Complex Functions (1A)

Copyright (c) 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Derivatives

the complex function f is defined in a neighborhood of a point z_{0}
Derivative of f at z_{0}

$$
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided that this limit exists
f is said to be differentiable at z_{0}
Δz can approach zero from any convenient direction

Analyticity

f differentiable at z_{0}
f differentiable at every point in some neighborhood of z_{0}
the complex function f is analytic at a point z_{0}

$$
\begin{aligned}
& f(z)=z \bar{z}=|z|^{2}=x^{2}+y^{2} \\
& \lim _{\Delta z \rightarrow 0} \frac{(x+\Delta x)^{2}+(y+\Delta y)^{2}-x^{2}-y^{2}}{\Delta x+i \Delta y}
\end{aligned}
$$

$f(z)=z^{2}$

Analytic Functions

$$
\begin{aligned}
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z} & \Delta f=f(z+\Delta z)-f(z) \\
\Delta z & =\Delta x+i \Delta y
\end{aligned}
$$

$f(z)$: analytic in a region
$\Rightarrow f(z)$ has a (unique) derivative at every point of the region
$f(z)$: analytic at a point $z=a$
$\Rightarrow \quad f(z)$ has a (unique) derivative at every point of some small circle about $z=a$

Singular Point

Regular point of $f(z)$
$\Rightarrow \quad$ a point at which $f(z)$ is analytic

Singular point of $f(z)$
a point at which $f(z)$ is not analytic

Isolated Singular point of $f(z)$

a point at which
$f(z)$ is analytic
everywhere else
inside some small circle about the singular point

Cauchy-Riemann Condition (1)

$$
f(z)=u(x, y)+i v(x, y)
$$

: differentiable at a point

$$
z=x+i y
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=+\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

Necessary Condition for Analyticity

$$
f(z)=u(x, y)+i v(x, y) \quad f(z)=u(x, y)+i v(x, y)
$$

Cauchy-Riemann Condition (2)

$f(z)=u(x, y)+i v(x, y):$ differentiable at a point $z=x+i y$
$\Rightarrow f^{\prime}(z)$ exists

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \quad \Delta z=\Delta x+i \Delta y \\
& =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z}
\end{aligned}
$$

horizontal approach $\Rightarrow \Delta x \rightarrow 0$
$\Delta z \rightarrow 0$ $\Delta y=0$
vertical approach
$\Delta z \rightarrow 0$
$\Rightarrow \begin{aligned} \Delta y & \rightarrow 0 \\ \Delta x & =0\end{aligned}$
must have the same

Cauchy-Riemann Condition (3)

horizontal approach $\Delta z \rightarrow 0 \Longrightarrow \Delta x \rightarrow 0 \Delta y=0$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \quad=\frac{\partial f}{\partial x}
\end{aligned}
$$

vertical approach $\quad \Delta z \rightarrow 0 \rightarrow \Delta y \rightarrow 0 \Delta x=0$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y} \\
& =-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \quad=-i \frac{\partial f}{\partial y}
\end{aligned}
$$

Cauchy-Riemann Condition (4)

horizontal approach $\Delta z \rightarrow 0 \Longrightarrow \Delta x \rightarrow 0 \Delta y=0$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial f}{\partial x}
$$

vertical approach $\Delta z \rightarrow 0 \rightarrow \Delta y \rightarrow 0 \Delta x=0$

$$
f^{\prime}(z)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=-i \frac{\partial f}{\partial y}
$$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

To Be Analytic (1)

$$
\begin{gathered}
f(z)=u(x, y)+i v(x, y): \text { analytic in a domain D } \\
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{gathered}
$$

$$
f(z)=u(x, y)+i v(x, y): \text { analytic in a domain } \mathrm{D}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

$u(x, y), v(x, y) \quad:$ continuous on in a domain D $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \quad:$ continuous on in a domain D

To Be Analytic (2)

if the real functions and $v(x, y)$ are continuous and have continuous first order partial derivatives
in a neighborhood of z, and if $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations at the point z,
then the complex function $f(z)=u(x, y)+i v(x, y)$
is differentiable at z
and $f^{\prime}(z)$ is as belows.

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Derivatives

$$
f(z)=u(x, y)+i v(x, y) \quad: \text { analytic in a region } R
$$

derivatives of all orders at points inside region $f^{\prime}\left(z_{0}\right), f^{\prime \prime}\left(z_{0}\right), f^{(3)}\left(z_{0}\right), f^{(4)}\left(z_{0}\right), f^{(5)}\left(z_{0}\right), \cdots$

Taylor series expansion about any point z_{0} inside the region

The power series converges inside the circle about z_{0}
This circle extends to the nearest singular point

Laplace Equation

$f(z)=u(x, y)+i v(x, y) \quad:$ analytic in a region R
$\square u(x, y), v(x, y)$ satisfy Laplace's equation in the region
harmonic functions
$u(x, y), v(x, y) \quad$ satisfy Laplace's equation in simply connected region
Real / imaginary part of an analytic function $f(z)$

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"

