```
\(\mathbf{U} \cdot \mathbf{I} \cdot \boldsymbol{\eta}=\mathbf{F}_{\text {wheel }} \cdot \mathbf{V}_{\mathbf{A} / \mathbf{B}}\)
\(\mathrm{T}_{\text {wheel }}=8.55 \cdot \mathbf{7 0 \%} \cdot \mathrm{I} \cdot 10^{-3} \cdot \mathrm{n} \quad\) ( n is the gear ratio)
\(\mathbf{T}_{\text {wheel }}=\mathbf{F}_{\text {wheel }} \cdot \mathbf{R}_{\text {wheel }}\)
\(S=1 / 2 a \cdot t^{2}=1 / 2 V_{A / B} \cdot t_{A / B} \quad(S=6 \mathrm{~m}\), at point \(A / B)\)
\(\mathbf{F} \cdot \mathbf{t}=\mathbf{m} \cdot \Delta \mathbf{V} \rightarrow\left(\mathbf{F}_{\text {wheel }}-\mathbf{F}_{\text {rolling }}\right) \cdot \mathbf{t}_{\mathbf{A} / \mathbf{B}}=\mathbf{m} \cdot \mathbf{V}_{\mathbf{A} / \mathbf{B}}\)
```

eq1 $:=7 \cdot 0.7=$ Fwheel \cdot Vab
$4.9=F$ wheel Vab
$e q 2:=T w h e e l=5.985 \cdot 0.001 \cdot n \cdot 0.93$
Twheel $=0.00556605 n$
eq $5:=$ Twheel $=$ Fwheel $\cdot 0.04$
Twheel $=0.04$ Fwheel
$e q 3:=6=\frac{1}{2} \cdot V a b \cdot t$

$$
6=\frac{1}{2} V a b t
$$

$$
e q 4:=(\text { Fwheel }-0.1104) \cdot t=0.75 \cdot \mathrm{Vab}
$$

$$
(\text { Fwheel }-0.1104) t=0.75 \mathrm{Vab}
$$

$$
\text { simplify(solve(}\{\text { eq1, eq2, eq3, eq4, eq5\}, }[\text { Vab, } n, t, \text { Fwheel, Twheel }]))
$$

$$
[[V a b=4.142427119, n=8.500688297, t=2.896852414, \text { Fwheel }
$$

$$
=1.182881402, \text { Twheel }=0.04731525609],[V a b=-2.071213560
$$

$$
-3.825725660 \mathrm{I}, n=-3.853653497+7.118059363 \mathrm{I}, t=
$$

$$
-1.313242534+2.425682101 \text { I, } \text { Fwheel }=-0.5362407012
$$

$$
+0.9904868579 \text { I, Twheel }=-0.02144962805
$$

$$
+0.03961947432 \mathrm{I}],[V a b=-2.071213560+3.825725660 \mathrm{I}, n=
$$

$$
-3.853653497-7.118059363 \mathrm{I}, t=-1.313242534
$$

$$
-2.425682101 \mathrm{I}, \text { Fwheel }=-0.5362407012-0.9904868579 \mathrm{I}
$$

$$
\text { Twheel }=-0.02144962805-0.03961947432 \mathrm{I}]]
$$

So $V a b=4.142427119, n=8.500688297, t=2.896852414$, Fwheel

$$
=1.182881402, \text { Twheel }=0.04731525609
$$

