Idea (1A)

- Communication Scheduling
-

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

The Butterfly Swap Operations

$$
\begin{aligned}
& x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{0}-\omega^{k} x_{1}
\end{aligned}
$$

The Butterfly Time Multiplexed Operations (1)

$$
\begin{aligned}
& x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{0}-\omega^{k} x_{1} \\
& x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
& x_{0}=x_{0}^{\prime}-\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{0}-\omega^{k} x_{1} \\
& \Rightarrow x_{1}^{\prime}=x_{0}^{\prime}-\omega^{k} x_{1}-\omega^{k} x_{1} \\
& x_{1}^{\prime}=x_{0}^{\prime}-2 \omega^{k} x_{1}
\end{aligned}
$$

The Butterfly Time Multiplexed Operations (2)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
x_{1}^{\prime}=x_{0}-\omega^{k} x_{1} \\
x_{1}^{\prime}=x_{0}-\omega^{k} x_{1} \\
\\
x_{1}=\left(x_{0}-x^{\prime}{ }_{1}\right) \omega^{-k} \\
x_{0}^{\prime}=x_{0}+\omega^{k} x_{1} \\
x_{0}^{\prime}=x_{0}+\omega^{k}\left(x_{0}-x_{1}^{\prime}\right) \omega^{-k} \\
x_{1}^{\prime}=2 x_{0}-x_{1}
\end{array}\right.
\end{aligned}
$$

Communication Patterns - High BW

To avoid deadlock, there must be lower level communication scheduling overhead?

Unless real duplex communication link \rightarrow Shared Bandwidth

Communication Patterns - Limited BW

communication computation

Communication Scheduling - Time Multiplexed

$$
\begin{gathered}
x_{0}^{\prime}= \\
x_{0}+\omega^{k} x_{1}
\end{gathered}
$$

Swapping communication pattern can be avoided

Communication Latency Hiding (1)

Communication Latency Hiding (2)

Speed Up?
Ratio of Comp time to Comm time?

References

[1] http://en.wikipedia.org/
[2]

