Time Domain Techniques (3B)

for Noisy Signals

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Signal Detrending / Spike Removal

Remove low frequency noise
a constant
a line
a long period sinusoid
least square fitting a low frequency function $\operatorname{tr}[i]$
subtracting the trend from the measurements $\quad y[i]=x[i]-\operatorname{tr}[i]$
example)
removing the dc component

$$
y[i]=x[i]-\operatorname{tr}[i]=x[i]-\frac{1}{N} \sum_{i=0}^{N-1} x[i-1]
$$

removing spikes

$$
\begin{array}{ll}
y[i]=x[i] & \text { if }|x[i]-y[i-1]|<\text { threshold } \\
y[i]=\frac{x[i-1]+x[i+1]}{2} & \text { else }
\end{array}
$$

Stacking

Remove background noise
Assume noise has a zero mean

Measuring multiple times (ensemble)

Averaging across the ensemble

Reduces the noise level in the averaged signal Increases the SNR of the correlated component (signal)

$$
\begin{aligned}
& \boldsymbol{E}[X[i]] \rightarrow x[i] \\
& \boldsymbol{E}[N[i]] \rightarrow 0 \\
& \boldsymbol{E}\left[N^{2}[i]\right] \rightarrow \frac{\sigma_{n}}{\sqrt{M}} \quad S N R \propto \sqrt{M}
\end{aligned}
$$

Moving Average Filter

L-point Running Averager

$$
\begin{aligned}
y[n]=\frac{1}{L} \sum_{k=0}^{L-1} x[n-k] \quad & =\frac{1}{L}\{x[n]+x[n-1]+\cdots+x[n-L+1]\} \\
Y\left(e^{j \hat{\omega}}\right)=\frac{1}{L} \sum_{k=0}^{L-1} e^{-j \hat{\omega} k} X\left(e^{j \hat{\omega}}\right) & =\frac{1}{L}\left\{X\left(e^{j \hat{\omega}}\right)+X\left(e^{j \hat{\omega}}\right) e^{-j \hat{\omega} 1}+\cdots+X\left(e^{j \hat{\omega}}\right) e^{-j \hat{\omega}(L-1)}\right\} \\
H\left(e^{j \hat{\omega}}\right)=\frac{1}{L} \sum_{k=0}^{L-1} e^{j \hat{\omega} k} \quad & =\frac{1}{L}\left\{1+e^{-j \hat{\omega} 1}+\cdots+e^{-j \hat{\omega}(L-1)}\right\} \quad=\frac{1}{L}\left(\frac{1-e^{-j \hat{\omega} L}}{1-e^{-j \hat{\omega}}}\right) \\
& =\frac{1}{L}\left(\frac{e^{-j \hat{\omega} L / 2}}{e^{-j \hat{\omega} / 2}}\right)\left(\frac{e^{+j \hat{\omega} L / 2}-e^{-j \hat{\omega} L / 2}}{e^{+j \hat{\omega} / 2}-e^{-j \hat{\omega} / 2}}\right)=\frac{1}{L}\left(\frac{e^{+j \hat{\omega} L / 2}-e^{-j \hat{\omega} L / 2}}{e^{+j \hat{\omega} / 2}-e^{-j \hat{\omega} / 2}}\right) e^{-j \hat{\omega}(L-1) / 2} \\
& =\left(\frac{\sin (\hat{\omega} L / 2)}{L \sin (\hat{\omega} / 2)}\right) e^{-j \hat{\omega}(L-1) / 2} \quad \quad \text { Dirichlet Function } \\
H\left(e^{j \hat{\omega}}\right) & =D_{L}\left(e^{j \hat{\omega}}\right) e^{-j \hat{\omega}(L-1) / 2} \quad D_{L}\left(e^{j \hat{\omega}}\right)=\frac{\sin (\hat{\omega} L / 2)}{L \sin (\hat{\omega} / 2)}
\end{aligned}
$$

Correlation: Identifying Similarities

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] J.C. Santamarina, D Fratta, "Discrete Signals and Inverse Problems: An Introduction for Engineers and Scientists", 2005

