- Discrete Fourier Transform

Copyright (c) 2009 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

CTFT and DFT

Continuous Time Fourier Transform

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

Discrete Fourier Transform

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \Leftrightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2 \pi / N) k n}
$$

From CTFT to DFT (1)

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
t \rightarrow n T_{s} d t \rightarrow T_{s} \quad \int \rightarrow \sum \quad T_{s} \rightarrow 0 \\
\hat{X}(j \omega)=\sum_{n=-\infty}^{+\infty} x\left(n T_{s}\right) e^{-j \omega n T_{s}} \cdot T_{s} \Leftrightarrow x\left(n T_{s}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \hat{X}(j \omega) e^{+j \omega n T_{s}} d \omega \\
\omega \rightarrow \omega_{k} \quad 0 \leq \omega_{k}<\frac{2 \pi}{T_{s}} \quad 0 \leq k<N \quad 0 \leq n<L \quad \omega_{k}=\frac{2 \pi}{T_{s}} \frac{k}{N} \\
\hat{X}\left(j \omega_{k}\right)=T_{s} \sum_{n=0}^{L-1} x[n] e^{-j \omega_{k} n T_{s}} \quad \Rightarrow x[n]=\frac{1}{2 \pi} \sum_{k=0}^{N-1} \hat{X}\left(j \omega_{k}\right) e^{+j \omega_{k} n T_{s}} \frac{2 \pi}{T_{s}} \frac{1}{N}
\end{gathered}
$$

From CTFT to DFT (2)

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \Rightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
t \rightarrow n T_{s} d t \rightarrow T_{s} \quad \int \rightarrow \sum \quad T_{s} \rightarrow 0 \\
\omega \rightarrow \omega_{k} \quad 0 \leq \omega_{k}<\frac{2 \pi}{T_{s}} \quad 0 \leq k<N \quad 0 \leq n<L \quad \omega_{k}=\frac{2 \pi}{T_{s}} \frac{k}{N} \\
\hat{X}\left(j \omega_{k}\right)=T_{s} \sum_{n=0}^{L-1} x[n] e^{-j \omega_{k} n T_{s}} \quad \Rightarrow x[n]=\frac{1}{2 \pi} \sum_{k=0}^{N-1} \hat{X}\left(j \omega_{k}\right) e^{+j \omega_{k} n T_{s}} \frac{2 \pi}{T_{s}} \frac{1}{N} \\
\omega_{k} T_{s} \rightarrow \frac{2 \pi}{N} k \\
\frac{1}{T_{s}} \hat{X}\left(j \omega_{k}\right)=\sum_{n=0}^{L-1} x[n] e^{-j\left(\frac{2 \pi}{N}\right) k n} \quad \Rightarrow x[n]=\sum_{k=0}^{N-1} \frac{1}{T_{s}} \hat{X}\left(j \omega_{k}\right) e^{+j\left(\frac{2 \pi}{N}\right) k n}
\end{gathered}
$$

From CTFT to DFT (3)

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \Rightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
t \rightarrow n T_{s} \quad d t \rightarrow T_{s} \quad \int \rightarrow \sum \quad T_{s} \rightarrow 0 \\
\omega \rightarrow \omega_{k} \quad 0 \leq \omega_{k}<\frac{2 \pi}{T_{s}} \quad 0 \leq k<N \quad 0 \leq n<L \\
\omega_{k} T_{s} \rightarrow \frac{2 \pi}{N} k \\
\frac{1}{T_{s}} \hat{X}\left(j \omega_{k}\right)=\sum_{n=0}^{L-1} x[n] e^{-j\left(\frac{2 \pi}{N}\right) k n} \quad \Leftrightarrow x[n]=\sum_{k=0}^{N-1} \frac{2 \pi}{T_{s}} \frac{k}{N} \hat{X}\left(j \omega_{k}\right) e^{+j\left(\frac{2 \pi}{N}\right) k n}
\end{gathered}
$$

From CTFT to DFT (4)

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
\omega_{k} T_{s} \rightarrow \frac{2 \pi}{N} k
\end{gathered} \quad \omega_{k}=\frac{2 \pi}{T_{s}} \frac{k}{N} .
$$

$$
\frac{1}{T_{s}} \hat{X}\left(j \omega_{k}\right)=\sum_{n=0}^{L-1} x[n] e^{-j\left(\frac{2 \pi}{N}\right) k n} \Leftrightarrow x[n]=\sum_{k=0}^{N-1} \frac{1}{T_{s}} \hat{X}\left(j \omega_{k}\right) e^{+j\left(\frac{2 \pi}{N}\right) k n}
$$

Discrete Fourier Transform

$$
L=N
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \Leftrightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2 \pi / N) k n}
$$

DTFT and CTFT

$$
\begin{aligned}
& X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}} \\
&=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}=\begin{array}{c}
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
\omega_{s}=\frac{2 \pi}{T_{s}} \\
X\left(e^{j \hat{\omega}}\right) \\
=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \\
\text { DTFT of a sampled signal } \\
X\left(e^{j \hat{\omega}}\right) \\
\hat{\omega}=\omega T_{s}
\end{array} \\
&=X\left(e^{j \omega T_{s}}\right)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
&=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-\frac{2 \pi k}{T_{s}}\right)\right)
\end{aligned}
$$

CTFT of a sampled signal

DFT and DTFT

DTFT of a sampled signal

$$
\begin{aligned}
& X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \\
& \hat{\omega}=\omega T_{s} \\
& \hat{\omega} \rightarrow \hat{\omega}_{k} \quad 0 \leq \hat{\omega}_{k}<2 \pi \quad 0 \leq k<N \quad 0 \leq n<L \\
& X\left(e^{j \hat{\omega}_{k}}\right)=\sum_{n=0}^{L-1} x[n] e^{-j \hat{\omega}_{k} n} \\
& \hat{\omega}_{k}=\left(\frac{2 \pi}{N}\right) k
\end{aligned}
$$

DFT of a sampled signal

$$
X[k]=\quad X\left(e^{j(2 \pi / N) k}\right)=\sum_{n=0}^{L-1} x[n] e^{-j(2 \pi / N) k n}
$$

DTFT sampled in frequency

DFT and CTFT

DFT of a sampled signal

$$
X[k] \quad=X\left(e^{j(2 \pi / N) k}\right)=\sum_{n=0}^{L-1} x[n] e^{-j(2 \pi / N) k n}
$$

DTFT sampled in frequency

$$
\begin{aligned}
& X\left(e^{j \omega T_{s}}\right) \left\lvert\, \omega=\frac{2 \pi k}{N T_{s}} \quad\right. \text { CTFT evaluated at } \omega=\frac{2 \pi k}{N T_{s}} \\
& \left.=\frac{1}{T_{s}} \sum_{l=-\infty}^{+\infty} X_{c}\left(j\left(\omega-l \omega_{s}\right)\right) \right\rvert\, \omega=\frac{2 \pi k}{N T_{s}} \\
& \left.=\frac{1}{T_{s}} \sum_{l=-\infty}^{+\infty} X_{c}\left(j\left(\omega-l \frac{2 \pi}{T_{s}}\right)\right) \right\rvert\, \omega=\frac{2 \pi k}{N T_{s}}
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

