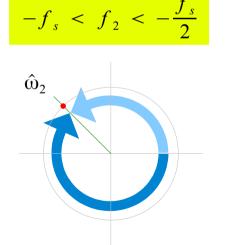
Positive Angle									
$+\pi$	<	$\hat{\omega}_1$	<	2 J	τ				
Negative Angle									
$-\pi$	<	$\hat{\omega}_1$	- 2	2π	<				

Normalized Radian Frequency



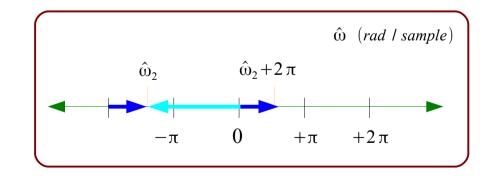
Positive & Negative Angles (2)



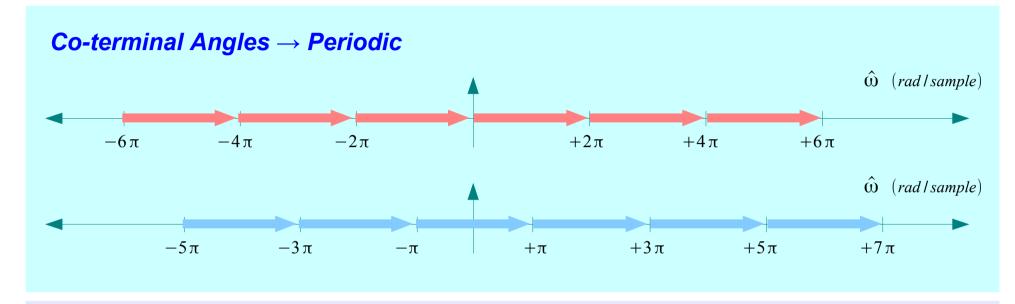


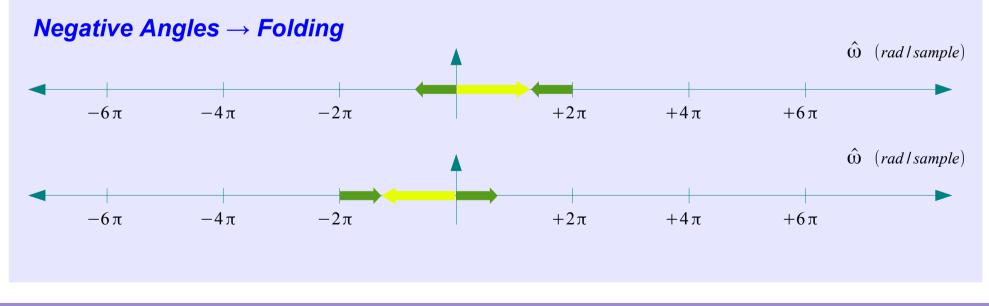
Negative Angle									
_	2π	<	$\hat{\omega}_2$	<	_	π			
Positive Angle									
0	<	2π	: + ć	$\hat{\upsilon}_2$	<	π			

Normalized Radian Frequency



Periodic and Folding





References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann