Formatting (2A)

Young Won Lim 9/11/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 9/11/12

Formatting

Make the source signal compatible with digital processing

Transmit Formatting

A transformation from source information to digital symbols

Source Coding

Formatting + Data Compression

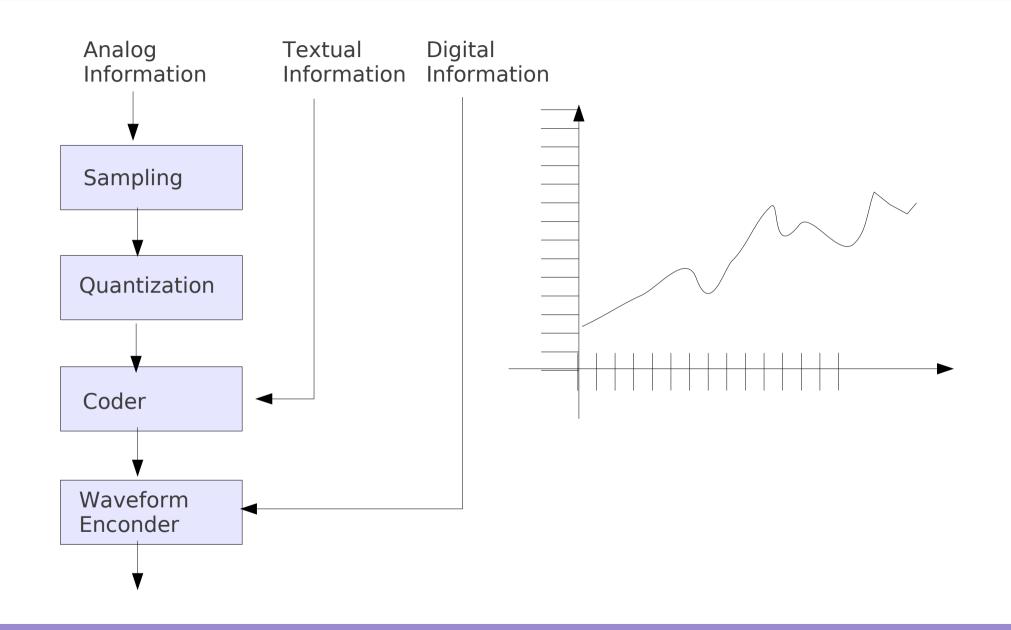
Baseband Signal

From DC up to some finite frequency (< a few MHz) Transmitted over the cable Not appropriate to transmit over long distance \rightarrow Bandpass Mod

Pulse (Baseband) Modulation

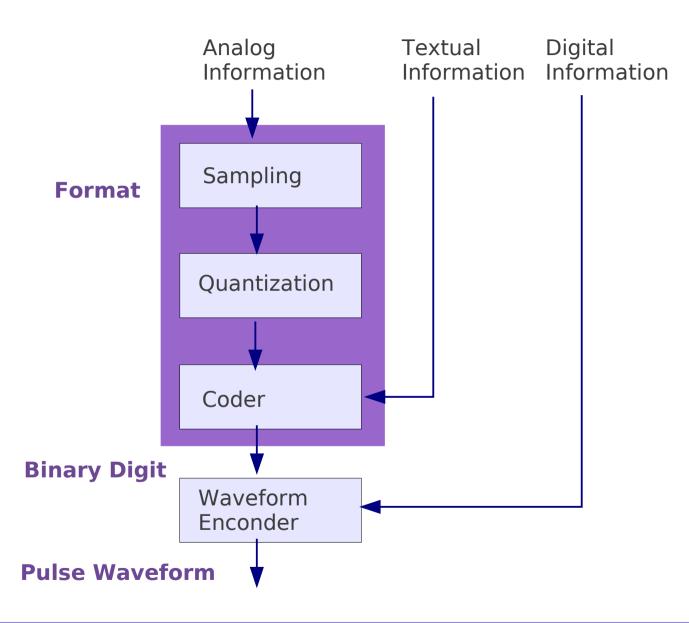
Pulse waveforms are assigned that represent formatted symbols

Energy and Power Spectral Densities (2)



4

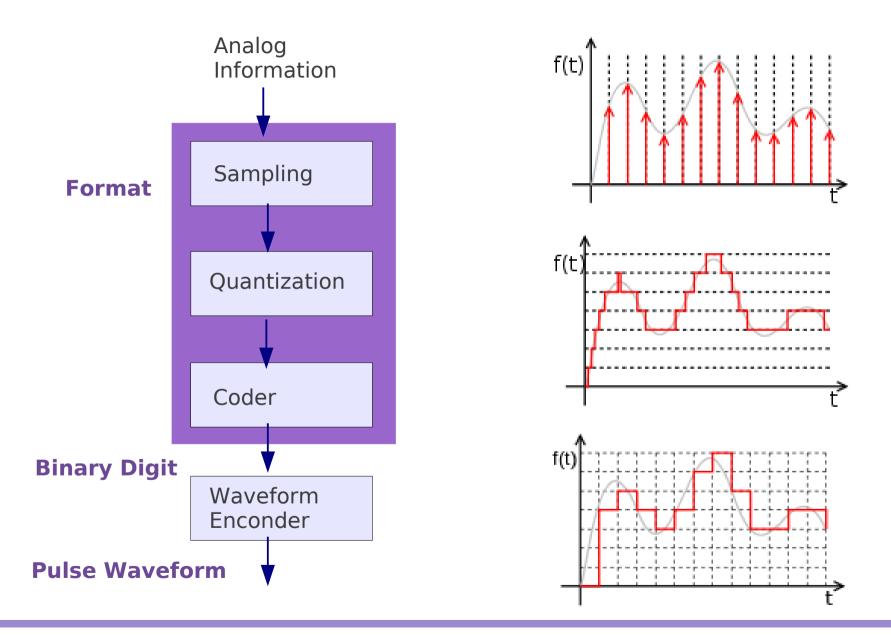
Baseband Signal



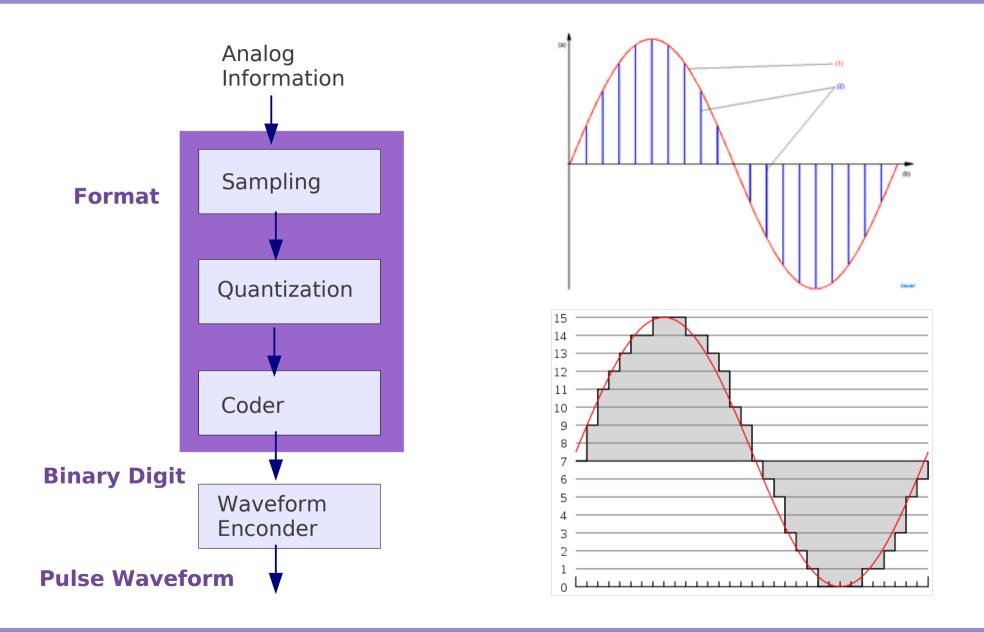
Formatting (2A)

Young Won Lim 9/11/12

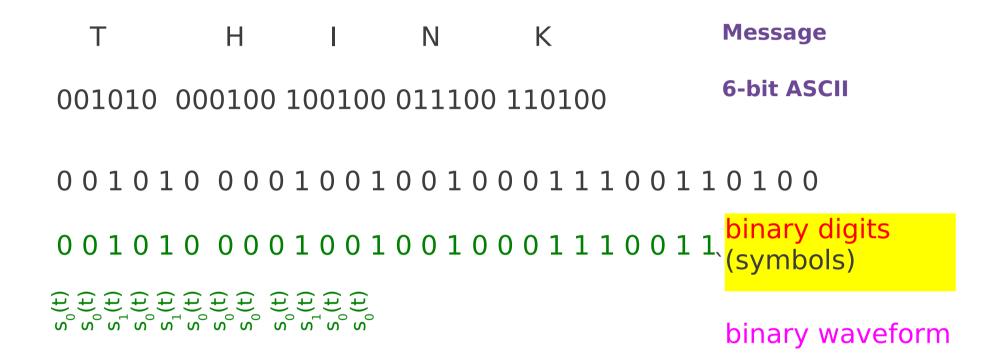
Sampling and Quantization



PAM and PCM



Т		ł	Η	I		Ν		K			Message
001	010	000	100 2	1001	00 0	1110	0 11	010	0		6-bit ASCII
001	010	000	100	100	100	011	100	110	100		
1	2	0	4	4	4	3	4	6	4	`	<mark>8-ary digits</mark> (symbols)
s ₁ (t)	s ₂ (t)	s ₀ (t)	s ₄ (t)	s ₄ (t)	s ₄ (t)	s ₃ (t)	s ₄ (t)	s ₆ (t)) s ₄ (t)		8-ary waveform



Impulse Sampling

Impulse train

$$x_{\delta}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) \qquad \longleftrightarrow \qquad X_{\delta}(f) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} \delta(f - nf_s)$$

Shifting property

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

$$\begin{split} x_s(t) &= x(t) x_{\delta}(t) & \longleftarrow \quad X_s(f) &= X(f) * X_{\delta}(f) \\ &= \sum_{n=-\infty}^{+\infty} x(t) \delta(t - nT_s) & = X(f) * \left[\frac{1}{T_s} \sum_{n=-\infty}^{+\infty} \delta(f - nf_s) \right] \\ &= \sum_{n=-\infty}^{+\infty} x(nT_s) \delta(t - nT_s) & = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} X(f - nf_s) \end{split}$$

Natural Sampling

Pulse train

$$\begin{aligned} x_s(t) &= x(t) x_p(t) & \longleftarrow \quad X_s(f) &= X(f) * X_p(f) \\ &= x(t) \sum_{n=-\infty}^{+\infty} c_n e^{j2\pi f_s t} \\ &= \sum_{n=-\infty}^{+\infty} c_n [x(t) e^{j2\pi f_s t}] & \longleftarrow \quad = \sum_{n=-\infty}^{+\infty} c_n X(f - n f_s) \end{aligned}$$

Sample and Hold

Sampled Pulse train

$$x_{p}(t) = \sum_{n=-\infty}^{+\infty} c_{n} e^{j2\pi n f_{s}t} \qquad \longleftrightarrow \qquad c_{n} = \frac{1}{T_{s}} sinc(\frac{nT}{T_{s}})$$

$$\begin{split} \mathbf{x}_{s}(t) &= p(t) \ast \left[\mathbf{x}(t) \mathbf{x}_{\delta}(t) \right] & \longleftrightarrow \quad \mathbf{X}_{s}(f) &= \mathbf{X}(f) \ast \mathbf{X}_{p}(f) \\ &= p(t) \ast \left[\mathbf{x}(t) \sum_{n=-\infty}^{+\infty} \delta(t-nT_{s}) \right] & \longleftarrow \quad = P(f) \left[\mathbf{X}(f) \ast \left[\frac{1}{T_{s}} \sum_{n=-\infty}^{+\infty} \delta(f-nf_{s}) \right] \right] \\ &= P(f) \left[\frac{1}{T_{s}} \sum_{n=-\infty}^{+\infty} \mathbf{X}(f-nf_{s}) \right] \end{split}$$

Sampling Theorem

Uniform Sampling Theorem

A bandlimited signal having no spectral components above f_m Hz can be determined uniquely by values sampled at *uniform intervals* of T_c seconds

$$T_{s} \leq \frac{1}{2f_{m}} \qquad f_{s} = \frac{1}{T_{s}} \qquad f_{s} \geq 2f_{m}$$

$$Upper limit of T_{s} \qquad Lower limit of f_{s}$$

Nyquist Criterion Nyquist Rate $f_s = 2f_m$

Autocorrelation of Energy and Power Signals

Ensemble Average

Autocorrelation of Random and Power Signals

Time Averaging and Ergodicity

Autocorrelation of Random and Power Signals

Time Averaging and Ergodicity

References

- [1] http://en.wikipedia.org/
- [2] http://planetmath.org/
- [3] M.L. Boas, "Mathematical Methods in the Physical Sciences"