Calculations concerning the shaft

a)

Figure: 2D-drawings of axle.
b)

- $2 \times$ wheels
- $2 \times$ Bearings
- $1 \times$ Gear
c)
$\mathrm{Fa}=\mathrm{Fb}=1 / 2 \mathrm{~m} * \mathrm{~g}=1 / 2 * 0.962 * 9.81=4.72 \mathrm{~N}$
$->$ If $\mathrm{Tm}=5.09 * 10^{-3} \mathrm{Nm} \quad$ ($\mathrm{Tm}=$ maximum torque of motor)
$\mathrm{Fm}_{\mathrm{m}}=\mathrm{Tm}_{\mathrm{m}} / \mathrm{R}_{1}=\left(5.09 * 10^{-3}\right) /\left(3 * 10^{-3}\right)=1.70 \mathrm{~N}$
$\Rightarrow \mathrm{Fm}_{\mathrm{x}} \mathrm{x}=\mathrm{Fm}^{*} \cos \left(20^{\circ}\right)=1.59 \mathrm{~N}$
$\Rightarrow F m, y=\mathrm{Fm}^{*} \sin \left(20^{\circ}\right)=0.58 \mathrm{~N}$
Given: $\quad l_{1}=28.5 \mathrm{~mm}$
$\mathrm{I}_{2}=208 \mathrm{~mm}$
$\mathrm{I}_{3}=230 \mathrm{~mm}$
$14=245 \mathrm{~mm}$

> y: $\left\{\begin{array}{l}\sum F_{y}=0 \\ F_{1, y}+F_{2, y}=F_{a}+F_{b}+F_{m, y} \\ \sum M_{1}=0\end{array}\right.$ $-F_{a} * I_{1}-F_{2, y} * I_{2}+F_{m, y} * I_{3}+F_{b} * I_{4}=0$ $\Rightarrow F_{2, y}=F_{m, y} * I_{3}-F_{a} * I_{1}+F_{b} * I_{4}=5.55 \mathrm{~N}$ $\quad=F_{1, y}=F_{a}+F_{b}+F_{m, y}-F_{2}=4.47 \mathrm{~N}$
x: $\left\{\begin{array}{l}\Sigma F_{x}=\mathbf{0} \\ F_{2, x}=F_{m, x}+F_{1, x} \\ \Sigma M_{1}=0\end{array}\right.$
$\mathrm{F}_{2, \mathrm{x}} * \mathrm{I}_{2}-\mathrm{Fm}, \mathrm{x} * \mathrm{I}_{3}=0$
$\Rightarrow F_{2, x}=\left(F m, x * I_{3}\right) / I_{2}=1.76 \mathrm{~N}$
$\Rightarrow F_{1, x}=F 2, x-F m, x=0.16 \mathrm{~N}$
$M_{b, \max }=\left(M_{b, y^{2}}+M_{b, x^{2}}\right)^{(1 / 2)}=\left(186.5^{2}+33.3^{2}\right)^{(1 / 2)}=189.4 * 10^{-3} \mathrm{Nm}$
$\mathrm{T}_{\max }=\mathrm{T}_{\mathrm{t}} / 2=(\mathrm{Tm} / \mathrm{i}) / 2=\left(5.09 * 10^{-3} / 7.38\right) / 0.345=345 * 10^{-3} \mathrm{Nm}$
($T_{t}=$ Torque of gear)

Bending stress:

$$
\begin{aligned}
& \text { Given: } \quad \\
& \qquad \begin{array}{l}
D=6 \mathrm{~mm} \\
\\
\\
M_{b}=189 * 10^{-3} \mathrm{Nm} \\
\\
T_{\max }=945 * 10^{-3} \mathrm{Nm}
\end{array}
\end{aligned}
$$

$$
\sigma_{\mathrm{b}}=\mathrm{M}_{\mathrm{b}} / \mathrm{w}_{\mathrm{b}}=\left(\mathrm{M}_{\mathrm{b}} * 32 * \mathrm{D}\right) /\left[\pi^{*}\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)\right]=25.9 \approx 26 \mathrm{MPa}
$$

Torsion stress:

$$
\tau_{\mathrm{T}}=\mathrm{T} / \mathrm{w}_{\mathrm{T}}=\left(\mathrm{T}^{*} \mathrm{y}_{\max }\right) / \mathrm{I}_{\mathrm{p}}=\left[\mathrm{T}^{*}(\mathrm{D} / 2) * 16\right] /\left[\pi^{*}\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)\right]=11.8 \approx 12 \mathrm{kPa}
$$

Shear stress:

With: $y_{z}=(4 \pi / 3) *[(D / 2)+(d / 2)]$

$$
=(4 \pi / 6) *(D+d)
$$

$$
A=1 / 2 * \pi *\left[(D / 2)^{2}+(d / 2)^{2}\right]
$$

$$
=(\pi / 8)\left(D^{2}+d^{2}\right)
$$

$\mathrm{I}=\mathrm{w}_{\mathrm{b}} * \mathrm{y}_{\max }=\left[\pi *\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)\right] / 64$

$$
\begin{aligned}
\tau=\left(M_{b}\right. & \left.* S_{y}\right) /\left(I^{*} b_{m}\right)=\left(M_{b} * y_{z} * A\right) /\left[\left(\pi\left(D^{4}-d^{4}\right) *(D-d)\right) / 64\right] \\
& =\left[M_{b} *(4 / 6 \pi) *(D+d) *(1 / 8) *\left(D^{2}-d^{2}\right)\right] /\left[\pi\left(D^{4}-d^{4}\right) *(D-d) / 64\right] \\
& =29.8 \\
& \approx 30 \mathrm{kPa}
\end{aligned}
$$

d) In motion the shaft experiences some different forces.

The resistance in the bearings is a reason for little differences.
When the surface is not flat, the forces caused by the weight can peak to higher amplitudes.

